xref: /openbmc/linux/kernel/time/hrtimer.c (revision 887d9dc989eb0154492e41e7c07492edbb088ba1)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids then hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 	}
94 };
95 
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
98 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
99 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101 };
102 
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 	return hrtimer_clock_to_base_table[clock_id];
106 }
107 
108 /*
109  * Functions and macros which are different for UP/SMP systems are kept in a
110  * single place
111  */
112 #ifdef CONFIG_SMP
113 
114 /*
115  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116  * such that hrtimer_callback_running() can unconditionally dereference
117  * timer->base->cpu_base
118  */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 	.seq = SEQCNT_ZERO(migration_cpu_base),
121 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123 
124 #define migration_base	migration_cpu_base.clock_base[0]
125 
126 /*
127  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128  * means that all timers which are tied to this base via timer->base are
129  * locked, and the base itself is locked too.
130  *
131  * So __run_timers/migrate_timers can safely modify all timers which could
132  * be found on the lists/queues.
133  *
134  * When the timer's base is locked, and the timer removed from list, it is
135  * possible to set timer->base = &migration_base and drop the lock: the timer
136  * remains locked.
137  */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 					     unsigned long *flags)
141 {
142 	struct hrtimer_clock_base *base;
143 
144 	for (;;) {
145 		base = timer->base;
146 		if (likely(base != &migration_base)) {
147 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 			if (likely(base == timer->base))
149 				return base;
150 			/* The timer has migrated to another CPU: */
151 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 		}
153 		cpu_relax();
154 	}
155 }
156 
157 /*
158  * With HIGHRES=y we do not migrate the timer when it is expiring
159  * before the next event on the target cpu because we cannot reprogram
160  * the target cpu hardware and we would cause it to fire late.
161  *
162  * Called with cpu_base->lock of target cpu held.
163  */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 	ktime_t expires;
169 
170 	if (!new_base->cpu_base->hres_active)
171 		return 0;
172 
173 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 	return 0;
177 #endif
178 }
179 
180 /*
181  * Switch the timer base to the current CPU when possible.
182  */
183 static inline struct hrtimer_clock_base *
184 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
185 		    int pinned)
186 {
187 	struct hrtimer_clock_base *new_base;
188 	struct hrtimer_cpu_base *new_cpu_base;
189 	int this_cpu = smp_processor_id();
190 	int cpu = get_nohz_timer_target(pinned);
191 	int basenum = base->index;
192 
193 again:
194 	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
195 	new_base = &new_cpu_base->clock_base[basenum];
196 
197 	if (base != new_base) {
198 		/*
199 		 * We are trying to move timer to new_base.
200 		 * However we can't change timer's base while it is running,
201 		 * so we keep it on the same CPU. No hassle vs. reprogramming
202 		 * the event source in the high resolution case. The softirq
203 		 * code will take care of this when the timer function has
204 		 * completed. There is no conflict as we hold the lock until
205 		 * the timer is enqueued.
206 		 */
207 		if (unlikely(hrtimer_callback_running(timer)))
208 			return base;
209 
210 		/* See the comment in lock_hrtimer_base() */
211 		timer->base = &migration_base;
212 		raw_spin_unlock(&base->cpu_base->lock);
213 		raw_spin_lock(&new_base->cpu_base->lock);
214 
215 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
216 			cpu = this_cpu;
217 			raw_spin_unlock(&new_base->cpu_base->lock);
218 			raw_spin_lock(&base->cpu_base->lock);
219 			timer->base = base;
220 			goto again;
221 		}
222 		timer->base = new_base;
223 	} else {
224 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
225 			cpu = this_cpu;
226 			goto again;
227 		}
228 	}
229 	return new_base;
230 }
231 
232 #else /* CONFIG_SMP */
233 
234 static inline struct hrtimer_clock_base *
235 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
236 {
237 	struct hrtimer_clock_base *base = timer->base;
238 
239 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
240 
241 	return base;
242 }
243 
244 # define switch_hrtimer_base(t, b, p)	(b)
245 
246 #endif	/* !CONFIG_SMP */
247 
248 /*
249  * Functions for the union type storage format of ktime_t which are
250  * too large for inlining:
251  */
252 #if BITS_PER_LONG < 64
253 /*
254  * Divide a ktime value by a nanosecond value
255  */
256 u64 __ktime_divns(const ktime_t kt, s64 div)
257 {
258 	u64 dclc;
259 	int sft = 0;
260 
261 	dclc = ktime_to_ns(kt);
262 	/* Make sure the divisor is less than 2^32: */
263 	while (div >> 32) {
264 		sft++;
265 		div >>= 1;
266 	}
267 	dclc >>= sft;
268 	do_div(dclc, (unsigned long) div);
269 
270 	return dclc;
271 }
272 EXPORT_SYMBOL_GPL(__ktime_divns);
273 #endif /* BITS_PER_LONG >= 64 */
274 
275 /*
276  * Add two ktime values and do a safety check for overflow:
277  */
278 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
279 {
280 	ktime_t res = ktime_add(lhs, rhs);
281 
282 	/*
283 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
284 	 * return to user space in a timespec:
285 	 */
286 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
287 		res = ktime_set(KTIME_SEC_MAX, 0);
288 
289 	return res;
290 }
291 
292 EXPORT_SYMBOL_GPL(ktime_add_safe);
293 
294 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
295 
296 static struct debug_obj_descr hrtimer_debug_descr;
297 
298 static void *hrtimer_debug_hint(void *addr)
299 {
300 	return ((struct hrtimer *) addr)->function;
301 }
302 
303 /*
304  * fixup_init is called when:
305  * - an active object is initialized
306  */
307 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
308 {
309 	struct hrtimer *timer = addr;
310 
311 	switch (state) {
312 	case ODEBUG_STATE_ACTIVE:
313 		hrtimer_cancel(timer);
314 		debug_object_init(timer, &hrtimer_debug_descr);
315 		return 1;
316 	default:
317 		return 0;
318 	}
319 }
320 
321 /*
322  * fixup_activate is called when:
323  * - an active object is activated
324  * - an unknown object is activated (might be a statically initialized object)
325  */
326 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
327 {
328 	switch (state) {
329 
330 	case ODEBUG_STATE_NOTAVAILABLE:
331 		WARN_ON_ONCE(1);
332 		return 0;
333 
334 	case ODEBUG_STATE_ACTIVE:
335 		WARN_ON(1);
336 
337 	default:
338 		return 0;
339 	}
340 }
341 
342 /*
343  * fixup_free is called when:
344  * - an active object is freed
345  */
346 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
347 {
348 	struct hrtimer *timer = addr;
349 
350 	switch (state) {
351 	case ODEBUG_STATE_ACTIVE:
352 		hrtimer_cancel(timer);
353 		debug_object_free(timer, &hrtimer_debug_descr);
354 		return 1;
355 	default:
356 		return 0;
357 	}
358 }
359 
360 static struct debug_obj_descr hrtimer_debug_descr = {
361 	.name		= "hrtimer",
362 	.debug_hint	= hrtimer_debug_hint,
363 	.fixup_init	= hrtimer_fixup_init,
364 	.fixup_activate	= hrtimer_fixup_activate,
365 	.fixup_free	= hrtimer_fixup_free,
366 };
367 
368 static inline void debug_hrtimer_init(struct hrtimer *timer)
369 {
370 	debug_object_init(timer, &hrtimer_debug_descr);
371 }
372 
373 static inline void debug_hrtimer_activate(struct hrtimer *timer)
374 {
375 	debug_object_activate(timer, &hrtimer_debug_descr);
376 }
377 
378 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
379 {
380 	debug_object_deactivate(timer, &hrtimer_debug_descr);
381 }
382 
383 static inline void debug_hrtimer_free(struct hrtimer *timer)
384 {
385 	debug_object_free(timer, &hrtimer_debug_descr);
386 }
387 
388 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
389 			   enum hrtimer_mode mode);
390 
391 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
392 			   enum hrtimer_mode mode)
393 {
394 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
395 	__hrtimer_init(timer, clock_id, mode);
396 }
397 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
398 
399 void destroy_hrtimer_on_stack(struct hrtimer *timer)
400 {
401 	debug_object_free(timer, &hrtimer_debug_descr);
402 }
403 
404 #else
405 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
406 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
407 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
408 #endif
409 
410 static inline void
411 debug_init(struct hrtimer *timer, clockid_t clockid,
412 	   enum hrtimer_mode mode)
413 {
414 	debug_hrtimer_init(timer);
415 	trace_hrtimer_init(timer, clockid, mode);
416 }
417 
418 static inline void debug_activate(struct hrtimer *timer)
419 {
420 	debug_hrtimer_activate(timer);
421 	trace_hrtimer_start(timer);
422 }
423 
424 static inline void debug_deactivate(struct hrtimer *timer)
425 {
426 	debug_hrtimer_deactivate(timer);
427 	trace_hrtimer_cancel(timer);
428 }
429 
430 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
431 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
432 					     struct hrtimer *timer)
433 {
434 #ifdef CONFIG_HIGH_RES_TIMERS
435 	cpu_base->next_timer = timer;
436 #endif
437 }
438 
439 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
440 {
441 	struct hrtimer_clock_base *base = cpu_base->clock_base;
442 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
443 	unsigned int active = cpu_base->active_bases;
444 
445 	hrtimer_update_next_timer(cpu_base, NULL);
446 	for (; active; base++, active >>= 1) {
447 		struct timerqueue_node *next;
448 		struct hrtimer *timer;
449 
450 		if (!(active & 0x01))
451 			continue;
452 
453 		next = timerqueue_getnext(&base->active);
454 		timer = container_of(next, struct hrtimer, node);
455 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
456 		if (expires.tv64 < expires_next.tv64) {
457 			expires_next = expires;
458 			hrtimer_update_next_timer(cpu_base, timer);
459 		}
460 	}
461 	/*
462 	 * clock_was_set() might have changed base->offset of any of
463 	 * the clock bases so the result might be negative. Fix it up
464 	 * to prevent a false positive in clockevents_program_event().
465 	 */
466 	if (expires_next.tv64 < 0)
467 		expires_next.tv64 = 0;
468 	return expires_next;
469 }
470 #endif
471 
472 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
473 {
474 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
475 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
476 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
477 
478 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
479 					    offs_real, offs_boot, offs_tai);
480 }
481 
482 /* High resolution timer related functions */
483 #ifdef CONFIG_HIGH_RES_TIMERS
484 
485 /*
486  * High resolution timer enabled ?
487  */
488 static int hrtimer_hres_enabled __read_mostly  = 1;
489 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
490 EXPORT_SYMBOL_GPL(hrtimer_resolution);
491 
492 /*
493  * Enable / Disable high resolution mode
494  */
495 static int __init setup_hrtimer_hres(char *str)
496 {
497 	if (!strcmp(str, "off"))
498 		hrtimer_hres_enabled = 0;
499 	else if (!strcmp(str, "on"))
500 		hrtimer_hres_enabled = 1;
501 	else
502 		return 0;
503 	return 1;
504 }
505 
506 __setup("highres=", setup_hrtimer_hres);
507 
508 /*
509  * hrtimer_high_res_enabled - query, if the highres mode is enabled
510  */
511 static inline int hrtimer_is_hres_enabled(void)
512 {
513 	return hrtimer_hres_enabled;
514 }
515 
516 /*
517  * Is the high resolution mode active ?
518  */
519 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
520 {
521 	return cpu_base->hres_active;
522 }
523 
524 static inline int hrtimer_hres_active(void)
525 {
526 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
527 }
528 
529 /*
530  * Reprogram the event source with checking both queues for the
531  * next event
532  * Called with interrupts disabled and base->lock held
533  */
534 static void
535 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
536 {
537 	ktime_t expires_next;
538 
539 	if (!cpu_base->hres_active)
540 		return;
541 
542 	expires_next = __hrtimer_get_next_event(cpu_base);
543 
544 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
545 		return;
546 
547 	cpu_base->expires_next.tv64 = expires_next.tv64;
548 
549 	/*
550 	 * If a hang was detected in the last timer interrupt then we
551 	 * leave the hang delay active in the hardware. We want the
552 	 * system to make progress. That also prevents the following
553 	 * scenario:
554 	 * T1 expires 50ms from now
555 	 * T2 expires 5s from now
556 	 *
557 	 * T1 is removed, so this code is called and would reprogram
558 	 * the hardware to 5s from now. Any hrtimer_start after that
559 	 * will not reprogram the hardware due to hang_detected being
560 	 * set. So we'd effectivly block all timers until the T2 event
561 	 * fires.
562 	 */
563 	if (cpu_base->hang_detected)
564 		return;
565 
566 	tick_program_event(cpu_base->expires_next, 1);
567 }
568 
569 /*
570  * When a timer is enqueued and expires earlier than the already enqueued
571  * timers, we have to check, whether it expires earlier than the timer for
572  * which the clock event device was armed.
573  *
574  * Called with interrupts disabled and base->cpu_base.lock held
575  */
576 static void hrtimer_reprogram(struct hrtimer *timer,
577 			      struct hrtimer_clock_base *base)
578 {
579 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
580 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
581 
582 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
583 
584 	/*
585 	 * If the timer is not on the current cpu, we cannot reprogram
586 	 * the other cpus clock event device.
587 	 */
588 	if (base->cpu_base != cpu_base)
589 		return;
590 
591 	/*
592 	 * If the hrtimer interrupt is running, then it will
593 	 * reevaluate the clock bases and reprogram the clock event
594 	 * device. The callbacks are always executed in hard interrupt
595 	 * context so we don't need an extra check for a running
596 	 * callback.
597 	 */
598 	if (cpu_base->in_hrtirq)
599 		return;
600 
601 	/*
602 	 * CLOCK_REALTIME timer might be requested with an absolute
603 	 * expiry time which is less than base->offset. Set it to 0.
604 	 */
605 	if (expires.tv64 < 0)
606 		expires.tv64 = 0;
607 
608 	if (expires.tv64 >= cpu_base->expires_next.tv64)
609 		return;
610 
611 	/* Update the pointer to the next expiring timer */
612 	cpu_base->next_timer = timer;
613 
614 	/*
615 	 * If a hang was detected in the last timer interrupt then we
616 	 * do not schedule a timer which is earlier than the expiry
617 	 * which we enforced in the hang detection. We want the system
618 	 * to make progress.
619 	 */
620 	if (cpu_base->hang_detected)
621 		return;
622 
623 	/*
624 	 * Program the timer hardware. We enforce the expiry for
625 	 * events which are already in the past.
626 	 */
627 	cpu_base->expires_next = expires;
628 	tick_program_event(expires, 1);
629 }
630 
631 /*
632  * Initialize the high resolution related parts of cpu_base
633  */
634 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
635 {
636 	base->expires_next.tv64 = KTIME_MAX;
637 	base->hres_active = 0;
638 }
639 
640 /*
641  * Retrigger next event is called after clock was set
642  *
643  * Called with interrupts disabled via on_each_cpu()
644  */
645 static void retrigger_next_event(void *arg)
646 {
647 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
648 
649 	if (!base->hres_active)
650 		return;
651 
652 	raw_spin_lock(&base->lock);
653 	hrtimer_update_base(base);
654 	hrtimer_force_reprogram(base, 0);
655 	raw_spin_unlock(&base->lock);
656 }
657 
658 /*
659  * Switch to high resolution mode
660  */
661 static int hrtimer_switch_to_hres(void)
662 {
663 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
664 
665 	if (tick_init_highres()) {
666 		printk(KERN_WARNING "Could not switch to high resolution "
667 				    "mode on CPU %d\n", base->cpu);
668 		return 0;
669 	}
670 	base->hres_active = 1;
671 	hrtimer_resolution = HIGH_RES_NSEC;
672 
673 	tick_setup_sched_timer();
674 	/* "Retrigger" the interrupt to get things going */
675 	retrigger_next_event(NULL);
676 	return 1;
677 }
678 
679 static void clock_was_set_work(struct work_struct *work)
680 {
681 	clock_was_set();
682 }
683 
684 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
685 
686 /*
687  * Called from timekeeping and resume code to reprogramm the hrtimer
688  * interrupt device on all cpus.
689  */
690 void clock_was_set_delayed(void)
691 {
692 	schedule_work(&hrtimer_work);
693 }
694 
695 #else
696 
697 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
698 static inline int hrtimer_hres_active(void) { return 0; }
699 static inline int hrtimer_is_hres_enabled(void) { return 0; }
700 static inline int hrtimer_switch_to_hres(void) { return 0; }
701 static inline void
702 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
703 static inline int hrtimer_reprogram(struct hrtimer *timer,
704 				    struct hrtimer_clock_base *base)
705 {
706 	return 0;
707 }
708 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
709 static inline void retrigger_next_event(void *arg) { }
710 
711 #endif /* CONFIG_HIGH_RES_TIMERS */
712 
713 /*
714  * Clock realtime was set
715  *
716  * Change the offset of the realtime clock vs. the monotonic
717  * clock.
718  *
719  * We might have to reprogram the high resolution timer interrupt. On
720  * SMP we call the architecture specific code to retrigger _all_ high
721  * resolution timer interrupts. On UP we just disable interrupts and
722  * call the high resolution interrupt code.
723  */
724 void clock_was_set(void)
725 {
726 #ifdef CONFIG_HIGH_RES_TIMERS
727 	/* Retrigger the CPU local events everywhere */
728 	on_each_cpu(retrigger_next_event, NULL, 1);
729 #endif
730 	timerfd_clock_was_set();
731 }
732 
733 /*
734  * During resume we might have to reprogram the high resolution timer
735  * interrupt on all online CPUs.  However, all other CPUs will be
736  * stopped with IRQs interrupts disabled so the clock_was_set() call
737  * must be deferred.
738  */
739 void hrtimers_resume(void)
740 {
741 	WARN_ONCE(!irqs_disabled(),
742 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
743 
744 	/* Retrigger on the local CPU */
745 	retrigger_next_event(NULL);
746 	/* And schedule a retrigger for all others */
747 	clock_was_set_delayed();
748 }
749 
750 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
751 {
752 #ifdef CONFIG_TIMER_STATS
753 	if (timer->start_site)
754 		return;
755 	timer->start_site = __builtin_return_address(0);
756 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
757 	timer->start_pid = current->pid;
758 #endif
759 }
760 
761 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
762 {
763 #ifdef CONFIG_TIMER_STATS
764 	timer->start_site = NULL;
765 #endif
766 }
767 
768 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
769 {
770 #ifdef CONFIG_TIMER_STATS
771 	if (likely(!timer_stats_active))
772 		return;
773 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
774 				 timer->function, timer->start_comm, 0);
775 #endif
776 }
777 
778 /*
779  * Counterpart to lock_hrtimer_base above:
780  */
781 static inline
782 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
783 {
784 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
785 }
786 
787 /**
788  * hrtimer_forward - forward the timer expiry
789  * @timer:	hrtimer to forward
790  * @now:	forward past this time
791  * @interval:	the interval to forward
792  *
793  * Forward the timer expiry so it will expire in the future.
794  * Returns the number of overruns.
795  *
796  * Can be safely called from the callback function of @timer. If
797  * called from other contexts @timer must neither be enqueued nor
798  * running the callback and the caller needs to take care of
799  * serialization.
800  *
801  * Note: This only updates the timer expiry value and does not requeue
802  * the timer.
803  */
804 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
805 {
806 	u64 orun = 1;
807 	ktime_t delta;
808 
809 	delta = ktime_sub(now, hrtimer_get_expires(timer));
810 
811 	if (delta.tv64 < 0)
812 		return 0;
813 
814 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
815 		return 0;
816 
817 	if (interval.tv64 < hrtimer_resolution)
818 		interval.tv64 = hrtimer_resolution;
819 
820 	if (unlikely(delta.tv64 >= interval.tv64)) {
821 		s64 incr = ktime_to_ns(interval);
822 
823 		orun = ktime_divns(delta, incr);
824 		hrtimer_add_expires_ns(timer, incr * orun);
825 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
826 			return orun;
827 		/*
828 		 * This (and the ktime_add() below) is the
829 		 * correction for exact:
830 		 */
831 		orun++;
832 	}
833 	hrtimer_add_expires(timer, interval);
834 
835 	return orun;
836 }
837 EXPORT_SYMBOL_GPL(hrtimer_forward);
838 
839 /*
840  * enqueue_hrtimer - internal function to (re)start a timer
841  *
842  * The timer is inserted in expiry order. Insertion into the
843  * red black tree is O(log(n)). Must hold the base lock.
844  *
845  * Returns 1 when the new timer is the leftmost timer in the tree.
846  */
847 static int enqueue_hrtimer(struct hrtimer *timer,
848 			   struct hrtimer_clock_base *base)
849 {
850 	debug_activate(timer);
851 
852 	base->cpu_base->active_bases |= 1 << base->index;
853 
854 	timer->state = HRTIMER_STATE_ENQUEUED;
855 
856 	return timerqueue_add(&base->active, &timer->node);
857 }
858 
859 /*
860  * __remove_hrtimer - internal function to remove a timer
861  *
862  * Caller must hold the base lock.
863  *
864  * High resolution timer mode reprograms the clock event device when the
865  * timer is the one which expires next. The caller can disable this by setting
866  * reprogram to zero. This is useful, when the context does a reprogramming
867  * anyway (e.g. timer interrupt)
868  */
869 static void __remove_hrtimer(struct hrtimer *timer,
870 			     struct hrtimer_clock_base *base,
871 			     unsigned long newstate, int reprogram)
872 {
873 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
874 	unsigned int state = timer->state;
875 
876 	timer->state = newstate;
877 	if (!(state & HRTIMER_STATE_ENQUEUED))
878 		return;
879 
880 	if (!timerqueue_del(&base->active, &timer->node))
881 		cpu_base->active_bases &= ~(1 << base->index);
882 
883 #ifdef CONFIG_HIGH_RES_TIMERS
884 	/*
885 	 * Note: If reprogram is false we do not update
886 	 * cpu_base->next_timer. This happens when we remove the first
887 	 * timer on a remote cpu. No harm as we never dereference
888 	 * cpu_base->next_timer. So the worst thing what can happen is
889 	 * an superflous call to hrtimer_force_reprogram() on the
890 	 * remote cpu later on if the same timer gets enqueued again.
891 	 */
892 	if (reprogram && timer == cpu_base->next_timer)
893 		hrtimer_force_reprogram(cpu_base, 1);
894 #endif
895 }
896 
897 /*
898  * remove hrtimer, called with base lock held
899  */
900 static inline int
901 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
902 {
903 	if (hrtimer_is_queued(timer)) {
904 		unsigned long state = timer->state;
905 		int reprogram;
906 
907 		/*
908 		 * Remove the timer and force reprogramming when high
909 		 * resolution mode is active and the timer is on the current
910 		 * CPU. If we remove a timer on another CPU, reprogramming is
911 		 * skipped. The interrupt event on this CPU is fired and
912 		 * reprogramming happens in the interrupt handler. This is a
913 		 * rare case and less expensive than a smp call.
914 		 */
915 		debug_deactivate(timer);
916 		timer_stats_hrtimer_clear_start_info(timer);
917 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
918 
919 		if (!restart)
920 			state = HRTIMER_STATE_INACTIVE;
921 
922 		__remove_hrtimer(timer, base, state, reprogram);
923 		return 1;
924 	}
925 	return 0;
926 }
927 
928 /**
929  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
930  * @timer:	the timer to be added
931  * @tim:	expiry time
932  * @delta_ns:	"slack" range for the timer
933  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
934  *		relative (HRTIMER_MODE_REL)
935  */
936 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
937 			    unsigned long delta_ns, const enum hrtimer_mode mode)
938 {
939 	struct hrtimer_clock_base *base, *new_base;
940 	unsigned long flags;
941 	int leftmost;
942 
943 	base = lock_hrtimer_base(timer, &flags);
944 
945 	/* Remove an active timer from the queue: */
946 	remove_hrtimer(timer, base, true);
947 
948 	if (mode & HRTIMER_MODE_REL) {
949 		tim = ktime_add_safe(tim, base->get_time());
950 		/*
951 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
952 		 * to signal that they simply return xtime in
953 		 * do_gettimeoffset(). In this case we want to round up by
954 		 * resolution when starting a relative timer, to avoid short
955 		 * timeouts. This will go away with the GTOD framework.
956 		 */
957 #ifdef CONFIG_TIME_LOW_RES
958 		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
959 #endif
960 	}
961 
962 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
963 
964 	/* Switch the timer base, if necessary: */
965 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
966 
967 	timer_stats_hrtimer_set_start_info(timer);
968 
969 	leftmost = enqueue_hrtimer(timer, new_base);
970 	if (!leftmost)
971 		goto unlock;
972 
973 	if (!hrtimer_is_hres_active(timer)) {
974 		/*
975 		 * Kick to reschedule the next tick to handle the new timer
976 		 * on dynticks target.
977 		 */
978 		wake_up_nohz_cpu(new_base->cpu_base->cpu);
979 	} else {
980 		hrtimer_reprogram(timer, new_base);
981 	}
982 unlock:
983 	unlock_hrtimer_base(timer, &flags);
984 }
985 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
986 
987 /**
988  * hrtimer_try_to_cancel - try to deactivate a timer
989  * @timer:	hrtimer to stop
990  *
991  * Returns:
992  *  0 when the timer was not active
993  *  1 when the timer was active
994  * -1 when the timer is currently excuting the callback function and
995  *    cannot be stopped
996  */
997 int hrtimer_try_to_cancel(struct hrtimer *timer)
998 {
999 	struct hrtimer_clock_base *base;
1000 	unsigned long flags;
1001 	int ret = -1;
1002 
1003 	/*
1004 	 * Check lockless first. If the timer is not active (neither
1005 	 * enqueued nor running the callback, nothing to do here.  The
1006 	 * base lock does not serialize against a concurrent enqueue,
1007 	 * so we can avoid taking it.
1008 	 */
1009 	if (!hrtimer_active(timer))
1010 		return 0;
1011 
1012 	base = lock_hrtimer_base(timer, &flags);
1013 
1014 	if (!hrtimer_callback_running(timer))
1015 		ret = remove_hrtimer(timer, base, false);
1016 
1017 	unlock_hrtimer_base(timer, &flags);
1018 
1019 	return ret;
1020 
1021 }
1022 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1023 
1024 /**
1025  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1026  * @timer:	the timer to be cancelled
1027  *
1028  * Returns:
1029  *  0 when the timer was not active
1030  *  1 when the timer was active
1031  */
1032 int hrtimer_cancel(struct hrtimer *timer)
1033 {
1034 	for (;;) {
1035 		int ret = hrtimer_try_to_cancel(timer);
1036 
1037 		if (ret >= 0)
1038 			return ret;
1039 		cpu_relax();
1040 	}
1041 }
1042 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1043 
1044 /**
1045  * hrtimer_get_remaining - get remaining time for the timer
1046  * @timer:	the timer to read
1047  */
1048 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1049 {
1050 	unsigned long flags;
1051 	ktime_t rem;
1052 
1053 	lock_hrtimer_base(timer, &flags);
1054 	rem = hrtimer_expires_remaining(timer);
1055 	unlock_hrtimer_base(timer, &flags);
1056 
1057 	return rem;
1058 }
1059 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1060 
1061 #ifdef CONFIG_NO_HZ_COMMON
1062 /**
1063  * hrtimer_get_next_event - get the time until next expiry event
1064  *
1065  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1066  */
1067 u64 hrtimer_get_next_event(void)
1068 {
1069 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1070 	u64 expires = KTIME_MAX;
1071 	unsigned long flags;
1072 
1073 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1074 
1075 	if (!__hrtimer_hres_active(cpu_base))
1076 		expires = __hrtimer_get_next_event(cpu_base).tv64;
1077 
1078 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1079 
1080 	return expires;
1081 }
1082 #endif
1083 
1084 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1085 			   enum hrtimer_mode mode)
1086 {
1087 	struct hrtimer_cpu_base *cpu_base;
1088 	int base;
1089 
1090 	memset(timer, 0, sizeof(struct hrtimer));
1091 
1092 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1093 
1094 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1095 		clock_id = CLOCK_MONOTONIC;
1096 
1097 	base = hrtimer_clockid_to_base(clock_id);
1098 	timer->base = &cpu_base->clock_base[base];
1099 	timerqueue_init(&timer->node);
1100 
1101 #ifdef CONFIG_TIMER_STATS
1102 	timer->start_site = NULL;
1103 	timer->start_pid = -1;
1104 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1105 #endif
1106 }
1107 
1108 /**
1109  * hrtimer_init - initialize a timer to the given clock
1110  * @timer:	the timer to be initialized
1111  * @clock_id:	the clock to be used
1112  * @mode:	timer mode abs/rel
1113  */
1114 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1115 		  enum hrtimer_mode mode)
1116 {
1117 	debug_init(timer, clock_id, mode);
1118 	__hrtimer_init(timer, clock_id, mode);
1119 }
1120 EXPORT_SYMBOL_GPL(hrtimer_init);
1121 
1122 /*
1123  * A timer is active, when it is enqueued into the rbtree or the
1124  * callback function is running or it's in the state of being migrated
1125  * to another cpu.
1126  *
1127  * It is important for this function to not return a false negative.
1128  */
1129 bool hrtimer_active(const struct hrtimer *timer)
1130 {
1131 	struct hrtimer_cpu_base *cpu_base;
1132 	unsigned int seq;
1133 
1134 	do {
1135 		cpu_base = READ_ONCE(timer->base->cpu_base);
1136 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1137 
1138 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1139 		    cpu_base->running == timer)
1140 			return true;
1141 
1142 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1143 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1144 
1145 	return false;
1146 }
1147 EXPORT_SYMBOL_GPL(hrtimer_active);
1148 
1149 /*
1150  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1151  * distinct sections:
1152  *
1153  *  - queued:	the timer is queued
1154  *  - callback:	the timer is being ran
1155  *  - post:	the timer is inactive or (re)queued
1156  *
1157  * On the read side we ensure we observe timer->state and cpu_base->running
1158  * from the same section, if anything changed while we looked at it, we retry.
1159  * This includes timer->base changing because sequence numbers alone are
1160  * insufficient for that.
1161  *
1162  * The sequence numbers are required because otherwise we could still observe
1163  * a false negative if the read side got smeared over multiple consequtive
1164  * __run_hrtimer() invocations.
1165  */
1166 
1167 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1168 			  struct hrtimer_clock_base *base,
1169 			  struct hrtimer *timer, ktime_t *now)
1170 {
1171 	enum hrtimer_restart (*fn)(struct hrtimer *);
1172 	int restart;
1173 
1174 	lockdep_assert_held(&cpu_base->lock);
1175 
1176 	debug_deactivate(timer);
1177 	cpu_base->running = timer;
1178 
1179 	/*
1180 	 * Separate the ->running assignment from the ->state assignment.
1181 	 *
1182 	 * As with a regular write barrier, this ensures the read side in
1183 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1184 	 * timer->state == INACTIVE.
1185 	 */
1186 	raw_write_seqcount_barrier(&cpu_base->seq);
1187 
1188 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1189 	timer_stats_account_hrtimer(timer);
1190 	fn = timer->function;
1191 
1192 	/*
1193 	 * Because we run timers from hardirq context, there is no chance
1194 	 * they get migrated to another cpu, therefore its safe to unlock
1195 	 * the timer base.
1196 	 */
1197 	raw_spin_unlock(&cpu_base->lock);
1198 	trace_hrtimer_expire_entry(timer, now);
1199 	restart = fn(timer);
1200 	trace_hrtimer_expire_exit(timer);
1201 	raw_spin_lock(&cpu_base->lock);
1202 
1203 	/*
1204 	 * Note: We clear the running state after enqueue_hrtimer and
1205 	 * we do not reprogramm the event hardware. Happens either in
1206 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1207 	 *
1208 	 * Note: Because we dropped the cpu_base->lock above,
1209 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1210 	 * for us already.
1211 	 */
1212 	if (restart != HRTIMER_NORESTART &&
1213 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1214 		enqueue_hrtimer(timer, base);
1215 
1216 	/*
1217 	 * Separate the ->running assignment from the ->state assignment.
1218 	 *
1219 	 * As with a regular write barrier, this ensures the read side in
1220 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1221 	 * timer->state == INACTIVE.
1222 	 */
1223 	raw_write_seqcount_barrier(&cpu_base->seq);
1224 
1225 	WARN_ON_ONCE(cpu_base->running != timer);
1226 	cpu_base->running = NULL;
1227 }
1228 
1229 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1230 {
1231 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1232 	unsigned int active = cpu_base->active_bases;
1233 
1234 	for (; active; base++, active >>= 1) {
1235 		struct timerqueue_node *node;
1236 		ktime_t basenow;
1237 
1238 		if (!(active & 0x01))
1239 			continue;
1240 
1241 		basenow = ktime_add(now, base->offset);
1242 
1243 		while ((node = timerqueue_getnext(&base->active))) {
1244 			struct hrtimer *timer;
1245 
1246 			timer = container_of(node, struct hrtimer, node);
1247 
1248 			/*
1249 			 * The immediate goal for using the softexpires is
1250 			 * minimizing wakeups, not running timers at the
1251 			 * earliest interrupt after their soft expiration.
1252 			 * This allows us to avoid using a Priority Search
1253 			 * Tree, which can answer a stabbing querry for
1254 			 * overlapping intervals and instead use the simple
1255 			 * BST we already have.
1256 			 * We don't add extra wakeups by delaying timers that
1257 			 * are right-of a not yet expired timer, because that
1258 			 * timer will have to trigger a wakeup anyway.
1259 			 */
1260 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1261 				break;
1262 
1263 			__run_hrtimer(cpu_base, base, timer, &basenow);
1264 		}
1265 	}
1266 }
1267 
1268 #ifdef CONFIG_HIGH_RES_TIMERS
1269 
1270 /*
1271  * High resolution timer interrupt
1272  * Called with interrupts disabled
1273  */
1274 void hrtimer_interrupt(struct clock_event_device *dev)
1275 {
1276 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1277 	ktime_t expires_next, now, entry_time, delta;
1278 	int retries = 0;
1279 
1280 	BUG_ON(!cpu_base->hres_active);
1281 	cpu_base->nr_events++;
1282 	dev->next_event.tv64 = KTIME_MAX;
1283 
1284 	raw_spin_lock(&cpu_base->lock);
1285 	entry_time = now = hrtimer_update_base(cpu_base);
1286 retry:
1287 	cpu_base->in_hrtirq = 1;
1288 	/*
1289 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1290 	 * held to prevent that a timer is enqueued in our queue via
1291 	 * the migration code. This does not affect enqueueing of
1292 	 * timers which run their callback and need to be requeued on
1293 	 * this CPU.
1294 	 */
1295 	cpu_base->expires_next.tv64 = KTIME_MAX;
1296 
1297 	__hrtimer_run_queues(cpu_base, now);
1298 
1299 	/* Reevaluate the clock bases for the next expiry */
1300 	expires_next = __hrtimer_get_next_event(cpu_base);
1301 	/*
1302 	 * Store the new expiry value so the migration code can verify
1303 	 * against it.
1304 	 */
1305 	cpu_base->expires_next = expires_next;
1306 	cpu_base->in_hrtirq = 0;
1307 	raw_spin_unlock(&cpu_base->lock);
1308 
1309 	/* Reprogramming necessary ? */
1310 	if (!tick_program_event(expires_next, 0)) {
1311 		cpu_base->hang_detected = 0;
1312 		return;
1313 	}
1314 
1315 	/*
1316 	 * The next timer was already expired due to:
1317 	 * - tracing
1318 	 * - long lasting callbacks
1319 	 * - being scheduled away when running in a VM
1320 	 *
1321 	 * We need to prevent that we loop forever in the hrtimer
1322 	 * interrupt routine. We give it 3 attempts to avoid
1323 	 * overreacting on some spurious event.
1324 	 *
1325 	 * Acquire base lock for updating the offsets and retrieving
1326 	 * the current time.
1327 	 */
1328 	raw_spin_lock(&cpu_base->lock);
1329 	now = hrtimer_update_base(cpu_base);
1330 	cpu_base->nr_retries++;
1331 	if (++retries < 3)
1332 		goto retry;
1333 	/*
1334 	 * Give the system a chance to do something else than looping
1335 	 * here. We stored the entry time, so we know exactly how long
1336 	 * we spent here. We schedule the next event this amount of
1337 	 * time away.
1338 	 */
1339 	cpu_base->nr_hangs++;
1340 	cpu_base->hang_detected = 1;
1341 	raw_spin_unlock(&cpu_base->lock);
1342 	delta = ktime_sub(now, entry_time);
1343 	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1344 		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1345 	/*
1346 	 * Limit it to a sensible value as we enforce a longer
1347 	 * delay. Give the CPU at least 100ms to catch up.
1348 	 */
1349 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1350 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1351 	else
1352 		expires_next = ktime_add(now, delta);
1353 	tick_program_event(expires_next, 1);
1354 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1355 		    ktime_to_ns(delta));
1356 }
1357 
1358 /*
1359  * local version of hrtimer_peek_ahead_timers() called with interrupts
1360  * disabled.
1361  */
1362 static inline void __hrtimer_peek_ahead_timers(void)
1363 {
1364 	struct tick_device *td;
1365 
1366 	if (!hrtimer_hres_active())
1367 		return;
1368 
1369 	td = this_cpu_ptr(&tick_cpu_device);
1370 	if (td && td->evtdev)
1371 		hrtimer_interrupt(td->evtdev);
1372 }
1373 
1374 #else /* CONFIG_HIGH_RES_TIMERS */
1375 
1376 static inline void __hrtimer_peek_ahead_timers(void) { }
1377 
1378 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1379 
1380 /*
1381  * Called from run_local_timers in hardirq context every jiffy
1382  */
1383 void hrtimer_run_queues(void)
1384 {
1385 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1386 	ktime_t now;
1387 
1388 	if (__hrtimer_hres_active(cpu_base))
1389 		return;
1390 
1391 	/*
1392 	 * This _is_ ugly: We have to check periodically, whether we
1393 	 * can switch to highres and / or nohz mode. The clocksource
1394 	 * switch happens with xtime_lock held. Notification from
1395 	 * there only sets the check bit in the tick_oneshot code,
1396 	 * otherwise we might deadlock vs. xtime_lock.
1397 	 */
1398 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1399 		hrtimer_switch_to_hres();
1400 		return;
1401 	}
1402 
1403 	raw_spin_lock(&cpu_base->lock);
1404 	now = hrtimer_update_base(cpu_base);
1405 	__hrtimer_run_queues(cpu_base, now);
1406 	raw_spin_unlock(&cpu_base->lock);
1407 }
1408 
1409 /*
1410  * Sleep related functions:
1411  */
1412 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1413 {
1414 	struct hrtimer_sleeper *t =
1415 		container_of(timer, struct hrtimer_sleeper, timer);
1416 	struct task_struct *task = t->task;
1417 
1418 	t->task = NULL;
1419 	if (task)
1420 		wake_up_process(task);
1421 
1422 	return HRTIMER_NORESTART;
1423 }
1424 
1425 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1426 {
1427 	sl->timer.function = hrtimer_wakeup;
1428 	sl->task = task;
1429 }
1430 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1431 
1432 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1433 {
1434 	hrtimer_init_sleeper(t, current);
1435 
1436 	do {
1437 		set_current_state(TASK_INTERRUPTIBLE);
1438 		hrtimer_start_expires(&t->timer, mode);
1439 
1440 		if (likely(t->task))
1441 			freezable_schedule();
1442 
1443 		hrtimer_cancel(&t->timer);
1444 		mode = HRTIMER_MODE_ABS;
1445 
1446 	} while (t->task && !signal_pending(current));
1447 
1448 	__set_current_state(TASK_RUNNING);
1449 
1450 	return t->task == NULL;
1451 }
1452 
1453 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1454 {
1455 	struct timespec rmt;
1456 	ktime_t rem;
1457 
1458 	rem = hrtimer_expires_remaining(timer);
1459 	if (rem.tv64 <= 0)
1460 		return 0;
1461 	rmt = ktime_to_timespec(rem);
1462 
1463 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1464 		return -EFAULT;
1465 
1466 	return 1;
1467 }
1468 
1469 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1470 {
1471 	struct hrtimer_sleeper t;
1472 	struct timespec __user  *rmtp;
1473 	int ret = 0;
1474 
1475 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1476 				HRTIMER_MODE_ABS);
1477 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1478 
1479 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1480 		goto out;
1481 
1482 	rmtp = restart->nanosleep.rmtp;
1483 	if (rmtp) {
1484 		ret = update_rmtp(&t.timer, rmtp);
1485 		if (ret <= 0)
1486 			goto out;
1487 	}
1488 
1489 	/* The other values in restart are already filled in */
1490 	ret = -ERESTART_RESTARTBLOCK;
1491 out:
1492 	destroy_hrtimer_on_stack(&t.timer);
1493 	return ret;
1494 }
1495 
1496 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1497 		       const enum hrtimer_mode mode, const clockid_t clockid)
1498 {
1499 	struct restart_block *restart;
1500 	struct hrtimer_sleeper t;
1501 	int ret = 0;
1502 	unsigned long slack;
1503 
1504 	slack = current->timer_slack_ns;
1505 	if (dl_task(current) || rt_task(current))
1506 		slack = 0;
1507 
1508 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1509 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1510 	if (do_nanosleep(&t, mode))
1511 		goto out;
1512 
1513 	/* Absolute timers do not update the rmtp value and restart: */
1514 	if (mode == HRTIMER_MODE_ABS) {
1515 		ret = -ERESTARTNOHAND;
1516 		goto out;
1517 	}
1518 
1519 	if (rmtp) {
1520 		ret = update_rmtp(&t.timer, rmtp);
1521 		if (ret <= 0)
1522 			goto out;
1523 	}
1524 
1525 	restart = &current->restart_block;
1526 	restart->fn = hrtimer_nanosleep_restart;
1527 	restart->nanosleep.clockid = t.timer.base->clockid;
1528 	restart->nanosleep.rmtp = rmtp;
1529 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1530 
1531 	ret = -ERESTART_RESTARTBLOCK;
1532 out:
1533 	destroy_hrtimer_on_stack(&t.timer);
1534 	return ret;
1535 }
1536 
1537 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1538 		struct timespec __user *, rmtp)
1539 {
1540 	struct timespec tu;
1541 
1542 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1543 		return -EFAULT;
1544 
1545 	if (!timespec_valid(&tu))
1546 		return -EINVAL;
1547 
1548 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1549 }
1550 
1551 /*
1552  * Functions related to boot-time initialization:
1553  */
1554 static void init_hrtimers_cpu(int cpu)
1555 {
1556 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1557 	int i;
1558 
1559 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1560 		cpu_base->clock_base[i].cpu_base = cpu_base;
1561 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1562 	}
1563 
1564 	cpu_base->cpu = cpu;
1565 	hrtimer_init_hres(cpu_base);
1566 }
1567 
1568 #ifdef CONFIG_HOTPLUG_CPU
1569 
1570 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1571 				struct hrtimer_clock_base *new_base)
1572 {
1573 	struct hrtimer *timer;
1574 	struct timerqueue_node *node;
1575 
1576 	while ((node = timerqueue_getnext(&old_base->active))) {
1577 		timer = container_of(node, struct hrtimer, node);
1578 		BUG_ON(hrtimer_callback_running(timer));
1579 		debug_deactivate(timer);
1580 
1581 		/*
1582 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1583 		 * timer could be seen as !active and just vanish away
1584 		 * under us on another CPU
1585 		 */
1586 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1587 		timer->base = new_base;
1588 		/*
1589 		 * Enqueue the timers on the new cpu. This does not
1590 		 * reprogram the event device in case the timer
1591 		 * expires before the earliest on this CPU, but we run
1592 		 * hrtimer_interrupt after we migrated everything to
1593 		 * sort out already expired timers and reprogram the
1594 		 * event device.
1595 		 */
1596 		enqueue_hrtimer(timer, new_base);
1597 	}
1598 }
1599 
1600 static void migrate_hrtimers(int scpu)
1601 {
1602 	struct hrtimer_cpu_base *old_base, *new_base;
1603 	int i;
1604 
1605 	BUG_ON(cpu_online(scpu));
1606 	tick_cancel_sched_timer(scpu);
1607 
1608 	local_irq_disable();
1609 	old_base = &per_cpu(hrtimer_bases, scpu);
1610 	new_base = this_cpu_ptr(&hrtimer_bases);
1611 	/*
1612 	 * The caller is globally serialized and nobody else
1613 	 * takes two locks at once, deadlock is not possible.
1614 	 */
1615 	raw_spin_lock(&new_base->lock);
1616 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1617 
1618 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1619 		migrate_hrtimer_list(&old_base->clock_base[i],
1620 				     &new_base->clock_base[i]);
1621 	}
1622 
1623 	raw_spin_unlock(&old_base->lock);
1624 	raw_spin_unlock(&new_base->lock);
1625 
1626 	/* Check, if we got expired work to do */
1627 	__hrtimer_peek_ahead_timers();
1628 	local_irq_enable();
1629 }
1630 
1631 #endif /* CONFIG_HOTPLUG_CPU */
1632 
1633 static int hrtimer_cpu_notify(struct notifier_block *self,
1634 					unsigned long action, void *hcpu)
1635 {
1636 	int scpu = (long)hcpu;
1637 
1638 	switch (action) {
1639 
1640 	case CPU_UP_PREPARE:
1641 	case CPU_UP_PREPARE_FROZEN:
1642 		init_hrtimers_cpu(scpu);
1643 		break;
1644 
1645 #ifdef CONFIG_HOTPLUG_CPU
1646 	case CPU_DEAD:
1647 	case CPU_DEAD_FROZEN:
1648 		migrate_hrtimers(scpu);
1649 		break;
1650 #endif
1651 
1652 	default:
1653 		break;
1654 	}
1655 
1656 	return NOTIFY_OK;
1657 }
1658 
1659 static struct notifier_block hrtimers_nb = {
1660 	.notifier_call = hrtimer_cpu_notify,
1661 };
1662 
1663 void __init hrtimers_init(void)
1664 {
1665 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1666 			  (void *)(long)smp_processor_id());
1667 	register_cpu_notifier(&hrtimers_nb);
1668 }
1669 
1670 /**
1671  * schedule_hrtimeout_range_clock - sleep until timeout
1672  * @expires:	timeout value (ktime_t)
1673  * @delta:	slack in expires timeout (ktime_t)
1674  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1675  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1676  */
1677 int __sched
1678 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1679 			       const enum hrtimer_mode mode, int clock)
1680 {
1681 	struct hrtimer_sleeper t;
1682 
1683 	/*
1684 	 * Optimize when a zero timeout value is given. It does not
1685 	 * matter whether this is an absolute or a relative time.
1686 	 */
1687 	if (expires && !expires->tv64) {
1688 		__set_current_state(TASK_RUNNING);
1689 		return 0;
1690 	}
1691 
1692 	/*
1693 	 * A NULL parameter means "infinite"
1694 	 */
1695 	if (!expires) {
1696 		schedule();
1697 		return -EINTR;
1698 	}
1699 
1700 	hrtimer_init_on_stack(&t.timer, clock, mode);
1701 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1702 
1703 	hrtimer_init_sleeper(&t, current);
1704 
1705 	hrtimer_start_expires(&t.timer, mode);
1706 
1707 	if (likely(t.task))
1708 		schedule();
1709 
1710 	hrtimer_cancel(&t.timer);
1711 	destroy_hrtimer_on_stack(&t.timer);
1712 
1713 	__set_current_state(TASK_RUNNING);
1714 
1715 	return !t.task ? 0 : -EINTR;
1716 }
1717 
1718 /**
1719  * schedule_hrtimeout_range - sleep until timeout
1720  * @expires:	timeout value (ktime_t)
1721  * @delta:	slack in expires timeout (ktime_t)
1722  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1723  *
1724  * Make the current task sleep until the given expiry time has
1725  * elapsed. The routine will return immediately unless
1726  * the current task state has been set (see set_current_state()).
1727  *
1728  * The @delta argument gives the kernel the freedom to schedule the
1729  * actual wakeup to a time that is both power and performance friendly.
1730  * The kernel give the normal best effort behavior for "@expires+@delta",
1731  * but may decide to fire the timer earlier, but no earlier than @expires.
1732  *
1733  * You can set the task state as follows -
1734  *
1735  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1736  * pass before the routine returns.
1737  *
1738  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1739  * delivered to the current task.
1740  *
1741  * The current task state is guaranteed to be TASK_RUNNING when this
1742  * routine returns.
1743  *
1744  * Returns 0 when the timer has expired otherwise -EINTR
1745  */
1746 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1747 				     const enum hrtimer_mode mode)
1748 {
1749 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1750 					      CLOCK_MONOTONIC);
1751 }
1752 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1753 
1754 /**
1755  * schedule_hrtimeout - sleep until timeout
1756  * @expires:	timeout value (ktime_t)
1757  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1758  *
1759  * Make the current task sleep until the given expiry time has
1760  * elapsed. The routine will return immediately unless
1761  * the current task state has been set (see set_current_state()).
1762  *
1763  * You can set the task state as follows -
1764  *
1765  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1766  * pass before the routine returns.
1767  *
1768  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1769  * delivered to the current task.
1770  *
1771  * The current task state is guaranteed to be TASK_RUNNING when this
1772  * routine returns.
1773  *
1774  * Returns 0 when the timer has expired otherwise -EINTR
1775  */
1776 int __sched schedule_hrtimeout(ktime_t *expires,
1777 			       const enum hrtimer_mode mode)
1778 {
1779 	return schedule_hrtimeout_range(expires, 0, mode);
1780 }
1781 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1782