xref: /openbmc/linux/kernel/sys.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/workqueue.h>
20 #include <linux/device.h>
21 #include <linux/key.h>
22 #include <linux/times.h>
23 #include <linux/posix-timers.h>
24 #include <linux/security.h>
25 #include <linux/dcookies.h>
26 #include <linux/suspend.h>
27 #include <linux/tty.h>
28 
29 #include <linux/compat.h>
30 #include <linux/syscalls.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/unistd.h>
35 
36 #ifndef SET_UNALIGN_CTL
37 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
38 #endif
39 #ifndef GET_UNALIGN_CTL
40 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
41 #endif
42 #ifndef SET_FPEMU_CTL
43 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
44 #endif
45 #ifndef GET_FPEMU_CTL
46 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
47 #endif
48 #ifndef SET_FPEXC_CTL
49 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
50 #endif
51 #ifndef GET_FPEXC_CTL
52 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
53 #endif
54 
55 /*
56  * this is where the system-wide overflow UID and GID are defined, for
57  * architectures that now have 32-bit UID/GID but didn't in the past
58  */
59 
60 int overflowuid = DEFAULT_OVERFLOWUID;
61 int overflowgid = DEFAULT_OVERFLOWGID;
62 
63 #ifdef CONFIG_UID16
64 EXPORT_SYMBOL(overflowuid);
65 EXPORT_SYMBOL(overflowgid);
66 #endif
67 
68 /*
69  * the same as above, but for filesystems which can only store a 16-bit
70  * UID and GID. as such, this is needed on all architectures
71  */
72 
73 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
74 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
75 
76 EXPORT_SYMBOL(fs_overflowuid);
77 EXPORT_SYMBOL(fs_overflowgid);
78 
79 /*
80  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
81  */
82 
83 int C_A_D = 1;
84 int cad_pid = 1;
85 
86 /*
87  *	Notifier list for kernel code which wants to be called
88  *	at shutdown. This is used to stop any idling DMA operations
89  *	and the like.
90  */
91 
92 static struct notifier_block *reboot_notifier_list;
93 static DEFINE_RWLOCK(notifier_lock);
94 
95 /**
96  *	notifier_chain_register	- Add notifier to a notifier chain
97  *	@list: Pointer to root list pointer
98  *	@n: New entry in notifier chain
99  *
100  *	Adds a notifier to a notifier chain.
101  *
102  *	Currently always returns zero.
103  */
104 
105 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
106 {
107 	write_lock(&notifier_lock);
108 	while(*list)
109 	{
110 		if(n->priority > (*list)->priority)
111 			break;
112 		list= &((*list)->next);
113 	}
114 	n->next = *list;
115 	*list=n;
116 	write_unlock(&notifier_lock);
117 	return 0;
118 }
119 
120 EXPORT_SYMBOL(notifier_chain_register);
121 
122 /**
123  *	notifier_chain_unregister - Remove notifier from a notifier chain
124  *	@nl: Pointer to root list pointer
125  *	@n: New entry in notifier chain
126  *
127  *	Removes a notifier from a notifier chain.
128  *
129  *	Returns zero on success, or %-ENOENT on failure.
130  */
131 
132 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
133 {
134 	write_lock(&notifier_lock);
135 	while((*nl)!=NULL)
136 	{
137 		if((*nl)==n)
138 		{
139 			*nl=n->next;
140 			write_unlock(&notifier_lock);
141 			return 0;
142 		}
143 		nl=&((*nl)->next);
144 	}
145 	write_unlock(&notifier_lock);
146 	return -ENOENT;
147 }
148 
149 EXPORT_SYMBOL(notifier_chain_unregister);
150 
151 /**
152  *	notifier_call_chain - Call functions in a notifier chain
153  *	@n: Pointer to root pointer of notifier chain
154  *	@val: Value passed unmodified to notifier function
155  *	@v: Pointer passed unmodified to notifier function
156  *
157  *	Calls each function in a notifier chain in turn.
158  *
159  *	If the return value of the notifier can be and'd
160  *	with %NOTIFY_STOP_MASK, then notifier_call_chain
161  *	will return immediately, with the return value of
162  *	the notifier function which halted execution.
163  *	Otherwise, the return value is the return value
164  *	of the last notifier function called.
165  */
166 
167 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
168 {
169 	int ret=NOTIFY_DONE;
170 	struct notifier_block *nb = *n;
171 
172 	while(nb)
173 	{
174 		ret=nb->notifier_call(nb,val,v);
175 		if(ret&NOTIFY_STOP_MASK)
176 		{
177 			return ret;
178 		}
179 		nb=nb->next;
180 	}
181 	return ret;
182 }
183 
184 EXPORT_SYMBOL(notifier_call_chain);
185 
186 /**
187  *	register_reboot_notifier - Register function to be called at reboot time
188  *	@nb: Info about notifier function to be called
189  *
190  *	Registers a function with the list of functions
191  *	to be called at reboot time.
192  *
193  *	Currently always returns zero, as notifier_chain_register
194  *	always returns zero.
195  */
196 
197 int register_reboot_notifier(struct notifier_block * nb)
198 {
199 	return notifier_chain_register(&reboot_notifier_list, nb);
200 }
201 
202 EXPORT_SYMBOL(register_reboot_notifier);
203 
204 /**
205  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
206  *	@nb: Hook to be unregistered
207  *
208  *	Unregisters a previously registered reboot
209  *	notifier function.
210  *
211  *	Returns zero on success, or %-ENOENT on failure.
212  */
213 
214 int unregister_reboot_notifier(struct notifier_block * nb)
215 {
216 	return notifier_chain_unregister(&reboot_notifier_list, nb);
217 }
218 
219 EXPORT_SYMBOL(unregister_reboot_notifier);
220 
221 static int set_one_prio(struct task_struct *p, int niceval, int error)
222 {
223 	int no_nice;
224 
225 	if (p->uid != current->euid &&
226 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
227 		error = -EPERM;
228 		goto out;
229 	}
230 	if (niceval < task_nice(p) && !capable(CAP_SYS_NICE)) {
231 		error = -EACCES;
232 		goto out;
233 	}
234 	no_nice = security_task_setnice(p, niceval);
235 	if (no_nice) {
236 		error = no_nice;
237 		goto out;
238 	}
239 	if (error == -ESRCH)
240 		error = 0;
241 	set_user_nice(p, niceval);
242 out:
243 	return error;
244 }
245 
246 asmlinkage long sys_setpriority(int which, int who, int niceval)
247 {
248 	struct task_struct *g, *p;
249 	struct user_struct *user;
250 	int error = -EINVAL;
251 
252 	if (which > 2 || which < 0)
253 		goto out;
254 
255 	/* normalize: avoid signed division (rounding problems) */
256 	error = -ESRCH;
257 	if (niceval < -20)
258 		niceval = -20;
259 	if (niceval > 19)
260 		niceval = 19;
261 
262 	read_lock(&tasklist_lock);
263 	switch (which) {
264 		case PRIO_PROCESS:
265 			if (!who)
266 				who = current->pid;
267 			p = find_task_by_pid(who);
268 			if (p)
269 				error = set_one_prio(p, niceval, error);
270 			break;
271 		case PRIO_PGRP:
272 			if (!who)
273 				who = process_group(current);
274 			do_each_task_pid(who, PIDTYPE_PGID, p) {
275 				error = set_one_prio(p, niceval, error);
276 			} while_each_task_pid(who, PIDTYPE_PGID, p);
277 			break;
278 		case PRIO_USER:
279 			user = current->user;
280 			if (!who)
281 				who = current->uid;
282 			else
283 				if ((who != current->uid) && !(user = find_user(who)))
284 					goto out_unlock;	/* No processes for this user */
285 
286 			do_each_thread(g, p)
287 				if (p->uid == who)
288 					error = set_one_prio(p, niceval, error);
289 			while_each_thread(g, p);
290 			if (who != current->uid)
291 				free_uid(user);		/* For find_user() */
292 			break;
293 	}
294 out_unlock:
295 	read_unlock(&tasklist_lock);
296 out:
297 	return error;
298 }
299 
300 /*
301  * Ugh. To avoid negative return values, "getpriority()" will
302  * not return the normal nice-value, but a negated value that
303  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
304  * to stay compatible.
305  */
306 asmlinkage long sys_getpriority(int which, int who)
307 {
308 	struct task_struct *g, *p;
309 	struct user_struct *user;
310 	long niceval, retval = -ESRCH;
311 
312 	if (which > 2 || which < 0)
313 		return -EINVAL;
314 
315 	read_lock(&tasklist_lock);
316 	switch (which) {
317 		case PRIO_PROCESS:
318 			if (!who)
319 				who = current->pid;
320 			p = find_task_by_pid(who);
321 			if (p) {
322 				niceval = 20 - task_nice(p);
323 				if (niceval > retval)
324 					retval = niceval;
325 			}
326 			break;
327 		case PRIO_PGRP:
328 			if (!who)
329 				who = process_group(current);
330 			do_each_task_pid(who, PIDTYPE_PGID, p) {
331 				niceval = 20 - task_nice(p);
332 				if (niceval > retval)
333 					retval = niceval;
334 			} while_each_task_pid(who, PIDTYPE_PGID, p);
335 			break;
336 		case PRIO_USER:
337 			user = current->user;
338 			if (!who)
339 				who = current->uid;
340 			else
341 				if ((who != current->uid) && !(user = find_user(who)))
342 					goto out_unlock;	/* No processes for this user */
343 
344 			do_each_thread(g, p)
345 				if (p->uid == who) {
346 					niceval = 20 - task_nice(p);
347 					if (niceval > retval)
348 						retval = niceval;
349 				}
350 			while_each_thread(g, p);
351 			if (who != current->uid)
352 				free_uid(user);		/* for find_user() */
353 			break;
354 	}
355 out_unlock:
356 	read_unlock(&tasklist_lock);
357 
358 	return retval;
359 }
360 
361 
362 /*
363  * Reboot system call: for obvious reasons only root may call it,
364  * and even root needs to set up some magic numbers in the registers
365  * so that some mistake won't make this reboot the whole machine.
366  * You can also set the meaning of the ctrl-alt-del-key here.
367  *
368  * reboot doesn't sync: do that yourself before calling this.
369  */
370 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
371 {
372 	char buffer[256];
373 
374 	/* We only trust the superuser with rebooting the system. */
375 	if (!capable(CAP_SYS_BOOT))
376 		return -EPERM;
377 
378 	/* For safety, we require "magic" arguments. */
379 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
380 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
381 	                magic2 != LINUX_REBOOT_MAGIC2A &&
382 			magic2 != LINUX_REBOOT_MAGIC2B &&
383 	                magic2 != LINUX_REBOOT_MAGIC2C))
384 		return -EINVAL;
385 
386 	lock_kernel();
387 	switch (cmd) {
388 	case LINUX_REBOOT_CMD_RESTART:
389 		notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
390 		system_state = SYSTEM_RESTART;
391 		device_shutdown();
392 		printk(KERN_EMERG "Restarting system.\n");
393 		machine_restart(NULL);
394 		break;
395 
396 	case LINUX_REBOOT_CMD_CAD_ON:
397 		C_A_D = 1;
398 		break;
399 
400 	case LINUX_REBOOT_CMD_CAD_OFF:
401 		C_A_D = 0;
402 		break;
403 
404 	case LINUX_REBOOT_CMD_HALT:
405 		notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
406 		system_state = SYSTEM_HALT;
407 		device_shutdown();
408 		printk(KERN_EMERG "System halted.\n");
409 		machine_halt();
410 		unlock_kernel();
411 		do_exit(0);
412 		break;
413 
414 	case LINUX_REBOOT_CMD_POWER_OFF:
415 		notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
416 		system_state = SYSTEM_POWER_OFF;
417 		device_shutdown();
418 		printk(KERN_EMERG "Power down.\n");
419 		machine_power_off();
420 		unlock_kernel();
421 		do_exit(0);
422 		break;
423 
424 	case LINUX_REBOOT_CMD_RESTART2:
425 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
426 			unlock_kernel();
427 			return -EFAULT;
428 		}
429 		buffer[sizeof(buffer) - 1] = '\0';
430 
431 		notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
432 		system_state = SYSTEM_RESTART;
433 		device_shutdown();
434 		printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
435 		machine_restart(buffer);
436 		break;
437 
438 #ifdef CONFIG_SOFTWARE_SUSPEND
439 	case LINUX_REBOOT_CMD_SW_SUSPEND:
440 		{
441 			int ret = software_suspend();
442 			unlock_kernel();
443 			return ret;
444 		}
445 #endif
446 
447 	default:
448 		unlock_kernel();
449 		return -EINVAL;
450 	}
451 	unlock_kernel();
452 	return 0;
453 }
454 
455 static void deferred_cad(void *dummy)
456 {
457 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
458 	machine_restart(NULL);
459 }
460 
461 /*
462  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
463  * As it's called within an interrupt, it may NOT sync: the only choice
464  * is whether to reboot at once, or just ignore the ctrl-alt-del.
465  */
466 void ctrl_alt_del(void)
467 {
468 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
469 
470 	if (C_A_D)
471 		schedule_work(&cad_work);
472 	else
473 		kill_proc(cad_pid, SIGINT, 1);
474 }
475 
476 
477 /*
478  * Unprivileged users may change the real gid to the effective gid
479  * or vice versa.  (BSD-style)
480  *
481  * If you set the real gid at all, or set the effective gid to a value not
482  * equal to the real gid, then the saved gid is set to the new effective gid.
483  *
484  * This makes it possible for a setgid program to completely drop its
485  * privileges, which is often a useful assertion to make when you are doing
486  * a security audit over a program.
487  *
488  * The general idea is that a program which uses just setregid() will be
489  * 100% compatible with BSD.  A program which uses just setgid() will be
490  * 100% compatible with POSIX with saved IDs.
491  *
492  * SMP: There are not races, the GIDs are checked only by filesystem
493  *      operations (as far as semantic preservation is concerned).
494  */
495 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
496 {
497 	int old_rgid = current->gid;
498 	int old_egid = current->egid;
499 	int new_rgid = old_rgid;
500 	int new_egid = old_egid;
501 	int retval;
502 
503 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
504 	if (retval)
505 		return retval;
506 
507 	if (rgid != (gid_t) -1) {
508 		if ((old_rgid == rgid) ||
509 		    (current->egid==rgid) ||
510 		    capable(CAP_SETGID))
511 			new_rgid = rgid;
512 		else
513 			return -EPERM;
514 	}
515 	if (egid != (gid_t) -1) {
516 		if ((old_rgid == egid) ||
517 		    (current->egid == egid) ||
518 		    (current->sgid == egid) ||
519 		    capable(CAP_SETGID))
520 			new_egid = egid;
521 		else {
522 			return -EPERM;
523 		}
524 	}
525 	if (new_egid != old_egid)
526 	{
527 		current->mm->dumpable = 0;
528 		wmb();
529 	}
530 	if (rgid != (gid_t) -1 ||
531 	    (egid != (gid_t) -1 && egid != old_rgid))
532 		current->sgid = new_egid;
533 	current->fsgid = new_egid;
534 	current->egid = new_egid;
535 	current->gid = new_rgid;
536 	key_fsgid_changed(current);
537 	return 0;
538 }
539 
540 /*
541  * setgid() is implemented like SysV w/ SAVED_IDS
542  *
543  * SMP: Same implicit races as above.
544  */
545 asmlinkage long sys_setgid(gid_t gid)
546 {
547 	int old_egid = current->egid;
548 	int retval;
549 
550 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
551 	if (retval)
552 		return retval;
553 
554 	if (capable(CAP_SETGID))
555 	{
556 		if(old_egid != gid)
557 		{
558 			current->mm->dumpable=0;
559 			wmb();
560 		}
561 		current->gid = current->egid = current->sgid = current->fsgid = gid;
562 	}
563 	else if ((gid == current->gid) || (gid == current->sgid))
564 	{
565 		if(old_egid != gid)
566 		{
567 			current->mm->dumpable=0;
568 			wmb();
569 		}
570 		current->egid = current->fsgid = gid;
571 	}
572 	else
573 		return -EPERM;
574 
575 	key_fsgid_changed(current);
576 	return 0;
577 }
578 
579 static int set_user(uid_t new_ruid, int dumpclear)
580 {
581 	struct user_struct *new_user;
582 
583 	new_user = alloc_uid(new_ruid);
584 	if (!new_user)
585 		return -EAGAIN;
586 
587 	if (atomic_read(&new_user->processes) >=
588 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
589 			new_user != &root_user) {
590 		free_uid(new_user);
591 		return -EAGAIN;
592 	}
593 
594 	switch_uid(new_user);
595 
596 	if(dumpclear)
597 	{
598 		current->mm->dumpable = 0;
599 		wmb();
600 	}
601 	current->uid = new_ruid;
602 	return 0;
603 }
604 
605 /*
606  * Unprivileged users may change the real uid to the effective uid
607  * or vice versa.  (BSD-style)
608  *
609  * If you set the real uid at all, or set the effective uid to a value not
610  * equal to the real uid, then the saved uid is set to the new effective uid.
611  *
612  * This makes it possible for a setuid program to completely drop its
613  * privileges, which is often a useful assertion to make when you are doing
614  * a security audit over a program.
615  *
616  * The general idea is that a program which uses just setreuid() will be
617  * 100% compatible with BSD.  A program which uses just setuid() will be
618  * 100% compatible with POSIX with saved IDs.
619  */
620 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
621 {
622 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
623 	int retval;
624 
625 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
626 	if (retval)
627 		return retval;
628 
629 	new_ruid = old_ruid = current->uid;
630 	new_euid = old_euid = current->euid;
631 	old_suid = current->suid;
632 
633 	if (ruid != (uid_t) -1) {
634 		new_ruid = ruid;
635 		if ((old_ruid != ruid) &&
636 		    (current->euid != ruid) &&
637 		    !capable(CAP_SETUID))
638 			return -EPERM;
639 	}
640 
641 	if (euid != (uid_t) -1) {
642 		new_euid = euid;
643 		if ((old_ruid != euid) &&
644 		    (current->euid != euid) &&
645 		    (current->suid != euid) &&
646 		    !capable(CAP_SETUID))
647 			return -EPERM;
648 	}
649 
650 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
651 		return -EAGAIN;
652 
653 	if (new_euid != old_euid)
654 	{
655 		current->mm->dumpable=0;
656 		wmb();
657 	}
658 	current->fsuid = current->euid = new_euid;
659 	if (ruid != (uid_t) -1 ||
660 	    (euid != (uid_t) -1 && euid != old_ruid))
661 		current->suid = current->euid;
662 	current->fsuid = current->euid;
663 
664 	key_fsuid_changed(current);
665 
666 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
667 }
668 
669 
670 
671 /*
672  * setuid() is implemented like SysV with SAVED_IDS
673  *
674  * Note that SAVED_ID's is deficient in that a setuid root program
675  * like sendmail, for example, cannot set its uid to be a normal
676  * user and then switch back, because if you're root, setuid() sets
677  * the saved uid too.  If you don't like this, blame the bright people
678  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
679  * will allow a root program to temporarily drop privileges and be able to
680  * regain them by swapping the real and effective uid.
681  */
682 asmlinkage long sys_setuid(uid_t uid)
683 {
684 	int old_euid = current->euid;
685 	int old_ruid, old_suid, new_ruid, new_suid;
686 	int retval;
687 
688 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
689 	if (retval)
690 		return retval;
691 
692 	old_ruid = new_ruid = current->uid;
693 	old_suid = current->suid;
694 	new_suid = old_suid;
695 
696 	if (capable(CAP_SETUID)) {
697 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
698 			return -EAGAIN;
699 		new_suid = uid;
700 	} else if ((uid != current->uid) && (uid != new_suid))
701 		return -EPERM;
702 
703 	if (old_euid != uid)
704 	{
705 		current->mm->dumpable = 0;
706 		wmb();
707 	}
708 	current->fsuid = current->euid = uid;
709 	current->suid = new_suid;
710 
711 	key_fsuid_changed(current);
712 
713 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
714 }
715 
716 
717 /*
718  * This function implements a generic ability to update ruid, euid,
719  * and suid.  This allows you to implement the 4.4 compatible seteuid().
720  */
721 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
722 {
723 	int old_ruid = current->uid;
724 	int old_euid = current->euid;
725 	int old_suid = current->suid;
726 	int retval;
727 
728 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
729 	if (retval)
730 		return retval;
731 
732 	if (!capable(CAP_SETUID)) {
733 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
734 		    (ruid != current->euid) && (ruid != current->suid))
735 			return -EPERM;
736 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
737 		    (euid != current->euid) && (euid != current->suid))
738 			return -EPERM;
739 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
740 		    (suid != current->euid) && (suid != current->suid))
741 			return -EPERM;
742 	}
743 	if (ruid != (uid_t) -1) {
744 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
745 			return -EAGAIN;
746 	}
747 	if (euid != (uid_t) -1) {
748 		if (euid != current->euid)
749 		{
750 			current->mm->dumpable = 0;
751 			wmb();
752 		}
753 		current->euid = euid;
754 	}
755 	current->fsuid = current->euid;
756 	if (suid != (uid_t) -1)
757 		current->suid = suid;
758 
759 	key_fsuid_changed(current);
760 
761 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
762 }
763 
764 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
765 {
766 	int retval;
767 
768 	if (!(retval = put_user(current->uid, ruid)) &&
769 	    !(retval = put_user(current->euid, euid)))
770 		retval = put_user(current->suid, suid);
771 
772 	return retval;
773 }
774 
775 /*
776  * Same as above, but for rgid, egid, sgid.
777  */
778 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
779 {
780 	int retval;
781 
782 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
783 	if (retval)
784 		return retval;
785 
786 	if (!capable(CAP_SETGID)) {
787 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
788 		    (rgid != current->egid) && (rgid != current->sgid))
789 			return -EPERM;
790 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
791 		    (egid != current->egid) && (egid != current->sgid))
792 			return -EPERM;
793 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
794 		    (sgid != current->egid) && (sgid != current->sgid))
795 			return -EPERM;
796 	}
797 	if (egid != (gid_t) -1) {
798 		if (egid != current->egid)
799 		{
800 			current->mm->dumpable = 0;
801 			wmb();
802 		}
803 		current->egid = egid;
804 	}
805 	current->fsgid = current->egid;
806 	if (rgid != (gid_t) -1)
807 		current->gid = rgid;
808 	if (sgid != (gid_t) -1)
809 		current->sgid = sgid;
810 
811 	key_fsgid_changed(current);
812 	return 0;
813 }
814 
815 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
816 {
817 	int retval;
818 
819 	if (!(retval = put_user(current->gid, rgid)) &&
820 	    !(retval = put_user(current->egid, egid)))
821 		retval = put_user(current->sgid, sgid);
822 
823 	return retval;
824 }
825 
826 
827 /*
828  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
829  * is used for "access()" and for the NFS daemon (letting nfsd stay at
830  * whatever uid it wants to). It normally shadows "euid", except when
831  * explicitly set by setfsuid() or for access..
832  */
833 asmlinkage long sys_setfsuid(uid_t uid)
834 {
835 	int old_fsuid;
836 
837 	old_fsuid = current->fsuid;
838 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
839 		return old_fsuid;
840 
841 	if (uid == current->uid || uid == current->euid ||
842 	    uid == current->suid || uid == current->fsuid ||
843 	    capable(CAP_SETUID))
844 	{
845 		if (uid != old_fsuid)
846 		{
847 			current->mm->dumpable = 0;
848 			wmb();
849 		}
850 		current->fsuid = uid;
851 	}
852 
853 	key_fsuid_changed(current);
854 
855 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
856 
857 	return old_fsuid;
858 }
859 
860 /*
861  * Samma p� svenska..
862  */
863 asmlinkage long sys_setfsgid(gid_t gid)
864 {
865 	int old_fsgid;
866 
867 	old_fsgid = current->fsgid;
868 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
869 		return old_fsgid;
870 
871 	if (gid == current->gid || gid == current->egid ||
872 	    gid == current->sgid || gid == current->fsgid ||
873 	    capable(CAP_SETGID))
874 	{
875 		if (gid != old_fsgid)
876 		{
877 			current->mm->dumpable = 0;
878 			wmb();
879 		}
880 		current->fsgid = gid;
881 		key_fsgid_changed(current);
882 	}
883 	return old_fsgid;
884 }
885 
886 asmlinkage long sys_times(struct tms __user * tbuf)
887 {
888 	/*
889 	 *	In the SMP world we might just be unlucky and have one of
890 	 *	the times increment as we use it. Since the value is an
891 	 *	atomically safe type this is just fine. Conceptually its
892 	 *	as if the syscall took an instant longer to occur.
893 	 */
894 	if (tbuf) {
895 		struct tms tmp;
896 		struct task_struct *tsk = current;
897 		struct task_struct *t;
898 		cputime_t utime, stime, cutime, cstime;
899 
900 		read_lock(&tasklist_lock);
901 		utime = tsk->signal->utime;
902 		stime = tsk->signal->stime;
903 		t = tsk;
904 		do {
905 			utime = cputime_add(utime, t->utime);
906 			stime = cputime_add(stime, t->stime);
907 			t = next_thread(t);
908 		} while (t != tsk);
909 
910 		/*
911 		 * While we have tasklist_lock read-locked, no dying thread
912 		 * can be updating current->signal->[us]time.  Instead,
913 		 * we got their counts included in the live thread loop.
914 		 * However, another thread can come in right now and
915 		 * do a wait call that updates current->signal->c[us]time.
916 		 * To make sure we always see that pair updated atomically,
917 		 * we take the siglock around fetching them.
918 		 */
919 		spin_lock_irq(&tsk->sighand->siglock);
920 		cutime = tsk->signal->cutime;
921 		cstime = tsk->signal->cstime;
922 		spin_unlock_irq(&tsk->sighand->siglock);
923 		read_unlock(&tasklist_lock);
924 
925 		tmp.tms_utime = cputime_to_clock_t(utime);
926 		tmp.tms_stime = cputime_to_clock_t(stime);
927 		tmp.tms_cutime = cputime_to_clock_t(cutime);
928 		tmp.tms_cstime = cputime_to_clock_t(cstime);
929 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
930 			return -EFAULT;
931 	}
932 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
933 }
934 
935 /*
936  * This needs some heavy checking ...
937  * I just haven't the stomach for it. I also don't fully
938  * understand sessions/pgrp etc. Let somebody who does explain it.
939  *
940  * OK, I think I have the protection semantics right.... this is really
941  * only important on a multi-user system anyway, to make sure one user
942  * can't send a signal to a process owned by another.  -TYT, 12/12/91
943  *
944  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
945  * LBT 04.03.94
946  */
947 
948 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
949 {
950 	struct task_struct *p;
951 	int err = -EINVAL;
952 
953 	if (!pid)
954 		pid = current->pid;
955 	if (!pgid)
956 		pgid = pid;
957 	if (pgid < 0)
958 		return -EINVAL;
959 
960 	/* From this point forward we keep holding onto the tasklist lock
961 	 * so that our parent does not change from under us. -DaveM
962 	 */
963 	write_lock_irq(&tasklist_lock);
964 
965 	err = -ESRCH;
966 	p = find_task_by_pid(pid);
967 	if (!p)
968 		goto out;
969 
970 	err = -EINVAL;
971 	if (!thread_group_leader(p))
972 		goto out;
973 
974 	if (p->parent == current || p->real_parent == current) {
975 		err = -EPERM;
976 		if (p->signal->session != current->signal->session)
977 			goto out;
978 		err = -EACCES;
979 		if (p->did_exec)
980 			goto out;
981 	} else {
982 		err = -ESRCH;
983 		if (p != current)
984 			goto out;
985 	}
986 
987 	err = -EPERM;
988 	if (p->signal->leader)
989 		goto out;
990 
991 	if (pgid != pid) {
992 		struct task_struct *p;
993 
994 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
995 			if (p->signal->session == current->signal->session)
996 				goto ok_pgid;
997 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
998 		goto out;
999 	}
1000 
1001 ok_pgid:
1002 	err = security_task_setpgid(p, pgid);
1003 	if (err)
1004 		goto out;
1005 
1006 	if (process_group(p) != pgid) {
1007 		detach_pid(p, PIDTYPE_PGID);
1008 		p->signal->pgrp = pgid;
1009 		attach_pid(p, PIDTYPE_PGID, pgid);
1010 	}
1011 
1012 	err = 0;
1013 out:
1014 	/* All paths lead to here, thus we are safe. -DaveM */
1015 	write_unlock_irq(&tasklist_lock);
1016 	return err;
1017 }
1018 
1019 asmlinkage long sys_getpgid(pid_t pid)
1020 {
1021 	if (!pid) {
1022 		return process_group(current);
1023 	} else {
1024 		int retval;
1025 		struct task_struct *p;
1026 
1027 		read_lock(&tasklist_lock);
1028 		p = find_task_by_pid(pid);
1029 
1030 		retval = -ESRCH;
1031 		if (p) {
1032 			retval = security_task_getpgid(p);
1033 			if (!retval)
1034 				retval = process_group(p);
1035 		}
1036 		read_unlock(&tasklist_lock);
1037 		return retval;
1038 	}
1039 }
1040 
1041 #ifdef __ARCH_WANT_SYS_GETPGRP
1042 
1043 asmlinkage long sys_getpgrp(void)
1044 {
1045 	/* SMP - assuming writes are word atomic this is fine */
1046 	return process_group(current);
1047 }
1048 
1049 #endif
1050 
1051 asmlinkage long sys_getsid(pid_t pid)
1052 {
1053 	if (!pid) {
1054 		return current->signal->session;
1055 	} else {
1056 		int retval;
1057 		struct task_struct *p;
1058 
1059 		read_lock(&tasklist_lock);
1060 		p = find_task_by_pid(pid);
1061 
1062 		retval = -ESRCH;
1063 		if(p) {
1064 			retval = security_task_getsid(p);
1065 			if (!retval)
1066 				retval = p->signal->session;
1067 		}
1068 		read_unlock(&tasklist_lock);
1069 		return retval;
1070 	}
1071 }
1072 
1073 asmlinkage long sys_setsid(void)
1074 {
1075 	struct pid *pid;
1076 	int err = -EPERM;
1077 
1078 	if (!thread_group_leader(current))
1079 		return -EINVAL;
1080 
1081 	down(&tty_sem);
1082 	write_lock_irq(&tasklist_lock);
1083 
1084 	pid = find_pid(PIDTYPE_PGID, current->pid);
1085 	if (pid)
1086 		goto out;
1087 
1088 	current->signal->leader = 1;
1089 	__set_special_pids(current->pid, current->pid);
1090 	current->signal->tty = NULL;
1091 	current->signal->tty_old_pgrp = 0;
1092 	err = process_group(current);
1093 out:
1094 	write_unlock_irq(&tasklist_lock);
1095 	up(&tty_sem);
1096 	return err;
1097 }
1098 
1099 /*
1100  * Supplementary group IDs
1101  */
1102 
1103 /* init to 2 - one for init_task, one to ensure it is never freed */
1104 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1105 
1106 struct group_info *groups_alloc(int gidsetsize)
1107 {
1108 	struct group_info *group_info;
1109 	int nblocks;
1110 	int i;
1111 
1112 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1113 	/* Make sure we always allocate at least one indirect block pointer */
1114 	nblocks = nblocks ? : 1;
1115 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1116 	if (!group_info)
1117 		return NULL;
1118 	group_info->ngroups = gidsetsize;
1119 	group_info->nblocks = nblocks;
1120 	atomic_set(&group_info->usage, 1);
1121 
1122 	if (gidsetsize <= NGROUPS_SMALL) {
1123 		group_info->blocks[0] = group_info->small_block;
1124 	} else {
1125 		for (i = 0; i < nblocks; i++) {
1126 			gid_t *b;
1127 			b = (void *)__get_free_page(GFP_USER);
1128 			if (!b)
1129 				goto out_undo_partial_alloc;
1130 			group_info->blocks[i] = b;
1131 		}
1132 	}
1133 	return group_info;
1134 
1135 out_undo_partial_alloc:
1136 	while (--i >= 0) {
1137 		free_page((unsigned long)group_info->blocks[i]);
1138 	}
1139 	kfree(group_info);
1140 	return NULL;
1141 }
1142 
1143 EXPORT_SYMBOL(groups_alloc);
1144 
1145 void groups_free(struct group_info *group_info)
1146 {
1147 	if (group_info->blocks[0] != group_info->small_block) {
1148 		int i;
1149 		for (i = 0; i < group_info->nblocks; i++)
1150 			free_page((unsigned long)group_info->blocks[i]);
1151 	}
1152 	kfree(group_info);
1153 }
1154 
1155 EXPORT_SYMBOL(groups_free);
1156 
1157 /* export the group_info to a user-space array */
1158 static int groups_to_user(gid_t __user *grouplist,
1159     struct group_info *group_info)
1160 {
1161 	int i;
1162 	int count = group_info->ngroups;
1163 
1164 	for (i = 0; i < group_info->nblocks; i++) {
1165 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1166 		int off = i * NGROUPS_PER_BLOCK;
1167 		int len = cp_count * sizeof(*grouplist);
1168 
1169 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1170 			return -EFAULT;
1171 
1172 		count -= cp_count;
1173 	}
1174 	return 0;
1175 }
1176 
1177 /* fill a group_info from a user-space array - it must be allocated already */
1178 static int groups_from_user(struct group_info *group_info,
1179     gid_t __user *grouplist)
1180  {
1181 	int i;
1182 	int count = group_info->ngroups;
1183 
1184 	for (i = 0; i < group_info->nblocks; i++) {
1185 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1186 		int off = i * NGROUPS_PER_BLOCK;
1187 		int len = cp_count * sizeof(*grouplist);
1188 
1189 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1190 			return -EFAULT;
1191 
1192 		count -= cp_count;
1193 	}
1194 	return 0;
1195 }
1196 
1197 /* a simple shell-metzner sort */
1198 static void groups_sort(struct group_info *group_info)
1199 {
1200 	int base, max, stride;
1201 	int gidsetsize = group_info->ngroups;
1202 
1203 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1204 		; /* nothing */
1205 	stride /= 3;
1206 
1207 	while (stride) {
1208 		max = gidsetsize - stride;
1209 		for (base = 0; base < max; base++) {
1210 			int left = base;
1211 			int right = left + stride;
1212 			gid_t tmp = GROUP_AT(group_info, right);
1213 
1214 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1215 				GROUP_AT(group_info, right) =
1216 				    GROUP_AT(group_info, left);
1217 				right = left;
1218 				left -= stride;
1219 			}
1220 			GROUP_AT(group_info, right) = tmp;
1221 		}
1222 		stride /= 3;
1223 	}
1224 }
1225 
1226 /* a simple bsearch */
1227 static int groups_search(struct group_info *group_info, gid_t grp)
1228 {
1229 	int left, right;
1230 
1231 	if (!group_info)
1232 		return 0;
1233 
1234 	left = 0;
1235 	right = group_info->ngroups;
1236 	while (left < right) {
1237 		int mid = (left+right)/2;
1238 		int cmp = grp - GROUP_AT(group_info, mid);
1239 		if (cmp > 0)
1240 			left = mid + 1;
1241 		else if (cmp < 0)
1242 			right = mid;
1243 		else
1244 			return 1;
1245 	}
1246 	return 0;
1247 }
1248 
1249 /* validate and set current->group_info */
1250 int set_current_groups(struct group_info *group_info)
1251 {
1252 	int retval;
1253 	struct group_info *old_info;
1254 
1255 	retval = security_task_setgroups(group_info);
1256 	if (retval)
1257 		return retval;
1258 
1259 	groups_sort(group_info);
1260 	get_group_info(group_info);
1261 
1262 	task_lock(current);
1263 	old_info = current->group_info;
1264 	current->group_info = group_info;
1265 	task_unlock(current);
1266 
1267 	put_group_info(old_info);
1268 
1269 	return 0;
1270 }
1271 
1272 EXPORT_SYMBOL(set_current_groups);
1273 
1274 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1275 {
1276 	int i = 0;
1277 
1278 	/*
1279 	 *	SMP: Nobody else can change our grouplist. Thus we are
1280 	 *	safe.
1281 	 */
1282 
1283 	if (gidsetsize < 0)
1284 		return -EINVAL;
1285 
1286 	/* no need to grab task_lock here; it cannot change */
1287 	get_group_info(current->group_info);
1288 	i = current->group_info->ngroups;
1289 	if (gidsetsize) {
1290 		if (i > gidsetsize) {
1291 			i = -EINVAL;
1292 			goto out;
1293 		}
1294 		if (groups_to_user(grouplist, current->group_info)) {
1295 			i = -EFAULT;
1296 			goto out;
1297 		}
1298 	}
1299 out:
1300 	put_group_info(current->group_info);
1301 	return i;
1302 }
1303 
1304 /*
1305  *	SMP: Our groups are copy-on-write. We can set them safely
1306  *	without another task interfering.
1307  */
1308 
1309 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1310 {
1311 	struct group_info *group_info;
1312 	int retval;
1313 
1314 	if (!capable(CAP_SETGID))
1315 		return -EPERM;
1316 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1317 		return -EINVAL;
1318 
1319 	group_info = groups_alloc(gidsetsize);
1320 	if (!group_info)
1321 		return -ENOMEM;
1322 	retval = groups_from_user(group_info, grouplist);
1323 	if (retval) {
1324 		put_group_info(group_info);
1325 		return retval;
1326 	}
1327 
1328 	retval = set_current_groups(group_info);
1329 	put_group_info(group_info);
1330 
1331 	return retval;
1332 }
1333 
1334 /*
1335  * Check whether we're fsgid/egid or in the supplemental group..
1336  */
1337 int in_group_p(gid_t grp)
1338 {
1339 	int retval = 1;
1340 	if (grp != current->fsgid) {
1341 		get_group_info(current->group_info);
1342 		retval = groups_search(current->group_info, grp);
1343 		put_group_info(current->group_info);
1344 	}
1345 	return retval;
1346 }
1347 
1348 EXPORT_SYMBOL(in_group_p);
1349 
1350 int in_egroup_p(gid_t grp)
1351 {
1352 	int retval = 1;
1353 	if (grp != current->egid) {
1354 		get_group_info(current->group_info);
1355 		retval = groups_search(current->group_info, grp);
1356 		put_group_info(current->group_info);
1357 	}
1358 	return retval;
1359 }
1360 
1361 EXPORT_SYMBOL(in_egroup_p);
1362 
1363 DECLARE_RWSEM(uts_sem);
1364 
1365 EXPORT_SYMBOL(uts_sem);
1366 
1367 asmlinkage long sys_newuname(struct new_utsname __user * name)
1368 {
1369 	int errno = 0;
1370 
1371 	down_read(&uts_sem);
1372 	if (copy_to_user(name,&system_utsname,sizeof *name))
1373 		errno = -EFAULT;
1374 	up_read(&uts_sem);
1375 	return errno;
1376 }
1377 
1378 asmlinkage long sys_sethostname(char __user *name, int len)
1379 {
1380 	int errno;
1381 	char tmp[__NEW_UTS_LEN];
1382 
1383 	if (!capable(CAP_SYS_ADMIN))
1384 		return -EPERM;
1385 	if (len < 0 || len > __NEW_UTS_LEN)
1386 		return -EINVAL;
1387 	down_write(&uts_sem);
1388 	errno = -EFAULT;
1389 	if (!copy_from_user(tmp, name, len)) {
1390 		memcpy(system_utsname.nodename, tmp, len);
1391 		system_utsname.nodename[len] = 0;
1392 		errno = 0;
1393 	}
1394 	up_write(&uts_sem);
1395 	return errno;
1396 }
1397 
1398 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1399 
1400 asmlinkage long sys_gethostname(char __user *name, int len)
1401 {
1402 	int i, errno;
1403 
1404 	if (len < 0)
1405 		return -EINVAL;
1406 	down_read(&uts_sem);
1407 	i = 1 + strlen(system_utsname.nodename);
1408 	if (i > len)
1409 		i = len;
1410 	errno = 0;
1411 	if (copy_to_user(name, system_utsname.nodename, i))
1412 		errno = -EFAULT;
1413 	up_read(&uts_sem);
1414 	return errno;
1415 }
1416 
1417 #endif
1418 
1419 /*
1420  * Only setdomainname; getdomainname can be implemented by calling
1421  * uname()
1422  */
1423 asmlinkage long sys_setdomainname(char __user *name, int len)
1424 {
1425 	int errno;
1426 	char tmp[__NEW_UTS_LEN];
1427 
1428 	if (!capable(CAP_SYS_ADMIN))
1429 		return -EPERM;
1430 	if (len < 0 || len > __NEW_UTS_LEN)
1431 		return -EINVAL;
1432 
1433 	down_write(&uts_sem);
1434 	errno = -EFAULT;
1435 	if (!copy_from_user(tmp, name, len)) {
1436 		memcpy(system_utsname.domainname, tmp, len);
1437 		system_utsname.domainname[len] = 0;
1438 		errno = 0;
1439 	}
1440 	up_write(&uts_sem);
1441 	return errno;
1442 }
1443 
1444 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1445 {
1446 	if (resource >= RLIM_NLIMITS)
1447 		return -EINVAL;
1448 	else {
1449 		struct rlimit value;
1450 		task_lock(current->group_leader);
1451 		value = current->signal->rlim[resource];
1452 		task_unlock(current->group_leader);
1453 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1454 	}
1455 }
1456 
1457 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1458 
1459 /*
1460  *	Back compatibility for getrlimit. Needed for some apps.
1461  */
1462 
1463 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1464 {
1465 	struct rlimit x;
1466 	if (resource >= RLIM_NLIMITS)
1467 		return -EINVAL;
1468 
1469 	task_lock(current->group_leader);
1470 	x = current->signal->rlim[resource];
1471 	task_unlock(current->group_leader);
1472 	if(x.rlim_cur > 0x7FFFFFFF)
1473 		x.rlim_cur = 0x7FFFFFFF;
1474 	if(x.rlim_max > 0x7FFFFFFF)
1475 		x.rlim_max = 0x7FFFFFFF;
1476 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1477 }
1478 
1479 #endif
1480 
1481 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1482 {
1483 	struct rlimit new_rlim, *old_rlim;
1484 	int retval;
1485 
1486 	if (resource >= RLIM_NLIMITS)
1487 		return -EINVAL;
1488 	if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1489 		return -EFAULT;
1490        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1491                return -EINVAL;
1492 	old_rlim = current->signal->rlim + resource;
1493 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1494 	    !capable(CAP_SYS_RESOURCE))
1495 		return -EPERM;
1496 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1497 			return -EPERM;
1498 
1499 	retval = security_task_setrlimit(resource, &new_rlim);
1500 	if (retval)
1501 		return retval;
1502 
1503 	task_lock(current->group_leader);
1504 	*old_rlim = new_rlim;
1505 	task_unlock(current->group_leader);
1506 
1507 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1508 	    (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1509 	     new_rlim.rlim_cur <= cputime_to_secs(
1510 		     current->signal->it_prof_expires))) {
1511 		cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1512 		read_lock(&tasklist_lock);
1513 		spin_lock_irq(&current->sighand->siglock);
1514 		set_process_cpu_timer(current, CPUCLOCK_PROF,
1515 				      &cputime, NULL);
1516 		spin_unlock_irq(&current->sighand->siglock);
1517 		read_unlock(&tasklist_lock);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 /*
1524  * It would make sense to put struct rusage in the task_struct,
1525  * except that would make the task_struct be *really big*.  After
1526  * task_struct gets moved into malloc'ed memory, it would
1527  * make sense to do this.  It will make moving the rest of the information
1528  * a lot simpler!  (Which we're not doing right now because we're not
1529  * measuring them yet).
1530  *
1531  * This expects to be called with tasklist_lock read-locked or better,
1532  * and the siglock not locked.  It may momentarily take the siglock.
1533  *
1534  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1535  * races with threads incrementing their own counters.  But since word
1536  * reads are atomic, we either get new values or old values and we don't
1537  * care which for the sums.  We always take the siglock to protect reading
1538  * the c* fields from p->signal from races with exit.c updating those
1539  * fields when reaping, so a sample either gets all the additions of a
1540  * given child after it's reaped, or none so this sample is before reaping.
1541  */
1542 
1543 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1544 {
1545 	struct task_struct *t;
1546 	unsigned long flags;
1547 	cputime_t utime, stime;
1548 
1549 	memset((char *) r, 0, sizeof *r);
1550 
1551 	if (unlikely(!p->signal))
1552 		return;
1553 
1554 	switch (who) {
1555 		case RUSAGE_CHILDREN:
1556 			spin_lock_irqsave(&p->sighand->siglock, flags);
1557 			utime = p->signal->cutime;
1558 			stime = p->signal->cstime;
1559 			r->ru_nvcsw = p->signal->cnvcsw;
1560 			r->ru_nivcsw = p->signal->cnivcsw;
1561 			r->ru_minflt = p->signal->cmin_flt;
1562 			r->ru_majflt = p->signal->cmaj_flt;
1563 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1564 			cputime_to_timeval(utime, &r->ru_utime);
1565 			cputime_to_timeval(stime, &r->ru_stime);
1566 			break;
1567 		case RUSAGE_SELF:
1568 			spin_lock_irqsave(&p->sighand->siglock, flags);
1569 			utime = stime = cputime_zero;
1570 			goto sum_group;
1571 		case RUSAGE_BOTH:
1572 			spin_lock_irqsave(&p->sighand->siglock, flags);
1573 			utime = p->signal->cutime;
1574 			stime = p->signal->cstime;
1575 			r->ru_nvcsw = p->signal->cnvcsw;
1576 			r->ru_nivcsw = p->signal->cnivcsw;
1577 			r->ru_minflt = p->signal->cmin_flt;
1578 			r->ru_majflt = p->signal->cmaj_flt;
1579 		sum_group:
1580 			utime = cputime_add(utime, p->signal->utime);
1581 			stime = cputime_add(stime, p->signal->stime);
1582 			r->ru_nvcsw += p->signal->nvcsw;
1583 			r->ru_nivcsw += p->signal->nivcsw;
1584 			r->ru_minflt += p->signal->min_flt;
1585 			r->ru_majflt += p->signal->maj_flt;
1586 			t = p;
1587 			do {
1588 				utime = cputime_add(utime, t->utime);
1589 				stime = cputime_add(stime, t->stime);
1590 				r->ru_nvcsw += t->nvcsw;
1591 				r->ru_nivcsw += t->nivcsw;
1592 				r->ru_minflt += t->min_flt;
1593 				r->ru_majflt += t->maj_flt;
1594 				t = next_thread(t);
1595 			} while (t != p);
1596 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1597 			cputime_to_timeval(utime, &r->ru_utime);
1598 			cputime_to_timeval(stime, &r->ru_stime);
1599 			break;
1600 		default:
1601 			BUG();
1602 	}
1603 }
1604 
1605 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1606 {
1607 	struct rusage r;
1608 	read_lock(&tasklist_lock);
1609 	k_getrusage(p, who, &r);
1610 	read_unlock(&tasklist_lock);
1611 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1612 }
1613 
1614 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1615 {
1616 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1617 		return -EINVAL;
1618 	return getrusage(current, who, ru);
1619 }
1620 
1621 asmlinkage long sys_umask(int mask)
1622 {
1623 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1624 	return mask;
1625 }
1626 
1627 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1628 			  unsigned long arg4, unsigned long arg5)
1629 {
1630 	long error;
1631 	int sig;
1632 
1633 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1634 	if (error)
1635 		return error;
1636 
1637 	switch (option) {
1638 		case PR_SET_PDEATHSIG:
1639 			sig = arg2;
1640 			if (sig < 0 || sig > _NSIG) {
1641 				error = -EINVAL;
1642 				break;
1643 			}
1644 			current->pdeath_signal = sig;
1645 			break;
1646 		case PR_GET_PDEATHSIG:
1647 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1648 			break;
1649 		case PR_GET_DUMPABLE:
1650 			if (current->mm->dumpable)
1651 				error = 1;
1652 			break;
1653 		case PR_SET_DUMPABLE:
1654 			if (arg2 != 0 && arg2 != 1) {
1655 				error = -EINVAL;
1656 				break;
1657 			}
1658 			current->mm->dumpable = arg2;
1659 			break;
1660 
1661 		case PR_SET_UNALIGN:
1662 			error = SET_UNALIGN_CTL(current, arg2);
1663 			break;
1664 		case PR_GET_UNALIGN:
1665 			error = GET_UNALIGN_CTL(current, arg2);
1666 			break;
1667 		case PR_SET_FPEMU:
1668 			error = SET_FPEMU_CTL(current, arg2);
1669 			break;
1670 		case PR_GET_FPEMU:
1671 			error = GET_FPEMU_CTL(current, arg2);
1672 			break;
1673 		case PR_SET_FPEXC:
1674 			error = SET_FPEXC_CTL(current, arg2);
1675 			break;
1676 		case PR_GET_FPEXC:
1677 			error = GET_FPEXC_CTL(current, arg2);
1678 			break;
1679 		case PR_GET_TIMING:
1680 			error = PR_TIMING_STATISTICAL;
1681 			break;
1682 		case PR_SET_TIMING:
1683 			if (arg2 == PR_TIMING_STATISTICAL)
1684 				error = 0;
1685 			else
1686 				error = -EINVAL;
1687 			break;
1688 
1689 		case PR_GET_KEEPCAPS:
1690 			if (current->keep_capabilities)
1691 				error = 1;
1692 			break;
1693 		case PR_SET_KEEPCAPS:
1694 			if (arg2 != 0 && arg2 != 1) {
1695 				error = -EINVAL;
1696 				break;
1697 			}
1698 			current->keep_capabilities = arg2;
1699 			break;
1700 		case PR_SET_NAME: {
1701 			struct task_struct *me = current;
1702 			unsigned char ncomm[sizeof(me->comm)];
1703 
1704 			ncomm[sizeof(me->comm)-1] = 0;
1705 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1706 						sizeof(me->comm)-1) < 0)
1707 				return -EFAULT;
1708 			set_task_comm(me, ncomm);
1709 			return 0;
1710 		}
1711 		case PR_GET_NAME: {
1712 			struct task_struct *me = current;
1713 			unsigned char tcomm[sizeof(me->comm)];
1714 
1715 			get_task_comm(tcomm, me);
1716 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1717 				return -EFAULT;
1718 			return 0;
1719 		}
1720 		default:
1721 			error = -EINVAL;
1722 			break;
1723 	}
1724 	return error;
1725 }
1726