1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/timer.h> 43 #include <linux/freezer.h> 44 #include <linux/compat.h> 45 46 #include <linux/uaccess.h> 47 48 #include <trace/events/timer.h> 49 50 #include "tick-internal.h" 51 52 /* 53 * Masks for selecting the soft and hard context timers from 54 * cpu_base->active 55 */ 56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 60 61 /* 62 * The timer bases: 63 * 64 * There are more clockids than hrtimer bases. Thus, we index 65 * into the timer bases by the hrtimer_base_type enum. When trying 66 * to reach a base using a clockid, hrtimer_clockid_to_base() 67 * is used to convert from clockid to the proper hrtimer_base_type. 68 */ 69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 70 { 71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 72 .clock_base = 73 { 74 { 75 .index = HRTIMER_BASE_MONOTONIC, 76 .clockid = CLOCK_MONOTONIC, 77 .get_time = &ktime_get, 78 }, 79 { 80 .index = HRTIMER_BASE_REALTIME, 81 .clockid = CLOCK_REALTIME, 82 .get_time = &ktime_get_real, 83 }, 84 { 85 .index = HRTIMER_BASE_BOOTTIME, 86 .clockid = CLOCK_BOOTTIME, 87 .get_time = &ktime_get_boottime, 88 }, 89 { 90 .index = HRTIMER_BASE_TAI, 91 .clockid = CLOCK_TAI, 92 .get_time = &ktime_get_clocktai, 93 }, 94 { 95 .index = HRTIMER_BASE_MONOTONIC_SOFT, 96 .clockid = CLOCK_MONOTONIC, 97 .get_time = &ktime_get, 98 }, 99 { 100 .index = HRTIMER_BASE_REALTIME_SOFT, 101 .clockid = CLOCK_REALTIME, 102 .get_time = &ktime_get_real, 103 }, 104 { 105 .index = HRTIMER_BASE_BOOTTIME_SOFT, 106 .clockid = CLOCK_BOOTTIME, 107 .get_time = &ktime_get_boottime, 108 }, 109 { 110 .index = HRTIMER_BASE_TAI_SOFT, 111 .clockid = CLOCK_TAI, 112 .get_time = &ktime_get_clocktai, 113 }, 114 } 115 }; 116 117 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 118 /* Make sure we catch unsupported clockids */ 119 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 120 121 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 122 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 123 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 124 [CLOCK_TAI] = HRTIMER_BASE_TAI, 125 }; 126 127 /* 128 * Functions and macros which are different for UP/SMP systems are kept in a 129 * single place 130 */ 131 #ifdef CONFIG_SMP 132 133 /* 134 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 135 * such that hrtimer_callback_running() can unconditionally dereference 136 * timer->base->cpu_base 137 */ 138 static struct hrtimer_cpu_base migration_cpu_base = { 139 .clock_base = { { 140 .cpu_base = &migration_cpu_base, 141 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 142 &migration_cpu_base.lock), 143 }, }, 144 }; 145 146 #define migration_base migration_cpu_base.clock_base[0] 147 148 static inline bool is_migration_base(struct hrtimer_clock_base *base) 149 { 150 return base == &migration_base; 151 } 152 153 /* 154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 155 * means that all timers which are tied to this base via timer->base are 156 * locked, and the base itself is locked too. 157 * 158 * So __run_timers/migrate_timers can safely modify all timers which could 159 * be found on the lists/queues. 160 * 161 * When the timer's base is locked, and the timer removed from list, it is 162 * possible to set timer->base = &migration_base and drop the lock: the timer 163 * remains locked. 164 */ 165 static 166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 167 unsigned long *flags) 168 __acquires(&timer->base->lock) 169 { 170 struct hrtimer_clock_base *base; 171 172 for (;;) { 173 base = READ_ONCE(timer->base); 174 if (likely(base != &migration_base)) { 175 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 176 if (likely(base == timer->base)) 177 return base; 178 /* The timer has migrated to another CPU: */ 179 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 180 } 181 cpu_relax(); 182 } 183 } 184 185 /* 186 * We do not migrate the timer when it is expiring before the next 187 * event on the target cpu. When high resolution is enabled, we cannot 188 * reprogram the target cpu hardware and we would cause it to fire 189 * late. To keep it simple, we handle the high resolution enabled and 190 * disabled case similar. 191 * 192 * Called with cpu_base->lock of target cpu held. 193 */ 194 static int 195 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 196 { 197 ktime_t expires; 198 199 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 200 return expires < new_base->cpu_base->expires_next; 201 } 202 203 static inline 204 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 205 int pinned) 206 { 207 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 208 if (static_branch_likely(&timers_migration_enabled) && !pinned) 209 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 210 #endif 211 return base; 212 } 213 214 /* 215 * We switch the timer base to a power-optimized selected CPU target, 216 * if: 217 * - NO_HZ_COMMON is enabled 218 * - timer migration is enabled 219 * - the timer callback is not running 220 * - the timer is not the first expiring timer on the new target 221 * 222 * If one of the above requirements is not fulfilled we move the timer 223 * to the current CPU or leave it on the previously assigned CPU if 224 * the timer callback is currently running. 225 */ 226 static inline struct hrtimer_clock_base * 227 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 228 int pinned) 229 { 230 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 231 struct hrtimer_clock_base *new_base; 232 int basenum = base->index; 233 234 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 235 new_cpu_base = get_target_base(this_cpu_base, pinned); 236 again: 237 new_base = &new_cpu_base->clock_base[basenum]; 238 239 if (base != new_base) { 240 /* 241 * We are trying to move timer to new_base. 242 * However we can't change timer's base while it is running, 243 * so we keep it on the same CPU. No hassle vs. reprogramming 244 * the event source in the high resolution case. The softirq 245 * code will take care of this when the timer function has 246 * completed. There is no conflict as we hold the lock until 247 * the timer is enqueued. 248 */ 249 if (unlikely(hrtimer_callback_running(timer))) 250 return base; 251 252 /* See the comment in lock_hrtimer_base() */ 253 WRITE_ONCE(timer->base, &migration_base); 254 raw_spin_unlock(&base->cpu_base->lock); 255 raw_spin_lock(&new_base->cpu_base->lock); 256 257 if (new_cpu_base != this_cpu_base && 258 hrtimer_check_target(timer, new_base)) { 259 raw_spin_unlock(&new_base->cpu_base->lock); 260 raw_spin_lock(&base->cpu_base->lock); 261 new_cpu_base = this_cpu_base; 262 WRITE_ONCE(timer->base, base); 263 goto again; 264 } 265 WRITE_ONCE(timer->base, new_base); 266 } else { 267 if (new_cpu_base != this_cpu_base && 268 hrtimer_check_target(timer, new_base)) { 269 new_cpu_base = this_cpu_base; 270 goto again; 271 } 272 } 273 return new_base; 274 } 275 276 #else /* CONFIG_SMP */ 277 278 static inline bool is_migration_base(struct hrtimer_clock_base *base) 279 { 280 return false; 281 } 282 283 static inline struct hrtimer_clock_base * 284 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 285 __acquires(&timer->base->cpu_base->lock) 286 { 287 struct hrtimer_clock_base *base = timer->base; 288 289 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 290 291 return base; 292 } 293 294 # define switch_hrtimer_base(t, b, p) (b) 295 296 #endif /* !CONFIG_SMP */ 297 298 /* 299 * Functions for the union type storage format of ktime_t which are 300 * too large for inlining: 301 */ 302 #if BITS_PER_LONG < 64 303 /* 304 * Divide a ktime value by a nanosecond value 305 */ 306 s64 __ktime_divns(const ktime_t kt, s64 div) 307 { 308 int sft = 0; 309 s64 dclc; 310 u64 tmp; 311 312 dclc = ktime_to_ns(kt); 313 tmp = dclc < 0 ? -dclc : dclc; 314 315 /* Make sure the divisor is less than 2^32: */ 316 while (div >> 32) { 317 sft++; 318 div >>= 1; 319 } 320 tmp >>= sft; 321 do_div(tmp, (u32) div); 322 return dclc < 0 ? -tmp : tmp; 323 } 324 EXPORT_SYMBOL_GPL(__ktime_divns); 325 #endif /* BITS_PER_LONG >= 64 */ 326 327 /* 328 * Add two ktime values and do a safety check for overflow: 329 */ 330 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 331 { 332 ktime_t res = ktime_add_unsafe(lhs, rhs); 333 334 /* 335 * We use KTIME_SEC_MAX here, the maximum timeout which we can 336 * return to user space in a timespec: 337 */ 338 if (res < 0 || res < lhs || res < rhs) 339 res = ktime_set(KTIME_SEC_MAX, 0); 340 341 return res; 342 } 343 344 EXPORT_SYMBOL_GPL(ktime_add_safe); 345 346 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 347 348 static const struct debug_obj_descr hrtimer_debug_descr; 349 350 static void *hrtimer_debug_hint(void *addr) 351 { 352 return ((struct hrtimer *) addr)->function; 353 } 354 355 /* 356 * fixup_init is called when: 357 * - an active object is initialized 358 */ 359 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 360 { 361 struct hrtimer *timer = addr; 362 363 switch (state) { 364 case ODEBUG_STATE_ACTIVE: 365 hrtimer_cancel(timer); 366 debug_object_init(timer, &hrtimer_debug_descr); 367 return true; 368 default: 369 return false; 370 } 371 } 372 373 /* 374 * fixup_activate is called when: 375 * - an active object is activated 376 * - an unknown non-static object is activated 377 */ 378 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 379 { 380 switch (state) { 381 case ODEBUG_STATE_ACTIVE: 382 WARN_ON(1); 383 fallthrough; 384 default: 385 return false; 386 } 387 } 388 389 /* 390 * fixup_free is called when: 391 * - an active object is freed 392 */ 393 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 394 { 395 struct hrtimer *timer = addr; 396 397 switch (state) { 398 case ODEBUG_STATE_ACTIVE: 399 hrtimer_cancel(timer); 400 debug_object_free(timer, &hrtimer_debug_descr); 401 return true; 402 default: 403 return false; 404 } 405 } 406 407 static const struct debug_obj_descr hrtimer_debug_descr = { 408 .name = "hrtimer", 409 .debug_hint = hrtimer_debug_hint, 410 .fixup_init = hrtimer_fixup_init, 411 .fixup_activate = hrtimer_fixup_activate, 412 .fixup_free = hrtimer_fixup_free, 413 }; 414 415 static inline void debug_hrtimer_init(struct hrtimer *timer) 416 { 417 debug_object_init(timer, &hrtimer_debug_descr); 418 } 419 420 static inline void debug_hrtimer_activate(struct hrtimer *timer, 421 enum hrtimer_mode mode) 422 { 423 debug_object_activate(timer, &hrtimer_debug_descr); 424 } 425 426 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 427 { 428 debug_object_deactivate(timer, &hrtimer_debug_descr); 429 } 430 431 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 432 enum hrtimer_mode mode); 433 434 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 435 enum hrtimer_mode mode) 436 { 437 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 438 __hrtimer_init(timer, clock_id, mode); 439 } 440 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 441 442 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 443 clockid_t clock_id, enum hrtimer_mode mode); 444 445 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 446 clockid_t clock_id, enum hrtimer_mode mode) 447 { 448 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 449 __hrtimer_init_sleeper(sl, clock_id, mode); 450 } 451 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 452 453 void destroy_hrtimer_on_stack(struct hrtimer *timer) 454 { 455 debug_object_free(timer, &hrtimer_debug_descr); 456 } 457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 458 459 #else 460 461 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 462 static inline void debug_hrtimer_activate(struct hrtimer *timer, 463 enum hrtimer_mode mode) { } 464 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 465 #endif 466 467 static inline void 468 debug_init(struct hrtimer *timer, clockid_t clockid, 469 enum hrtimer_mode mode) 470 { 471 debug_hrtimer_init(timer); 472 trace_hrtimer_init(timer, clockid, mode); 473 } 474 475 static inline void debug_activate(struct hrtimer *timer, 476 enum hrtimer_mode mode) 477 { 478 debug_hrtimer_activate(timer, mode); 479 trace_hrtimer_start(timer, mode); 480 } 481 482 static inline void debug_deactivate(struct hrtimer *timer) 483 { 484 debug_hrtimer_deactivate(timer); 485 trace_hrtimer_cancel(timer); 486 } 487 488 static struct hrtimer_clock_base * 489 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 490 { 491 unsigned int idx; 492 493 if (!*active) 494 return NULL; 495 496 idx = __ffs(*active); 497 *active &= ~(1U << idx); 498 499 return &cpu_base->clock_base[idx]; 500 } 501 502 #define for_each_active_base(base, cpu_base, active) \ 503 while ((base = __next_base((cpu_base), &(active)))) 504 505 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 506 const struct hrtimer *exclude, 507 unsigned int active, 508 ktime_t expires_next) 509 { 510 struct hrtimer_clock_base *base; 511 ktime_t expires; 512 513 for_each_active_base(base, cpu_base, active) { 514 struct timerqueue_node *next; 515 struct hrtimer *timer; 516 517 next = timerqueue_getnext(&base->active); 518 timer = container_of(next, struct hrtimer, node); 519 if (timer == exclude) { 520 /* Get to the next timer in the queue. */ 521 next = timerqueue_iterate_next(next); 522 if (!next) 523 continue; 524 525 timer = container_of(next, struct hrtimer, node); 526 } 527 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 528 if (expires < expires_next) { 529 expires_next = expires; 530 531 /* Skip cpu_base update if a timer is being excluded. */ 532 if (exclude) 533 continue; 534 535 if (timer->is_soft) 536 cpu_base->softirq_next_timer = timer; 537 else 538 cpu_base->next_timer = timer; 539 } 540 } 541 /* 542 * clock_was_set() might have changed base->offset of any of 543 * the clock bases so the result might be negative. Fix it up 544 * to prevent a false positive in clockevents_program_event(). 545 */ 546 if (expires_next < 0) 547 expires_next = 0; 548 return expires_next; 549 } 550 551 /* 552 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 553 * but does not set cpu_base::*expires_next, that is done by 554 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 555 * cpu_base::*expires_next right away, reprogramming logic would no longer 556 * work. 557 * 558 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 559 * those timers will get run whenever the softirq gets handled, at the end of 560 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 561 * 562 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 563 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 564 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 565 * 566 * @active_mask must be one of: 567 * - HRTIMER_ACTIVE_ALL, 568 * - HRTIMER_ACTIVE_SOFT, or 569 * - HRTIMER_ACTIVE_HARD. 570 */ 571 static ktime_t 572 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 573 { 574 unsigned int active; 575 struct hrtimer *next_timer = NULL; 576 ktime_t expires_next = KTIME_MAX; 577 578 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 579 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 580 cpu_base->softirq_next_timer = NULL; 581 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 582 active, KTIME_MAX); 583 584 next_timer = cpu_base->softirq_next_timer; 585 } 586 587 if (active_mask & HRTIMER_ACTIVE_HARD) { 588 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 589 cpu_base->next_timer = next_timer; 590 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 591 expires_next); 592 } 593 594 return expires_next; 595 } 596 597 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 598 { 599 ktime_t expires_next, soft = KTIME_MAX; 600 601 /* 602 * If the soft interrupt has already been activated, ignore the 603 * soft bases. They will be handled in the already raised soft 604 * interrupt. 605 */ 606 if (!cpu_base->softirq_activated) { 607 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 608 /* 609 * Update the soft expiry time. clock_settime() might have 610 * affected it. 611 */ 612 cpu_base->softirq_expires_next = soft; 613 } 614 615 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 616 /* 617 * If a softirq timer is expiring first, update cpu_base->next_timer 618 * and program the hardware with the soft expiry time. 619 */ 620 if (expires_next > soft) { 621 cpu_base->next_timer = cpu_base->softirq_next_timer; 622 expires_next = soft; 623 } 624 625 return expires_next; 626 } 627 628 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 629 { 630 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 631 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 632 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 633 634 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 635 offs_real, offs_boot, offs_tai); 636 637 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 638 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 639 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 640 641 return now; 642 } 643 644 /* 645 * Is the high resolution mode active ? 646 */ 647 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 648 { 649 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 650 cpu_base->hres_active : 0; 651 } 652 653 static inline int hrtimer_hres_active(void) 654 { 655 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 656 } 657 658 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, 659 struct hrtimer *next_timer, 660 ktime_t expires_next) 661 { 662 cpu_base->expires_next = expires_next; 663 664 /* 665 * If hres is not active, hardware does not have to be 666 * reprogrammed yet. 667 * 668 * If a hang was detected in the last timer interrupt then we 669 * leave the hang delay active in the hardware. We want the 670 * system to make progress. That also prevents the following 671 * scenario: 672 * T1 expires 50ms from now 673 * T2 expires 5s from now 674 * 675 * T1 is removed, so this code is called and would reprogram 676 * the hardware to 5s from now. Any hrtimer_start after that 677 * will not reprogram the hardware due to hang_detected being 678 * set. So we'd effectively block all timers until the T2 event 679 * fires. 680 */ 681 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 682 return; 683 684 tick_program_event(expires_next, 1); 685 } 686 687 /* 688 * Reprogram the event source with checking both queues for the 689 * next event 690 * Called with interrupts disabled and base->lock held 691 */ 692 static void 693 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 694 { 695 ktime_t expires_next; 696 697 expires_next = hrtimer_update_next_event(cpu_base); 698 699 if (skip_equal && expires_next == cpu_base->expires_next) 700 return; 701 702 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); 703 } 704 705 /* High resolution timer related functions */ 706 #ifdef CONFIG_HIGH_RES_TIMERS 707 708 /* 709 * High resolution timer enabled ? 710 */ 711 static bool hrtimer_hres_enabled __read_mostly = true; 712 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 713 EXPORT_SYMBOL_GPL(hrtimer_resolution); 714 715 /* 716 * Enable / Disable high resolution mode 717 */ 718 static int __init setup_hrtimer_hres(char *str) 719 { 720 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 721 } 722 723 __setup("highres=", setup_hrtimer_hres); 724 725 /* 726 * hrtimer_high_res_enabled - query, if the highres mode is enabled 727 */ 728 static inline int hrtimer_is_hres_enabled(void) 729 { 730 return hrtimer_hres_enabled; 731 } 732 733 static void retrigger_next_event(void *arg); 734 735 /* 736 * Switch to high resolution mode 737 */ 738 static void hrtimer_switch_to_hres(void) 739 { 740 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 741 742 if (tick_init_highres()) { 743 pr_warn("Could not switch to high resolution mode on CPU %u\n", 744 base->cpu); 745 return; 746 } 747 base->hres_active = 1; 748 hrtimer_resolution = HIGH_RES_NSEC; 749 750 tick_setup_sched_timer(); 751 /* "Retrigger" the interrupt to get things going */ 752 retrigger_next_event(NULL); 753 } 754 755 #else 756 757 static inline int hrtimer_is_hres_enabled(void) { return 0; } 758 static inline void hrtimer_switch_to_hres(void) { } 759 760 #endif /* CONFIG_HIGH_RES_TIMERS */ 761 /* 762 * Retrigger next event is called after clock was set with interrupts 763 * disabled through an SMP function call or directly from low level 764 * resume code. 765 * 766 * This is only invoked when: 767 * - CONFIG_HIGH_RES_TIMERS is enabled. 768 * - CONFIG_NOHZ_COMMON is enabled 769 * 770 * For the other cases this function is empty and because the call sites 771 * are optimized out it vanishes as well, i.e. no need for lots of 772 * #ifdeffery. 773 */ 774 static void retrigger_next_event(void *arg) 775 { 776 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 777 778 /* 779 * When high resolution mode or nohz is active, then the offsets of 780 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the 781 * next tick will take care of that. 782 * 783 * If high resolution mode is active then the next expiring timer 784 * must be reevaluated and the clock event device reprogrammed if 785 * necessary. 786 * 787 * In the NOHZ case the update of the offset and the reevaluation 788 * of the next expiring timer is enough. The return from the SMP 789 * function call will take care of the reprogramming in case the 790 * CPU was in a NOHZ idle sleep. 791 */ 792 if (!__hrtimer_hres_active(base) && !tick_nohz_active) 793 return; 794 795 raw_spin_lock(&base->lock); 796 hrtimer_update_base(base); 797 if (__hrtimer_hres_active(base)) 798 hrtimer_force_reprogram(base, 0); 799 else 800 hrtimer_update_next_event(base); 801 raw_spin_unlock(&base->lock); 802 } 803 804 /* 805 * When a timer is enqueued and expires earlier than the already enqueued 806 * timers, we have to check, whether it expires earlier than the timer for 807 * which the clock event device was armed. 808 * 809 * Called with interrupts disabled and base->cpu_base.lock held 810 */ 811 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 812 { 813 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 814 struct hrtimer_clock_base *base = timer->base; 815 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 816 817 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 818 819 /* 820 * CLOCK_REALTIME timer might be requested with an absolute 821 * expiry time which is less than base->offset. Set it to 0. 822 */ 823 if (expires < 0) 824 expires = 0; 825 826 if (timer->is_soft) { 827 /* 828 * soft hrtimer could be started on a remote CPU. In this 829 * case softirq_expires_next needs to be updated on the 830 * remote CPU. The soft hrtimer will not expire before the 831 * first hard hrtimer on the remote CPU - 832 * hrtimer_check_target() prevents this case. 833 */ 834 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 835 836 if (timer_cpu_base->softirq_activated) 837 return; 838 839 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 840 return; 841 842 timer_cpu_base->softirq_next_timer = timer; 843 timer_cpu_base->softirq_expires_next = expires; 844 845 if (!ktime_before(expires, timer_cpu_base->expires_next) || 846 !reprogram) 847 return; 848 } 849 850 /* 851 * If the timer is not on the current cpu, we cannot reprogram 852 * the other cpus clock event device. 853 */ 854 if (base->cpu_base != cpu_base) 855 return; 856 857 if (expires >= cpu_base->expires_next) 858 return; 859 860 /* 861 * If the hrtimer interrupt is running, then it will reevaluate the 862 * clock bases and reprogram the clock event device. 863 */ 864 if (cpu_base->in_hrtirq) 865 return; 866 867 cpu_base->next_timer = timer; 868 869 __hrtimer_reprogram(cpu_base, timer, expires); 870 } 871 872 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, 873 unsigned int active) 874 { 875 struct hrtimer_clock_base *base; 876 unsigned int seq; 877 ktime_t expires; 878 879 /* 880 * Update the base offsets unconditionally so the following 881 * checks whether the SMP function call is required works. 882 * 883 * The update is safe even when the remote CPU is in the hrtimer 884 * interrupt or the hrtimer soft interrupt and expiring affected 885 * bases. Either it will see the update before handling a base or 886 * it will see it when it finishes the processing and reevaluates 887 * the next expiring timer. 888 */ 889 seq = cpu_base->clock_was_set_seq; 890 hrtimer_update_base(cpu_base); 891 892 /* 893 * If the sequence did not change over the update then the 894 * remote CPU already handled it. 895 */ 896 if (seq == cpu_base->clock_was_set_seq) 897 return false; 898 899 /* 900 * If the remote CPU is currently handling an hrtimer interrupt, it 901 * will reevaluate the first expiring timer of all clock bases 902 * before reprogramming. Nothing to do here. 903 */ 904 if (cpu_base->in_hrtirq) 905 return false; 906 907 /* 908 * Walk the affected clock bases and check whether the first expiring 909 * timer in a clock base is moving ahead of the first expiring timer of 910 * @cpu_base. If so, the IPI must be invoked because per CPU clock 911 * event devices cannot be remotely reprogrammed. 912 */ 913 active &= cpu_base->active_bases; 914 915 for_each_active_base(base, cpu_base, active) { 916 struct timerqueue_node *next; 917 918 next = timerqueue_getnext(&base->active); 919 expires = ktime_sub(next->expires, base->offset); 920 if (expires < cpu_base->expires_next) 921 return true; 922 923 /* Extra check for softirq clock bases */ 924 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) 925 continue; 926 if (cpu_base->softirq_activated) 927 continue; 928 if (expires < cpu_base->softirq_expires_next) 929 return true; 930 } 931 return false; 932 } 933 934 /* 935 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and 936 * CLOCK_BOOTTIME (for late sleep time injection). 937 * 938 * This requires to update the offsets for these clocks 939 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this 940 * also requires to eventually reprogram the per CPU clock event devices 941 * when the change moves an affected timer ahead of the first expiring 942 * timer on that CPU. Obviously remote per CPU clock event devices cannot 943 * be reprogrammed. The other reason why an IPI has to be sent is when the 944 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets 945 * in the tick, which obviously might be stopped, so this has to bring out 946 * the remote CPU which might sleep in idle to get this sorted. 947 */ 948 void clock_was_set(unsigned int bases) 949 { 950 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); 951 cpumask_var_t mask; 952 int cpu; 953 954 if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active) 955 goto out_timerfd; 956 957 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 958 on_each_cpu(retrigger_next_event, NULL, 1); 959 goto out_timerfd; 960 } 961 962 /* Avoid interrupting CPUs if possible */ 963 cpus_read_lock(); 964 for_each_online_cpu(cpu) { 965 unsigned long flags; 966 967 cpu_base = &per_cpu(hrtimer_bases, cpu); 968 raw_spin_lock_irqsave(&cpu_base->lock, flags); 969 970 if (update_needs_ipi(cpu_base, bases)) 971 cpumask_set_cpu(cpu, mask); 972 973 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 974 } 975 976 preempt_disable(); 977 smp_call_function_many(mask, retrigger_next_event, NULL, 1); 978 preempt_enable(); 979 cpus_read_unlock(); 980 free_cpumask_var(mask); 981 982 out_timerfd: 983 timerfd_clock_was_set(); 984 } 985 986 static void clock_was_set_work(struct work_struct *work) 987 { 988 clock_was_set(CLOCK_SET_WALL); 989 } 990 991 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 992 993 /* 994 * Called from timekeeping code to reprogram the hrtimer interrupt device 995 * on all cpus and to notify timerfd. 996 */ 997 void clock_was_set_delayed(void) 998 { 999 schedule_work(&hrtimer_work); 1000 } 1001 1002 /* 1003 * Called during resume either directly from via timekeeping_resume() 1004 * or in the case of s2idle from tick_unfreeze() to ensure that the 1005 * hrtimers are up to date. 1006 */ 1007 void hrtimers_resume_local(void) 1008 { 1009 lockdep_assert_irqs_disabled(); 1010 /* Retrigger on the local CPU */ 1011 retrigger_next_event(NULL); 1012 } 1013 1014 /* 1015 * Counterpart to lock_hrtimer_base above: 1016 */ 1017 static inline 1018 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 1019 __releases(&timer->base->cpu_base->lock) 1020 { 1021 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 1022 } 1023 1024 /** 1025 * hrtimer_forward - forward the timer expiry 1026 * @timer: hrtimer to forward 1027 * @now: forward past this time 1028 * @interval: the interval to forward 1029 * 1030 * Forward the timer expiry so it will expire in the future. 1031 * Returns the number of overruns. 1032 * 1033 * Can be safely called from the callback function of @timer. If 1034 * called from other contexts @timer must neither be enqueued nor 1035 * running the callback and the caller needs to take care of 1036 * serialization. 1037 * 1038 * Note: This only updates the timer expiry value and does not requeue 1039 * the timer. 1040 */ 1041 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 1042 { 1043 u64 orun = 1; 1044 ktime_t delta; 1045 1046 delta = ktime_sub(now, hrtimer_get_expires(timer)); 1047 1048 if (delta < 0) 1049 return 0; 1050 1051 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 1052 return 0; 1053 1054 if (interval < hrtimer_resolution) 1055 interval = hrtimer_resolution; 1056 1057 if (unlikely(delta >= interval)) { 1058 s64 incr = ktime_to_ns(interval); 1059 1060 orun = ktime_divns(delta, incr); 1061 hrtimer_add_expires_ns(timer, incr * orun); 1062 if (hrtimer_get_expires_tv64(timer) > now) 1063 return orun; 1064 /* 1065 * This (and the ktime_add() below) is the 1066 * correction for exact: 1067 */ 1068 orun++; 1069 } 1070 hrtimer_add_expires(timer, interval); 1071 1072 return orun; 1073 } 1074 EXPORT_SYMBOL_GPL(hrtimer_forward); 1075 1076 /* 1077 * enqueue_hrtimer - internal function to (re)start a timer 1078 * 1079 * The timer is inserted in expiry order. Insertion into the 1080 * red black tree is O(log(n)). Must hold the base lock. 1081 * 1082 * Returns 1 when the new timer is the leftmost timer in the tree. 1083 */ 1084 static int enqueue_hrtimer(struct hrtimer *timer, 1085 struct hrtimer_clock_base *base, 1086 enum hrtimer_mode mode) 1087 { 1088 debug_activate(timer, mode); 1089 WARN_ON_ONCE(!base->cpu_base->online); 1090 1091 base->cpu_base->active_bases |= 1 << base->index; 1092 1093 /* Pairs with the lockless read in hrtimer_is_queued() */ 1094 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 1095 1096 return timerqueue_add(&base->active, &timer->node); 1097 } 1098 1099 /* 1100 * __remove_hrtimer - internal function to remove a timer 1101 * 1102 * Caller must hold the base lock. 1103 * 1104 * High resolution timer mode reprograms the clock event device when the 1105 * timer is the one which expires next. The caller can disable this by setting 1106 * reprogram to zero. This is useful, when the context does a reprogramming 1107 * anyway (e.g. timer interrupt) 1108 */ 1109 static void __remove_hrtimer(struct hrtimer *timer, 1110 struct hrtimer_clock_base *base, 1111 u8 newstate, int reprogram) 1112 { 1113 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1114 u8 state = timer->state; 1115 1116 /* Pairs with the lockless read in hrtimer_is_queued() */ 1117 WRITE_ONCE(timer->state, newstate); 1118 if (!(state & HRTIMER_STATE_ENQUEUED)) 1119 return; 1120 1121 if (!timerqueue_del(&base->active, &timer->node)) 1122 cpu_base->active_bases &= ~(1 << base->index); 1123 1124 /* 1125 * Note: If reprogram is false we do not update 1126 * cpu_base->next_timer. This happens when we remove the first 1127 * timer on a remote cpu. No harm as we never dereference 1128 * cpu_base->next_timer. So the worst thing what can happen is 1129 * an superfluous call to hrtimer_force_reprogram() on the 1130 * remote cpu later on if the same timer gets enqueued again. 1131 */ 1132 if (reprogram && timer == cpu_base->next_timer) 1133 hrtimer_force_reprogram(cpu_base, 1); 1134 } 1135 1136 /* 1137 * remove hrtimer, called with base lock held 1138 */ 1139 static inline int 1140 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1141 bool restart, bool keep_local) 1142 { 1143 u8 state = timer->state; 1144 1145 if (state & HRTIMER_STATE_ENQUEUED) { 1146 bool reprogram; 1147 1148 /* 1149 * Remove the timer and force reprogramming when high 1150 * resolution mode is active and the timer is on the current 1151 * CPU. If we remove a timer on another CPU, reprogramming is 1152 * skipped. The interrupt event on this CPU is fired and 1153 * reprogramming happens in the interrupt handler. This is a 1154 * rare case and less expensive than a smp call. 1155 */ 1156 debug_deactivate(timer); 1157 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1158 1159 /* 1160 * If the timer is not restarted then reprogramming is 1161 * required if the timer is local. If it is local and about 1162 * to be restarted, avoid programming it twice (on removal 1163 * and a moment later when it's requeued). 1164 */ 1165 if (!restart) 1166 state = HRTIMER_STATE_INACTIVE; 1167 else 1168 reprogram &= !keep_local; 1169 1170 __remove_hrtimer(timer, base, state, reprogram); 1171 return 1; 1172 } 1173 return 0; 1174 } 1175 1176 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1177 const enum hrtimer_mode mode) 1178 { 1179 #ifdef CONFIG_TIME_LOW_RES 1180 /* 1181 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1182 * granular time values. For relative timers we add hrtimer_resolution 1183 * (i.e. one jiffie) to prevent short timeouts. 1184 */ 1185 timer->is_rel = mode & HRTIMER_MODE_REL; 1186 if (timer->is_rel) 1187 tim = ktime_add_safe(tim, hrtimer_resolution); 1188 #endif 1189 return tim; 1190 } 1191 1192 static void 1193 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1194 { 1195 ktime_t expires; 1196 1197 /* 1198 * Find the next SOFT expiration. 1199 */ 1200 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1201 1202 /* 1203 * reprogramming needs to be triggered, even if the next soft 1204 * hrtimer expires at the same time than the next hard 1205 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1206 */ 1207 if (expires == KTIME_MAX) 1208 return; 1209 1210 /* 1211 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1212 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1213 */ 1214 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1215 } 1216 1217 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1218 u64 delta_ns, const enum hrtimer_mode mode, 1219 struct hrtimer_clock_base *base) 1220 { 1221 struct hrtimer_clock_base *new_base; 1222 bool force_local, first; 1223 1224 /* 1225 * If the timer is on the local cpu base and is the first expiring 1226 * timer then this might end up reprogramming the hardware twice 1227 * (on removal and on enqueue). To avoid that by prevent the 1228 * reprogram on removal, keep the timer local to the current CPU 1229 * and enforce reprogramming after it is queued no matter whether 1230 * it is the new first expiring timer again or not. 1231 */ 1232 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1233 force_local &= base->cpu_base->next_timer == timer; 1234 1235 /* 1236 * Remove an active timer from the queue. In case it is not queued 1237 * on the current CPU, make sure that remove_hrtimer() updates the 1238 * remote data correctly. 1239 * 1240 * If it's on the current CPU and the first expiring timer, then 1241 * skip reprogramming, keep the timer local and enforce 1242 * reprogramming later if it was the first expiring timer. This 1243 * avoids programming the underlying clock event twice (once at 1244 * removal and once after enqueue). 1245 */ 1246 remove_hrtimer(timer, base, true, force_local); 1247 1248 if (mode & HRTIMER_MODE_REL) 1249 tim = ktime_add_safe(tim, base->get_time()); 1250 1251 tim = hrtimer_update_lowres(timer, tim, mode); 1252 1253 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1254 1255 /* Switch the timer base, if necessary: */ 1256 if (!force_local) { 1257 new_base = switch_hrtimer_base(timer, base, 1258 mode & HRTIMER_MODE_PINNED); 1259 } else { 1260 new_base = base; 1261 } 1262 1263 first = enqueue_hrtimer(timer, new_base, mode); 1264 if (!force_local) 1265 return first; 1266 1267 /* 1268 * Timer was forced to stay on the current CPU to avoid 1269 * reprogramming on removal and enqueue. Force reprogram the 1270 * hardware by evaluating the new first expiring timer. 1271 */ 1272 hrtimer_force_reprogram(new_base->cpu_base, 1); 1273 return 0; 1274 } 1275 1276 /** 1277 * hrtimer_start_range_ns - (re)start an hrtimer 1278 * @timer: the timer to be added 1279 * @tim: expiry time 1280 * @delta_ns: "slack" range for the timer 1281 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1282 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1283 * softirq based mode is considered for debug purpose only! 1284 */ 1285 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1286 u64 delta_ns, const enum hrtimer_mode mode) 1287 { 1288 struct hrtimer_clock_base *base; 1289 unsigned long flags; 1290 1291 /* 1292 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1293 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1294 * expiry mode because unmarked timers are moved to softirq expiry. 1295 */ 1296 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1297 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1298 else 1299 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1300 1301 base = lock_hrtimer_base(timer, &flags); 1302 1303 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1304 hrtimer_reprogram(timer, true); 1305 1306 unlock_hrtimer_base(timer, &flags); 1307 } 1308 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1309 1310 /** 1311 * hrtimer_try_to_cancel - try to deactivate a timer 1312 * @timer: hrtimer to stop 1313 * 1314 * Returns: 1315 * 1316 * * 0 when the timer was not active 1317 * * 1 when the timer was active 1318 * * -1 when the timer is currently executing the callback function and 1319 * cannot be stopped 1320 */ 1321 int hrtimer_try_to_cancel(struct hrtimer *timer) 1322 { 1323 struct hrtimer_clock_base *base; 1324 unsigned long flags; 1325 int ret = -1; 1326 1327 /* 1328 * Check lockless first. If the timer is not active (neither 1329 * enqueued nor running the callback, nothing to do here. The 1330 * base lock does not serialize against a concurrent enqueue, 1331 * so we can avoid taking it. 1332 */ 1333 if (!hrtimer_active(timer)) 1334 return 0; 1335 1336 base = lock_hrtimer_base(timer, &flags); 1337 1338 if (!hrtimer_callback_running(timer)) 1339 ret = remove_hrtimer(timer, base, false, false); 1340 1341 unlock_hrtimer_base(timer, &flags); 1342 1343 return ret; 1344 1345 } 1346 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1347 1348 #ifdef CONFIG_PREEMPT_RT 1349 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1350 { 1351 spin_lock_init(&base->softirq_expiry_lock); 1352 } 1353 1354 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1355 { 1356 spin_lock(&base->softirq_expiry_lock); 1357 } 1358 1359 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1360 { 1361 spin_unlock(&base->softirq_expiry_lock); 1362 } 1363 1364 /* 1365 * The counterpart to hrtimer_cancel_wait_running(). 1366 * 1367 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1368 * the timer callback to finish. Drop expiry_lock and reacquire it. That 1369 * allows the waiter to acquire the lock and make progress. 1370 */ 1371 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1372 unsigned long flags) 1373 { 1374 if (atomic_read(&cpu_base->timer_waiters)) { 1375 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1376 spin_unlock(&cpu_base->softirq_expiry_lock); 1377 spin_lock(&cpu_base->softirq_expiry_lock); 1378 raw_spin_lock_irq(&cpu_base->lock); 1379 } 1380 } 1381 1382 /* 1383 * This function is called on PREEMPT_RT kernels when the fast path 1384 * deletion of a timer failed because the timer callback function was 1385 * running. 1386 * 1387 * This prevents priority inversion: if the soft irq thread is preempted 1388 * in the middle of a timer callback, then calling del_timer_sync() can 1389 * lead to two issues: 1390 * 1391 * - If the caller is on a remote CPU then it has to spin wait for the timer 1392 * handler to complete. This can result in unbound priority inversion. 1393 * 1394 * - If the caller originates from the task which preempted the timer 1395 * handler on the same CPU, then spin waiting for the timer handler to 1396 * complete is never going to end. 1397 */ 1398 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1399 { 1400 /* Lockless read. Prevent the compiler from reloading it below */ 1401 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1402 1403 /* 1404 * Just relax if the timer expires in hard interrupt context or if 1405 * it is currently on the migration base. 1406 */ 1407 if (!timer->is_soft || is_migration_base(base)) { 1408 cpu_relax(); 1409 return; 1410 } 1411 1412 /* 1413 * Mark the base as contended and grab the expiry lock, which is 1414 * held by the softirq across the timer callback. Drop the lock 1415 * immediately so the softirq can expire the next timer. In theory 1416 * the timer could already be running again, but that's more than 1417 * unlikely and just causes another wait loop. 1418 */ 1419 atomic_inc(&base->cpu_base->timer_waiters); 1420 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1421 atomic_dec(&base->cpu_base->timer_waiters); 1422 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1423 } 1424 #else 1425 static inline void 1426 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1427 static inline void 1428 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1429 static inline void 1430 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1431 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1432 unsigned long flags) { } 1433 #endif 1434 1435 /** 1436 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1437 * @timer: the timer to be cancelled 1438 * 1439 * Returns: 1440 * 0 when the timer was not active 1441 * 1 when the timer was active 1442 */ 1443 int hrtimer_cancel(struct hrtimer *timer) 1444 { 1445 int ret; 1446 1447 do { 1448 ret = hrtimer_try_to_cancel(timer); 1449 1450 if (ret < 0) 1451 hrtimer_cancel_wait_running(timer); 1452 } while (ret < 0); 1453 return ret; 1454 } 1455 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1456 1457 /** 1458 * __hrtimer_get_remaining - get remaining time for the timer 1459 * @timer: the timer to read 1460 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1461 */ 1462 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1463 { 1464 unsigned long flags; 1465 ktime_t rem; 1466 1467 lock_hrtimer_base(timer, &flags); 1468 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1469 rem = hrtimer_expires_remaining_adjusted(timer); 1470 else 1471 rem = hrtimer_expires_remaining(timer); 1472 unlock_hrtimer_base(timer, &flags); 1473 1474 return rem; 1475 } 1476 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1477 1478 #ifdef CONFIG_NO_HZ_COMMON 1479 /** 1480 * hrtimer_get_next_event - get the time until next expiry event 1481 * 1482 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1483 */ 1484 u64 hrtimer_get_next_event(void) 1485 { 1486 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1487 u64 expires = KTIME_MAX; 1488 unsigned long flags; 1489 1490 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1491 1492 if (!__hrtimer_hres_active(cpu_base)) 1493 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1494 1495 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1496 1497 return expires; 1498 } 1499 1500 /** 1501 * hrtimer_next_event_without - time until next expiry event w/o one timer 1502 * @exclude: timer to exclude 1503 * 1504 * Returns the next expiry time over all timers except for the @exclude one or 1505 * KTIME_MAX if none of them is pending. 1506 */ 1507 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1508 { 1509 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1510 u64 expires = KTIME_MAX; 1511 unsigned long flags; 1512 1513 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1514 1515 if (__hrtimer_hres_active(cpu_base)) { 1516 unsigned int active; 1517 1518 if (!cpu_base->softirq_activated) { 1519 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1520 expires = __hrtimer_next_event_base(cpu_base, exclude, 1521 active, KTIME_MAX); 1522 } 1523 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1524 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1525 expires); 1526 } 1527 1528 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1529 1530 return expires; 1531 } 1532 #endif 1533 1534 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1535 { 1536 if (likely(clock_id < MAX_CLOCKS)) { 1537 int base = hrtimer_clock_to_base_table[clock_id]; 1538 1539 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1540 return base; 1541 } 1542 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1543 return HRTIMER_BASE_MONOTONIC; 1544 } 1545 1546 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1547 enum hrtimer_mode mode) 1548 { 1549 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1550 struct hrtimer_cpu_base *cpu_base; 1551 int base; 1552 1553 /* 1554 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1555 * marked for hard interrupt expiry mode are moved into soft 1556 * interrupt context for latency reasons and because the callbacks 1557 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1558 */ 1559 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1560 softtimer = true; 1561 1562 memset(timer, 0, sizeof(struct hrtimer)); 1563 1564 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1565 1566 /* 1567 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1568 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1569 * ensure POSIX compliance. 1570 */ 1571 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1572 clock_id = CLOCK_MONOTONIC; 1573 1574 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1575 base += hrtimer_clockid_to_base(clock_id); 1576 timer->is_soft = softtimer; 1577 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1578 timer->base = &cpu_base->clock_base[base]; 1579 timerqueue_init(&timer->node); 1580 } 1581 1582 /** 1583 * hrtimer_init - initialize a timer to the given clock 1584 * @timer: the timer to be initialized 1585 * @clock_id: the clock to be used 1586 * @mode: The modes which are relevant for initialization: 1587 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1588 * HRTIMER_MODE_REL_SOFT 1589 * 1590 * The PINNED variants of the above can be handed in, 1591 * but the PINNED bit is ignored as pinning happens 1592 * when the hrtimer is started 1593 */ 1594 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1595 enum hrtimer_mode mode) 1596 { 1597 debug_init(timer, clock_id, mode); 1598 __hrtimer_init(timer, clock_id, mode); 1599 } 1600 EXPORT_SYMBOL_GPL(hrtimer_init); 1601 1602 /* 1603 * A timer is active, when it is enqueued into the rbtree or the 1604 * callback function is running or it's in the state of being migrated 1605 * to another cpu. 1606 * 1607 * It is important for this function to not return a false negative. 1608 */ 1609 bool hrtimer_active(const struct hrtimer *timer) 1610 { 1611 struct hrtimer_clock_base *base; 1612 unsigned int seq; 1613 1614 do { 1615 base = READ_ONCE(timer->base); 1616 seq = raw_read_seqcount_begin(&base->seq); 1617 1618 if (timer->state != HRTIMER_STATE_INACTIVE || 1619 base->running == timer) 1620 return true; 1621 1622 } while (read_seqcount_retry(&base->seq, seq) || 1623 base != READ_ONCE(timer->base)); 1624 1625 return false; 1626 } 1627 EXPORT_SYMBOL_GPL(hrtimer_active); 1628 1629 /* 1630 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1631 * distinct sections: 1632 * 1633 * - queued: the timer is queued 1634 * - callback: the timer is being ran 1635 * - post: the timer is inactive or (re)queued 1636 * 1637 * On the read side we ensure we observe timer->state and cpu_base->running 1638 * from the same section, if anything changed while we looked at it, we retry. 1639 * This includes timer->base changing because sequence numbers alone are 1640 * insufficient for that. 1641 * 1642 * The sequence numbers are required because otherwise we could still observe 1643 * a false negative if the read side got smeared over multiple consecutive 1644 * __run_hrtimer() invocations. 1645 */ 1646 1647 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1648 struct hrtimer_clock_base *base, 1649 struct hrtimer *timer, ktime_t *now, 1650 unsigned long flags) __must_hold(&cpu_base->lock) 1651 { 1652 enum hrtimer_restart (*fn)(struct hrtimer *); 1653 bool expires_in_hardirq; 1654 int restart; 1655 1656 lockdep_assert_held(&cpu_base->lock); 1657 1658 debug_deactivate(timer); 1659 base->running = timer; 1660 1661 /* 1662 * Separate the ->running assignment from the ->state assignment. 1663 * 1664 * As with a regular write barrier, this ensures the read side in 1665 * hrtimer_active() cannot observe base->running == NULL && 1666 * timer->state == INACTIVE. 1667 */ 1668 raw_write_seqcount_barrier(&base->seq); 1669 1670 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1671 fn = timer->function; 1672 1673 /* 1674 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1675 * timer is restarted with a period then it becomes an absolute 1676 * timer. If its not restarted it does not matter. 1677 */ 1678 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1679 timer->is_rel = false; 1680 1681 /* 1682 * The timer is marked as running in the CPU base, so it is 1683 * protected against migration to a different CPU even if the lock 1684 * is dropped. 1685 */ 1686 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1687 trace_hrtimer_expire_entry(timer, now); 1688 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1689 1690 restart = fn(timer); 1691 1692 lockdep_hrtimer_exit(expires_in_hardirq); 1693 trace_hrtimer_expire_exit(timer); 1694 raw_spin_lock_irq(&cpu_base->lock); 1695 1696 /* 1697 * Note: We clear the running state after enqueue_hrtimer and 1698 * we do not reprogram the event hardware. Happens either in 1699 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1700 * 1701 * Note: Because we dropped the cpu_base->lock above, 1702 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1703 * for us already. 1704 */ 1705 if (restart != HRTIMER_NORESTART && 1706 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1707 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1708 1709 /* 1710 * Separate the ->running assignment from the ->state assignment. 1711 * 1712 * As with a regular write barrier, this ensures the read side in 1713 * hrtimer_active() cannot observe base->running.timer == NULL && 1714 * timer->state == INACTIVE. 1715 */ 1716 raw_write_seqcount_barrier(&base->seq); 1717 1718 WARN_ON_ONCE(base->running != timer); 1719 base->running = NULL; 1720 } 1721 1722 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1723 unsigned long flags, unsigned int active_mask) 1724 { 1725 struct hrtimer_clock_base *base; 1726 unsigned int active = cpu_base->active_bases & active_mask; 1727 1728 for_each_active_base(base, cpu_base, active) { 1729 struct timerqueue_node *node; 1730 ktime_t basenow; 1731 1732 basenow = ktime_add(now, base->offset); 1733 1734 while ((node = timerqueue_getnext(&base->active))) { 1735 struct hrtimer *timer; 1736 1737 timer = container_of(node, struct hrtimer, node); 1738 1739 /* 1740 * The immediate goal for using the softexpires is 1741 * minimizing wakeups, not running timers at the 1742 * earliest interrupt after their soft expiration. 1743 * This allows us to avoid using a Priority Search 1744 * Tree, which can answer a stabbing query for 1745 * overlapping intervals and instead use the simple 1746 * BST we already have. 1747 * We don't add extra wakeups by delaying timers that 1748 * are right-of a not yet expired timer, because that 1749 * timer will have to trigger a wakeup anyway. 1750 */ 1751 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1752 break; 1753 1754 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1755 if (active_mask == HRTIMER_ACTIVE_SOFT) 1756 hrtimer_sync_wait_running(cpu_base, flags); 1757 } 1758 } 1759 } 1760 1761 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1762 { 1763 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1764 unsigned long flags; 1765 ktime_t now; 1766 1767 hrtimer_cpu_base_lock_expiry(cpu_base); 1768 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1769 1770 now = hrtimer_update_base(cpu_base); 1771 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1772 1773 cpu_base->softirq_activated = 0; 1774 hrtimer_update_softirq_timer(cpu_base, true); 1775 1776 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1777 hrtimer_cpu_base_unlock_expiry(cpu_base); 1778 } 1779 1780 #ifdef CONFIG_HIGH_RES_TIMERS 1781 1782 /* 1783 * High resolution timer interrupt 1784 * Called with interrupts disabled 1785 */ 1786 void hrtimer_interrupt(struct clock_event_device *dev) 1787 { 1788 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1789 ktime_t expires_next, now, entry_time, delta; 1790 unsigned long flags; 1791 int retries = 0; 1792 1793 BUG_ON(!cpu_base->hres_active); 1794 cpu_base->nr_events++; 1795 dev->next_event = KTIME_MAX; 1796 1797 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1798 entry_time = now = hrtimer_update_base(cpu_base); 1799 retry: 1800 cpu_base->in_hrtirq = 1; 1801 /* 1802 * We set expires_next to KTIME_MAX here with cpu_base->lock 1803 * held to prevent that a timer is enqueued in our queue via 1804 * the migration code. This does not affect enqueueing of 1805 * timers which run their callback and need to be requeued on 1806 * this CPU. 1807 */ 1808 cpu_base->expires_next = KTIME_MAX; 1809 1810 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1811 cpu_base->softirq_expires_next = KTIME_MAX; 1812 cpu_base->softirq_activated = 1; 1813 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1814 } 1815 1816 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1817 1818 /* Reevaluate the clock bases for the [soft] next expiry */ 1819 expires_next = hrtimer_update_next_event(cpu_base); 1820 /* 1821 * Store the new expiry value so the migration code can verify 1822 * against it. 1823 */ 1824 cpu_base->expires_next = expires_next; 1825 cpu_base->in_hrtirq = 0; 1826 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1827 1828 /* Reprogramming necessary ? */ 1829 if (!tick_program_event(expires_next, 0)) { 1830 cpu_base->hang_detected = 0; 1831 return; 1832 } 1833 1834 /* 1835 * The next timer was already expired due to: 1836 * - tracing 1837 * - long lasting callbacks 1838 * - being scheduled away when running in a VM 1839 * 1840 * We need to prevent that we loop forever in the hrtimer 1841 * interrupt routine. We give it 3 attempts to avoid 1842 * overreacting on some spurious event. 1843 * 1844 * Acquire base lock for updating the offsets and retrieving 1845 * the current time. 1846 */ 1847 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1848 now = hrtimer_update_base(cpu_base); 1849 cpu_base->nr_retries++; 1850 if (++retries < 3) 1851 goto retry; 1852 /* 1853 * Give the system a chance to do something else than looping 1854 * here. We stored the entry time, so we know exactly how long 1855 * we spent here. We schedule the next event this amount of 1856 * time away. 1857 */ 1858 cpu_base->nr_hangs++; 1859 cpu_base->hang_detected = 1; 1860 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1861 1862 delta = ktime_sub(now, entry_time); 1863 if ((unsigned int)delta > cpu_base->max_hang_time) 1864 cpu_base->max_hang_time = (unsigned int) delta; 1865 /* 1866 * Limit it to a sensible value as we enforce a longer 1867 * delay. Give the CPU at least 100ms to catch up. 1868 */ 1869 if (delta > 100 * NSEC_PER_MSEC) 1870 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1871 else 1872 expires_next = ktime_add(now, delta); 1873 tick_program_event(expires_next, 1); 1874 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1875 } 1876 1877 /* called with interrupts disabled */ 1878 static inline void __hrtimer_peek_ahead_timers(void) 1879 { 1880 struct tick_device *td; 1881 1882 if (!hrtimer_hres_active()) 1883 return; 1884 1885 td = this_cpu_ptr(&tick_cpu_device); 1886 if (td && td->evtdev) 1887 hrtimer_interrupt(td->evtdev); 1888 } 1889 1890 #else /* CONFIG_HIGH_RES_TIMERS */ 1891 1892 static inline void __hrtimer_peek_ahead_timers(void) { } 1893 1894 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1895 1896 /* 1897 * Called from run_local_timers in hardirq context every jiffy 1898 */ 1899 void hrtimer_run_queues(void) 1900 { 1901 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1902 unsigned long flags; 1903 ktime_t now; 1904 1905 if (__hrtimer_hres_active(cpu_base)) 1906 return; 1907 1908 /* 1909 * This _is_ ugly: We have to check periodically, whether we 1910 * can switch to highres and / or nohz mode. The clocksource 1911 * switch happens with xtime_lock held. Notification from 1912 * there only sets the check bit in the tick_oneshot code, 1913 * otherwise we might deadlock vs. xtime_lock. 1914 */ 1915 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1916 hrtimer_switch_to_hres(); 1917 return; 1918 } 1919 1920 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1921 now = hrtimer_update_base(cpu_base); 1922 1923 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1924 cpu_base->softirq_expires_next = KTIME_MAX; 1925 cpu_base->softirq_activated = 1; 1926 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1927 } 1928 1929 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1930 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1931 } 1932 1933 /* 1934 * Sleep related functions: 1935 */ 1936 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1937 { 1938 struct hrtimer_sleeper *t = 1939 container_of(timer, struct hrtimer_sleeper, timer); 1940 struct task_struct *task = t->task; 1941 1942 t->task = NULL; 1943 if (task) 1944 wake_up_process(task); 1945 1946 return HRTIMER_NORESTART; 1947 } 1948 1949 /** 1950 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1951 * @sl: sleeper to be started 1952 * @mode: timer mode abs/rel 1953 * 1954 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1955 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1956 */ 1957 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1958 enum hrtimer_mode mode) 1959 { 1960 /* 1961 * Make the enqueue delivery mode check work on RT. If the sleeper 1962 * was initialized for hard interrupt delivery, force the mode bit. 1963 * This is a special case for hrtimer_sleepers because 1964 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1965 * fiddling with this decision is avoided at the call sites. 1966 */ 1967 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1968 mode |= HRTIMER_MODE_HARD; 1969 1970 hrtimer_start_expires(&sl->timer, mode); 1971 } 1972 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1973 1974 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1975 clockid_t clock_id, enum hrtimer_mode mode) 1976 { 1977 /* 1978 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1979 * marked for hard interrupt expiry mode are moved into soft 1980 * interrupt context either for latency reasons or because the 1981 * hrtimer callback takes regular spinlocks or invokes other 1982 * functions which are not suitable for hard interrupt context on 1983 * PREEMPT_RT. 1984 * 1985 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1986 * context, but there is a latency concern: Untrusted userspace can 1987 * spawn many threads which arm timers for the same expiry time on 1988 * the same CPU. That causes a latency spike due to the wakeup of 1989 * a gazillion threads. 1990 * 1991 * OTOH, privileged real-time user space applications rely on the 1992 * low latency of hard interrupt wakeups. If the current task is in 1993 * a real-time scheduling class, mark the mode for hard interrupt 1994 * expiry. 1995 */ 1996 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1997 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 1998 mode |= HRTIMER_MODE_HARD; 1999 } 2000 2001 __hrtimer_init(&sl->timer, clock_id, mode); 2002 sl->timer.function = hrtimer_wakeup; 2003 sl->task = current; 2004 } 2005 2006 /** 2007 * hrtimer_init_sleeper - initialize sleeper to the given clock 2008 * @sl: sleeper to be initialized 2009 * @clock_id: the clock to be used 2010 * @mode: timer mode abs/rel 2011 */ 2012 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 2013 enum hrtimer_mode mode) 2014 { 2015 debug_init(&sl->timer, clock_id, mode); 2016 __hrtimer_init_sleeper(sl, clock_id, mode); 2017 2018 } 2019 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 2020 2021 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 2022 { 2023 switch(restart->nanosleep.type) { 2024 #ifdef CONFIG_COMPAT_32BIT_TIME 2025 case TT_COMPAT: 2026 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 2027 return -EFAULT; 2028 break; 2029 #endif 2030 case TT_NATIVE: 2031 if (put_timespec64(ts, restart->nanosleep.rmtp)) 2032 return -EFAULT; 2033 break; 2034 default: 2035 BUG(); 2036 } 2037 return -ERESTART_RESTARTBLOCK; 2038 } 2039 2040 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 2041 { 2042 struct restart_block *restart; 2043 2044 do { 2045 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2046 hrtimer_sleeper_start_expires(t, mode); 2047 2048 if (likely(t->task)) 2049 schedule(); 2050 2051 hrtimer_cancel(&t->timer); 2052 mode = HRTIMER_MODE_ABS; 2053 2054 } while (t->task && !signal_pending(current)); 2055 2056 __set_current_state(TASK_RUNNING); 2057 2058 if (!t->task) 2059 return 0; 2060 2061 restart = ¤t->restart_block; 2062 if (restart->nanosleep.type != TT_NONE) { 2063 ktime_t rem = hrtimer_expires_remaining(&t->timer); 2064 struct timespec64 rmt; 2065 2066 if (rem <= 0) 2067 return 0; 2068 rmt = ktime_to_timespec64(rem); 2069 2070 return nanosleep_copyout(restart, &rmt); 2071 } 2072 return -ERESTART_RESTARTBLOCK; 2073 } 2074 2075 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 2076 { 2077 struct hrtimer_sleeper t; 2078 int ret; 2079 2080 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 2081 HRTIMER_MODE_ABS); 2082 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 2083 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 2084 destroy_hrtimer_on_stack(&t.timer); 2085 return ret; 2086 } 2087 2088 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 2089 const clockid_t clockid) 2090 { 2091 struct restart_block *restart; 2092 struct hrtimer_sleeper t; 2093 int ret = 0; 2094 u64 slack; 2095 2096 slack = current->timer_slack_ns; 2097 if (rt_task(current)) 2098 slack = 0; 2099 2100 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 2101 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 2102 ret = do_nanosleep(&t, mode); 2103 if (ret != -ERESTART_RESTARTBLOCK) 2104 goto out; 2105 2106 /* Absolute timers do not update the rmtp value and restart: */ 2107 if (mode == HRTIMER_MODE_ABS) { 2108 ret = -ERESTARTNOHAND; 2109 goto out; 2110 } 2111 2112 restart = ¤t->restart_block; 2113 restart->nanosleep.clockid = t.timer.base->clockid; 2114 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 2115 set_restart_fn(restart, hrtimer_nanosleep_restart); 2116 out: 2117 destroy_hrtimer_on_stack(&t.timer); 2118 return ret; 2119 } 2120 2121 #ifdef CONFIG_64BIT 2122 2123 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 2124 struct __kernel_timespec __user *, rmtp) 2125 { 2126 struct timespec64 tu; 2127 2128 if (get_timespec64(&tu, rqtp)) 2129 return -EFAULT; 2130 2131 if (!timespec64_valid(&tu)) 2132 return -EINVAL; 2133 2134 current->restart_block.fn = do_no_restart_syscall; 2135 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 2136 current->restart_block.nanosleep.rmtp = rmtp; 2137 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2138 CLOCK_MONOTONIC); 2139 } 2140 2141 #endif 2142 2143 #ifdef CONFIG_COMPAT_32BIT_TIME 2144 2145 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 2146 struct old_timespec32 __user *, rmtp) 2147 { 2148 struct timespec64 tu; 2149 2150 if (get_old_timespec32(&tu, rqtp)) 2151 return -EFAULT; 2152 2153 if (!timespec64_valid(&tu)) 2154 return -EINVAL; 2155 2156 current->restart_block.fn = do_no_restart_syscall; 2157 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2158 current->restart_block.nanosleep.compat_rmtp = rmtp; 2159 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2160 CLOCK_MONOTONIC); 2161 } 2162 #endif 2163 2164 /* 2165 * Functions related to boot-time initialization: 2166 */ 2167 int hrtimers_prepare_cpu(unsigned int cpu) 2168 { 2169 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2170 int i; 2171 2172 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2173 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2174 2175 clock_b->cpu_base = cpu_base; 2176 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2177 timerqueue_init_head(&clock_b->active); 2178 } 2179 2180 cpu_base->cpu = cpu; 2181 cpu_base->active_bases = 0; 2182 cpu_base->hres_active = 0; 2183 cpu_base->hang_detected = 0; 2184 cpu_base->next_timer = NULL; 2185 cpu_base->softirq_next_timer = NULL; 2186 cpu_base->expires_next = KTIME_MAX; 2187 cpu_base->softirq_expires_next = KTIME_MAX; 2188 cpu_base->online = 1; 2189 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2190 return 0; 2191 } 2192 2193 #ifdef CONFIG_HOTPLUG_CPU 2194 2195 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2196 struct hrtimer_clock_base *new_base) 2197 { 2198 struct hrtimer *timer; 2199 struct timerqueue_node *node; 2200 2201 while ((node = timerqueue_getnext(&old_base->active))) { 2202 timer = container_of(node, struct hrtimer, node); 2203 BUG_ON(hrtimer_callback_running(timer)); 2204 debug_deactivate(timer); 2205 2206 /* 2207 * Mark it as ENQUEUED not INACTIVE otherwise the 2208 * timer could be seen as !active and just vanish away 2209 * under us on another CPU 2210 */ 2211 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2212 timer->base = new_base; 2213 /* 2214 * Enqueue the timers on the new cpu. This does not 2215 * reprogram the event device in case the timer 2216 * expires before the earliest on this CPU, but we run 2217 * hrtimer_interrupt after we migrated everything to 2218 * sort out already expired timers and reprogram the 2219 * event device. 2220 */ 2221 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2222 } 2223 } 2224 2225 int hrtimers_cpu_dying(unsigned int dying_cpu) 2226 { 2227 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); 2228 struct hrtimer_cpu_base *old_base, *new_base; 2229 2230 tick_cancel_sched_timer(dying_cpu); 2231 2232 old_base = this_cpu_ptr(&hrtimer_bases); 2233 new_base = &per_cpu(hrtimer_bases, ncpu); 2234 2235 /* 2236 * The caller is globally serialized and nobody else 2237 * takes two locks at once, deadlock is not possible. 2238 */ 2239 raw_spin_lock(&old_base->lock); 2240 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); 2241 2242 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2243 migrate_hrtimer_list(&old_base->clock_base[i], 2244 &new_base->clock_base[i]); 2245 } 2246 2247 /* 2248 * The migration might have changed the first expiring softirq 2249 * timer on this CPU. Update it. 2250 */ 2251 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT); 2252 /* Tell the other CPU to retrigger the next event */ 2253 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0); 2254 2255 raw_spin_unlock(&new_base->lock); 2256 old_base->online = 0; 2257 raw_spin_unlock(&old_base->lock); 2258 2259 return 0; 2260 } 2261 2262 #endif /* CONFIG_HOTPLUG_CPU */ 2263 2264 void __init hrtimers_init(void) 2265 { 2266 hrtimers_prepare_cpu(smp_processor_id()); 2267 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2268 } 2269 2270 /** 2271 * schedule_hrtimeout_range_clock - sleep until timeout 2272 * @expires: timeout value (ktime_t) 2273 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2274 * @mode: timer mode 2275 * @clock_id: timer clock to be used 2276 */ 2277 int __sched 2278 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2279 const enum hrtimer_mode mode, clockid_t clock_id) 2280 { 2281 struct hrtimer_sleeper t; 2282 2283 /* 2284 * Optimize when a zero timeout value is given. It does not 2285 * matter whether this is an absolute or a relative time. 2286 */ 2287 if (expires && *expires == 0) { 2288 __set_current_state(TASK_RUNNING); 2289 return 0; 2290 } 2291 2292 /* 2293 * A NULL parameter means "infinite" 2294 */ 2295 if (!expires) { 2296 schedule(); 2297 return -EINTR; 2298 } 2299 2300 /* 2301 * Override any slack passed by the user if under 2302 * rt contraints. 2303 */ 2304 if (rt_task(current)) 2305 delta = 0; 2306 2307 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2308 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2309 hrtimer_sleeper_start_expires(&t, mode); 2310 2311 if (likely(t.task)) 2312 schedule(); 2313 2314 hrtimer_cancel(&t.timer); 2315 destroy_hrtimer_on_stack(&t.timer); 2316 2317 __set_current_state(TASK_RUNNING); 2318 2319 return !t.task ? 0 : -EINTR; 2320 } 2321 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock); 2322 2323 /** 2324 * schedule_hrtimeout_range - sleep until timeout 2325 * @expires: timeout value (ktime_t) 2326 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2327 * @mode: timer mode 2328 * 2329 * Make the current task sleep until the given expiry time has 2330 * elapsed. The routine will return immediately unless 2331 * the current task state has been set (see set_current_state()). 2332 * 2333 * The @delta argument gives the kernel the freedom to schedule the 2334 * actual wakeup to a time that is both power and performance friendly 2335 * for regular (non RT/DL) tasks. 2336 * The kernel give the normal best effort behavior for "@expires+@delta", 2337 * but may decide to fire the timer earlier, but no earlier than @expires. 2338 * 2339 * You can set the task state as follows - 2340 * 2341 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2342 * pass before the routine returns unless the current task is explicitly 2343 * woken up, (e.g. by wake_up_process()). 2344 * 2345 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2346 * delivered to the current task or the current task is explicitly woken 2347 * up. 2348 * 2349 * The current task state is guaranteed to be TASK_RUNNING when this 2350 * routine returns. 2351 * 2352 * Returns 0 when the timer has expired. If the task was woken before the 2353 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2354 * by an explicit wakeup, it returns -EINTR. 2355 */ 2356 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2357 const enum hrtimer_mode mode) 2358 { 2359 return schedule_hrtimeout_range_clock(expires, delta, mode, 2360 CLOCK_MONOTONIC); 2361 } 2362 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2363 2364 /** 2365 * schedule_hrtimeout - sleep until timeout 2366 * @expires: timeout value (ktime_t) 2367 * @mode: timer mode 2368 * 2369 * Make the current task sleep until the given expiry time has 2370 * elapsed. The routine will return immediately unless 2371 * the current task state has been set (see set_current_state()). 2372 * 2373 * You can set the task state as follows - 2374 * 2375 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2376 * pass before the routine returns unless the current task is explicitly 2377 * woken up, (e.g. by wake_up_process()). 2378 * 2379 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2380 * delivered to the current task or the current task is explicitly woken 2381 * up. 2382 * 2383 * The current task state is guaranteed to be TASK_RUNNING when this 2384 * routine returns. 2385 * 2386 * Returns 0 when the timer has expired. If the task was woken before the 2387 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2388 * by an explicit wakeup, it returns -EINTR. 2389 */ 2390 int __sched schedule_hrtimeout(ktime_t *expires, 2391 const enum hrtimer_mode mode) 2392 { 2393 return schedule_hrtimeout_range(expires, 0, mode); 2394 } 2395 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2396