xref: /openbmc/linux/kernel/seccomp.c (revision 8e01b51a31a1e08e2c3e8fcc0ef6790441be2f61)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/kernel/seccomp.c
4  *
5  * Copyright 2004-2005  Andrea Arcangeli <andrea@cpushare.com>
6  *
7  * Copyright (C) 2012 Google, Inc.
8  * Will Drewry <wad@chromium.org>
9  *
10  * This defines a simple but solid secure-computing facility.
11  *
12  * Mode 1 uses a fixed list of allowed system calls.
13  * Mode 2 allows user-defined system call filters in the form
14  *        of Berkeley Packet Filters/Linux Socket Filters.
15  */
16 #define pr_fmt(fmt) "seccomp: " fmt
17 
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31 
32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
33 #include <asm/syscall.h>
34 #endif
35 
36 #ifdef CONFIG_SECCOMP_FILTER
37 #include <linux/file.h>
38 #include <linux/filter.h>
39 #include <linux/pid.h>
40 #include <linux/ptrace.h>
41 #include <linux/security.h>
42 #include <linux/tracehook.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46 
47 /*
48  * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49  * wrong direction flag in the ioctl number. This is the broken one,
50  * which the kernel needs to keep supporting until all userspaces stop
51  * using the wrong command number.
52  */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR	SECCOMP_IOR(2, __u64)
54 
55 enum notify_state {
56 	SECCOMP_NOTIFY_INIT,
57 	SECCOMP_NOTIFY_SENT,
58 	SECCOMP_NOTIFY_REPLIED,
59 };
60 
61 struct seccomp_knotif {
62 	/* The struct pid of the task whose filter triggered the notification */
63 	struct task_struct *task;
64 
65 	/* The "cookie" for this request; this is unique for this filter. */
66 	u64 id;
67 
68 	/*
69 	 * The seccomp data. This pointer is valid the entire time this
70 	 * notification is active, since it comes from __seccomp_filter which
71 	 * eclipses the entire lifecycle here.
72 	 */
73 	const struct seccomp_data *data;
74 
75 	/*
76 	 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 	 * struct seccomp_knotif is created and starts out in INIT. Once the
78 	 * handler reads the notification off of an FD, it transitions to SENT.
79 	 * If a signal is received the state transitions back to INIT and
80 	 * another message is sent. When the userspace handler replies, state
81 	 * transitions to REPLIED.
82 	 */
83 	enum notify_state state;
84 
85 	/* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 	int error;
87 	long val;
88 	u32 flags;
89 
90 	/*
91 	 * Signals when this has changed states, such as the listener
92 	 * dying, a new seccomp addfd message, or changing to REPLIED
93 	 */
94 	struct completion ready;
95 
96 	struct list_head list;
97 
98 	/* outstanding addfd requests */
99 	struct list_head addfd;
100 };
101 
102 /**
103  * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104  *
105  * @file: A reference to the file to install in the other task
106  * @fd: The fd number to install it at. If the fd number is -1, it means the
107  *      installing process should allocate the fd as normal.
108  * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109  *         is allowed.
110  * @ret: The return value of the installing process. It is set to the fd num
111  *       upon success (>= 0).
112  * @completion: Indicates that the installing process has completed fd
113  *              installation, or gone away (either due to successful
114  *              reply, or signal)
115  *
116  */
117 struct seccomp_kaddfd {
118 	struct file *file;
119 	int fd;
120 	unsigned int flags;
121 
122 	/* To only be set on reply */
123 	int ret;
124 	struct completion completion;
125 	struct list_head list;
126 };
127 
128 /**
129  * struct notification - container for seccomp userspace notifications. Since
130  * most seccomp filters will not have notification listeners attached and this
131  * structure is fairly large, we store the notification-specific stuff in a
132  * separate structure.
133  *
134  * @request: A semaphore that users of this notification can wait on for
135  *           changes. Actual reads and writes are still controlled with
136  *           filter->notify_lock.
137  * @next_id: The id of the next request.
138  * @notifications: A list of struct seccomp_knotif elements.
139  */
140 struct notification {
141 	struct semaphore request;
142 	u64 next_id;
143 	struct list_head notifications;
144 };
145 
146 #ifdef SECCOMP_ARCH_NATIVE
147 /**
148  * struct action_cache - per-filter cache of seccomp actions per
149  * arch/syscall pair
150  *
151  * @allow_native: A bitmap where each bit represents whether the
152  *		  filter will always allow the syscall, for the
153  *		  native architecture.
154  * @allow_compat: A bitmap where each bit represents whether the
155  *		  filter will always allow the syscall, for the
156  *		  compat architecture.
157  */
158 struct action_cache {
159 	DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
160 #ifdef SECCOMP_ARCH_COMPAT
161 	DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
162 #endif
163 };
164 #else
165 struct action_cache { };
166 
167 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
168 					     const struct seccomp_data *sd)
169 {
170 	return false;
171 }
172 
173 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
174 {
175 }
176 #endif /* SECCOMP_ARCH_NATIVE */
177 
178 /**
179  * struct seccomp_filter - container for seccomp BPF programs
180  *
181  * @refs: Reference count to manage the object lifetime.
182  *	  A filter's reference count is incremented for each directly
183  *	  attached task, once for the dependent filter, and if
184  *	  requested for the user notifier. When @refs reaches zero,
185  *	  the filter can be freed.
186  * @users: A filter's @users count is incremented for each directly
187  *         attached task (filter installation, fork(), thread_sync),
188  *	   and once for the dependent filter (tracked in filter->prev).
189  *	   When it reaches zero it indicates that no direct or indirect
190  *	   users of that filter exist. No new tasks can get associated with
191  *	   this filter after reaching 0. The @users count is always smaller
192  *	   or equal to @refs. Hence, reaching 0 for @users does not mean
193  *	   the filter can be freed.
194  * @cache: cache of arch/syscall mappings to actions
195  * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
196  * @prev: points to a previously installed, or inherited, filter
197  * @prog: the BPF program to evaluate
198  * @notif: the struct that holds all notification related information
199  * @notify_lock: A lock for all notification-related accesses.
200  * @wqh: A wait queue for poll if a notifier is in use.
201  *
202  * seccomp_filter objects are organized in a tree linked via the @prev
203  * pointer.  For any task, it appears to be a singly-linked list starting
204  * with current->seccomp.filter, the most recently attached or inherited filter.
205  * However, multiple filters may share a @prev node, by way of fork(), which
206  * results in a unidirectional tree existing in memory.  This is similar to
207  * how namespaces work.
208  *
209  * seccomp_filter objects should never be modified after being attached
210  * to a task_struct (other than @refs).
211  */
212 struct seccomp_filter {
213 	refcount_t refs;
214 	refcount_t users;
215 	bool log;
216 	struct action_cache cache;
217 	struct seccomp_filter *prev;
218 	struct bpf_prog *prog;
219 	struct notification *notif;
220 	struct mutex notify_lock;
221 	wait_queue_head_t wqh;
222 };
223 
224 /* Limit any path through the tree to 256KB worth of instructions. */
225 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
226 
227 /*
228  * Endianness is explicitly ignored and left for BPF program authors to manage
229  * as per the specific architecture.
230  */
231 static void populate_seccomp_data(struct seccomp_data *sd)
232 {
233 	/*
234 	 * Instead of using current_pt_reg(), we're already doing the work
235 	 * to safely fetch "current", so just use "task" everywhere below.
236 	 */
237 	struct task_struct *task = current;
238 	struct pt_regs *regs = task_pt_regs(task);
239 	unsigned long args[6];
240 
241 	sd->nr = syscall_get_nr(task, regs);
242 	sd->arch = syscall_get_arch(task);
243 	syscall_get_arguments(task, regs, args);
244 	sd->args[0] = args[0];
245 	sd->args[1] = args[1];
246 	sd->args[2] = args[2];
247 	sd->args[3] = args[3];
248 	sd->args[4] = args[4];
249 	sd->args[5] = args[5];
250 	sd->instruction_pointer = KSTK_EIP(task);
251 }
252 
253 /**
254  *	seccomp_check_filter - verify seccomp filter code
255  *	@filter: filter to verify
256  *	@flen: length of filter
257  *
258  * Takes a previously checked filter (by bpf_check_classic) and
259  * redirects all filter code that loads struct sk_buff data
260  * and related data through seccomp_bpf_load.  It also
261  * enforces length and alignment checking of those loads.
262  *
263  * Returns 0 if the rule set is legal or -EINVAL if not.
264  */
265 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
266 {
267 	int pc;
268 	for (pc = 0; pc < flen; pc++) {
269 		struct sock_filter *ftest = &filter[pc];
270 		u16 code = ftest->code;
271 		u32 k = ftest->k;
272 
273 		switch (code) {
274 		case BPF_LD | BPF_W | BPF_ABS:
275 			ftest->code = BPF_LDX | BPF_W | BPF_ABS;
276 			/* 32-bit aligned and not out of bounds. */
277 			if (k >= sizeof(struct seccomp_data) || k & 3)
278 				return -EINVAL;
279 			continue;
280 		case BPF_LD | BPF_W | BPF_LEN:
281 			ftest->code = BPF_LD | BPF_IMM;
282 			ftest->k = sizeof(struct seccomp_data);
283 			continue;
284 		case BPF_LDX | BPF_W | BPF_LEN:
285 			ftest->code = BPF_LDX | BPF_IMM;
286 			ftest->k = sizeof(struct seccomp_data);
287 			continue;
288 		/* Explicitly include allowed calls. */
289 		case BPF_RET | BPF_K:
290 		case BPF_RET | BPF_A:
291 		case BPF_ALU | BPF_ADD | BPF_K:
292 		case BPF_ALU | BPF_ADD | BPF_X:
293 		case BPF_ALU | BPF_SUB | BPF_K:
294 		case BPF_ALU | BPF_SUB | BPF_X:
295 		case BPF_ALU | BPF_MUL | BPF_K:
296 		case BPF_ALU | BPF_MUL | BPF_X:
297 		case BPF_ALU | BPF_DIV | BPF_K:
298 		case BPF_ALU | BPF_DIV | BPF_X:
299 		case BPF_ALU | BPF_AND | BPF_K:
300 		case BPF_ALU | BPF_AND | BPF_X:
301 		case BPF_ALU | BPF_OR | BPF_K:
302 		case BPF_ALU | BPF_OR | BPF_X:
303 		case BPF_ALU | BPF_XOR | BPF_K:
304 		case BPF_ALU | BPF_XOR | BPF_X:
305 		case BPF_ALU | BPF_LSH | BPF_K:
306 		case BPF_ALU | BPF_LSH | BPF_X:
307 		case BPF_ALU | BPF_RSH | BPF_K:
308 		case BPF_ALU | BPF_RSH | BPF_X:
309 		case BPF_ALU | BPF_NEG:
310 		case BPF_LD | BPF_IMM:
311 		case BPF_LDX | BPF_IMM:
312 		case BPF_MISC | BPF_TAX:
313 		case BPF_MISC | BPF_TXA:
314 		case BPF_LD | BPF_MEM:
315 		case BPF_LDX | BPF_MEM:
316 		case BPF_ST:
317 		case BPF_STX:
318 		case BPF_JMP | BPF_JA:
319 		case BPF_JMP | BPF_JEQ | BPF_K:
320 		case BPF_JMP | BPF_JEQ | BPF_X:
321 		case BPF_JMP | BPF_JGE | BPF_K:
322 		case BPF_JMP | BPF_JGE | BPF_X:
323 		case BPF_JMP | BPF_JGT | BPF_K:
324 		case BPF_JMP | BPF_JGT | BPF_X:
325 		case BPF_JMP | BPF_JSET | BPF_K:
326 		case BPF_JMP | BPF_JSET | BPF_X:
327 			continue;
328 		default:
329 			return -EINVAL;
330 		}
331 	}
332 	return 0;
333 }
334 
335 #ifdef SECCOMP_ARCH_NATIVE
336 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
337 						    size_t bitmap_size,
338 						    int syscall_nr)
339 {
340 	if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
341 		return false;
342 	syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
343 
344 	return test_bit(syscall_nr, bitmap);
345 }
346 
347 /**
348  * seccomp_cache_check_allow - lookup seccomp cache
349  * @sfilter: The seccomp filter
350  * @sd: The seccomp data to lookup the cache with
351  *
352  * Returns true if the seccomp_data is cached and allowed.
353  */
354 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
355 					     const struct seccomp_data *sd)
356 {
357 	int syscall_nr = sd->nr;
358 	const struct action_cache *cache = &sfilter->cache;
359 
360 #ifndef SECCOMP_ARCH_COMPAT
361 	/* A native-only architecture doesn't need to check sd->arch. */
362 	return seccomp_cache_check_allow_bitmap(cache->allow_native,
363 						SECCOMP_ARCH_NATIVE_NR,
364 						syscall_nr);
365 #else
366 	if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
367 		return seccomp_cache_check_allow_bitmap(cache->allow_native,
368 							SECCOMP_ARCH_NATIVE_NR,
369 							syscall_nr);
370 	if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
371 		return seccomp_cache_check_allow_bitmap(cache->allow_compat,
372 							SECCOMP_ARCH_COMPAT_NR,
373 							syscall_nr);
374 #endif /* SECCOMP_ARCH_COMPAT */
375 
376 	WARN_ON_ONCE(true);
377 	return false;
378 }
379 #endif /* SECCOMP_ARCH_NATIVE */
380 
381 /**
382  * seccomp_run_filters - evaluates all seccomp filters against @sd
383  * @sd: optional seccomp data to be passed to filters
384  * @match: stores struct seccomp_filter that resulted in the return value,
385  *         unless filter returned SECCOMP_RET_ALLOW, in which case it will
386  *         be unchanged.
387  *
388  * Returns valid seccomp BPF response codes.
389  */
390 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
391 static u32 seccomp_run_filters(const struct seccomp_data *sd,
392 			       struct seccomp_filter **match)
393 {
394 	u32 ret = SECCOMP_RET_ALLOW;
395 	/* Make sure cross-thread synced filter points somewhere sane. */
396 	struct seccomp_filter *f =
397 			READ_ONCE(current->seccomp.filter);
398 
399 	/* Ensure unexpected behavior doesn't result in failing open. */
400 	if (WARN_ON(f == NULL))
401 		return SECCOMP_RET_KILL_PROCESS;
402 
403 	if (seccomp_cache_check_allow(f, sd))
404 		return SECCOMP_RET_ALLOW;
405 
406 	/*
407 	 * All filters in the list are evaluated and the lowest BPF return
408 	 * value always takes priority (ignoring the DATA).
409 	 */
410 	for (; f; f = f->prev) {
411 		u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
412 
413 		if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
414 			ret = cur_ret;
415 			*match = f;
416 		}
417 	}
418 	return ret;
419 }
420 #endif /* CONFIG_SECCOMP_FILTER */
421 
422 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
423 {
424 	assert_spin_locked(&current->sighand->siglock);
425 
426 	if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
427 		return false;
428 
429 	return true;
430 }
431 
432 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
433 
434 static inline void seccomp_assign_mode(struct task_struct *task,
435 				       unsigned long seccomp_mode,
436 				       unsigned long flags)
437 {
438 	assert_spin_locked(&task->sighand->siglock);
439 
440 	task->seccomp.mode = seccomp_mode;
441 	/*
442 	 * Make sure TIF_SECCOMP cannot be set before the mode (and
443 	 * filter) is set.
444 	 */
445 	smp_mb__before_atomic();
446 	/* Assume default seccomp processes want spec flaw mitigation. */
447 	if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
448 		arch_seccomp_spec_mitigate(task);
449 	set_tsk_thread_flag(task, TIF_SECCOMP);
450 }
451 
452 #ifdef CONFIG_SECCOMP_FILTER
453 /* Returns 1 if the parent is an ancestor of the child. */
454 static int is_ancestor(struct seccomp_filter *parent,
455 		       struct seccomp_filter *child)
456 {
457 	/* NULL is the root ancestor. */
458 	if (parent == NULL)
459 		return 1;
460 	for (; child; child = child->prev)
461 		if (child == parent)
462 			return 1;
463 	return 0;
464 }
465 
466 /**
467  * seccomp_can_sync_threads: checks if all threads can be synchronized
468  *
469  * Expects sighand and cred_guard_mutex locks to be held.
470  *
471  * Returns 0 on success, -ve on error, or the pid of a thread which was
472  * either not in the correct seccomp mode or did not have an ancestral
473  * seccomp filter.
474  */
475 static inline pid_t seccomp_can_sync_threads(void)
476 {
477 	struct task_struct *thread, *caller;
478 
479 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
480 	assert_spin_locked(&current->sighand->siglock);
481 
482 	/* Validate all threads being eligible for synchronization. */
483 	caller = current;
484 	for_each_thread(caller, thread) {
485 		pid_t failed;
486 
487 		/* Skip current, since it is initiating the sync. */
488 		if (thread == caller)
489 			continue;
490 
491 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
492 		    (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
493 		     is_ancestor(thread->seccomp.filter,
494 				 caller->seccomp.filter)))
495 			continue;
496 
497 		/* Return the first thread that cannot be synchronized. */
498 		failed = task_pid_vnr(thread);
499 		/* If the pid cannot be resolved, then return -ESRCH */
500 		if (WARN_ON(failed == 0))
501 			failed = -ESRCH;
502 		return failed;
503 	}
504 
505 	return 0;
506 }
507 
508 static inline void seccomp_filter_free(struct seccomp_filter *filter)
509 {
510 	if (filter) {
511 		bpf_prog_destroy(filter->prog);
512 		kfree(filter);
513 	}
514 }
515 
516 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
517 {
518 	while (orig && refcount_dec_and_test(&orig->users)) {
519 		if (waitqueue_active(&orig->wqh))
520 			wake_up_poll(&orig->wqh, EPOLLHUP);
521 		orig = orig->prev;
522 	}
523 }
524 
525 static void __put_seccomp_filter(struct seccomp_filter *orig)
526 {
527 	/* Clean up single-reference branches iteratively. */
528 	while (orig && refcount_dec_and_test(&orig->refs)) {
529 		struct seccomp_filter *freeme = orig;
530 		orig = orig->prev;
531 		seccomp_filter_free(freeme);
532 	}
533 }
534 
535 static void __seccomp_filter_release(struct seccomp_filter *orig)
536 {
537 	/* Notify about any unused filters in the task's former filter tree. */
538 	__seccomp_filter_orphan(orig);
539 	/* Finally drop all references to the task's former tree. */
540 	__put_seccomp_filter(orig);
541 }
542 
543 /**
544  * seccomp_filter_release - Detach the task from its filter tree,
545  *			    drop its reference count, and notify
546  *			    about unused filters
547  *
548  * This function should only be called when the task is exiting as
549  * it detaches it from its filter tree. As such, READ_ONCE() and
550  * barriers are not needed here, as would normally be needed.
551  */
552 void seccomp_filter_release(struct task_struct *tsk)
553 {
554 	struct seccomp_filter *orig = tsk->seccomp.filter;
555 
556 	/* Detach task from its filter tree. */
557 	tsk->seccomp.filter = NULL;
558 	__seccomp_filter_release(orig);
559 }
560 
561 /**
562  * seccomp_sync_threads: sets all threads to use current's filter
563  *
564  * Expects sighand and cred_guard_mutex locks to be held, and for
565  * seccomp_can_sync_threads() to have returned success already
566  * without dropping the locks.
567  *
568  */
569 static inline void seccomp_sync_threads(unsigned long flags)
570 {
571 	struct task_struct *thread, *caller;
572 
573 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
574 	assert_spin_locked(&current->sighand->siglock);
575 
576 	/* Synchronize all threads. */
577 	caller = current;
578 	for_each_thread(caller, thread) {
579 		/* Skip current, since it needs no changes. */
580 		if (thread == caller)
581 			continue;
582 
583 		/* Get a task reference for the new leaf node. */
584 		get_seccomp_filter(caller);
585 
586 		/*
587 		 * Drop the task reference to the shared ancestor since
588 		 * current's path will hold a reference.  (This also
589 		 * allows a put before the assignment.)
590 		 */
591 		__seccomp_filter_release(thread->seccomp.filter);
592 
593 		/* Make our new filter tree visible. */
594 		smp_store_release(&thread->seccomp.filter,
595 				  caller->seccomp.filter);
596 		atomic_set(&thread->seccomp.filter_count,
597 			   atomic_read(&thread->seccomp.filter_count));
598 
599 		/*
600 		 * Don't let an unprivileged task work around
601 		 * the no_new_privs restriction by creating
602 		 * a thread that sets it up, enters seccomp,
603 		 * then dies.
604 		 */
605 		if (task_no_new_privs(caller))
606 			task_set_no_new_privs(thread);
607 
608 		/*
609 		 * Opt the other thread into seccomp if needed.
610 		 * As threads are considered to be trust-realm
611 		 * equivalent (see ptrace_may_access), it is safe to
612 		 * allow one thread to transition the other.
613 		 */
614 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
615 			seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
616 					    flags);
617 	}
618 }
619 
620 /**
621  * seccomp_prepare_filter: Prepares a seccomp filter for use.
622  * @fprog: BPF program to install
623  *
624  * Returns filter on success or an ERR_PTR on failure.
625  */
626 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
627 {
628 	struct seccomp_filter *sfilter;
629 	int ret;
630 	const bool save_orig =
631 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
632 		true;
633 #else
634 		false;
635 #endif
636 
637 	if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
638 		return ERR_PTR(-EINVAL);
639 
640 	BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
641 
642 	/*
643 	 * Installing a seccomp filter requires that the task has
644 	 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
645 	 * This avoids scenarios where unprivileged tasks can affect the
646 	 * behavior of privileged children.
647 	 */
648 	if (!task_no_new_privs(current) &&
649 	    security_capable(current_cred(), current_user_ns(),
650 				     CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) != 0)
651 		return ERR_PTR(-EACCES);
652 
653 	/* Allocate a new seccomp_filter */
654 	sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
655 	if (!sfilter)
656 		return ERR_PTR(-ENOMEM);
657 
658 	mutex_init(&sfilter->notify_lock);
659 	ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
660 					seccomp_check_filter, save_orig);
661 	if (ret < 0) {
662 		kfree(sfilter);
663 		return ERR_PTR(ret);
664 	}
665 
666 	refcount_set(&sfilter->refs, 1);
667 	refcount_set(&sfilter->users, 1);
668 	init_waitqueue_head(&sfilter->wqh);
669 
670 	return sfilter;
671 }
672 
673 /**
674  * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
675  * @user_filter: pointer to the user data containing a sock_fprog.
676  *
677  * Returns 0 on success and non-zero otherwise.
678  */
679 static struct seccomp_filter *
680 seccomp_prepare_user_filter(const char __user *user_filter)
681 {
682 	struct sock_fprog fprog;
683 	struct seccomp_filter *filter = ERR_PTR(-EFAULT);
684 
685 #ifdef CONFIG_COMPAT
686 	if (in_compat_syscall()) {
687 		struct compat_sock_fprog fprog32;
688 		if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
689 			goto out;
690 		fprog.len = fprog32.len;
691 		fprog.filter = compat_ptr(fprog32.filter);
692 	} else /* falls through to the if below. */
693 #endif
694 	if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
695 		goto out;
696 	filter = seccomp_prepare_filter(&fprog);
697 out:
698 	return filter;
699 }
700 
701 #ifdef SECCOMP_ARCH_NATIVE
702 /**
703  * seccomp_is_const_allow - check if filter is constant allow with given data
704  * @fprog: The BPF programs
705  * @sd: The seccomp data to check against, only syscall number and arch
706  *      number are considered constant.
707  */
708 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
709 				   struct seccomp_data *sd)
710 {
711 	unsigned int reg_value = 0;
712 	unsigned int pc;
713 	bool op_res;
714 
715 	if (WARN_ON_ONCE(!fprog))
716 		return false;
717 
718 	for (pc = 0; pc < fprog->len; pc++) {
719 		struct sock_filter *insn = &fprog->filter[pc];
720 		u16 code = insn->code;
721 		u32 k = insn->k;
722 
723 		switch (code) {
724 		case BPF_LD | BPF_W | BPF_ABS:
725 			switch (k) {
726 			case offsetof(struct seccomp_data, nr):
727 				reg_value = sd->nr;
728 				break;
729 			case offsetof(struct seccomp_data, arch):
730 				reg_value = sd->arch;
731 				break;
732 			default:
733 				/* can't optimize (non-constant value load) */
734 				return false;
735 			}
736 			break;
737 		case BPF_RET | BPF_K:
738 			/* reached return with constant values only, check allow */
739 			return k == SECCOMP_RET_ALLOW;
740 		case BPF_JMP | BPF_JA:
741 			pc += insn->k;
742 			break;
743 		case BPF_JMP | BPF_JEQ | BPF_K:
744 		case BPF_JMP | BPF_JGE | BPF_K:
745 		case BPF_JMP | BPF_JGT | BPF_K:
746 		case BPF_JMP | BPF_JSET | BPF_K:
747 			switch (BPF_OP(code)) {
748 			case BPF_JEQ:
749 				op_res = reg_value == k;
750 				break;
751 			case BPF_JGE:
752 				op_res = reg_value >= k;
753 				break;
754 			case BPF_JGT:
755 				op_res = reg_value > k;
756 				break;
757 			case BPF_JSET:
758 				op_res = !!(reg_value & k);
759 				break;
760 			default:
761 				/* can't optimize (unknown jump) */
762 				return false;
763 			}
764 
765 			pc += op_res ? insn->jt : insn->jf;
766 			break;
767 		case BPF_ALU | BPF_AND | BPF_K:
768 			reg_value &= k;
769 			break;
770 		default:
771 			/* can't optimize (unknown insn) */
772 			return false;
773 		}
774 	}
775 
776 	/* ran off the end of the filter?! */
777 	WARN_ON(1);
778 	return false;
779 }
780 
781 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
782 					 void *bitmap, const void *bitmap_prev,
783 					 size_t bitmap_size, int arch)
784 {
785 	struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
786 	struct seccomp_data sd;
787 	int nr;
788 
789 	if (bitmap_prev) {
790 		/* The new filter must be as restrictive as the last. */
791 		bitmap_copy(bitmap, bitmap_prev, bitmap_size);
792 	} else {
793 		/* Before any filters, all syscalls are always allowed. */
794 		bitmap_fill(bitmap, bitmap_size);
795 	}
796 
797 	for (nr = 0; nr < bitmap_size; nr++) {
798 		/* No bitmap change: not a cacheable action. */
799 		if (!test_bit(nr, bitmap))
800 			continue;
801 
802 		sd.nr = nr;
803 		sd.arch = arch;
804 
805 		/* No bitmap change: continue to always allow. */
806 		if (seccomp_is_const_allow(fprog, &sd))
807 			continue;
808 
809 		/*
810 		 * Not a cacheable action: always run filters.
811 		 * atomic clear_bit() not needed, filter not visible yet.
812 		 */
813 		__clear_bit(nr, bitmap);
814 	}
815 }
816 
817 /**
818  * seccomp_cache_prepare - emulate the filter to find cachable syscalls
819  * @sfilter: The seccomp filter
820  *
821  * Returns 0 if successful or -errno if error occurred.
822  */
823 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
824 {
825 	struct action_cache *cache = &sfilter->cache;
826 	const struct action_cache *cache_prev =
827 		sfilter->prev ? &sfilter->prev->cache : NULL;
828 
829 	seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
830 				     cache_prev ? cache_prev->allow_native : NULL,
831 				     SECCOMP_ARCH_NATIVE_NR,
832 				     SECCOMP_ARCH_NATIVE);
833 
834 #ifdef SECCOMP_ARCH_COMPAT
835 	seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
836 				     cache_prev ? cache_prev->allow_compat : NULL,
837 				     SECCOMP_ARCH_COMPAT_NR,
838 				     SECCOMP_ARCH_COMPAT);
839 #endif /* SECCOMP_ARCH_COMPAT */
840 }
841 #endif /* SECCOMP_ARCH_NATIVE */
842 
843 /**
844  * seccomp_attach_filter: validate and attach filter
845  * @flags:  flags to change filter behavior
846  * @filter: seccomp filter to add to the current process
847  *
848  * Caller must be holding current->sighand->siglock lock.
849  *
850  * Returns 0 on success, -ve on error, or
851  *   - in TSYNC mode: the pid of a thread which was either not in the correct
852  *     seccomp mode or did not have an ancestral seccomp filter
853  *   - in NEW_LISTENER mode: the fd of the new listener
854  */
855 static long seccomp_attach_filter(unsigned int flags,
856 				  struct seccomp_filter *filter)
857 {
858 	unsigned long total_insns;
859 	struct seccomp_filter *walker;
860 
861 	assert_spin_locked(&current->sighand->siglock);
862 
863 	/* Validate resulting filter length. */
864 	total_insns = filter->prog->len;
865 	for (walker = current->seccomp.filter; walker; walker = walker->prev)
866 		total_insns += walker->prog->len + 4;  /* 4 instr penalty */
867 	if (total_insns > MAX_INSNS_PER_PATH)
868 		return -ENOMEM;
869 
870 	/* If thread sync has been requested, check that it is possible. */
871 	if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
872 		int ret;
873 
874 		ret = seccomp_can_sync_threads();
875 		if (ret) {
876 			if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
877 				return -ESRCH;
878 			else
879 				return ret;
880 		}
881 	}
882 
883 	/* Set log flag, if present. */
884 	if (flags & SECCOMP_FILTER_FLAG_LOG)
885 		filter->log = true;
886 
887 	/*
888 	 * If there is an existing filter, make it the prev and don't drop its
889 	 * task reference.
890 	 */
891 	filter->prev = current->seccomp.filter;
892 	seccomp_cache_prepare(filter);
893 	current->seccomp.filter = filter;
894 	atomic_inc(&current->seccomp.filter_count);
895 
896 	/* Now that the new filter is in place, synchronize to all threads. */
897 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
898 		seccomp_sync_threads(flags);
899 
900 	return 0;
901 }
902 
903 static void __get_seccomp_filter(struct seccomp_filter *filter)
904 {
905 	refcount_inc(&filter->refs);
906 }
907 
908 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
909 void get_seccomp_filter(struct task_struct *tsk)
910 {
911 	struct seccomp_filter *orig = tsk->seccomp.filter;
912 	if (!orig)
913 		return;
914 	__get_seccomp_filter(orig);
915 	refcount_inc(&orig->users);
916 }
917 
918 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason)
919 {
920 	clear_siginfo(info);
921 	info->si_signo = SIGSYS;
922 	info->si_code = SYS_SECCOMP;
923 	info->si_call_addr = (void __user *)KSTK_EIP(current);
924 	info->si_errno = reason;
925 	info->si_arch = syscall_get_arch(current);
926 	info->si_syscall = syscall;
927 }
928 
929 /**
930  * seccomp_send_sigsys - signals the task to allow in-process syscall emulation
931  * @syscall: syscall number to send to userland
932  * @reason: filter-supplied reason code to send to userland (via si_errno)
933  *
934  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
935  */
936 static void seccomp_send_sigsys(int syscall, int reason)
937 {
938 	struct kernel_siginfo info;
939 	seccomp_init_siginfo(&info, syscall, reason);
940 	force_sig_info(&info);
941 }
942 #endif	/* CONFIG_SECCOMP_FILTER */
943 
944 /* For use with seccomp_actions_logged */
945 #define SECCOMP_LOG_KILL_PROCESS	(1 << 0)
946 #define SECCOMP_LOG_KILL_THREAD		(1 << 1)
947 #define SECCOMP_LOG_TRAP		(1 << 2)
948 #define SECCOMP_LOG_ERRNO		(1 << 3)
949 #define SECCOMP_LOG_TRACE		(1 << 4)
950 #define SECCOMP_LOG_LOG			(1 << 5)
951 #define SECCOMP_LOG_ALLOW		(1 << 6)
952 #define SECCOMP_LOG_USER_NOTIF		(1 << 7)
953 
954 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
955 				    SECCOMP_LOG_KILL_THREAD  |
956 				    SECCOMP_LOG_TRAP  |
957 				    SECCOMP_LOG_ERRNO |
958 				    SECCOMP_LOG_USER_NOTIF |
959 				    SECCOMP_LOG_TRACE |
960 				    SECCOMP_LOG_LOG;
961 
962 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
963 			       bool requested)
964 {
965 	bool log = false;
966 
967 	switch (action) {
968 	case SECCOMP_RET_ALLOW:
969 		break;
970 	case SECCOMP_RET_TRAP:
971 		log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
972 		break;
973 	case SECCOMP_RET_ERRNO:
974 		log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
975 		break;
976 	case SECCOMP_RET_TRACE:
977 		log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
978 		break;
979 	case SECCOMP_RET_USER_NOTIF:
980 		log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
981 		break;
982 	case SECCOMP_RET_LOG:
983 		log = seccomp_actions_logged & SECCOMP_LOG_LOG;
984 		break;
985 	case SECCOMP_RET_KILL_THREAD:
986 		log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
987 		break;
988 	case SECCOMP_RET_KILL_PROCESS:
989 	default:
990 		log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
991 	}
992 
993 	/*
994 	 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
995 	 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
996 	 * any action from being logged by removing the action name from the
997 	 * seccomp_actions_logged sysctl.
998 	 */
999 	if (!log)
1000 		return;
1001 
1002 	audit_seccomp(syscall, signr, action);
1003 }
1004 
1005 /*
1006  * Secure computing mode 1 allows only read/write/exit/sigreturn.
1007  * To be fully secure this must be combined with rlimit
1008  * to limit the stack allocations too.
1009  */
1010 static const int mode1_syscalls[] = {
1011 	__NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
1012 	-1, /* negative terminated */
1013 };
1014 
1015 static void __secure_computing_strict(int this_syscall)
1016 {
1017 	const int *allowed_syscalls = mode1_syscalls;
1018 #ifdef CONFIG_COMPAT
1019 	if (in_compat_syscall())
1020 		allowed_syscalls = get_compat_mode1_syscalls();
1021 #endif
1022 	do {
1023 		if (*allowed_syscalls == this_syscall)
1024 			return;
1025 	} while (*++allowed_syscalls != -1);
1026 
1027 #ifdef SECCOMP_DEBUG
1028 	dump_stack();
1029 #endif
1030 	seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1031 	do_exit(SIGKILL);
1032 }
1033 
1034 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
1035 void secure_computing_strict(int this_syscall)
1036 {
1037 	int mode = current->seccomp.mode;
1038 
1039 	if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1040 	    unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1041 		return;
1042 
1043 	if (mode == SECCOMP_MODE_DISABLED)
1044 		return;
1045 	else if (mode == SECCOMP_MODE_STRICT)
1046 		__secure_computing_strict(this_syscall);
1047 	else
1048 		BUG();
1049 }
1050 #else
1051 
1052 #ifdef CONFIG_SECCOMP_FILTER
1053 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1054 {
1055 	/*
1056 	 * Note: overflow is ok here, the id just needs to be unique per
1057 	 * filter.
1058 	 */
1059 	lockdep_assert_held(&filter->notify_lock);
1060 	return filter->notif->next_id++;
1061 }
1062 
1063 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd)
1064 {
1065 	/*
1066 	 * Remove the notification, and reset the list pointers, indicating
1067 	 * that it has been handled.
1068 	 */
1069 	list_del_init(&addfd->list);
1070 	addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
1071 	complete(&addfd->completion);
1072 }
1073 
1074 static int seccomp_do_user_notification(int this_syscall,
1075 					struct seccomp_filter *match,
1076 					const struct seccomp_data *sd)
1077 {
1078 	int err;
1079 	u32 flags = 0;
1080 	long ret = 0;
1081 	struct seccomp_knotif n = {};
1082 	struct seccomp_kaddfd *addfd, *tmp;
1083 
1084 	mutex_lock(&match->notify_lock);
1085 	err = -ENOSYS;
1086 	if (!match->notif)
1087 		goto out;
1088 
1089 	n.task = current;
1090 	n.state = SECCOMP_NOTIFY_INIT;
1091 	n.data = sd;
1092 	n.id = seccomp_next_notify_id(match);
1093 	init_completion(&n.ready);
1094 	list_add(&n.list, &match->notif->notifications);
1095 	INIT_LIST_HEAD(&n.addfd);
1096 
1097 	up(&match->notif->request);
1098 	wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1099 	mutex_unlock(&match->notify_lock);
1100 
1101 	/*
1102 	 * This is where we wait for a reply from userspace.
1103 	 */
1104 wait:
1105 	err = wait_for_completion_interruptible(&n.ready);
1106 	mutex_lock(&match->notify_lock);
1107 	if (err == 0) {
1108 		/* Check if we were woken up by a addfd message */
1109 		addfd = list_first_entry_or_null(&n.addfd,
1110 						 struct seccomp_kaddfd, list);
1111 		if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) {
1112 			seccomp_handle_addfd(addfd);
1113 			mutex_unlock(&match->notify_lock);
1114 			goto wait;
1115 		}
1116 		ret = n.val;
1117 		err = n.error;
1118 		flags = n.flags;
1119 	}
1120 
1121 	/* If there were any pending addfd calls, clear them out */
1122 	list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1123 		/* The process went away before we got a chance to handle it */
1124 		addfd->ret = -ESRCH;
1125 		list_del_init(&addfd->list);
1126 		complete(&addfd->completion);
1127 	}
1128 
1129 	/*
1130 	 * Note that it's possible the listener died in between the time when
1131 	 * we were notified of a response (or a signal) and when we were able to
1132 	 * re-acquire the lock, so only delete from the list if the
1133 	 * notification actually exists.
1134 	 *
1135 	 * Also note that this test is only valid because there's no way to
1136 	 * *reattach* to a notifier right now. If one is added, we'll need to
1137 	 * keep track of the notif itself and make sure they match here.
1138 	 */
1139 	if (match->notif)
1140 		list_del(&n.list);
1141 out:
1142 	mutex_unlock(&match->notify_lock);
1143 
1144 	/* Userspace requests to continue the syscall. */
1145 	if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1146 		return 0;
1147 
1148 	syscall_set_return_value(current, current_pt_regs(),
1149 				 err, ret);
1150 	return -1;
1151 }
1152 
1153 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1154 			    const bool recheck_after_trace)
1155 {
1156 	u32 filter_ret, action;
1157 	struct seccomp_filter *match = NULL;
1158 	int data;
1159 	struct seccomp_data sd_local;
1160 
1161 	/*
1162 	 * Make sure that any changes to mode from another thread have
1163 	 * been seen after TIF_SECCOMP was seen.
1164 	 */
1165 	rmb();
1166 
1167 	if (!sd) {
1168 		populate_seccomp_data(&sd_local);
1169 		sd = &sd_local;
1170 	}
1171 
1172 	filter_ret = seccomp_run_filters(sd, &match);
1173 	data = filter_ret & SECCOMP_RET_DATA;
1174 	action = filter_ret & SECCOMP_RET_ACTION_FULL;
1175 
1176 	switch (action) {
1177 	case SECCOMP_RET_ERRNO:
1178 		/* Set low-order bits as an errno, capped at MAX_ERRNO. */
1179 		if (data > MAX_ERRNO)
1180 			data = MAX_ERRNO;
1181 		syscall_set_return_value(current, current_pt_regs(),
1182 					 -data, 0);
1183 		goto skip;
1184 
1185 	case SECCOMP_RET_TRAP:
1186 		/* Show the handler the original registers. */
1187 		syscall_rollback(current, current_pt_regs());
1188 		/* Let the filter pass back 16 bits of data. */
1189 		seccomp_send_sigsys(this_syscall, data);
1190 		goto skip;
1191 
1192 	case SECCOMP_RET_TRACE:
1193 		/* We've been put in this state by the ptracer already. */
1194 		if (recheck_after_trace)
1195 			return 0;
1196 
1197 		/* ENOSYS these calls if there is no tracer attached. */
1198 		if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1199 			syscall_set_return_value(current,
1200 						 current_pt_regs(),
1201 						 -ENOSYS, 0);
1202 			goto skip;
1203 		}
1204 
1205 		/* Allow the BPF to provide the event message */
1206 		ptrace_event(PTRACE_EVENT_SECCOMP, data);
1207 		/*
1208 		 * The delivery of a fatal signal during event
1209 		 * notification may silently skip tracer notification,
1210 		 * which could leave us with a potentially unmodified
1211 		 * syscall that the tracer would have liked to have
1212 		 * changed. Since the process is about to die, we just
1213 		 * force the syscall to be skipped and let the signal
1214 		 * kill the process and correctly handle any tracer exit
1215 		 * notifications.
1216 		 */
1217 		if (fatal_signal_pending(current))
1218 			goto skip;
1219 		/* Check if the tracer forced the syscall to be skipped. */
1220 		this_syscall = syscall_get_nr(current, current_pt_regs());
1221 		if (this_syscall < 0)
1222 			goto skip;
1223 
1224 		/*
1225 		 * Recheck the syscall, since it may have changed. This
1226 		 * intentionally uses a NULL struct seccomp_data to force
1227 		 * a reload of all registers. This does not goto skip since
1228 		 * a skip would have already been reported.
1229 		 */
1230 		if (__seccomp_filter(this_syscall, NULL, true))
1231 			return -1;
1232 
1233 		return 0;
1234 
1235 	case SECCOMP_RET_USER_NOTIF:
1236 		if (seccomp_do_user_notification(this_syscall, match, sd))
1237 			goto skip;
1238 
1239 		return 0;
1240 
1241 	case SECCOMP_RET_LOG:
1242 		seccomp_log(this_syscall, 0, action, true);
1243 		return 0;
1244 
1245 	case SECCOMP_RET_ALLOW:
1246 		/*
1247 		 * Note that the "match" filter will always be NULL for
1248 		 * this action since SECCOMP_RET_ALLOW is the starting
1249 		 * state in seccomp_run_filters().
1250 		 */
1251 		return 0;
1252 
1253 	case SECCOMP_RET_KILL_THREAD:
1254 	case SECCOMP_RET_KILL_PROCESS:
1255 	default:
1256 		seccomp_log(this_syscall, SIGSYS, action, true);
1257 		/* Dump core only if this is the last remaining thread. */
1258 		if (action != SECCOMP_RET_KILL_THREAD ||
1259 		    get_nr_threads(current) == 1) {
1260 			kernel_siginfo_t info;
1261 
1262 			/* Show the original registers in the dump. */
1263 			syscall_rollback(current, current_pt_regs());
1264 			/* Trigger a manual coredump since do_exit skips it. */
1265 			seccomp_init_siginfo(&info, this_syscall, data);
1266 			do_coredump(&info);
1267 		}
1268 		if (action == SECCOMP_RET_KILL_THREAD)
1269 			do_exit(SIGSYS);
1270 		else
1271 			do_group_exit(SIGSYS);
1272 	}
1273 
1274 	unreachable();
1275 
1276 skip:
1277 	seccomp_log(this_syscall, 0, action, match ? match->log : false);
1278 	return -1;
1279 }
1280 #else
1281 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1282 			    const bool recheck_after_trace)
1283 {
1284 	BUG();
1285 }
1286 #endif
1287 
1288 int __secure_computing(const struct seccomp_data *sd)
1289 {
1290 	int mode = current->seccomp.mode;
1291 	int this_syscall;
1292 
1293 	if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1294 	    unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1295 		return 0;
1296 
1297 	this_syscall = sd ? sd->nr :
1298 		syscall_get_nr(current, current_pt_regs());
1299 
1300 	switch (mode) {
1301 	case SECCOMP_MODE_STRICT:
1302 		__secure_computing_strict(this_syscall);  /* may call do_exit */
1303 		return 0;
1304 	case SECCOMP_MODE_FILTER:
1305 		return __seccomp_filter(this_syscall, sd, false);
1306 	default:
1307 		BUG();
1308 	}
1309 }
1310 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1311 
1312 long prctl_get_seccomp(void)
1313 {
1314 	return current->seccomp.mode;
1315 }
1316 
1317 /**
1318  * seccomp_set_mode_strict: internal function for setting strict seccomp
1319  *
1320  * Once current->seccomp.mode is non-zero, it may not be changed.
1321  *
1322  * Returns 0 on success or -EINVAL on failure.
1323  */
1324 static long seccomp_set_mode_strict(void)
1325 {
1326 	const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1327 	long ret = -EINVAL;
1328 
1329 	spin_lock_irq(&current->sighand->siglock);
1330 
1331 	if (!seccomp_may_assign_mode(seccomp_mode))
1332 		goto out;
1333 
1334 #ifdef TIF_NOTSC
1335 	disable_TSC();
1336 #endif
1337 	seccomp_assign_mode(current, seccomp_mode, 0);
1338 	ret = 0;
1339 
1340 out:
1341 	spin_unlock_irq(&current->sighand->siglock);
1342 
1343 	return ret;
1344 }
1345 
1346 #ifdef CONFIG_SECCOMP_FILTER
1347 static void seccomp_notify_free(struct seccomp_filter *filter)
1348 {
1349 	kfree(filter->notif);
1350 	filter->notif = NULL;
1351 }
1352 
1353 static void seccomp_notify_detach(struct seccomp_filter *filter)
1354 {
1355 	struct seccomp_knotif *knotif;
1356 
1357 	if (!filter)
1358 		return;
1359 
1360 	mutex_lock(&filter->notify_lock);
1361 
1362 	/*
1363 	 * If this file is being closed because e.g. the task who owned it
1364 	 * died, let's wake everyone up who was waiting on us.
1365 	 */
1366 	list_for_each_entry(knotif, &filter->notif->notifications, list) {
1367 		if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1368 			continue;
1369 
1370 		knotif->state = SECCOMP_NOTIFY_REPLIED;
1371 		knotif->error = -ENOSYS;
1372 		knotif->val = 0;
1373 
1374 		/*
1375 		 * We do not need to wake up any pending addfd messages, as
1376 		 * the notifier will do that for us, as this just looks
1377 		 * like a standard reply.
1378 		 */
1379 		complete(&knotif->ready);
1380 	}
1381 
1382 	seccomp_notify_free(filter);
1383 	mutex_unlock(&filter->notify_lock);
1384 }
1385 
1386 static int seccomp_notify_release(struct inode *inode, struct file *file)
1387 {
1388 	struct seccomp_filter *filter = file->private_data;
1389 
1390 	seccomp_notify_detach(filter);
1391 	__put_seccomp_filter(filter);
1392 	return 0;
1393 }
1394 
1395 /* must be called with notif_lock held */
1396 static inline struct seccomp_knotif *
1397 find_notification(struct seccomp_filter *filter, u64 id)
1398 {
1399 	struct seccomp_knotif *cur;
1400 
1401 	lockdep_assert_held(&filter->notify_lock);
1402 
1403 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1404 		if (cur->id == id)
1405 			return cur;
1406 	}
1407 
1408 	return NULL;
1409 }
1410 
1411 
1412 static long seccomp_notify_recv(struct seccomp_filter *filter,
1413 				void __user *buf)
1414 {
1415 	struct seccomp_knotif *knotif = NULL, *cur;
1416 	struct seccomp_notif unotif;
1417 	ssize_t ret;
1418 
1419 	/* Verify that we're not given garbage to keep struct extensible. */
1420 	ret = check_zeroed_user(buf, sizeof(unotif));
1421 	if (ret < 0)
1422 		return ret;
1423 	if (!ret)
1424 		return -EINVAL;
1425 
1426 	memset(&unotif, 0, sizeof(unotif));
1427 
1428 	ret = down_interruptible(&filter->notif->request);
1429 	if (ret < 0)
1430 		return ret;
1431 
1432 	mutex_lock(&filter->notify_lock);
1433 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1434 		if (cur->state == SECCOMP_NOTIFY_INIT) {
1435 			knotif = cur;
1436 			break;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * If we didn't find a notification, it could be that the task was
1442 	 * interrupted by a fatal signal between the time we were woken and
1443 	 * when we were able to acquire the rw lock.
1444 	 */
1445 	if (!knotif) {
1446 		ret = -ENOENT;
1447 		goto out;
1448 	}
1449 
1450 	unotif.id = knotif->id;
1451 	unotif.pid = task_pid_vnr(knotif->task);
1452 	unotif.data = *(knotif->data);
1453 
1454 	knotif->state = SECCOMP_NOTIFY_SENT;
1455 	wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1456 	ret = 0;
1457 out:
1458 	mutex_unlock(&filter->notify_lock);
1459 
1460 	if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1461 		ret = -EFAULT;
1462 
1463 		/*
1464 		 * Userspace screwed up. To make sure that we keep this
1465 		 * notification alive, let's reset it back to INIT. It
1466 		 * may have died when we released the lock, so we need to make
1467 		 * sure it's still around.
1468 		 */
1469 		mutex_lock(&filter->notify_lock);
1470 		knotif = find_notification(filter, unotif.id);
1471 		if (knotif) {
1472 			knotif->state = SECCOMP_NOTIFY_INIT;
1473 			up(&filter->notif->request);
1474 		}
1475 		mutex_unlock(&filter->notify_lock);
1476 	}
1477 
1478 	return ret;
1479 }
1480 
1481 static long seccomp_notify_send(struct seccomp_filter *filter,
1482 				void __user *buf)
1483 {
1484 	struct seccomp_notif_resp resp = {};
1485 	struct seccomp_knotif *knotif;
1486 	long ret;
1487 
1488 	if (copy_from_user(&resp, buf, sizeof(resp)))
1489 		return -EFAULT;
1490 
1491 	if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1492 		return -EINVAL;
1493 
1494 	if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1495 	    (resp.error || resp.val))
1496 		return -EINVAL;
1497 
1498 	ret = mutex_lock_interruptible(&filter->notify_lock);
1499 	if (ret < 0)
1500 		return ret;
1501 
1502 	knotif = find_notification(filter, resp.id);
1503 	if (!knotif) {
1504 		ret = -ENOENT;
1505 		goto out;
1506 	}
1507 
1508 	/* Allow exactly one reply. */
1509 	if (knotif->state != SECCOMP_NOTIFY_SENT) {
1510 		ret = -EINPROGRESS;
1511 		goto out;
1512 	}
1513 
1514 	ret = 0;
1515 	knotif->state = SECCOMP_NOTIFY_REPLIED;
1516 	knotif->error = resp.error;
1517 	knotif->val = resp.val;
1518 	knotif->flags = resp.flags;
1519 	complete(&knotif->ready);
1520 out:
1521 	mutex_unlock(&filter->notify_lock);
1522 	return ret;
1523 }
1524 
1525 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1526 				    void __user *buf)
1527 {
1528 	struct seccomp_knotif *knotif;
1529 	u64 id;
1530 	long ret;
1531 
1532 	if (copy_from_user(&id, buf, sizeof(id)))
1533 		return -EFAULT;
1534 
1535 	ret = mutex_lock_interruptible(&filter->notify_lock);
1536 	if (ret < 0)
1537 		return ret;
1538 
1539 	knotif = find_notification(filter, id);
1540 	if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1541 		ret = 0;
1542 	else
1543 		ret = -ENOENT;
1544 
1545 	mutex_unlock(&filter->notify_lock);
1546 	return ret;
1547 }
1548 
1549 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1550 				 struct seccomp_notif_addfd __user *uaddfd,
1551 				 unsigned int size)
1552 {
1553 	struct seccomp_notif_addfd addfd;
1554 	struct seccomp_knotif *knotif;
1555 	struct seccomp_kaddfd kaddfd;
1556 	int ret;
1557 
1558 	BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1559 	BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1560 
1561 	if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1562 		return -EINVAL;
1563 
1564 	ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1565 	if (ret)
1566 		return ret;
1567 
1568 	if (addfd.newfd_flags & ~O_CLOEXEC)
1569 		return -EINVAL;
1570 
1571 	if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD)
1572 		return -EINVAL;
1573 
1574 	if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1575 		return -EINVAL;
1576 
1577 	kaddfd.file = fget(addfd.srcfd);
1578 	if (!kaddfd.file)
1579 		return -EBADF;
1580 
1581 	kaddfd.flags = addfd.newfd_flags;
1582 	kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ?
1583 		    addfd.newfd : -1;
1584 	init_completion(&kaddfd.completion);
1585 
1586 	ret = mutex_lock_interruptible(&filter->notify_lock);
1587 	if (ret < 0)
1588 		goto out;
1589 
1590 	knotif = find_notification(filter, addfd.id);
1591 	if (!knotif) {
1592 		ret = -ENOENT;
1593 		goto out_unlock;
1594 	}
1595 
1596 	/*
1597 	 * We do not want to allow for FD injection to occur before the
1598 	 * notification has been picked up by a userspace handler, or after
1599 	 * the notification has been replied to.
1600 	 */
1601 	if (knotif->state != SECCOMP_NOTIFY_SENT) {
1602 		ret = -EINPROGRESS;
1603 		goto out_unlock;
1604 	}
1605 
1606 	list_add(&kaddfd.list, &knotif->addfd);
1607 	complete(&knotif->ready);
1608 	mutex_unlock(&filter->notify_lock);
1609 
1610 	/* Now we wait for it to be processed or be interrupted */
1611 	ret = wait_for_completion_interruptible(&kaddfd.completion);
1612 	if (ret == 0) {
1613 		/*
1614 		 * We had a successful completion. The other side has already
1615 		 * removed us from the addfd queue, and
1616 		 * wait_for_completion_interruptible has a memory barrier upon
1617 		 * success that lets us read this value directly without
1618 		 * locking.
1619 		 */
1620 		ret = kaddfd.ret;
1621 		goto out;
1622 	}
1623 
1624 	mutex_lock(&filter->notify_lock);
1625 	/*
1626 	 * Even though we were woken up by a signal and not a successful
1627 	 * completion, a completion may have happened in the mean time.
1628 	 *
1629 	 * We need to check again if the addfd request has been handled,
1630 	 * and if not, we will remove it from the queue.
1631 	 */
1632 	if (list_empty(&kaddfd.list))
1633 		ret = kaddfd.ret;
1634 	else
1635 		list_del(&kaddfd.list);
1636 
1637 out_unlock:
1638 	mutex_unlock(&filter->notify_lock);
1639 out:
1640 	fput(kaddfd.file);
1641 
1642 	return ret;
1643 }
1644 
1645 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1646 				 unsigned long arg)
1647 {
1648 	struct seccomp_filter *filter = file->private_data;
1649 	void __user *buf = (void __user *)arg;
1650 
1651 	/* Fixed-size ioctls */
1652 	switch (cmd) {
1653 	case SECCOMP_IOCTL_NOTIF_RECV:
1654 		return seccomp_notify_recv(filter, buf);
1655 	case SECCOMP_IOCTL_NOTIF_SEND:
1656 		return seccomp_notify_send(filter, buf);
1657 	case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1658 	case SECCOMP_IOCTL_NOTIF_ID_VALID:
1659 		return seccomp_notify_id_valid(filter, buf);
1660 	}
1661 
1662 	/* Extensible Argument ioctls */
1663 #define EA_IOCTL(cmd)	((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1664 	switch (EA_IOCTL(cmd)) {
1665 	case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1666 		return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1667 	default:
1668 		return -EINVAL;
1669 	}
1670 }
1671 
1672 static __poll_t seccomp_notify_poll(struct file *file,
1673 				    struct poll_table_struct *poll_tab)
1674 {
1675 	struct seccomp_filter *filter = file->private_data;
1676 	__poll_t ret = 0;
1677 	struct seccomp_knotif *cur;
1678 
1679 	poll_wait(file, &filter->wqh, poll_tab);
1680 
1681 	if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1682 		return EPOLLERR;
1683 
1684 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1685 		if (cur->state == SECCOMP_NOTIFY_INIT)
1686 			ret |= EPOLLIN | EPOLLRDNORM;
1687 		if (cur->state == SECCOMP_NOTIFY_SENT)
1688 			ret |= EPOLLOUT | EPOLLWRNORM;
1689 		if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1690 			break;
1691 	}
1692 
1693 	mutex_unlock(&filter->notify_lock);
1694 
1695 	if (refcount_read(&filter->users) == 0)
1696 		ret |= EPOLLHUP;
1697 
1698 	return ret;
1699 }
1700 
1701 static const struct file_operations seccomp_notify_ops = {
1702 	.poll = seccomp_notify_poll,
1703 	.release = seccomp_notify_release,
1704 	.unlocked_ioctl = seccomp_notify_ioctl,
1705 	.compat_ioctl = seccomp_notify_ioctl,
1706 };
1707 
1708 static struct file *init_listener(struct seccomp_filter *filter)
1709 {
1710 	struct file *ret;
1711 
1712 	ret = ERR_PTR(-ENOMEM);
1713 	filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1714 	if (!filter->notif)
1715 		goto out;
1716 
1717 	sema_init(&filter->notif->request, 0);
1718 	filter->notif->next_id = get_random_u64();
1719 	INIT_LIST_HEAD(&filter->notif->notifications);
1720 
1721 	ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1722 				 filter, O_RDWR);
1723 	if (IS_ERR(ret))
1724 		goto out_notif;
1725 
1726 	/* The file has a reference to it now */
1727 	__get_seccomp_filter(filter);
1728 
1729 out_notif:
1730 	if (IS_ERR(ret))
1731 		seccomp_notify_free(filter);
1732 out:
1733 	return ret;
1734 }
1735 
1736 /*
1737  * Does @new_child have a listener while an ancestor also has a listener?
1738  * If so, we'll want to reject this filter.
1739  * This only has to be tested for the current process, even in the TSYNC case,
1740  * because TSYNC installs @child with the same parent on all threads.
1741  * Note that @new_child is not hooked up to its parent at this point yet, so
1742  * we use current->seccomp.filter.
1743  */
1744 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1745 {
1746 	struct seccomp_filter *cur;
1747 
1748 	/* must be protected against concurrent TSYNC */
1749 	lockdep_assert_held(&current->sighand->siglock);
1750 
1751 	if (!new_child->notif)
1752 		return false;
1753 	for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1754 		if (cur->notif)
1755 			return true;
1756 	}
1757 
1758 	return false;
1759 }
1760 
1761 /**
1762  * seccomp_set_mode_filter: internal function for setting seccomp filter
1763  * @flags:  flags to change filter behavior
1764  * @filter: struct sock_fprog containing filter
1765  *
1766  * This function may be called repeatedly to install additional filters.
1767  * Every filter successfully installed will be evaluated (in reverse order)
1768  * for each system call the task makes.
1769  *
1770  * Once current->seccomp.mode is non-zero, it may not be changed.
1771  *
1772  * Returns 0 on success or -EINVAL on failure.
1773  */
1774 static long seccomp_set_mode_filter(unsigned int flags,
1775 				    const char __user *filter)
1776 {
1777 	const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1778 	struct seccomp_filter *prepared = NULL;
1779 	long ret = -EINVAL;
1780 	int listener = -1;
1781 	struct file *listener_f = NULL;
1782 
1783 	/* Validate flags. */
1784 	if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1785 		return -EINVAL;
1786 
1787 	/*
1788 	 * In the successful case, NEW_LISTENER returns the new listener fd.
1789 	 * But in the failure case, TSYNC returns the thread that died. If you
1790 	 * combine these two flags, there's no way to tell whether something
1791 	 * succeeded or failed. So, let's disallow this combination if the user
1792 	 * has not explicitly requested no errors from TSYNC.
1793 	 */
1794 	if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1795 	    (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1796 	    ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1797 		return -EINVAL;
1798 
1799 	/* Prepare the new filter before holding any locks. */
1800 	prepared = seccomp_prepare_user_filter(filter);
1801 	if (IS_ERR(prepared))
1802 		return PTR_ERR(prepared);
1803 
1804 	if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1805 		listener = get_unused_fd_flags(O_CLOEXEC);
1806 		if (listener < 0) {
1807 			ret = listener;
1808 			goto out_free;
1809 		}
1810 
1811 		listener_f = init_listener(prepared);
1812 		if (IS_ERR(listener_f)) {
1813 			put_unused_fd(listener);
1814 			ret = PTR_ERR(listener_f);
1815 			goto out_free;
1816 		}
1817 	}
1818 
1819 	/*
1820 	 * Make sure we cannot change seccomp or nnp state via TSYNC
1821 	 * while another thread is in the middle of calling exec.
1822 	 */
1823 	if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1824 	    mutex_lock_killable(&current->signal->cred_guard_mutex))
1825 		goto out_put_fd;
1826 
1827 	spin_lock_irq(&current->sighand->siglock);
1828 
1829 	if (!seccomp_may_assign_mode(seccomp_mode))
1830 		goto out;
1831 
1832 	if (has_duplicate_listener(prepared)) {
1833 		ret = -EBUSY;
1834 		goto out;
1835 	}
1836 
1837 	ret = seccomp_attach_filter(flags, prepared);
1838 	if (ret)
1839 		goto out;
1840 	/* Do not free the successfully attached filter. */
1841 	prepared = NULL;
1842 
1843 	seccomp_assign_mode(current, seccomp_mode, flags);
1844 out:
1845 	spin_unlock_irq(&current->sighand->siglock);
1846 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1847 		mutex_unlock(&current->signal->cred_guard_mutex);
1848 out_put_fd:
1849 	if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1850 		if (ret) {
1851 			listener_f->private_data = NULL;
1852 			fput(listener_f);
1853 			put_unused_fd(listener);
1854 			seccomp_notify_detach(prepared);
1855 		} else {
1856 			fd_install(listener, listener_f);
1857 			ret = listener;
1858 		}
1859 	}
1860 out_free:
1861 	seccomp_filter_free(prepared);
1862 	return ret;
1863 }
1864 #else
1865 static inline long seccomp_set_mode_filter(unsigned int flags,
1866 					   const char __user *filter)
1867 {
1868 	return -EINVAL;
1869 }
1870 #endif
1871 
1872 static long seccomp_get_action_avail(const char __user *uaction)
1873 {
1874 	u32 action;
1875 
1876 	if (copy_from_user(&action, uaction, sizeof(action)))
1877 		return -EFAULT;
1878 
1879 	switch (action) {
1880 	case SECCOMP_RET_KILL_PROCESS:
1881 	case SECCOMP_RET_KILL_THREAD:
1882 	case SECCOMP_RET_TRAP:
1883 	case SECCOMP_RET_ERRNO:
1884 	case SECCOMP_RET_USER_NOTIF:
1885 	case SECCOMP_RET_TRACE:
1886 	case SECCOMP_RET_LOG:
1887 	case SECCOMP_RET_ALLOW:
1888 		break;
1889 	default:
1890 		return -EOPNOTSUPP;
1891 	}
1892 
1893 	return 0;
1894 }
1895 
1896 static long seccomp_get_notif_sizes(void __user *usizes)
1897 {
1898 	struct seccomp_notif_sizes sizes = {
1899 		.seccomp_notif = sizeof(struct seccomp_notif),
1900 		.seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1901 		.seccomp_data = sizeof(struct seccomp_data),
1902 	};
1903 
1904 	if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1905 		return -EFAULT;
1906 
1907 	return 0;
1908 }
1909 
1910 /* Common entry point for both prctl and syscall. */
1911 static long do_seccomp(unsigned int op, unsigned int flags,
1912 		       void __user *uargs)
1913 {
1914 	switch (op) {
1915 	case SECCOMP_SET_MODE_STRICT:
1916 		if (flags != 0 || uargs != NULL)
1917 			return -EINVAL;
1918 		return seccomp_set_mode_strict();
1919 	case SECCOMP_SET_MODE_FILTER:
1920 		return seccomp_set_mode_filter(flags, uargs);
1921 	case SECCOMP_GET_ACTION_AVAIL:
1922 		if (flags != 0)
1923 			return -EINVAL;
1924 
1925 		return seccomp_get_action_avail(uargs);
1926 	case SECCOMP_GET_NOTIF_SIZES:
1927 		if (flags != 0)
1928 			return -EINVAL;
1929 
1930 		return seccomp_get_notif_sizes(uargs);
1931 	default:
1932 		return -EINVAL;
1933 	}
1934 }
1935 
1936 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1937 			 void __user *, uargs)
1938 {
1939 	return do_seccomp(op, flags, uargs);
1940 }
1941 
1942 /**
1943  * prctl_set_seccomp: configures current->seccomp.mode
1944  * @seccomp_mode: requested mode to use
1945  * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1946  *
1947  * Returns 0 on success or -EINVAL on failure.
1948  */
1949 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1950 {
1951 	unsigned int op;
1952 	void __user *uargs;
1953 
1954 	switch (seccomp_mode) {
1955 	case SECCOMP_MODE_STRICT:
1956 		op = SECCOMP_SET_MODE_STRICT;
1957 		/*
1958 		 * Setting strict mode through prctl always ignored filter,
1959 		 * so make sure it is always NULL here to pass the internal
1960 		 * check in do_seccomp().
1961 		 */
1962 		uargs = NULL;
1963 		break;
1964 	case SECCOMP_MODE_FILTER:
1965 		op = SECCOMP_SET_MODE_FILTER;
1966 		uargs = filter;
1967 		break;
1968 	default:
1969 		return -EINVAL;
1970 	}
1971 
1972 	/* prctl interface doesn't have flags, so they are always zero. */
1973 	return do_seccomp(op, 0, uargs);
1974 }
1975 
1976 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
1977 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
1978 					     unsigned long filter_off)
1979 {
1980 	struct seccomp_filter *orig, *filter;
1981 	unsigned long count;
1982 
1983 	/*
1984 	 * Note: this is only correct because the caller should be the (ptrace)
1985 	 * tracer of the task, otherwise lock_task_sighand is needed.
1986 	 */
1987 	spin_lock_irq(&task->sighand->siglock);
1988 
1989 	if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
1990 		spin_unlock_irq(&task->sighand->siglock);
1991 		return ERR_PTR(-EINVAL);
1992 	}
1993 
1994 	orig = task->seccomp.filter;
1995 	__get_seccomp_filter(orig);
1996 	spin_unlock_irq(&task->sighand->siglock);
1997 
1998 	count = 0;
1999 	for (filter = orig; filter; filter = filter->prev)
2000 		count++;
2001 
2002 	if (filter_off >= count) {
2003 		filter = ERR_PTR(-ENOENT);
2004 		goto out;
2005 	}
2006 
2007 	count -= filter_off;
2008 	for (filter = orig; filter && count > 1; filter = filter->prev)
2009 		count--;
2010 
2011 	if (WARN_ON(count != 1 || !filter)) {
2012 		filter = ERR_PTR(-ENOENT);
2013 		goto out;
2014 	}
2015 
2016 	__get_seccomp_filter(filter);
2017 
2018 out:
2019 	__put_seccomp_filter(orig);
2020 	return filter;
2021 }
2022 
2023 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2024 			void __user *data)
2025 {
2026 	struct seccomp_filter *filter;
2027 	struct sock_fprog_kern *fprog;
2028 	long ret;
2029 
2030 	if (!capable(CAP_SYS_ADMIN) ||
2031 	    current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2032 		return -EACCES;
2033 	}
2034 
2035 	filter = get_nth_filter(task, filter_off);
2036 	if (IS_ERR(filter))
2037 		return PTR_ERR(filter);
2038 
2039 	fprog = filter->prog->orig_prog;
2040 	if (!fprog) {
2041 		/* This must be a new non-cBPF filter, since we save
2042 		 * every cBPF filter's orig_prog above when
2043 		 * CONFIG_CHECKPOINT_RESTORE is enabled.
2044 		 */
2045 		ret = -EMEDIUMTYPE;
2046 		goto out;
2047 	}
2048 
2049 	ret = fprog->len;
2050 	if (!data)
2051 		goto out;
2052 
2053 	if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2054 		ret = -EFAULT;
2055 
2056 out:
2057 	__put_seccomp_filter(filter);
2058 	return ret;
2059 }
2060 
2061 long seccomp_get_metadata(struct task_struct *task,
2062 			  unsigned long size, void __user *data)
2063 {
2064 	long ret;
2065 	struct seccomp_filter *filter;
2066 	struct seccomp_metadata kmd = {};
2067 
2068 	if (!capable(CAP_SYS_ADMIN) ||
2069 	    current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2070 		return -EACCES;
2071 	}
2072 
2073 	size = min_t(unsigned long, size, sizeof(kmd));
2074 
2075 	if (size < sizeof(kmd.filter_off))
2076 		return -EINVAL;
2077 
2078 	if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2079 		return -EFAULT;
2080 
2081 	filter = get_nth_filter(task, kmd.filter_off);
2082 	if (IS_ERR(filter))
2083 		return PTR_ERR(filter);
2084 
2085 	if (filter->log)
2086 		kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2087 
2088 	ret = size;
2089 	if (copy_to_user(data, &kmd, size))
2090 		ret = -EFAULT;
2091 
2092 	__put_seccomp_filter(filter);
2093 	return ret;
2094 }
2095 #endif
2096 
2097 #ifdef CONFIG_SYSCTL
2098 
2099 /* Human readable action names for friendly sysctl interaction */
2100 #define SECCOMP_RET_KILL_PROCESS_NAME	"kill_process"
2101 #define SECCOMP_RET_KILL_THREAD_NAME	"kill_thread"
2102 #define SECCOMP_RET_TRAP_NAME		"trap"
2103 #define SECCOMP_RET_ERRNO_NAME		"errno"
2104 #define SECCOMP_RET_USER_NOTIF_NAME	"user_notif"
2105 #define SECCOMP_RET_TRACE_NAME		"trace"
2106 #define SECCOMP_RET_LOG_NAME		"log"
2107 #define SECCOMP_RET_ALLOW_NAME		"allow"
2108 
2109 static const char seccomp_actions_avail[] =
2110 				SECCOMP_RET_KILL_PROCESS_NAME	" "
2111 				SECCOMP_RET_KILL_THREAD_NAME	" "
2112 				SECCOMP_RET_TRAP_NAME		" "
2113 				SECCOMP_RET_ERRNO_NAME		" "
2114 				SECCOMP_RET_USER_NOTIF_NAME     " "
2115 				SECCOMP_RET_TRACE_NAME		" "
2116 				SECCOMP_RET_LOG_NAME		" "
2117 				SECCOMP_RET_ALLOW_NAME;
2118 
2119 struct seccomp_log_name {
2120 	u32		log;
2121 	const char	*name;
2122 };
2123 
2124 static const struct seccomp_log_name seccomp_log_names[] = {
2125 	{ SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2126 	{ SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2127 	{ SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2128 	{ SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2129 	{ SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2130 	{ SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2131 	{ SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2132 	{ SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2133 	{ }
2134 };
2135 
2136 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2137 					      u32 actions_logged,
2138 					      const char *sep)
2139 {
2140 	const struct seccomp_log_name *cur;
2141 	bool append_sep = false;
2142 
2143 	for (cur = seccomp_log_names; cur->name && size; cur++) {
2144 		ssize_t ret;
2145 
2146 		if (!(actions_logged & cur->log))
2147 			continue;
2148 
2149 		if (append_sep) {
2150 			ret = strscpy(names, sep, size);
2151 			if (ret < 0)
2152 				return false;
2153 
2154 			names += ret;
2155 			size -= ret;
2156 		} else
2157 			append_sep = true;
2158 
2159 		ret = strscpy(names, cur->name, size);
2160 		if (ret < 0)
2161 			return false;
2162 
2163 		names += ret;
2164 		size -= ret;
2165 	}
2166 
2167 	return true;
2168 }
2169 
2170 static bool seccomp_action_logged_from_name(u32 *action_logged,
2171 					    const char *name)
2172 {
2173 	const struct seccomp_log_name *cur;
2174 
2175 	for (cur = seccomp_log_names; cur->name; cur++) {
2176 		if (!strcmp(cur->name, name)) {
2177 			*action_logged = cur->log;
2178 			return true;
2179 		}
2180 	}
2181 
2182 	return false;
2183 }
2184 
2185 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2186 {
2187 	char *name;
2188 
2189 	*actions_logged = 0;
2190 	while ((name = strsep(&names, " ")) && *name) {
2191 		u32 action_logged = 0;
2192 
2193 		if (!seccomp_action_logged_from_name(&action_logged, name))
2194 			return false;
2195 
2196 		*actions_logged |= action_logged;
2197 	}
2198 
2199 	return true;
2200 }
2201 
2202 static int read_actions_logged(struct ctl_table *ro_table, void __user *buffer,
2203 			       size_t *lenp, loff_t *ppos)
2204 {
2205 	char names[sizeof(seccomp_actions_avail)];
2206 	struct ctl_table table;
2207 
2208 	memset(names, 0, sizeof(names));
2209 
2210 	if (!seccomp_names_from_actions_logged(names, sizeof(names),
2211 					       seccomp_actions_logged, " "))
2212 		return -EINVAL;
2213 
2214 	table = *ro_table;
2215 	table.data = names;
2216 	table.maxlen = sizeof(names);
2217 	return proc_dostring(&table, 0, buffer, lenp, ppos);
2218 }
2219 
2220 static int write_actions_logged(struct ctl_table *ro_table, void __user *buffer,
2221 				size_t *lenp, loff_t *ppos, u32 *actions_logged)
2222 {
2223 	char names[sizeof(seccomp_actions_avail)];
2224 	struct ctl_table table;
2225 	int ret;
2226 
2227 	if (!capable(CAP_SYS_ADMIN))
2228 		return -EPERM;
2229 
2230 	memset(names, 0, sizeof(names));
2231 
2232 	table = *ro_table;
2233 	table.data = names;
2234 	table.maxlen = sizeof(names);
2235 	ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2236 	if (ret)
2237 		return ret;
2238 
2239 	if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2240 		return -EINVAL;
2241 
2242 	if (*actions_logged & SECCOMP_LOG_ALLOW)
2243 		return -EINVAL;
2244 
2245 	seccomp_actions_logged = *actions_logged;
2246 	return 0;
2247 }
2248 
2249 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2250 				 int ret)
2251 {
2252 	char names[sizeof(seccomp_actions_avail)];
2253 	char old_names[sizeof(seccomp_actions_avail)];
2254 	const char *new = names;
2255 	const char *old = old_names;
2256 
2257 	if (!audit_enabled)
2258 		return;
2259 
2260 	memset(names, 0, sizeof(names));
2261 	memset(old_names, 0, sizeof(old_names));
2262 
2263 	if (ret)
2264 		new = "?";
2265 	else if (!actions_logged)
2266 		new = "(none)";
2267 	else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2268 						    actions_logged, ","))
2269 		new = "?";
2270 
2271 	if (!old_actions_logged)
2272 		old = "(none)";
2273 	else if (!seccomp_names_from_actions_logged(old_names,
2274 						    sizeof(old_names),
2275 						    old_actions_logged, ","))
2276 		old = "?";
2277 
2278 	return audit_seccomp_actions_logged(new, old, !ret);
2279 }
2280 
2281 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2282 					  void *buffer, size_t *lenp,
2283 					  loff_t *ppos)
2284 {
2285 	int ret;
2286 
2287 	if (write) {
2288 		u32 actions_logged = 0;
2289 		u32 old_actions_logged = seccomp_actions_logged;
2290 
2291 		ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2292 					   &actions_logged);
2293 		audit_actions_logged(actions_logged, old_actions_logged, ret);
2294 	} else
2295 		ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2296 
2297 	return ret;
2298 }
2299 
2300 static struct ctl_path seccomp_sysctl_path[] = {
2301 	{ .procname = "kernel", },
2302 	{ .procname = "seccomp", },
2303 	{ }
2304 };
2305 
2306 static struct ctl_table seccomp_sysctl_table[] = {
2307 	{
2308 		.procname	= "actions_avail",
2309 		.data		= (void *) &seccomp_actions_avail,
2310 		.maxlen		= sizeof(seccomp_actions_avail),
2311 		.mode		= 0444,
2312 		.proc_handler	= proc_dostring,
2313 	},
2314 	{
2315 		.procname	= "actions_logged",
2316 		.mode		= 0644,
2317 		.proc_handler	= seccomp_actions_logged_handler,
2318 	},
2319 	{ }
2320 };
2321 
2322 static int __init seccomp_sysctl_init(void)
2323 {
2324 	struct ctl_table_header *hdr;
2325 
2326 	hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2327 	if (!hdr)
2328 		pr_warn("sysctl registration failed\n");
2329 	else
2330 		kmemleak_not_leak(hdr);
2331 
2332 	return 0;
2333 }
2334 
2335 device_initcall(seccomp_sysctl_init)
2336 
2337 #endif /* CONFIG_SYSCTL */
2338