xref: /openbmc/linux/kernel/time/hrtimer.c (revision dbc1625fc9deefb352f6ff26a575ae4b3ddef23a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
139 };
140 
141 #define migration_base	migration_cpu_base.clock_base[0]
142 
143 /*
144  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145  * means that all timers which are tied to this base via timer->base are
146  * locked, and the base itself is locked too.
147  *
148  * So __run_timers/migrate_timers can safely modify all timers which could
149  * be found on the lists/queues.
150  *
151  * When the timer's base is locked, and the timer removed from list, it is
152  * possible to set timer->base = &migration_base and drop the lock: the timer
153  * remains locked.
154  */
155 static
156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 					     unsigned long *flags)
158 {
159 	struct hrtimer_clock_base *base;
160 
161 	for (;;) {
162 		base = timer->base;
163 		if (likely(base != &migration_base)) {
164 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
165 			if (likely(base == timer->base))
166 				return base;
167 			/* The timer has migrated to another CPU: */
168 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
169 		}
170 		cpu_relax();
171 	}
172 }
173 
174 /*
175  * We do not migrate the timer when it is expiring before the next
176  * event on the target cpu. When high resolution is enabled, we cannot
177  * reprogram the target cpu hardware and we would cause it to fire
178  * late. To keep it simple, we handle the high resolution enabled and
179  * disabled case similar.
180  *
181  * Called with cpu_base->lock of target cpu held.
182  */
183 static int
184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185 {
186 	ktime_t expires;
187 
188 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
189 	return expires < new_base->cpu_base->expires_next;
190 }
191 
192 static inline
193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 					 int pinned)
195 {
196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199 #endif
200 	return base;
201 }
202 
203 /*
204  * We switch the timer base to a power-optimized selected CPU target,
205  * if:
206  *	- NO_HZ_COMMON is enabled
207  *	- timer migration is enabled
208  *	- the timer callback is not running
209  *	- the timer is not the first expiring timer on the new target
210  *
211  * If one of the above requirements is not fulfilled we move the timer
212  * to the current CPU or leave it on the previously assigned CPU if
213  * the timer callback is currently running.
214  */
215 static inline struct hrtimer_clock_base *
216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 		    int pinned)
218 {
219 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
220 	struct hrtimer_clock_base *new_base;
221 	int basenum = base->index;
222 
223 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 	new_cpu_base = get_target_base(this_cpu_base, pinned);
225 again:
226 	new_base = &new_cpu_base->clock_base[basenum];
227 
228 	if (base != new_base) {
229 		/*
230 		 * We are trying to move timer to new_base.
231 		 * However we can't change timer's base while it is running,
232 		 * so we keep it on the same CPU. No hassle vs. reprogramming
233 		 * the event source in the high resolution case. The softirq
234 		 * code will take care of this when the timer function has
235 		 * completed. There is no conflict as we hold the lock until
236 		 * the timer is enqueued.
237 		 */
238 		if (unlikely(hrtimer_callback_running(timer)))
239 			return base;
240 
241 		/* See the comment in lock_hrtimer_base() */
242 		timer->base = &migration_base;
243 		raw_spin_unlock(&base->cpu_base->lock);
244 		raw_spin_lock(&new_base->cpu_base->lock);
245 
246 		if (new_cpu_base != this_cpu_base &&
247 		    hrtimer_check_target(timer, new_base)) {
248 			raw_spin_unlock(&new_base->cpu_base->lock);
249 			raw_spin_lock(&base->cpu_base->lock);
250 			new_cpu_base = this_cpu_base;
251 			timer->base = base;
252 			goto again;
253 		}
254 		timer->base = new_base;
255 	} else {
256 		if (new_cpu_base != this_cpu_base &&
257 		    hrtimer_check_target(timer, new_base)) {
258 			new_cpu_base = this_cpu_base;
259 			goto again;
260 		}
261 	}
262 	return new_base;
263 }
264 
265 #else /* CONFIG_SMP */
266 
267 static inline struct hrtimer_clock_base *
268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269 {
270 	struct hrtimer_clock_base *base = timer->base;
271 
272 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
273 
274 	return base;
275 }
276 
277 # define switch_hrtimer_base(t, b, p)	(b)
278 
279 #endif	/* !CONFIG_SMP */
280 
281 /*
282  * Functions for the union type storage format of ktime_t which are
283  * too large for inlining:
284  */
285 #if BITS_PER_LONG < 64
286 /*
287  * Divide a ktime value by a nanosecond value
288  */
289 s64 __ktime_divns(const ktime_t kt, s64 div)
290 {
291 	int sft = 0;
292 	s64 dclc;
293 	u64 tmp;
294 
295 	dclc = ktime_to_ns(kt);
296 	tmp = dclc < 0 ? -dclc : dclc;
297 
298 	/* Make sure the divisor is less than 2^32: */
299 	while (div >> 32) {
300 		sft++;
301 		div >>= 1;
302 	}
303 	tmp >>= sft;
304 	do_div(tmp, (unsigned long) div);
305 	return dclc < 0 ? -tmp : tmp;
306 }
307 EXPORT_SYMBOL_GPL(__ktime_divns);
308 #endif /* BITS_PER_LONG >= 64 */
309 
310 /*
311  * Add two ktime values and do a safety check for overflow:
312  */
313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314 {
315 	ktime_t res = ktime_add_unsafe(lhs, rhs);
316 
317 	/*
318 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 	 * return to user space in a timespec:
320 	 */
321 	if (res < 0 || res < lhs || res < rhs)
322 		res = ktime_set(KTIME_SEC_MAX, 0);
323 
324 	return res;
325 }
326 
327 EXPORT_SYMBOL_GPL(ktime_add_safe);
328 
329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330 
331 static struct debug_obj_descr hrtimer_debug_descr;
332 
333 static void *hrtimer_debug_hint(void *addr)
334 {
335 	return ((struct hrtimer *) addr)->function;
336 }
337 
338 /*
339  * fixup_init is called when:
340  * - an active object is initialized
341  */
342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 {
344 	struct hrtimer *timer = addr;
345 
346 	switch (state) {
347 	case ODEBUG_STATE_ACTIVE:
348 		hrtimer_cancel(timer);
349 		debug_object_init(timer, &hrtimer_debug_descr);
350 		return true;
351 	default:
352 		return false;
353 	}
354 }
355 
356 /*
357  * fixup_activate is called when:
358  * - an active object is activated
359  * - an unknown non-static object is activated
360  */
361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 {
363 	switch (state) {
364 	case ODEBUG_STATE_ACTIVE:
365 		WARN_ON(1);
366 		/* fall through */
367 	default:
368 		return false;
369 	}
370 }
371 
372 /*
373  * fixup_free is called when:
374  * - an active object is freed
375  */
376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 	struct hrtimer *timer = addr;
379 
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		hrtimer_cancel(timer);
383 		debug_object_free(timer, &hrtimer_debug_descr);
384 		return true;
385 	default:
386 		return false;
387 	}
388 }
389 
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 	.name		= "hrtimer",
392 	.debug_hint	= hrtimer_debug_hint,
393 	.fixup_init	= hrtimer_fixup_init,
394 	.fixup_activate	= hrtimer_fixup_activate,
395 	.fixup_free	= hrtimer_fixup_free,
396 };
397 
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 	debug_object_init(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 					  enum hrtimer_mode mode)
405 {
406 	debug_object_activate(timer, &hrtimer_debug_descr);
407 }
408 
409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410 {
411 	debug_object_deactivate(timer, &hrtimer_debug_descr);
412 }
413 
414 static inline void debug_hrtimer_free(struct hrtimer *timer)
415 {
416 	debug_object_free(timer, &hrtimer_debug_descr);
417 }
418 
419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 			   enum hrtimer_mode mode);
421 
422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 			   enum hrtimer_mode mode)
424 {
425 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 	__hrtimer_init(timer, clock_id, mode);
427 }
428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
429 
430 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
431 				   clockid_t clock_id, enum hrtimer_mode mode);
432 
433 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
434 				   clockid_t clock_id, enum hrtimer_mode mode)
435 {
436 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
437 	__hrtimer_init_sleeper(sl, clock_id, mode);
438 }
439 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
440 
441 void destroy_hrtimer_on_stack(struct hrtimer *timer)
442 {
443 	debug_object_free(timer, &hrtimer_debug_descr);
444 }
445 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
446 
447 #else
448 
449 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
450 static inline void debug_hrtimer_activate(struct hrtimer *timer,
451 					  enum hrtimer_mode mode) { }
452 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
453 #endif
454 
455 static inline void
456 debug_init(struct hrtimer *timer, clockid_t clockid,
457 	   enum hrtimer_mode mode)
458 {
459 	debug_hrtimer_init(timer);
460 	trace_hrtimer_init(timer, clockid, mode);
461 }
462 
463 static inline void debug_activate(struct hrtimer *timer,
464 				  enum hrtimer_mode mode)
465 {
466 	debug_hrtimer_activate(timer, mode);
467 	trace_hrtimer_start(timer, mode);
468 }
469 
470 static inline void debug_deactivate(struct hrtimer *timer)
471 {
472 	debug_hrtimer_deactivate(timer);
473 	trace_hrtimer_cancel(timer);
474 }
475 
476 static struct hrtimer_clock_base *
477 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
478 {
479 	unsigned int idx;
480 
481 	if (!*active)
482 		return NULL;
483 
484 	idx = __ffs(*active);
485 	*active &= ~(1U << idx);
486 
487 	return &cpu_base->clock_base[idx];
488 }
489 
490 #define for_each_active_base(base, cpu_base, active)	\
491 	while ((base = __next_base((cpu_base), &(active))))
492 
493 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
494 					 const struct hrtimer *exclude,
495 					 unsigned int active,
496 					 ktime_t expires_next)
497 {
498 	struct hrtimer_clock_base *base;
499 	ktime_t expires;
500 
501 	for_each_active_base(base, cpu_base, active) {
502 		struct timerqueue_node *next;
503 		struct hrtimer *timer;
504 
505 		next = timerqueue_getnext(&base->active);
506 		timer = container_of(next, struct hrtimer, node);
507 		if (timer == exclude) {
508 			/* Get to the next timer in the queue. */
509 			next = timerqueue_iterate_next(next);
510 			if (!next)
511 				continue;
512 
513 			timer = container_of(next, struct hrtimer, node);
514 		}
515 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
516 		if (expires < expires_next) {
517 			expires_next = expires;
518 
519 			/* Skip cpu_base update if a timer is being excluded. */
520 			if (exclude)
521 				continue;
522 
523 			if (timer->is_soft)
524 				cpu_base->softirq_next_timer = timer;
525 			else
526 				cpu_base->next_timer = timer;
527 		}
528 	}
529 	/*
530 	 * clock_was_set() might have changed base->offset of any of
531 	 * the clock bases so the result might be negative. Fix it up
532 	 * to prevent a false positive in clockevents_program_event().
533 	 */
534 	if (expires_next < 0)
535 		expires_next = 0;
536 	return expires_next;
537 }
538 
539 /*
540  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
541  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
542  *
543  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
544  * those timers will get run whenever the softirq gets handled, at the end of
545  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
546  *
547  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
548  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
549  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
550  *
551  * @active_mask must be one of:
552  *  - HRTIMER_ACTIVE_ALL,
553  *  - HRTIMER_ACTIVE_SOFT, or
554  *  - HRTIMER_ACTIVE_HARD.
555  */
556 static ktime_t
557 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
558 {
559 	unsigned int active;
560 	struct hrtimer *next_timer = NULL;
561 	ktime_t expires_next = KTIME_MAX;
562 
563 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
564 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
565 		cpu_base->softirq_next_timer = NULL;
566 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
567 							 active, KTIME_MAX);
568 
569 		next_timer = cpu_base->softirq_next_timer;
570 	}
571 
572 	if (active_mask & HRTIMER_ACTIVE_HARD) {
573 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
574 		cpu_base->next_timer = next_timer;
575 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
576 							 expires_next);
577 	}
578 
579 	return expires_next;
580 }
581 
582 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
583 {
584 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
585 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
586 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
587 
588 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
589 					    offs_real, offs_boot, offs_tai);
590 
591 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
592 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
593 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
594 
595 	return now;
596 }
597 
598 /*
599  * Is the high resolution mode active ?
600  */
601 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
602 {
603 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
604 		cpu_base->hres_active : 0;
605 }
606 
607 static inline int hrtimer_hres_active(void)
608 {
609 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
610 }
611 
612 /*
613  * Reprogram the event source with checking both queues for the
614  * next event
615  * Called with interrupts disabled and base->lock held
616  */
617 static void
618 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
619 {
620 	ktime_t expires_next;
621 
622 	/*
623 	 * Find the current next expiration time.
624 	 */
625 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
626 
627 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
628 		/*
629 		 * When the softirq is activated, hrtimer has to be
630 		 * programmed with the first hard hrtimer because soft
631 		 * timer interrupt could occur too late.
632 		 */
633 		if (cpu_base->softirq_activated)
634 			expires_next = __hrtimer_get_next_event(cpu_base,
635 								HRTIMER_ACTIVE_HARD);
636 		else
637 			cpu_base->softirq_expires_next = expires_next;
638 	}
639 
640 	if (skip_equal && expires_next == cpu_base->expires_next)
641 		return;
642 
643 	cpu_base->expires_next = expires_next;
644 
645 	/*
646 	 * If hres is not active, hardware does not have to be
647 	 * reprogrammed yet.
648 	 *
649 	 * If a hang was detected in the last timer interrupt then we
650 	 * leave the hang delay active in the hardware. We want the
651 	 * system to make progress. That also prevents the following
652 	 * scenario:
653 	 * T1 expires 50ms from now
654 	 * T2 expires 5s from now
655 	 *
656 	 * T1 is removed, so this code is called and would reprogram
657 	 * the hardware to 5s from now. Any hrtimer_start after that
658 	 * will not reprogram the hardware due to hang_detected being
659 	 * set. So we'd effectivly block all timers until the T2 event
660 	 * fires.
661 	 */
662 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
663 		return;
664 
665 	tick_program_event(cpu_base->expires_next, 1);
666 }
667 
668 /* High resolution timer related functions */
669 #ifdef CONFIG_HIGH_RES_TIMERS
670 
671 /*
672  * High resolution timer enabled ?
673  */
674 static bool hrtimer_hres_enabled __read_mostly  = true;
675 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
676 EXPORT_SYMBOL_GPL(hrtimer_resolution);
677 
678 /*
679  * Enable / Disable high resolution mode
680  */
681 static int __init setup_hrtimer_hres(char *str)
682 {
683 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
684 }
685 
686 __setup("highres=", setup_hrtimer_hres);
687 
688 /*
689  * hrtimer_high_res_enabled - query, if the highres mode is enabled
690  */
691 static inline int hrtimer_is_hres_enabled(void)
692 {
693 	return hrtimer_hres_enabled;
694 }
695 
696 /*
697  * Retrigger next event is called after clock was set
698  *
699  * Called with interrupts disabled via on_each_cpu()
700  */
701 static void retrigger_next_event(void *arg)
702 {
703 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
704 
705 	if (!__hrtimer_hres_active(base))
706 		return;
707 
708 	raw_spin_lock(&base->lock);
709 	hrtimer_update_base(base);
710 	hrtimer_force_reprogram(base, 0);
711 	raw_spin_unlock(&base->lock);
712 }
713 
714 /*
715  * Switch to high resolution mode
716  */
717 static void hrtimer_switch_to_hres(void)
718 {
719 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
720 
721 	if (tick_init_highres()) {
722 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
723 			base->cpu);
724 		return;
725 	}
726 	base->hres_active = 1;
727 	hrtimer_resolution = HIGH_RES_NSEC;
728 
729 	tick_setup_sched_timer();
730 	/* "Retrigger" the interrupt to get things going */
731 	retrigger_next_event(NULL);
732 }
733 
734 static void clock_was_set_work(struct work_struct *work)
735 {
736 	clock_was_set();
737 }
738 
739 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
740 
741 /*
742  * Called from timekeeping and resume code to reprogram the hrtimer
743  * interrupt device on all cpus.
744  */
745 void clock_was_set_delayed(void)
746 {
747 	schedule_work(&hrtimer_work);
748 }
749 
750 #else
751 
752 static inline int hrtimer_is_hres_enabled(void) { return 0; }
753 static inline void hrtimer_switch_to_hres(void) { }
754 static inline void retrigger_next_event(void *arg) { }
755 
756 #endif /* CONFIG_HIGH_RES_TIMERS */
757 
758 /*
759  * When a timer is enqueued and expires earlier than the already enqueued
760  * timers, we have to check, whether it expires earlier than the timer for
761  * which the clock event device was armed.
762  *
763  * Called with interrupts disabled and base->cpu_base.lock held
764  */
765 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
766 {
767 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
768 	struct hrtimer_clock_base *base = timer->base;
769 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
770 
771 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
772 
773 	/*
774 	 * CLOCK_REALTIME timer might be requested with an absolute
775 	 * expiry time which is less than base->offset. Set it to 0.
776 	 */
777 	if (expires < 0)
778 		expires = 0;
779 
780 	if (timer->is_soft) {
781 		/*
782 		 * soft hrtimer could be started on a remote CPU. In this
783 		 * case softirq_expires_next needs to be updated on the
784 		 * remote CPU. The soft hrtimer will not expire before the
785 		 * first hard hrtimer on the remote CPU -
786 		 * hrtimer_check_target() prevents this case.
787 		 */
788 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
789 
790 		if (timer_cpu_base->softirq_activated)
791 			return;
792 
793 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
794 			return;
795 
796 		timer_cpu_base->softirq_next_timer = timer;
797 		timer_cpu_base->softirq_expires_next = expires;
798 
799 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
800 		    !reprogram)
801 			return;
802 	}
803 
804 	/*
805 	 * If the timer is not on the current cpu, we cannot reprogram
806 	 * the other cpus clock event device.
807 	 */
808 	if (base->cpu_base != cpu_base)
809 		return;
810 
811 	/*
812 	 * If the hrtimer interrupt is running, then it will
813 	 * reevaluate the clock bases and reprogram the clock event
814 	 * device. The callbacks are always executed in hard interrupt
815 	 * context so we don't need an extra check for a running
816 	 * callback.
817 	 */
818 	if (cpu_base->in_hrtirq)
819 		return;
820 
821 	if (expires >= cpu_base->expires_next)
822 		return;
823 
824 	/* Update the pointer to the next expiring timer */
825 	cpu_base->next_timer = timer;
826 	cpu_base->expires_next = expires;
827 
828 	/*
829 	 * If hres is not active, hardware does not have to be
830 	 * programmed yet.
831 	 *
832 	 * If a hang was detected in the last timer interrupt then we
833 	 * do not schedule a timer which is earlier than the expiry
834 	 * which we enforced in the hang detection. We want the system
835 	 * to make progress.
836 	 */
837 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
838 		return;
839 
840 	/*
841 	 * Program the timer hardware. We enforce the expiry for
842 	 * events which are already in the past.
843 	 */
844 	tick_program_event(expires, 1);
845 }
846 
847 /*
848  * Clock realtime was set
849  *
850  * Change the offset of the realtime clock vs. the monotonic
851  * clock.
852  *
853  * We might have to reprogram the high resolution timer interrupt. On
854  * SMP we call the architecture specific code to retrigger _all_ high
855  * resolution timer interrupts. On UP we just disable interrupts and
856  * call the high resolution interrupt code.
857  */
858 void clock_was_set(void)
859 {
860 #ifdef CONFIG_HIGH_RES_TIMERS
861 	/* Retrigger the CPU local events everywhere */
862 	on_each_cpu(retrigger_next_event, NULL, 1);
863 #endif
864 	timerfd_clock_was_set();
865 }
866 
867 /*
868  * During resume we might have to reprogram the high resolution timer
869  * interrupt on all online CPUs.  However, all other CPUs will be
870  * stopped with IRQs interrupts disabled so the clock_was_set() call
871  * must be deferred.
872  */
873 void hrtimers_resume(void)
874 {
875 	lockdep_assert_irqs_disabled();
876 	/* Retrigger on the local CPU */
877 	retrigger_next_event(NULL);
878 	/* And schedule a retrigger for all others */
879 	clock_was_set_delayed();
880 }
881 
882 /*
883  * Counterpart to lock_hrtimer_base above:
884  */
885 static inline
886 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
887 {
888 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
889 }
890 
891 /**
892  * hrtimer_forward - forward the timer expiry
893  * @timer:	hrtimer to forward
894  * @now:	forward past this time
895  * @interval:	the interval to forward
896  *
897  * Forward the timer expiry so it will expire in the future.
898  * Returns the number of overruns.
899  *
900  * Can be safely called from the callback function of @timer. If
901  * called from other contexts @timer must neither be enqueued nor
902  * running the callback and the caller needs to take care of
903  * serialization.
904  *
905  * Note: This only updates the timer expiry value and does not requeue
906  * the timer.
907  */
908 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
909 {
910 	u64 orun = 1;
911 	ktime_t delta;
912 
913 	delta = ktime_sub(now, hrtimer_get_expires(timer));
914 
915 	if (delta < 0)
916 		return 0;
917 
918 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
919 		return 0;
920 
921 	if (interval < hrtimer_resolution)
922 		interval = hrtimer_resolution;
923 
924 	if (unlikely(delta >= interval)) {
925 		s64 incr = ktime_to_ns(interval);
926 
927 		orun = ktime_divns(delta, incr);
928 		hrtimer_add_expires_ns(timer, incr * orun);
929 		if (hrtimer_get_expires_tv64(timer) > now)
930 			return orun;
931 		/*
932 		 * This (and the ktime_add() below) is the
933 		 * correction for exact:
934 		 */
935 		orun++;
936 	}
937 	hrtimer_add_expires(timer, interval);
938 
939 	return orun;
940 }
941 EXPORT_SYMBOL_GPL(hrtimer_forward);
942 
943 /*
944  * enqueue_hrtimer - internal function to (re)start a timer
945  *
946  * The timer is inserted in expiry order. Insertion into the
947  * red black tree is O(log(n)). Must hold the base lock.
948  *
949  * Returns 1 when the new timer is the leftmost timer in the tree.
950  */
951 static int enqueue_hrtimer(struct hrtimer *timer,
952 			   struct hrtimer_clock_base *base,
953 			   enum hrtimer_mode mode)
954 {
955 	debug_activate(timer, mode);
956 
957 	base->cpu_base->active_bases |= 1 << base->index;
958 
959 	timer->state = HRTIMER_STATE_ENQUEUED;
960 
961 	return timerqueue_add(&base->active, &timer->node);
962 }
963 
964 /*
965  * __remove_hrtimer - internal function to remove a timer
966  *
967  * Caller must hold the base lock.
968  *
969  * High resolution timer mode reprograms the clock event device when the
970  * timer is the one which expires next. The caller can disable this by setting
971  * reprogram to zero. This is useful, when the context does a reprogramming
972  * anyway (e.g. timer interrupt)
973  */
974 static void __remove_hrtimer(struct hrtimer *timer,
975 			     struct hrtimer_clock_base *base,
976 			     u8 newstate, int reprogram)
977 {
978 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
979 	u8 state = timer->state;
980 
981 	timer->state = newstate;
982 	if (!(state & HRTIMER_STATE_ENQUEUED))
983 		return;
984 
985 	if (!timerqueue_del(&base->active, &timer->node))
986 		cpu_base->active_bases &= ~(1 << base->index);
987 
988 	/*
989 	 * Note: If reprogram is false we do not update
990 	 * cpu_base->next_timer. This happens when we remove the first
991 	 * timer on a remote cpu. No harm as we never dereference
992 	 * cpu_base->next_timer. So the worst thing what can happen is
993 	 * an superflous call to hrtimer_force_reprogram() on the
994 	 * remote cpu later on if the same timer gets enqueued again.
995 	 */
996 	if (reprogram && timer == cpu_base->next_timer)
997 		hrtimer_force_reprogram(cpu_base, 1);
998 }
999 
1000 /*
1001  * remove hrtimer, called with base lock held
1002  */
1003 static inline int
1004 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1005 {
1006 	if (hrtimer_is_queued(timer)) {
1007 		u8 state = timer->state;
1008 		int reprogram;
1009 
1010 		/*
1011 		 * Remove the timer and force reprogramming when high
1012 		 * resolution mode is active and the timer is on the current
1013 		 * CPU. If we remove a timer on another CPU, reprogramming is
1014 		 * skipped. The interrupt event on this CPU is fired and
1015 		 * reprogramming happens in the interrupt handler. This is a
1016 		 * rare case and less expensive than a smp call.
1017 		 */
1018 		debug_deactivate(timer);
1019 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1020 
1021 		if (!restart)
1022 			state = HRTIMER_STATE_INACTIVE;
1023 
1024 		__remove_hrtimer(timer, base, state, reprogram);
1025 		return 1;
1026 	}
1027 	return 0;
1028 }
1029 
1030 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1031 					    const enum hrtimer_mode mode)
1032 {
1033 #ifdef CONFIG_TIME_LOW_RES
1034 	/*
1035 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1036 	 * granular time values. For relative timers we add hrtimer_resolution
1037 	 * (i.e. one jiffie) to prevent short timeouts.
1038 	 */
1039 	timer->is_rel = mode & HRTIMER_MODE_REL;
1040 	if (timer->is_rel)
1041 		tim = ktime_add_safe(tim, hrtimer_resolution);
1042 #endif
1043 	return tim;
1044 }
1045 
1046 static void
1047 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1048 {
1049 	ktime_t expires;
1050 
1051 	/*
1052 	 * Find the next SOFT expiration.
1053 	 */
1054 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1055 
1056 	/*
1057 	 * reprogramming needs to be triggered, even if the next soft
1058 	 * hrtimer expires at the same time than the next hard
1059 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1060 	 */
1061 	if (expires == KTIME_MAX)
1062 		return;
1063 
1064 	/*
1065 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1066 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1067 	 */
1068 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1069 }
1070 
1071 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1072 				    u64 delta_ns, const enum hrtimer_mode mode,
1073 				    struct hrtimer_clock_base *base)
1074 {
1075 	struct hrtimer_clock_base *new_base;
1076 
1077 	/* Remove an active timer from the queue: */
1078 	remove_hrtimer(timer, base, true);
1079 
1080 	if (mode & HRTIMER_MODE_REL)
1081 		tim = ktime_add_safe(tim, base->get_time());
1082 
1083 	tim = hrtimer_update_lowres(timer, tim, mode);
1084 
1085 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1086 
1087 	/* Switch the timer base, if necessary: */
1088 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1089 
1090 	return enqueue_hrtimer(timer, new_base, mode);
1091 }
1092 
1093 /**
1094  * hrtimer_start_range_ns - (re)start an hrtimer
1095  * @timer:	the timer to be added
1096  * @tim:	expiry time
1097  * @delta_ns:	"slack" range for the timer
1098  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1099  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1100  *		softirq based mode is considered for debug purpose only!
1101  */
1102 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1103 			    u64 delta_ns, const enum hrtimer_mode mode)
1104 {
1105 	struct hrtimer_clock_base *base;
1106 	unsigned long flags;
1107 
1108 	/*
1109 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1110 	 * match.
1111 	 */
1112 	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1113 
1114 	base = lock_hrtimer_base(timer, &flags);
1115 
1116 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1117 		hrtimer_reprogram(timer, true);
1118 
1119 	unlock_hrtimer_base(timer, &flags);
1120 }
1121 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1122 
1123 /**
1124  * hrtimer_try_to_cancel - try to deactivate a timer
1125  * @timer:	hrtimer to stop
1126  *
1127  * Returns:
1128  *
1129  *  *  0 when the timer was not active
1130  *  *  1 when the timer was active
1131  *  * -1 when the timer is currently executing the callback function and
1132  *    cannot be stopped
1133  */
1134 int hrtimer_try_to_cancel(struct hrtimer *timer)
1135 {
1136 	struct hrtimer_clock_base *base;
1137 	unsigned long flags;
1138 	int ret = -1;
1139 
1140 	/*
1141 	 * Check lockless first. If the timer is not active (neither
1142 	 * enqueued nor running the callback, nothing to do here.  The
1143 	 * base lock does not serialize against a concurrent enqueue,
1144 	 * so we can avoid taking it.
1145 	 */
1146 	if (!hrtimer_active(timer))
1147 		return 0;
1148 
1149 	base = lock_hrtimer_base(timer, &flags);
1150 
1151 	if (!hrtimer_callback_running(timer))
1152 		ret = remove_hrtimer(timer, base, false);
1153 
1154 	unlock_hrtimer_base(timer, &flags);
1155 
1156 	return ret;
1157 
1158 }
1159 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1160 
1161 /**
1162  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1163  * @timer:	the timer to be cancelled
1164  *
1165  * Returns:
1166  *  0 when the timer was not active
1167  *  1 when the timer was active
1168  */
1169 int hrtimer_cancel(struct hrtimer *timer)
1170 {
1171 	for (;;) {
1172 		int ret = hrtimer_try_to_cancel(timer);
1173 
1174 		if (ret >= 0)
1175 			return ret;
1176 		cpu_relax();
1177 	}
1178 }
1179 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1180 
1181 /**
1182  * hrtimer_get_remaining - get remaining time for the timer
1183  * @timer:	the timer to read
1184  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1185  */
1186 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1187 {
1188 	unsigned long flags;
1189 	ktime_t rem;
1190 
1191 	lock_hrtimer_base(timer, &flags);
1192 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1193 		rem = hrtimer_expires_remaining_adjusted(timer);
1194 	else
1195 		rem = hrtimer_expires_remaining(timer);
1196 	unlock_hrtimer_base(timer, &flags);
1197 
1198 	return rem;
1199 }
1200 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1201 
1202 #ifdef CONFIG_NO_HZ_COMMON
1203 /**
1204  * hrtimer_get_next_event - get the time until next expiry event
1205  *
1206  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1207  */
1208 u64 hrtimer_get_next_event(void)
1209 {
1210 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1211 	u64 expires = KTIME_MAX;
1212 	unsigned long flags;
1213 
1214 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1215 
1216 	if (!__hrtimer_hres_active(cpu_base))
1217 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1218 
1219 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1220 
1221 	return expires;
1222 }
1223 
1224 /**
1225  * hrtimer_next_event_without - time until next expiry event w/o one timer
1226  * @exclude:	timer to exclude
1227  *
1228  * Returns the next expiry time over all timers except for the @exclude one or
1229  * KTIME_MAX if none of them is pending.
1230  */
1231 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1232 {
1233 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1234 	u64 expires = KTIME_MAX;
1235 	unsigned long flags;
1236 
1237 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1238 
1239 	if (__hrtimer_hres_active(cpu_base)) {
1240 		unsigned int active;
1241 
1242 		if (!cpu_base->softirq_activated) {
1243 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1244 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1245 							    active, KTIME_MAX);
1246 		}
1247 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1248 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1249 						    expires);
1250 	}
1251 
1252 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1253 
1254 	return expires;
1255 }
1256 #endif
1257 
1258 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1259 {
1260 	if (likely(clock_id < MAX_CLOCKS)) {
1261 		int base = hrtimer_clock_to_base_table[clock_id];
1262 
1263 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1264 			return base;
1265 	}
1266 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1267 	return HRTIMER_BASE_MONOTONIC;
1268 }
1269 
1270 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1271 			   enum hrtimer_mode mode)
1272 {
1273 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1274 	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1275 	struct hrtimer_cpu_base *cpu_base;
1276 
1277 	memset(timer, 0, sizeof(struct hrtimer));
1278 
1279 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1280 
1281 	/*
1282 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1283 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1284 	 * ensure POSIX compliance.
1285 	 */
1286 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1287 		clock_id = CLOCK_MONOTONIC;
1288 
1289 	base += hrtimer_clockid_to_base(clock_id);
1290 	timer->is_soft = softtimer;
1291 	timer->base = &cpu_base->clock_base[base];
1292 	timerqueue_init(&timer->node);
1293 }
1294 
1295 /**
1296  * hrtimer_init - initialize a timer to the given clock
1297  * @timer:	the timer to be initialized
1298  * @clock_id:	the clock to be used
1299  * @mode:       The modes which are relevant for intitialization:
1300  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1301  *              HRTIMER_MODE_REL_SOFT
1302  *
1303  *              The PINNED variants of the above can be handed in,
1304  *              but the PINNED bit is ignored as pinning happens
1305  *              when the hrtimer is started
1306  */
1307 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1308 		  enum hrtimer_mode mode)
1309 {
1310 	debug_init(timer, clock_id, mode);
1311 	__hrtimer_init(timer, clock_id, mode);
1312 }
1313 EXPORT_SYMBOL_GPL(hrtimer_init);
1314 
1315 /*
1316  * A timer is active, when it is enqueued into the rbtree or the
1317  * callback function is running or it's in the state of being migrated
1318  * to another cpu.
1319  *
1320  * It is important for this function to not return a false negative.
1321  */
1322 bool hrtimer_active(const struct hrtimer *timer)
1323 {
1324 	struct hrtimer_clock_base *base;
1325 	unsigned int seq;
1326 
1327 	do {
1328 		base = READ_ONCE(timer->base);
1329 		seq = raw_read_seqcount_begin(&base->seq);
1330 
1331 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1332 		    base->running == timer)
1333 			return true;
1334 
1335 	} while (read_seqcount_retry(&base->seq, seq) ||
1336 		 base != READ_ONCE(timer->base));
1337 
1338 	return false;
1339 }
1340 EXPORT_SYMBOL_GPL(hrtimer_active);
1341 
1342 /*
1343  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1344  * distinct sections:
1345  *
1346  *  - queued:	the timer is queued
1347  *  - callback:	the timer is being ran
1348  *  - post:	the timer is inactive or (re)queued
1349  *
1350  * On the read side we ensure we observe timer->state and cpu_base->running
1351  * from the same section, if anything changed while we looked at it, we retry.
1352  * This includes timer->base changing because sequence numbers alone are
1353  * insufficient for that.
1354  *
1355  * The sequence numbers are required because otherwise we could still observe
1356  * a false negative if the read side got smeared over multiple consequtive
1357  * __run_hrtimer() invocations.
1358  */
1359 
1360 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1361 			  struct hrtimer_clock_base *base,
1362 			  struct hrtimer *timer, ktime_t *now,
1363 			  unsigned long flags)
1364 {
1365 	enum hrtimer_restart (*fn)(struct hrtimer *);
1366 	int restart;
1367 
1368 	lockdep_assert_held(&cpu_base->lock);
1369 
1370 	debug_deactivate(timer);
1371 	base->running = timer;
1372 
1373 	/*
1374 	 * Separate the ->running assignment from the ->state assignment.
1375 	 *
1376 	 * As with a regular write barrier, this ensures the read side in
1377 	 * hrtimer_active() cannot observe base->running == NULL &&
1378 	 * timer->state == INACTIVE.
1379 	 */
1380 	raw_write_seqcount_barrier(&base->seq);
1381 
1382 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1383 	fn = timer->function;
1384 
1385 	/*
1386 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1387 	 * timer is restarted with a period then it becomes an absolute
1388 	 * timer. If its not restarted it does not matter.
1389 	 */
1390 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1391 		timer->is_rel = false;
1392 
1393 	/*
1394 	 * The timer is marked as running in the CPU base, so it is
1395 	 * protected against migration to a different CPU even if the lock
1396 	 * is dropped.
1397 	 */
1398 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1399 	trace_hrtimer_expire_entry(timer, now);
1400 	restart = fn(timer);
1401 	trace_hrtimer_expire_exit(timer);
1402 	raw_spin_lock_irq(&cpu_base->lock);
1403 
1404 	/*
1405 	 * Note: We clear the running state after enqueue_hrtimer and
1406 	 * we do not reprogram the event hardware. Happens either in
1407 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1408 	 *
1409 	 * Note: Because we dropped the cpu_base->lock above,
1410 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1411 	 * for us already.
1412 	 */
1413 	if (restart != HRTIMER_NORESTART &&
1414 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1415 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1416 
1417 	/*
1418 	 * Separate the ->running assignment from the ->state assignment.
1419 	 *
1420 	 * As with a regular write barrier, this ensures the read side in
1421 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1422 	 * timer->state == INACTIVE.
1423 	 */
1424 	raw_write_seqcount_barrier(&base->seq);
1425 
1426 	WARN_ON_ONCE(base->running != timer);
1427 	base->running = NULL;
1428 }
1429 
1430 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1431 				 unsigned long flags, unsigned int active_mask)
1432 {
1433 	struct hrtimer_clock_base *base;
1434 	unsigned int active = cpu_base->active_bases & active_mask;
1435 
1436 	for_each_active_base(base, cpu_base, active) {
1437 		struct timerqueue_node *node;
1438 		ktime_t basenow;
1439 
1440 		basenow = ktime_add(now, base->offset);
1441 
1442 		while ((node = timerqueue_getnext(&base->active))) {
1443 			struct hrtimer *timer;
1444 
1445 			timer = container_of(node, struct hrtimer, node);
1446 
1447 			/*
1448 			 * The immediate goal for using the softexpires is
1449 			 * minimizing wakeups, not running timers at the
1450 			 * earliest interrupt after their soft expiration.
1451 			 * This allows us to avoid using a Priority Search
1452 			 * Tree, which can answer a stabbing querry for
1453 			 * overlapping intervals and instead use the simple
1454 			 * BST we already have.
1455 			 * We don't add extra wakeups by delaying timers that
1456 			 * are right-of a not yet expired timer, because that
1457 			 * timer will have to trigger a wakeup anyway.
1458 			 */
1459 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1460 				break;
1461 
1462 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1463 		}
1464 	}
1465 }
1466 
1467 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1468 {
1469 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1470 	unsigned long flags;
1471 	ktime_t now;
1472 
1473 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1474 
1475 	now = hrtimer_update_base(cpu_base);
1476 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1477 
1478 	cpu_base->softirq_activated = 0;
1479 	hrtimer_update_softirq_timer(cpu_base, true);
1480 
1481 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1482 }
1483 
1484 #ifdef CONFIG_HIGH_RES_TIMERS
1485 
1486 /*
1487  * High resolution timer interrupt
1488  * Called with interrupts disabled
1489  */
1490 void hrtimer_interrupt(struct clock_event_device *dev)
1491 {
1492 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1493 	ktime_t expires_next, now, entry_time, delta;
1494 	unsigned long flags;
1495 	int retries = 0;
1496 
1497 	BUG_ON(!cpu_base->hres_active);
1498 	cpu_base->nr_events++;
1499 	dev->next_event = KTIME_MAX;
1500 
1501 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1502 	entry_time = now = hrtimer_update_base(cpu_base);
1503 retry:
1504 	cpu_base->in_hrtirq = 1;
1505 	/*
1506 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1507 	 * held to prevent that a timer is enqueued in our queue via
1508 	 * the migration code. This does not affect enqueueing of
1509 	 * timers which run their callback and need to be requeued on
1510 	 * this CPU.
1511 	 */
1512 	cpu_base->expires_next = KTIME_MAX;
1513 
1514 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1515 		cpu_base->softirq_expires_next = KTIME_MAX;
1516 		cpu_base->softirq_activated = 1;
1517 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1518 	}
1519 
1520 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1521 
1522 	/* Reevaluate the clock bases for the next expiry */
1523 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1524 	/*
1525 	 * Store the new expiry value so the migration code can verify
1526 	 * against it.
1527 	 */
1528 	cpu_base->expires_next = expires_next;
1529 	cpu_base->in_hrtirq = 0;
1530 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1531 
1532 	/* Reprogramming necessary ? */
1533 	if (!tick_program_event(expires_next, 0)) {
1534 		cpu_base->hang_detected = 0;
1535 		return;
1536 	}
1537 
1538 	/*
1539 	 * The next timer was already expired due to:
1540 	 * - tracing
1541 	 * - long lasting callbacks
1542 	 * - being scheduled away when running in a VM
1543 	 *
1544 	 * We need to prevent that we loop forever in the hrtimer
1545 	 * interrupt routine. We give it 3 attempts to avoid
1546 	 * overreacting on some spurious event.
1547 	 *
1548 	 * Acquire base lock for updating the offsets and retrieving
1549 	 * the current time.
1550 	 */
1551 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1552 	now = hrtimer_update_base(cpu_base);
1553 	cpu_base->nr_retries++;
1554 	if (++retries < 3)
1555 		goto retry;
1556 	/*
1557 	 * Give the system a chance to do something else than looping
1558 	 * here. We stored the entry time, so we know exactly how long
1559 	 * we spent here. We schedule the next event this amount of
1560 	 * time away.
1561 	 */
1562 	cpu_base->nr_hangs++;
1563 	cpu_base->hang_detected = 1;
1564 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1565 
1566 	delta = ktime_sub(now, entry_time);
1567 	if ((unsigned int)delta > cpu_base->max_hang_time)
1568 		cpu_base->max_hang_time = (unsigned int) delta;
1569 	/*
1570 	 * Limit it to a sensible value as we enforce a longer
1571 	 * delay. Give the CPU at least 100ms to catch up.
1572 	 */
1573 	if (delta > 100 * NSEC_PER_MSEC)
1574 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1575 	else
1576 		expires_next = ktime_add(now, delta);
1577 	tick_program_event(expires_next, 1);
1578 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1579 }
1580 
1581 /* called with interrupts disabled */
1582 static inline void __hrtimer_peek_ahead_timers(void)
1583 {
1584 	struct tick_device *td;
1585 
1586 	if (!hrtimer_hres_active())
1587 		return;
1588 
1589 	td = this_cpu_ptr(&tick_cpu_device);
1590 	if (td && td->evtdev)
1591 		hrtimer_interrupt(td->evtdev);
1592 }
1593 
1594 #else /* CONFIG_HIGH_RES_TIMERS */
1595 
1596 static inline void __hrtimer_peek_ahead_timers(void) { }
1597 
1598 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1599 
1600 /*
1601  * Called from run_local_timers in hardirq context every jiffy
1602  */
1603 void hrtimer_run_queues(void)
1604 {
1605 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1606 	unsigned long flags;
1607 	ktime_t now;
1608 
1609 	if (__hrtimer_hres_active(cpu_base))
1610 		return;
1611 
1612 	/*
1613 	 * This _is_ ugly: We have to check periodically, whether we
1614 	 * can switch to highres and / or nohz mode. The clocksource
1615 	 * switch happens with xtime_lock held. Notification from
1616 	 * there only sets the check bit in the tick_oneshot code,
1617 	 * otherwise we might deadlock vs. xtime_lock.
1618 	 */
1619 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1620 		hrtimer_switch_to_hres();
1621 		return;
1622 	}
1623 
1624 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1625 	now = hrtimer_update_base(cpu_base);
1626 
1627 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1628 		cpu_base->softirq_expires_next = KTIME_MAX;
1629 		cpu_base->softirq_activated = 1;
1630 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1631 	}
1632 
1633 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1634 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1635 }
1636 
1637 /*
1638  * Sleep related functions:
1639  */
1640 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1641 {
1642 	struct hrtimer_sleeper *t =
1643 		container_of(timer, struct hrtimer_sleeper, timer);
1644 	struct task_struct *task = t->task;
1645 
1646 	t->task = NULL;
1647 	if (task)
1648 		wake_up_process(task);
1649 
1650 	return HRTIMER_NORESTART;
1651 }
1652 
1653 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1654 				   clockid_t clock_id, enum hrtimer_mode mode)
1655 {
1656 	__hrtimer_init(&sl->timer, clock_id, mode);
1657 	sl->timer.function = hrtimer_wakeup;
1658 	sl->task = current;
1659 }
1660 
1661 /**
1662  * hrtimer_init_sleeper - initialize sleeper to the given clock
1663  * @sl:		sleeper to be initialized
1664  * @clock_id:	the clock to be used
1665  * @mode:	timer mode abs/rel
1666  */
1667 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1668 			  enum hrtimer_mode mode)
1669 {
1670 	debug_init(&sl->timer, clock_id, mode);
1671 	__hrtimer_init_sleeper(sl, clock_id, mode);
1672 
1673 }
1674 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1675 
1676 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1677 {
1678 	switch(restart->nanosleep.type) {
1679 #ifdef CONFIG_COMPAT_32BIT_TIME
1680 	case TT_COMPAT:
1681 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1682 			return -EFAULT;
1683 		break;
1684 #endif
1685 	case TT_NATIVE:
1686 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1687 			return -EFAULT;
1688 		break;
1689 	default:
1690 		BUG();
1691 	}
1692 	return -ERESTART_RESTARTBLOCK;
1693 }
1694 
1695 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1696 {
1697 	struct restart_block *restart;
1698 
1699 	do {
1700 		set_current_state(TASK_INTERRUPTIBLE);
1701 		hrtimer_start_expires(&t->timer, mode);
1702 
1703 		if (likely(t->task))
1704 			freezable_schedule();
1705 
1706 		hrtimer_cancel(&t->timer);
1707 		mode = HRTIMER_MODE_ABS;
1708 
1709 	} while (t->task && !signal_pending(current));
1710 
1711 	__set_current_state(TASK_RUNNING);
1712 
1713 	if (!t->task)
1714 		return 0;
1715 
1716 	restart = &current->restart_block;
1717 	if (restart->nanosleep.type != TT_NONE) {
1718 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1719 		struct timespec64 rmt;
1720 
1721 		if (rem <= 0)
1722 			return 0;
1723 		rmt = ktime_to_timespec64(rem);
1724 
1725 		return nanosleep_copyout(restart, &rmt);
1726 	}
1727 	return -ERESTART_RESTARTBLOCK;
1728 }
1729 
1730 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1731 {
1732 	struct hrtimer_sleeper t;
1733 	int ret;
1734 
1735 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1736 				      HRTIMER_MODE_ABS);
1737 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1738 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1739 	destroy_hrtimer_on_stack(&t.timer);
1740 	return ret;
1741 }
1742 
1743 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1744 		       const enum hrtimer_mode mode, const clockid_t clockid)
1745 {
1746 	struct restart_block *restart;
1747 	struct hrtimer_sleeper t;
1748 	int ret = 0;
1749 	u64 slack;
1750 
1751 	slack = current->timer_slack_ns;
1752 	if (dl_task(current) || rt_task(current))
1753 		slack = 0;
1754 
1755 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1756 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1757 	ret = do_nanosleep(&t, mode);
1758 	if (ret != -ERESTART_RESTARTBLOCK)
1759 		goto out;
1760 
1761 	/* Absolute timers do not update the rmtp value and restart: */
1762 	if (mode == HRTIMER_MODE_ABS) {
1763 		ret = -ERESTARTNOHAND;
1764 		goto out;
1765 	}
1766 
1767 	restart = &current->restart_block;
1768 	restart->fn = hrtimer_nanosleep_restart;
1769 	restart->nanosleep.clockid = t.timer.base->clockid;
1770 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1771 out:
1772 	destroy_hrtimer_on_stack(&t.timer);
1773 	return ret;
1774 }
1775 
1776 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1777 
1778 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1779 		struct __kernel_timespec __user *, rmtp)
1780 {
1781 	struct timespec64 tu;
1782 
1783 	if (get_timespec64(&tu, rqtp))
1784 		return -EFAULT;
1785 
1786 	if (!timespec64_valid(&tu))
1787 		return -EINVAL;
1788 
1789 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1790 	current->restart_block.nanosleep.rmtp = rmtp;
1791 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1792 }
1793 
1794 #endif
1795 
1796 #ifdef CONFIG_COMPAT_32BIT_TIME
1797 
1798 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1799 		       struct old_timespec32 __user *, rmtp)
1800 {
1801 	struct timespec64 tu;
1802 
1803 	if (get_old_timespec32(&tu, rqtp))
1804 		return -EFAULT;
1805 
1806 	if (!timespec64_valid(&tu))
1807 		return -EINVAL;
1808 
1809 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1810 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1811 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1812 }
1813 #endif
1814 
1815 /*
1816  * Functions related to boot-time initialization:
1817  */
1818 int hrtimers_prepare_cpu(unsigned int cpu)
1819 {
1820 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1821 	int i;
1822 
1823 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1824 		cpu_base->clock_base[i].cpu_base = cpu_base;
1825 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1826 	}
1827 
1828 	cpu_base->cpu = cpu;
1829 	cpu_base->active_bases = 0;
1830 	cpu_base->hres_active = 0;
1831 	cpu_base->hang_detected = 0;
1832 	cpu_base->next_timer = NULL;
1833 	cpu_base->softirq_next_timer = NULL;
1834 	cpu_base->expires_next = KTIME_MAX;
1835 	cpu_base->softirq_expires_next = KTIME_MAX;
1836 	return 0;
1837 }
1838 
1839 #ifdef CONFIG_HOTPLUG_CPU
1840 
1841 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1842 				struct hrtimer_clock_base *new_base)
1843 {
1844 	struct hrtimer *timer;
1845 	struct timerqueue_node *node;
1846 
1847 	while ((node = timerqueue_getnext(&old_base->active))) {
1848 		timer = container_of(node, struct hrtimer, node);
1849 		BUG_ON(hrtimer_callback_running(timer));
1850 		debug_deactivate(timer);
1851 
1852 		/*
1853 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1854 		 * timer could be seen as !active and just vanish away
1855 		 * under us on another CPU
1856 		 */
1857 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1858 		timer->base = new_base;
1859 		/*
1860 		 * Enqueue the timers on the new cpu. This does not
1861 		 * reprogram the event device in case the timer
1862 		 * expires before the earliest on this CPU, but we run
1863 		 * hrtimer_interrupt after we migrated everything to
1864 		 * sort out already expired timers and reprogram the
1865 		 * event device.
1866 		 */
1867 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1868 	}
1869 }
1870 
1871 int hrtimers_dead_cpu(unsigned int scpu)
1872 {
1873 	struct hrtimer_cpu_base *old_base, *new_base;
1874 	int i;
1875 
1876 	BUG_ON(cpu_online(scpu));
1877 	tick_cancel_sched_timer(scpu);
1878 
1879 	/*
1880 	 * this BH disable ensures that raise_softirq_irqoff() does
1881 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
1882 	 * holding the cpu_base lock
1883 	 */
1884 	local_bh_disable();
1885 	local_irq_disable();
1886 	old_base = &per_cpu(hrtimer_bases, scpu);
1887 	new_base = this_cpu_ptr(&hrtimer_bases);
1888 	/*
1889 	 * The caller is globally serialized and nobody else
1890 	 * takes two locks at once, deadlock is not possible.
1891 	 */
1892 	raw_spin_lock(&new_base->lock);
1893 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1894 
1895 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1896 		migrate_hrtimer_list(&old_base->clock_base[i],
1897 				     &new_base->clock_base[i]);
1898 	}
1899 
1900 	/*
1901 	 * The migration might have changed the first expiring softirq
1902 	 * timer on this CPU. Update it.
1903 	 */
1904 	hrtimer_update_softirq_timer(new_base, false);
1905 
1906 	raw_spin_unlock(&old_base->lock);
1907 	raw_spin_unlock(&new_base->lock);
1908 
1909 	/* Check, if we got expired work to do */
1910 	__hrtimer_peek_ahead_timers();
1911 	local_irq_enable();
1912 	local_bh_enable();
1913 	return 0;
1914 }
1915 
1916 #endif /* CONFIG_HOTPLUG_CPU */
1917 
1918 void __init hrtimers_init(void)
1919 {
1920 	hrtimers_prepare_cpu(smp_processor_id());
1921 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1922 }
1923 
1924 /**
1925  * schedule_hrtimeout_range_clock - sleep until timeout
1926  * @expires:	timeout value (ktime_t)
1927  * @delta:	slack in expires timeout (ktime_t)
1928  * @mode:	timer mode
1929  * @clock_id:	timer clock to be used
1930  */
1931 int __sched
1932 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1933 			       const enum hrtimer_mode mode, clockid_t clock_id)
1934 {
1935 	struct hrtimer_sleeper t;
1936 
1937 	/*
1938 	 * Optimize when a zero timeout value is given. It does not
1939 	 * matter whether this is an absolute or a relative time.
1940 	 */
1941 	if (expires && *expires == 0) {
1942 		__set_current_state(TASK_RUNNING);
1943 		return 0;
1944 	}
1945 
1946 	/*
1947 	 * A NULL parameter means "infinite"
1948 	 */
1949 	if (!expires) {
1950 		schedule();
1951 		return -EINTR;
1952 	}
1953 
1954 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
1955 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1956 	hrtimer_start_expires(&t.timer, mode);
1957 
1958 	if (likely(t.task))
1959 		schedule();
1960 
1961 	hrtimer_cancel(&t.timer);
1962 	destroy_hrtimer_on_stack(&t.timer);
1963 
1964 	__set_current_state(TASK_RUNNING);
1965 
1966 	return !t.task ? 0 : -EINTR;
1967 }
1968 
1969 /**
1970  * schedule_hrtimeout_range - sleep until timeout
1971  * @expires:	timeout value (ktime_t)
1972  * @delta:	slack in expires timeout (ktime_t)
1973  * @mode:	timer mode
1974  *
1975  * Make the current task sleep until the given expiry time has
1976  * elapsed. The routine will return immediately unless
1977  * the current task state has been set (see set_current_state()).
1978  *
1979  * The @delta argument gives the kernel the freedom to schedule the
1980  * actual wakeup to a time that is both power and performance friendly.
1981  * The kernel give the normal best effort behavior for "@expires+@delta",
1982  * but may decide to fire the timer earlier, but no earlier than @expires.
1983  *
1984  * You can set the task state as follows -
1985  *
1986  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1987  * pass before the routine returns unless the current task is explicitly
1988  * woken up, (e.g. by wake_up_process()).
1989  *
1990  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1991  * delivered to the current task or the current task is explicitly woken
1992  * up.
1993  *
1994  * The current task state is guaranteed to be TASK_RUNNING when this
1995  * routine returns.
1996  *
1997  * Returns 0 when the timer has expired. If the task was woken before the
1998  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1999  * by an explicit wakeup, it returns -EINTR.
2000  */
2001 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2002 				     const enum hrtimer_mode mode)
2003 {
2004 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2005 					      CLOCK_MONOTONIC);
2006 }
2007 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2008 
2009 /**
2010  * schedule_hrtimeout - sleep until timeout
2011  * @expires:	timeout value (ktime_t)
2012  * @mode:	timer mode
2013  *
2014  * Make the current task sleep until the given expiry time has
2015  * elapsed. The routine will return immediately unless
2016  * the current task state has been set (see set_current_state()).
2017  *
2018  * You can set the task state as follows -
2019  *
2020  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2021  * pass before the routine returns unless the current task is explicitly
2022  * woken up, (e.g. by wake_up_process()).
2023  *
2024  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2025  * delivered to the current task or the current task is explicitly woken
2026  * up.
2027  *
2028  * The current task state is guaranteed to be TASK_RUNNING when this
2029  * routine returns.
2030  *
2031  * Returns 0 when the timer has expired. If the task was woken before the
2032  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2033  * by an explicit wakeup, it returns -EINTR.
2034  */
2035 int __sched schedule_hrtimeout(ktime_t *expires,
2036 			       const enum hrtimer_mode mode)
2037 {
2038 	return schedule_hrtimeout_range(expires, 0, mode);
2039 }
2040 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2041