1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 58 /* 59 * SLAB caches for signal bits. 60 */ 61 62 static struct kmem_cache *sigqueue_cachep; 63 64 int print_fatal_signals __read_mostly; 65 66 static void __user *sig_handler(struct task_struct *t, int sig) 67 { 68 return t->sighand->action[sig - 1].sa.sa_handler; 69 } 70 71 static inline bool sig_handler_ignored(void __user *handler, int sig) 72 { 73 /* Is it explicitly or implicitly ignored? */ 74 return handler == SIG_IGN || 75 (handler == SIG_DFL && sig_kernel_ignore(sig)); 76 } 77 78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 79 { 80 void __user *handler; 81 82 handler = sig_handler(t, sig); 83 84 /* SIGKILL and SIGSTOP may not be sent to the global init */ 85 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 86 return true; 87 88 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 89 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 90 return true; 91 92 /* Only allow kernel generated signals to this kthread */ 93 if (unlikely((t->flags & PF_KTHREAD) && 94 (handler == SIG_KTHREAD_KERNEL) && !force)) 95 return true; 96 97 return sig_handler_ignored(handler, sig); 98 } 99 100 static bool sig_ignored(struct task_struct *t, int sig, bool force) 101 { 102 /* 103 * Blocked signals are never ignored, since the 104 * signal handler may change by the time it is 105 * unblocked. 106 */ 107 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 108 return false; 109 110 /* 111 * Tracers may want to know about even ignored signal unless it 112 * is SIGKILL which can't be reported anyway but can be ignored 113 * by SIGNAL_UNKILLABLE task. 114 */ 115 if (t->ptrace && sig != SIGKILL) 116 return false; 117 118 return sig_task_ignored(t, sig, force); 119 } 120 121 /* 122 * Re-calculate pending state from the set of locally pending 123 * signals, globally pending signals, and blocked signals. 124 */ 125 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 126 { 127 unsigned long ready; 128 long i; 129 130 switch (_NSIG_WORDS) { 131 default: 132 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 133 ready |= signal->sig[i] &~ blocked->sig[i]; 134 break; 135 136 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 137 ready |= signal->sig[2] &~ blocked->sig[2]; 138 ready |= signal->sig[1] &~ blocked->sig[1]; 139 ready |= signal->sig[0] &~ blocked->sig[0]; 140 break; 141 142 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 143 ready |= signal->sig[0] &~ blocked->sig[0]; 144 break; 145 146 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 147 } 148 return ready != 0; 149 } 150 151 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 152 153 static bool recalc_sigpending_tsk(struct task_struct *t) 154 { 155 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 156 PENDING(&t->pending, &t->blocked) || 157 PENDING(&t->signal->shared_pending, &t->blocked) || 158 cgroup_task_frozen(t)) { 159 set_tsk_thread_flag(t, TIF_SIGPENDING); 160 return true; 161 } 162 163 /* 164 * We must never clear the flag in another thread, or in current 165 * when it's possible the current syscall is returning -ERESTART*. 166 * So we don't clear it here, and only callers who know they should do. 167 */ 168 return false; 169 } 170 171 /* 172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 173 * This is superfluous when called on current, the wakeup is a harmless no-op. 174 */ 175 void recalc_sigpending_and_wake(struct task_struct *t) 176 { 177 if (recalc_sigpending_tsk(t)) 178 signal_wake_up(t, 0); 179 } 180 181 void recalc_sigpending(void) 182 { 183 if (!recalc_sigpending_tsk(current) && !freezing(current)) 184 clear_thread_flag(TIF_SIGPENDING); 185 186 } 187 EXPORT_SYMBOL(recalc_sigpending); 188 189 void calculate_sigpending(void) 190 { 191 /* Have any signals or users of TIF_SIGPENDING been delayed 192 * until after fork? 193 */ 194 spin_lock_irq(¤t->sighand->siglock); 195 set_tsk_thread_flag(current, TIF_SIGPENDING); 196 recalc_sigpending(); 197 spin_unlock_irq(¤t->sighand->siglock); 198 } 199 200 /* Given the mask, find the first available signal that should be serviced. */ 201 202 #define SYNCHRONOUS_MASK \ 203 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 204 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 205 206 int next_signal(struct sigpending *pending, sigset_t *mask) 207 { 208 unsigned long i, *s, *m, x; 209 int sig = 0; 210 211 s = pending->signal.sig; 212 m = mask->sig; 213 214 /* 215 * Handle the first word specially: it contains the 216 * synchronous signals that need to be dequeued first. 217 */ 218 x = *s &~ *m; 219 if (x) { 220 if (x & SYNCHRONOUS_MASK) 221 x &= SYNCHRONOUS_MASK; 222 sig = ffz(~x) + 1; 223 return sig; 224 } 225 226 switch (_NSIG_WORDS) { 227 default: 228 for (i = 1; i < _NSIG_WORDS; ++i) { 229 x = *++s &~ *++m; 230 if (!x) 231 continue; 232 sig = ffz(~x) + i*_NSIG_BPW + 1; 233 break; 234 } 235 break; 236 237 case 2: 238 x = s[1] &~ m[1]; 239 if (!x) 240 break; 241 sig = ffz(~x) + _NSIG_BPW + 1; 242 break; 243 244 case 1: 245 /* Nothing to do */ 246 break; 247 } 248 249 return sig; 250 } 251 252 static inline void print_dropped_signal(int sig) 253 { 254 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 255 256 if (!print_fatal_signals) 257 return; 258 259 if (!__ratelimit(&ratelimit_state)) 260 return; 261 262 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 263 current->comm, current->pid, sig); 264 } 265 266 /** 267 * task_set_jobctl_pending - set jobctl pending bits 268 * @task: target task 269 * @mask: pending bits to set 270 * 271 * Clear @mask from @task->jobctl. @mask must be subset of 272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 273 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 274 * cleared. If @task is already being killed or exiting, this function 275 * becomes noop. 276 * 277 * CONTEXT: 278 * Must be called with @task->sighand->siglock held. 279 * 280 * RETURNS: 281 * %true if @mask is set, %false if made noop because @task was dying. 282 */ 283 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 284 { 285 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 286 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 287 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 288 289 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 290 return false; 291 292 if (mask & JOBCTL_STOP_SIGMASK) 293 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 294 295 task->jobctl |= mask; 296 return true; 297 } 298 299 /** 300 * task_clear_jobctl_trapping - clear jobctl trapping bit 301 * @task: target task 302 * 303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 304 * Clear it and wake up the ptracer. Note that we don't need any further 305 * locking. @task->siglock guarantees that @task->parent points to the 306 * ptracer. 307 * 308 * CONTEXT: 309 * Must be called with @task->sighand->siglock held. 310 */ 311 void task_clear_jobctl_trapping(struct task_struct *task) 312 { 313 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 314 task->jobctl &= ~JOBCTL_TRAPPING; 315 smp_mb(); /* advised by wake_up_bit() */ 316 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 317 } 318 } 319 320 /** 321 * task_clear_jobctl_pending - clear jobctl pending bits 322 * @task: target task 323 * @mask: pending bits to clear 324 * 325 * Clear @mask from @task->jobctl. @mask must be subset of 326 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 327 * STOP bits are cleared together. 328 * 329 * If clearing of @mask leaves no stop or trap pending, this function calls 330 * task_clear_jobctl_trapping(). 331 * 332 * CONTEXT: 333 * Must be called with @task->sighand->siglock held. 334 */ 335 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 336 { 337 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 338 339 if (mask & JOBCTL_STOP_PENDING) 340 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 341 342 task->jobctl &= ~mask; 343 344 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 345 task_clear_jobctl_trapping(task); 346 } 347 348 /** 349 * task_participate_group_stop - participate in a group stop 350 * @task: task participating in a group stop 351 * 352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 353 * Group stop states are cleared and the group stop count is consumed if 354 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 355 * stop, the appropriate `SIGNAL_*` flags are set. 356 * 357 * CONTEXT: 358 * Must be called with @task->sighand->siglock held. 359 * 360 * RETURNS: 361 * %true if group stop completion should be notified to the parent, %false 362 * otherwise. 363 */ 364 static bool task_participate_group_stop(struct task_struct *task) 365 { 366 struct signal_struct *sig = task->signal; 367 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 368 369 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 370 371 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 372 373 if (!consume) 374 return false; 375 376 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 377 sig->group_stop_count--; 378 379 /* 380 * Tell the caller to notify completion iff we are entering into a 381 * fresh group stop. Read comment in do_signal_stop() for details. 382 */ 383 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 384 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 385 return true; 386 } 387 return false; 388 } 389 390 void task_join_group_stop(struct task_struct *task) 391 { 392 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 393 struct signal_struct *sig = current->signal; 394 395 if (sig->group_stop_count) { 396 sig->group_stop_count++; 397 mask |= JOBCTL_STOP_CONSUME; 398 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 399 return; 400 401 /* Have the new thread join an on-going signal group stop */ 402 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 403 } 404 405 /* 406 * allocate a new signal queue record 407 * - this may be called without locks if and only if t == current, otherwise an 408 * appropriate lock must be held to stop the target task from exiting 409 */ 410 static struct sigqueue * 411 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 412 { 413 struct sigqueue *q = NULL; 414 struct user_struct *user; 415 int sigpending; 416 417 /* 418 * Protect access to @t credentials. This can go away when all 419 * callers hold rcu read lock. 420 * 421 * NOTE! A pending signal will hold on to the user refcount, 422 * and we get/put the refcount only when the sigpending count 423 * changes from/to zero. 424 */ 425 rcu_read_lock(); 426 user = __task_cred(t)->user; 427 sigpending = atomic_inc_return(&user->sigpending); 428 if (sigpending == 1) 429 get_uid(user); 430 rcu_read_unlock(); 431 432 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 433 q = kmem_cache_alloc(sigqueue_cachep, flags); 434 } else { 435 print_dropped_signal(sig); 436 } 437 438 if (unlikely(q == NULL)) { 439 if (atomic_dec_and_test(&user->sigpending)) 440 free_uid(user); 441 } else { 442 INIT_LIST_HEAD(&q->list); 443 q->flags = 0; 444 q->user = user; 445 } 446 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (atomic_dec_and_test(&q->user->sigpending)) 455 free_uid(q->user); 456 kmem_cache_free(sigqueue_cachep, q); 457 } 458 459 void flush_sigqueue(struct sigpending *queue) 460 { 461 struct sigqueue *q; 462 463 sigemptyset(&queue->signal); 464 while (!list_empty(&queue->list)) { 465 q = list_entry(queue->list.next, struct sigqueue , list); 466 list_del_init(&q->list); 467 __sigqueue_free(q); 468 } 469 } 470 471 /* 472 * Flush all pending signals for this kthread. 473 */ 474 void flush_signals(struct task_struct *t) 475 { 476 unsigned long flags; 477 478 spin_lock_irqsave(&t->sighand->siglock, flags); 479 clear_tsk_thread_flag(t, TIF_SIGPENDING); 480 flush_sigqueue(&t->pending); 481 flush_sigqueue(&t->signal->shared_pending); 482 spin_unlock_irqrestore(&t->sighand->siglock, flags); 483 } 484 EXPORT_SYMBOL(flush_signals); 485 486 #ifdef CONFIG_POSIX_TIMERS 487 static void __flush_itimer_signals(struct sigpending *pending) 488 { 489 sigset_t signal, retain; 490 struct sigqueue *q, *n; 491 492 signal = pending->signal; 493 sigemptyset(&retain); 494 495 list_for_each_entry_safe(q, n, &pending->list, list) { 496 int sig = q->info.si_signo; 497 498 if (likely(q->info.si_code != SI_TIMER)) { 499 sigaddset(&retain, sig); 500 } else { 501 sigdelset(&signal, sig); 502 list_del_init(&q->list); 503 __sigqueue_free(q); 504 } 505 } 506 507 sigorsets(&pending->signal, &signal, &retain); 508 } 509 510 void flush_itimer_signals(void) 511 { 512 struct task_struct *tsk = current; 513 unsigned long flags; 514 515 spin_lock_irqsave(&tsk->sighand->siglock, flags); 516 __flush_itimer_signals(&tsk->pending); 517 __flush_itimer_signals(&tsk->signal->shared_pending); 518 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 519 } 520 #endif 521 522 void ignore_signals(struct task_struct *t) 523 { 524 int i; 525 526 for (i = 0; i < _NSIG; ++i) 527 t->sighand->action[i].sa.sa_handler = SIG_IGN; 528 529 flush_signals(t); 530 } 531 532 /* 533 * Flush all handlers for a task. 534 */ 535 536 void 537 flush_signal_handlers(struct task_struct *t, int force_default) 538 { 539 int i; 540 struct k_sigaction *ka = &t->sighand->action[0]; 541 for (i = _NSIG ; i != 0 ; i--) { 542 if (force_default || ka->sa.sa_handler != SIG_IGN) 543 ka->sa.sa_handler = SIG_DFL; 544 ka->sa.sa_flags = 0; 545 #ifdef __ARCH_HAS_SA_RESTORER 546 ka->sa.sa_restorer = NULL; 547 #endif 548 sigemptyset(&ka->sa.sa_mask); 549 ka++; 550 } 551 } 552 553 bool unhandled_signal(struct task_struct *tsk, int sig) 554 { 555 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 556 if (is_global_init(tsk)) 557 return true; 558 559 if (handler != SIG_IGN && handler != SIG_DFL) 560 return false; 561 562 /* if ptraced, let the tracer determine */ 563 return !tsk->ptrace; 564 } 565 566 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 567 bool *resched_timer) 568 { 569 struct sigqueue *q, *first = NULL; 570 571 /* 572 * Collect the siginfo appropriate to this signal. Check if 573 * there is another siginfo for the same signal. 574 */ 575 list_for_each_entry(q, &list->list, list) { 576 if (q->info.si_signo == sig) { 577 if (first) 578 goto still_pending; 579 first = q; 580 } 581 } 582 583 sigdelset(&list->signal, sig); 584 585 if (first) { 586 still_pending: 587 list_del_init(&first->list); 588 copy_siginfo(info, &first->info); 589 590 *resched_timer = 591 (first->flags & SIGQUEUE_PREALLOC) && 592 (info->si_code == SI_TIMER) && 593 (info->si_sys_private); 594 595 __sigqueue_free(first); 596 } else { 597 /* 598 * Ok, it wasn't in the queue. This must be 599 * a fast-pathed signal or we must have been 600 * out of queue space. So zero out the info. 601 */ 602 clear_siginfo(info); 603 info->si_signo = sig; 604 info->si_errno = 0; 605 info->si_code = SI_USER; 606 info->si_pid = 0; 607 info->si_uid = 0; 608 } 609 } 610 611 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 612 kernel_siginfo_t *info, bool *resched_timer) 613 { 614 int sig = next_signal(pending, mask); 615 616 if (sig) 617 collect_signal(sig, pending, info, resched_timer); 618 return sig; 619 } 620 621 /* 622 * Dequeue a signal and return the element to the caller, which is 623 * expected to free it. 624 * 625 * All callers have to hold the siglock. 626 */ 627 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 628 { 629 bool resched_timer = false; 630 int signr; 631 632 /* We only dequeue private signals from ourselves, we don't let 633 * signalfd steal them 634 */ 635 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 636 if (!signr) { 637 signr = __dequeue_signal(&tsk->signal->shared_pending, 638 mask, info, &resched_timer); 639 #ifdef CONFIG_POSIX_TIMERS 640 /* 641 * itimer signal ? 642 * 643 * itimers are process shared and we restart periodic 644 * itimers in the signal delivery path to prevent DoS 645 * attacks in the high resolution timer case. This is 646 * compliant with the old way of self-restarting 647 * itimers, as the SIGALRM is a legacy signal and only 648 * queued once. Changing the restart behaviour to 649 * restart the timer in the signal dequeue path is 650 * reducing the timer noise on heavy loaded !highres 651 * systems too. 652 */ 653 if (unlikely(signr == SIGALRM)) { 654 struct hrtimer *tmr = &tsk->signal->real_timer; 655 656 if (!hrtimer_is_queued(tmr) && 657 tsk->signal->it_real_incr != 0) { 658 hrtimer_forward(tmr, tmr->base->get_time(), 659 tsk->signal->it_real_incr); 660 hrtimer_restart(tmr); 661 } 662 } 663 #endif 664 } 665 666 recalc_sigpending(); 667 if (!signr) 668 return 0; 669 670 if (unlikely(sig_kernel_stop(signr))) { 671 /* 672 * Set a marker that we have dequeued a stop signal. Our 673 * caller might release the siglock and then the pending 674 * stop signal it is about to process is no longer in the 675 * pending bitmasks, but must still be cleared by a SIGCONT 676 * (and overruled by a SIGKILL). So those cases clear this 677 * shared flag after we've set it. Note that this flag may 678 * remain set after the signal we return is ignored or 679 * handled. That doesn't matter because its only purpose 680 * is to alert stop-signal processing code when another 681 * processor has come along and cleared the flag. 682 */ 683 current->jobctl |= JOBCTL_STOP_DEQUEUED; 684 } 685 #ifdef CONFIG_POSIX_TIMERS 686 if (resched_timer) { 687 /* 688 * Release the siglock to ensure proper locking order 689 * of timer locks outside of siglocks. Note, we leave 690 * irqs disabled here, since the posix-timers code is 691 * about to disable them again anyway. 692 */ 693 spin_unlock(&tsk->sighand->siglock); 694 posixtimer_rearm(info); 695 spin_lock(&tsk->sighand->siglock); 696 697 /* Don't expose the si_sys_private value to userspace */ 698 info->si_sys_private = 0; 699 } 700 #endif 701 return signr; 702 } 703 EXPORT_SYMBOL_GPL(dequeue_signal); 704 705 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 706 { 707 struct task_struct *tsk = current; 708 struct sigpending *pending = &tsk->pending; 709 struct sigqueue *q, *sync = NULL; 710 711 /* 712 * Might a synchronous signal be in the queue? 713 */ 714 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 715 return 0; 716 717 /* 718 * Return the first synchronous signal in the queue. 719 */ 720 list_for_each_entry(q, &pending->list, list) { 721 /* Synchronous signals have a positive si_code */ 722 if ((q->info.si_code > SI_USER) && 723 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 724 sync = q; 725 goto next; 726 } 727 } 728 return 0; 729 next: 730 /* 731 * Check if there is another siginfo for the same signal. 732 */ 733 list_for_each_entry_continue(q, &pending->list, list) { 734 if (q->info.si_signo == sync->info.si_signo) 735 goto still_pending; 736 } 737 738 sigdelset(&pending->signal, sync->info.si_signo); 739 recalc_sigpending(); 740 still_pending: 741 list_del_init(&sync->list); 742 copy_siginfo(info, &sync->info); 743 __sigqueue_free(sync); 744 return info->si_signo; 745 } 746 747 /* 748 * Tell a process that it has a new active signal.. 749 * 750 * NOTE! we rely on the previous spin_lock to 751 * lock interrupts for us! We can only be called with 752 * "siglock" held, and the local interrupt must 753 * have been disabled when that got acquired! 754 * 755 * No need to set need_resched since signal event passing 756 * goes through ->blocked 757 */ 758 void signal_wake_up_state(struct task_struct *t, unsigned int state) 759 { 760 set_tsk_thread_flag(t, TIF_SIGPENDING); 761 /* 762 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 763 * case. We don't check t->state here because there is a race with it 764 * executing another processor and just now entering stopped state. 765 * By using wake_up_state, we ensure the process will wake up and 766 * handle its death signal. 767 */ 768 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 769 kick_process(t); 770 } 771 772 /* 773 * Remove signals in mask from the pending set and queue. 774 * Returns 1 if any signals were found. 775 * 776 * All callers must be holding the siglock. 777 */ 778 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 779 { 780 struct sigqueue *q, *n; 781 sigset_t m; 782 783 sigandsets(&m, mask, &s->signal); 784 if (sigisemptyset(&m)) 785 return; 786 787 sigandnsets(&s->signal, &s->signal, mask); 788 list_for_each_entry_safe(q, n, &s->list, list) { 789 if (sigismember(mask, q->info.si_signo)) { 790 list_del_init(&q->list); 791 __sigqueue_free(q); 792 } 793 } 794 } 795 796 static inline int is_si_special(const struct kernel_siginfo *info) 797 { 798 return info <= SEND_SIG_PRIV; 799 } 800 801 static inline bool si_fromuser(const struct kernel_siginfo *info) 802 { 803 return info == SEND_SIG_NOINFO || 804 (!is_si_special(info) && SI_FROMUSER(info)); 805 } 806 807 /* 808 * called with RCU read lock from check_kill_permission() 809 */ 810 static bool kill_ok_by_cred(struct task_struct *t) 811 { 812 const struct cred *cred = current_cred(); 813 const struct cred *tcred = __task_cred(t); 814 815 return uid_eq(cred->euid, tcred->suid) || 816 uid_eq(cred->euid, tcred->uid) || 817 uid_eq(cred->uid, tcred->suid) || 818 uid_eq(cred->uid, tcred->uid) || 819 ns_capable(tcred->user_ns, CAP_KILL); 820 } 821 822 /* 823 * Bad permissions for sending the signal 824 * - the caller must hold the RCU read lock 825 */ 826 static int check_kill_permission(int sig, struct kernel_siginfo *info, 827 struct task_struct *t) 828 { 829 struct pid *sid; 830 int error; 831 832 if (!valid_signal(sig)) 833 return -EINVAL; 834 835 if (!si_fromuser(info)) 836 return 0; 837 838 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 839 if (error) 840 return error; 841 842 if (!same_thread_group(current, t) && 843 !kill_ok_by_cred(t)) { 844 switch (sig) { 845 case SIGCONT: 846 sid = task_session(t); 847 /* 848 * We don't return the error if sid == NULL. The 849 * task was unhashed, the caller must notice this. 850 */ 851 if (!sid || sid == task_session(current)) 852 break; 853 fallthrough; 854 default: 855 return -EPERM; 856 } 857 } 858 859 return security_task_kill(t, info, sig, NULL); 860 } 861 862 /** 863 * ptrace_trap_notify - schedule trap to notify ptracer 864 * @t: tracee wanting to notify tracer 865 * 866 * This function schedules sticky ptrace trap which is cleared on the next 867 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 868 * ptracer. 869 * 870 * If @t is running, STOP trap will be taken. If trapped for STOP and 871 * ptracer is listening for events, tracee is woken up so that it can 872 * re-trap for the new event. If trapped otherwise, STOP trap will be 873 * eventually taken without returning to userland after the existing traps 874 * are finished by PTRACE_CONT. 875 * 876 * CONTEXT: 877 * Must be called with @task->sighand->siglock held. 878 */ 879 static void ptrace_trap_notify(struct task_struct *t) 880 { 881 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 882 assert_spin_locked(&t->sighand->siglock); 883 884 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 885 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 886 } 887 888 /* 889 * Handle magic process-wide effects of stop/continue signals. Unlike 890 * the signal actions, these happen immediately at signal-generation 891 * time regardless of blocking, ignoring, or handling. This does the 892 * actual continuing for SIGCONT, but not the actual stopping for stop 893 * signals. The process stop is done as a signal action for SIG_DFL. 894 * 895 * Returns true if the signal should be actually delivered, otherwise 896 * it should be dropped. 897 */ 898 static bool prepare_signal(int sig, struct task_struct *p, bool force) 899 { 900 struct signal_struct *signal = p->signal; 901 struct task_struct *t; 902 sigset_t flush; 903 904 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 905 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 906 return sig == SIGKILL; 907 /* 908 * The process is in the middle of dying, nothing to do. 909 */ 910 } else if (sig_kernel_stop(sig)) { 911 /* 912 * This is a stop signal. Remove SIGCONT from all queues. 913 */ 914 siginitset(&flush, sigmask(SIGCONT)); 915 flush_sigqueue_mask(&flush, &signal->shared_pending); 916 for_each_thread(p, t) 917 flush_sigqueue_mask(&flush, &t->pending); 918 } else if (sig == SIGCONT) { 919 unsigned int why; 920 /* 921 * Remove all stop signals from all queues, wake all threads. 922 */ 923 siginitset(&flush, SIG_KERNEL_STOP_MASK); 924 flush_sigqueue_mask(&flush, &signal->shared_pending); 925 for_each_thread(p, t) { 926 flush_sigqueue_mask(&flush, &t->pending); 927 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 928 if (likely(!(t->ptrace & PT_SEIZED))) 929 wake_up_state(t, __TASK_STOPPED); 930 else 931 ptrace_trap_notify(t); 932 } 933 934 /* 935 * Notify the parent with CLD_CONTINUED if we were stopped. 936 * 937 * If we were in the middle of a group stop, we pretend it 938 * was already finished, and then continued. Since SIGCHLD 939 * doesn't queue we report only CLD_STOPPED, as if the next 940 * CLD_CONTINUED was dropped. 941 */ 942 why = 0; 943 if (signal->flags & SIGNAL_STOP_STOPPED) 944 why |= SIGNAL_CLD_CONTINUED; 945 else if (signal->group_stop_count) 946 why |= SIGNAL_CLD_STOPPED; 947 948 if (why) { 949 /* 950 * The first thread which returns from do_signal_stop() 951 * will take ->siglock, notice SIGNAL_CLD_MASK, and 952 * notify its parent. See get_signal(). 953 */ 954 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 955 signal->group_stop_count = 0; 956 signal->group_exit_code = 0; 957 } 958 } 959 960 return !sig_ignored(p, sig, force); 961 } 962 963 /* 964 * Test if P wants to take SIG. After we've checked all threads with this, 965 * it's equivalent to finding no threads not blocking SIG. Any threads not 966 * blocking SIG were ruled out because they are not running and already 967 * have pending signals. Such threads will dequeue from the shared queue 968 * as soon as they're available, so putting the signal on the shared queue 969 * will be equivalent to sending it to one such thread. 970 */ 971 static inline bool wants_signal(int sig, struct task_struct *p) 972 { 973 if (sigismember(&p->blocked, sig)) 974 return false; 975 976 if (p->flags & PF_EXITING) 977 return false; 978 979 if (sig == SIGKILL) 980 return true; 981 982 if (task_is_stopped_or_traced(p)) 983 return false; 984 985 return task_curr(p) || !task_sigpending(p); 986 } 987 988 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 989 { 990 struct signal_struct *signal = p->signal; 991 struct task_struct *t; 992 993 /* 994 * Now find a thread we can wake up to take the signal off the queue. 995 * 996 * If the main thread wants the signal, it gets first crack. 997 * Probably the least surprising to the average bear. 998 */ 999 if (wants_signal(sig, p)) 1000 t = p; 1001 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1002 /* 1003 * There is just one thread and it does not need to be woken. 1004 * It will dequeue unblocked signals before it runs again. 1005 */ 1006 return; 1007 else { 1008 /* 1009 * Otherwise try to find a suitable thread. 1010 */ 1011 t = signal->curr_target; 1012 while (!wants_signal(sig, t)) { 1013 t = next_thread(t); 1014 if (t == signal->curr_target) 1015 /* 1016 * No thread needs to be woken. 1017 * Any eligible threads will see 1018 * the signal in the queue soon. 1019 */ 1020 return; 1021 } 1022 signal->curr_target = t; 1023 } 1024 1025 /* 1026 * Found a killable thread. If the signal will be fatal, 1027 * then start taking the whole group down immediately. 1028 */ 1029 if (sig_fatal(p, sig) && 1030 !(signal->flags & SIGNAL_GROUP_EXIT) && 1031 !sigismember(&t->real_blocked, sig) && 1032 (sig == SIGKILL || !p->ptrace)) { 1033 /* 1034 * This signal will be fatal to the whole group. 1035 */ 1036 if (!sig_kernel_coredump(sig)) { 1037 /* 1038 * Start a group exit and wake everybody up. 1039 * This way we don't have other threads 1040 * running and doing things after a slower 1041 * thread has the fatal signal pending. 1042 */ 1043 signal->flags = SIGNAL_GROUP_EXIT; 1044 signal->group_exit_code = sig; 1045 signal->group_stop_count = 0; 1046 t = p; 1047 do { 1048 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1049 sigaddset(&t->pending.signal, SIGKILL); 1050 signal_wake_up(t, 1); 1051 } while_each_thread(p, t); 1052 return; 1053 } 1054 } 1055 1056 /* 1057 * The signal is already in the shared-pending queue. 1058 * Tell the chosen thread to wake up and dequeue it. 1059 */ 1060 signal_wake_up(t, sig == SIGKILL); 1061 return; 1062 } 1063 1064 static inline bool legacy_queue(struct sigpending *signals, int sig) 1065 { 1066 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1067 } 1068 1069 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1070 enum pid_type type, bool force) 1071 { 1072 struct sigpending *pending; 1073 struct sigqueue *q; 1074 int override_rlimit; 1075 int ret = 0, result; 1076 1077 assert_spin_locked(&t->sighand->siglock); 1078 1079 result = TRACE_SIGNAL_IGNORED; 1080 if (!prepare_signal(sig, t, force)) 1081 goto ret; 1082 1083 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1084 /* 1085 * Short-circuit ignored signals and support queuing 1086 * exactly one non-rt signal, so that we can get more 1087 * detailed information about the cause of the signal. 1088 */ 1089 result = TRACE_SIGNAL_ALREADY_PENDING; 1090 if (legacy_queue(pending, sig)) 1091 goto ret; 1092 1093 result = TRACE_SIGNAL_DELIVERED; 1094 /* 1095 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1096 */ 1097 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1098 goto out_set; 1099 1100 /* 1101 * Real-time signals must be queued if sent by sigqueue, or 1102 * some other real-time mechanism. It is implementation 1103 * defined whether kill() does so. We attempt to do so, on 1104 * the principle of least surprise, but since kill is not 1105 * allowed to fail with EAGAIN when low on memory we just 1106 * make sure at least one signal gets delivered and don't 1107 * pass on the info struct. 1108 */ 1109 if (sig < SIGRTMIN) 1110 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1111 else 1112 override_rlimit = 0; 1113 1114 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1115 if (q) { 1116 list_add_tail(&q->list, &pending->list); 1117 switch ((unsigned long) info) { 1118 case (unsigned long) SEND_SIG_NOINFO: 1119 clear_siginfo(&q->info); 1120 q->info.si_signo = sig; 1121 q->info.si_errno = 0; 1122 q->info.si_code = SI_USER; 1123 q->info.si_pid = task_tgid_nr_ns(current, 1124 task_active_pid_ns(t)); 1125 rcu_read_lock(); 1126 q->info.si_uid = 1127 from_kuid_munged(task_cred_xxx(t, user_ns), 1128 current_uid()); 1129 rcu_read_unlock(); 1130 break; 1131 case (unsigned long) SEND_SIG_PRIV: 1132 clear_siginfo(&q->info); 1133 q->info.si_signo = sig; 1134 q->info.si_errno = 0; 1135 q->info.si_code = SI_KERNEL; 1136 q->info.si_pid = 0; 1137 q->info.si_uid = 0; 1138 break; 1139 default: 1140 copy_siginfo(&q->info, info); 1141 break; 1142 } 1143 } else if (!is_si_special(info) && 1144 sig >= SIGRTMIN && info->si_code != SI_USER) { 1145 /* 1146 * Queue overflow, abort. We may abort if the 1147 * signal was rt and sent by user using something 1148 * other than kill(). 1149 */ 1150 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1151 ret = -EAGAIN; 1152 goto ret; 1153 } else { 1154 /* 1155 * This is a silent loss of information. We still 1156 * send the signal, but the *info bits are lost. 1157 */ 1158 result = TRACE_SIGNAL_LOSE_INFO; 1159 } 1160 1161 out_set: 1162 signalfd_notify(t, sig); 1163 sigaddset(&pending->signal, sig); 1164 1165 /* Let multiprocess signals appear after on-going forks */ 1166 if (type > PIDTYPE_TGID) { 1167 struct multiprocess_signals *delayed; 1168 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1169 sigset_t *signal = &delayed->signal; 1170 /* Can't queue both a stop and a continue signal */ 1171 if (sig == SIGCONT) 1172 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1173 else if (sig_kernel_stop(sig)) 1174 sigdelset(signal, SIGCONT); 1175 sigaddset(signal, sig); 1176 } 1177 } 1178 1179 complete_signal(sig, t, type); 1180 ret: 1181 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1182 return ret; 1183 } 1184 1185 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1186 { 1187 bool ret = false; 1188 switch (siginfo_layout(info->si_signo, info->si_code)) { 1189 case SIL_KILL: 1190 case SIL_CHLD: 1191 case SIL_RT: 1192 ret = true; 1193 break; 1194 case SIL_TIMER: 1195 case SIL_POLL: 1196 case SIL_FAULT: 1197 case SIL_FAULT_MCEERR: 1198 case SIL_FAULT_BNDERR: 1199 case SIL_FAULT_PKUERR: 1200 case SIL_SYS: 1201 ret = false; 1202 break; 1203 } 1204 return ret; 1205 } 1206 1207 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1208 enum pid_type type) 1209 { 1210 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1211 bool force = false; 1212 1213 if (info == SEND_SIG_NOINFO) { 1214 /* Force if sent from an ancestor pid namespace */ 1215 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1216 } else if (info == SEND_SIG_PRIV) { 1217 /* Don't ignore kernel generated signals */ 1218 force = true; 1219 } else if (has_si_pid_and_uid(info)) { 1220 /* SIGKILL and SIGSTOP is special or has ids */ 1221 struct user_namespace *t_user_ns; 1222 1223 rcu_read_lock(); 1224 t_user_ns = task_cred_xxx(t, user_ns); 1225 if (current_user_ns() != t_user_ns) { 1226 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1227 info->si_uid = from_kuid_munged(t_user_ns, uid); 1228 } 1229 rcu_read_unlock(); 1230 1231 /* A kernel generated signal? */ 1232 force = (info->si_code == SI_KERNEL); 1233 1234 /* From an ancestor pid namespace? */ 1235 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1236 info->si_pid = 0; 1237 force = true; 1238 } 1239 } 1240 return __send_signal(sig, info, t, type, force); 1241 } 1242 1243 static void print_fatal_signal(int signr) 1244 { 1245 struct pt_regs *regs = signal_pt_regs(); 1246 pr_info("potentially unexpected fatal signal %d.\n", signr); 1247 1248 #if defined(__i386__) && !defined(__arch_um__) 1249 pr_info("code at %08lx: ", regs->ip); 1250 { 1251 int i; 1252 for (i = 0; i < 16; i++) { 1253 unsigned char insn; 1254 1255 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1256 break; 1257 pr_cont("%02x ", insn); 1258 } 1259 } 1260 pr_cont("\n"); 1261 #endif 1262 preempt_disable(); 1263 show_regs(regs); 1264 preempt_enable(); 1265 } 1266 1267 static int __init setup_print_fatal_signals(char *str) 1268 { 1269 get_option (&str, &print_fatal_signals); 1270 1271 return 1; 1272 } 1273 1274 __setup("print-fatal-signals=", setup_print_fatal_signals); 1275 1276 int 1277 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1278 { 1279 return send_signal(sig, info, p, PIDTYPE_TGID); 1280 } 1281 1282 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1283 enum pid_type type) 1284 { 1285 unsigned long flags; 1286 int ret = -ESRCH; 1287 1288 if (lock_task_sighand(p, &flags)) { 1289 ret = send_signal(sig, info, p, type); 1290 unlock_task_sighand(p, &flags); 1291 } 1292 1293 return ret; 1294 } 1295 1296 /* 1297 * Force a signal that the process can't ignore: if necessary 1298 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1299 * 1300 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1301 * since we do not want to have a signal handler that was blocked 1302 * be invoked when user space had explicitly blocked it. 1303 * 1304 * We don't want to have recursive SIGSEGV's etc, for example, 1305 * that is why we also clear SIGNAL_UNKILLABLE. 1306 */ 1307 static int 1308 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) 1309 { 1310 unsigned long int flags; 1311 int ret, blocked, ignored; 1312 struct k_sigaction *action; 1313 int sig = info->si_signo; 1314 1315 spin_lock_irqsave(&t->sighand->siglock, flags); 1316 action = &t->sighand->action[sig-1]; 1317 ignored = action->sa.sa_handler == SIG_IGN; 1318 blocked = sigismember(&t->blocked, sig); 1319 if (blocked || ignored) { 1320 action->sa.sa_handler = SIG_DFL; 1321 if (blocked) { 1322 sigdelset(&t->blocked, sig); 1323 recalc_sigpending_and_wake(t); 1324 } 1325 } 1326 /* 1327 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1328 * debugging to leave init killable. 1329 */ 1330 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1331 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1332 ret = send_signal(sig, info, t, PIDTYPE_PID); 1333 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1334 1335 return ret; 1336 } 1337 1338 int force_sig_info(struct kernel_siginfo *info) 1339 { 1340 return force_sig_info_to_task(info, current); 1341 } 1342 1343 /* 1344 * Nuke all other threads in the group. 1345 */ 1346 int zap_other_threads(struct task_struct *p) 1347 { 1348 struct task_struct *t = p; 1349 int count = 0; 1350 1351 p->signal->group_stop_count = 0; 1352 1353 while_each_thread(p, t) { 1354 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1355 count++; 1356 1357 /* Don't bother with already dead threads */ 1358 if (t->exit_state) 1359 continue; 1360 sigaddset(&t->pending.signal, SIGKILL); 1361 signal_wake_up(t, 1); 1362 } 1363 1364 return count; 1365 } 1366 1367 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1368 unsigned long *flags) 1369 { 1370 struct sighand_struct *sighand; 1371 1372 rcu_read_lock(); 1373 for (;;) { 1374 sighand = rcu_dereference(tsk->sighand); 1375 if (unlikely(sighand == NULL)) 1376 break; 1377 1378 /* 1379 * This sighand can be already freed and even reused, but 1380 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1381 * initializes ->siglock: this slab can't go away, it has 1382 * the same object type, ->siglock can't be reinitialized. 1383 * 1384 * We need to ensure that tsk->sighand is still the same 1385 * after we take the lock, we can race with de_thread() or 1386 * __exit_signal(). In the latter case the next iteration 1387 * must see ->sighand == NULL. 1388 */ 1389 spin_lock_irqsave(&sighand->siglock, *flags); 1390 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1391 break; 1392 spin_unlock_irqrestore(&sighand->siglock, *flags); 1393 } 1394 rcu_read_unlock(); 1395 1396 return sighand; 1397 } 1398 1399 /* 1400 * send signal info to all the members of a group 1401 */ 1402 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1403 struct task_struct *p, enum pid_type type) 1404 { 1405 int ret; 1406 1407 rcu_read_lock(); 1408 ret = check_kill_permission(sig, info, p); 1409 rcu_read_unlock(); 1410 1411 if (!ret && sig) 1412 ret = do_send_sig_info(sig, info, p, type); 1413 1414 return ret; 1415 } 1416 1417 /* 1418 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1419 * control characters do (^C, ^Z etc) 1420 * - the caller must hold at least a readlock on tasklist_lock 1421 */ 1422 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1423 { 1424 struct task_struct *p = NULL; 1425 int retval, success; 1426 1427 success = 0; 1428 retval = -ESRCH; 1429 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1430 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1431 success |= !err; 1432 retval = err; 1433 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1434 return success ? 0 : retval; 1435 } 1436 1437 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1438 { 1439 int error = -ESRCH; 1440 struct task_struct *p; 1441 1442 for (;;) { 1443 rcu_read_lock(); 1444 p = pid_task(pid, PIDTYPE_PID); 1445 if (p) 1446 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1447 rcu_read_unlock(); 1448 if (likely(!p || error != -ESRCH)) 1449 return error; 1450 1451 /* 1452 * The task was unhashed in between, try again. If it 1453 * is dead, pid_task() will return NULL, if we race with 1454 * de_thread() it will find the new leader. 1455 */ 1456 } 1457 } 1458 1459 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1460 { 1461 int error; 1462 rcu_read_lock(); 1463 error = kill_pid_info(sig, info, find_vpid(pid)); 1464 rcu_read_unlock(); 1465 return error; 1466 } 1467 1468 static inline bool kill_as_cred_perm(const struct cred *cred, 1469 struct task_struct *target) 1470 { 1471 const struct cred *pcred = __task_cred(target); 1472 1473 return uid_eq(cred->euid, pcred->suid) || 1474 uid_eq(cred->euid, pcred->uid) || 1475 uid_eq(cred->uid, pcred->suid) || 1476 uid_eq(cred->uid, pcred->uid); 1477 } 1478 1479 /* 1480 * The usb asyncio usage of siginfo is wrong. The glibc support 1481 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1482 * AKA after the generic fields: 1483 * kernel_pid_t si_pid; 1484 * kernel_uid32_t si_uid; 1485 * sigval_t si_value; 1486 * 1487 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1488 * after the generic fields is: 1489 * void __user *si_addr; 1490 * 1491 * This is a practical problem when there is a 64bit big endian kernel 1492 * and a 32bit userspace. As the 32bit address will encoded in the low 1493 * 32bits of the pointer. Those low 32bits will be stored at higher 1494 * address than appear in a 32 bit pointer. So userspace will not 1495 * see the address it was expecting for it's completions. 1496 * 1497 * There is nothing in the encoding that can allow 1498 * copy_siginfo_to_user32 to detect this confusion of formats, so 1499 * handle this by requiring the caller of kill_pid_usb_asyncio to 1500 * notice when this situration takes place and to store the 32bit 1501 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1502 * parameter. 1503 */ 1504 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1505 struct pid *pid, const struct cred *cred) 1506 { 1507 struct kernel_siginfo info; 1508 struct task_struct *p; 1509 unsigned long flags; 1510 int ret = -EINVAL; 1511 1512 if (!valid_signal(sig)) 1513 return ret; 1514 1515 clear_siginfo(&info); 1516 info.si_signo = sig; 1517 info.si_errno = errno; 1518 info.si_code = SI_ASYNCIO; 1519 *((sigval_t *)&info.si_pid) = addr; 1520 1521 rcu_read_lock(); 1522 p = pid_task(pid, PIDTYPE_PID); 1523 if (!p) { 1524 ret = -ESRCH; 1525 goto out_unlock; 1526 } 1527 if (!kill_as_cred_perm(cred, p)) { 1528 ret = -EPERM; 1529 goto out_unlock; 1530 } 1531 ret = security_task_kill(p, &info, sig, cred); 1532 if (ret) 1533 goto out_unlock; 1534 1535 if (sig) { 1536 if (lock_task_sighand(p, &flags)) { 1537 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1538 unlock_task_sighand(p, &flags); 1539 } else 1540 ret = -ESRCH; 1541 } 1542 out_unlock: 1543 rcu_read_unlock(); 1544 return ret; 1545 } 1546 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1547 1548 /* 1549 * kill_something_info() interprets pid in interesting ways just like kill(2). 1550 * 1551 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1552 * is probably wrong. Should make it like BSD or SYSV. 1553 */ 1554 1555 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1556 { 1557 int ret; 1558 1559 if (pid > 0) 1560 return kill_proc_info(sig, info, pid); 1561 1562 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1563 if (pid == INT_MIN) 1564 return -ESRCH; 1565 1566 read_lock(&tasklist_lock); 1567 if (pid != -1) { 1568 ret = __kill_pgrp_info(sig, info, 1569 pid ? find_vpid(-pid) : task_pgrp(current)); 1570 } else { 1571 int retval = 0, count = 0; 1572 struct task_struct * p; 1573 1574 for_each_process(p) { 1575 if (task_pid_vnr(p) > 1 && 1576 !same_thread_group(p, current)) { 1577 int err = group_send_sig_info(sig, info, p, 1578 PIDTYPE_MAX); 1579 ++count; 1580 if (err != -EPERM) 1581 retval = err; 1582 } 1583 } 1584 ret = count ? retval : -ESRCH; 1585 } 1586 read_unlock(&tasklist_lock); 1587 1588 return ret; 1589 } 1590 1591 /* 1592 * These are for backward compatibility with the rest of the kernel source. 1593 */ 1594 1595 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1596 { 1597 /* 1598 * Make sure legacy kernel users don't send in bad values 1599 * (normal paths check this in check_kill_permission). 1600 */ 1601 if (!valid_signal(sig)) 1602 return -EINVAL; 1603 1604 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1605 } 1606 EXPORT_SYMBOL(send_sig_info); 1607 1608 #define __si_special(priv) \ 1609 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1610 1611 int 1612 send_sig(int sig, struct task_struct *p, int priv) 1613 { 1614 return send_sig_info(sig, __si_special(priv), p); 1615 } 1616 EXPORT_SYMBOL(send_sig); 1617 1618 void force_sig(int sig) 1619 { 1620 struct kernel_siginfo info; 1621 1622 clear_siginfo(&info); 1623 info.si_signo = sig; 1624 info.si_errno = 0; 1625 info.si_code = SI_KERNEL; 1626 info.si_pid = 0; 1627 info.si_uid = 0; 1628 force_sig_info(&info); 1629 } 1630 EXPORT_SYMBOL(force_sig); 1631 1632 /* 1633 * When things go south during signal handling, we 1634 * will force a SIGSEGV. And if the signal that caused 1635 * the problem was already a SIGSEGV, we'll want to 1636 * make sure we don't even try to deliver the signal.. 1637 */ 1638 void force_sigsegv(int sig) 1639 { 1640 struct task_struct *p = current; 1641 1642 if (sig == SIGSEGV) { 1643 unsigned long flags; 1644 spin_lock_irqsave(&p->sighand->siglock, flags); 1645 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1646 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1647 } 1648 force_sig(SIGSEGV); 1649 } 1650 1651 int force_sig_fault_to_task(int sig, int code, void __user *addr 1652 ___ARCH_SI_TRAPNO(int trapno) 1653 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1654 , struct task_struct *t) 1655 { 1656 struct kernel_siginfo info; 1657 1658 clear_siginfo(&info); 1659 info.si_signo = sig; 1660 info.si_errno = 0; 1661 info.si_code = code; 1662 info.si_addr = addr; 1663 #ifdef __ARCH_SI_TRAPNO 1664 info.si_trapno = trapno; 1665 #endif 1666 #ifdef __ia64__ 1667 info.si_imm = imm; 1668 info.si_flags = flags; 1669 info.si_isr = isr; 1670 #endif 1671 return force_sig_info_to_task(&info, t); 1672 } 1673 1674 int force_sig_fault(int sig, int code, void __user *addr 1675 ___ARCH_SI_TRAPNO(int trapno) 1676 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1677 { 1678 return force_sig_fault_to_task(sig, code, addr 1679 ___ARCH_SI_TRAPNO(trapno) 1680 ___ARCH_SI_IA64(imm, flags, isr), current); 1681 } 1682 1683 int send_sig_fault(int sig, int code, void __user *addr 1684 ___ARCH_SI_TRAPNO(int trapno) 1685 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1686 , struct task_struct *t) 1687 { 1688 struct kernel_siginfo info; 1689 1690 clear_siginfo(&info); 1691 info.si_signo = sig; 1692 info.si_errno = 0; 1693 info.si_code = code; 1694 info.si_addr = addr; 1695 #ifdef __ARCH_SI_TRAPNO 1696 info.si_trapno = trapno; 1697 #endif 1698 #ifdef __ia64__ 1699 info.si_imm = imm; 1700 info.si_flags = flags; 1701 info.si_isr = isr; 1702 #endif 1703 return send_sig_info(info.si_signo, &info, t); 1704 } 1705 1706 int force_sig_mceerr(int code, void __user *addr, short lsb) 1707 { 1708 struct kernel_siginfo info; 1709 1710 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1711 clear_siginfo(&info); 1712 info.si_signo = SIGBUS; 1713 info.si_errno = 0; 1714 info.si_code = code; 1715 info.si_addr = addr; 1716 info.si_addr_lsb = lsb; 1717 return force_sig_info(&info); 1718 } 1719 1720 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1721 { 1722 struct kernel_siginfo info; 1723 1724 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1725 clear_siginfo(&info); 1726 info.si_signo = SIGBUS; 1727 info.si_errno = 0; 1728 info.si_code = code; 1729 info.si_addr = addr; 1730 info.si_addr_lsb = lsb; 1731 return send_sig_info(info.si_signo, &info, t); 1732 } 1733 EXPORT_SYMBOL(send_sig_mceerr); 1734 1735 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1736 { 1737 struct kernel_siginfo info; 1738 1739 clear_siginfo(&info); 1740 info.si_signo = SIGSEGV; 1741 info.si_errno = 0; 1742 info.si_code = SEGV_BNDERR; 1743 info.si_addr = addr; 1744 info.si_lower = lower; 1745 info.si_upper = upper; 1746 return force_sig_info(&info); 1747 } 1748 1749 #ifdef SEGV_PKUERR 1750 int force_sig_pkuerr(void __user *addr, u32 pkey) 1751 { 1752 struct kernel_siginfo info; 1753 1754 clear_siginfo(&info); 1755 info.si_signo = SIGSEGV; 1756 info.si_errno = 0; 1757 info.si_code = SEGV_PKUERR; 1758 info.si_addr = addr; 1759 info.si_pkey = pkey; 1760 return force_sig_info(&info); 1761 } 1762 #endif 1763 1764 /* For the crazy architectures that include trap information in 1765 * the errno field, instead of an actual errno value. 1766 */ 1767 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1768 { 1769 struct kernel_siginfo info; 1770 1771 clear_siginfo(&info); 1772 info.si_signo = SIGTRAP; 1773 info.si_errno = errno; 1774 info.si_code = TRAP_HWBKPT; 1775 info.si_addr = addr; 1776 return force_sig_info(&info); 1777 } 1778 1779 int kill_pgrp(struct pid *pid, int sig, int priv) 1780 { 1781 int ret; 1782 1783 read_lock(&tasklist_lock); 1784 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1785 read_unlock(&tasklist_lock); 1786 1787 return ret; 1788 } 1789 EXPORT_SYMBOL(kill_pgrp); 1790 1791 int kill_pid(struct pid *pid, int sig, int priv) 1792 { 1793 return kill_pid_info(sig, __si_special(priv), pid); 1794 } 1795 EXPORT_SYMBOL(kill_pid); 1796 1797 /* 1798 * These functions support sending signals using preallocated sigqueue 1799 * structures. This is needed "because realtime applications cannot 1800 * afford to lose notifications of asynchronous events, like timer 1801 * expirations or I/O completions". In the case of POSIX Timers 1802 * we allocate the sigqueue structure from the timer_create. If this 1803 * allocation fails we are able to report the failure to the application 1804 * with an EAGAIN error. 1805 */ 1806 struct sigqueue *sigqueue_alloc(void) 1807 { 1808 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1809 1810 if (q) 1811 q->flags |= SIGQUEUE_PREALLOC; 1812 1813 return q; 1814 } 1815 1816 void sigqueue_free(struct sigqueue *q) 1817 { 1818 unsigned long flags; 1819 spinlock_t *lock = ¤t->sighand->siglock; 1820 1821 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1822 /* 1823 * We must hold ->siglock while testing q->list 1824 * to serialize with collect_signal() or with 1825 * __exit_signal()->flush_sigqueue(). 1826 */ 1827 spin_lock_irqsave(lock, flags); 1828 q->flags &= ~SIGQUEUE_PREALLOC; 1829 /* 1830 * If it is queued it will be freed when dequeued, 1831 * like the "regular" sigqueue. 1832 */ 1833 if (!list_empty(&q->list)) 1834 q = NULL; 1835 spin_unlock_irqrestore(lock, flags); 1836 1837 if (q) 1838 __sigqueue_free(q); 1839 } 1840 1841 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1842 { 1843 int sig = q->info.si_signo; 1844 struct sigpending *pending; 1845 struct task_struct *t; 1846 unsigned long flags; 1847 int ret, result; 1848 1849 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1850 1851 ret = -1; 1852 rcu_read_lock(); 1853 t = pid_task(pid, type); 1854 if (!t || !likely(lock_task_sighand(t, &flags))) 1855 goto ret; 1856 1857 ret = 1; /* the signal is ignored */ 1858 result = TRACE_SIGNAL_IGNORED; 1859 if (!prepare_signal(sig, t, false)) 1860 goto out; 1861 1862 ret = 0; 1863 if (unlikely(!list_empty(&q->list))) { 1864 /* 1865 * If an SI_TIMER entry is already queue just increment 1866 * the overrun count. 1867 */ 1868 BUG_ON(q->info.si_code != SI_TIMER); 1869 q->info.si_overrun++; 1870 result = TRACE_SIGNAL_ALREADY_PENDING; 1871 goto out; 1872 } 1873 q->info.si_overrun = 0; 1874 1875 signalfd_notify(t, sig); 1876 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1877 list_add_tail(&q->list, &pending->list); 1878 sigaddset(&pending->signal, sig); 1879 complete_signal(sig, t, type); 1880 result = TRACE_SIGNAL_DELIVERED; 1881 out: 1882 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1883 unlock_task_sighand(t, &flags); 1884 ret: 1885 rcu_read_unlock(); 1886 return ret; 1887 } 1888 1889 static void do_notify_pidfd(struct task_struct *task) 1890 { 1891 struct pid *pid; 1892 1893 WARN_ON(task->exit_state == 0); 1894 pid = task_pid(task); 1895 wake_up_all(&pid->wait_pidfd); 1896 } 1897 1898 /* 1899 * Let a parent know about the death of a child. 1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1901 * 1902 * Returns true if our parent ignored us and so we've switched to 1903 * self-reaping. 1904 */ 1905 bool do_notify_parent(struct task_struct *tsk, int sig) 1906 { 1907 struct kernel_siginfo info; 1908 unsigned long flags; 1909 struct sighand_struct *psig; 1910 bool autoreap = false; 1911 u64 utime, stime; 1912 1913 BUG_ON(sig == -1); 1914 1915 /* do_notify_parent_cldstop should have been called instead. */ 1916 BUG_ON(task_is_stopped_or_traced(tsk)); 1917 1918 BUG_ON(!tsk->ptrace && 1919 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1920 1921 /* Wake up all pidfd waiters */ 1922 do_notify_pidfd(tsk); 1923 1924 if (sig != SIGCHLD) { 1925 /* 1926 * This is only possible if parent == real_parent. 1927 * Check if it has changed security domain. 1928 */ 1929 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 1930 sig = SIGCHLD; 1931 } 1932 1933 clear_siginfo(&info); 1934 info.si_signo = sig; 1935 info.si_errno = 0; 1936 /* 1937 * We are under tasklist_lock here so our parent is tied to 1938 * us and cannot change. 1939 * 1940 * task_active_pid_ns will always return the same pid namespace 1941 * until a task passes through release_task. 1942 * 1943 * write_lock() currently calls preempt_disable() which is the 1944 * same as rcu_read_lock(), but according to Oleg, this is not 1945 * correct to rely on this 1946 */ 1947 rcu_read_lock(); 1948 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1949 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1950 task_uid(tsk)); 1951 rcu_read_unlock(); 1952 1953 task_cputime(tsk, &utime, &stime); 1954 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1955 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1956 1957 info.si_status = tsk->exit_code & 0x7f; 1958 if (tsk->exit_code & 0x80) 1959 info.si_code = CLD_DUMPED; 1960 else if (tsk->exit_code & 0x7f) 1961 info.si_code = CLD_KILLED; 1962 else { 1963 info.si_code = CLD_EXITED; 1964 info.si_status = tsk->exit_code >> 8; 1965 } 1966 1967 psig = tsk->parent->sighand; 1968 spin_lock_irqsave(&psig->siglock, flags); 1969 if (!tsk->ptrace && sig == SIGCHLD && 1970 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1971 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1972 /* 1973 * We are exiting and our parent doesn't care. POSIX.1 1974 * defines special semantics for setting SIGCHLD to SIG_IGN 1975 * or setting the SA_NOCLDWAIT flag: we should be reaped 1976 * automatically and not left for our parent's wait4 call. 1977 * Rather than having the parent do it as a magic kind of 1978 * signal handler, we just set this to tell do_exit that we 1979 * can be cleaned up without becoming a zombie. Note that 1980 * we still call __wake_up_parent in this case, because a 1981 * blocked sys_wait4 might now return -ECHILD. 1982 * 1983 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1984 * is implementation-defined: we do (if you don't want 1985 * it, just use SIG_IGN instead). 1986 */ 1987 autoreap = true; 1988 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1989 sig = 0; 1990 } 1991 /* 1992 * Send with __send_signal as si_pid and si_uid are in the 1993 * parent's namespaces. 1994 */ 1995 if (valid_signal(sig) && sig) 1996 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 1997 __wake_up_parent(tsk, tsk->parent); 1998 spin_unlock_irqrestore(&psig->siglock, flags); 1999 2000 return autoreap; 2001 } 2002 2003 /** 2004 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2005 * @tsk: task reporting the state change 2006 * @for_ptracer: the notification is for ptracer 2007 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2008 * 2009 * Notify @tsk's parent that the stopped/continued state has changed. If 2010 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2011 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2012 * 2013 * CONTEXT: 2014 * Must be called with tasklist_lock at least read locked. 2015 */ 2016 static void do_notify_parent_cldstop(struct task_struct *tsk, 2017 bool for_ptracer, int why) 2018 { 2019 struct kernel_siginfo info; 2020 unsigned long flags; 2021 struct task_struct *parent; 2022 struct sighand_struct *sighand; 2023 u64 utime, stime; 2024 2025 if (for_ptracer) { 2026 parent = tsk->parent; 2027 } else { 2028 tsk = tsk->group_leader; 2029 parent = tsk->real_parent; 2030 } 2031 2032 clear_siginfo(&info); 2033 info.si_signo = SIGCHLD; 2034 info.si_errno = 0; 2035 /* 2036 * see comment in do_notify_parent() about the following 4 lines 2037 */ 2038 rcu_read_lock(); 2039 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2040 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2041 rcu_read_unlock(); 2042 2043 task_cputime(tsk, &utime, &stime); 2044 info.si_utime = nsec_to_clock_t(utime); 2045 info.si_stime = nsec_to_clock_t(stime); 2046 2047 info.si_code = why; 2048 switch (why) { 2049 case CLD_CONTINUED: 2050 info.si_status = SIGCONT; 2051 break; 2052 case CLD_STOPPED: 2053 info.si_status = tsk->signal->group_exit_code & 0x7f; 2054 break; 2055 case CLD_TRAPPED: 2056 info.si_status = tsk->exit_code & 0x7f; 2057 break; 2058 default: 2059 BUG(); 2060 } 2061 2062 sighand = parent->sighand; 2063 spin_lock_irqsave(&sighand->siglock, flags); 2064 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2065 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2066 __group_send_sig_info(SIGCHLD, &info, parent); 2067 /* 2068 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2069 */ 2070 __wake_up_parent(tsk, parent); 2071 spin_unlock_irqrestore(&sighand->siglock, flags); 2072 } 2073 2074 static inline bool may_ptrace_stop(void) 2075 { 2076 if (!likely(current->ptrace)) 2077 return false; 2078 /* 2079 * Are we in the middle of do_coredump? 2080 * If so and our tracer is also part of the coredump stopping 2081 * is a deadlock situation, and pointless because our tracer 2082 * is dead so don't allow us to stop. 2083 * If SIGKILL was already sent before the caller unlocked 2084 * ->siglock we must see ->core_state != NULL. Otherwise it 2085 * is safe to enter schedule(). 2086 * 2087 * This is almost outdated, a task with the pending SIGKILL can't 2088 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2089 * after SIGKILL was already dequeued. 2090 */ 2091 if (unlikely(current->mm->core_state) && 2092 unlikely(current->mm == current->parent->mm)) 2093 return false; 2094 2095 return true; 2096 } 2097 2098 /* 2099 * Return non-zero if there is a SIGKILL that should be waking us up. 2100 * Called with the siglock held. 2101 */ 2102 static bool sigkill_pending(struct task_struct *tsk) 2103 { 2104 return sigismember(&tsk->pending.signal, SIGKILL) || 2105 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2106 } 2107 2108 /* 2109 * This must be called with current->sighand->siglock held. 2110 * 2111 * This should be the path for all ptrace stops. 2112 * We always set current->last_siginfo while stopped here. 2113 * That makes it a way to test a stopped process for 2114 * being ptrace-stopped vs being job-control-stopped. 2115 * 2116 * If we actually decide not to stop at all because the tracer 2117 * is gone, we keep current->exit_code unless clear_code. 2118 */ 2119 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2120 __releases(¤t->sighand->siglock) 2121 __acquires(¤t->sighand->siglock) 2122 { 2123 bool gstop_done = false; 2124 2125 if (arch_ptrace_stop_needed(exit_code, info)) { 2126 /* 2127 * The arch code has something special to do before a 2128 * ptrace stop. This is allowed to block, e.g. for faults 2129 * on user stack pages. We can't keep the siglock while 2130 * calling arch_ptrace_stop, so we must release it now. 2131 * To preserve proper semantics, we must do this before 2132 * any signal bookkeeping like checking group_stop_count. 2133 * Meanwhile, a SIGKILL could come in before we retake the 2134 * siglock. That must prevent us from sleeping in TASK_TRACED. 2135 * So after regaining the lock, we must check for SIGKILL. 2136 */ 2137 spin_unlock_irq(¤t->sighand->siglock); 2138 arch_ptrace_stop(exit_code, info); 2139 spin_lock_irq(¤t->sighand->siglock); 2140 if (sigkill_pending(current)) 2141 return; 2142 } 2143 2144 set_special_state(TASK_TRACED); 2145 2146 /* 2147 * We're committing to trapping. TRACED should be visible before 2148 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2149 * Also, transition to TRACED and updates to ->jobctl should be 2150 * atomic with respect to siglock and should be done after the arch 2151 * hook as siglock is released and regrabbed across it. 2152 * 2153 * TRACER TRACEE 2154 * 2155 * ptrace_attach() 2156 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2157 * do_wait() 2158 * set_current_state() smp_wmb(); 2159 * ptrace_do_wait() 2160 * wait_task_stopped() 2161 * task_stopped_code() 2162 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2163 */ 2164 smp_wmb(); 2165 2166 current->last_siginfo = info; 2167 current->exit_code = exit_code; 2168 2169 /* 2170 * If @why is CLD_STOPPED, we're trapping to participate in a group 2171 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2172 * across siglock relocks since INTERRUPT was scheduled, PENDING 2173 * could be clear now. We act as if SIGCONT is received after 2174 * TASK_TRACED is entered - ignore it. 2175 */ 2176 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2177 gstop_done = task_participate_group_stop(current); 2178 2179 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2180 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2181 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2182 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2183 2184 /* entering a trap, clear TRAPPING */ 2185 task_clear_jobctl_trapping(current); 2186 2187 spin_unlock_irq(¤t->sighand->siglock); 2188 read_lock(&tasklist_lock); 2189 if (may_ptrace_stop()) { 2190 /* 2191 * Notify parents of the stop. 2192 * 2193 * While ptraced, there are two parents - the ptracer and 2194 * the real_parent of the group_leader. The ptracer should 2195 * know about every stop while the real parent is only 2196 * interested in the completion of group stop. The states 2197 * for the two don't interact with each other. Notify 2198 * separately unless they're gonna be duplicates. 2199 */ 2200 do_notify_parent_cldstop(current, true, why); 2201 if (gstop_done && ptrace_reparented(current)) 2202 do_notify_parent_cldstop(current, false, why); 2203 2204 /* 2205 * Don't want to allow preemption here, because 2206 * sys_ptrace() needs this task to be inactive. 2207 * 2208 * XXX: implement read_unlock_no_resched(). 2209 */ 2210 preempt_disable(); 2211 read_unlock(&tasklist_lock); 2212 cgroup_enter_frozen(); 2213 preempt_enable_no_resched(); 2214 freezable_schedule(); 2215 cgroup_leave_frozen(true); 2216 } else { 2217 /* 2218 * By the time we got the lock, our tracer went away. 2219 * Don't drop the lock yet, another tracer may come. 2220 * 2221 * If @gstop_done, the ptracer went away between group stop 2222 * completion and here. During detach, it would have set 2223 * JOBCTL_STOP_PENDING on us and we'll re-enter 2224 * TASK_STOPPED in do_signal_stop() on return, so notifying 2225 * the real parent of the group stop completion is enough. 2226 */ 2227 if (gstop_done) 2228 do_notify_parent_cldstop(current, false, why); 2229 2230 /* tasklist protects us from ptrace_freeze_traced() */ 2231 __set_current_state(TASK_RUNNING); 2232 if (clear_code) 2233 current->exit_code = 0; 2234 read_unlock(&tasklist_lock); 2235 } 2236 2237 /* 2238 * We are back. Now reacquire the siglock before touching 2239 * last_siginfo, so that we are sure to have synchronized with 2240 * any signal-sending on another CPU that wants to examine it. 2241 */ 2242 spin_lock_irq(¤t->sighand->siglock); 2243 current->last_siginfo = NULL; 2244 2245 /* LISTENING can be set only during STOP traps, clear it */ 2246 current->jobctl &= ~JOBCTL_LISTENING; 2247 2248 /* 2249 * Queued signals ignored us while we were stopped for tracing. 2250 * So check for any that we should take before resuming user mode. 2251 * This sets TIF_SIGPENDING, but never clears it. 2252 */ 2253 recalc_sigpending_tsk(current); 2254 } 2255 2256 static void ptrace_do_notify(int signr, int exit_code, int why) 2257 { 2258 kernel_siginfo_t info; 2259 2260 clear_siginfo(&info); 2261 info.si_signo = signr; 2262 info.si_code = exit_code; 2263 info.si_pid = task_pid_vnr(current); 2264 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2265 2266 /* Let the debugger run. */ 2267 ptrace_stop(exit_code, why, 1, &info); 2268 } 2269 2270 void ptrace_notify(int exit_code) 2271 { 2272 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2273 if (unlikely(current->task_works)) 2274 task_work_run(); 2275 2276 spin_lock_irq(¤t->sighand->siglock); 2277 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2278 spin_unlock_irq(¤t->sighand->siglock); 2279 } 2280 2281 /** 2282 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2283 * @signr: signr causing group stop if initiating 2284 * 2285 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2286 * and participate in it. If already set, participate in the existing 2287 * group stop. If participated in a group stop (and thus slept), %true is 2288 * returned with siglock released. 2289 * 2290 * If ptraced, this function doesn't handle stop itself. Instead, 2291 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2292 * untouched. The caller must ensure that INTERRUPT trap handling takes 2293 * places afterwards. 2294 * 2295 * CONTEXT: 2296 * Must be called with @current->sighand->siglock held, which is released 2297 * on %true return. 2298 * 2299 * RETURNS: 2300 * %false if group stop is already cancelled or ptrace trap is scheduled. 2301 * %true if participated in group stop. 2302 */ 2303 static bool do_signal_stop(int signr) 2304 __releases(¤t->sighand->siglock) 2305 { 2306 struct signal_struct *sig = current->signal; 2307 2308 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2309 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2310 struct task_struct *t; 2311 2312 /* signr will be recorded in task->jobctl for retries */ 2313 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2314 2315 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2316 unlikely(signal_group_exit(sig))) 2317 return false; 2318 /* 2319 * There is no group stop already in progress. We must 2320 * initiate one now. 2321 * 2322 * While ptraced, a task may be resumed while group stop is 2323 * still in effect and then receive a stop signal and 2324 * initiate another group stop. This deviates from the 2325 * usual behavior as two consecutive stop signals can't 2326 * cause two group stops when !ptraced. That is why we 2327 * also check !task_is_stopped(t) below. 2328 * 2329 * The condition can be distinguished by testing whether 2330 * SIGNAL_STOP_STOPPED is already set. Don't generate 2331 * group_exit_code in such case. 2332 * 2333 * This is not necessary for SIGNAL_STOP_CONTINUED because 2334 * an intervening stop signal is required to cause two 2335 * continued events regardless of ptrace. 2336 */ 2337 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2338 sig->group_exit_code = signr; 2339 2340 sig->group_stop_count = 0; 2341 2342 if (task_set_jobctl_pending(current, signr | gstop)) 2343 sig->group_stop_count++; 2344 2345 t = current; 2346 while_each_thread(current, t) { 2347 /* 2348 * Setting state to TASK_STOPPED for a group 2349 * stop is always done with the siglock held, 2350 * so this check has no races. 2351 */ 2352 if (!task_is_stopped(t) && 2353 task_set_jobctl_pending(t, signr | gstop)) { 2354 sig->group_stop_count++; 2355 if (likely(!(t->ptrace & PT_SEIZED))) 2356 signal_wake_up(t, 0); 2357 else 2358 ptrace_trap_notify(t); 2359 } 2360 } 2361 } 2362 2363 if (likely(!current->ptrace)) { 2364 int notify = 0; 2365 2366 /* 2367 * If there are no other threads in the group, or if there 2368 * is a group stop in progress and we are the last to stop, 2369 * report to the parent. 2370 */ 2371 if (task_participate_group_stop(current)) 2372 notify = CLD_STOPPED; 2373 2374 set_special_state(TASK_STOPPED); 2375 spin_unlock_irq(¤t->sighand->siglock); 2376 2377 /* 2378 * Notify the parent of the group stop completion. Because 2379 * we're not holding either the siglock or tasklist_lock 2380 * here, ptracer may attach inbetween; however, this is for 2381 * group stop and should always be delivered to the real 2382 * parent of the group leader. The new ptracer will get 2383 * its notification when this task transitions into 2384 * TASK_TRACED. 2385 */ 2386 if (notify) { 2387 read_lock(&tasklist_lock); 2388 do_notify_parent_cldstop(current, false, notify); 2389 read_unlock(&tasklist_lock); 2390 } 2391 2392 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2393 cgroup_enter_frozen(); 2394 freezable_schedule(); 2395 return true; 2396 } else { 2397 /* 2398 * While ptraced, group stop is handled by STOP trap. 2399 * Schedule it and let the caller deal with it. 2400 */ 2401 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2402 return false; 2403 } 2404 } 2405 2406 /** 2407 * do_jobctl_trap - take care of ptrace jobctl traps 2408 * 2409 * When PT_SEIZED, it's used for both group stop and explicit 2410 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2411 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2412 * the stop signal; otherwise, %SIGTRAP. 2413 * 2414 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2415 * number as exit_code and no siginfo. 2416 * 2417 * CONTEXT: 2418 * Must be called with @current->sighand->siglock held, which may be 2419 * released and re-acquired before returning with intervening sleep. 2420 */ 2421 static void do_jobctl_trap(void) 2422 { 2423 struct signal_struct *signal = current->signal; 2424 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2425 2426 if (current->ptrace & PT_SEIZED) { 2427 if (!signal->group_stop_count && 2428 !(signal->flags & SIGNAL_STOP_STOPPED)) 2429 signr = SIGTRAP; 2430 WARN_ON_ONCE(!signr); 2431 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2432 CLD_STOPPED); 2433 } else { 2434 WARN_ON_ONCE(!signr); 2435 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2436 current->exit_code = 0; 2437 } 2438 } 2439 2440 /** 2441 * do_freezer_trap - handle the freezer jobctl trap 2442 * 2443 * Puts the task into frozen state, if only the task is not about to quit. 2444 * In this case it drops JOBCTL_TRAP_FREEZE. 2445 * 2446 * CONTEXT: 2447 * Must be called with @current->sighand->siglock held, 2448 * which is always released before returning. 2449 */ 2450 static void do_freezer_trap(void) 2451 __releases(¤t->sighand->siglock) 2452 { 2453 /* 2454 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2455 * let's make another loop to give it a chance to be handled. 2456 * In any case, we'll return back. 2457 */ 2458 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2459 JOBCTL_TRAP_FREEZE) { 2460 spin_unlock_irq(¤t->sighand->siglock); 2461 return; 2462 } 2463 2464 /* 2465 * Now we're sure that there is no pending fatal signal and no 2466 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2467 * immediately (if there is a non-fatal signal pending), and 2468 * put the task into sleep. 2469 */ 2470 __set_current_state(TASK_INTERRUPTIBLE); 2471 clear_thread_flag(TIF_SIGPENDING); 2472 spin_unlock_irq(¤t->sighand->siglock); 2473 cgroup_enter_frozen(); 2474 freezable_schedule(); 2475 } 2476 2477 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2478 { 2479 /* 2480 * We do not check sig_kernel_stop(signr) but set this marker 2481 * unconditionally because we do not know whether debugger will 2482 * change signr. This flag has no meaning unless we are going 2483 * to stop after return from ptrace_stop(). In this case it will 2484 * be checked in do_signal_stop(), we should only stop if it was 2485 * not cleared by SIGCONT while we were sleeping. See also the 2486 * comment in dequeue_signal(). 2487 */ 2488 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2489 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2490 2491 /* We're back. Did the debugger cancel the sig? */ 2492 signr = current->exit_code; 2493 if (signr == 0) 2494 return signr; 2495 2496 current->exit_code = 0; 2497 2498 /* 2499 * Update the siginfo structure if the signal has 2500 * changed. If the debugger wanted something 2501 * specific in the siginfo structure then it should 2502 * have updated *info via PTRACE_SETSIGINFO. 2503 */ 2504 if (signr != info->si_signo) { 2505 clear_siginfo(info); 2506 info->si_signo = signr; 2507 info->si_errno = 0; 2508 info->si_code = SI_USER; 2509 rcu_read_lock(); 2510 info->si_pid = task_pid_vnr(current->parent); 2511 info->si_uid = from_kuid_munged(current_user_ns(), 2512 task_uid(current->parent)); 2513 rcu_read_unlock(); 2514 } 2515 2516 /* If the (new) signal is now blocked, requeue it. */ 2517 if (sigismember(¤t->blocked, signr)) { 2518 send_signal(signr, info, current, PIDTYPE_PID); 2519 signr = 0; 2520 } 2521 2522 return signr; 2523 } 2524 2525 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2526 { 2527 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2528 case SIL_FAULT: 2529 case SIL_FAULT_MCEERR: 2530 case SIL_FAULT_BNDERR: 2531 case SIL_FAULT_PKUERR: 2532 ksig->info.si_addr = arch_untagged_si_addr( 2533 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2534 break; 2535 case SIL_KILL: 2536 case SIL_TIMER: 2537 case SIL_POLL: 2538 case SIL_CHLD: 2539 case SIL_RT: 2540 case SIL_SYS: 2541 break; 2542 } 2543 } 2544 2545 bool get_signal(struct ksignal *ksig) 2546 { 2547 struct sighand_struct *sighand = current->sighand; 2548 struct signal_struct *signal = current->signal; 2549 int signr; 2550 2551 if (unlikely(current->task_works)) 2552 task_work_run(); 2553 2554 /* 2555 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2556 * that the arch handlers don't all have to do it. If we get here 2557 * without TIF_SIGPENDING, just exit after running signal work. 2558 */ 2559 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2560 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2561 tracehook_notify_signal(); 2562 if (!task_sigpending(current)) 2563 return false; 2564 } 2565 2566 if (unlikely(uprobe_deny_signal())) 2567 return false; 2568 2569 /* 2570 * Do this once, we can't return to user-mode if freezing() == T. 2571 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2572 * thus do not need another check after return. 2573 */ 2574 try_to_freeze(); 2575 2576 relock: 2577 spin_lock_irq(&sighand->siglock); 2578 2579 /* 2580 * Every stopped thread goes here after wakeup. Check to see if 2581 * we should notify the parent, prepare_signal(SIGCONT) encodes 2582 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2583 */ 2584 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2585 int why; 2586 2587 if (signal->flags & SIGNAL_CLD_CONTINUED) 2588 why = CLD_CONTINUED; 2589 else 2590 why = CLD_STOPPED; 2591 2592 signal->flags &= ~SIGNAL_CLD_MASK; 2593 2594 spin_unlock_irq(&sighand->siglock); 2595 2596 /* 2597 * Notify the parent that we're continuing. This event is 2598 * always per-process and doesn't make whole lot of sense 2599 * for ptracers, who shouldn't consume the state via 2600 * wait(2) either, but, for backward compatibility, notify 2601 * the ptracer of the group leader too unless it's gonna be 2602 * a duplicate. 2603 */ 2604 read_lock(&tasklist_lock); 2605 do_notify_parent_cldstop(current, false, why); 2606 2607 if (ptrace_reparented(current->group_leader)) 2608 do_notify_parent_cldstop(current->group_leader, 2609 true, why); 2610 read_unlock(&tasklist_lock); 2611 2612 goto relock; 2613 } 2614 2615 /* Has this task already been marked for death? */ 2616 if (signal_group_exit(signal)) { 2617 ksig->info.si_signo = signr = SIGKILL; 2618 sigdelset(¤t->pending.signal, SIGKILL); 2619 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2620 &sighand->action[SIGKILL - 1]); 2621 recalc_sigpending(); 2622 goto fatal; 2623 } 2624 2625 for (;;) { 2626 struct k_sigaction *ka; 2627 2628 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2629 do_signal_stop(0)) 2630 goto relock; 2631 2632 if (unlikely(current->jobctl & 2633 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2634 if (current->jobctl & JOBCTL_TRAP_MASK) { 2635 do_jobctl_trap(); 2636 spin_unlock_irq(&sighand->siglock); 2637 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2638 do_freezer_trap(); 2639 2640 goto relock; 2641 } 2642 2643 /* 2644 * If the task is leaving the frozen state, let's update 2645 * cgroup counters and reset the frozen bit. 2646 */ 2647 if (unlikely(cgroup_task_frozen(current))) { 2648 spin_unlock_irq(&sighand->siglock); 2649 cgroup_leave_frozen(false); 2650 goto relock; 2651 } 2652 2653 /* 2654 * Signals generated by the execution of an instruction 2655 * need to be delivered before any other pending signals 2656 * so that the instruction pointer in the signal stack 2657 * frame points to the faulting instruction. 2658 */ 2659 signr = dequeue_synchronous_signal(&ksig->info); 2660 if (!signr) 2661 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2662 2663 if (!signr) 2664 break; /* will return 0 */ 2665 2666 if (unlikely(current->ptrace) && signr != SIGKILL) { 2667 signr = ptrace_signal(signr, &ksig->info); 2668 if (!signr) 2669 continue; 2670 } 2671 2672 ka = &sighand->action[signr-1]; 2673 2674 /* Trace actually delivered signals. */ 2675 trace_signal_deliver(signr, &ksig->info, ka); 2676 2677 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2678 continue; 2679 if (ka->sa.sa_handler != SIG_DFL) { 2680 /* Run the handler. */ 2681 ksig->ka = *ka; 2682 2683 if (ka->sa.sa_flags & SA_ONESHOT) 2684 ka->sa.sa_handler = SIG_DFL; 2685 2686 break; /* will return non-zero "signr" value */ 2687 } 2688 2689 /* 2690 * Now we are doing the default action for this signal. 2691 */ 2692 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2693 continue; 2694 2695 /* 2696 * Global init gets no signals it doesn't want. 2697 * Container-init gets no signals it doesn't want from same 2698 * container. 2699 * 2700 * Note that if global/container-init sees a sig_kernel_only() 2701 * signal here, the signal must have been generated internally 2702 * or must have come from an ancestor namespace. In either 2703 * case, the signal cannot be dropped. 2704 */ 2705 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2706 !sig_kernel_only(signr)) 2707 continue; 2708 2709 if (sig_kernel_stop(signr)) { 2710 /* 2711 * The default action is to stop all threads in 2712 * the thread group. The job control signals 2713 * do nothing in an orphaned pgrp, but SIGSTOP 2714 * always works. Note that siglock needs to be 2715 * dropped during the call to is_orphaned_pgrp() 2716 * because of lock ordering with tasklist_lock. 2717 * This allows an intervening SIGCONT to be posted. 2718 * We need to check for that and bail out if necessary. 2719 */ 2720 if (signr != SIGSTOP) { 2721 spin_unlock_irq(&sighand->siglock); 2722 2723 /* signals can be posted during this window */ 2724 2725 if (is_current_pgrp_orphaned()) 2726 goto relock; 2727 2728 spin_lock_irq(&sighand->siglock); 2729 } 2730 2731 if (likely(do_signal_stop(ksig->info.si_signo))) { 2732 /* It released the siglock. */ 2733 goto relock; 2734 } 2735 2736 /* 2737 * We didn't actually stop, due to a race 2738 * with SIGCONT or something like that. 2739 */ 2740 continue; 2741 } 2742 2743 fatal: 2744 spin_unlock_irq(&sighand->siglock); 2745 if (unlikely(cgroup_task_frozen(current))) 2746 cgroup_leave_frozen(true); 2747 2748 /* 2749 * Anything else is fatal, maybe with a core dump. 2750 */ 2751 current->flags |= PF_SIGNALED; 2752 2753 if (sig_kernel_coredump(signr)) { 2754 if (print_fatal_signals) 2755 print_fatal_signal(ksig->info.si_signo); 2756 proc_coredump_connector(current); 2757 /* 2758 * If it was able to dump core, this kills all 2759 * other threads in the group and synchronizes with 2760 * their demise. If we lost the race with another 2761 * thread getting here, it set group_exit_code 2762 * first and our do_group_exit call below will use 2763 * that value and ignore the one we pass it. 2764 */ 2765 do_coredump(&ksig->info); 2766 } 2767 2768 /* 2769 * PF_IO_WORKER threads will catch and exit on fatal signals 2770 * themselves. They have cleanup that must be performed, so 2771 * we cannot call do_exit() on their behalf. 2772 */ 2773 if (current->flags & PF_IO_WORKER) 2774 goto out; 2775 2776 /* 2777 * Death signals, no core dump. 2778 */ 2779 do_group_exit(ksig->info.si_signo); 2780 /* NOTREACHED */ 2781 } 2782 spin_unlock_irq(&sighand->siglock); 2783 out: 2784 ksig->sig = signr; 2785 2786 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2787 hide_si_addr_tag_bits(ksig); 2788 2789 return ksig->sig > 0; 2790 } 2791 2792 /** 2793 * signal_delivered - 2794 * @ksig: kernel signal struct 2795 * @stepping: nonzero if debugger single-step or block-step in use 2796 * 2797 * This function should be called when a signal has successfully been 2798 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2799 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2800 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2801 */ 2802 static void signal_delivered(struct ksignal *ksig, int stepping) 2803 { 2804 sigset_t blocked; 2805 2806 /* A signal was successfully delivered, and the 2807 saved sigmask was stored on the signal frame, 2808 and will be restored by sigreturn. So we can 2809 simply clear the restore sigmask flag. */ 2810 clear_restore_sigmask(); 2811 2812 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2813 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2814 sigaddset(&blocked, ksig->sig); 2815 set_current_blocked(&blocked); 2816 tracehook_signal_handler(stepping); 2817 } 2818 2819 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2820 { 2821 if (failed) 2822 force_sigsegv(ksig->sig); 2823 else 2824 signal_delivered(ksig, stepping); 2825 } 2826 2827 /* 2828 * It could be that complete_signal() picked us to notify about the 2829 * group-wide signal. Other threads should be notified now to take 2830 * the shared signals in @which since we will not. 2831 */ 2832 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2833 { 2834 sigset_t retarget; 2835 struct task_struct *t; 2836 2837 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2838 if (sigisemptyset(&retarget)) 2839 return; 2840 2841 t = tsk; 2842 while_each_thread(tsk, t) { 2843 if (t->flags & PF_EXITING) 2844 continue; 2845 2846 if (!has_pending_signals(&retarget, &t->blocked)) 2847 continue; 2848 /* Remove the signals this thread can handle. */ 2849 sigandsets(&retarget, &retarget, &t->blocked); 2850 2851 if (!task_sigpending(t)) 2852 signal_wake_up(t, 0); 2853 2854 if (sigisemptyset(&retarget)) 2855 break; 2856 } 2857 } 2858 2859 void exit_signals(struct task_struct *tsk) 2860 { 2861 int group_stop = 0; 2862 sigset_t unblocked; 2863 2864 /* 2865 * @tsk is about to have PF_EXITING set - lock out users which 2866 * expect stable threadgroup. 2867 */ 2868 cgroup_threadgroup_change_begin(tsk); 2869 2870 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2871 tsk->flags |= PF_EXITING; 2872 cgroup_threadgroup_change_end(tsk); 2873 return; 2874 } 2875 2876 spin_lock_irq(&tsk->sighand->siglock); 2877 /* 2878 * From now this task is not visible for group-wide signals, 2879 * see wants_signal(), do_signal_stop(). 2880 */ 2881 tsk->flags |= PF_EXITING; 2882 2883 cgroup_threadgroup_change_end(tsk); 2884 2885 if (!task_sigpending(tsk)) 2886 goto out; 2887 2888 unblocked = tsk->blocked; 2889 signotset(&unblocked); 2890 retarget_shared_pending(tsk, &unblocked); 2891 2892 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2893 task_participate_group_stop(tsk)) 2894 group_stop = CLD_STOPPED; 2895 out: 2896 spin_unlock_irq(&tsk->sighand->siglock); 2897 2898 /* 2899 * If group stop has completed, deliver the notification. This 2900 * should always go to the real parent of the group leader. 2901 */ 2902 if (unlikely(group_stop)) { 2903 read_lock(&tasklist_lock); 2904 do_notify_parent_cldstop(tsk, false, group_stop); 2905 read_unlock(&tasklist_lock); 2906 } 2907 } 2908 2909 /* 2910 * System call entry points. 2911 */ 2912 2913 /** 2914 * sys_restart_syscall - restart a system call 2915 */ 2916 SYSCALL_DEFINE0(restart_syscall) 2917 { 2918 struct restart_block *restart = ¤t->restart_block; 2919 return restart->fn(restart); 2920 } 2921 2922 long do_no_restart_syscall(struct restart_block *param) 2923 { 2924 return -EINTR; 2925 } 2926 2927 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2928 { 2929 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 2930 sigset_t newblocked; 2931 /* A set of now blocked but previously unblocked signals. */ 2932 sigandnsets(&newblocked, newset, ¤t->blocked); 2933 retarget_shared_pending(tsk, &newblocked); 2934 } 2935 tsk->blocked = *newset; 2936 recalc_sigpending(); 2937 } 2938 2939 /** 2940 * set_current_blocked - change current->blocked mask 2941 * @newset: new mask 2942 * 2943 * It is wrong to change ->blocked directly, this helper should be used 2944 * to ensure the process can't miss a shared signal we are going to block. 2945 */ 2946 void set_current_blocked(sigset_t *newset) 2947 { 2948 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2949 __set_current_blocked(newset); 2950 } 2951 2952 void __set_current_blocked(const sigset_t *newset) 2953 { 2954 struct task_struct *tsk = current; 2955 2956 /* 2957 * In case the signal mask hasn't changed, there is nothing we need 2958 * to do. The current->blocked shouldn't be modified by other task. 2959 */ 2960 if (sigequalsets(&tsk->blocked, newset)) 2961 return; 2962 2963 spin_lock_irq(&tsk->sighand->siglock); 2964 __set_task_blocked(tsk, newset); 2965 spin_unlock_irq(&tsk->sighand->siglock); 2966 } 2967 2968 /* 2969 * This is also useful for kernel threads that want to temporarily 2970 * (or permanently) block certain signals. 2971 * 2972 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2973 * interface happily blocks "unblockable" signals like SIGKILL 2974 * and friends. 2975 */ 2976 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2977 { 2978 struct task_struct *tsk = current; 2979 sigset_t newset; 2980 2981 /* Lockless, only current can change ->blocked, never from irq */ 2982 if (oldset) 2983 *oldset = tsk->blocked; 2984 2985 switch (how) { 2986 case SIG_BLOCK: 2987 sigorsets(&newset, &tsk->blocked, set); 2988 break; 2989 case SIG_UNBLOCK: 2990 sigandnsets(&newset, &tsk->blocked, set); 2991 break; 2992 case SIG_SETMASK: 2993 newset = *set; 2994 break; 2995 default: 2996 return -EINVAL; 2997 } 2998 2999 __set_current_blocked(&newset); 3000 return 0; 3001 } 3002 EXPORT_SYMBOL(sigprocmask); 3003 3004 /* 3005 * The api helps set app-provided sigmasks. 3006 * 3007 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3008 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3009 * 3010 * Note that it does set_restore_sigmask() in advance, so it must be always 3011 * paired with restore_saved_sigmask_unless() before return from syscall. 3012 */ 3013 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3014 { 3015 sigset_t kmask; 3016 3017 if (!umask) 3018 return 0; 3019 if (sigsetsize != sizeof(sigset_t)) 3020 return -EINVAL; 3021 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3022 return -EFAULT; 3023 3024 set_restore_sigmask(); 3025 current->saved_sigmask = current->blocked; 3026 set_current_blocked(&kmask); 3027 3028 return 0; 3029 } 3030 3031 #ifdef CONFIG_COMPAT 3032 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3033 size_t sigsetsize) 3034 { 3035 sigset_t kmask; 3036 3037 if (!umask) 3038 return 0; 3039 if (sigsetsize != sizeof(compat_sigset_t)) 3040 return -EINVAL; 3041 if (get_compat_sigset(&kmask, umask)) 3042 return -EFAULT; 3043 3044 set_restore_sigmask(); 3045 current->saved_sigmask = current->blocked; 3046 set_current_blocked(&kmask); 3047 3048 return 0; 3049 } 3050 #endif 3051 3052 /** 3053 * sys_rt_sigprocmask - change the list of currently blocked signals 3054 * @how: whether to add, remove, or set signals 3055 * @nset: stores pending signals 3056 * @oset: previous value of signal mask if non-null 3057 * @sigsetsize: size of sigset_t type 3058 */ 3059 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3060 sigset_t __user *, oset, size_t, sigsetsize) 3061 { 3062 sigset_t old_set, new_set; 3063 int error; 3064 3065 /* XXX: Don't preclude handling different sized sigset_t's. */ 3066 if (sigsetsize != sizeof(sigset_t)) 3067 return -EINVAL; 3068 3069 old_set = current->blocked; 3070 3071 if (nset) { 3072 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3073 return -EFAULT; 3074 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3075 3076 error = sigprocmask(how, &new_set, NULL); 3077 if (error) 3078 return error; 3079 } 3080 3081 if (oset) { 3082 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3083 return -EFAULT; 3084 } 3085 3086 return 0; 3087 } 3088 3089 #ifdef CONFIG_COMPAT 3090 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3091 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3092 { 3093 sigset_t old_set = current->blocked; 3094 3095 /* XXX: Don't preclude handling different sized sigset_t's. */ 3096 if (sigsetsize != sizeof(sigset_t)) 3097 return -EINVAL; 3098 3099 if (nset) { 3100 sigset_t new_set; 3101 int error; 3102 if (get_compat_sigset(&new_set, nset)) 3103 return -EFAULT; 3104 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3105 3106 error = sigprocmask(how, &new_set, NULL); 3107 if (error) 3108 return error; 3109 } 3110 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3111 } 3112 #endif 3113 3114 static void do_sigpending(sigset_t *set) 3115 { 3116 spin_lock_irq(¤t->sighand->siglock); 3117 sigorsets(set, ¤t->pending.signal, 3118 ¤t->signal->shared_pending.signal); 3119 spin_unlock_irq(¤t->sighand->siglock); 3120 3121 /* Outside the lock because only this thread touches it. */ 3122 sigandsets(set, ¤t->blocked, set); 3123 } 3124 3125 /** 3126 * sys_rt_sigpending - examine a pending signal that has been raised 3127 * while blocked 3128 * @uset: stores pending signals 3129 * @sigsetsize: size of sigset_t type or larger 3130 */ 3131 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3132 { 3133 sigset_t set; 3134 3135 if (sigsetsize > sizeof(*uset)) 3136 return -EINVAL; 3137 3138 do_sigpending(&set); 3139 3140 if (copy_to_user(uset, &set, sigsetsize)) 3141 return -EFAULT; 3142 3143 return 0; 3144 } 3145 3146 #ifdef CONFIG_COMPAT 3147 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3148 compat_size_t, sigsetsize) 3149 { 3150 sigset_t set; 3151 3152 if (sigsetsize > sizeof(*uset)) 3153 return -EINVAL; 3154 3155 do_sigpending(&set); 3156 3157 return put_compat_sigset(uset, &set, sigsetsize); 3158 } 3159 #endif 3160 3161 static const struct { 3162 unsigned char limit, layout; 3163 } sig_sicodes[] = { 3164 [SIGILL] = { NSIGILL, SIL_FAULT }, 3165 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3166 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3167 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3168 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3169 #if defined(SIGEMT) 3170 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3171 #endif 3172 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3173 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3174 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3175 }; 3176 3177 static bool known_siginfo_layout(unsigned sig, int si_code) 3178 { 3179 if (si_code == SI_KERNEL) 3180 return true; 3181 else if ((si_code > SI_USER)) { 3182 if (sig_specific_sicodes(sig)) { 3183 if (si_code <= sig_sicodes[sig].limit) 3184 return true; 3185 } 3186 else if (si_code <= NSIGPOLL) 3187 return true; 3188 } 3189 else if (si_code >= SI_DETHREAD) 3190 return true; 3191 else if (si_code == SI_ASYNCNL) 3192 return true; 3193 return false; 3194 } 3195 3196 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3197 { 3198 enum siginfo_layout layout = SIL_KILL; 3199 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3200 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3201 (si_code <= sig_sicodes[sig].limit)) { 3202 layout = sig_sicodes[sig].layout; 3203 /* Handle the exceptions */ 3204 if ((sig == SIGBUS) && 3205 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3206 layout = SIL_FAULT_MCEERR; 3207 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3208 layout = SIL_FAULT_BNDERR; 3209 #ifdef SEGV_PKUERR 3210 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3211 layout = SIL_FAULT_PKUERR; 3212 #endif 3213 } 3214 else if (si_code <= NSIGPOLL) 3215 layout = SIL_POLL; 3216 } else { 3217 if (si_code == SI_TIMER) 3218 layout = SIL_TIMER; 3219 else if (si_code == SI_SIGIO) 3220 layout = SIL_POLL; 3221 else if (si_code < 0) 3222 layout = SIL_RT; 3223 } 3224 return layout; 3225 } 3226 3227 static inline char __user *si_expansion(const siginfo_t __user *info) 3228 { 3229 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3230 } 3231 3232 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3233 { 3234 char __user *expansion = si_expansion(to); 3235 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3236 return -EFAULT; 3237 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3238 return -EFAULT; 3239 return 0; 3240 } 3241 3242 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3243 const siginfo_t __user *from) 3244 { 3245 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3246 char __user *expansion = si_expansion(from); 3247 char buf[SI_EXPANSION_SIZE]; 3248 int i; 3249 /* 3250 * An unknown si_code might need more than 3251 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3252 * extra bytes are 0. This guarantees copy_siginfo_to_user 3253 * will return this data to userspace exactly. 3254 */ 3255 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3256 return -EFAULT; 3257 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3258 if (buf[i] != 0) 3259 return -E2BIG; 3260 } 3261 } 3262 return 0; 3263 } 3264 3265 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3266 const siginfo_t __user *from) 3267 { 3268 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3269 return -EFAULT; 3270 to->si_signo = signo; 3271 return post_copy_siginfo_from_user(to, from); 3272 } 3273 3274 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3275 { 3276 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3277 return -EFAULT; 3278 return post_copy_siginfo_from_user(to, from); 3279 } 3280 3281 #ifdef CONFIG_COMPAT 3282 /** 3283 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3284 * @to: compat siginfo destination 3285 * @from: kernel siginfo source 3286 * 3287 * Note: This function does not work properly for the SIGCHLD on x32, but 3288 * fortunately it doesn't have to. The only valid callers for this function are 3289 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3290 * The latter does not care because SIGCHLD will never cause a coredump. 3291 */ 3292 void copy_siginfo_to_external32(struct compat_siginfo *to, 3293 const struct kernel_siginfo *from) 3294 { 3295 memset(to, 0, sizeof(*to)); 3296 3297 to->si_signo = from->si_signo; 3298 to->si_errno = from->si_errno; 3299 to->si_code = from->si_code; 3300 switch(siginfo_layout(from->si_signo, from->si_code)) { 3301 case SIL_KILL: 3302 to->si_pid = from->si_pid; 3303 to->si_uid = from->si_uid; 3304 break; 3305 case SIL_TIMER: 3306 to->si_tid = from->si_tid; 3307 to->si_overrun = from->si_overrun; 3308 to->si_int = from->si_int; 3309 break; 3310 case SIL_POLL: 3311 to->si_band = from->si_band; 3312 to->si_fd = from->si_fd; 3313 break; 3314 case SIL_FAULT: 3315 to->si_addr = ptr_to_compat(from->si_addr); 3316 #ifdef __ARCH_SI_TRAPNO 3317 to->si_trapno = from->si_trapno; 3318 #endif 3319 break; 3320 case SIL_FAULT_MCEERR: 3321 to->si_addr = ptr_to_compat(from->si_addr); 3322 #ifdef __ARCH_SI_TRAPNO 3323 to->si_trapno = from->si_trapno; 3324 #endif 3325 to->si_addr_lsb = from->si_addr_lsb; 3326 break; 3327 case SIL_FAULT_BNDERR: 3328 to->si_addr = ptr_to_compat(from->si_addr); 3329 #ifdef __ARCH_SI_TRAPNO 3330 to->si_trapno = from->si_trapno; 3331 #endif 3332 to->si_lower = ptr_to_compat(from->si_lower); 3333 to->si_upper = ptr_to_compat(from->si_upper); 3334 break; 3335 case SIL_FAULT_PKUERR: 3336 to->si_addr = ptr_to_compat(from->si_addr); 3337 #ifdef __ARCH_SI_TRAPNO 3338 to->si_trapno = from->si_trapno; 3339 #endif 3340 to->si_pkey = from->si_pkey; 3341 break; 3342 case SIL_CHLD: 3343 to->si_pid = from->si_pid; 3344 to->si_uid = from->si_uid; 3345 to->si_status = from->si_status; 3346 to->si_utime = from->si_utime; 3347 to->si_stime = from->si_stime; 3348 break; 3349 case SIL_RT: 3350 to->si_pid = from->si_pid; 3351 to->si_uid = from->si_uid; 3352 to->si_int = from->si_int; 3353 break; 3354 case SIL_SYS: 3355 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3356 to->si_syscall = from->si_syscall; 3357 to->si_arch = from->si_arch; 3358 break; 3359 } 3360 } 3361 3362 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3363 const struct kernel_siginfo *from) 3364 { 3365 struct compat_siginfo new; 3366 3367 copy_siginfo_to_external32(&new, from); 3368 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3369 return -EFAULT; 3370 return 0; 3371 } 3372 3373 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3374 const struct compat_siginfo *from) 3375 { 3376 clear_siginfo(to); 3377 to->si_signo = from->si_signo; 3378 to->si_errno = from->si_errno; 3379 to->si_code = from->si_code; 3380 switch(siginfo_layout(from->si_signo, from->si_code)) { 3381 case SIL_KILL: 3382 to->si_pid = from->si_pid; 3383 to->si_uid = from->si_uid; 3384 break; 3385 case SIL_TIMER: 3386 to->si_tid = from->si_tid; 3387 to->si_overrun = from->si_overrun; 3388 to->si_int = from->si_int; 3389 break; 3390 case SIL_POLL: 3391 to->si_band = from->si_band; 3392 to->si_fd = from->si_fd; 3393 break; 3394 case SIL_FAULT: 3395 to->si_addr = compat_ptr(from->si_addr); 3396 #ifdef __ARCH_SI_TRAPNO 3397 to->si_trapno = from->si_trapno; 3398 #endif 3399 break; 3400 case SIL_FAULT_MCEERR: 3401 to->si_addr = compat_ptr(from->si_addr); 3402 #ifdef __ARCH_SI_TRAPNO 3403 to->si_trapno = from->si_trapno; 3404 #endif 3405 to->si_addr_lsb = from->si_addr_lsb; 3406 break; 3407 case SIL_FAULT_BNDERR: 3408 to->si_addr = compat_ptr(from->si_addr); 3409 #ifdef __ARCH_SI_TRAPNO 3410 to->si_trapno = from->si_trapno; 3411 #endif 3412 to->si_lower = compat_ptr(from->si_lower); 3413 to->si_upper = compat_ptr(from->si_upper); 3414 break; 3415 case SIL_FAULT_PKUERR: 3416 to->si_addr = compat_ptr(from->si_addr); 3417 #ifdef __ARCH_SI_TRAPNO 3418 to->si_trapno = from->si_trapno; 3419 #endif 3420 to->si_pkey = from->si_pkey; 3421 break; 3422 case SIL_CHLD: 3423 to->si_pid = from->si_pid; 3424 to->si_uid = from->si_uid; 3425 to->si_status = from->si_status; 3426 #ifdef CONFIG_X86_X32_ABI 3427 if (in_x32_syscall()) { 3428 to->si_utime = from->_sifields._sigchld_x32._utime; 3429 to->si_stime = from->_sifields._sigchld_x32._stime; 3430 } else 3431 #endif 3432 { 3433 to->si_utime = from->si_utime; 3434 to->si_stime = from->si_stime; 3435 } 3436 break; 3437 case SIL_RT: 3438 to->si_pid = from->si_pid; 3439 to->si_uid = from->si_uid; 3440 to->si_int = from->si_int; 3441 break; 3442 case SIL_SYS: 3443 to->si_call_addr = compat_ptr(from->si_call_addr); 3444 to->si_syscall = from->si_syscall; 3445 to->si_arch = from->si_arch; 3446 break; 3447 } 3448 return 0; 3449 } 3450 3451 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3452 const struct compat_siginfo __user *ufrom) 3453 { 3454 struct compat_siginfo from; 3455 3456 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3457 return -EFAULT; 3458 3459 from.si_signo = signo; 3460 return post_copy_siginfo_from_user32(to, &from); 3461 } 3462 3463 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3464 const struct compat_siginfo __user *ufrom) 3465 { 3466 struct compat_siginfo from; 3467 3468 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3469 return -EFAULT; 3470 3471 return post_copy_siginfo_from_user32(to, &from); 3472 } 3473 #endif /* CONFIG_COMPAT */ 3474 3475 /** 3476 * do_sigtimedwait - wait for queued signals specified in @which 3477 * @which: queued signals to wait for 3478 * @info: if non-null, the signal's siginfo is returned here 3479 * @ts: upper bound on process time suspension 3480 */ 3481 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3482 const struct timespec64 *ts) 3483 { 3484 ktime_t *to = NULL, timeout = KTIME_MAX; 3485 struct task_struct *tsk = current; 3486 sigset_t mask = *which; 3487 int sig, ret = 0; 3488 3489 if (ts) { 3490 if (!timespec64_valid(ts)) 3491 return -EINVAL; 3492 timeout = timespec64_to_ktime(*ts); 3493 to = &timeout; 3494 } 3495 3496 /* 3497 * Invert the set of allowed signals to get those we want to block. 3498 */ 3499 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3500 signotset(&mask); 3501 3502 spin_lock_irq(&tsk->sighand->siglock); 3503 sig = dequeue_signal(tsk, &mask, info); 3504 if (!sig && timeout) { 3505 /* 3506 * None ready, temporarily unblock those we're interested 3507 * while we are sleeping in so that we'll be awakened when 3508 * they arrive. Unblocking is always fine, we can avoid 3509 * set_current_blocked(). 3510 */ 3511 tsk->real_blocked = tsk->blocked; 3512 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3513 recalc_sigpending(); 3514 spin_unlock_irq(&tsk->sighand->siglock); 3515 3516 __set_current_state(TASK_INTERRUPTIBLE); 3517 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3518 HRTIMER_MODE_REL); 3519 spin_lock_irq(&tsk->sighand->siglock); 3520 __set_task_blocked(tsk, &tsk->real_blocked); 3521 sigemptyset(&tsk->real_blocked); 3522 sig = dequeue_signal(tsk, &mask, info); 3523 } 3524 spin_unlock_irq(&tsk->sighand->siglock); 3525 3526 if (sig) 3527 return sig; 3528 return ret ? -EINTR : -EAGAIN; 3529 } 3530 3531 /** 3532 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3533 * in @uthese 3534 * @uthese: queued signals to wait for 3535 * @uinfo: if non-null, the signal's siginfo is returned here 3536 * @uts: upper bound on process time suspension 3537 * @sigsetsize: size of sigset_t type 3538 */ 3539 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3540 siginfo_t __user *, uinfo, 3541 const struct __kernel_timespec __user *, uts, 3542 size_t, sigsetsize) 3543 { 3544 sigset_t these; 3545 struct timespec64 ts; 3546 kernel_siginfo_t info; 3547 int ret; 3548 3549 /* XXX: Don't preclude handling different sized sigset_t's. */ 3550 if (sigsetsize != sizeof(sigset_t)) 3551 return -EINVAL; 3552 3553 if (copy_from_user(&these, uthese, sizeof(these))) 3554 return -EFAULT; 3555 3556 if (uts) { 3557 if (get_timespec64(&ts, uts)) 3558 return -EFAULT; 3559 } 3560 3561 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3562 3563 if (ret > 0 && uinfo) { 3564 if (copy_siginfo_to_user(uinfo, &info)) 3565 ret = -EFAULT; 3566 } 3567 3568 return ret; 3569 } 3570 3571 #ifdef CONFIG_COMPAT_32BIT_TIME 3572 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3573 siginfo_t __user *, uinfo, 3574 const struct old_timespec32 __user *, uts, 3575 size_t, sigsetsize) 3576 { 3577 sigset_t these; 3578 struct timespec64 ts; 3579 kernel_siginfo_t info; 3580 int ret; 3581 3582 if (sigsetsize != sizeof(sigset_t)) 3583 return -EINVAL; 3584 3585 if (copy_from_user(&these, uthese, sizeof(these))) 3586 return -EFAULT; 3587 3588 if (uts) { 3589 if (get_old_timespec32(&ts, uts)) 3590 return -EFAULT; 3591 } 3592 3593 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3594 3595 if (ret > 0 && uinfo) { 3596 if (copy_siginfo_to_user(uinfo, &info)) 3597 ret = -EFAULT; 3598 } 3599 3600 return ret; 3601 } 3602 #endif 3603 3604 #ifdef CONFIG_COMPAT 3605 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3606 struct compat_siginfo __user *, uinfo, 3607 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3608 { 3609 sigset_t s; 3610 struct timespec64 t; 3611 kernel_siginfo_t info; 3612 long ret; 3613 3614 if (sigsetsize != sizeof(sigset_t)) 3615 return -EINVAL; 3616 3617 if (get_compat_sigset(&s, uthese)) 3618 return -EFAULT; 3619 3620 if (uts) { 3621 if (get_timespec64(&t, uts)) 3622 return -EFAULT; 3623 } 3624 3625 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3626 3627 if (ret > 0 && uinfo) { 3628 if (copy_siginfo_to_user32(uinfo, &info)) 3629 ret = -EFAULT; 3630 } 3631 3632 return ret; 3633 } 3634 3635 #ifdef CONFIG_COMPAT_32BIT_TIME 3636 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3637 struct compat_siginfo __user *, uinfo, 3638 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3639 { 3640 sigset_t s; 3641 struct timespec64 t; 3642 kernel_siginfo_t info; 3643 long ret; 3644 3645 if (sigsetsize != sizeof(sigset_t)) 3646 return -EINVAL; 3647 3648 if (get_compat_sigset(&s, uthese)) 3649 return -EFAULT; 3650 3651 if (uts) { 3652 if (get_old_timespec32(&t, uts)) 3653 return -EFAULT; 3654 } 3655 3656 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3657 3658 if (ret > 0 && uinfo) { 3659 if (copy_siginfo_to_user32(uinfo, &info)) 3660 ret = -EFAULT; 3661 } 3662 3663 return ret; 3664 } 3665 #endif 3666 #endif 3667 3668 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3669 { 3670 clear_siginfo(info); 3671 info->si_signo = sig; 3672 info->si_errno = 0; 3673 info->si_code = SI_USER; 3674 info->si_pid = task_tgid_vnr(current); 3675 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3676 } 3677 3678 /** 3679 * sys_kill - send a signal to a process 3680 * @pid: the PID of the process 3681 * @sig: signal to be sent 3682 */ 3683 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3684 { 3685 struct kernel_siginfo info; 3686 3687 prepare_kill_siginfo(sig, &info); 3688 3689 return kill_something_info(sig, &info, pid); 3690 } 3691 3692 /* 3693 * Verify that the signaler and signalee either are in the same pid namespace 3694 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3695 * namespace. 3696 */ 3697 static bool access_pidfd_pidns(struct pid *pid) 3698 { 3699 struct pid_namespace *active = task_active_pid_ns(current); 3700 struct pid_namespace *p = ns_of_pid(pid); 3701 3702 for (;;) { 3703 if (!p) 3704 return false; 3705 if (p == active) 3706 break; 3707 p = p->parent; 3708 } 3709 3710 return true; 3711 } 3712 3713 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3714 siginfo_t __user *info) 3715 { 3716 #ifdef CONFIG_COMPAT 3717 /* 3718 * Avoid hooking up compat syscalls and instead handle necessary 3719 * conversions here. Note, this is a stop-gap measure and should not be 3720 * considered a generic solution. 3721 */ 3722 if (in_compat_syscall()) 3723 return copy_siginfo_from_user32( 3724 kinfo, (struct compat_siginfo __user *)info); 3725 #endif 3726 return copy_siginfo_from_user(kinfo, info); 3727 } 3728 3729 static struct pid *pidfd_to_pid(const struct file *file) 3730 { 3731 struct pid *pid; 3732 3733 pid = pidfd_pid(file); 3734 if (!IS_ERR(pid)) 3735 return pid; 3736 3737 return tgid_pidfd_to_pid(file); 3738 } 3739 3740 /** 3741 * sys_pidfd_send_signal - Signal a process through a pidfd 3742 * @pidfd: file descriptor of the process 3743 * @sig: signal to send 3744 * @info: signal info 3745 * @flags: future flags 3746 * 3747 * The syscall currently only signals via PIDTYPE_PID which covers 3748 * kill(<positive-pid>, <signal>. It does not signal threads or process 3749 * groups. 3750 * In order to extend the syscall to threads and process groups the @flags 3751 * argument should be used. In essence, the @flags argument will determine 3752 * what is signaled and not the file descriptor itself. Put in other words, 3753 * grouping is a property of the flags argument not a property of the file 3754 * descriptor. 3755 * 3756 * Return: 0 on success, negative errno on failure 3757 */ 3758 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3759 siginfo_t __user *, info, unsigned int, flags) 3760 { 3761 int ret; 3762 struct fd f; 3763 struct pid *pid; 3764 kernel_siginfo_t kinfo; 3765 3766 /* Enforce flags be set to 0 until we add an extension. */ 3767 if (flags) 3768 return -EINVAL; 3769 3770 f = fdget(pidfd); 3771 if (!f.file) 3772 return -EBADF; 3773 3774 /* Is this a pidfd? */ 3775 pid = pidfd_to_pid(f.file); 3776 if (IS_ERR(pid)) { 3777 ret = PTR_ERR(pid); 3778 goto err; 3779 } 3780 3781 ret = -EINVAL; 3782 if (!access_pidfd_pidns(pid)) 3783 goto err; 3784 3785 if (info) { 3786 ret = copy_siginfo_from_user_any(&kinfo, info); 3787 if (unlikely(ret)) 3788 goto err; 3789 3790 ret = -EINVAL; 3791 if (unlikely(sig != kinfo.si_signo)) 3792 goto err; 3793 3794 /* Only allow sending arbitrary signals to yourself. */ 3795 ret = -EPERM; 3796 if ((task_pid(current) != pid) && 3797 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3798 goto err; 3799 } else { 3800 prepare_kill_siginfo(sig, &kinfo); 3801 } 3802 3803 ret = kill_pid_info(sig, &kinfo, pid); 3804 3805 err: 3806 fdput(f); 3807 return ret; 3808 } 3809 3810 static int 3811 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3812 { 3813 struct task_struct *p; 3814 int error = -ESRCH; 3815 3816 rcu_read_lock(); 3817 p = find_task_by_vpid(pid); 3818 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3819 error = check_kill_permission(sig, info, p); 3820 /* 3821 * The null signal is a permissions and process existence 3822 * probe. No signal is actually delivered. 3823 */ 3824 if (!error && sig) { 3825 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3826 /* 3827 * If lock_task_sighand() failed we pretend the task 3828 * dies after receiving the signal. The window is tiny, 3829 * and the signal is private anyway. 3830 */ 3831 if (unlikely(error == -ESRCH)) 3832 error = 0; 3833 } 3834 } 3835 rcu_read_unlock(); 3836 3837 return error; 3838 } 3839 3840 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3841 { 3842 struct kernel_siginfo info; 3843 3844 clear_siginfo(&info); 3845 info.si_signo = sig; 3846 info.si_errno = 0; 3847 info.si_code = SI_TKILL; 3848 info.si_pid = task_tgid_vnr(current); 3849 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3850 3851 return do_send_specific(tgid, pid, sig, &info); 3852 } 3853 3854 /** 3855 * sys_tgkill - send signal to one specific thread 3856 * @tgid: the thread group ID of the thread 3857 * @pid: the PID of the thread 3858 * @sig: signal to be sent 3859 * 3860 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3861 * exists but it's not belonging to the target process anymore. This 3862 * method solves the problem of threads exiting and PIDs getting reused. 3863 */ 3864 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3865 { 3866 /* This is only valid for single tasks */ 3867 if (pid <= 0 || tgid <= 0) 3868 return -EINVAL; 3869 3870 return do_tkill(tgid, pid, sig); 3871 } 3872 3873 /** 3874 * sys_tkill - send signal to one specific task 3875 * @pid: the PID of the task 3876 * @sig: signal to be sent 3877 * 3878 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3879 */ 3880 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3881 { 3882 /* This is only valid for single tasks */ 3883 if (pid <= 0) 3884 return -EINVAL; 3885 3886 return do_tkill(0, pid, sig); 3887 } 3888 3889 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3890 { 3891 /* Not even root can pretend to send signals from the kernel. 3892 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3893 */ 3894 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3895 (task_pid_vnr(current) != pid)) 3896 return -EPERM; 3897 3898 /* POSIX.1b doesn't mention process groups. */ 3899 return kill_proc_info(sig, info, pid); 3900 } 3901 3902 /** 3903 * sys_rt_sigqueueinfo - send signal information to a signal 3904 * @pid: the PID of the thread 3905 * @sig: signal to be sent 3906 * @uinfo: signal info to be sent 3907 */ 3908 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3909 siginfo_t __user *, uinfo) 3910 { 3911 kernel_siginfo_t info; 3912 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3913 if (unlikely(ret)) 3914 return ret; 3915 return do_rt_sigqueueinfo(pid, sig, &info); 3916 } 3917 3918 #ifdef CONFIG_COMPAT 3919 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3920 compat_pid_t, pid, 3921 int, sig, 3922 struct compat_siginfo __user *, uinfo) 3923 { 3924 kernel_siginfo_t info; 3925 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3926 if (unlikely(ret)) 3927 return ret; 3928 return do_rt_sigqueueinfo(pid, sig, &info); 3929 } 3930 #endif 3931 3932 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3933 { 3934 /* This is only valid for single tasks */ 3935 if (pid <= 0 || tgid <= 0) 3936 return -EINVAL; 3937 3938 /* Not even root can pretend to send signals from the kernel. 3939 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3940 */ 3941 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3942 (task_pid_vnr(current) != pid)) 3943 return -EPERM; 3944 3945 return do_send_specific(tgid, pid, sig, info); 3946 } 3947 3948 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3949 siginfo_t __user *, uinfo) 3950 { 3951 kernel_siginfo_t info; 3952 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3953 if (unlikely(ret)) 3954 return ret; 3955 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3956 } 3957 3958 #ifdef CONFIG_COMPAT 3959 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3960 compat_pid_t, tgid, 3961 compat_pid_t, pid, 3962 int, sig, 3963 struct compat_siginfo __user *, uinfo) 3964 { 3965 kernel_siginfo_t info; 3966 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3967 if (unlikely(ret)) 3968 return ret; 3969 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3970 } 3971 #endif 3972 3973 /* 3974 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3975 */ 3976 void kernel_sigaction(int sig, __sighandler_t action) 3977 { 3978 spin_lock_irq(¤t->sighand->siglock); 3979 current->sighand->action[sig - 1].sa.sa_handler = action; 3980 if (action == SIG_IGN) { 3981 sigset_t mask; 3982 3983 sigemptyset(&mask); 3984 sigaddset(&mask, sig); 3985 3986 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3987 flush_sigqueue_mask(&mask, ¤t->pending); 3988 recalc_sigpending(); 3989 } 3990 spin_unlock_irq(¤t->sighand->siglock); 3991 } 3992 EXPORT_SYMBOL(kernel_sigaction); 3993 3994 void __weak sigaction_compat_abi(struct k_sigaction *act, 3995 struct k_sigaction *oact) 3996 { 3997 } 3998 3999 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4000 { 4001 struct task_struct *p = current, *t; 4002 struct k_sigaction *k; 4003 sigset_t mask; 4004 4005 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4006 return -EINVAL; 4007 4008 k = &p->sighand->action[sig-1]; 4009 4010 spin_lock_irq(&p->sighand->siglock); 4011 if (oact) 4012 *oact = *k; 4013 4014 /* 4015 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4016 * e.g. by having an architecture use the bit in their uapi. 4017 */ 4018 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4019 4020 /* 4021 * Clear unknown flag bits in order to allow userspace to detect missing 4022 * support for flag bits and to allow the kernel to use non-uapi bits 4023 * internally. 4024 */ 4025 if (act) 4026 act->sa.sa_flags &= UAPI_SA_FLAGS; 4027 if (oact) 4028 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4029 4030 sigaction_compat_abi(act, oact); 4031 4032 if (act) { 4033 sigdelsetmask(&act->sa.sa_mask, 4034 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4035 *k = *act; 4036 /* 4037 * POSIX 3.3.1.3: 4038 * "Setting a signal action to SIG_IGN for a signal that is 4039 * pending shall cause the pending signal to be discarded, 4040 * whether or not it is blocked." 4041 * 4042 * "Setting a signal action to SIG_DFL for a signal that is 4043 * pending and whose default action is to ignore the signal 4044 * (for example, SIGCHLD), shall cause the pending signal to 4045 * be discarded, whether or not it is blocked" 4046 */ 4047 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4048 sigemptyset(&mask); 4049 sigaddset(&mask, sig); 4050 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4051 for_each_thread(p, t) 4052 flush_sigqueue_mask(&mask, &t->pending); 4053 } 4054 } 4055 4056 spin_unlock_irq(&p->sighand->siglock); 4057 return 0; 4058 } 4059 4060 static int 4061 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4062 size_t min_ss_size) 4063 { 4064 struct task_struct *t = current; 4065 4066 if (oss) { 4067 memset(oss, 0, sizeof(stack_t)); 4068 oss->ss_sp = (void __user *) t->sas_ss_sp; 4069 oss->ss_size = t->sas_ss_size; 4070 oss->ss_flags = sas_ss_flags(sp) | 4071 (current->sas_ss_flags & SS_FLAG_BITS); 4072 } 4073 4074 if (ss) { 4075 void __user *ss_sp = ss->ss_sp; 4076 size_t ss_size = ss->ss_size; 4077 unsigned ss_flags = ss->ss_flags; 4078 int ss_mode; 4079 4080 if (unlikely(on_sig_stack(sp))) 4081 return -EPERM; 4082 4083 ss_mode = ss_flags & ~SS_FLAG_BITS; 4084 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4085 ss_mode != 0)) 4086 return -EINVAL; 4087 4088 if (ss_mode == SS_DISABLE) { 4089 ss_size = 0; 4090 ss_sp = NULL; 4091 } else { 4092 if (unlikely(ss_size < min_ss_size)) 4093 return -ENOMEM; 4094 } 4095 4096 t->sas_ss_sp = (unsigned long) ss_sp; 4097 t->sas_ss_size = ss_size; 4098 t->sas_ss_flags = ss_flags; 4099 } 4100 return 0; 4101 } 4102 4103 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4104 { 4105 stack_t new, old; 4106 int err; 4107 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4108 return -EFAULT; 4109 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4110 current_user_stack_pointer(), 4111 MINSIGSTKSZ); 4112 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4113 err = -EFAULT; 4114 return err; 4115 } 4116 4117 int restore_altstack(const stack_t __user *uss) 4118 { 4119 stack_t new; 4120 if (copy_from_user(&new, uss, sizeof(stack_t))) 4121 return -EFAULT; 4122 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4123 MINSIGSTKSZ); 4124 /* squash all but EFAULT for now */ 4125 return 0; 4126 } 4127 4128 int __save_altstack(stack_t __user *uss, unsigned long sp) 4129 { 4130 struct task_struct *t = current; 4131 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4132 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4133 __put_user(t->sas_ss_size, &uss->ss_size); 4134 if (err) 4135 return err; 4136 if (t->sas_ss_flags & SS_AUTODISARM) 4137 sas_ss_reset(t); 4138 return 0; 4139 } 4140 4141 #ifdef CONFIG_COMPAT 4142 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4143 compat_stack_t __user *uoss_ptr) 4144 { 4145 stack_t uss, uoss; 4146 int ret; 4147 4148 if (uss_ptr) { 4149 compat_stack_t uss32; 4150 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4151 return -EFAULT; 4152 uss.ss_sp = compat_ptr(uss32.ss_sp); 4153 uss.ss_flags = uss32.ss_flags; 4154 uss.ss_size = uss32.ss_size; 4155 } 4156 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4157 compat_user_stack_pointer(), 4158 COMPAT_MINSIGSTKSZ); 4159 if (ret >= 0 && uoss_ptr) { 4160 compat_stack_t old; 4161 memset(&old, 0, sizeof(old)); 4162 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4163 old.ss_flags = uoss.ss_flags; 4164 old.ss_size = uoss.ss_size; 4165 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4166 ret = -EFAULT; 4167 } 4168 return ret; 4169 } 4170 4171 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4172 const compat_stack_t __user *, uss_ptr, 4173 compat_stack_t __user *, uoss_ptr) 4174 { 4175 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4176 } 4177 4178 int compat_restore_altstack(const compat_stack_t __user *uss) 4179 { 4180 int err = do_compat_sigaltstack(uss, NULL); 4181 /* squash all but -EFAULT for now */ 4182 return err == -EFAULT ? err : 0; 4183 } 4184 4185 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4186 { 4187 int err; 4188 struct task_struct *t = current; 4189 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4190 &uss->ss_sp) | 4191 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4192 __put_user(t->sas_ss_size, &uss->ss_size); 4193 if (err) 4194 return err; 4195 if (t->sas_ss_flags & SS_AUTODISARM) 4196 sas_ss_reset(t); 4197 return 0; 4198 } 4199 #endif 4200 4201 #ifdef __ARCH_WANT_SYS_SIGPENDING 4202 4203 /** 4204 * sys_sigpending - examine pending signals 4205 * @uset: where mask of pending signal is returned 4206 */ 4207 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4208 { 4209 sigset_t set; 4210 4211 if (sizeof(old_sigset_t) > sizeof(*uset)) 4212 return -EINVAL; 4213 4214 do_sigpending(&set); 4215 4216 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4217 return -EFAULT; 4218 4219 return 0; 4220 } 4221 4222 #ifdef CONFIG_COMPAT 4223 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4224 { 4225 sigset_t set; 4226 4227 do_sigpending(&set); 4228 4229 return put_user(set.sig[0], set32); 4230 } 4231 #endif 4232 4233 #endif 4234 4235 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4236 /** 4237 * sys_sigprocmask - examine and change blocked signals 4238 * @how: whether to add, remove, or set signals 4239 * @nset: signals to add or remove (if non-null) 4240 * @oset: previous value of signal mask if non-null 4241 * 4242 * Some platforms have their own version with special arguments; 4243 * others support only sys_rt_sigprocmask. 4244 */ 4245 4246 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4247 old_sigset_t __user *, oset) 4248 { 4249 old_sigset_t old_set, new_set; 4250 sigset_t new_blocked; 4251 4252 old_set = current->blocked.sig[0]; 4253 4254 if (nset) { 4255 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4256 return -EFAULT; 4257 4258 new_blocked = current->blocked; 4259 4260 switch (how) { 4261 case SIG_BLOCK: 4262 sigaddsetmask(&new_blocked, new_set); 4263 break; 4264 case SIG_UNBLOCK: 4265 sigdelsetmask(&new_blocked, new_set); 4266 break; 4267 case SIG_SETMASK: 4268 new_blocked.sig[0] = new_set; 4269 break; 4270 default: 4271 return -EINVAL; 4272 } 4273 4274 set_current_blocked(&new_blocked); 4275 } 4276 4277 if (oset) { 4278 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4279 return -EFAULT; 4280 } 4281 4282 return 0; 4283 } 4284 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4285 4286 #ifndef CONFIG_ODD_RT_SIGACTION 4287 /** 4288 * sys_rt_sigaction - alter an action taken by a process 4289 * @sig: signal to be sent 4290 * @act: new sigaction 4291 * @oact: used to save the previous sigaction 4292 * @sigsetsize: size of sigset_t type 4293 */ 4294 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4295 const struct sigaction __user *, act, 4296 struct sigaction __user *, oact, 4297 size_t, sigsetsize) 4298 { 4299 struct k_sigaction new_sa, old_sa; 4300 int ret; 4301 4302 /* XXX: Don't preclude handling different sized sigset_t's. */ 4303 if (sigsetsize != sizeof(sigset_t)) 4304 return -EINVAL; 4305 4306 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4307 return -EFAULT; 4308 4309 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4310 if (ret) 4311 return ret; 4312 4313 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4314 return -EFAULT; 4315 4316 return 0; 4317 } 4318 #ifdef CONFIG_COMPAT 4319 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4320 const struct compat_sigaction __user *, act, 4321 struct compat_sigaction __user *, oact, 4322 compat_size_t, sigsetsize) 4323 { 4324 struct k_sigaction new_ka, old_ka; 4325 #ifdef __ARCH_HAS_SA_RESTORER 4326 compat_uptr_t restorer; 4327 #endif 4328 int ret; 4329 4330 /* XXX: Don't preclude handling different sized sigset_t's. */ 4331 if (sigsetsize != sizeof(compat_sigset_t)) 4332 return -EINVAL; 4333 4334 if (act) { 4335 compat_uptr_t handler; 4336 ret = get_user(handler, &act->sa_handler); 4337 new_ka.sa.sa_handler = compat_ptr(handler); 4338 #ifdef __ARCH_HAS_SA_RESTORER 4339 ret |= get_user(restorer, &act->sa_restorer); 4340 new_ka.sa.sa_restorer = compat_ptr(restorer); 4341 #endif 4342 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4343 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4344 if (ret) 4345 return -EFAULT; 4346 } 4347 4348 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4349 if (!ret && oact) { 4350 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4351 &oact->sa_handler); 4352 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4353 sizeof(oact->sa_mask)); 4354 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4355 #ifdef __ARCH_HAS_SA_RESTORER 4356 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4357 &oact->sa_restorer); 4358 #endif 4359 } 4360 return ret; 4361 } 4362 #endif 4363 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4364 4365 #ifdef CONFIG_OLD_SIGACTION 4366 SYSCALL_DEFINE3(sigaction, int, sig, 4367 const struct old_sigaction __user *, act, 4368 struct old_sigaction __user *, oact) 4369 { 4370 struct k_sigaction new_ka, old_ka; 4371 int ret; 4372 4373 if (act) { 4374 old_sigset_t mask; 4375 if (!access_ok(act, sizeof(*act)) || 4376 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4377 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4378 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4379 __get_user(mask, &act->sa_mask)) 4380 return -EFAULT; 4381 #ifdef __ARCH_HAS_KA_RESTORER 4382 new_ka.ka_restorer = NULL; 4383 #endif 4384 siginitset(&new_ka.sa.sa_mask, mask); 4385 } 4386 4387 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4388 4389 if (!ret && oact) { 4390 if (!access_ok(oact, sizeof(*oact)) || 4391 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4392 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4393 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4394 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4395 return -EFAULT; 4396 } 4397 4398 return ret; 4399 } 4400 #endif 4401 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4402 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4403 const struct compat_old_sigaction __user *, act, 4404 struct compat_old_sigaction __user *, oact) 4405 { 4406 struct k_sigaction new_ka, old_ka; 4407 int ret; 4408 compat_old_sigset_t mask; 4409 compat_uptr_t handler, restorer; 4410 4411 if (act) { 4412 if (!access_ok(act, sizeof(*act)) || 4413 __get_user(handler, &act->sa_handler) || 4414 __get_user(restorer, &act->sa_restorer) || 4415 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4416 __get_user(mask, &act->sa_mask)) 4417 return -EFAULT; 4418 4419 #ifdef __ARCH_HAS_KA_RESTORER 4420 new_ka.ka_restorer = NULL; 4421 #endif 4422 new_ka.sa.sa_handler = compat_ptr(handler); 4423 new_ka.sa.sa_restorer = compat_ptr(restorer); 4424 siginitset(&new_ka.sa.sa_mask, mask); 4425 } 4426 4427 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4428 4429 if (!ret && oact) { 4430 if (!access_ok(oact, sizeof(*oact)) || 4431 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4432 &oact->sa_handler) || 4433 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4434 &oact->sa_restorer) || 4435 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4436 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4437 return -EFAULT; 4438 } 4439 return ret; 4440 } 4441 #endif 4442 4443 #ifdef CONFIG_SGETMASK_SYSCALL 4444 4445 /* 4446 * For backwards compatibility. Functionality superseded by sigprocmask. 4447 */ 4448 SYSCALL_DEFINE0(sgetmask) 4449 { 4450 /* SMP safe */ 4451 return current->blocked.sig[0]; 4452 } 4453 4454 SYSCALL_DEFINE1(ssetmask, int, newmask) 4455 { 4456 int old = current->blocked.sig[0]; 4457 sigset_t newset; 4458 4459 siginitset(&newset, newmask); 4460 set_current_blocked(&newset); 4461 4462 return old; 4463 } 4464 #endif /* CONFIG_SGETMASK_SYSCALL */ 4465 4466 #ifdef __ARCH_WANT_SYS_SIGNAL 4467 /* 4468 * For backwards compatibility. Functionality superseded by sigaction. 4469 */ 4470 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4471 { 4472 struct k_sigaction new_sa, old_sa; 4473 int ret; 4474 4475 new_sa.sa.sa_handler = handler; 4476 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4477 sigemptyset(&new_sa.sa.sa_mask); 4478 4479 ret = do_sigaction(sig, &new_sa, &old_sa); 4480 4481 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4482 } 4483 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4484 4485 #ifdef __ARCH_WANT_SYS_PAUSE 4486 4487 SYSCALL_DEFINE0(pause) 4488 { 4489 while (!signal_pending(current)) { 4490 __set_current_state(TASK_INTERRUPTIBLE); 4491 schedule(); 4492 } 4493 return -ERESTARTNOHAND; 4494 } 4495 4496 #endif 4497 4498 static int sigsuspend(sigset_t *set) 4499 { 4500 current->saved_sigmask = current->blocked; 4501 set_current_blocked(set); 4502 4503 while (!signal_pending(current)) { 4504 __set_current_state(TASK_INTERRUPTIBLE); 4505 schedule(); 4506 } 4507 set_restore_sigmask(); 4508 return -ERESTARTNOHAND; 4509 } 4510 4511 /** 4512 * sys_rt_sigsuspend - replace the signal mask for a value with the 4513 * @unewset value until a signal is received 4514 * @unewset: new signal mask value 4515 * @sigsetsize: size of sigset_t type 4516 */ 4517 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4518 { 4519 sigset_t newset; 4520 4521 /* XXX: Don't preclude handling different sized sigset_t's. */ 4522 if (sigsetsize != sizeof(sigset_t)) 4523 return -EINVAL; 4524 4525 if (copy_from_user(&newset, unewset, sizeof(newset))) 4526 return -EFAULT; 4527 return sigsuspend(&newset); 4528 } 4529 4530 #ifdef CONFIG_COMPAT 4531 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4532 { 4533 sigset_t newset; 4534 4535 /* XXX: Don't preclude handling different sized sigset_t's. */ 4536 if (sigsetsize != sizeof(sigset_t)) 4537 return -EINVAL; 4538 4539 if (get_compat_sigset(&newset, unewset)) 4540 return -EFAULT; 4541 return sigsuspend(&newset); 4542 } 4543 #endif 4544 4545 #ifdef CONFIG_OLD_SIGSUSPEND 4546 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4547 { 4548 sigset_t blocked; 4549 siginitset(&blocked, mask); 4550 return sigsuspend(&blocked); 4551 } 4552 #endif 4553 #ifdef CONFIG_OLD_SIGSUSPEND3 4554 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4555 { 4556 sigset_t blocked; 4557 siginitset(&blocked, mask); 4558 return sigsuspend(&blocked); 4559 } 4560 #endif 4561 4562 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4563 { 4564 return NULL; 4565 } 4566 4567 static inline void siginfo_buildtime_checks(void) 4568 { 4569 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4570 4571 /* Verify the offsets in the two siginfos match */ 4572 #define CHECK_OFFSET(field) \ 4573 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4574 4575 /* kill */ 4576 CHECK_OFFSET(si_pid); 4577 CHECK_OFFSET(si_uid); 4578 4579 /* timer */ 4580 CHECK_OFFSET(si_tid); 4581 CHECK_OFFSET(si_overrun); 4582 CHECK_OFFSET(si_value); 4583 4584 /* rt */ 4585 CHECK_OFFSET(si_pid); 4586 CHECK_OFFSET(si_uid); 4587 CHECK_OFFSET(si_value); 4588 4589 /* sigchld */ 4590 CHECK_OFFSET(si_pid); 4591 CHECK_OFFSET(si_uid); 4592 CHECK_OFFSET(si_status); 4593 CHECK_OFFSET(si_utime); 4594 CHECK_OFFSET(si_stime); 4595 4596 /* sigfault */ 4597 CHECK_OFFSET(si_addr); 4598 CHECK_OFFSET(si_addr_lsb); 4599 CHECK_OFFSET(si_lower); 4600 CHECK_OFFSET(si_upper); 4601 CHECK_OFFSET(si_pkey); 4602 4603 /* sigpoll */ 4604 CHECK_OFFSET(si_band); 4605 CHECK_OFFSET(si_fd); 4606 4607 /* sigsys */ 4608 CHECK_OFFSET(si_call_addr); 4609 CHECK_OFFSET(si_syscall); 4610 CHECK_OFFSET(si_arch); 4611 #undef CHECK_OFFSET 4612 4613 /* usb asyncio */ 4614 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4615 offsetof(struct siginfo, si_addr)); 4616 if (sizeof(int) == sizeof(void __user *)) { 4617 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4618 sizeof(void __user *)); 4619 } else { 4620 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4621 sizeof_field(struct siginfo, si_uid)) != 4622 sizeof(void __user *)); 4623 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4624 offsetof(struct siginfo, si_uid)); 4625 } 4626 #ifdef CONFIG_COMPAT 4627 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4628 offsetof(struct compat_siginfo, si_addr)); 4629 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4630 sizeof(compat_uptr_t)); 4631 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4632 sizeof_field(struct siginfo, si_pid)); 4633 #endif 4634 } 4635 4636 void __init signals_init(void) 4637 { 4638 siginfo_buildtime_checks(); 4639 4640 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4641 } 4642 4643 #ifdef CONFIG_KGDB_KDB 4644 #include <linux/kdb.h> 4645 /* 4646 * kdb_send_sig - Allows kdb to send signals without exposing 4647 * signal internals. This function checks if the required locks are 4648 * available before calling the main signal code, to avoid kdb 4649 * deadlocks. 4650 */ 4651 void kdb_send_sig(struct task_struct *t, int sig) 4652 { 4653 static struct task_struct *kdb_prev_t; 4654 int new_t, ret; 4655 if (!spin_trylock(&t->sighand->siglock)) { 4656 kdb_printf("Can't do kill command now.\n" 4657 "The sigmask lock is held somewhere else in " 4658 "kernel, try again later\n"); 4659 return; 4660 } 4661 new_t = kdb_prev_t != t; 4662 kdb_prev_t = t; 4663 if (t->state != TASK_RUNNING && new_t) { 4664 spin_unlock(&t->sighand->siglock); 4665 kdb_printf("Process is not RUNNING, sending a signal from " 4666 "kdb risks deadlock\n" 4667 "on the run queue locks. " 4668 "The signal has _not_ been sent.\n" 4669 "Reissue the kill command if you want to risk " 4670 "the deadlock.\n"); 4671 return; 4672 } 4673 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4674 spin_unlock(&t->sighand->siglock); 4675 if (ret) 4676 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4677 sig, t->pid); 4678 else 4679 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4680 } 4681 #endif /* CONFIG_KGDB_KDB */ 4682