xref: /openbmc/linux/kernel/time/hrtimer.c (revision 8edfb0362e8e52dec2de08fa163af01c9da2c9d0)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids then hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 	.clock_base =
71 	{
72 		{
73 			.index = HRTIMER_BASE_MONOTONIC,
74 			.clockid = CLOCK_MONOTONIC,
75 			.get_time = &ktime_get,
76 		},
77 		{
78 			.index = HRTIMER_BASE_REALTIME,
79 			.clockid = CLOCK_REALTIME,
80 			.get_time = &ktime_get_real,
81 		},
82 		{
83 			.index = HRTIMER_BASE_BOOTTIME,
84 			.clockid = CLOCK_BOOTTIME,
85 			.get_time = &ktime_get_boottime,
86 		},
87 		{
88 			.index = HRTIMER_BASE_TAI,
89 			.clockid = CLOCK_TAI,
90 			.get_time = &ktime_get_clocktai,
91 		},
92 	}
93 };
94 
95 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
97 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
98 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
99 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
100 };
101 
102 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
103 {
104 	return hrtimer_clock_to_base_table[clock_id];
105 }
106 
107 /*
108  * Functions and macros which are different for UP/SMP systems are kept in a
109  * single place
110  */
111 #ifdef CONFIG_SMP
112 
113 /*
114  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
115  * means that all timers which are tied to this base via timer->base are
116  * locked, and the base itself is locked too.
117  *
118  * So __run_timers/migrate_timers can safely modify all timers which could
119  * be found on the lists/queues.
120  *
121  * When the timer's base is locked, and the timer removed from list, it is
122  * possible to set timer->base = NULL and drop the lock: the timer remains
123  * locked.
124  */
125 static
126 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
127 					     unsigned long *flags)
128 {
129 	struct hrtimer_clock_base *base;
130 
131 	for (;;) {
132 		base = timer->base;
133 		if (likely(base != NULL)) {
134 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
135 			if (likely(base == timer->base))
136 				return base;
137 			/* The timer has migrated to another CPU: */
138 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
139 		}
140 		cpu_relax();
141 	}
142 }
143 
144 /*
145  * With HIGHRES=y we do not migrate the timer when it is expiring
146  * before the next event on the target cpu because we cannot reprogram
147  * the target cpu hardware and we would cause it to fire late.
148  *
149  * Called with cpu_base->lock of target cpu held.
150  */
151 static int
152 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
153 {
154 #ifdef CONFIG_HIGH_RES_TIMERS
155 	ktime_t expires;
156 
157 	if (!new_base->cpu_base->hres_active)
158 		return 0;
159 
160 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
161 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
162 #else
163 	return 0;
164 #endif
165 }
166 
167 /*
168  * Switch the timer base to the current CPU when possible.
169  */
170 static inline struct hrtimer_clock_base *
171 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
172 		    int pinned)
173 {
174 	struct hrtimer_clock_base *new_base;
175 	struct hrtimer_cpu_base *new_cpu_base;
176 	int this_cpu = smp_processor_id();
177 	int cpu = get_nohz_timer_target(pinned);
178 	int basenum = base->index;
179 
180 again:
181 	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
182 	new_base = &new_cpu_base->clock_base[basenum];
183 
184 	if (base != new_base) {
185 		/*
186 		 * We are trying to move timer to new_base.
187 		 * However we can't change timer's base while it is running,
188 		 * so we keep it on the same CPU. No hassle vs. reprogramming
189 		 * the event source in the high resolution case. The softirq
190 		 * code will take care of this when the timer function has
191 		 * completed. There is no conflict as we hold the lock until
192 		 * the timer is enqueued.
193 		 */
194 		if (unlikely(hrtimer_callback_running(timer)))
195 			return base;
196 
197 		/* See the comment in lock_timer_base() */
198 		timer->base = NULL;
199 		raw_spin_unlock(&base->cpu_base->lock);
200 		raw_spin_lock(&new_base->cpu_base->lock);
201 
202 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
203 			cpu = this_cpu;
204 			raw_spin_unlock(&new_base->cpu_base->lock);
205 			raw_spin_lock(&base->cpu_base->lock);
206 			timer->base = base;
207 			goto again;
208 		}
209 		timer->base = new_base;
210 	} else {
211 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
212 			cpu = this_cpu;
213 			goto again;
214 		}
215 	}
216 	return new_base;
217 }
218 
219 #else /* CONFIG_SMP */
220 
221 static inline struct hrtimer_clock_base *
222 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
223 {
224 	struct hrtimer_clock_base *base = timer->base;
225 
226 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
227 
228 	return base;
229 }
230 
231 # define switch_hrtimer_base(t, b, p)	(b)
232 
233 #endif	/* !CONFIG_SMP */
234 
235 /*
236  * Functions for the union type storage format of ktime_t which are
237  * too large for inlining:
238  */
239 #if BITS_PER_LONG < 64
240 /*
241  * Divide a ktime value by a nanosecond value
242  */
243 u64 __ktime_divns(const ktime_t kt, s64 div)
244 {
245 	u64 dclc;
246 	int sft = 0;
247 
248 	dclc = ktime_to_ns(kt);
249 	/* Make sure the divisor is less than 2^32: */
250 	while (div >> 32) {
251 		sft++;
252 		div >>= 1;
253 	}
254 	dclc >>= sft;
255 	do_div(dclc, (unsigned long) div);
256 
257 	return dclc;
258 }
259 EXPORT_SYMBOL_GPL(__ktime_divns);
260 #endif /* BITS_PER_LONG >= 64 */
261 
262 /*
263  * Add two ktime values and do a safety check for overflow:
264  */
265 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
266 {
267 	ktime_t res = ktime_add(lhs, rhs);
268 
269 	/*
270 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
271 	 * return to user space in a timespec:
272 	 */
273 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
274 		res = ktime_set(KTIME_SEC_MAX, 0);
275 
276 	return res;
277 }
278 
279 EXPORT_SYMBOL_GPL(ktime_add_safe);
280 
281 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
282 
283 static struct debug_obj_descr hrtimer_debug_descr;
284 
285 static void *hrtimer_debug_hint(void *addr)
286 {
287 	return ((struct hrtimer *) addr)->function;
288 }
289 
290 /*
291  * fixup_init is called when:
292  * - an active object is initialized
293  */
294 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
295 {
296 	struct hrtimer *timer = addr;
297 
298 	switch (state) {
299 	case ODEBUG_STATE_ACTIVE:
300 		hrtimer_cancel(timer);
301 		debug_object_init(timer, &hrtimer_debug_descr);
302 		return 1;
303 	default:
304 		return 0;
305 	}
306 }
307 
308 /*
309  * fixup_activate is called when:
310  * - an active object is activated
311  * - an unknown object is activated (might be a statically initialized object)
312  */
313 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
314 {
315 	switch (state) {
316 
317 	case ODEBUG_STATE_NOTAVAILABLE:
318 		WARN_ON_ONCE(1);
319 		return 0;
320 
321 	case ODEBUG_STATE_ACTIVE:
322 		WARN_ON(1);
323 
324 	default:
325 		return 0;
326 	}
327 }
328 
329 /*
330  * fixup_free is called when:
331  * - an active object is freed
332  */
333 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
334 {
335 	struct hrtimer *timer = addr;
336 
337 	switch (state) {
338 	case ODEBUG_STATE_ACTIVE:
339 		hrtimer_cancel(timer);
340 		debug_object_free(timer, &hrtimer_debug_descr);
341 		return 1;
342 	default:
343 		return 0;
344 	}
345 }
346 
347 static struct debug_obj_descr hrtimer_debug_descr = {
348 	.name		= "hrtimer",
349 	.debug_hint	= hrtimer_debug_hint,
350 	.fixup_init	= hrtimer_fixup_init,
351 	.fixup_activate	= hrtimer_fixup_activate,
352 	.fixup_free	= hrtimer_fixup_free,
353 };
354 
355 static inline void debug_hrtimer_init(struct hrtimer *timer)
356 {
357 	debug_object_init(timer, &hrtimer_debug_descr);
358 }
359 
360 static inline void debug_hrtimer_activate(struct hrtimer *timer)
361 {
362 	debug_object_activate(timer, &hrtimer_debug_descr);
363 }
364 
365 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
366 {
367 	debug_object_deactivate(timer, &hrtimer_debug_descr);
368 }
369 
370 static inline void debug_hrtimer_free(struct hrtimer *timer)
371 {
372 	debug_object_free(timer, &hrtimer_debug_descr);
373 }
374 
375 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
376 			   enum hrtimer_mode mode);
377 
378 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
379 			   enum hrtimer_mode mode)
380 {
381 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
382 	__hrtimer_init(timer, clock_id, mode);
383 }
384 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
385 
386 void destroy_hrtimer_on_stack(struct hrtimer *timer)
387 {
388 	debug_object_free(timer, &hrtimer_debug_descr);
389 }
390 
391 #else
392 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
393 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
394 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
395 #endif
396 
397 static inline void
398 debug_init(struct hrtimer *timer, clockid_t clockid,
399 	   enum hrtimer_mode mode)
400 {
401 	debug_hrtimer_init(timer);
402 	trace_hrtimer_init(timer, clockid, mode);
403 }
404 
405 static inline void debug_activate(struct hrtimer *timer)
406 {
407 	debug_hrtimer_activate(timer);
408 	trace_hrtimer_start(timer);
409 }
410 
411 static inline void debug_deactivate(struct hrtimer *timer)
412 {
413 	debug_hrtimer_deactivate(timer);
414 	trace_hrtimer_cancel(timer);
415 }
416 
417 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
418 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
419 					     struct hrtimer *timer)
420 {
421 #ifdef CONFIG_HIGH_RES_TIMERS
422 	cpu_base->next_timer = timer;
423 #endif
424 }
425 
426 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
427 {
428 	struct hrtimer_clock_base *base = cpu_base->clock_base;
429 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
430 	unsigned int active = cpu_base->active_bases;
431 
432 	hrtimer_update_next_timer(cpu_base, NULL);
433 	for (; active; base++, active >>= 1) {
434 		struct timerqueue_node *next;
435 		struct hrtimer *timer;
436 
437 		if (!(active & 0x01))
438 			continue;
439 
440 		next = timerqueue_getnext(&base->active);
441 		timer = container_of(next, struct hrtimer, node);
442 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
443 		if (expires.tv64 < expires_next.tv64) {
444 			expires_next = expires;
445 			hrtimer_update_next_timer(cpu_base, timer);
446 		}
447 	}
448 	/*
449 	 * clock_was_set() might have changed base->offset of any of
450 	 * the clock bases so the result might be negative. Fix it up
451 	 * to prevent a false positive in clockevents_program_event().
452 	 */
453 	if (expires_next.tv64 < 0)
454 		expires_next.tv64 = 0;
455 	return expires_next;
456 }
457 #endif
458 
459 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
460 {
461 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
462 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
463 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
464 
465 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
466 					    offs_real, offs_boot, offs_tai);
467 }
468 
469 /* High resolution timer related functions */
470 #ifdef CONFIG_HIGH_RES_TIMERS
471 
472 /*
473  * High resolution timer enabled ?
474  */
475 static int hrtimer_hres_enabled __read_mostly  = 1;
476 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
477 EXPORT_SYMBOL_GPL(hrtimer_resolution);
478 
479 /*
480  * Enable / Disable high resolution mode
481  */
482 static int __init setup_hrtimer_hres(char *str)
483 {
484 	if (!strcmp(str, "off"))
485 		hrtimer_hres_enabled = 0;
486 	else if (!strcmp(str, "on"))
487 		hrtimer_hres_enabled = 1;
488 	else
489 		return 0;
490 	return 1;
491 }
492 
493 __setup("highres=", setup_hrtimer_hres);
494 
495 /*
496  * hrtimer_high_res_enabled - query, if the highres mode is enabled
497  */
498 static inline int hrtimer_is_hres_enabled(void)
499 {
500 	return hrtimer_hres_enabled;
501 }
502 
503 /*
504  * Is the high resolution mode active ?
505  */
506 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
507 {
508 	return cpu_base->hres_active;
509 }
510 
511 static inline int hrtimer_hres_active(void)
512 {
513 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
514 }
515 
516 /*
517  * Reprogram the event source with checking both queues for the
518  * next event
519  * Called with interrupts disabled and base->lock held
520  */
521 static void
522 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
523 {
524 	ktime_t expires_next;
525 
526 	if (!cpu_base->hres_active)
527 		return;
528 
529 	expires_next = __hrtimer_get_next_event(cpu_base);
530 
531 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
532 		return;
533 
534 	cpu_base->expires_next.tv64 = expires_next.tv64;
535 
536 	/*
537 	 * If a hang was detected in the last timer interrupt then we
538 	 * leave the hang delay active in the hardware. We want the
539 	 * system to make progress. That also prevents the following
540 	 * scenario:
541 	 * T1 expires 50ms from now
542 	 * T2 expires 5s from now
543 	 *
544 	 * T1 is removed, so this code is called and would reprogram
545 	 * the hardware to 5s from now. Any hrtimer_start after that
546 	 * will not reprogram the hardware due to hang_detected being
547 	 * set. So we'd effectivly block all timers until the T2 event
548 	 * fires.
549 	 */
550 	if (cpu_base->hang_detected)
551 		return;
552 
553 	tick_program_event(cpu_base->expires_next, 1);
554 }
555 
556 /*
557  * When a timer is enqueued and expires earlier than the already enqueued
558  * timers, we have to check, whether it expires earlier than the timer for
559  * which the clock event device was armed.
560  *
561  * Called with interrupts disabled and base->cpu_base.lock held
562  */
563 static void hrtimer_reprogram(struct hrtimer *timer,
564 			      struct hrtimer_clock_base *base)
565 {
566 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
567 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
568 
569 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
570 
571 	/*
572 	 * If the timer is not on the current cpu, we cannot reprogram
573 	 * the other cpus clock event device.
574 	 */
575 	if (base->cpu_base != cpu_base)
576 		return;
577 
578 	/*
579 	 * If the hrtimer interrupt is running, then it will
580 	 * reevaluate the clock bases and reprogram the clock event
581 	 * device. The callbacks are always executed in hard interrupt
582 	 * context so we don't need an extra check for a running
583 	 * callback.
584 	 */
585 	if (cpu_base->in_hrtirq)
586 		return;
587 
588 	/*
589 	 * CLOCK_REALTIME timer might be requested with an absolute
590 	 * expiry time which is less than base->offset. Set it to 0.
591 	 */
592 	if (expires.tv64 < 0)
593 		expires.tv64 = 0;
594 
595 	if (expires.tv64 >= cpu_base->expires_next.tv64)
596 		return;
597 
598 	/* Update the pointer to the next expiring timer */
599 	cpu_base->next_timer = timer;
600 
601 	/*
602 	 * If a hang was detected in the last timer interrupt then we
603 	 * do not schedule a timer which is earlier than the expiry
604 	 * which we enforced in the hang detection. We want the system
605 	 * to make progress.
606 	 */
607 	if (cpu_base->hang_detected)
608 		return;
609 
610 	/*
611 	 * Program the timer hardware. We enforce the expiry for
612 	 * events which are already in the past.
613 	 */
614 	cpu_base->expires_next = expires;
615 	tick_program_event(expires, 1);
616 }
617 
618 /*
619  * Initialize the high resolution related parts of cpu_base
620  */
621 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
622 {
623 	base->expires_next.tv64 = KTIME_MAX;
624 	base->hres_active = 0;
625 }
626 
627 /*
628  * Retrigger next event is called after clock was set
629  *
630  * Called with interrupts disabled via on_each_cpu()
631  */
632 static void retrigger_next_event(void *arg)
633 {
634 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
635 
636 	if (!base->hres_active)
637 		return;
638 
639 	raw_spin_lock(&base->lock);
640 	hrtimer_update_base(base);
641 	hrtimer_force_reprogram(base, 0);
642 	raw_spin_unlock(&base->lock);
643 }
644 
645 /*
646  * Switch to high resolution mode
647  */
648 static int hrtimer_switch_to_hres(void)
649 {
650 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
651 
652 	if (tick_init_highres()) {
653 		printk(KERN_WARNING "Could not switch to high resolution "
654 				    "mode on CPU %d\n", base->cpu);
655 		return 0;
656 	}
657 	base->hres_active = 1;
658 	hrtimer_resolution = HIGH_RES_NSEC;
659 
660 	tick_setup_sched_timer();
661 	/* "Retrigger" the interrupt to get things going */
662 	retrigger_next_event(NULL);
663 	return 1;
664 }
665 
666 static void clock_was_set_work(struct work_struct *work)
667 {
668 	clock_was_set();
669 }
670 
671 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
672 
673 /*
674  * Called from timekeeping and resume code to reprogramm the hrtimer
675  * interrupt device on all cpus.
676  */
677 void clock_was_set_delayed(void)
678 {
679 	schedule_work(&hrtimer_work);
680 }
681 
682 #else
683 
684 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
685 static inline int hrtimer_hres_active(void) { return 0; }
686 static inline int hrtimer_is_hres_enabled(void) { return 0; }
687 static inline int hrtimer_switch_to_hres(void) { return 0; }
688 static inline void
689 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
690 static inline int hrtimer_reprogram(struct hrtimer *timer,
691 				    struct hrtimer_clock_base *base)
692 {
693 	return 0;
694 }
695 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
696 static inline void retrigger_next_event(void *arg) { }
697 
698 #endif /* CONFIG_HIGH_RES_TIMERS */
699 
700 /*
701  * Clock realtime was set
702  *
703  * Change the offset of the realtime clock vs. the monotonic
704  * clock.
705  *
706  * We might have to reprogram the high resolution timer interrupt. On
707  * SMP we call the architecture specific code to retrigger _all_ high
708  * resolution timer interrupts. On UP we just disable interrupts and
709  * call the high resolution interrupt code.
710  */
711 void clock_was_set(void)
712 {
713 #ifdef CONFIG_HIGH_RES_TIMERS
714 	/* Retrigger the CPU local events everywhere */
715 	on_each_cpu(retrigger_next_event, NULL, 1);
716 #endif
717 	timerfd_clock_was_set();
718 }
719 
720 /*
721  * During resume we might have to reprogram the high resolution timer
722  * interrupt on all online CPUs.  However, all other CPUs will be
723  * stopped with IRQs interrupts disabled so the clock_was_set() call
724  * must be deferred.
725  */
726 void hrtimers_resume(void)
727 {
728 	WARN_ONCE(!irqs_disabled(),
729 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
730 
731 	/* Retrigger on the local CPU */
732 	retrigger_next_event(NULL);
733 	/* And schedule a retrigger for all others */
734 	clock_was_set_delayed();
735 }
736 
737 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
738 {
739 #ifdef CONFIG_TIMER_STATS
740 	if (timer->start_site)
741 		return;
742 	timer->start_site = __builtin_return_address(0);
743 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
744 	timer->start_pid = current->pid;
745 #endif
746 }
747 
748 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
749 {
750 #ifdef CONFIG_TIMER_STATS
751 	timer->start_site = NULL;
752 #endif
753 }
754 
755 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
756 {
757 #ifdef CONFIG_TIMER_STATS
758 	if (likely(!timer_stats_active))
759 		return;
760 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
761 				 timer->function, timer->start_comm, 0);
762 #endif
763 }
764 
765 /*
766  * Counterpart to lock_hrtimer_base above:
767  */
768 static inline
769 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
770 {
771 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
772 }
773 
774 /**
775  * hrtimer_forward - forward the timer expiry
776  * @timer:	hrtimer to forward
777  * @now:	forward past this time
778  * @interval:	the interval to forward
779  *
780  * Forward the timer expiry so it will expire in the future.
781  * Returns the number of overruns.
782  *
783  * Can be safely called from the callback function of @timer. If
784  * called from other contexts @timer must neither be enqueued nor
785  * running the callback and the caller needs to take care of
786  * serialization.
787  *
788  * Note: This only updates the timer expiry value and does not requeue
789  * the timer.
790  */
791 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
792 {
793 	u64 orun = 1;
794 	ktime_t delta;
795 
796 	delta = ktime_sub(now, hrtimer_get_expires(timer));
797 
798 	if (delta.tv64 < 0)
799 		return 0;
800 
801 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
802 		return 0;
803 
804 	if (interval.tv64 < hrtimer_resolution)
805 		interval.tv64 = hrtimer_resolution;
806 
807 	if (unlikely(delta.tv64 >= interval.tv64)) {
808 		s64 incr = ktime_to_ns(interval);
809 
810 		orun = ktime_divns(delta, incr);
811 		hrtimer_add_expires_ns(timer, incr * orun);
812 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
813 			return orun;
814 		/*
815 		 * This (and the ktime_add() below) is the
816 		 * correction for exact:
817 		 */
818 		orun++;
819 	}
820 	hrtimer_add_expires(timer, interval);
821 
822 	return orun;
823 }
824 EXPORT_SYMBOL_GPL(hrtimer_forward);
825 
826 /*
827  * enqueue_hrtimer - internal function to (re)start a timer
828  *
829  * The timer is inserted in expiry order. Insertion into the
830  * red black tree is O(log(n)). Must hold the base lock.
831  *
832  * Returns 1 when the new timer is the leftmost timer in the tree.
833  */
834 static int enqueue_hrtimer(struct hrtimer *timer,
835 			   struct hrtimer_clock_base *base)
836 {
837 	debug_activate(timer);
838 
839 	base->cpu_base->active_bases |= 1 << base->index;
840 
841 	/*
842 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
843 	 * state of a possibly running callback.
844 	 */
845 	timer->state |= HRTIMER_STATE_ENQUEUED;
846 
847 	return timerqueue_add(&base->active, &timer->node);
848 }
849 
850 /*
851  * __remove_hrtimer - internal function to remove a timer
852  *
853  * Caller must hold the base lock.
854  *
855  * High resolution timer mode reprograms the clock event device when the
856  * timer is the one which expires next. The caller can disable this by setting
857  * reprogram to zero. This is useful, when the context does a reprogramming
858  * anyway (e.g. timer interrupt)
859  */
860 static void __remove_hrtimer(struct hrtimer *timer,
861 			     struct hrtimer_clock_base *base,
862 			     unsigned long newstate, int reprogram)
863 {
864 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
865 	unsigned int state = timer->state;
866 
867 	timer->state = newstate;
868 	if (!(state & HRTIMER_STATE_ENQUEUED))
869 		return;
870 
871 	if (!timerqueue_del(&base->active, &timer->node))
872 		cpu_base->active_bases &= ~(1 << base->index);
873 
874 #ifdef CONFIG_HIGH_RES_TIMERS
875 	/*
876 	 * Note: If reprogram is false we do not update
877 	 * cpu_base->next_timer. This happens when we remove the first
878 	 * timer on a remote cpu. No harm as we never dereference
879 	 * cpu_base->next_timer. So the worst thing what can happen is
880 	 * an superflous call to hrtimer_force_reprogram() on the
881 	 * remote cpu later on if the same timer gets enqueued again.
882 	 */
883 	if (reprogram && timer == cpu_base->next_timer)
884 		hrtimer_force_reprogram(cpu_base, 1);
885 #endif
886 }
887 
888 /*
889  * remove hrtimer, called with base lock held
890  */
891 static inline int
892 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
893 {
894 	if (hrtimer_is_queued(timer)) {
895 		unsigned long state = timer->state;
896 		int reprogram;
897 
898 		/*
899 		 * Remove the timer and force reprogramming when high
900 		 * resolution mode is active and the timer is on the current
901 		 * CPU. If we remove a timer on another CPU, reprogramming is
902 		 * skipped. The interrupt event on this CPU is fired and
903 		 * reprogramming happens in the interrupt handler. This is a
904 		 * rare case and less expensive than a smp call.
905 		 */
906 		debug_deactivate(timer);
907 		timer_stats_hrtimer_clear_start_info(timer);
908 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
909 
910 		if (!restart) {
911 			/*
912 			 * We must preserve the CALLBACK state flag here,
913 			 * otherwise we could move the timer base in
914 			 * switch_hrtimer_base.
915 			 */
916 			state &= HRTIMER_STATE_CALLBACK;
917 		}
918 		__remove_hrtimer(timer, base, state, reprogram);
919 		return 1;
920 	}
921 	return 0;
922 }
923 
924 /**
925  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
926  * @timer:	the timer to be added
927  * @tim:	expiry time
928  * @delta_ns:	"slack" range for the timer
929  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
930  *		relative (HRTIMER_MODE_REL)
931  */
932 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
933 			    unsigned long delta_ns, const enum hrtimer_mode mode)
934 {
935 	struct hrtimer_clock_base *base, *new_base;
936 	unsigned long flags;
937 	int leftmost;
938 
939 	base = lock_hrtimer_base(timer, &flags);
940 
941 	/* Remove an active timer from the queue: */
942 	remove_hrtimer(timer, base, true);
943 
944 	if (mode & HRTIMER_MODE_REL) {
945 		tim = ktime_add_safe(tim, base->get_time());
946 		/*
947 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
948 		 * to signal that they simply return xtime in
949 		 * do_gettimeoffset(). In this case we want to round up by
950 		 * resolution when starting a relative timer, to avoid short
951 		 * timeouts. This will go away with the GTOD framework.
952 		 */
953 #ifdef CONFIG_TIME_LOW_RES
954 		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
955 #endif
956 	}
957 
958 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
959 
960 	/* Switch the timer base, if necessary: */
961 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
962 
963 	timer_stats_hrtimer_set_start_info(timer);
964 
965 	leftmost = enqueue_hrtimer(timer, new_base);
966 	if (!leftmost)
967 		goto unlock;
968 
969 	if (!hrtimer_is_hres_active(timer)) {
970 		/*
971 		 * Kick to reschedule the next tick to handle the new timer
972 		 * on dynticks target.
973 		 */
974 		wake_up_nohz_cpu(new_base->cpu_base->cpu);
975 	} else {
976 		hrtimer_reprogram(timer, new_base);
977 	}
978 unlock:
979 	unlock_hrtimer_base(timer, &flags);
980 }
981 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
982 
983 /**
984  * hrtimer_try_to_cancel - try to deactivate a timer
985  * @timer:	hrtimer to stop
986  *
987  * Returns:
988  *  0 when the timer was not active
989  *  1 when the timer was active
990  * -1 when the timer is currently excuting the callback function and
991  *    cannot be stopped
992  */
993 int hrtimer_try_to_cancel(struct hrtimer *timer)
994 {
995 	struct hrtimer_clock_base *base;
996 	unsigned long flags;
997 	int ret = -1;
998 
999 	/*
1000 	 * Check lockless first. If the timer is not active (neither
1001 	 * enqueued nor running the callback, nothing to do here.  The
1002 	 * base lock does not serialize against a concurrent enqueue,
1003 	 * so we can avoid taking it.
1004 	 */
1005 	if (!hrtimer_active(timer))
1006 		return 0;
1007 
1008 	base = lock_hrtimer_base(timer, &flags);
1009 
1010 	if (!hrtimer_callback_running(timer))
1011 		ret = remove_hrtimer(timer, base, false);
1012 
1013 	unlock_hrtimer_base(timer, &flags);
1014 
1015 	return ret;
1016 
1017 }
1018 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1019 
1020 /**
1021  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1022  * @timer:	the timer to be cancelled
1023  *
1024  * Returns:
1025  *  0 when the timer was not active
1026  *  1 when the timer was active
1027  */
1028 int hrtimer_cancel(struct hrtimer *timer)
1029 {
1030 	for (;;) {
1031 		int ret = hrtimer_try_to_cancel(timer);
1032 
1033 		if (ret >= 0)
1034 			return ret;
1035 		cpu_relax();
1036 	}
1037 }
1038 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1039 
1040 /**
1041  * hrtimer_get_remaining - get remaining time for the timer
1042  * @timer:	the timer to read
1043  */
1044 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1045 {
1046 	unsigned long flags;
1047 	ktime_t rem;
1048 
1049 	lock_hrtimer_base(timer, &flags);
1050 	rem = hrtimer_expires_remaining(timer);
1051 	unlock_hrtimer_base(timer, &flags);
1052 
1053 	return rem;
1054 }
1055 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1056 
1057 #ifdef CONFIG_NO_HZ_COMMON
1058 /**
1059  * hrtimer_get_next_event - get the time until next expiry event
1060  *
1061  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1062  */
1063 u64 hrtimer_get_next_event(void)
1064 {
1065 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1066 	u64 expires = KTIME_MAX;
1067 	unsigned long flags;
1068 
1069 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1070 
1071 	if (!__hrtimer_hres_active(cpu_base))
1072 		expires = __hrtimer_get_next_event(cpu_base).tv64;
1073 
1074 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1075 
1076 	return expires;
1077 }
1078 #endif
1079 
1080 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1081 			   enum hrtimer_mode mode)
1082 {
1083 	struct hrtimer_cpu_base *cpu_base;
1084 	int base;
1085 
1086 	memset(timer, 0, sizeof(struct hrtimer));
1087 
1088 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1089 
1090 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1091 		clock_id = CLOCK_MONOTONIC;
1092 
1093 	base = hrtimer_clockid_to_base(clock_id);
1094 	timer->base = &cpu_base->clock_base[base];
1095 	timerqueue_init(&timer->node);
1096 
1097 #ifdef CONFIG_TIMER_STATS
1098 	timer->start_site = NULL;
1099 	timer->start_pid = -1;
1100 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1101 #endif
1102 }
1103 
1104 /**
1105  * hrtimer_init - initialize a timer to the given clock
1106  * @timer:	the timer to be initialized
1107  * @clock_id:	the clock to be used
1108  * @mode:	timer mode abs/rel
1109  */
1110 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1111 		  enum hrtimer_mode mode)
1112 {
1113 	debug_init(timer, clock_id, mode);
1114 	__hrtimer_init(timer, clock_id, mode);
1115 }
1116 EXPORT_SYMBOL_GPL(hrtimer_init);
1117 
1118 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1119 			  struct hrtimer_clock_base *base,
1120 			  struct hrtimer *timer, ktime_t *now)
1121 {
1122 	enum hrtimer_restart (*fn)(struct hrtimer *);
1123 	int restart;
1124 
1125 	WARN_ON(!irqs_disabled());
1126 
1127 	debug_deactivate(timer);
1128 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1129 	timer_stats_account_hrtimer(timer);
1130 	fn = timer->function;
1131 
1132 	/*
1133 	 * Because we run timers from hardirq context, there is no chance
1134 	 * they get migrated to another cpu, therefore its safe to unlock
1135 	 * the timer base.
1136 	 */
1137 	raw_spin_unlock(&cpu_base->lock);
1138 	trace_hrtimer_expire_entry(timer, now);
1139 	restart = fn(timer);
1140 	trace_hrtimer_expire_exit(timer);
1141 	raw_spin_lock(&cpu_base->lock);
1142 
1143 	/*
1144 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1145 	 * we do not reprogramm the event hardware. Happens either in
1146 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1147 	 *
1148 	 * Note: Because we dropped the cpu_base->lock above,
1149 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1150 	 * for us already.
1151 	 */
1152 	if (restart != HRTIMER_NORESTART &&
1153 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1154 		enqueue_hrtimer(timer, base);
1155 
1156 	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1157 
1158 	timer->state &= ~HRTIMER_STATE_CALLBACK;
1159 }
1160 
1161 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1162 {
1163 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1164 	unsigned int active = cpu_base->active_bases;
1165 
1166 	for (; active; base++, active >>= 1) {
1167 		struct timerqueue_node *node;
1168 		ktime_t basenow;
1169 
1170 		if (!(active & 0x01))
1171 			continue;
1172 
1173 		basenow = ktime_add(now, base->offset);
1174 
1175 		while ((node = timerqueue_getnext(&base->active))) {
1176 			struct hrtimer *timer;
1177 
1178 			timer = container_of(node, struct hrtimer, node);
1179 
1180 			/*
1181 			 * The immediate goal for using the softexpires is
1182 			 * minimizing wakeups, not running timers at the
1183 			 * earliest interrupt after their soft expiration.
1184 			 * This allows us to avoid using a Priority Search
1185 			 * Tree, which can answer a stabbing querry for
1186 			 * overlapping intervals and instead use the simple
1187 			 * BST we already have.
1188 			 * We don't add extra wakeups by delaying timers that
1189 			 * are right-of a not yet expired timer, because that
1190 			 * timer will have to trigger a wakeup anyway.
1191 			 */
1192 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1193 				break;
1194 
1195 			__run_hrtimer(cpu_base, base, timer, &basenow);
1196 		}
1197 	}
1198 }
1199 
1200 #ifdef CONFIG_HIGH_RES_TIMERS
1201 
1202 /*
1203  * High resolution timer interrupt
1204  * Called with interrupts disabled
1205  */
1206 void hrtimer_interrupt(struct clock_event_device *dev)
1207 {
1208 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1209 	ktime_t expires_next, now, entry_time, delta;
1210 	int retries = 0;
1211 
1212 	BUG_ON(!cpu_base->hres_active);
1213 	cpu_base->nr_events++;
1214 	dev->next_event.tv64 = KTIME_MAX;
1215 
1216 	raw_spin_lock(&cpu_base->lock);
1217 	entry_time = now = hrtimer_update_base(cpu_base);
1218 retry:
1219 	cpu_base->in_hrtirq = 1;
1220 	/*
1221 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1222 	 * held to prevent that a timer is enqueued in our queue via
1223 	 * the migration code. This does not affect enqueueing of
1224 	 * timers which run their callback and need to be requeued on
1225 	 * this CPU.
1226 	 */
1227 	cpu_base->expires_next.tv64 = KTIME_MAX;
1228 
1229 	__hrtimer_run_queues(cpu_base, now);
1230 
1231 	/* Reevaluate the clock bases for the next expiry */
1232 	expires_next = __hrtimer_get_next_event(cpu_base);
1233 	/*
1234 	 * Store the new expiry value so the migration code can verify
1235 	 * against it.
1236 	 */
1237 	cpu_base->expires_next = expires_next;
1238 	cpu_base->in_hrtirq = 0;
1239 	raw_spin_unlock(&cpu_base->lock);
1240 
1241 	/* Reprogramming necessary ? */
1242 	if (!tick_program_event(expires_next, 0)) {
1243 		cpu_base->hang_detected = 0;
1244 		return;
1245 	}
1246 
1247 	/*
1248 	 * The next timer was already expired due to:
1249 	 * - tracing
1250 	 * - long lasting callbacks
1251 	 * - being scheduled away when running in a VM
1252 	 *
1253 	 * We need to prevent that we loop forever in the hrtimer
1254 	 * interrupt routine. We give it 3 attempts to avoid
1255 	 * overreacting on some spurious event.
1256 	 *
1257 	 * Acquire base lock for updating the offsets and retrieving
1258 	 * the current time.
1259 	 */
1260 	raw_spin_lock(&cpu_base->lock);
1261 	now = hrtimer_update_base(cpu_base);
1262 	cpu_base->nr_retries++;
1263 	if (++retries < 3)
1264 		goto retry;
1265 	/*
1266 	 * Give the system a chance to do something else than looping
1267 	 * here. We stored the entry time, so we know exactly how long
1268 	 * we spent here. We schedule the next event this amount of
1269 	 * time away.
1270 	 */
1271 	cpu_base->nr_hangs++;
1272 	cpu_base->hang_detected = 1;
1273 	raw_spin_unlock(&cpu_base->lock);
1274 	delta = ktime_sub(now, entry_time);
1275 	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1276 		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1277 	/*
1278 	 * Limit it to a sensible value as we enforce a longer
1279 	 * delay. Give the CPU at least 100ms to catch up.
1280 	 */
1281 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1282 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1283 	else
1284 		expires_next = ktime_add(now, delta);
1285 	tick_program_event(expires_next, 1);
1286 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1287 		    ktime_to_ns(delta));
1288 }
1289 
1290 /*
1291  * local version of hrtimer_peek_ahead_timers() called with interrupts
1292  * disabled.
1293  */
1294 static inline void __hrtimer_peek_ahead_timers(void)
1295 {
1296 	struct tick_device *td;
1297 
1298 	if (!hrtimer_hres_active())
1299 		return;
1300 
1301 	td = this_cpu_ptr(&tick_cpu_device);
1302 	if (td && td->evtdev)
1303 		hrtimer_interrupt(td->evtdev);
1304 }
1305 
1306 #else /* CONFIG_HIGH_RES_TIMERS */
1307 
1308 static inline void __hrtimer_peek_ahead_timers(void) { }
1309 
1310 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1311 
1312 /*
1313  * Called from run_local_timers in hardirq context every jiffy
1314  */
1315 void hrtimer_run_queues(void)
1316 {
1317 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1318 	ktime_t now;
1319 
1320 	if (__hrtimer_hres_active(cpu_base))
1321 		return;
1322 
1323 	/*
1324 	 * This _is_ ugly: We have to check periodically, whether we
1325 	 * can switch to highres and / or nohz mode. The clocksource
1326 	 * switch happens with xtime_lock held. Notification from
1327 	 * there only sets the check bit in the tick_oneshot code,
1328 	 * otherwise we might deadlock vs. xtime_lock.
1329 	 */
1330 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1331 		hrtimer_switch_to_hres();
1332 		return;
1333 	}
1334 
1335 	raw_spin_lock(&cpu_base->lock);
1336 	now = hrtimer_update_base(cpu_base);
1337 	__hrtimer_run_queues(cpu_base, now);
1338 	raw_spin_unlock(&cpu_base->lock);
1339 }
1340 
1341 /*
1342  * Sleep related functions:
1343  */
1344 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1345 {
1346 	struct hrtimer_sleeper *t =
1347 		container_of(timer, struct hrtimer_sleeper, timer);
1348 	struct task_struct *task = t->task;
1349 
1350 	t->task = NULL;
1351 	if (task)
1352 		wake_up_process(task);
1353 
1354 	return HRTIMER_NORESTART;
1355 }
1356 
1357 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1358 {
1359 	sl->timer.function = hrtimer_wakeup;
1360 	sl->task = task;
1361 }
1362 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1363 
1364 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1365 {
1366 	hrtimer_init_sleeper(t, current);
1367 
1368 	do {
1369 		set_current_state(TASK_INTERRUPTIBLE);
1370 		hrtimer_start_expires(&t->timer, mode);
1371 
1372 		if (likely(t->task))
1373 			freezable_schedule();
1374 
1375 		hrtimer_cancel(&t->timer);
1376 		mode = HRTIMER_MODE_ABS;
1377 
1378 	} while (t->task && !signal_pending(current));
1379 
1380 	__set_current_state(TASK_RUNNING);
1381 
1382 	return t->task == NULL;
1383 }
1384 
1385 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1386 {
1387 	struct timespec rmt;
1388 	ktime_t rem;
1389 
1390 	rem = hrtimer_expires_remaining(timer);
1391 	if (rem.tv64 <= 0)
1392 		return 0;
1393 	rmt = ktime_to_timespec(rem);
1394 
1395 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1396 		return -EFAULT;
1397 
1398 	return 1;
1399 }
1400 
1401 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1402 {
1403 	struct hrtimer_sleeper t;
1404 	struct timespec __user  *rmtp;
1405 	int ret = 0;
1406 
1407 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1408 				HRTIMER_MODE_ABS);
1409 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1410 
1411 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1412 		goto out;
1413 
1414 	rmtp = restart->nanosleep.rmtp;
1415 	if (rmtp) {
1416 		ret = update_rmtp(&t.timer, rmtp);
1417 		if (ret <= 0)
1418 			goto out;
1419 	}
1420 
1421 	/* The other values in restart are already filled in */
1422 	ret = -ERESTART_RESTARTBLOCK;
1423 out:
1424 	destroy_hrtimer_on_stack(&t.timer);
1425 	return ret;
1426 }
1427 
1428 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1429 		       const enum hrtimer_mode mode, const clockid_t clockid)
1430 {
1431 	struct restart_block *restart;
1432 	struct hrtimer_sleeper t;
1433 	int ret = 0;
1434 	unsigned long slack;
1435 
1436 	slack = current->timer_slack_ns;
1437 	if (dl_task(current) || rt_task(current))
1438 		slack = 0;
1439 
1440 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1441 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1442 	if (do_nanosleep(&t, mode))
1443 		goto out;
1444 
1445 	/* Absolute timers do not update the rmtp value and restart: */
1446 	if (mode == HRTIMER_MODE_ABS) {
1447 		ret = -ERESTARTNOHAND;
1448 		goto out;
1449 	}
1450 
1451 	if (rmtp) {
1452 		ret = update_rmtp(&t.timer, rmtp);
1453 		if (ret <= 0)
1454 			goto out;
1455 	}
1456 
1457 	restart = &current->restart_block;
1458 	restart->fn = hrtimer_nanosleep_restart;
1459 	restart->nanosleep.clockid = t.timer.base->clockid;
1460 	restart->nanosleep.rmtp = rmtp;
1461 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1462 
1463 	ret = -ERESTART_RESTARTBLOCK;
1464 out:
1465 	destroy_hrtimer_on_stack(&t.timer);
1466 	return ret;
1467 }
1468 
1469 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1470 		struct timespec __user *, rmtp)
1471 {
1472 	struct timespec tu;
1473 
1474 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1475 		return -EFAULT;
1476 
1477 	if (!timespec_valid(&tu))
1478 		return -EINVAL;
1479 
1480 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1481 }
1482 
1483 /*
1484  * Functions related to boot-time initialization:
1485  */
1486 static void init_hrtimers_cpu(int cpu)
1487 {
1488 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1489 	int i;
1490 
1491 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1492 		cpu_base->clock_base[i].cpu_base = cpu_base;
1493 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1494 	}
1495 
1496 	cpu_base->cpu = cpu;
1497 	hrtimer_init_hres(cpu_base);
1498 }
1499 
1500 #ifdef CONFIG_HOTPLUG_CPU
1501 
1502 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1503 				struct hrtimer_clock_base *new_base)
1504 {
1505 	struct hrtimer *timer;
1506 	struct timerqueue_node *node;
1507 
1508 	while ((node = timerqueue_getnext(&old_base->active))) {
1509 		timer = container_of(node, struct hrtimer, node);
1510 		BUG_ON(hrtimer_callback_running(timer));
1511 		debug_deactivate(timer);
1512 
1513 		/*
1514 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1515 		 * timer could be seen as !active and just vanish away
1516 		 * under us on another CPU
1517 		 */
1518 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1519 		timer->base = new_base;
1520 		/*
1521 		 * Enqueue the timers on the new cpu. This does not
1522 		 * reprogram the event device in case the timer
1523 		 * expires before the earliest on this CPU, but we run
1524 		 * hrtimer_interrupt after we migrated everything to
1525 		 * sort out already expired timers and reprogram the
1526 		 * event device.
1527 		 */
1528 		enqueue_hrtimer(timer, new_base);
1529 	}
1530 }
1531 
1532 static void migrate_hrtimers(int scpu)
1533 {
1534 	struct hrtimer_cpu_base *old_base, *new_base;
1535 	int i;
1536 
1537 	BUG_ON(cpu_online(scpu));
1538 	tick_cancel_sched_timer(scpu);
1539 
1540 	local_irq_disable();
1541 	old_base = &per_cpu(hrtimer_bases, scpu);
1542 	new_base = this_cpu_ptr(&hrtimer_bases);
1543 	/*
1544 	 * The caller is globally serialized and nobody else
1545 	 * takes two locks at once, deadlock is not possible.
1546 	 */
1547 	raw_spin_lock(&new_base->lock);
1548 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1549 
1550 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1551 		migrate_hrtimer_list(&old_base->clock_base[i],
1552 				     &new_base->clock_base[i]);
1553 	}
1554 
1555 	raw_spin_unlock(&old_base->lock);
1556 	raw_spin_unlock(&new_base->lock);
1557 
1558 	/* Check, if we got expired work to do */
1559 	__hrtimer_peek_ahead_timers();
1560 	local_irq_enable();
1561 }
1562 
1563 #endif /* CONFIG_HOTPLUG_CPU */
1564 
1565 static int hrtimer_cpu_notify(struct notifier_block *self,
1566 					unsigned long action, void *hcpu)
1567 {
1568 	int scpu = (long)hcpu;
1569 
1570 	switch (action) {
1571 
1572 	case CPU_UP_PREPARE:
1573 	case CPU_UP_PREPARE_FROZEN:
1574 		init_hrtimers_cpu(scpu);
1575 		break;
1576 
1577 #ifdef CONFIG_HOTPLUG_CPU
1578 	case CPU_DEAD:
1579 	case CPU_DEAD_FROZEN:
1580 		migrate_hrtimers(scpu);
1581 		break;
1582 #endif
1583 
1584 	default:
1585 		break;
1586 	}
1587 
1588 	return NOTIFY_OK;
1589 }
1590 
1591 static struct notifier_block hrtimers_nb = {
1592 	.notifier_call = hrtimer_cpu_notify,
1593 };
1594 
1595 void __init hrtimers_init(void)
1596 {
1597 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1598 			  (void *)(long)smp_processor_id());
1599 	register_cpu_notifier(&hrtimers_nb);
1600 }
1601 
1602 /**
1603  * schedule_hrtimeout_range_clock - sleep until timeout
1604  * @expires:	timeout value (ktime_t)
1605  * @delta:	slack in expires timeout (ktime_t)
1606  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1607  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1608  */
1609 int __sched
1610 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1611 			       const enum hrtimer_mode mode, int clock)
1612 {
1613 	struct hrtimer_sleeper t;
1614 
1615 	/*
1616 	 * Optimize when a zero timeout value is given. It does not
1617 	 * matter whether this is an absolute or a relative time.
1618 	 */
1619 	if (expires && !expires->tv64) {
1620 		__set_current_state(TASK_RUNNING);
1621 		return 0;
1622 	}
1623 
1624 	/*
1625 	 * A NULL parameter means "infinite"
1626 	 */
1627 	if (!expires) {
1628 		schedule();
1629 		return -EINTR;
1630 	}
1631 
1632 	hrtimer_init_on_stack(&t.timer, clock, mode);
1633 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1634 
1635 	hrtimer_init_sleeper(&t, current);
1636 
1637 	hrtimer_start_expires(&t.timer, mode);
1638 
1639 	if (likely(t.task))
1640 		schedule();
1641 
1642 	hrtimer_cancel(&t.timer);
1643 	destroy_hrtimer_on_stack(&t.timer);
1644 
1645 	__set_current_state(TASK_RUNNING);
1646 
1647 	return !t.task ? 0 : -EINTR;
1648 }
1649 
1650 /**
1651  * schedule_hrtimeout_range - sleep until timeout
1652  * @expires:	timeout value (ktime_t)
1653  * @delta:	slack in expires timeout (ktime_t)
1654  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1655  *
1656  * Make the current task sleep until the given expiry time has
1657  * elapsed. The routine will return immediately unless
1658  * the current task state has been set (see set_current_state()).
1659  *
1660  * The @delta argument gives the kernel the freedom to schedule the
1661  * actual wakeup to a time that is both power and performance friendly.
1662  * The kernel give the normal best effort behavior for "@expires+@delta",
1663  * but may decide to fire the timer earlier, but no earlier than @expires.
1664  *
1665  * You can set the task state as follows -
1666  *
1667  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1668  * pass before the routine returns.
1669  *
1670  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1671  * delivered to the current task.
1672  *
1673  * The current task state is guaranteed to be TASK_RUNNING when this
1674  * routine returns.
1675  *
1676  * Returns 0 when the timer has expired otherwise -EINTR
1677  */
1678 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1679 				     const enum hrtimer_mode mode)
1680 {
1681 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1682 					      CLOCK_MONOTONIC);
1683 }
1684 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1685 
1686 /**
1687  * schedule_hrtimeout - sleep until timeout
1688  * @expires:	timeout value (ktime_t)
1689  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1690  *
1691  * Make the current task sleep until the given expiry time has
1692  * elapsed. The routine will return immediately unless
1693  * the current task state has been set (see set_current_state()).
1694  *
1695  * You can set the task state as follows -
1696  *
1697  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1698  * pass before the routine returns.
1699  *
1700  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1701  * delivered to the current task.
1702  *
1703  * The current task state is guaranteed to be TASK_RUNNING when this
1704  * routine returns.
1705  *
1706  * Returns 0 when the timer has expired otherwise -EINTR
1707  */
1708 int __sched schedule_hrtimeout(ktime_t *expires,
1709 			       const enum hrtimer_mode mode)
1710 {
1711 	return schedule_hrtimeout_range(expires, 0, mode);
1712 }
1713 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1714