1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/utsname.h> 11 #include <linux/mman.h> 12 #include <linux/smp_lock.h> 13 #include <linux/notifier.h> 14 #include <linux/reboot.h> 15 #include <linux/prctl.h> 16 #include <linux/init.h> 17 #include <linux/highuid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kexec.h> 21 #include <linux/workqueue.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 33 #include <linux/compat.h> 34 #include <linux/syscalls.h> 35 36 #include <asm/uaccess.h> 37 #include <asm/io.h> 38 #include <asm/unistd.h> 39 40 #ifndef SET_UNALIGN_CTL 41 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 42 #endif 43 #ifndef GET_UNALIGN_CTL 44 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 45 #endif 46 #ifndef SET_FPEMU_CTL 47 # define SET_FPEMU_CTL(a,b) (-EINVAL) 48 #endif 49 #ifndef GET_FPEMU_CTL 50 # define GET_FPEMU_CTL(a,b) (-EINVAL) 51 #endif 52 #ifndef SET_FPEXC_CTL 53 # define SET_FPEXC_CTL(a,b) (-EINVAL) 54 #endif 55 #ifndef GET_FPEXC_CTL 56 # define GET_FPEXC_CTL(a,b) (-EINVAL) 57 #endif 58 59 /* 60 * this is where the system-wide overflow UID and GID are defined, for 61 * architectures that now have 32-bit UID/GID but didn't in the past 62 */ 63 64 int overflowuid = DEFAULT_OVERFLOWUID; 65 int overflowgid = DEFAULT_OVERFLOWGID; 66 67 #ifdef CONFIG_UID16 68 EXPORT_SYMBOL(overflowuid); 69 EXPORT_SYMBOL(overflowgid); 70 #endif 71 72 /* 73 * the same as above, but for filesystems which can only store a 16-bit 74 * UID and GID. as such, this is needed on all architectures 75 */ 76 77 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 78 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 79 80 EXPORT_SYMBOL(fs_overflowuid); 81 EXPORT_SYMBOL(fs_overflowgid); 82 83 /* 84 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 85 */ 86 87 int C_A_D = 1; 88 int cad_pid = 1; 89 90 /* 91 * Notifier list for kernel code which wants to be called 92 * at shutdown. This is used to stop any idling DMA operations 93 * and the like. 94 */ 95 96 static struct notifier_block *reboot_notifier_list; 97 static DEFINE_RWLOCK(notifier_lock); 98 99 /** 100 * notifier_chain_register - Add notifier to a notifier chain 101 * @list: Pointer to root list pointer 102 * @n: New entry in notifier chain 103 * 104 * Adds a notifier to a notifier chain. 105 * 106 * Currently always returns zero. 107 */ 108 109 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n) 110 { 111 write_lock(¬ifier_lock); 112 while(*list) 113 { 114 if(n->priority > (*list)->priority) 115 break; 116 list= &((*list)->next); 117 } 118 n->next = *list; 119 *list=n; 120 write_unlock(¬ifier_lock); 121 return 0; 122 } 123 124 EXPORT_SYMBOL(notifier_chain_register); 125 126 /** 127 * notifier_chain_unregister - Remove notifier from a notifier chain 128 * @nl: Pointer to root list pointer 129 * @n: New entry in notifier chain 130 * 131 * Removes a notifier from a notifier chain. 132 * 133 * Returns zero on success, or %-ENOENT on failure. 134 */ 135 136 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n) 137 { 138 write_lock(¬ifier_lock); 139 while((*nl)!=NULL) 140 { 141 if((*nl)==n) 142 { 143 *nl=n->next; 144 write_unlock(¬ifier_lock); 145 return 0; 146 } 147 nl=&((*nl)->next); 148 } 149 write_unlock(¬ifier_lock); 150 return -ENOENT; 151 } 152 153 EXPORT_SYMBOL(notifier_chain_unregister); 154 155 /** 156 * notifier_call_chain - Call functions in a notifier chain 157 * @n: Pointer to root pointer of notifier chain 158 * @val: Value passed unmodified to notifier function 159 * @v: Pointer passed unmodified to notifier function 160 * 161 * Calls each function in a notifier chain in turn. 162 * 163 * If the return value of the notifier can be and'd 164 * with %NOTIFY_STOP_MASK, then notifier_call_chain 165 * will return immediately, with the return value of 166 * the notifier function which halted execution. 167 * Otherwise, the return value is the return value 168 * of the last notifier function called. 169 */ 170 171 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v) 172 { 173 int ret=NOTIFY_DONE; 174 struct notifier_block *nb = *n; 175 176 while(nb) 177 { 178 ret=nb->notifier_call(nb,val,v); 179 if(ret&NOTIFY_STOP_MASK) 180 { 181 return ret; 182 } 183 nb=nb->next; 184 } 185 return ret; 186 } 187 188 EXPORT_SYMBOL(notifier_call_chain); 189 190 /** 191 * register_reboot_notifier - Register function to be called at reboot time 192 * @nb: Info about notifier function to be called 193 * 194 * Registers a function with the list of functions 195 * to be called at reboot time. 196 * 197 * Currently always returns zero, as notifier_chain_register 198 * always returns zero. 199 */ 200 201 int register_reboot_notifier(struct notifier_block * nb) 202 { 203 return notifier_chain_register(&reboot_notifier_list, nb); 204 } 205 206 EXPORT_SYMBOL(register_reboot_notifier); 207 208 /** 209 * unregister_reboot_notifier - Unregister previously registered reboot notifier 210 * @nb: Hook to be unregistered 211 * 212 * Unregisters a previously registered reboot 213 * notifier function. 214 * 215 * Returns zero on success, or %-ENOENT on failure. 216 */ 217 218 int unregister_reboot_notifier(struct notifier_block * nb) 219 { 220 return notifier_chain_unregister(&reboot_notifier_list, nb); 221 } 222 223 EXPORT_SYMBOL(unregister_reboot_notifier); 224 225 static int set_one_prio(struct task_struct *p, int niceval, int error) 226 { 227 int no_nice; 228 229 if (p->uid != current->euid && 230 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 231 error = -EPERM; 232 goto out; 233 } 234 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 235 error = -EACCES; 236 goto out; 237 } 238 no_nice = security_task_setnice(p, niceval); 239 if (no_nice) { 240 error = no_nice; 241 goto out; 242 } 243 if (error == -ESRCH) 244 error = 0; 245 set_user_nice(p, niceval); 246 out: 247 return error; 248 } 249 250 asmlinkage long sys_setpriority(int which, int who, int niceval) 251 { 252 struct task_struct *g, *p; 253 struct user_struct *user; 254 int error = -EINVAL; 255 256 if (which > 2 || which < 0) 257 goto out; 258 259 /* normalize: avoid signed division (rounding problems) */ 260 error = -ESRCH; 261 if (niceval < -20) 262 niceval = -20; 263 if (niceval > 19) 264 niceval = 19; 265 266 read_lock(&tasklist_lock); 267 switch (which) { 268 case PRIO_PROCESS: 269 if (!who) 270 who = current->pid; 271 p = find_task_by_pid(who); 272 if (p) 273 error = set_one_prio(p, niceval, error); 274 break; 275 case PRIO_PGRP: 276 if (!who) 277 who = process_group(current); 278 do_each_task_pid(who, PIDTYPE_PGID, p) { 279 error = set_one_prio(p, niceval, error); 280 } while_each_task_pid(who, PIDTYPE_PGID, p); 281 break; 282 case PRIO_USER: 283 user = current->user; 284 if (!who) 285 who = current->uid; 286 else 287 if ((who != current->uid) && !(user = find_user(who))) 288 goto out_unlock; /* No processes for this user */ 289 290 do_each_thread(g, p) 291 if (p->uid == who) 292 error = set_one_prio(p, niceval, error); 293 while_each_thread(g, p); 294 if (who != current->uid) 295 free_uid(user); /* For find_user() */ 296 break; 297 } 298 out_unlock: 299 read_unlock(&tasklist_lock); 300 out: 301 return error; 302 } 303 304 /* 305 * Ugh. To avoid negative return values, "getpriority()" will 306 * not return the normal nice-value, but a negated value that 307 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 308 * to stay compatible. 309 */ 310 asmlinkage long sys_getpriority(int which, int who) 311 { 312 struct task_struct *g, *p; 313 struct user_struct *user; 314 long niceval, retval = -ESRCH; 315 316 if (which > 2 || which < 0) 317 return -EINVAL; 318 319 read_lock(&tasklist_lock); 320 switch (which) { 321 case PRIO_PROCESS: 322 if (!who) 323 who = current->pid; 324 p = find_task_by_pid(who); 325 if (p) { 326 niceval = 20 - task_nice(p); 327 if (niceval > retval) 328 retval = niceval; 329 } 330 break; 331 case PRIO_PGRP: 332 if (!who) 333 who = process_group(current); 334 do_each_task_pid(who, PIDTYPE_PGID, p) { 335 niceval = 20 - task_nice(p); 336 if (niceval > retval) 337 retval = niceval; 338 } while_each_task_pid(who, PIDTYPE_PGID, p); 339 break; 340 case PRIO_USER: 341 user = current->user; 342 if (!who) 343 who = current->uid; 344 else 345 if ((who != current->uid) && !(user = find_user(who))) 346 goto out_unlock; /* No processes for this user */ 347 348 do_each_thread(g, p) 349 if (p->uid == who) { 350 niceval = 20 - task_nice(p); 351 if (niceval > retval) 352 retval = niceval; 353 } 354 while_each_thread(g, p); 355 if (who != current->uid) 356 free_uid(user); /* for find_user() */ 357 break; 358 } 359 out_unlock: 360 read_unlock(&tasklist_lock); 361 362 return retval; 363 } 364 365 /** 366 * emergency_restart - reboot the system 367 * 368 * Without shutting down any hardware or taking any locks 369 * reboot the system. This is called when we know we are in 370 * trouble so this is our best effort to reboot. This is 371 * safe to call in interrupt context. 372 */ 373 void emergency_restart(void) 374 { 375 machine_emergency_restart(); 376 } 377 EXPORT_SYMBOL_GPL(emergency_restart); 378 379 /** 380 * kernel_restart - reboot the system 381 * 382 * Shutdown everything and perform a clean reboot. 383 * This is not safe to call in interrupt context. 384 */ 385 void kernel_restart_prepare(char *cmd) 386 { 387 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 388 system_state = SYSTEM_RESTART; 389 device_shutdown(); 390 } 391 void kernel_restart(char *cmd) 392 { 393 kernel_restart_prepare(cmd); 394 if (!cmd) { 395 printk(KERN_EMERG "Restarting system.\n"); 396 } else { 397 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 398 } 399 printk(".\n"); 400 machine_restart(cmd); 401 } 402 EXPORT_SYMBOL_GPL(kernel_restart); 403 404 /** 405 * kernel_kexec - reboot the system 406 * 407 * Move into place and start executing a preloaded standalone 408 * executable. If nothing was preloaded return an error. 409 */ 410 void kernel_kexec(void) 411 { 412 #ifdef CONFIG_KEXEC 413 struct kimage *image; 414 image = xchg(&kexec_image, 0); 415 if (!image) { 416 return; 417 } 418 kernel_restart_prepare(NULL); 419 printk(KERN_EMERG "Starting new kernel\n"); 420 machine_shutdown(); 421 machine_kexec(image); 422 #endif 423 } 424 EXPORT_SYMBOL_GPL(kernel_kexec); 425 426 /** 427 * kernel_halt - halt the system 428 * 429 * Shutdown everything and perform a clean system halt. 430 */ 431 void kernel_halt_prepare(void) 432 { 433 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL); 434 system_state = SYSTEM_HALT; 435 device_shutdown(); 436 } 437 void kernel_halt(void) 438 { 439 kernel_halt_prepare(); 440 printk(KERN_EMERG "System halted.\n"); 441 machine_halt(); 442 } 443 EXPORT_SYMBOL_GPL(kernel_halt); 444 445 /** 446 * kernel_power_off - power_off the system 447 * 448 * Shutdown everything and perform a clean system power_off. 449 */ 450 void kernel_power_off_prepare(void) 451 { 452 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL); 453 system_state = SYSTEM_POWER_OFF; 454 device_shutdown(); 455 } 456 void kernel_power_off(void) 457 { 458 kernel_power_off_prepare(); 459 printk(KERN_EMERG "Power down.\n"); 460 machine_power_off(); 461 } 462 EXPORT_SYMBOL_GPL(kernel_power_off); 463 464 /* 465 * Reboot system call: for obvious reasons only root may call it, 466 * and even root needs to set up some magic numbers in the registers 467 * so that some mistake won't make this reboot the whole machine. 468 * You can also set the meaning of the ctrl-alt-del-key here. 469 * 470 * reboot doesn't sync: do that yourself before calling this. 471 */ 472 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 473 { 474 char buffer[256]; 475 476 /* We only trust the superuser with rebooting the system. */ 477 if (!capable(CAP_SYS_BOOT)) 478 return -EPERM; 479 480 /* For safety, we require "magic" arguments. */ 481 if (magic1 != LINUX_REBOOT_MAGIC1 || 482 (magic2 != LINUX_REBOOT_MAGIC2 && 483 magic2 != LINUX_REBOOT_MAGIC2A && 484 magic2 != LINUX_REBOOT_MAGIC2B && 485 magic2 != LINUX_REBOOT_MAGIC2C)) 486 return -EINVAL; 487 488 lock_kernel(); 489 switch (cmd) { 490 case LINUX_REBOOT_CMD_RESTART: 491 kernel_restart(NULL); 492 break; 493 494 case LINUX_REBOOT_CMD_CAD_ON: 495 C_A_D = 1; 496 break; 497 498 case LINUX_REBOOT_CMD_CAD_OFF: 499 C_A_D = 0; 500 break; 501 502 case LINUX_REBOOT_CMD_HALT: 503 kernel_halt(); 504 unlock_kernel(); 505 do_exit(0); 506 break; 507 508 case LINUX_REBOOT_CMD_POWER_OFF: 509 kernel_power_off(); 510 unlock_kernel(); 511 do_exit(0); 512 break; 513 514 case LINUX_REBOOT_CMD_RESTART2: 515 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 516 unlock_kernel(); 517 return -EFAULT; 518 } 519 buffer[sizeof(buffer) - 1] = '\0'; 520 521 kernel_restart(buffer); 522 break; 523 524 case LINUX_REBOOT_CMD_KEXEC: 525 kernel_kexec(); 526 unlock_kernel(); 527 return -EINVAL; 528 529 #ifdef CONFIG_SOFTWARE_SUSPEND 530 case LINUX_REBOOT_CMD_SW_SUSPEND: 531 { 532 int ret = software_suspend(); 533 unlock_kernel(); 534 return ret; 535 } 536 #endif 537 538 default: 539 unlock_kernel(); 540 return -EINVAL; 541 } 542 unlock_kernel(); 543 return 0; 544 } 545 546 static void deferred_cad(void *dummy) 547 { 548 kernel_restart(NULL); 549 } 550 551 /* 552 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 553 * As it's called within an interrupt, it may NOT sync: the only choice 554 * is whether to reboot at once, or just ignore the ctrl-alt-del. 555 */ 556 void ctrl_alt_del(void) 557 { 558 static DECLARE_WORK(cad_work, deferred_cad, NULL); 559 560 if (C_A_D) 561 schedule_work(&cad_work); 562 else 563 kill_proc(cad_pid, SIGINT, 1); 564 } 565 566 567 /* 568 * Unprivileged users may change the real gid to the effective gid 569 * or vice versa. (BSD-style) 570 * 571 * If you set the real gid at all, or set the effective gid to a value not 572 * equal to the real gid, then the saved gid is set to the new effective gid. 573 * 574 * This makes it possible for a setgid program to completely drop its 575 * privileges, which is often a useful assertion to make when you are doing 576 * a security audit over a program. 577 * 578 * The general idea is that a program which uses just setregid() will be 579 * 100% compatible with BSD. A program which uses just setgid() will be 580 * 100% compatible with POSIX with saved IDs. 581 * 582 * SMP: There are not races, the GIDs are checked only by filesystem 583 * operations (as far as semantic preservation is concerned). 584 */ 585 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 586 { 587 int old_rgid = current->gid; 588 int old_egid = current->egid; 589 int new_rgid = old_rgid; 590 int new_egid = old_egid; 591 int retval; 592 593 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 594 if (retval) 595 return retval; 596 597 if (rgid != (gid_t) -1) { 598 if ((old_rgid == rgid) || 599 (current->egid==rgid) || 600 capable(CAP_SETGID)) 601 new_rgid = rgid; 602 else 603 return -EPERM; 604 } 605 if (egid != (gid_t) -1) { 606 if ((old_rgid == egid) || 607 (current->egid == egid) || 608 (current->sgid == egid) || 609 capable(CAP_SETGID)) 610 new_egid = egid; 611 else { 612 return -EPERM; 613 } 614 } 615 if (new_egid != old_egid) 616 { 617 current->mm->dumpable = suid_dumpable; 618 smp_wmb(); 619 } 620 if (rgid != (gid_t) -1 || 621 (egid != (gid_t) -1 && egid != old_rgid)) 622 current->sgid = new_egid; 623 current->fsgid = new_egid; 624 current->egid = new_egid; 625 current->gid = new_rgid; 626 key_fsgid_changed(current); 627 proc_id_connector(current, PROC_EVENT_GID); 628 return 0; 629 } 630 631 /* 632 * setgid() is implemented like SysV w/ SAVED_IDS 633 * 634 * SMP: Same implicit races as above. 635 */ 636 asmlinkage long sys_setgid(gid_t gid) 637 { 638 int old_egid = current->egid; 639 int retval; 640 641 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 642 if (retval) 643 return retval; 644 645 if (capable(CAP_SETGID)) 646 { 647 if(old_egid != gid) 648 { 649 current->mm->dumpable = suid_dumpable; 650 smp_wmb(); 651 } 652 current->gid = current->egid = current->sgid = current->fsgid = gid; 653 } 654 else if ((gid == current->gid) || (gid == current->sgid)) 655 { 656 if(old_egid != gid) 657 { 658 current->mm->dumpable = suid_dumpable; 659 smp_wmb(); 660 } 661 current->egid = current->fsgid = gid; 662 } 663 else 664 return -EPERM; 665 666 key_fsgid_changed(current); 667 proc_id_connector(current, PROC_EVENT_GID); 668 return 0; 669 } 670 671 static int set_user(uid_t new_ruid, int dumpclear) 672 { 673 struct user_struct *new_user; 674 675 new_user = alloc_uid(new_ruid); 676 if (!new_user) 677 return -EAGAIN; 678 679 if (atomic_read(&new_user->processes) >= 680 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 681 new_user != &root_user) { 682 free_uid(new_user); 683 return -EAGAIN; 684 } 685 686 switch_uid(new_user); 687 688 if(dumpclear) 689 { 690 current->mm->dumpable = suid_dumpable; 691 smp_wmb(); 692 } 693 current->uid = new_ruid; 694 return 0; 695 } 696 697 /* 698 * Unprivileged users may change the real uid to the effective uid 699 * or vice versa. (BSD-style) 700 * 701 * If you set the real uid at all, or set the effective uid to a value not 702 * equal to the real uid, then the saved uid is set to the new effective uid. 703 * 704 * This makes it possible for a setuid program to completely drop its 705 * privileges, which is often a useful assertion to make when you are doing 706 * a security audit over a program. 707 * 708 * The general idea is that a program which uses just setreuid() will be 709 * 100% compatible with BSD. A program which uses just setuid() will be 710 * 100% compatible with POSIX with saved IDs. 711 */ 712 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 713 { 714 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 715 int retval; 716 717 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 718 if (retval) 719 return retval; 720 721 new_ruid = old_ruid = current->uid; 722 new_euid = old_euid = current->euid; 723 old_suid = current->suid; 724 725 if (ruid != (uid_t) -1) { 726 new_ruid = ruid; 727 if ((old_ruid != ruid) && 728 (current->euid != ruid) && 729 !capable(CAP_SETUID)) 730 return -EPERM; 731 } 732 733 if (euid != (uid_t) -1) { 734 new_euid = euid; 735 if ((old_ruid != euid) && 736 (current->euid != euid) && 737 (current->suid != euid) && 738 !capable(CAP_SETUID)) 739 return -EPERM; 740 } 741 742 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 743 return -EAGAIN; 744 745 if (new_euid != old_euid) 746 { 747 current->mm->dumpable = suid_dumpable; 748 smp_wmb(); 749 } 750 current->fsuid = current->euid = new_euid; 751 if (ruid != (uid_t) -1 || 752 (euid != (uid_t) -1 && euid != old_ruid)) 753 current->suid = current->euid; 754 current->fsuid = current->euid; 755 756 key_fsuid_changed(current); 757 proc_id_connector(current, PROC_EVENT_UID); 758 759 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 760 } 761 762 763 764 /* 765 * setuid() is implemented like SysV with SAVED_IDS 766 * 767 * Note that SAVED_ID's is deficient in that a setuid root program 768 * like sendmail, for example, cannot set its uid to be a normal 769 * user and then switch back, because if you're root, setuid() sets 770 * the saved uid too. If you don't like this, blame the bright people 771 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 772 * will allow a root program to temporarily drop privileges and be able to 773 * regain them by swapping the real and effective uid. 774 */ 775 asmlinkage long sys_setuid(uid_t uid) 776 { 777 int old_euid = current->euid; 778 int old_ruid, old_suid, new_ruid, new_suid; 779 int retval; 780 781 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 782 if (retval) 783 return retval; 784 785 old_ruid = new_ruid = current->uid; 786 old_suid = current->suid; 787 new_suid = old_suid; 788 789 if (capable(CAP_SETUID)) { 790 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 791 return -EAGAIN; 792 new_suid = uid; 793 } else if ((uid != current->uid) && (uid != new_suid)) 794 return -EPERM; 795 796 if (old_euid != uid) 797 { 798 current->mm->dumpable = suid_dumpable; 799 smp_wmb(); 800 } 801 current->fsuid = current->euid = uid; 802 current->suid = new_suid; 803 804 key_fsuid_changed(current); 805 proc_id_connector(current, PROC_EVENT_UID); 806 807 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 808 } 809 810 811 /* 812 * This function implements a generic ability to update ruid, euid, 813 * and suid. This allows you to implement the 4.4 compatible seteuid(). 814 */ 815 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 816 { 817 int old_ruid = current->uid; 818 int old_euid = current->euid; 819 int old_suid = current->suid; 820 int retval; 821 822 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 823 if (retval) 824 return retval; 825 826 if (!capable(CAP_SETUID)) { 827 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 828 (ruid != current->euid) && (ruid != current->suid)) 829 return -EPERM; 830 if ((euid != (uid_t) -1) && (euid != current->uid) && 831 (euid != current->euid) && (euid != current->suid)) 832 return -EPERM; 833 if ((suid != (uid_t) -1) && (suid != current->uid) && 834 (suid != current->euid) && (suid != current->suid)) 835 return -EPERM; 836 } 837 if (ruid != (uid_t) -1) { 838 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 839 return -EAGAIN; 840 } 841 if (euid != (uid_t) -1) { 842 if (euid != current->euid) 843 { 844 current->mm->dumpable = suid_dumpable; 845 smp_wmb(); 846 } 847 current->euid = euid; 848 } 849 current->fsuid = current->euid; 850 if (suid != (uid_t) -1) 851 current->suid = suid; 852 853 key_fsuid_changed(current); 854 proc_id_connector(current, PROC_EVENT_UID); 855 856 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 857 } 858 859 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 860 { 861 int retval; 862 863 if (!(retval = put_user(current->uid, ruid)) && 864 !(retval = put_user(current->euid, euid))) 865 retval = put_user(current->suid, suid); 866 867 return retval; 868 } 869 870 /* 871 * Same as above, but for rgid, egid, sgid. 872 */ 873 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 874 { 875 int retval; 876 877 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 878 if (retval) 879 return retval; 880 881 if (!capable(CAP_SETGID)) { 882 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 883 (rgid != current->egid) && (rgid != current->sgid)) 884 return -EPERM; 885 if ((egid != (gid_t) -1) && (egid != current->gid) && 886 (egid != current->egid) && (egid != current->sgid)) 887 return -EPERM; 888 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 889 (sgid != current->egid) && (sgid != current->sgid)) 890 return -EPERM; 891 } 892 if (egid != (gid_t) -1) { 893 if (egid != current->egid) 894 { 895 current->mm->dumpable = suid_dumpable; 896 smp_wmb(); 897 } 898 current->egid = egid; 899 } 900 current->fsgid = current->egid; 901 if (rgid != (gid_t) -1) 902 current->gid = rgid; 903 if (sgid != (gid_t) -1) 904 current->sgid = sgid; 905 906 key_fsgid_changed(current); 907 proc_id_connector(current, PROC_EVENT_GID); 908 return 0; 909 } 910 911 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 912 { 913 int retval; 914 915 if (!(retval = put_user(current->gid, rgid)) && 916 !(retval = put_user(current->egid, egid))) 917 retval = put_user(current->sgid, sgid); 918 919 return retval; 920 } 921 922 923 /* 924 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 925 * is used for "access()" and for the NFS daemon (letting nfsd stay at 926 * whatever uid it wants to). It normally shadows "euid", except when 927 * explicitly set by setfsuid() or for access.. 928 */ 929 asmlinkage long sys_setfsuid(uid_t uid) 930 { 931 int old_fsuid; 932 933 old_fsuid = current->fsuid; 934 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 935 return old_fsuid; 936 937 if (uid == current->uid || uid == current->euid || 938 uid == current->suid || uid == current->fsuid || 939 capable(CAP_SETUID)) 940 { 941 if (uid != old_fsuid) 942 { 943 current->mm->dumpable = suid_dumpable; 944 smp_wmb(); 945 } 946 current->fsuid = uid; 947 } 948 949 key_fsuid_changed(current); 950 proc_id_connector(current, PROC_EVENT_UID); 951 952 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 953 954 return old_fsuid; 955 } 956 957 /* 958 * Samma p� svenska.. 959 */ 960 asmlinkage long sys_setfsgid(gid_t gid) 961 { 962 int old_fsgid; 963 964 old_fsgid = current->fsgid; 965 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 966 return old_fsgid; 967 968 if (gid == current->gid || gid == current->egid || 969 gid == current->sgid || gid == current->fsgid || 970 capable(CAP_SETGID)) 971 { 972 if (gid != old_fsgid) 973 { 974 current->mm->dumpable = suid_dumpable; 975 smp_wmb(); 976 } 977 current->fsgid = gid; 978 key_fsgid_changed(current); 979 proc_id_connector(current, PROC_EVENT_GID); 980 } 981 return old_fsgid; 982 } 983 984 asmlinkage long sys_times(struct tms __user * tbuf) 985 { 986 /* 987 * In the SMP world we might just be unlucky and have one of 988 * the times increment as we use it. Since the value is an 989 * atomically safe type this is just fine. Conceptually its 990 * as if the syscall took an instant longer to occur. 991 */ 992 if (tbuf) { 993 struct tms tmp; 994 cputime_t utime, stime, cutime, cstime; 995 996 #ifdef CONFIG_SMP 997 if (thread_group_empty(current)) { 998 /* 999 * Single thread case without the use of any locks. 1000 * 1001 * We may race with release_task if two threads are 1002 * executing. However, release task first adds up the 1003 * counters (__exit_signal) before removing the task 1004 * from the process tasklist (__unhash_process). 1005 * __exit_signal also acquires and releases the 1006 * siglock which results in the proper memory ordering 1007 * so that the list modifications are always visible 1008 * after the counters have been updated. 1009 * 1010 * If the counters have been updated by the second thread 1011 * but the thread has not yet been removed from the list 1012 * then the other branch will be executing which will 1013 * block on tasklist_lock until the exit handling of the 1014 * other task is finished. 1015 * 1016 * This also implies that the sighand->siglock cannot 1017 * be held by another processor. So we can also 1018 * skip acquiring that lock. 1019 */ 1020 utime = cputime_add(current->signal->utime, current->utime); 1021 stime = cputime_add(current->signal->utime, current->stime); 1022 cutime = current->signal->cutime; 1023 cstime = current->signal->cstime; 1024 } else 1025 #endif 1026 { 1027 1028 /* Process with multiple threads */ 1029 struct task_struct *tsk = current; 1030 struct task_struct *t; 1031 1032 read_lock(&tasklist_lock); 1033 utime = tsk->signal->utime; 1034 stime = tsk->signal->stime; 1035 t = tsk; 1036 do { 1037 utime = cputime_add(utime, t->utime); 1038 stime = cputime_add(stime, t->stime); 1039 t = next_thread(t); 1040 } while (t != tsk); 1041 1042 /* 1043 * While we have tasklist_lock read-locked, no dying thread 1044 * can be updating current->signal->[us]time. Instead, 1045 * we got their counts included in the live thread loop. 1046 * However, another thread can come in right now and 1047 * do a wait call that updates current->signal->c[us]time. 1048 * To make sure we always see that pair updated atomically, 1049 * we take the siglock around fetching them. 1050 */ 1051 spin_lock_irq(&tsk->sighand->siglock); 1052 cutime = tsk->signal->cutime; 1053 cstime = tsk->signal->cstime; 1054 spin_unlock_irq(&tsk->sighand->siglock); 1055 read_unlock(&tasklist_lock); 1056 } 1057 tmp.tms_utime = cputime_to_clock_t(utime); 1058 tmp.tms_stime = cputime_to_clock_t(stime); 1059 tmp.tms_cutime = cputime_to_clock_t(cutime); 1060 tmp.tms_cstime = cputime_to_clock_t(cstime); 1061 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 1062 return -EFAULT; 1063 } 1064 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 1065 } 1066 1067 /* 1068 * This needs some heavy checking ... 1069 * I just haven't the stomach for it. I also don't fully 1070 * understand sessions/pgrp etc. Let somebody who does explain it. 1071 * 1072 * OK, I think I have the protection semantics right.... this is really 1073 * only important on a multi-user system anyway, to make sure one user 1074 * can't send a signal to a process owned by another. -TYT, 12/12/91 1075 * 1076 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 1077 * LBT 04.03.94 1078 */ 1079 1080 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 1081 { 1082 struct task_struct *p; 1083 int err = -EINVAL; 1084 1085 if (!pid) 1086 pid = current->pid; 1087 if (!pgid) 1088 pgid = pid; 1089 if (pgid < 0) 1090 return -EINVAL; 1091 1092 /* From this point forward we keep holding onto the tasklist lock 1093 * so that our parent does not change from under us. -DaveM 1094 */ 1095 write_lock_irq(&tasklist_lock); 1096 1097 err = -ESRCH; 1098 p = find_task_by_pid(pid); 1099 if (!p) 1100 goto out; 1101 1102 err = -EINVAL; 1103 if (!thread_group_leader(p)) 1104 goto out; 1105 1106 if (p->parent == current || p->real_parent == current) { 1107 err = -EPERM; 1108 if (p->signal->session != current->signal->session) 1109 goto out; 1110 err = -EACCES; 1111 if (p->did_exec) 1112 goto out; 1113 } else { 1114 err = -ESRCH; 1115 if (p != current) 1116 goto out; 1117 } 1118 1119 err = -EPERM; 1120 if (p->signal->leader) 1121 goto out; 1122 1123 if (pgid != pid) { 1124 struct task_struct *p; 1125 1126 do_each_task_pid(pgid, PIDTYPE_PGID, p) { 1127 if (p->signal->session == current->signal->session) 1128 goto ok_pgid; 1129 } while_each_task_pid(pgid, PIDTYPE_PGID, p); 1130 goto out; 1131 } 1132 1133 ok_pgid: 1134 err = security_task_setpgid(p, pgid); 1135 if (err) 1136 goto out; 1137 1138 if (process_group(p) != pgid) { 1139 detach_pid(p, PIDTYPE_PGID); 1140 p->signal->pgrp = pgid; 1141 attach_pid(p, PIDTYPE_PGID, pgid); 1142 } 1143 1144 err = 0; 1145 out: 1146 /* All paths lead to here, thus we are safe. -DaveM */ 1147 write_unlock_irq(&tasklist_lock); 1148 return err; 1149 } 1150 1151 asmlinkage long sys_getpgid(pid_t pid) 1152 { 1153 if (!pid) { 1154 return process_group(current); 1155 } else { 1156 int retval; 1157 struct task_struct *p; 1158 1159 read_lock(&tasklist_lock); 1160 p = find_task_by_pid(pid); 1161 1162 retval = -ESRCH; 1163 if (p) { 1164 retval = security_task_getpgid(p); 1165 if (!retval) 1166 retval = process_group(p); 1167 } 1168 read_unlock(&tasklist_lock); 1169 return retval; 1170 } 1171 } 1172 1173 #ifdef __ARCH_WANT_SYS_GETPGRP 1174 1175 asmlinkage long sys_getpgrp(void) 1176 { 1177 /* SMP - assuming writes are word atomic this is fine */ 1178 return process_group(current); 1179 } 1180 1181 #endif 1182 1183 asmlinkage long sys_getsid(pid_t pid) 1184 { 1185 if (!pid) { 1186 return current->signal->session; 1187 } else { 1188 int retval; 1189 struct task_struct *p; 1190 1191 read_lock(&tasklist_lock); 1192 p = find_task_by_pid(pid); 1193 1194 retval = -ESRCH; 1195 if(p) { 1196 retval = security_task_getsid(p); 1197 if (!retval) 1198 retval = p->signal->session; 1199 } 1200 read_unlock(&tasklist_lock); 1201 return retval; 1202 } 1203 } 1204 1205 asmlinkage long sys_setsid(void) 1206 { 1207 struct pid *pid; 1208 int err = -EPERM; 1209 1210 if (!thread_group_leader(current)) 1211 return -EINVAL; 1212 1213 down(&tty_sem); 1214 write_lock_irq(&tasklist_lock); 1215 1216 pid = find_pid(PIDTYPE_PGID, current->pid); 1217 if (pid) 1218 goto out; 1219 1220 current->signal->leader = 1; 1221 __set_special_pids(current->pid, current->pid); 1222 current->signal->tty = NULL; 1223 current->signal->tty_old_pgrp = 0; 1224 err = process_group(current); 1225 out: 1226 write_unlock_irq(&tasklist_lock); 1227 up(&tty_sem); 1228 return err; 1229 } 1230 1231 /* 1232 * Supplementary group IDs 1233 */ 1234 1235 /* init to 2 - one for init_task, one to ensure it is never freed */ 1236 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1237 1238 struct group_info *groups_alloc(int gidsetsize) 1239 { 1240 struct group_info *group_info; 1241 int nblocks; 1242 int i; 1243 1244 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1245 /* Make sure we always allocate at least one indirect block pointer */ 1246 nblocks = nblocks ? : 1; 1247 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1248 if (!group_info) 1249 return NULL; 1250 group_info->ngroups = gidsetsize; 1251 group_info->nblocks = nblocks; 1252 atomic_set(&group_info->usage, 1); 1253 1254 if (gidsetsize <= NGROUPS_SMALL) { 1255 group_info->blocks[0] = group_info->small_block; 1256 } else { 1257 for (i = 0; i < nblocks; i++) { 1258 gid_t *b; 1259 b = (void *)__get_free_page(GFP_USER); 1260 if (!b) 1261 goto out_undo_partial_alloc; 1262 group_info->blocks[i] = b; 1263 } 1264 } 1265 return group_info; 1266 1267 out_undo_partial_alloc: 1268 while (--i >= 0) { 1269 free_page((unsigned long)group_info->blocks[i]); 1270 } 1271 kfree(group_info); 1272 return NULL; 1273 } 1274 1275 EXPORT_SYMBOL(groups_alloc); 1276 1277 void groups_free(struct group_info *group_info) 1278 { 1279 if (group_info->blocks[0] != group_info->small_block) { 1280 int i; 1281 for (i = 0; i < group_info->nblocks; i++) 1282 free_page((unsigned long)group_info->blocks[i]); 1283 } 1284 kfree(group_info); 1285 } 1286 1287 EXPORT_SYMBOL(groups_free); 1288 1289 /* export the group_info to a user-space array */ 1290 static int groups_to_user(gid_t __user *grouplist, 1291 struct group_info *group_info) 1292 { 1293 int i; 1294 int count = group_info->ngroups; 1295 1296 for (i = 0; i < group_info->nblocks; i++) { 1297 int cp_count = min(NGROUPS_PER_BLOCK, count); 1298 int off = i * NGROUPS_PER_BLOCK; 1299 int len = cp_count * sizeof(*grouplist); 1300 1301 if (copy_to_user(grouplist+off, group_info->blocks[i], len)) 1302 return -EFAULT; 1303 1304 count -= cp_count; 1305 } 1306 return 0; 1307 } 1308 1309 /* fill a group_info from a user-space array - it must be allocated already */ 1310 static int groups_from_user(struct group_info *group_info, 1311 gid_t __user *grouplist) 1312 { 1313 int i; 1314 int count = group_info->ngroups; 1315 1316 for (i = 0; i < group_info->nblocks; i++) { 1317 int cp_count = min(NGROUPS_PER_BLOCK, count); 1318 int off = i * NGROUPS_PER_BLOCK; 1319 int len = cp_count * sizeof(*grouplist); 1320 1321 if (copy_from_user(group_info->blocks[i], grouplist+off, len)) 1322 return -EFAULT; 1323 1324 count -= cp_count; 1325 } 1326 return 0; 1327 } 1328 1329 /* a simple Shell sort */ 1330 static void groups_sort(struct group_info *group_info) 1331 { 1332 int base, max, stride; 1333 int gidsetsize = group_info->ngroups; 1334 1335 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1336 ; /* nothing */ 1337 stride /= 3; 1338 1339 while (stride) { 1340 max = gidsetsize - stride; 1341 for (base = 0; base < max; base++) { 1342 int left = base; 1343 int right = left + stride; 1344 gid_t tmp = GROUP_AT(group_info, right); 1345 1346 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1347 GROUP_AT(group_info, right) = 1348 GROUP_AT(group_info, left); 1349 right = left; 1350 left -= stride; 1351 } 1352 GROUP_AT(group_info, right) = tmp; 1353 } 1354 stride /= 3; 1355 } 1356 } 1357 1358 /* a simple bsearch */ 1359 int groups_search(struct group_info *group_info, gid_t grp) 1360 { 1361 int left, right; 1362 1363 if (!group_info) 1364 return 0; 1365 1366 left = 0; 1367 right = group_info->ngroups; 1368 while (left < right) { 1369 int mid = (left+right)/2; 1370 int cmp = grp - GROUP_AT(group_info, mid); 1371 if (cmp > 0) 1372 left = mid + 1; 1373 else if (cmp < 0) 1374 right = mid; 1375 else 1376 return 1; 1377 } 1378 return 0; 1379 } 1380 1381 /* validate and set current->group_info */ 1382 int set_current_groups(struct group_info *group_info) 1383 { 1384 int retval; 1385 struct group_info *old_info; 1386 1387 retval = security_task_setgroups(group_info); 1388 if (retval) 1389 return retval; 1390 1391 groups_sort(group_info); 1392 get_group_info(group_info); 1393 1394 task_lock(current); 1395 old_info = current->group_info; 1396 current->group_info = group_info; 1397 task_unlock(current); 1398 1399 put_group_info(old_info); 1400 1401 return 0; 1402 } 1403 1404 EXPORT_SYMBOL(set_current_groups); 1405 1406 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1407 { 1408 int i = 0; 1409 1410 /* 1411 * SMP: Nobody else can change our grouplist. Thus we are 1412 * safe. 1413 */ 1414 1415 if (gidsetsize < 0) 1416 return -EINVAL; 1417 1418 /* no need to grab task_lock here; it cannot change */ 1419 get_group_info(current->group_info); 1420 i = current->group_info->ngroups; 1421 if (gidsetsize) { 1422 if (i > gidsetsize) { 1423 i = -EINVAL; 1424 goto out; 1425 } 1426 if (groups_to_user(grouplist, current->group_info)) { 1427 i = -EFAULT; 1428 goto out; 1429 } 1430 } 1431 out: 1432 put_group_info(current->group_info); 1433 return i; 1434 } 1435 1436 /* 1437 * SMP: Our groups are copy-on-write. We can set them safely 1438 * without another task interfering. 1439 */ 1440 1441 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1442 { 1443 struct group_info *group_info; 1444 int retval; 1445 1446 if (!capable(CAP_SETGID)) 1447 return -EPERM; 1448 if ((unsigned)gidsetsize > NGROUPS_MAX) 1449 return -EINVAL; 1450 1451 group_info = groups_alloc(gidsetsize); 1452 if (!group_info) 1453 return -ENOMEM; 1454 retval = groups_from_user(group_info, grouplist); 1455 if (retval) { 1456 put_group_info(group_info); 1457 return retval; 1458 } 1459 1460 retval = set_current_groups(group_info); 1461 put_group_info(group_info); 1462 1463 return retval; 1464 } 1465 1466 /* 1467 * Check whether we're fsgid/egid or in the supplemental group.. 1468 */ 1469 int in_group_p(gid_t grp) 1470 { 1471 int retval = 1; 1472 if (grp != current->fsgid) { 1473 get_group_info(current->group_info); 1474 retval = groups_search(current->group_info, grp); 1475 put_group_info(current->group_info); 1476 } 1477 return retval; 1478 } 1479 1480 EXPORT_SYMBOL(in_group_p); 1481 1482 int in_egroup_p(gid_t grp) 1483 { 1484 int retval = 1; 1485 if (grp != current->egid) { 1486 get_group_info(current->group_info); 1487 retval = groups_search(current->group_info, grp); 1488 put_group_info(current->group_info); 1489 } 1490 return retval; 1491 } 1492 1493 EXPORT_SYMBOL(in_egroup_p); 1494 1495 DECLARE_RWSEM(uts_sem); 1496 1497 EXPORT_SYMBOL(uts_sem); 1498 1499 asmlinkage long sys_newuname(struct new_utsname __user * name) 1500 { 1501 int errno = 0; 1502 1503 down_read(&uts_sem); 1504 if (copy_to_user(name,&system_utsname,sizeof *name)) 1505 errno = -EFAULT; 1506 up_read(&uts_sem); 1507 return errno; 1508 } 1509 1510 asmlinkage long sys_sethostname(char __user *name, int len) 1511 { 1512 int errno; 1513 char tmp[__NEW_UTS_LEN]; 1514 1515 if (!capable(CAP_SYS_ADMIN)) 1516 return -EPERM; 1517 if (len < 0 || len > __NEW_UTS_LEN) 1518 return -EINVAL; 1519 down_write(&uts_sem); 1520 errno = -EFAULT; 1521 if (!copy_from_user(tmp, name, len)) { 1522 memcpy(system_utsname.nodename, tmp, len); 1523 system_utsname.nodename[len] = 0; 1524 errno = 0; 1525 } 1526 up_write(&uts_sem); 1527 return errno; 1528 } 1529 1530 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1531 1532 asmlinkage long sys_gethostname(char __user *name, int len) 1533 { 1534 int i, errno; 1535 1536 if (len < 0) 1537 return -EINVAL; 1538 down_read(&uts_sem); 1539 i = 1 + strlen(system_utsname.nodename); 1540 if (i > len) 1541 i = len; 1542 errno = 0; 1543 if (copy_to_user(name, system_utsname.nodename, i)) 1544 errno = -EFAULT; 1545 up_read(&uts_sem); 1546 return errno; 1547 } 1548 1549 #endif 1550 1551 /* 1552 * Only setdomainname; getdomainname can be implemented by calling 1553 * uname() 1554 */ 1555 asmlinkage long sys_setdomainname(char __user *name, int len) 1556 { 1557 int errno; 1558 char tmp[__NEW_UTS_LEN]; 1559 1560 if (!capable(CAP_SYS_ADMIN)) 1561 return -EPERM; 1562 if (len < 0 || len > __NEW_UTS_LEN) 1563 return -EINVAL; 1564 1565 down_write(&uts_sem); 1566 errno = -EFAULT; 1567 if (!copy_from_user(tmp, name, len)) { 1568 memcpy(system_utsname.domainname, tmp, len); 1569 system_utsname.domainname[len] = 0; 1570 errno = 0; 1571 } 1572 up_write(&uts_sem); 1573 return errno; 1574 } 1575 1576 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1577 { 1578 if (resource >= RLIM_NLIMITS) 1579 return -EINVAL; 1580 else { 1581 struct rlimit value; 1582 task_lock(current->group_leader); 1583 value = current->signal->rlim[resource]; 1584 task_unlock(current->group_leader); 1585 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1586 } 1587 } 1588 1589 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1590 1591 /* 1592 * Back compatibility for getrlimit. Needed for some apps. 1593 */ 1594 1595 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1596 { 1597 struct rlimit x; 1598 if (resource >= RLIM_NLIMITS) 1599 return -EINVAL; 1600 1601 task_lock(current->group_leader); 1602 x = current->signal->rlim[resource]; 1603 task_unlock(current->group_leader); 1604 if(x.rlim_cur > 0x7FFFFFFF) 1605 x.rlim_cur = 0x7FFFFFFF; 1606 if(x.rlim_max > 0x7FFFFFFF) 1607 x.rlim_max = 0x7FFFFFFF; 1608 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1609 } 1610 1611 #endif 1612 1613 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1614 { 1615 struct rlimit new_rlim, *old_rlim; 1616 int retval; 1617 1618 if (resource >= RLIM_NLIMITS) 1619 return -EINVAL; 1620 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1621 return -EFAULT; 1622 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1623 return -EINVAL; 1624 old_rlim = current->signal->rlim + resource; 1625 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1626 !capable(CAP_SYS_RESOURCE)) 1627 return -EPERM; 1628 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) 1629 return -EPERM; 1630 1631 retval = security_task_setrlimit(resource, &new_rlim); 1632 if (retval) 1633 return retval; 1634 1635 task_lock(current->group_leader); 1636 *old_rlim = new_rlim; 1637 task_unlock(current->group_leader); 1638 1639 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY && 1640 (cputime_eq(current->signal->it_prof_expires, cputime_zero) || 1641 new_rlim.rlim_cur <= cputime_to_secs( 1642 current->signal->it_prof_expires))) { 1643 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur); 1644 read_lock(&tasklist_lock); 1645 spin_lock_irq(¤t->sighand->siglock); 1646 set_process_cpu_timer(current, CPUCLOCK_PROF, 1647 &cputime, NULL); 1648 spin_unlock_irq(¤t->sighand->siglock); 1649 read_unlock(&tasklist_lock); 1650 } 1651 1652 return 0; 1653 } 1654 1655 /* 1656 * It would make sense to put struct rusage in the task_struct, 1657 * except that would make the task_struct be *really big*. After 1658 * task_struct gets moved into malloc'ed memory, it would 1659 * make sense to do this. It will make moving the rest of the information 1660 * a lot simpler! (Which we're not doing right now because we're not 1661 * measuring them yet). 1662 * 1663 * This expects to be called with tasklist_lock read-locked or better, 1664 * and the siglock not locked. It may momentarily take the siglock. 1665 * 1666 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1667 * races with threads incrementing their own counters. But since word 1668 * reads are atomic, we either get new values or old values and we don't 1669 * care which for the sums. We always take the siglock to protect reading 1670 * the c* fields from p->signal from races with exit.c updating those 1671 * fields when reaping, so a sample either gets all the additions of a 1672 * given child after it's reaped, or none so this sample is before reaping. 1673 */ 1674 1675 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1676 { 1677 struct task_struct *t; 1678 unsigned long flags; 1679 cputime_t utime, stime; 1680 1681 memset((char *) r, 0, sizeof *r); 1682 1683 if (unlikely(!p->signal)) 1684 return; 1685 1686 switch (who) { 1687 case RUSAGE_CHILDREN: 1688 spin_lock_irqsave(&p->sighand->siglock, flags); 1689 utime = p->signal->cutime; 1690 stime = p->signal->cstime; 1691 r->ru_nvcsw = p->signal->cnvcsw; 1692 r->ru_nivcsw = p->signal->cnivcsw; 1693 r->ru_minflt = p->signal->cmin_flt; 1694 r->ru_majflt = p->signal->cmaj_flt; 1695 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1696 cputime_to_timeval(utime, &r->ru_utime); 1697 cputime_to_timeval(stime, &r->ru_stime); 1698 break; 1699 case RUSAGE_SELF: 1700 spin_lock_irqsave(&p->sighand->siglock, flags); 1701 utime = stime = cputime_zero; 1702 goto sum_group; 1703 case RUSAGE_BOTH: 1704 spin_lock_irqsave(&p->sighand->siglock, flags); 1705 utime = p->signal->cutime; 1706 stime = p->signal->cstime; 1707 r->ru_nvcsw = p->signal->cnvcsw; 1708 r->ru_nivcsw = p->signal->cnivcsw; 1709 r->ru_minflt = p->signal->cmin_flt; 1710 r->ru_majflt = p->signal->cmaj_flt; 1711 sum_group: 1712 utime = cputime_add(utime, p->signal->utime); 1713 stime = cputime_add(stime, p->signal->stime); 1714 r->ru_nvcsw += p->signal->nvcsw; 1715 r->ru_nivcsw += p->signal->nivcsw; 1716 r->ru_minflt += p->signal->min_flt; 1717 r->ru_majflt += p->signal->maj_flt; 1718 t = p; 1719 do { 1720 utime = cputime_add(utime, t->utime); 1721 stime = cputime_add(stime, t->stime); 1722 r->ru_nvcsw += t->nvcsw; 1723 r->ru_nivcsw += t->nivcsw; 1724 r->ru_minflt += t->min_flt; 1725 r->ru_majflt += t->maj_flt; 1726 t = next_thread(t); 1727 } while (t != p); 1728 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1729 cputime_to_timeval(utime, &r->ru_utime); 1730 cputime_to_timeval(stime, &r->ru_stime); 1731 break; 1732 default: 1733 BUG(); 1734 } 1735 } 1736 1737 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1738 { 1739 struct rusage r; 1740 read_lock(&tasklist_lock); 1741 k_getrusage(p, who, &r); 1742 read_unlock(&tasklist_lock); 1743 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1744 } 1745 1746 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1747 { 1748 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) 1749 return -EINVAL; 1750 return getrusage(current, who, ru); 1751 } 1752 1753 asmlinkage long sys_umask(int mask) 1754 { 1755 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1756 return mask; 1757 } 1758 1759 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1760 unsigned long arg4, unsigned long arg5) 1761 { 1762 long error; 1763 1764 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1765 if (error) 1766 return error; 1767 1768 switch (option) { 1769 case PR_SET_PDEATHSIG: 1770 if (!valid_signal(arg2)) { 1771 error = -EINVAL; 1772 break; 1773 } 1774 current->pdeath_signal = arg2; 1775 break; 1776 case PR_GET_PDEATHSIG: 1777 error = put_user(current->pdeath_signal, (int __user *)arg2); 1778 break; 1779 case PR_GET_DUMPABLE: 1780 error = current->mm->dumpable; 1781 break; 1782 case PR_SET_DUMPABLE: 1783 if (arg2 < 0 || arg2 > 2) { 1784 error = -EINVAL; 1785 break; 1786 } 1787 current->mm->dumpable = arg2; 1788 break; 1789 1790 case PR_SET_UNALIGN: 1791 error = SET_UNALIGN_CTL(current, arg2); 1792 break; 1793 case PR_GET_UNALIGN: 1794 error = GET_UNALIGN_CTL(current, arg2); 1795 break; 1796 case PR_SET_FPEMU: 1797 error = SET_FPEMU_CTL(current, arg2); 1798 break; 1799 case PR_GET_FPEMU: 1800 error = GET_FPEMU_CTL(current, arg2); 1801 break; 1802 case PR_SET_FPEXC: 1803 error = SET_FPEXC_CTL(current, arg2); 1804 break; 1805 case PR_GET_FPEXC: 1806 error = GET_FPEXC_CTL(current, arg2); 1807 break; 1808 case PR_GET_TIMING: 1809 error = PR_TIMING_STATISTICAL; 1810 break; 1811 case PR_SET_TIMING: 1812 if (arg2 == PR_TIMING_STATISTICAL) 1813 error = 0; 1814 else 1815 error = -EINVAL; 1816 break; 1817 1818 case PR_GET_KEEPCAPS: 1819 if (current->keep_capabilities) 1820 error = 1; 1821 break; 1822 case PR_SET_KEEPCAPS: 1823 if (arg2 != 0 && arg2 != 1) { 1824 error = -EINVAL; 1825 break; 1826 } 1827 current->keep_capabilities = arg2; 1828 break; 1829 case PR_SET_NAME: { 1830 struct task_struct *me = current; 1831 unsigned char ncomm[sizeof(me->comm)]; 1832 1833 ncomm[sizeof(me->comm)-1] = 0; 1834 if (strncpy_from_user(ncomm, (char __user *)arg2, 1835 sizeof(me->comm)-1) < 0) 1836 return -EFAULT; 1837 set_task_comm(me, ncomm); 1838 return 0; 1839 } 1840 case PR_GET_NAME: { 1841 struct task_struct *me = current; 1842 unsigned char tcomm[sizeof(me->comm)]; 1843 1844 get_task_comm(tcomm, me); 1845 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 1846 return -EFAULT; 1847 return 0; 1848 } 1849 default: 1850 error = -EINVAL; 1851 break; 1852 } 1853 return error; 1854 } 1855