1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/tick.h> 43 #include <linux/seq_file.h> 44 #include <linux/err.h> 45 #include <linux/debugobjects.h> 46 #include <linux/sched.h> 47 #include <linux/sched/sysctl.h> 48 #include <linux/sched/rt.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/timer.h> 51 #include <linux/freezer.h> 52 53 #include <asm/uaccess.h> 54 55 #include <trace/events/timer.h> 56 57 #include "tick-internal.h" 58 59 /* 60 * The timer bases: 61 * 62 * There are more clockids then hrtimer bases. Thus, we index 63 * into the timer bases by the hrtimer_base_type enum. When trying 64 * to reach a base using a clockid, hrtimer_clockid_to_base() 65 * is used to convert from clockid to the proper hrtimer_base_type. 66 */ 67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 68 { 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 70 .seq = SEQCNT_ZERO(hrtimer_bases.seq), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 } 94 }; 95 96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 100 [CLOCK_TAI] = HRTIMER_BASE_TAI, 101 }; 102 103 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 104 { 105 return hrtimer_clock_to_base_table[clock_id]; 106 } 107 108 /* 109 * Functions and macros which are different for UP/SMP systems are kept in a 110 * single place 111 */ 112 #ifdef CONFIG_SMP 113 114 /* 115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 116 * such that hrtimer_callback_running() can unconditionally dereference 117 * timer->base->cpu_base 118 */ 119 static struct hrtimer_cpu_base migration_cpu_base = { 120 .seq = SEQCNT_ZERO(migration_cpu_base), 121 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 122 }; 123 124 #define migration_base migration_cpu_base.clock_base[0] 125 126 /* 127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 128 * means that all timers which are tied to this base via timer->base are 129 * locked, and the base itself is locked too. 130 * 131 * So __run_timers/migrate_timers can safely modify all timers which could 132 * be found on the lists/queues. 133 * 134 * When the timer's base is locked, and the timer removed from list, it is 135 * possible to set timer->base = &migration_base and drop the lock: the timer 136 * remains locked. 137 */ 138 static 139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 140 unsigned long *flags) 141 { 142 struct hrtimer_clock_base *base; 143 144 for (;;) { 145 base = timer->base; 146 if (likely(base != &migration_base)) { 147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 148 if (likely(base == timer->base)) 149 return base; 150 /* The timer has migrated to another CPU: */ 151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 152 } 153 cpu_relax(); 154 } 155 } 156 157 /* 158 * With HIGHRES=y we do not migrate the timer when it is expiring 159 * before the next event on the target cpu because we cannot reprogram 160 * the target cpu hardware and we would cause it to fire late. 161 * 162 * Called with cpu_base->lock of target cpu held. 163 */ 164 static int 165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 166 { 167 #ifdef CONFIG_HIGH_RES_TIMERS 168 ktime_t expires; 169 170 if (!new_base->cpu_base->hres_active) 171 return 0; 172 173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64; 175 #else 176 return 0; 177 #endif 178 } 179 180 /* 181 * Switch the timer base to the current CPU when possible. 182 */ 183 static inline struct hrtimer_clock_base * 184 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 185 int pinned) 186 { 187 struct hrtimer_clock_base *new_base; 188 struct hrtimer_cpu_base *new_cpu_base; 189 int this_cpu = smp_processor_id(); 190 int cpu = get_nohz_timer_target(pinned); 191 int basenum = base->index; 192 193 again: 194 new_cpu_base = &per_cpu(hrtimer_bases, cpu); 195 new_base = &new_cpu_base->clock_base[basenum]; 196 197 if (base != new_base) { 198 /* 199 * We are trying to move timer to new_base. 200 * However we can't change timer's base while it is running, 201 * so we keep it on the same CPU. No hassle vs. reprogramming 202 * the event source in the high resolution case. The softirq 203 * code will take care of this when the timer function has 204 * completed. There is no conflict as we hold the lock until 205 * the timer is enqueued. 206 */ 207 if (unlikely(hrtimer_callback_running(timer))) 208 return base; 209 210 /* See the comment in lock_hrtimer_base() */ 211 timer->base = &migration_base; 212 raw_spin_unlock(&base->cpu_base->lock); 213 raw_spin_lock(&new_base->cpu_base->lock); 214 215 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { 216 cpu = this_cpu; 217 raw_spin_unlock(&new_base->cpu_base->lock); 218 raw_spin_lock(&base->cpu_base->lock); 219 timer->base = base; 220 goto again; 221 } 222 timer->base = new_base; 223 } else { 224 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { 225 cpu = this_cpu; 226 goto again; 227 } 228 } 229 return new_base; 230 } 231 232 #else /* CONFIG_SMP */ 233 234 static inline struct hrtimer_clock_base * 235 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 236 { 237 struct hrtimer_clock_base *base = timer->base; 238 239 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 240 241 return base; 242 } 243 244 # define switch_hrtimer_base(t, b, p) (b) 245 246 #endif /* !CONFIG_SMP */ 247 248 /* 249 * Functions for the union type storage format of ktime_t which are 250 * too large for inlining: 251 */ 252 #if BITS_PER_LONG < 64 253 /* 254 * Divide a ktime value by a nanosecond value 255 */ 256 u64 __ktime_divns(const ktime_t kt, s64 div) 257 { 258 u64 dclc; 259 int sft = 0; 260 261 dclc = ktime_to_ns(kt); 262 /* Make sure the divisor is less than 2^32: */ 263 while (div >> 32) { 264 sft++; 265 div >>= 1; 266 } 267 dclc >>= sft; 268 do_div(dclc, (unsigned long) div); 269 270 return dclc; 271 } 272 EXPORT_SYMBOL_GPL(__ktime_divns); 273 #endif /* BITS_PER_LONG >= 64 */ 274 275 /* 276 * Add two ktime values and do a safety check for overflow: 277 */ 278 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 279 { 280 ktime_t res = ktime_add(lhs, rhs); 281 282 /* 283 * We use KTIME_SEC_MAX here, the maximum timeout which we can 284 * return to user space in a timespec: 285 */ 286 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) 287 res = ktime_set(KTIME_SEC_MAX, 0); 288 289 return res; 290 } 291 292 EXPORT_SYMBOL_GPL(ktime_add_safe); 293 294 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 295 296 static struct debug_obj_descr hrtimer_debug_descr; 297 298 static void *hrtimer_debug_hint(void *addr) 299 { 300 return ((struct hrtimer *) addr)->function; 301 } 302 303 /* 304 * fixup_init is called when: 305 * - an active object is initialized 306 */ 307 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) 308 { 309 struct hrtimer *timer = addr; 310 311 switch (state) { 312 case ODEBUG_STATE_ACTIVE: 313 hrtimer_cancel(timer); 314 debug_object_init(timer, &hrtimer_debug_descr); 315 return 1; 316 default: 317 return 0; 318 } 319 } 320 321 /* 322 * fixup_activate is called when: 323 * - an active object is activated 324 * - an unknown object is activated (might be a statically initialized object) 325 */ 326 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 327 { 328 switch (state) { 329 330 case ODEBUG_STATE_NOTAVAILABLE: 331 WARN_ON_ONCE(1); 332 return 0; 333 334 case ODEBUG_STATE_ACTIVE: 335 WARN_ON(1); 336 337 default: 338 return 0; 339 } 340 } 341 342 /* 343 * fixup_free is called when: 344 * - an active object is freed 345 */ 346 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) 347 { 348 struct hrtimer *timer = addr; 349 350 switch (state) { 351 case ODEBUG_STATE_ACTIVE: 352 hrtimer_cancel(timer); 353 debug_object_free(timer, &hrtimer_debug_descr); 354 return 1; 355 default: 356 return 0; 357 } 358 } 359 360 static struct debug_obj_descr hrtimer_debug_descr = { 361 .name = "hrtimer", 362 .debug_hint = hrtimer_debug_hint, 363 .fixup_init = hrtimer_fixup_init, 364 .fixup_activate = hrtimer_fixup_activate, 365 .fixup_free = hrtimer_fixup_free, 366 }; 367 368 static inline void debug_hrtimer_init(struct hrtimer *timer) 369 { 370 debug_object_init(timer, &hrtimer_debug_descr); 371 } 372 373 static inline void debug_hrtimer_activate(struct hrtimer *timer) 374 { 375 debug_object_activate(timer, &hrtimer_debug_descr); 376 } 377 378 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 379 { 380 debug_object_deactivate(timer, &hrtimer_debug_descr); 381 } 382 383 static inline void debug_hrtimer_free(struct hrtimer *timer) 384 { 385 debug_object_free(timer, &hrtimer_debug_descr); 386 } 387 388 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 389 enum hrtimer_mode mode); 390 391 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 392 enum hrtimer_mode mode) 393 { 394 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 395 __hrtimer_init(timer, clock_id, mode); 396 } 397 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 398 399 void destroy_hrtimer_on_stack(struct hrtimer *timer) 400 { 401 debug_object_free(timer, &hrtimer_debug_descr); 402 } 403 404 #else 405 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 406 static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 407 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 408 #endif 409 410 static inline void 411 debug_init(struct hrtimer *timer, clockid_t clockid, 412 enum hrtimer_mode mode) 413 { 414 debug_hrtimer_init(timer); 415 trace_hrtimer_init(timer, clockid, mode); 416 } 417 418 static inline void debug_activate(struct hrtimer *timer) 419 { 420 debug_hrtimer_activate(timer); 421 trace_hrtimer_start(timer); 422 } 423 424 static inline void debug_deactivate(struct hrtimer *timer) 425 { 426 debug_hrtimer_deactivate(timer); 427 trace_hrtimer_cancel(timer); 428 } 429 430 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 431 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base, 432 struct hrtimer *timer) 433 { 434 #ifdef CONFIG_HIGH_RES_TIMERS 435 cpu_base->next_timer = timer; 436 #endif 437 } 438 439 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) 440 { 441 struct hrtimer_clock_base *base = cpu_base->clock_base; 442 ktime_t expires, expires_next = { .tv64 = KTIME_MAX }; 443 unsigned int active = cpu_base->active_bases; 444 445 hrtimer_update_next_timer(cpu_base, NULL); 446 for (; active; base++, active >>= 1) { 447 struct timerqueue_node *next; 448 struct hrtimer *timer; 449 450 if (!(active & 0x01)) 451 continue; 452 453 next = timerqueue_getnext(&base->active); 454 timer = container_of(next, struct hrtimer, node); 455 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 456 if (expires.tv64 < expires_next.tv64) { 457 expires_next = expires; 458 hrtimer_update_next_timer(cpu_base, timer); 459 } 460 } 461 /* 462 * clock_was_set() might have changed base->offset of any of 463 * the clock bases so the result might be negative. Fix it up 464 * to prevent a false positive in clockevents_program_event(). 465 */ 466 if (expires_next.tv64 < 0) 467 expires_next.tv64 = 0; 468 return expires_next; 469 } 470 #endif 471 472 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 473 { 474 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 475 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 476 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 477 478 return ktime_get_update_offsets_now(&base->clock_was_set_seq, 479 offs_real, offs_boot, offs_tai); 480 } 481 482 /* High resolution timer related functions */ 483 #ifdef CONFIG_HIGH_RES_TIMERS 484 485 /* 486 * High resolution timer enabled ? 487 */ 488 static int hrtimer_hres_enabled __read_mostly = 1; 489 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 490 EXPORT_SYMBOL_GPL(hrtimer_resolution); 491 492 /* 493 * Enable / Disable high resolution mode 494 */ 495 static int __init setup_hrtimer_hres(char *str) 496 { 497 if (!strcmp(str, "off")) 498 hrtimer_hres_enabled = 0; 499 else if (!strcmp(str, "on")) 500 hrtimer_hres_enabled = 1; 501 else 502 return 0; 503 return 1; 504 } 505 506 __setup("highres=", setup_hrtimer_hres); 507 508 /* 509 * hrtimer_high_res_enabled - query, if the highres mode is enabled 510 */ 511 static inline int hrtimer_is_hres_enabled(void) 512 { 513 return hrtimer_hres_enabled; 514 } 515 516 /* 517 * Is the high resolution mode active ? 518 */ 519 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 520 { 521 return cpu_base->hres_active; 522 } 523 524 static inline int hrtimer_hres_active(void) 525 { 526 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 527 } 528 529 /* 530 * Reprogram the event source with checking both queues for the 531 * next event 532 * Called with interrupts disabled and base->lock held 533 */ 534 static void 535 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 536 { 537 ktime_t expires_next; 538 539 if (!cpu_base->hres_active) 540 return; 541 542 expires_next = __hrtimer_get_next_event(cpu_base); 543 544 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) 545 return; 546 547 cpu_base->expires_next.tv64 = expires_next.tv64; 548 549 /* 550 * If a hang was detected in the last timer interrupt then we 551 * leave the hang delay active in the hardware. We want the 552 * system to make progress. That also prevents the following 553 * scenario: 554 * T1 expires 50ms from now 555 * T2 expires 5s from now 556 * 557 * T1 is removed, so this code is called and would reprogram 558 * the hardware to 5s from now. Any hrtimer_start after that 559 * will not reprogram the hardware due to hang_detected being 560 * set. So we'd effectivly block all timers until the T2 event 561 * fires. 562 */ 563 if (cpu_base->hang_detected) 564 return; 565 566 tick_program_event(cpu_base->expires_next, 1); 567 } 568 569 /* 570 * When a timer is enqueued and expires earlier than the already enqueued 571 * timers, we have to check, whether it expires earlier than the timer for 572 * which the clock event device was armed. 573 * 574 * Called with interrupts disabled and base->cpu_base.lock held 575 */ 576 static void hrtimer_reprogram(struct hrtimer *timer, 577 struct hrtimer_clock_base *base) 578 { 579 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 580 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 581 582 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 583 584 /* 585 * If the timer is not on the current cpu, we cannot reprogram 586 * the other cpus clock event device. 587 */ 588 if (base->cpu_base != cpu_base) 589 return; 590 591 /* 592 * If the hrtimer interrupt is running, then it will 593 * reevaluate the clock bases and reprogram the clock event 594 * device. The callbacks are always executed in hard interrupt 595 * context so we don't need an extra check for a running 596 * callback. 597 */ 598 if (cpu_base->in_hrtirq) 599 return; 600 601 /* 602 * CLOCK_REALTIME timer might be requested with an absolute 603 * expiry time which is less than base->offset. Set it to 0. 604 */ 605 if (expires.tv64 < 0) 606 expires.tv64 = 0; 607 608 if (expires.tv64 >= cpu_base->expires_next.tv64) 609 return; 610 611 /* Update the pointer to the next expiring timer */ 612 cpu_base->next_timer = timer; 613 614 /* 615 * If a hang was detected in the last timer interrupt then we 616 * do not schedule a timer which is earlier than the expiry 617 * which we enforced in the hang detection. We want the system 618 * to make progress. 619 */ 620 if (cpu_base->hang_detected) 621 return; 622 623 /* 624 * Program the timer hardware. We enforce the expiry for 625 * events which are already in the past. 626 */ 627 cpu_base->expires_next = expires; 628 tick_program_event(expires, 1); 629 } 630 631 /* 632 * Initialize the high resolution related parts of cpu_base 633 */ 634 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 635 { 636 base->expires_next.tv64 = KTIME_MAX; 637 base->hres_active = 0; 638 } 639 640 /* 641 * Retrigger next event is called after clock was set 642 * 643 * Called with interrupts disabled via on_each_cpu() 644 */ 645 static void retrigger_next_event(void *arg) 646 { 647 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 648 649 if (!base->hres_active) 650 return; 651 652 raw_spin_lock(&base->lock); 653 hrtimer_update_base(base); 654 hrtimer_force_reprogram(base, 0); 655 raw_spin_unlock(&base->lock); 656 } 657 658 /* 659 * Switch to high resolution mode 660 */ 661 static int hrtimer_switch_to_hres(void) 662 { 663 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 664 665 if (tick_init_highres()) { 666 printk(KERN_WARNING "Could not switch to high resolution " 667 "mode on CPU %d\n", base->cpu); 668 return 0; 669 } 670 base->hres_active = 1; 671 hrtimer_resolution = HIGH_RES_NSEC; 672 673 tick_setup_sched_timer(); 674 /* "Retrigger" the interrupt to get things going */ 675 retrigger_next_event(NULL); 676 return 1; 677 } 678 679 static void clock_was_set_work(struct work_struct *work) 680 { 681 clock_was_set(); 682 } 683 684 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 685 686 /* 687 * Called from timekeeping and resume code to reprogramm the hrtimer 688 * interrupt device on all cpus. 689 */ 690 void clock_was_set_delayed(void) 691 { 692 schedule_work(&hrtimer_work); 693 } 694 695 #else 696 697 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; } 698 static inline int hrtimer_hres_active(void) { return 0; } 699 static inline int hrtimer_is_hres_enabled(void) { return 0; } 700 static inline int hrtimer_switch_to_hres(void) { return 0; } 701 static inline void 702 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 703 static inline int hrtimer_reprogram(struct hrtimer *timer, 704 struct hrtimer_clock_base *base) 705 { 706 return 0; 707 } 708 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 709 static inline void retrigger_next_event(void *arg) { } 710 711 #endif /* CONFIG_HIGH_RES_TIMERS */ 712 713 /* 714 * Clock realtime was set 715 * 716 * Change the offset of the realtime clock vs. the monotonic 717 * clock. 718 * 719 * We might have to reprogram the high resolution timer interrupt. On 720 * SMP we call the architecture specific code to retrigger _all_ high 721 * resolution timer interrupts. On UP we just disable interrupts and 722 * call the high resolution interrupt code. 723 */ 724 void clock_was_set(void) 725 { 726 #ifdef CONFIG_HIGH_RES_TIMERS 727 /* Retrigger the CPU local events everywhere */ 728 on_each_cpu(retrigger_next_event, NULL, 1); 729 #endif 730 timerfd_clock_was_set(); 731 } 732 733 /* 734 * During resume we might have to reprogram the high resolution timer 735 * interrupt on all online CPUs. However, all other CPUs will be 736 * stopped with IRQs interrupts disabled so the clock_was_set() call 737 * must be deferred. 738 */ 739 void hrtimers_resume(void) 740 { 741 WARN_ONCE(!irqs_disabled(), 742 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 743 744 /* Retrigger on the local CPU */ 745 retrigger_next_event(NULL); 746 /* And schedule a retrigger for all others */ 747 clock_was_set_delayed(); 748 } 749 750 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) 751 { 752 #ifdef CONFIG_TIMER_STATS 753 if (timer->start_site) 754 return; 755 timer->start_site = __builtin_return_address(0); 756 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 757 timer->start_pid = current->pid; 758 #endif 759 } 760 761 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) 762 { 763 #ifdef CONFIG_TIMER_STATS 764 timer->start_site = NULL; 765 #endif 766 } 767 768 static inline void timer_stats_account_hrtimer(struct hrtimer *timer) 769 { 770 #ifdef CONFIG_TIMER_STATS 771 if (likely(!timer_stats_active)) 772 return; 773 timer_stats_update_stats(timer, timer->start_pid, timer->start_site, 774 timer->function, timer->start_comm, 0); 775 #endif 776 } 777 778 /* 779 * Counterpart to lock_hrtimer_base above: 780 */ 781 static inline 782 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 783 { 784 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 785 } 786 787 /** 788 * hrtimer_forward - forward the timer expiry 789 * @timer: hrtimer to forward 790 * @now: forward past this time 791 * @interval: the interval to forward 792 * 793 * Forward the timer expiry so it will expire in the future. 794 * Returns the number of overruns. 795 * 796 * Can be safely called from the callback function of @timer. If 797 * called from other contexts @timer must neither be enqueued nor 798 * running the callback and the caller needs to take care of 799 * serialization. 800 * 801 * Note: This only updates the timer expiry value and does not requeue 802 * the timer. 803 */ 804 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 805 { 806 u64 orun = 1; 807 ktime_t delta; 808 809 delta = ktime_sub(now, hrtimer_get_expires(timer)); 810 811 if (delta.tv64 < 0) 812 return 0; 813 814 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 815 return 0; 816 817 if (interval.tv64 < hrtimer_resolution) 818 interval.tv64 = hrtimer_resolution; 819 820 if (unlikely(delta.tv64 >= interval.tv64)) { 821 s64 incr = ktime_to_ns(interval); 822 823 orun = ktime_divns(delta, incr); 824 hrtimer_add_expires_ns(timer, incr * orun); 825 if (hrtimer_get_expires_tv64(timer) > now.tv64) 826 return orun; 827 /* 828 * This (and the ktime_add() below) is the 829 * correction for exact: 830 */ 831 orun++; 832 } 833 hrtimer_add_expires(timer, interval); 834 835 return orun; 836 } 837 EXPORT_SYMBOL_GPL(hrtimer_forward); 838 839 /* 840 * enqueue_hrtimer - internal function to (re)start a timer 841 * 842 * The timer is inserted in expiry order. Insertion into the 843 * red black tree is O(log(n)). Must hold the base lock. 844 * 845 * Returns 1 when the new timer is the leftmost timer in the tree. 846 */ 847 static int enqueue_hrtimer(struct hrtimer *timer, 848 struct hrtimer_clock_base *base) 849 { 850 debug_activate(timer); 851 852 base->cpu_base->active_bases |= 1 << base->index; 853 854 timer->state = HRTIMER_STATE_ENQUEUED; 855 856 return timerqueue_add(&base->active, &timer->node); 857 } 858 859 /* 860 * __remove_hrtimer - internal function to remove a timer 861 * 862 * Caller must hold the base lock. 863 * 864 * High resolution timer mode reprograms the clock event device when the 865 * timer is the one which expires next. The caller can disable this by setting 866 * reprogram to zero. This is useful, when the context does a reprogramming 867 * anyway (e.g. timer interrupt) 868 */ 869 static void __remove_hrtimer(struct hrtimer *timer, 870 struct hrtimer_clock_base *base, 871 unsigned long newstate, int reprogram) 872 { 873 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 874 unsigned int state = timer->state; 875 876 timer->state = newstate; 877 if (!(state & HRTIMER_STATE_ENQUEUED)) 878 return; 879 880 if (!timerqueue_del(&base->active, &timer->node)) 881 cpu_base->active_bases &= ~(1 << base->index); 882 883 #ifdef CONFIG_HIGH_RES_TIMERS 884 /* 885 * Note: If reprogram is false we do not update 886 * cpu_base->next_timer. This happens when we remove the first 887 * timer on a remote cpu. No harm as we never dereference 888 * cpu_base->next_timer. So the worst thing what can happen is 889 * an superflous call to hrtimer_force_reprogram() on the 890 * remote cpu later on if the same timer gets enqueued again. 891 */ 892 if (reprogram && timer == cpu_base->next_timer) 893 hrtimer_force_reprogram(cpu_base, 1); 894 #endif 895 } 896 897 /* 898 * remove hrtimer, called with base lock held 899 */ 900 static inline int 901 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 902 { 903 if (hrtimer_is_queued(timer)) { 904 unsigned long state = timer->state; 905 int reprogram; 906 907 /* 908 * Remove the timer and force reprogramming when high 909 * resolution mode is active and the timer is on the current 910 * CPU. If we remove a timer on another CPU, reprogramming is 911 * skipped. The interrupt event on this CPU is fired and 912 * reprogramming happens in the interrupt handler. This is a 913 * rare case and less expensive than a smp call. 914 */ 915 debug_deactivate(timer); 916 timer_stats_hrtimer_clear_start_info(timer); 917 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 918 919 if (!restart) 920 state = HRTIMER_STATE_INACTIVE; 921 922 __remove_hrtimer(timer, base, state, reprogram); 923 return 1; 924 } 925 return 0; 926 } 927 928 /** 929 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 930 * @timer: the timer to be added 931 * @tim: expiry time 932 * @delta_ns: "slack" range for the timer 933 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 934 * relative (HRTIMER_MODE_REL) 935 */ 936 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 937 unsigned long delta_ns, const enum hrtimer_mode mode) 938 { 939 struct hrtimer_clock_base *base, *new_base; 940 unsigned long flags; 941 int leftmost; 942 943 base = lock_hrtimer_base(timer, &flags); 944 945 /* Remove an active timer from the queue: */ 946 remove_hrtimer(timer, base, true); 947 948 if (mode & HRTIMER_MODE_REL) { 949 tim = ktime_add_safe(tim, base->get_time()); 950 /* 951 * CONFIG_TIME_LOW_RES is a temporary way for architectures 952 * to signal that they simply return xtime in 953 * do_gettimeoffset(). In this case we want to round up by 954 * resolution when starting a relative timer, to avoid short 955 * timeouts. This will go away with the GTOD framework. 956 */ 957 #ifdef CONFIG_TIME_LOW_RES 958 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution)); 959 #endif 960 } 961 962 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 963 964 /* Switch the timer base, if necessary: */ 965 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 966 967 timer_stats_hrtimer_set_start_info(timer); 968 969 leftmost = enqueue_hrtimer(timer, new_base); 970 if (!leftmost) 971 goto unlock; 972 973 if (!hrtimer_is_hres_active(timer)) { 974 /* 975 * Kick to reschedule the next tick to handle the new timer 976 * on dynticks target. 977 */ 978 wake_up_nohz_cpu(new_base->cpu_base->cpu); 979 } else { 980 hrtimer_reprogram(timer, new_base); 981 } 982 unlock: 983 unlock_hrtimer_base(timer, &flags); 984 } 985 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 986 987 /** 988 * hrtimer_try_to_cancel - try to deactivate a timer 989 * @timer: hrtimer to stop 990 * 991 * Returns: 992 * 0 when the timer was not active 993 * 1 when the timer was active 994 * -1 when the timer is currently excuting the callback function and 995 * cannot be stopped 996 */ 997 int hrtimer_try_to_cancel(struct hrtimer *timer) 998 { 999 struct hrtimer_clock_base *base; 1000 unsigned long flags; 1001 int ret = -1; 1002 1003 /* 1004 * Check lockless first. If the timer is not active (neither 1005 * enqueued nor running the callback, nothing to do here. The 1006 * base lock does not serialize against a concurrent enqueue, 1007 * so we can avoid taking it. 1008 */ 1009 if (!hrtimer_active(timer)) 1010 return 0; 1011 1012 base = lock_hrtimer_base(timer, &flags); 1013 1014 if (!hrtimer_callback_running(timer)) 1015 ret = remove_hrtimer(timer, base, false); 1016 1017 unlock_hrtimer_base(timer, &flags); 1018 1019 return ret; 1020 1021 } 1022 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1023 1024 /** 1025 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1026 * @timer: the timer to be cancelled 1027 * 1028 * Returns: 1029 * 0 when the timer was not active 1030 * 1 when the timer was active 1031 */ 1032 int hrtimer_cancel(struct hrtimer *timer) 1033 { 1034 for (;;) { 1035 int ret = hrtimer_try_to_cancel(timer); 1036 1037 if (ret >= 0) 1038 return ret; 1039 cpu_relax(); 1040 } 1041 } 1042 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1043 1044 /** 1045 * hrtimer_get_remaining - get remaining time for the timer 1046 * @timer: the timer to read 1047 */ 1048 ktime_t hrtimer_get_remaining(const struct hrtimer *timer) 1049 { 1050 unsigned long flags; 1051 ktime_t rem; 1052 1053 lock_hrtimer_base(timer, &flags); 1054 rem = hrtimer_expires_remaining(timer); 1055 unlock_hrtimer_base(timer, &flags); 1056 1057 return rem; 1058 } 1059 EXPORT_SYMBOL_GPL(hrtimer_get_remaining); 1060 1061 #ifdef CONFIG_NO_HZ_COMMON 1062 /** 1063 * hrtimer_get_next_event - get the time until next expiry event 1064 * 1065 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1066 */ 1067 u64 hrtimer_get_next_event(void) 1068 { 1069 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1070 u64 expires = KTIME_MAX; 1071 unsigned long flags; 1072 1073 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1074 1075 if (!__hrtimer_hres_active(cpu_base)) 1076 expires = __hrtimer_get_next_event(cpu_base).tv64; 1077 1078 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1079 1080 return expires; 1081 } 1082 #endif 1083 1084 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1085 enum hrtimer_mode mode) 1086 { 1087 struct hrtimer_cpu_base *cpu_base; 1088 int base; 1089 1090 memset(timer, 0, sizeof(struct hrtimer)); 1091 1092 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1093 1094 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1095 clock_id = CLOCK_MONOTONIC; 1096 1097 base = hrtimer_clockid_to_base(clock_id); 1098 timer->base = &cpu_base->clock_base[base]; 1099 timerqueue_init(&timer->node); 1100 1101 #ifdef CONFIG_TIMER_STATS 1102 timer->start_site = NULL; 1103 timer->start_pid = -1; 1104 memset(timer->start_comm, 0, TASK_COMM_LEN); 1105 #endif 1106 } 1107 1108 /** 1109 * hrtimer_init - initialize a timer to the given clock 1110 * @timer: the timer to be initialized 1111 * @clock_id: the clock to be used 1112 * @mode: timer mode abs/rel 1113 */ 1114 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1115 enum hrtimer_mode mode) 1116 { 1117 debug_init(timer, clock_id, mode); 1118 __hrtimer_init(timer, clock_id, mode); 1119 } 1120 EXPORT_SYMBOL_GPL(hrtimer_init); 1121 1122 /* 1123 * A timer is active, when it is enqueued into the rbtree or the 1124 * callback function is running or it's in the state of being migrated 1125 * to another cpu. 1126 * 1127 * It is important for this function to not return a false negative. 1128 */ 1129 bool hrtimer_active(const struct hrtimer *timer) 1130 { 1131 struct hrtimer_cpu_base *cpu_base; 1132 unsigned int seq; 1133 1134 do { 1135 cpu_base = READ_ONCE(timer->base->cpu_base); 1136 seq = raw_read_seqcount_begin(&cpu_base->seq); 1137 1138 if (timer->state != HRTIMER_STATE_INACTIVE || 1139 cpu_base->running == timer) 1140 return true; 1141 1142 } while (read_seqcount_retry(&cpu_base->seq, seq) || 1143 cpu_base != READ_ONCE(timer->base->cpu_base)); 1144 1145 return false; 1146 } 1147 EXPORT_SYMBOL_GPL(hrtimer_active); 1148 1149 /* 1150 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1151 * distinct sections: 1152 * 1153 * - queued: the timer is queued 1154 * - callback: the timer is being ran 1155 * - post: the timer is inactive or (re)queued 1156 * 1157 * On the read side we ensure we observe timer->state and cpu_base->running 1158 * from the same section, if anything changed while we looked at it, we retry. 1159 * This includes timer->base changing because sequence numbers alone are 1160 * insufficient for that. 1161 * 1162 * The sequence numbers are required because otherwise we could still observe 1163 * a false negative if the read side got smeared over multiple consequtive 1164 * __run_hrtimer() invocations. 1165 */ 1166 1167 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1168 struct hrtimer_clock_base *base, 1169 struct hrtimer *timer, ktime_t *now) 1170 { 1171 enum hrtimer_restart (*fn)(struct hrtimer *); 1172 int restart; 1173 1174 lockdep_assert_held(&cpu_base->lock); 1175 1176 debug_deactivate(timer); 1177 cpu_base->running = timer; 1178 1179 /* 1180 * Separate the ->running assignment from the ->state assignment. 1181 * 1182 * As with a regular write barrier, this ensures the read side in 1183 * hrtimer_active() cannot observe cpu_base->running == NULL && 1184 * timer->state == INACTIVE. 1185 */ 1186 raw_write_seqcount_barrier(&cpu_base->seq); 1187 1188 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1189 timer_stats_account_hrtimer(timer); 1190 fn = timer->function; 1191 1192 /* 1193 * Because we run timers from hardirq context, there is no chance 1194 * they get migrated to another cpu, therefore its safe to unlock 1195 * the timer base. 1196 */ 1197 raw_spin_unlock(&cpu_base->lock); 1198 trace_hrtimer_expire_entry(timer, now); 1199 restart = fn(timer); 1200 trace_hrtimer_expire_exit(timer); 1201 raw_spin_lock(&cpu_base->lock); 1202 1203 /* 1204 * Note: We clear the running state after enqueue_hrtimer and 1205 * we do not reprogramm the event hardware. Happens either in 1206 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1207 * 1208 * Note: Because we dropped the cpu_base->lock above, 1209 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1210 * for us already. 1211 */ 1212 if (restart != HRTIMER_NORESTART && 1213 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1214 enqueue_hrtimer(timer, base); 1215 1216 /* 1217 * Separate the ->running assignment from the ->state assignment. 1218 * 1219 * As with a regular write barrier, this ensures the read side in 1220 * hrtimer_active() cannot observe cpu_base->running == NULL && 1221 * timer->state == INACTIVE. 1222 */ 1223 raw_write_seqcount_barrier(&cpu_base->seq); 1224 1225 WARN_ON_ONCE(cpu_base->running != timer); 1226 cpu_base->running = NULL; 1227 } 1228 1229 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now) 1230 { 1231 struct hrtimer_clock_base *base = cpu_base->clock_base; 1232 unsigned int active = cpu_base->active_bases; 1233 1234 for (; active; base++, active >>= 1) { 1235 struct timerqueue_node *node; 1236 ktime_t basenow; 1237 1238 if (!(active & 0x01)) 1239 continue; 1240 1241 basenow = ktime_add(now, base->offset); 1242 1243 while ((node = timerqueue_getnext(&base->active))) { 1244 struct hrtimer *timer; 1245 1246 timer = container_of(node, struct hrtimer, node); 1247 1248 /* 1249 * The immediate goal for using the softexpires is 1250 * minimizing wakeups, not running timers at the 1251 * earliest interrupt after their soft expiration. 1252 * This allows us to avoid using a Priority Search 1253 * Tree, which can answer a stabbing querry for 1254 * overlapping intervals and instead use the simple 1255 * BST we already have. 1256 * We don't add extra wakeups by delaying timers that 1257 * are right-of a not yet expired timer, because that 1258 * timer will have to trigger a wakeup anyway. 1259 */ 1260 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) 1261 break; 1262 1263 __run_hrtimer(cpu_base, base, timer, &basenow); 1264 } 1265 } 1266 } 1267 1268 #ifdef CONFIG_HIGH_RES_TIMERS 1269 1270 /* 1271 * High resolution timer interrupt 1272 * Called with interrupts disabled 1273 */ 1274 void hrtimer_interrupt(struct clock_event_device *dev) 1275 { 1276 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1277 ktime_t expires_next, now, entry_time, delta; 1278 int retries = 0; 1279 1280 BUG_ON(!cpu_base->hres_active); 1281 cpu_base->nr_events++; 1282 dev->next_event.tv64 = KTIME_MAX; 1283 1284 raw_spin_lock(&cpu_base->lock); 1285 entry_time = now = hrtimer_update_base(cpu_base); 1286 retry: 1287 cpu_base->in_hrtirq = 1; 1288 /* 1289 * We set expires_next to KTIME_MAX here with cpu_base->lock 1290 * held to prevent that a timer is enqueued in our queue via 1291 * the migration code. This does not affect enqueueing of 1292 * timers which run their callback and need to be requeued on 1293 * this CPU. 1294 */ 1295 cpu_base->expires_next.tv64 = KTIME_MAX; 1296 1297 __hrtimer_run_queues(cpu_base, now); 1298 1299 /* Reevaluate the clock bases for the next expiry */ 1300 expires_next = __hrtimer_get_next_event(cpu_base); 1301 /* 1302 * Store the new expiry value so the migration code can verify 1303 * against it. 1304 */ 1305 cpu_base->expires_next = expires_next; 1306 cpu_base->in_hrtirq = 0; 1307 raw_spin_unlock(&cpu_base->lock); 1308 1309 /* Reprogramming necessary ? */ 1310 if (!tick_program_event(expires_next, 0)) { 1311 cpu_base->hang_detected = 0; 1312 return; 1313 } 1314 1315 /* 1316 * The next timer was already expired due to: 1317 * - tracing 1318 * - long lasting callbacks 1319 * - being scheduled away when running in a VM 1320 * 1321 * We need to prevent that we loop forever in the hrtimer 1322 * interrupt routine. We give it 3 attempts to avoid 1323 * overreacting on some spurious event. 1324 * 1325 * Acquire base lock for updating the offsets and retrieving 1326 * the current time. 1327 */ 1328 raw_spin_lock(&cpu_base->lock); 1329 now = hrtimer_update_base(cpu_base); 1330 cpu_base->nr_retries++; 1331 if (++retries < 3) 1332 goto retry; 1333 /* 1334 * Give the system a chance to do something else than looping 1335 * here. We stored the entry time, so we know exactly how long 1336 * we spent here. We schedule the next event this amount of 1337 * time away. 1338 */ 1339 cpu_base->nr_hangs++; 1340 cpu_base->hang_detected = 1; 1341 raw_spin_unlock(&cpu_base->lock); 1342 delta = ktime_sub(now, entry_time); 1343 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time) 1344 cpu_base->max_hang_time = (unsigned int) delta.tv64; 1345 /* 1346 * Limit it to a sensible value as we enforce a longer 1347 * delay. Give the CPU at least 100ms to catch up. 1348 */ 1349 if (delta.tv64 > 100 * NSEC_PER_MSEC) 1350 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1351 else 1352 expires_next = ktime_add(now, delta); 1353 tick_program_event(expires_next, 1); 1354 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1355 ktime_to_ns(delta)); 1356 } 1357 1358 /* 1359 * local version of hrtimer_peek_ahead_timers() called with interrupts 1360 * disabled. 1361 */ 1362 static inline void __hrtimer_peek_ahead_timers(void) 1363 { 1364 struct tick_device *td; 1365 1366 if (!hrtimer_hres_active()) 1367 return; 1368 1369 td = this_cpu_ptr(&tick_cpu_device); 1370 if (td && td->evtdev) 1371 hrtimer_interrupt(td->evtdev); 1372 } 1373 1374 #else /* CONFIG_HIGH_RES_TIMERS */ 1375 1376 static inline void __hrtimer_peek_ahead_timers(void) { } 1377 1378 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1379 1380 /* 1381 * Called from run_local_timers in hardirq context every jiffy 1382 */ 1383 void hrtimer_run_queues(void) 1384 { 1385 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1386 ktime_t now; 1387 1388 if (__hrtimer_hres_active(cpu_base)) 1389 return; 1390 1391 /* 1392 * This _is_ ugly: We have to check periodically, whether we 1393 * can switch to highres and / or nohz mode. The clocksource 1394 * switch happens with xtime_lock held. Notification from 1395 * there only sets the check bit in the tick_oneshot code, 1396 * otherwise we might deadlock vs. xtime_lock. 1397 */ 1398 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1399 hrtimer_switch_to_hres(); 1400 return; 1401 } 1402 1403 raw_spin_lock(&cpu_base->lock); 1404 now = hrtimer_update_base(cpu_base); 1405 __hrtimer_run_queues(cpu_base, now); 1406 raw_spin_unlock(&cpu_base->lock); 1407 } 1408 1409 /* 1410 * Sleep related functions: 1411 */ 1412 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1413 { 1414 struct hrtimer_sleeper *t = 1415 container_of(timer, struct hrtimer_sleeper, timer); 1416 struct task_struct *task = t->task; 1417 1418 t->task = NULL; 1419 if (task) 1420 wake_up_process(task); 1421 1422 return HRTIMER_NORESTART; 1423 } 1424 1425 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1426 { 1427 sl->timer.function = hrtimer_wakeup; 1428 sl->task = task; 1429 } 1430 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1431 1432 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1433 { 1434 hrtimer_init_sleeper(t, current); 1435 1436 do { 1437 set_current_state(TASK_INTERRUPTIBLE); 1438 hrtimer_start_expires(&t->timer, mode); 1439 1440 if (likely(t->task)) 1441 freezable_schedule(); 1442 1443 hrtimer_cancel(&t->timer); 1444 mode = HRTIMER_MODE_ABS; 1445 1446 } while (t->task && !signal_pending(current)); 1447 1448 __set_current_state(TASK_RUNNING); 1449 1450 return t->task == NULL; 1451 } 1452 1453 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1454 { 1455 struct timespec rmt; 1456 ktime_t rem; 1457 1458 rem = hrtimer_expires_remaining(timer); 1459 if (rem.tv64 <= 0) 1460 return 0; 1461 rmt = ktime_to_timespec(rem); 1462 1463 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1464 return -EFAULT; 1465 1466 return 1; 1467 } 1468 1469 long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1470 { 1471 struct hrtimer_sleeper t; 1472 struct timespec __user *rmtp; 1473 int ret = 0; 1474 1475 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1476 HRTIMER_MODE_ABS); 1477 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1478 1479 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1480 goto out; 1481 1482 rmtp = restart->nanosleep.rmtp; 1483 if (rmtp) { 1484 ret = update_rmtp(&t.timer, rmtp); 1485 if (ret <= 0) 1486 goto out; 1487 } 1488 1489 /* The other values in restart are already filled in */ 1490 ret = -ERESTART_RESTARTBLOCK; 1491 out: 1492 destroy_hrtimer_on_stack(&t.timer); 1493 return ret; 1494 } 1495 1496 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1497 const enum hrtimer_mode mode, const clockid_t clockid) 1498 { 1499 struct restart_block *restart; 1500 struct hrtimer_sleeper t; 1501 int ret = 0; 1502 unsigned long slack; 1503 1504 slack = current->timer_slack_ns; 1505 if (dl_task(current) || rt_task(current)) 1506 slack = 0; 1507 1508 hrtimer_init_on_stack(&t.timer, clockid, mode); 1509 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1510 if (do_nanosleep(&t, mode)) 1511 goto out; 1512 1513 /* Absolute timers do not update the rmtp value and restart: */ 1514 if (mode == HRTIMER_MODE_ABS) { 1515 ret = -ERESTARTNOHAND; 1516 goto out; 1517 } 1518 1519 if (rmtp) { 1520 ret = update_rmtp(&t.timer, rmtp); 1521 if (ret <= 0) 1522 goto out; 1523 } 1524 1525 restart = ¤t->restart_block; 1526 restart->fn = hrtimer_nanosleep_restart; 1527 restart->nanosleep.clockid = t.timer.base->clockid; 1528 restart->nanosleep.rmtp = rmtp; 1529 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1530 1531 ret = -ERESTART_RESTARTBLOCK; 1532 out: 1533 destroy_hrtimer_on_stack(&t.timer); 1534 return ret; 1535 } 1536 1537 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1538 struct timespec __user *, rmtp) 1539 { 1540 struct timespec tu; 1541 1542 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1543 return -EFAULT; 1544 1545 if (!timespec_valid(&tu)) 1546 return -EINVAL; 1547 1548 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1549 } 1550 1551 /* 1552 * Functions related to boot-time initialization: 1553 */ 1554 static void init_hrtimers_cpu(int cpu) 1555 { 1556 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1557 int i; 1558 1559 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1560 cpu_base->clock_base[i].cpu_base = cpu_base; 1561 timerqueue_init_head(&cpu_base->clock_base[i].active); 1562 } 1563 1564 cpu_base->cpu = cpu; 1565 hrtimer_init_hres(cpu_base); 1566 } 1567 1568 #ifdef CONFIG_HOTPLUG_CPU 1569 1570 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1571 struct hrtimer_clock_base *new_base) 1572 { 1573 struct hrtimer *timer; 1574 struct timerqueue_node *node; 1575 1576 while ((node = timerqueue_getnext(&old_base->active))) { 1577 timer = container_of(node, struct hrtimer, node); 1578 BUG_ON(hrtimer_callback_running(timer)); 1579 debug_deactivate(timer); 1580 1581 /* 1582 * Mark it as ENQUEUED not INACTIVE otherwise the 1583 * timer could be seen as !active and just vanish away 1584 * under us on another CPU 1585 */ 1586 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1587 timer->base = new_base; 1588 /* 1589 * Enqueue the timers on the new cpu. This does not 1590 * reprogram the event device in case the timer 1591 * expires before the earliest on this CPU, but we run 1592 * hrtimer_interrupt after we migrated everything to 1593 * sort out already expired timers and reprogram the 1594 * event device. 1595 */ 1596 enqueue_hrtimer(timer, new_base); 1597 } 1598 } 1599 1600 static void migrate_hrtimers(int scpu) 1601 { 1602 struct hrtimer_cpu_base *old_base, *new_base; 1603 int i; 1604 1605 BUG_ON(cpu_online(scpu)); 1606 tick_cancel_sched_timer(scpu); 1607 1608 local_irq_disable(); 1609 old_base = &per_cpu(hrtimer_bases, scpu); 1610 new_base = this_cpu_ptr(&hrtimer_bases); 1611 /* 1612 * The caller is globally serialized and nobody else 1613 * takes two locks at once, deadlock is not possible. 1614 */ 1615 raw_spin_lock(&new_base->lock); 1616 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1617 1618 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1619 migrate_hrtimer_list(&old_base->clock_base[i], 1620 &new_base->clock_base[i]); 1621 } 1622 1623 raw_spin_unlock(&old_base->lock); 1624 raw_spin_unlock(&new_base->lock); 1625 1626 /* Check, if we got expired work to do */ 1627 __hrtimer_peek_ahead_timers(); 1628 local_irq_enable(); 1629 } 1630 1631 #endif /* CONFIG_HOTPLUG_CPU */ 1632 1633 static int hrtimer_cpu_notify(struct notifier_block *self, 1634 unsigned long action, void *hcpu) 1635 { 1636 int scpu = (long)hcpu; 1637 1638 switch (action) { 1639 1640 case CPU_UP_PREPARE: 1641 case CPU_UP_PREPARE_FROZEN: 1642 init_hrtimers_cpu(scpu); 1643 break; 1644 1645 #ifdef CONFIG_HOTPLUG_CPU 1646 case CPU_DEAD: 1647 case CPU_DEAD_FROZEN: 1648 migrate_hrtimers(scpu); 1649 break; 1650 #endif 1651 1652 default: 1653 break; 1654 } 1655 1656 return NOTIFY_OK; 1657 } 1658 1659 static struct notifier_block hrtimers_nb = { 1660 .notifier_call = hrtimer_cpu_notify, 1661 }; 1662 1663 void __init hrtimers_init(void) 1664 { 1665 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1666 (void *)(long)smp_processor_id()); 1667 register_cpu_notifier(&hrtimers_nb); 1668 } 1669 1670 /** 1671 * schedule_hrtimeout_range_clock - sleep until timeout 1672 * @expires: timeout value (ktime_t) 1673 * @delta: slack in expires timeout (ktime_t) 1674 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1675 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1676 */ 1677 int __sched 1678 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, 1679 const enum hrtimer_mode mode, int clock) 1680 { 1681 struct hrtimer_sleeper t; 1682 1683 /* 1684 * Optimize when a zero timeout value is given. It does not 1685 * matter whether this is an absolute or a relative time. 1686 */ 1687 if (expires && !expires->tv64) { 1688 __set_current_state(TASK_RUNNING); 1689 return 0; 1690 } 1691 1692 /* 1693 * A NULL parameter means "infinite" 1694 */ 1695 if (!expires) { 1696 schedule(); 1697 return -EINTR; 1698 } 1699 1700 hrtimer_init_on_stack(&t.timer, clock, mode); 1701 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1702 1703 hrtimer_init_sleeper(&t, current); 1704 1705 hrtimer_start_expires(&t.timer, mode); 1706 1707 if (likely(t.task)) 1708 schedule(); 1709 1710 hrtimer_cancel(&t.timer); 1711 destroy_hrtimer_on_stack(&t.timer); 1712 1713 __set_current_state(TASK_RUNNING); 1714 1715 return !t.task ? 0 : -EINTR; 1716 } 1717 1718 /** 1719 * schedule_hrtimeout_range - sleep until timeout 1720 * @expires: timeout value (ktime_t) 1721 * @delta: slack in expires timeout (ktime_t) 1722 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1723 * 1724 * Make the current task sleep until the given expiry time has 1725 * elapsed. The routine will return immediately unless 1726 * the current task state has been set (see set_current_state()). 1727 * 1728 * The @delta argument gives the kernel the freedom to schedule the 1729 * actual wakeup to a time that is both power and performance friendly. 1730 * The kernel give the normal best effort behavior for "@expires+@delta", 1731 * but may decide to fire the timer earlier, but no earlier than @expires. 1732 * 1733 * You can set the task state as follows - 1734 * 1735 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1736 * pass before the routine returns. 1737 * 1738 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1739 * delivered to the current task. 1740 * 1741 * The current task state is guaranteed to be TASK_RUNNING when this 1742 * routine returns. 1743 * 1744 * Returns 0 when the timer has expired otherwise -EINTR 1745 */ 1746 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, 1747 const enum hrtimer_mode mode) 1748 { 1749 return schedule_hrtimeout_range_clock(expires, delta, mode, 1750 CLOCK_MONOTONIC); 1751 } 1752 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1753 1754 /** 1755 * schedule_hrtimeout - sleep until timeout 1756 * @expires: timeout value (ktime_t) 1757 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1758 * 1759 * Make the current task sleep until the given expiry time has 1760 * elapsed. The routine will return immediately unless 1761 * the current task state has been set (see set_current_state()). 1762 * 1763 * You can set the task state as follows - 1764 * 1765 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1766 * pass before the routine returns. 1767 * 1768 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1769 * delivered to the current task. 1770 * 1771 * The current task state is guaranteed to be TASK_RUNNING when this 1772 * routine returns. 1773 * 1774 * Returns 0 when the timer has expired otherwise -EINTR 1775 */ 1776 int __sched schedule_hrtimeout(ktime_t *expires, 1777 const enum hrtimer_mode mode) 1778 { 1779 return schedule_hrtimeout_range(expires, 0, mode); 1780 } 1781 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1782