xref: /openbmc/linux/kernel/sys.c (revision 9f46080c41d5f3f7c00b4e169ba4b0b2865258bf)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 
36 #include <asm/uaccess.h>
37 #include <asm/io.h>
38 #include <asm/unistd.h>
39 
40 #ifndef SET_UNALIGN_CTL
41 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
42 #endif
43 #ifndef GET_UNALIGN_CTL
44 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
45 #endif
46 #ifndef SET_FPEMU_CTL
47 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
48 #endif
49 #ifndef GET_FPEMU_CTL
50 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
51 #endif
52 #ifndef SET_FPEXC_CTL
53 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
54 #endif
55 #ifndef GET_FPEXC_CTL
56 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
57 #endif
58 
59 /*
60  * this is where the system-wide overflow UID and GID are defined, for
61  * architectures that now have 32-bit UID/GID but didn't in the past
62  */
63 
64 int overflowuid = DEFAULT_OVERFLOWUID;
65 int overflowgid = DEFAULT_OVERFLOWGID;
66 
67 #ifdef CONFIG_UID16
68 EXPORT_SYMBOL(overflowuid);
69 EXPORT_SYMBOL(overflowgid);
70 #endif
71 
72 /*
73  * the same as above, but for filesystems which can only store a 16-bit
74  * UID and GID. as such, this is needed on all architectures
75  */
76 
77 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
78 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
79 
80 EXPORT_SYMBOL(fs_overflowuid);
81 EXPORT_SYMBOL(fs_overflowgid);
82 
83 /*
84  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
85  */
86 
87 int C_A_D = 1;
88 int cad_pid = 1;
89 
90 /*
91  *	Notifier list for kernel code which wants to be called
92  *	at shutdown. This is used to stop any idling DMA operations
93  *	and the like.
94  */
95 
96 static struct notifier_block *reboot_notifier_list;
97 static DEFINE_RWLOCK(notifier_lock);
98 
99 /**
100  *	notifier_chain_register	- Add notifier to a notifier chain
101  *	@list: Pointer to root list pointer
102  *	@n: New entry in notifier chain
103  *
104  *	Adds a notifier to a notifier chain.
105  *
106  *	Currently always returns zero.
107  */
108 
109 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
110 {
111 	write_lock(&notifier_lock);
112 	while(*list)
113 	{
114 		if(n->priority > (*list)->priority)
115 			break;
116 		list= &((*list)->next);
117 	}
118 	n->next = *list;
119 	*list=n;
120 	write_unlock(&notifier_lock);
121 	return 0;
122 }
123 
124 EXPORT_SYMBOL(notifier_chain_register);
125 
126 /**
127  *	notifier_chain_unregister - Remove notifier from a notifier chain
128  *	@nl: Pointer to root list pointer
129  *	@n: New entry in notifier chain
130  *
131  *	Removes a notifier from a notifier chain.
132  *
133  *	Returns zero on success, or %-ENOENT on failure.
134  */
135 
136 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
137 {
138 	write_lock(&notifier_lock);
139 	while((*nl)!=NULL)
140 	{
141 		if((*nl)==n)
142 		{
143 			*nl=n->next;
144 			write_unlock(&notifier_lock);
145 			return 0;
146 		}
147 		nl=&((*nl)->next);
148 	}
149 	write_unlock(&notifier_lock);
150 	return -ENOENT;
151 }
152 
153 EXPORT_SYMBOL(notifier_chain_unregister);
154 
155 /**
156  *	notifier_call_chain - Call functions in a notifier chain
157  *	@n: Pointer to root pointer of notifier chain
158  *	@val: Value passed unmodified to notifier function
159  *	@v: Pointer passed unmodified to notifier function
160  *
161  *	Calls each function in a notifier chain in turn.
162  *
163  *	If the return value of the notifier can be and'd
164  *	with %NOTIFY_STOP_MASK, then notifier_call_chain
165  *	will return immediately, with the return value of
166  *	the notifier function which halted execution.
167  *	Otherwise, the return value is the return value
168  *	of the last notifier function called.
169  */
170 
171 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
172 {
173 	int ret=NOTIFY_DONE;
174 	struct notifier_block *nb = *n;
175 
176 	while(nb)
177 	{
178 		ret=nb->notifier_call(nb,val,v);
179 		if(ret&NOTIFY_STOP_MASK)
180 		{
181 			return ret;
182 		}
183 		nb=nb->next;
184 	}
185 	return ret;
186 }
187 
188 EXPORT_SYMBOL(notifier_call_chain);
189 
190 /**
191  *	register_reboot_notifier - Register function to be called at reboot time
192  *	@nb: Info about notifier function to be called
193  *
194  *	Registers a function with the list of functions
195  *	to be called at reboot time.
196  *
197  *	Currently always returns zero, as notifier_chain_register
198  *	always returns zero.
199  */
200 
201 int register_reboot_notifier(struct notifier_block * nb)
202 {
203 	return notifier_chain_register(&reboot_notifier_list, nb);
204 }
205 
206 EXPORT_SYMBOL(register_reboot_notifier);
207 
208 /**
209  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
210  *	@nb: Hook to be unregistered
211  *
212  *	Unregisters a previously registered reboot
213  *	notifier function.
214  *
215  *	Returns zero on success, or %-ENOENT on failure.
216  */
217 
218 int unregister_reboot_notifier(struct notifier_block * nb)
219 {
220 	return notifier_chain_unregister(&reboot_notifier_list, nb);
221 }
222 
223 EXPORT_SYMBOL(unregister_reboot_notifier);
224 
225 static int set_one_prio(struct task_struct *p, int niceval, int error)
226 {
227 	int no_nice;
228 
229 	if (p->uid != current->euid &&
230 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
231 		error = -EPERM;
232 		goto out;
233 	}
234 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
235 		error = -EACCES;
236 		goto out;
237 	}
238 	no_nice = security_task_setnice(p, niceval);
239 	if (no_nice) {
240 		error = no_nice;
241 		goto out;
242 	}
243 	if (error == -ESRCH)
244 		error = 0;
245 	set_user_nice(p, niceval);
246 out:
247 	return error;
248 }
249 
250 asmlinkage long sys_setpriority(int which, int who, int niceval)
251 {
252 	struct task_struct *g, *p;
253 	struct user_struct *user;
254 	int error = -EINVAL;
255 
256 	if (which > 2 || which < 0)
257 		goto out;
258 
259 	/* normalize: avoid signed division (rounding problems) */
260 	error = -ESRCH;
261 	if (niceval < -20)
262 		niceval = -20;
263 	if (niceval > 19)
264 		niceval = 19;
265 
266 	read_lock(&tasklist_lock);
267 	switch (which) {
268 		case PRIO_PROCESS:
269 			if (!who)
270 				who = current->pid;
271 			p = find_task_by_pid(who);
272 			if (p)
273 				error = set_one_prio(p, niceval, error);
274 			break;
275 		case PRIO_PGRP:
276 			if (!who)
277 				who = process_group(current);
278 			do_each_task_pid(who, PIDTYPE_PGID, p) {
279 				error = set_one_prio(p, niceval, error);
280 			} while_each_task_pid(who, PIDTYPE_PGID, p);
281 			break;
282 		case PRIO_USER:
283 			user = current->user;
284 			if (!who)
285 				who = current->uid;
286 			else
287 				if ((who != current->uid) && !(user = find_user(who)))
288 					goto out_unlock;	/* No processes for this user */
289 
290 			do_each_thread(g, p)
291 				if (p->uid == who)
292 					error = set_one_prio(p, niceval, error);
293 			while_each_thread(g, p);
294 			if (who != current->uid)
295 				free_uid(user);		/* For find_user() */
296 			break;
297 	}
298 out_unlock:
299 	read_unlock(&tasklist_lock);
300 out:
301 	return error;
302 }
303 
304 /*
305  * Ugh. To avoid negative return values, "getpriority()" will
306  * not return the normal nice-value, but a negated value that
307  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
308  * to stay compatible.
309  */
310 asmlinkage long sys_getpriority(int which, int who)
311 {
312 	struct task_struct *g, *p;
313 	struct user_struct *user;
314 	long niceval, retval = -ESRCH;
315 
316 	if (which > 2 || which < 0)
317 		return -EINVAL;
318 
319 	read_lock(&tasklist_lock);
320 	switch (which) {
321 		case PRIO_PROCESS:
322 			if (!who)
323 				who = current->pid;
324 			p = find_task_by_pid(who);
325 			if (p) {
326 				niceval = 20 - task_nice(p);
327 				if (niceval > retval)
328 					retval = niceval;
329 			}
330 			break;
331 		case PRIO_PGRP:
332 			if (!who)
333 				who = process_group(current);
334 			do_each_task_pid(who, PIDTYPE_PGID, p) {
335 				niceval = 20 - task_nice(p);
336 				if (niceval > retval)
337 					retval = niceval;
338 			} while_each_task_pid(who, PIDTYPE_PGID, p);
339 			break;
340 		case PRIO_USER:
341 			user = current->user;
342 			if (!who)
343 				who = current->uid;
344 			else
345 				if ((who != current->uid) && !(user = find_user(who)))
346 					goto out_unlock;	/* No processes for this user */
347 
348 			do_each_thread(g, p)
349 				if (p->uid == who) {
350 					niceval = 20 - task_nice(p);
351 					if (niceval > retval)
352 						retval = niceval;
353 				}
354 			while_each_thread(g, p);
355 			if (who != current->uid)
356 				free_uid(user);		/* for find_user() */
357 			break;
358 	}
359 out_unlock:
360 	read_unlock(&tasklist_lock);
361 
362 	return retval;
363 }
364 
365 /**
366  *	emergency_restart - reboot the system
367  *
368  *	Without shutting down any hardware or taking any locks
369  *	reboot the system.  This is called when we know we are in
370  *	trouble so this is our best effort to reboot.  This is
371  *	safe to call in interrupt context.
372  */
373 void emergency_restart(void)
374 {
375 	machine_emergency_restart();
376 }
377 EXPORT_SYMBOL_GPL(emergency_restart);
378 
379 /**
380  *	kernel_restart - reboot the system
381  *
382  *	Shutdown everything and perform a clean reboot.
383  *	This is not safe to call in interrupt context.
384  */
385 void kernel_restart_prepare(char *cmd)
386 {
387 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
388 	system_state = SYSTEM_RESTART;
389 	device_shutdown();
390 }
391 void kernel_restart(char *cmd)
392 {
393 	kernel_restart_prepare(cmd);
394 	if (!cmd) {
395 		printk(KERN_EMERG "Restarting system.\n");
396 	} else {
397 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
398 	}
399 	printk(".\n");
400 	machine_restart(cmd);
401 }
402 EXPORT_SYMBOL_GPL(kernel_restart);
403 
404 /**
405  *	kernel_kexec - reboot the system
406  *
407  *	Move into place and start executing a preloaded standalone
408  *	executable.  If nothing was preloaded return an error.
409  */
410 void kernel_kexec(void)
411 {
412 #ifdef CONFIG_KEXEC
413 	struct kimage *image;
414 	image = xchg(&kexec_image, 0);
415 	if (!image) {
416 		return;
417 	}
418 	kernel_restart_prepare(NULL);
419 	printk(KERN_EMERG "Starting new kernel\n");
420 	machine_shutdown();
421 	machine_kexec(image);
422 #endif
423 }
424 EXPORT_SYMBOL_GPL(kernel_kexec);
425 
426 /**
427  *	kernel_halt - halt the system
428  *
429  *	Shutdown everything and perform a clean system halt.
430  */
431 void kernel_halt_prepare(void)
432 {
433 	notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
434 	system_state = SYSTEM_HALT;
435 	device_shutdown();
436 }
437 void kernel_halt(void)
438 {
439 	kernel_halt_prepare();
440 	printk(KERN_EMERG "System halted.\n");
441 	machine_halt();
442 }
443 EXPORT_SYMBOL_GPL(kernel_halt);
444 
445 /**
446  *	kernel_power_off - power_off the system
447  *
448  *	Shutdown everything and perform a clean system power_off.
449  */
450 void kernel_power_off_prepare(void)
451 {
452 	notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
453 	system_state = SYSTEM_POWER_OFF;
454 	device_shutdown();
455 }
456 void kernel_power_off(void)
457 {
458 	kernel_power_off_prepare();
459 	printk(KERN_EMERG "Power down.\n");
460 	machine_power_off();
461 }
462 EXPORT_SYMBOL_GPL(kernel_power_off);
463 
464 /*
465  * Reboot system call: for obvious reasons only root may call it,
466  * and even root needs to set up some magic numbers in the registers
467  * so that some mistake won't make this reboot the whole machine.
468  * You can also set the meaning of the ctrl-alt-del-key here.
469  *
470  * reboot doesn't sync: do that yourself before calling this.
471  */
472 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
473 {
474 	char buffer[256];
475 
476 	/* We only trust the superuser with rebooting the system. */
477 	if (!capable(CAP_SYS_BOOT))
478 		return -EPERM;
479 
480 	/* For safety, we require "magic" arguments. */
481 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
482 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
483 	                magic2 != LINUX_REBOOT_MAGIC2A &&
484 			magic2 != LINUX_REBOOT_MAGIC2B &&
485 	                magic2 != LINUX_REBOOT_MAGIC2C))
486 		return -EINVAL;
487 
488 	lock_kernel();
489 	switch (cmd) {
490 	case LINUX_REBOOT_CMD_RESTART:
491 		kernel_restart(NULL);
492 		break;
493 
494 	case LINUX_REBOOT_CMD_CAD_ON:
495 		C_A_D = 1;
496 		break;
497 
498 	case LINUX_REBOOT_CMD_CAD_OFF:
499 		C_A_D = 0;
500 		break;
501 
502 	case LINUX_REBOOT_CMD_HALT:
503 		kernel_halt();
504 		unlock_kernel();
505 		do_exit(0);
506 		break;
507 
508 	case LINUX_REBOOT_CMD_POWER_OFF:
509 		kernel_power_off();
510 		unlock_kernel();
511 		do_exit(0);
512 		break;
513 
514 	case LINUX_REBOOT_CMD_RESTART2:
515 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
516 			unlock_kernel();
517 			return -EFAULT;
518 		}
519 		buffer[sizeof(buffer) - 1] = '\0';
520 
521 		kernel_restart(buffer);
522 		break;
523 
524 	case LINUX_REBOOT_CMD_KEXEC:
525 		kernel_kexec();
526 		unlock_kernel();
527 		return -EINVAL;
528 
529 #ifdef CONFIG_SOFTWARE_SUSPEND
530 	case LINUX_REBOOT_CMD_SW_SUSPEND:
531 		{
532 			int ret = software_suspend();
533 			unlock_kernel();
534 			return ret;
535 		}
536 #endif
537 
538 	default:
539 		unlock_kernel();
540 		return -EINVAL;
541 	}
542 	unlock_kernel();
543 	return 0;
544 }
545 
546 static void deferred_cad(void *dummy)
547 {
548 	kernel_restart(NULL);
549 }
550 
551 /*
552  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
553  * As it's called within an interrupt, it may NOT sync: the only choice
554  * is whether to reboot at once, or just ignore the ctrl-alt-del.
555  */
556 void ctrl_alt_del(void)
557 {
558 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
559 
560 	if (C_A_D)
561 		schedule_work(&cad_work);
562 	else
563 		kill_proc(cad_pid, SIGINT, 1);
564 }
565 
566 
567 /*
568  * Unprivileged users may change the real gid to the effective gid
569  * or vice versa.  (BSD-style)
570  *
571  * If you set the real gid at all, or set the effective gid to a value not
572  * equal to the real gid, then the saved gid is set to the new effective gid.
573  *
574  * This makes it possible for a setgid program to completely drop its
575  * privileges, which is often a useful assertion to make when you are doing
576  * a security audit over a program.
577  *
578  * The general idea is that a program which uses just setregid() will be
579  * 100% compatible with BSD.  A program which uses just setgid() will be
580  * 100% compatible with POSIX with saved IDs.
581  *
582  * SMP: There are not races, the GIDs are checked only by filesystem
583  *      operations (as far as semantic preservation is concerned).
584  */
585 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
586 {
587 	int old_rgid = current->gid;
588 	int old_egid = current->egid;
589 	int new_rgid = old_rgid;
590 	int new_egid = old_egid;
591 	int retval;
592 
593 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
594 	if (retval)
595 		return retval;
596 
597 	if (rgid != (gid_t) -1) {
598 		if ((old_rgid == rgid) ||
599 		    (current->egid==rgid) ||
600 		    capable(CAP_SETGID))
601 			new_rgid = rgid;
602 		else
603 			return -EPERM;
604 	}
605 	if (egid != (gid_t) -1) {
606 		if ((old_rgid == egid) ||
607 		    (current->egid == egid) ||
608 		    (current->sgid == egid) ||
609 		    capable(CAP_SETGID))
610 			new_egid = egid;
611 		else {
612 			return -EPERM;
613 		}
614 	}
615 	if (new_egid != old_egid)
616 	{
617 		current->mm->dumpable = suid_dumpable;
618 		smp_wmb();
619 	}
620 	if (rgid != (gid_t) -1 ||
621 	    (egid != (gid_t) -1 && egid != old_rgid))
622 		current->sgid = new_egid;
623 	current->fsgid = new_egid;
624 	current->egid = new_egid;
625 	current->gid = new_rgid;
626 	key_fsgid_changed(current);
627 	proc_id_connector(current, PROC_EVENT_GID);
628 	return 0;
629 }
630 
631 /*
632  * setgid() is implemented like SysV w/ SAVED_IDS
633  *
634  * SMP: Same implicit races as above.
635  */
636 asmlinkage long sys_setgid(gid_t gid)
637 {
638 	int old_egid = current->egid;
639 	int retval;
640 
641 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
642 	if (retval)
643 		return retval;
644 
645 	if (capable(CAP_SETGID))
646 	{
647 		if(old_egid != gid)
648 		{
649 			current->mm->dumpable = suid_dumpable;
650 			smp_wmb();
651 		}
652 		current->gid = current->egid = current->sgid = current->fsgid = gid;
653 	}
654 	else if ((gid == current->gid) || (gid == current->sgid))
655 	{
656 		if(old_egid != gid)
657 		{
658 			current->mm->dumpable = suid_dumpable;
659 			smp_wmb();
660 		}
661 		current->egid = current->fsgid = gid;
662 	}
663 	else
664 		return -EPERM;
665 
666 	key_fsgid_changed(current);
667 	proc_id_connector(current, PROC_EVENT_GID);
668 	return 0;
669 }
670 
671 static int set_user(uid_t new_ruid, int dumpclear)
672 {
673 	struct user_struct *new_user;
674 
675 	new_user = alloc_uid(new_ruid);
676 	if (!new_user)
677 		return -EAGAIN;
678 
679 	if (atomic_read(&new_user->processes) >=
680 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
681 			new_user != &root_user) {
682 		free_uid(new_user);
683 		return -EAGAIN;
684 	}
685 
686 	switch_uid(new_user);
687 
688 	if(dumpclear)
689 	{
690 		current->mm->dumpable = suid_dumpable;
691 		smp_wmb();
692 	}
693 	current->uid = new_ruid;
694 	return 0;
695 }
696 
697 /*
698  * Unprivileged users may change the real uid to the effective uid
699  * or vice versa.  (BSD-style)
700  *
701  * If you set the real uid at all, or set the effective uid to a value not
702  * equal to the real uid, then the saved uid is set to the new effective uid.
703  *
704  * This makes it possible for a setuid program to completely drop its
705  * privileges, which is often a useful assertion to make when you are doing
706  * a security audit over a program.
707  *
708  * The general idea is that a program which uses just setreuid() will be
709  * 100% compatible with BSD.  A program which uses just setuid() will be
710  * 100% compatible with POSIX with saved IDs.
711  */
712 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
713 {
714 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
715 	int retval;
716 
717 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
718 	if (retval)
719 		return retval;
720 
721 	new_ruid = old_ruid = current->uid;
722 	new_euid = old_euid = current->euid;
723 	old_suid = current->suid;
724 
725 	if (ruid != (uid_t) -1) {
726 		new_ruid = ruid;
727 		if ((old_ruid != ruid) &&
728 		    (current->euid != ruid) &&
729 		    !capable(CAP_SETUID))
730 			return -EPERM;
731 	}
732 
733 	if (euid != (uid_t) -1) {
734 		new_euid = euid;
735 		if ((old_ruid != euid) &&
736 		    (current->euid != euid) &&
737 		    (current->suid != euid) &&
738 		    !capable(CAP_SETUID))
739 			return -EPERM;
740 	}
741 
742 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
743 		return -EAGAIN;
744 
745 	if (new_euid != old_euid)
746 	{
747 		current->mm->dumpable = suid_dumpable;
748 		smp_wmb();
749 	}
750 	current->fsuid = current->euid = new_euid;
751 	if (ruid != (uid_t) -1 ||
752 	    (euid != (uid_t) -1 && euid != old_ruid))
753 		current->suid = current->euid;
754 	current->fsuid = current->euid;
755 
756 	key_fsuid_changed(current);
757 	proc_id_connector(current, PROC_EVENT_UID);
758 
759 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
760 }
761 
762 
763 
764 /*
765  * setuid() is implemented like SysV with SAVED_IDS
766  *
767  * Note that SAVED_ID's is deficient in that a setuid root program
768  * like sendmail, for example, cannot set its uid to be a normal
769  * user and then switch back, because if you're root, setuid() sets
770  * the saved uid too.  If you don't like this, blame the bright people
771  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
772  * will allow a root program to temporarily drop privileges and be able to
773  * regain them by swapping the real and effective uid.
774  */
775 asmlinkage long sys_setuid(uid_t uid)
776 {
777 	int old_euid = current->euid;
778 	int old_ruid, old_suid, new_ruid, new_suid;
779 	int retval;
780 
781 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
782 	if (retval)
783 		return retval;
784 
785 	old_ruid = new_ruid = current->uid;
786 	old_suid = current->suid;
787 	new_suid = old_suid;
788 
789 	if (capable(CAP_SETUID)) {
790 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
791 			return -EAGAIN;
792 		new_suid = uid;
793 	} else if ((uid != current->uid) && (uid != new_suid))
794 		return -EPERM;
795 
796 	if (old_euid != uid)
797 	{
798 		current->mm->dumpable = suid_dumpable;
799 		smp_wmb();
800 	}
801 	current->fsuid = current->euid = uid;
802 	current->suid = new_suid;
803 
804 	key_fsuid_changed(current);
805 	proc_id_connector(current, PROC_EVENT_UID);
806 
807 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
808 }
809 
810 
811 /*
812  * This function implements a generic ability to update ruid, euid,
813  * and suid.  This allows you to implement the 4.4 compatible seteuid().
814  */
815 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
816 {
817 	int old_ruid = current->uid;
818 	int old_euid = current->euid;
819 	int old_suid = current->suid;
820 	int retval;
821 
822 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
823 	if (retval)
824 		return retval;
825 
826 	if (!capable(CAP_SETUID)) {
827 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
828 		    (ruid != current->euid) && (ruid != current->suid))
829 			return -EPERM;
830 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
831 		    (euid != current->euid) && (euid != current->suid))
832 			return -EPERM;
833 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
834 		    (suid != current->euid) && (suid != current->suid))
835 			return -EPERM;
836 	}
837 	if (ruid != (uid_t) -1) {
838 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
839 			return -EAGAIN;
840 	}
841 	if (euid != (uid_t) -1) {
842 		if (euid != current->euid)
843 		{
844 			current->mm->dumpable = suid_dumpable;
845 			smp_wmb();
846 		}
847 		current->euid = euid;
848 	}
849 	current->fsuid = current->euid;
850 	if (suid != (uid_t) -1)
851 		current->suid = suid;
852 
853 	key_fsuid_changed(current);
854 	proc_id_connector(current, PROC_EVENT_UID);
855 
856 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
857 }
858 
859 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
860 {
861 	int retval;
862 
863 	if (!(retval = put_user(current->uid, ruid)) &&
864 	    !(retval = put_user(current->euid, euid)))
865 		retval = put_user(current->suid, suid);
866 
867 	return retval;
868 }
869 
870 /*
871  * Same as above, but for rgid, egid, sgid.
872  */
873 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
874 {
875 	int retval;
876 
877 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
878 	if (retval)
879 		return retval;
880 
881 	if (!capable(CAP_SETGID)) {
882 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
883 		    (rgid != current->egid) && (rgid != current->sgid))
884 			return -EPERM;
885 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
886 		    (egid != current->egid) && (egid != current->sgid))
887 			return -EPERM;
888 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
889 		    (sgid != current->egid) && (sgid != current->sgid))
890 			return -EPERM;
891 	}
892 	if (egid != (gid_t) -1) {
893 		if (egid != current->egid)
894 		{
895 			current->mm->dumpable = suid_dumpable;
896 			smp_wmb();
897 		}
898 		current->egid = egid;
899 	}
900 	current->fsgid = current->egid;
901 	if (rgid != (gid_t) -1)
902 		current->gid = rgid;
903 	if (sgid != (gid_t) -1)
904 		current->sgid = sgid;
905 
906 	key_fsgid_changed(current);
907 	proc_id_connector(current, PROC_EVENT_GID);
908 	return 0;
909 }
910 
911 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
912 {
913 	int retval;
914 
915 	if (!(retval = put_user(current->gid, rgid)) &&
916 	    !(retval = put_user(current->egid, egid)))
917 		retval = put_user(current->sgid, sgid);
918 
919 	return retval;
920 }
921 
922 
923 /*
924  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
925  * is used for "access()" and for the NFS daemon (letting nfsd stay at
926  * whatever uid it wants to). It normally shadows "euid", except when
927  * explicitly set by setfsuid() or for access..
928  */
929 asmlinkage long sys_setfsuid(uid_t uid)
930 {
931 	int old_fsuid;
932 
933 	old_fsuid = current->fsuid;
934 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
935 		return old_fsuid;
936 
937 	if (uid == current->uid || uid == current->euid ||
938 	    uid == current->suid || uid == current->fsuid ||
939 	    capable(CAP_SETUID))
940 	{
941 		if (uid != old_fsuid)
942 		{
943 			current->mm->dumpable = suid_dumpable;
944 			smp_wmb();
945 		}
946 		current->fsuid = uid;
947 	}
948 
949 	key_fsuid_changed(current);
950 	proc_id_connector(current, PROC_EVENT_UID);
951 
952 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
953 
954 	return old_fsuid;
955 }
956 
957 /*
958  * Samma p� svenska..
959  */
960 asmlinkage long sys_setfsgid(gid_t gid)
961 {
962 	int old_fsgid;
963 
964 	old_fsgid = current->fsgid;
965 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
966 		return old_fsgid;
967 
968 	if (gid == current->gid || gid == current->egid ||
969 	    gid == current->sgid || gid == current->fsgid ||
970 	    capable(CAP_SETGID))
971 	{
972 		if (gid != old_fsgid)
973 		{
974 			current->mm->dumpable = suid_dumpable;
975 			smp_wmb();
976 		}
977 		current->fsgid = gid;
978 		key_fsgid_changed(current);
979 		proc_id_connector(current, PROC_EVENT_GID);
980 	}
981 	return old_fsgid;
982 }
983 
984 asmlinkage long sys_times(struct tms __user * tbuf)
985 {
986 	/*
987 	 *	In the SMP world we might just be unlucky and have one of
988 	 *	the times increment as we use it. Since the value is an
989 	 *	atomically safe type this is just fine. Conceptually its
990 	 *	as if the syscall took an instant longer to occur.
991 	 */
992 	if (tbuf) {
993 		struct tms tmp;
994 		cputime_t utime, stime, cutime, cstime;
995 
996 #ifdef CONFIG_SMP
997 		if (thread_group_empty(current)) {
998 			/*
999 			 * Single thread case without the use of any locks.
1000 			 *
1001 			 * We may race with release_task if two threads are
1002 			 * executing. However, release task first adds up the
1003 			 * counters (__exit_signal) before  removing the task
1004 			 * from the process tasklist (__unhash_process).
1005 			 * __exit_signal also acquires and releases the
1006 			 * siglock which results in the proper memory ordering
1007 			 * so that the list modifications are always visible
1008 			 * after the counters have been updated.
1009 			 *
1010 			 * If the counters have been updated by the second thread
1011 			 * but the thread has not yet been removed from the list
1012 			 * then the other branch will be executing which will
1013 			 * block on tasklist_lock until the exit handling of the
1014 			 * other task is finished.
1015 			 *
1016 			 * This also implies that the sighand->siglock cannot
1017 			 * be held by another processor. So we can also
1018 			 * skip acquiring that lock.
1019 			 */
1020 			utime = cputime_add(current->signal->utime, current->utime);
1021 			stime = cputime_add(current->signal->utime, current->stime);
1022 			cutime = current->signal->cutime;
1023 			cstime = current->signal->cstime;
1024 		} else
1025 #endif
1026 		{
1027 
1028 			/* Process with multiple threads */
1029 			struct task_struct *tsk = current;
1030 			struct task_struct *t;
1031 
1032 			read_lock(&tasklist_lock);
1033 			utime = tsk->signal->utime;
1034 			stime = tsk->signal->stime;
1035 			t = tsk;
1036 			do {
1037 				utime = cputime_add(utime, t->utime);
1038 				stime = cputime_add(stime, t->stime);
1039 				t = next_thread(t);
1040 			} while (t != tsk);
1041 
1042 			/*
1043 			 * While we have tasklist_lock read-locked, no dying thread
1044 			 * can be updating current->signal->[us]time.  Instead,
1045 			 * we got their counts included in the live thread loop.
1046 			 * However, another thread can come in right now and
1047 			 * do a wait call that updates current->signal->c[us]time.
1048 			 * To make sure we always see that pair updated atomically,
1049 			 * we take the siglock around fetching them.
1050 			 */
1051 			spin_lock_irq(&tsk->sighand->siglock);
1052 			cutime = tsk->signal->cutime;
1053 			cstime = tsk->signal->cstime;
1054 			spin_unlock_irq(&tsk->sighand->siglock);
1055 			read_unlock(&tasklist_lock);
1056 		}
1057 		tmp.tms_utime = cputime_to_clock_t(utime);
1058 		tmp.tms_stime = cputime_to_clock_t(stime);
1059 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1060 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1061 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1062 			return -EFAULT;
1063 	}
1064 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1065 }
1066 
1067 /*
1068  * This needs some heavy checking ...
1069  * I just haven't the stomach for it. I also don't fully
1070  * understand sessions/pgrp etc. Let somebody who does explain it.
1071  *
1072  * OK, I think I have the protection semantics right.... this is really
1073  * only important on a multi-user system anyway, to make sure one user
1074  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1075  *
1076  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1077  * LBT 04.03.94
1078  */
1079 
1080 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1081 {
1082 	struct task_struct *p;
1083 	int err = -EINVAL;
1084 
1085 	if (!pid)
1086 		pid = current->pid;
1087 	if (!pgid)
1088 		pgid = pid;
1089 	if (pgid < 0)
1090 		return -EINVAL;
1091 
1092 	/* From this point forward we keep holding onto the tasklist lock
1093 	 * so that our parent does not change from under us. -DaveM
1094 	 */
1095 	write_lock_irq(&tasklist_lock);
1096 
1097 	err = -ESRCH;
1098 	p = find_task_by_pid(pid);
1099 	if (!p)
1100 		goto out;
1101 
1102 	err = -EINVAL;
1103 	if (!thread_group_leader(p))
1104 		goto out;
1105 
1106 	if (p->parent == current || p->real_parent == current) {
1107 		err = -EPERM;
1108 		if (p->signal->session != current->signal->session)
1109 			goto out;
1110 		err = -EACCES;
1111 		if (p->did_exec)
1112 			goto out;
1113 	} else {
1114 		err = -ESRCH;
1115 		if (p != current)
1116 			goto out;
1117 	}
1118 
1119 	err = -EPERM;
1120 	if (p->signal->leader)
1121 		goto out;
1122 
1123 	if (pgid != pid) {
1124 		struct task_struct *p;
1125 
1126 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1127 			if (p->signal->session == current->signal->session)
1128 				goto ok_pgid;
1129 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
1130 		goto out;
1131 	}
1132 
1133 ok_pgid:
1134 	err = security_task_setpgid(p, pgid);
1135 	if (err)
1136 		goto out;
1137 
1138 	if (process_group(p) != pgid) {
1139 		detach_pid(p, PIDTYPE_PGID);
1140 		p->signal->pgrp = pgid;
1141 		attach_pid(p, PIDTYPE_PGID, pgid);
1142 	}
1143 
1144 	err = 0;
1145 out:
1146 	/* All paths lead to here, thus we are safe. -DaveM */
1147 	write_unlock_irq(&tasklist_lock);
1148 	return err;
1149 }
1150 
1151 asmlinkage long sys_getpgid(pid_t pid)
1152 {
1153 	if (!pid) {
1154 		return process_group(current);
1155 	} else {
1156 		int retval;
1157 		struct task_struct *p;
1158 
1159 		read_lock(&tasklist_lock);
1160 		p = find_task_by_pid(pid);
1161 
1162 		retval = -ESRCH;
1163 		if (p) {
1164 			retval = security_task_getpgid(p);
1165 			if (!retval)
1166 				retval = process_group(p);
1167 		}
1168 		read_unlock(&tasklist_lock);
1169 		return retval;
1170 	}
1171 }
1172 
1173 #ifdef __ARCH_WANT_SYS_GETPGRP
1174 
1175 asmlinkage long sys_getpgrp(void)
1176 {
1177 	/* SMP - assuming writes are word atomic this is fine */
1178 	return process_group(current);
1179 }
1180 
1181 #endif
1182 
1183 asmlinkage long sys_getsid(pid_t pid)
1184 {
1185 	if (!pid) {
1186 		return current->signal->session;
1187 	} else {
1188 		int retval;
1189 		struct task_struct *p;
1190 
1191 		read_lock(&tasklist_lock);
1192 		p = find_task_by_pid(pid);
1193 
1194 		retval = -ESRCH;
1195 		if(p) {
1196 			retval = security_task_getsid(p);
1197 			if (!retval)
1198 				retval = p->signal->session;
1199 		}
1200 		read_unlock(&tasklist_lock);
1201 		return retval;
1202 	}
1203 }
1204 
1205 asmlinkage long sys_setsid(void)
1206 {
1207 	struct pid *pid;
1208 	int err = -EPERM;
1209 
1210 	if (!thread_group_leader(current))
1211 		return -EINVAL;
1212 
1213 	down(&tty_sem);
1214 	write_lock_irq(&tasklist_lock);
1215 
1216 	pid = find_pid(PIDTYPE_PGID, current->pid);
1217 	if (pid)
1218 		goto out;
1219 
1220 	current->signal->leader = 1;
1221 	__set_special_pids(current->pid, current->pid);
1222 	current->signal->tty = NULL;
1223 	current->signal->tty_old_pgrp = 0;
1224 	err = process_group(current);
1225 out:
1226 	write_unlock_irq(&tasklist_lock);
1227 	up(&tty_sem);
1228 	return err;
1229 }
1230 
1231 /*
1232  * Supplementary group IDs
1233  */
1234 
1235 /* init to 2 - one for init_task, one to ensure it is never freed */
1236 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1237 
1238 struct group_info *groups_alloc(int gidsetsize)
1239 {
1240 	struct group_info *group_info;
1241 	int nblocks;
1242 	int i;
1243 
1244 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1245 	/* Make sure we always allocate at least one indirect block pointer */
1246 	nblocks = nblocks ? : 1;
1247 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1248 	if (!group_info)
1249 		return NULL;
1250 	group_info->ngroups = gidsetsize;
1251 	group_info->nblocks = nblocks;
1252 	atomic_set(&group_info->usage, 1);
1253 
1254 	if (gidsetsize <= NGROUPS_SMALL) {
1255 		group_info->blocks[0] = group_info->small_block;
1256 	} else {
1257 		for (i = 0; i < nblocks; i++) {
1258 			gid_t *b;
1259 			b = (void *)__get_free_page(GFP_USER);
1260 			if (!b)
1261 				goto out_undo_partial_alloc;
1262 			group_info->blocks[i] = b;
1263 		}
1264 	}
1265 	return group_info;
1266 
1267 out_undo_partial_alloc:
1268 	while (--i >= 0) {
1269 		free_page((unsigned long)group_info->blocks[i]);
1270 	}
1271 	kfree(group_info);
1272 	return NULL;
1273 }
1274 
1275 EXPORT_SYMBOL(groups_alloc);
1276 
1277 void groups_free(struct group_info *group_info)
1278 {
1279 	if (group_info->blocks[0] != group_info->small_block) {
1280 		int i;
1281 		for (i = 0; i < group_info->nblocks; i++)
1282 			free_page((unsigned long)group_info->blocks[i]);
1283 	}
1284 	kfree(group_info);
1285 }
1286 
1287 EXPORT_SYMBOL(groups_free);
1288 
1289 /* export the group_info to a user-space array */
1290 static int groups_to_user(gid_t __user *grouplist,
1291     struct group_info *group_info)
1292 {
1293 	int i;
1294 	int count = group_info->ngroups;
1295 
1296 	for (i = 0; i < group_info->nblocks; i++) {
1297 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1298 		int off = i * NGROUPS_PER_BLOCK;
1299 		int len = cp_count * sizeof(*grouplist);
1300 
1301 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1302 			return -EFAULT;
1303 
1304 		count -= cp_count;
1305 	}
1306 	return 0;
1307 }
1308 
1309 /* fill a group_info from a user-space array - it must be allocated already */
1310 static int groups_from_user(struct group_info *group_info,
1311     gid_t __user *grouplist)
1312  {
1313 	int i;
1314 	int count = group_info->ngroups;
1315 
1316 	for (i = 0; i < group_info->nblocks; i++) {
1317 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1318 		int off = i * NGROUPS_PER_BLOCK;
1319 		int len = cp_count * sizeof(*grouplist);
1320 
1321 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1322 			return -EFAULT;
1323 
1324 		count -= cp_count;
1325 	}
1326 	return 0;
1327 }
1328 
1329 /* a simple Shell sort */
1330 static void groups_sort(struct group_info *group_info)
1331 {
1332 	int base, max, stride;
1333 	int gidsetsize = group_info->ngroups;
1334 
1335 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1336 		; /* nothing */
1337 	stride /= 3;
1338 
1339 	while (stride) {
1340 		max = gidsetsize - stride;
1341 		for (base = 0; base < max; base++) {
1342 			int left = base;
1343 			int right = left + stride;
1344 			gid_t tmp = GROUP_AT(group_info, right);
1345 
1346 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1347 				GROUP_AT(group_info, right) =
1348 				    GROUP_AT(group_info, left);
1349 				right = left;
1350 				left -= stride;
1351 			}
1352 			GROUP_AT(group_info, right) = tmp;
1353 		}
1354 		stride /= 3;
1355 	}
1356 }
1357 
1358 /* a simple bsearch */
1359 int groups_search(struct group_info *group_info, gid_t grp)
1360 {
1361 	int left, right;
1362 
1363 	if (!group_info)
1364 		return 0;
1365 
1366 	left = 0;
1367 	right = group_info->ngroups;
1368 	while (left < right) {
1369 		int mid = (left+right)/2;
1370 		int cmp = grp - GROUP_AT(group_info, mid);
1371 		if (cmp > 0)
1372 			left = mid + 1;
1373 		else if (cmp < 0)
1374 			right = mid;
1375 		else
1376 			return 1;
1377 	}
1378 	return 0;
1379 }
1380 
1381 /* validate and set current->group_info */
1382 int set_current_groups(struct group_info *group_info)
1383 {
1384 	int retval;
1385 	struct group_info *old_info;
1386 
1387 	retval = security_task_setgroups(group_info);
1388 	if (retval)
1389 		return retval;
1390 
1391 	groups_sort(group_info);
1392 	get_group_info(group_info);
1393 
1394 	task_lock(current);
1395 	old_info = current->group_info;
1396 	current->group_info = group_info;
1397 	task_unlock(current);
1398 
1399 	put_group_info(old_info);
1400 
1401 	return 0;
1402 }
1403 
1404 EXPORT_SYMBOL(set_current_groups);
1405 
1406 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1407 {
1408 	int i = 0;
1409 
1410 	/*
1411 	 *	SMP: Nobody else can change our grouplist. Thus we are
1412 	 *	safe.
1413 	 */
1414 
1415 	if (gidsetsize < 0)
1416 		return -EINVAL;
1417 
1418 	/* no need to grab task_lock here; it cannot change */
1419 	get_group_info(current->group_info);
1420 	i = current->group_info->ngroups;
1421 	if (gidsetsize) {
1422 		if (i > gidsetsize) {
1423 			i = -EINVAL;
1424 			goto out;
1425 		}
1426 		if (groups_to_user(grouplist, current->group_info)) {
1427 			i = -EFAULT;
1428 			goto out;
1429 		}
1430 	}
1431 out:
1432 	put_group_info(current->group_info);
1433 	return i;
1434 }
1435 
1436 /*
1437  *	SMP: Our groups are copy-on-write. We can set them safely
1438  *	without another task interfering.
1439  */
1440 
1441 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1442 {
1443 	struct group_info *group_info;
1444 	int retval;
1445 
1446 	if (!capable(CAP_SETGID))
1447 		return -EPERM;
1448 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1449 		return -EINVAL;
1450 
1451 	group_info = groups_alloc(gidsetsize);
1452 	if (!group_info)
1453 		return -ENOMEM;
1454 	retval = groups_from_user(group_info, grouplist);
1455 	if (retval) {
1456 		put_group_info(group_info);
1457 		return retval;
1458 	}
1459 
1460 	retval = set_current_groups(group_info);
1461 	put_group_info(group_info);
1462 
1463 	return retval;
1464 }
1465 
1466 /*
1467  * Check whether we're fsgid/egid or in the supplemental group..
1468  */
1469 int in_group_p(gid_t grp)
1470 {
1471 	int retval = 1;
1472 	if (grp != current->fsgid) {
1473 		get_group_info(current->group_info);
1474 		retval = groups_search(current->group_info, grp);
1475 		put_group_info(current->group_info);
1476 	}
1477 	return retval;
1478 }
1479 
1480 EXPORT_SYMBOL(in_group_p);
1481 
1482 int in_egroup_p(gid_t grp)
1483 {
1484 	int retval = 1;
1485 	if (grp != current->egid) {
1486 		get_group_info(current->group_info);
1487 		retval = groups_search(current->group_info, grp);
1488 		put_group_info(current->group_info);
1489 	}
1490 	return retval;
1491 }
1492 
1493 EXPORT_SYMBOL(in_egroup_p);
1494 
1495 DECLARE_RWSEM(uts_sem);
1496 
1497 EXPORT_SYMBOL(uts_sem);
1498 
1499 asmlinkage long sys_newuname(struct new_utsname __user * name)
1500 {
1501 	int errno = 0;
1502 
1503 	down_read(&uts_sem);
1504 	if (copy_to_user(name,&system_utsname,sizeof *name))
1505 		errno = -EFAULT;
1506 	up_read(&uts_sem);
1507 	return errno;
1508 }
1509 
1510 asmlinkage long sys_sethostname(char __user *name, int len)
1511 {
1512 	int errno;
1513 	char tmp[__NEW_UTS_LEN];
1514 
1515 	if (!capable(CAP_SYS_ADMIN))
1516 		return -EPERM;
1517 	if (len < 0 || len > __NEW_UTS_LEN)
1518 		return -EINVAL;
1519 	down_write(&uts_sem);
1520 	errno = -EFAULT;
1521 	if (!copy_from_user(tmp, name, len)) {
1522 		memcpy(system_utsname.nodename, tmp, len);
1523 		system_utsname.nodename[len] = 0;
1524 		errno = 0;
1525 	}
1526 	up_write(&uts_sem);
1527 	return errno;
1528 }
1529 
1530 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1531 
1532 asmlinkage long sys_gethostname(char __user *name, int len)
1533 {
1534 	int i, errno;
1535 
1536 	if (len < 0)
1537 		return -EINVAL;
1538 	down_read(&uts_sem);
1539 	i = 1 + strlen(system_utsname.nodename);
1540 	if (i > len)
1541 		i = len;
1542 	errno = 0;
1543 	if (copy_to_user(name, system_utsname.nodename, i))
1544 		errno = -EFAULT;
1545 	up_read(&uts_sem);
1546 	return errno;
1547 }
1548 
1549 #endif
1550 
1551 /*
1552  * Only setdomainname; getdomainname can be implemented by calling
1553  * uname()
1554  */
1555 asmlinkage long sys_setdomainname(char __user *name, int len)
1556 {
1557 	int errno;
1558 	char tmp[__NEW_UTS_LEN];
1559 
1560 	if (!capable(CAP_SYS_ADMIN))
1561 		return -EPERM;
1562 	if (len < 0 || len > __NEW_UTS_LEN)
1563 		return -EINVAL;
1564 
1565 	down_write(&uts_sem);
1566 	errno = -EFAULT;
1567 	if (!copy_from_user(tmp, name, len)) {
1568 		memcpy(system_utsname.domainname, tmp, len);
1569 		system_utsname.domainname[len] = 0;
1570 		errno = 0;
1571 	}
1572 	up_write(&uts_sem);
1573 	return errno;
1574 }
1575 
1576 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1577 {
1578 	if (resource >= RLIM_NLIMITS)
1579 		return -EINVAL;
1580 	else {
1581 		struct rlimit value;
1582 		task_lock(current->group_leader);
1583 		value = current->signal->rlim[resource];
1584 		task_unlock(current->group_leader);
1585 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1586 	}
1587 }
1588 
1589 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1590 
1591 /*
1592  *	Back compatibility for getrlimit. Needed for some apps.
1593  */
1594 
1595 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1596 {
1597 	struct rlimit x;
1598 	if (resource >= RLIM_NLIMITS)
1599 		return -EINVAL;
1600 
1601 	task_lock(current->group_leader);
1602 	x = current->signal->rlim[resource];
1603 	task_unlock(current->group_leader);
1604 	if(x.rlim_cur > 0x7FFFFFFF)
1605 		x.rlim_cur = 0x7FFFFFFF;
1606 	if(x.rlim_max > 0x7FFFFFFF)
1607 		x.rlim_max = 0x7FFFFFFF;
1608 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1609 }
1610 
1611 #endif
1612 
1613 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1614 {
1615 	struct rlimit new_rlim, *old_rlim;
1616 	int retval;
1617 
1618 	if (resource >= RLIM_NLIMITS)
1619 		return -EINVAL;
1620 	if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1621 		return -EFAULT;
1622        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1623                return -EINVAL;
1624 	old_rlim = current->signal->rlim + resource;
1625 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1626 	    !capable(CAP_SYS_RESOURCE))
1627 		return -EPERM;
1628 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1629 			return -EPERM;
1630 
1631 	retval = security_task_setrlimit(resource, &new_rlim);
1632 	if (retval)
1633 		return retval;
1634 
1635 	task_lock(current->group_leader);
1636 	*old_rlim = new_rlim;
1637 	task_unlock(current->group_leader);
1638 
1639 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1640 	    (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1641 	     new_rlim.rlim_cur <= cputime_to_secs(
1642 		     current->signal->it_prof_expires))) {
1643 		cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1644 		read_lock(&tasklist_lock);
1645 		spin_lock_irq(&current->sighand->siglock);
1646 		set_process_cpu_timer(current, CPUCLOCK_PROF,
1647 				      &cputime, NULL);
1648 		spin_unlock_irq(&current->sighand->siglock);
1649 		read_unlock(&tasklist_lock);
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 /*
1656  * It would make sense to put struct rusage in the task_struct,
1657  * except that would make the task_struct be *really big*.  After
1658  * task_struct gets moved into malloc'ed memory, it would
1659  * make sense to do this.  It will make moving the rest of the information
1660  * a lot simpler!  (Which we're not doing right now because we're not
1661  * measuring them yet).
1662  *
1663  * This expects to be called with tasklist_lock read-locked or better,
1664  * and the siglock not locked.  It may momentarily take the siglock.
1665  *
1666  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1667  * races with threads incrementing their own counters.  But since word
1668  * reads are atomic, we either get new values or old values and we don't
1669  * care which for the sums.  We always take the siglock to protect reading
1670  * the c* fields from p->signal from races with exit.c updating those
1671  * fields when reaping, so a sample either gets all the additions of a
1672  * given child after it's reaped, or none so this sample is before reaping.
1673  */
1674 
1675 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1676 {
1677 	struct task_struct *t;
1678 	unsigned long flags;
1679 	cputime_t utime, stime;
1680 
1681 	memset((char *) r, 0, sizeof *r);
1682 
1683 	if (unlikely(!p->signal))
1684 		return;
1685 
1686 	switch (who) {
1687 		case RUSAGE_CHILDREN:
1688 			spin_lock_irqsave(&p->sighand->siglock, flags);
1689 			utime = p->signal->cutime;
1690 			stime = p->signal->cstime;
1691 			r->ru_nvcsw = p->signal->cnvcsw;
1692 			r->ru_nivcsw = p->signal->cnivcsw;
1693 			r->ru_minflt = p->signal->cmin_flt;
1694 			r->ru_majflt = p->signal->cmaj_flt;
1695 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1696 			cputime_to_timeval(utime, &r->ru_utime);
1697 			cputime_to_timeval(stime, &r->ru_stime);
1698 			break;
1699 		case RUSAGE_SELF:
1700 			spin_lock_irqsave(&p->sighand->siglock, flags);
1701 			utime = stime = cputime_zero;
1702 			goto sum_group;
1703 		case RUSAGE_BOTH:
1704 			spin_lock_irqsave(&p->sighand->siglock, flags);
1705 			utime = p->signal->cutime;
1706 			stime = p->signal->cstime;
1707 			r->ru_nvcsw = p->signal->cnvcsw;
1708 			r->ru_nivcsw = p->signal->cnivcsw;
1709 			r->ru_minflt = p->signal->cmin_flt;
1710 			r->ru_majflt = p->signal->cmaj_flt;
1711 		sum_group:
1712 			utime = cputime_add(utime, p->signal->utime);
1713 			stime = cputime_add(stime, p->signal->stime);
1714 			r->ru_nvcsw += p->signal->nvcsw;
1715 			r->ru_nivcsw += p->signal->nivcsw;
1716 			r->ru_minflt += p->signal->min_flt;
1717 			r->ru_majflt += p->signal->maj_flt;
1718 			t = p;
1719 			do {
1720 				utime = cputime_add(utime, t->utime);
1721 				stime = cputime_add(stime, t->stime);
1722 				r->ru_nvcsw += t->nvcsw;
1723 				r->ru_nivcsw += t->nivcsw;
1724 				r->ru_minflt += t->min_flt;
1725 				r->ru_majflt += t->maj_flt;
1726 				t = next_thread(t);
1727 			} while (t != p);
1728 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1729 			cputime_to_timeval(utime, &r->ru_utime);
1730 			cputime_to_timeval(stime, &r->ru_stime);
1731 			break;
1732 		default:
1733 			BUG();
1734 	}
1735 }
1736 
1737 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1738 {
1739 	struct rusage r;
1740 	read_lock(&tasklist_lock);
1741 	k_getrusage(p, who, &r);
1742 	read_unlock(&tasklist_lock);
1743 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1744 }
1745 
1746 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1747 {
1748 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1749 		return -EINVAL;
1750 	return getrusage(current, who, ru);
1751 }
1752 
1753 asmlinkage long sys_umask(int mask)
1754 {
1755 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1756 	return mask;
1757 }
1758 
1759 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1760 			  unsigned long arg4, unsigned long arg5)
1761 {
1762 	long error;
1763 
1764 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1765 	if (error)
1766 		return error;
1767 
1768 	switch (option) {
1769 		case PR_SET_PDEATHSIG:
1770 			if (!valid_signal(arg2)) {
1771 				error = -EINVAL;
1772 				break;
1773 			}
1774 			current->pdeath_signal = arg2;
1775 			break;
1776 		case PR_GET_PDEATHSIG:
1777 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1778 			break;
1779 		case PR_GET_DUMPABLE:
1780 			error = current->mm->dumpable;
1781 			break;
1782 		case PR_SET_DUMPABLE:
1783 			if (arg2 < 0 || arg2 > 2) {
1784 				error = -EINVAL;
1785 				break;
1786 			}
1787 			current->mm->dumpable = arg2;
1788 			break;
1789 
1790 		case PR_SET_UNALIGN:
1791 			error = SET_UNALIGN_CTL(current, arg2);
1792 			break;
1793 		case PR_GET_UNALIGN:
1794 			error = GET_UNALIGN_CTL(current, arg2);
1795 			break;
1796 		case PR_SET_FPEMU:
1797 			error = SET_FPEMU_CTL(current, arg2);
1798 			break;
1799 		case PR_GET_FPEMU:
1800 			error = GET_FPEMU_CTL(current, arg2);
1801 			break;
1802 		case PR_SET_FPEXC:
1803 			error = SET_FPEXC_CTL(current, arg2);
1804 			break;
1805 		case PR_GET_FPEXC:
1806 			error = GET_FPEXC_CTL(current, arg2);
1807 			break;
1808 		case PR_GET_TIMING:
1809 			error = PR_TIMING_STATISTICAL;
1810 			break;
1811 		case PR_SET_TIMING:
1812 			if (arg2 == PR_TIMING_STATISTICAL)
1813 				error = 0;
1814 			else
1815 				error = -EINVAL;
1816 			break;
1817 
1818 		case PR_GET_KEEPCAPS:
1819 			if (current->keep_capabilities)
1820 				error = 1;
1821 			break;
1822 		case PR_SET_KEEPCAPS:
1823 			if (arg2 != 0 && arg2 != 1) {
1824 				error = -EINVAL;
1825 				break;
1826 			}
1827 			current->keep_capabilities = arg2;
1828 			break;
1829 		case PR_SET_NAME: {
1830 			struct task_struct *me = current;
1831 			unsigned char ncomm[sizeof(me->comm)];
1832 
1833 			ncomm[sizeof(me->comm)-1] = 0;
1834 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1835 						sizeof(me->comm)-1) < 0)
1836 				return -EFAULT;
1837 			set_task_comm(me, ncomm);
1838 			return 0;
1839 		}
1840 		case PR_GET_NAME: {
1841 			struct task_struct *me = current;
1842 			unsigned char tcomm[sizeof(me->comm)];
1843 
1844 			get_task_comm(tcomm, me);
1845 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1846 				return -EFAULT;
1847 			return 0;
1848 		}
1849 		default:
1850 			error = -EINVAL;
1851 			break;
1852 	}
1853 	return error;
1854 }
1855