1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 33 #include <asm/syscall.h> 34 #endif 35 36 #ifdef CONFIG_SECCOMP_FILTER 37 #include <linux/file.h> 38 #include <linux/filter.h> 39 #include <linux/pid.h> 40 #include <linux/ptrace.h> 41 #include <linux/security.h> 42 #include <linux/tracehook.h> 43 #include <linux/uaccess.h> 44 #include <linux/anon_inodes.h> 45 #include <linux/lockdep.h> 46 47 /* 48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 49 * wrong direction flag in the ioctl number. This is the broken one, 50 * which the kernel needs to keep supporting until all userspaces stop 51 * using the wrong command number. 52 */ 53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 54 55 enum notify_state { 56 SECCOMP_NOTIFY_INIT, 57 SECCOMP_NOTIFY_SENT, 58 SECCOMP_NOTIFY_REPLIED, 59 }; 60 61 struct seccomp_knotif { 62 /* The struct pid of the task whose filter triggered the notification */ 63 struct task_struct *task; 64 65 /* The "cookie" for this request; this is unique for this filter. */ 66 u64 id; 67 68 /* 69 * The seccomp data. This pointer is valid the entire time this 70 * notification is active, since it comes from __seccomp_filter which 71 * eclipses the entire lifecycle here. 72 */ 73 const struct seccomp_data *data; 74 75 /* 76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 77 * struct seccomp_knotif is created and starts out in INIT. Once the 78 * handler reads the notification off of an FD, it transitions to SENT. 79 * If a signal is received the state transitions back to INIT and 80 * another message is sent. When the userspace handler replies, state 81 * transitions to REPLIED. 82 */ 83 enum notify_state state; 84 85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 86 int error; 87 long val; 88 u32 flags; 89 90 /* 91 * Signals when this has changed states, such as the listener 92 * dying, a new seccomp addfd message, or changing to REPLIED 93 */ 94 struct completion ready; 95 96 struct list_head list; 97 98 /* outstanding addfd requests */ 99 struct list_head addfd; 100 }; 101 102 /** 103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 104 * 105 * @file: A reference to the file to install in the other task 106 * @fd: The fd number to install it at. If the fd number is -1, it means the 107 * installing process should allocate the fd as normal. 108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 109 * is allowed. 110 * @ret: The return value of the installing process. It is set to the fd num 111 * upon success (>= 0). 112 * @completion: Indicates that the installing process has completed fd 113 * installation, or gone away (either due to successful 114 * reply, or signal) 115 * 116 */ 117 struct seccomp_kaddfd { 118 struct file *file; 119 int fd; 120 unsigned int flags; 121 122 /* To only be set on reply */ 123 int ret; 124 struct completion completion; 125 struct list_head list; 126 }; 127 128 /** 129 * struct notification - container for seccomp userspace notifications. Since 130 * most seccomp filters will not have notification listeners attached and this 131 * structure is fairly large, we store the notification-specific stuff in a 132 * separate structure. 133 * 134 * @request: A semaphore that users of this notification can wait on for 135 * changes. Actual reads and writes are still controlled with 136 * filter->notify_lock. 137 * @next_id: The id of the next request. 138 * @notifications: A list of struct seccomp_knotif elements. 139 */ 140 struct notification { 141 struct semaphore request; 142 u64 next_id; 143 struct list_head notifications; 144 }; 145 146 #ifdef SECCOMP_ARCH_NATIVE 147 /** 148 * struct action_cache - per-filter cache of seccomp actions per 149 * arch/syscall pair 150 * 151 * @allow_native: A bitmap where each bit represents whether the 152 * filter will always allow the syscall, for the 153 * native architecture. 154 * @allow_compat: A bitmap where each bit represents whether the 155 * filter will always allow the syscall, for the 156 * compat architecture. 157 */ 158 struct action_cache { 159 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 160 #ifdef SECCOMP_ARCH_COMPAT 161 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 162 #endif 163 }; 164 #else 165 struct action_cache { }; 166 167 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 168 const struct seccomp_data *sd) 169 { 170 return false; 171 } 172 173 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 174 { 175 } 176 #endif /* SECCOMP_ARCH_NATIVE */ 177 178 /** 179 * struct seccomp_filter - container for seccomp BPF programs 180 * 181 * @refs: Reference count to manage the object lifetime. 182 * A filter's reference count is incremented for each directly 183 * attached task, once for the dependent filter, and if 184 * requested for the user notifier. When @refs reaches zero, 185 * the filter can be freed. 186 * @users: A filter's @users count is incremented for each directly 187 * attached task (filter installation, fork(), thread_sync), 188 * and once for the dependent filter (tracked in filter->prev). 189 * When it reaches zero it indicates that no direct or indirect 190 * users of that filter exist. No new tasks can get associated with 191 * this filter after reaching 0. The @users count is always smaller 192 * or equal to @refs. Hence, reaching 0 for @users does not mean 193 * the filter can be freed. 194 * @cache: cache of arch/syscall mappings to actions 195 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 196 * @prev: points to a previously installed, or inherited, filter 197 * @prog: the BPF program to evaluate 198 * @notif: the struct that holds all notification related information 199 * @notify_lock: A lock for all notification-related accesses. 200 * @wqh: A wait queue for poll if a notifier is in use. 201 * 202 * seccomp_filter objects are organized in a tree linked via the @prev 203 * pointer. For any task, it appears to be a singly-linked list starting 204 * with current->seccomp.filter, the most recently attached or inherited filter. 205 * However, multiple filters may share a @prev node, by way of fork(), which 206 * results in a unidirectional tree existing in memory. This is similar to 207 * how namespaces work. 208 * 209 * seccomp_filter objects should never be modified after being attached 210 * to a task_struct (other than @refs). 211 */ 212 struct seccomp_filter { 213 refcount_t refs; 214 refcount_t users; 215 bool log; 216 struct action_cache cache; 217 struct seccomp_filter *prev; 218 struct bpf_prog *prog; 219 struct notification *notif; 220 struct mutex notify_lock; 221 wait_queue_head_t wqh; 222 }; 223 224 /* Limit any path through the tree to 256KB worth of instructions. */ 225 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 226 227 /* 228 * Endianness is explicitly ignored and left for BPF program authors to manage 229 * as per the specific architecture. 230 */ 231 static void populate_seccomp_data(struct seccomp_data *sd) 232 { 233 /* 234 * Instead of using current_pt_reg(), we're already doing the work 235 * to safely fetch "current", so just use "task" everywhere below. 236 */ 237 struct task_struct *task = current; 238 struct pt_regs *regs = task_pt_regs(task); 239 unsigned long args[6]; 240 241 sd->nr = syscall_get_nr(task, regs); 242 sd->arch = syscall_get_arch(task); 243 syscall_get_arguments(task, regs, args); 244 sd->args[0] = args[0]; 245 sd->args[1] = args[1]; 246 sd->args[2] = args[2]; 247 sd->args[3] = args[3]; 248 sd->args[4] = args[4]; 249 sd->args[5] = args[5]; 250 sd->instruction_pointer = KSTK_EIP(task); 251 } 252 253 /** 254 * seccomp_check_filter - verify seccomp filter code 255 * @filter: filter to verify 256 * @flen: length of filter 257 * 258 * Takes a previously checked filter (by bpf_check_classic) and 259 * redirects all filter code that loads struct sk_buff data 260 * and related data through seccomp_bpf_load. It also 261 * enforces length and alignment checking of those loads. 262 * 263 * Returns 0 if the rule set is legal or -EINVAL if not. 264 */ 265 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 266 { 267 int pc; 268 for (pc = 0; pc < flen; pc++) { 269 struct sock_filter *ftest = &filter[pc]; 270 u16 code = ftest->code; 271 u32 k = ftest->k; 272 273 switch (code) { 274 case BPF_LD | BPF_W | BPF_ABS: 275 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 276 /* 32-bit aligned and not out of bounds. */ 277 if (k >= sizeof(struct seccomp_data) || k & 3) 278 return -EINVAL; 279 continue; 280 case BPF_LD | BPF_W | BPF_LEN: 281 ftest->code = BPF_LD | BPF_IMM; 282 ftest->k = sizeof(struct seccomp_data); 283 continue; 284 case BPF_LDX | BPF_W | BPF_LEN: 285 ftest->code = BPF_LDX | BPF_IMM; 286 ftest->k = sizeof(struct seccomp_data); 287 continue; 288 /* Explicitly include allowed calls. */ 289 case BPF_RET | BPF_K: 290 case BPF_RET | BPF_A: 291 case BPF_ALU | BPF_ADD | BPF_K: 292 case BPF_ALU | BPF_ADD | BPF_X: 293 case BPF_ALU | BPF_SUB | BPF_K: 294 case BPF_ALU | BPF_SUB | BPF_X: 295 case BPF_ALU | BPF_MUL | BPF_K: 296 case BPF_ALU | BPF_MUL | BPF_X: 297 case BPF_ALU | BPF_DIV | BPF_K: 298 case BPF_ALU | BPF_DIV | BPF_X: 299 case BPF_ALU | BPF_AND | BPF_K: 300 case BPF_ALU | BPF_AND | BPF_X: 301 case BPF_ALU | BPF_OR | BPF_K: 302 case BPF_ALU | BPF_OR | BPF_X: 303 case BPF_ALU | BPF_XOR | BPF_K: 304 case BPF_ALU | BPF_XOR | BPF_X: 305 case BPF_ALU | BPF_LSH | BPF_K: 306 case BPF_ALU | BPF_LSH | BPF_X: 307 case BPF_ALU | BPF_RSH | BPF_K: 308 case BPF_ALU | BPF_RSH | BPF_X: 309 case BPF_ALU | BPF_NEG: 310 case BPF_LD | BPF_IMM: 311 case BPF_LDX | BPF_IMM: 312 case BPF_MISC | BPF_TAX: 313 case BPF_MISC | BPF_TXA: 314 case BPF_LD | BPF_MEM: 315 case BPF_LDX | BPF_MEM: 316 case BPF_ST: 317 case BPF_STX: 318 case BPF_JMP | BPF_JA: 319 case BPF_JMP | BPF_JEQ | BPF_K: 320 case BPF_JMP | BPF_JEQ | BPF_X: 321 case BPF_JMP | BPF_JGE | BPF_K: 322 case BPF_JMP | BPF_JGE | BPF_X: 323 case BPF_JMP | BPF_JGT | BPF_K: 324 case BPF_JMP | BPF_JGT | BPF_X: 325 case BPF_JMP | BPF_JSET | BPF_K: 326 case BPF_JMP | BPF_JSET | BPF_X: 327 continue; 328 default: 329 return -EINVAL; 330 } 331 } 332 return 0; 333 } 334 335 #ifdef SECCOMP_ARCH_NATIVE 336 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 337 size_t bitmap_size, 338 int syscall_nr) 339 { 340 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 341 return false; 342 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 343 344 return test_bit(syscall_nr, bitmap); 345 } 346 347 /** 348 * seccomp_cache_check_allow - lookup seccomp cache 349 * @sfilter: The seccomp filter 350 * @sd: The seccomp data to lookup the cache with 351 * 352 * Returns true if the seccomp_data is cached and allowed. 353 */ 354 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 355 const struct seccomp_data *sd) 356 { 357 int syscall_nr = sd->nr; 358 const struct action_cache *cache = &sfilter->cache; 359 360 #ifndef SECCOMP_ARCH_COMPAT 361 /* A native-only architecture doesn't need to check sd->arch. */ 362 return seccomp_cache_check_allow_bitmap(cache->allow_native, 363 SECCOMP_ARCH_NATIVE_NR, 364 syscall_nr); 365 #else 366 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 367 return seccomp_cache_check_allow_bitmap(cache->allow_native, 368 SECCOMP_ARCH_NATIVE_NR, 369 syscall_nr); 370 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 371 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 372 SECCOMP_ARCH_COMPAT_NR, 373 syscall_nr); 374 #endif /* SECCOMP_ARCH_COMPAT */ 375 376 WARN_ON_ONCE(true); 377 return false; 378 } 379 #endif /* SECCOMP_ARCH_NATIVE */ 380 381 /** 382 * seccomp_run_filters - evaluates all seccomp filters against @sd 383 * @sd: optional seccomp data to be passed to filters 384 * @match: stores struct seccomp_filter that resulted in the return value, 385 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 386 * be unchanged. 387 * 388 * Returns valid seccomp BPF response codes. 389 */ 390 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 391 static u32 seccomp_run_filters(const struct seccomp_data *sd, 392 struct seccomp_filter **match) 393 { 394 u32 ret = SECCOMP_RET_ALLOW; 395 /* Make sure cross-thread synced filter points somewhere sane. */ 396 struct seccomp_filter *f = 397 READ_ONCE(current->seccomp.filter); 398 399 /* Ensure unexpected behavior doesn't result in failing open. */ 400 if (WARN_ON(f == NULL)) 401 return SECCOMP_RET_KILL_PROCESS; 402 403 if (seccomp_cache_check_allow(f, sd)) 404 return SECCOMP_RET_ALLOW; 405 406 /* 407 * All filters in the list are evaluated and the lowest BPF return 408 * value always takes priority (ignoring the DATA). 409 */ 410 for (; f; f = f->prev) { 411 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 412 413 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 414 ret = cur_ret; 415 *match = f; 416 } 417 } 418 return ret; 419 } 420 #endif /* CONFIG_SECCOMP_FILTER */ 421 422 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 423 { 424 assert_spin_locked(¤t->sighand->siglock); 425 426 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 427 return false; 428 429 return true; 430 } 431 432 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 433 434 static inline void seccomp_assign_mode(struct task_struct *task, 435 unsigned long seccomp_mode, 436 unsigned long flags) 437 { 438 assert_spin_locked(&task->sighand->siglock); 439 440 task->seccomp.mode = seccomp_mode; 441 /* 442 * Make sure TIF_SECCOMP cannot be set before the mode (and 443 * filter) is set. 444 */ 445 smp_mb__before_atomic(); 446 /* Assume default seccomp processes want spec flaw mitigation. */ 447 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 448 arch_seccomp_spec_mitigate(task); 449 set_tsk_thread_flag(task, TIF_SECCOMP); 450 } 451 452 #ifdef CONFIG_SECCOMP_FILTER 453 /* Returns 1 if the parent is an ancestor of the child. */ 454 static int is_ancestor(struct seccomp_filter *parent, 455 struct seccomp_filter *child) 456 { 457 /* NULL is the root ancestor. */ 458 if (parent == NULL) 459 return 1; 460 for (; child; child = child->prev) 461 if (child == parent) 462 return 1; 463 return 0; 464 } 465 466 /** 467 * seccomp_can_sync_threads: checks if all threads can be synchronized 468 * 469 * Expects sighand and cred_guard_mutex locks to be held. 470 * 471 * Returns 0 on success, -ve on error, or the pid of a thread which was 472 * either not in the correct seccomp mode or did not have an ancestral 473 * seccomp filter. 474 */ 475 static inline pid_t seccomp_can_sync_threads(void) 476 { 477 struct task_struct *thread, *caller; 478 479 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 480 assert_spin_locked(¤t->sighand->siglock); 481 482 /* Validate all threads being eligible for synchronization. */ 483 caller = current; 484 for_each_thread(caller, thread) { 485 pid_t failed; 486 487 /* Skip current, since it is initiating the sync. */ 488 if (thread == caller) 489 continue; 490 491 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 492 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 493 is_ancestor(thread->seccomp.filter, 494 caller->seccomp.filter))) 495 continue; 496 497 /* Return the first thread that cannot be synchronized. */ 498 failed = task_pid_vnr(thread); 499 /* If the pid cannot be resolved, then return -ESRCH */ 500 if (WARN_ON(failed == 0)) 501 failed = -ESRCH; 502 return failed; 503 } 504 505 return 0; 506 } 507 508 static inline void seccomp_filter_free(struct seccomp_filter *filter) 509 { 510 if (filter) { 511 bpf_prog_destroy(filter->prog); 512 kfree(filter); 513 } 514 } 515 516 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 517 { 518 while (orig && refcount_dec_and_test(&orig->users)) { 519 if (waitqueue_active(&orig->wqh)) 520 wake_up_poll(&orig->wqh, EPOLLHUP); 521 orig = orig->prev; 522 } 523 } 524 525 static void __put_seccomp_filter(struct seccomp_filter *orig) 526 { 527 /* Clean up single-reference branches iteratively. */ 528 while (orig && refcount_dec_and_test(&orig->refs)) { 529 struct seccomp_filter *freeme = orig; 530 orig = orig->prev; 531 seccomp_filter_free(freeme); 532 } 533 } 534 535 static void __seccomp_filter_release(struct seccomp_filter *orig) 536 { 537 /* Notify about any unused filters in the task's former filter tree. */ 538 __seccomp_filter_orphan(orig); 539 /* Finally drop all references to the task's former tree. */ 540 __put_seccomp_filter(orig); 541 } 542 543 /** 544 * seccomp_filter_release - Detach the task from its filter tree, 545 * drop its reference count, and notify 546 * about unused filters 547 * 548 * This function should only be called when the task is exiting as 549 * it detaches it from its filter tree. As such, READ_ONCE() and 550 * barriers are not needed here, as would normally be needed. 551 */ 552 void seccomp_filter_release(struct task_struct *tsk) 553 { 554 struct seccomp_filter *orig = tsk->seccomp.filter; 555 556 /* Detach task from its filter tree. */ 557 tsk->seccomp.filter = NULL; 558 __seccomp_filter_release(orig); 559 } 560 561 /** 562 * seccomp_sync_threads: sets all threads to use current's filter 563 * 564 * Expects sighand and cred_guard_mutex locks to be held, and for 565 * seccomp_can_sync_threads() to have returned success already 566 * without dropping the locks. 567 * 568 */ 569 static inline void seccomp_sync_threads(unsigned long flags) 570 { 571 struct task_struct *thread, *caller; 572 573 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 574 assert_spin_locked(¤t->sighand->siglock); 575 576 /* Synchronize all threads. */ 577 caller = current; 578 for_each_thread(caller, thread) { 579 /* Skip current, since it needs no changes. */ 580 if (thread == caller) 581 continue; 582 583 /* Get a task reference for the new leaf node. */ 584 get_seccomp_filter(caller); 585 586 /* 587 * Drop the task reference to the shared ancestor since 588 * current's path will hold a reference. (This also 589 * allows a put before the assignment.) 590 */ 591 __seccomp_filter_release(thread->seccomp.filter); 592 593 /* Make our new filter tree visible. */ 594 smp_store_release(&thread->seccomp.filter, 595 caller->seccomp.filter); 596 atomic_set(&thread->seccomp.filter_count, 597 atomic_read(&thread->seccomp.filter_count)); 598 599 /* 600 * Don't let an unprivileged task work around 601 * the no_new_privs restriction by creating 602 * a thread that sets it up, enters seccomp, 603 * then dies. 604 */ 605 if (task_no_new_privs(caller)) 606 task_set_no_new_privs(thread); 607 608 /* 609 * Opt the other thread into seccomp if needed. 610 * As threads are considered to be trust-realm 611 * equivalent (see ptrace_may_access), it is safe to 612 * allow one thread to transition the other. 613 */ 614 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 615 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 616 flags); 617 } 618 } 619 620 /** 621 * seccomp_prepare_filter: Prepares a seccomp filter for use. 622 * @fprog: BPF program to install 623 * 624 * Returns filter on success or an ERR_PTR on failure. 625 */ 626 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 627 { 628 struct seccomp_filter *sfilter; 629 int ret; 630 const bool save_orig = 631 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 632 true; 633 #else 634 false; 635 #endif 636 637 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 638 return ERR_PTR(-EINVAL); 639 640 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 641 642 /* 643 * Installing a seccomp filter requires that the task has 644 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 645 * This avoids scenarios where unprivileged tasks can affect the 646 * behavior of privileged children. 647 */ 648 if (!task_no_new_privs(current) && 649 security_capable(current_cred(), current_user_ns(), 650 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) != 0) 651 return ERR_PTR(-EACCES); 652 653 /* Allocate a new seccomp_filter */ 654 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 655 if (!sfilter) 656 return ERR_PTR(-ENOMEM); 657 658 mutex_init(&sfilter->notify_lock); 659 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 660 seccomp_check_filter, save_orig); 661 if (ret < 0) { 662 kfree(sfilter); 663 return ERR_PTR(ret); 664 } 665 666 refcount_set(&sfilter->refs, 1); 667 refcount_set(&sfilter->users, 1); 668 init_waitqueue_head(&sfilter->wqh); 669 670 return sfilter; 671 } 672 673 /** 674 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 675 * @user_filter: pointer to the user data containing a sock_fprog. 676 * 677 * Returns 0 on success and non-zero otherwise. 678 */ 679 static struct seccomp_filter * 680 seccomp_prepare_user_filter(const char __user *user_filter) 681 { 682 struct sock_fprog fprog; 683 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 684 685 #ifdef CONFIG_COMPAT 686 if (in_compat_syscall()) { 687 struct compat_sock_fprog fprog32; 688 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 689 goto out; 690 fprog.len = fprog32.len; 691 fprog.filter = compat_ptr(fprog32.filter); 692 } else /* falls through to the if below. */ 693 #endif 694 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 695 goto out; 696 filter = seccomp_prepare_filter(&fprog); 697 out: 698 return filter; 699 } 700 701 #ifdef SECCOMP_ARCH_NATIVE 702 /** 703 * seccomp_is_const_allow - check if filter is constant allow with given data 704 * @fprog: The BPF programs 705 * @sd: The seccomp data to check against, only syscall number and arch 706 * number are considered constant. 707 */ 708 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 709 struct seccomp_data *sd) 710 { 711 unsigned int reg_value = 0; 712 unsigned int pc; 713 bool op_res; 714 715 if (WARN_ON_ONCE(!fprog)) 716 return false; 717 718 for (pc = 0; pc < fprog->len; pc++) { 719 struct sock_filter *insn = &fprog->filter[pc]; 720 u16 code = insn->code; 721 u32 k = insn->k; 722 723 switch (code) { 724 case BPF_LD | BPF_W | BPF_ABS: 725 switch (k) { 726 case offsetof(struct seccomp_data, nr): 727 reg_value = sd->nr; 728 break; 729 case offsetof(struct seccomp_data, arch): 730 reg_value = sd->arch; 731 break; 732 default: 733 /* can't optimize (non-constant value load) */ 734 return false; 735 } 736 break; 737 case BPF_RET | BPF_K: 738 /* reached return with constant values only, check allow */ 739 return k == SECCOMP_RET_ALLOW; 740 case BPF_JMP | BPF_JA: 741 pc += insn->k; 742 break; 743 case BPF_JMP | BPF_JEQ | BPF_K: 744 case BPF_JMP | BPF_JGE | BPF_K: 745 case BPF_JMP | BPF_JGT | BPF_K: 746 case BPF_JMP | BPF_JSET | BPF_K: 747 switch (BPF_OP(code)) { 748 case BPF_JEQ: 749 op_res = reg_value == k; 750 break; 751 case BPF_JGE: 752 op_res = reg_value >= k; 753 break; 754 case BPF_JGT: 755 op_res = reg_value > k; 756 break; 757 case BPF_JSET: 758 op_res = !!(reg_value & k); 759 break; 760 default: 761 /* can't optimize (unknown jump) */ 762 return false; 763 } 764 765 pc += op_res ? insn->jt : insn->jf; 766 break; 767 case BPF_ALU | BPF_AND | BPF_K: 768 reg_value &= k; 769 break; 770 default: 771 /* can't optimize (unknown insn) */ 772 return false; 773 } 774 } 775 776 /* ran off the end of the filter?! */ 777 WARN_ON(1); 778 return false; 779 } 780 781 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 782 void *bitmap, const void *bitmap_prev, 783 size_t bitmap_size, int arch) 784 { 785 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 786 struct seccomp_data sd; 787 int nr; 788 789 if (bitmap_prev) { 790 /* The new filter must be as restrictive as the last. */ 791 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 792 } else { 793 /* Before any filters, all syscalls are always allowed. */ 794 bitmap_fill(bitmap, bitmap_size); 795 } 796 797 for (nr = 0; nr < bitmap_size; nr++) { 798 /* No bitmap change: not a cacheable action. */ 799 if (!test_bit(nr, bitmap)) 800 continue; 801 802 sd.nr = nr; 803 sd.arch = arch; 804 805 /* No bitmap change: continue to always allow. */ 806 if (seccomp_is_const_allow(fprog, &sd)) 807 continue; 808 809 /* 810 * Not a cacheable action: always run filters. 811 * atomic clear_bit() not needed, filter not visible yet. 812 */ 813 __clear_bit(nr, bitmap); 814 } 815 } 816 817 /** 818 * seccomp_cache_prepare - emulate the filter to find cachable syscalls 819 * @sfilter: The seccomp filter 820 * 821 * Returns 0 if successful or -errno if error occurred. 822 */ 823 static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 824 { 825 struct action_cache *cache = &sfilter->cache; 826 const struct action_cache *cache_prev = 827 sfilter->prev ? &sfilter->prev->cache : NULL; 828 829 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 830 cache_prev ? cache_prev->allow_native : NULL, 831 SECCOMP_ARCH_NATIVE_NR, 832 SECCOMP_ARCH_NATIVE); 833 834 #ifdef SECCOMP_ARCH_COMPAT 835 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 836 cache_prev ? cache_prev->allow_compat : NULL, 837 SECCOMP_ARCH_COMPAT_NR, 838 SECCOMP_ARCH_COMPAT); 839 #endif /* SECCOMP_ARCH_COMPAT */ 840 } 841 #endif /* SECCOMP_ARCH_NATIVE */ 842 843 /** 844 * seccomp_attach_filter: validate and attach filter 845 * @flags: flags to change filter behavior 846 * @filter: seccomp filter to add to the current process 847 * 848 * Caller must be holding current->sighand->siglock lock. 849 * 850 * Returns 0 on success, -ve on error, or 851 * - in TSYNC mode: the pid of a thread which was either not in the correct 852 * seccomp mode or did not have an ancestral seccomp filter 853 * - in NEW_LISTENER mode: the fd of the new listener 854 */ 855 static long seccomp_attach_filter(unsigned int flags, 856 struct seccomp_filter *filter) 857 { 858 unsigned long total_insns; 859 struct seccomp_filter *walker; 860 861 assert_spin_locked(¤t->sighand->siglock); 862 863 /* Validate resulting filter length. */ 864 total_insns = filter->prog->len; 865 for (walker = current->seccomp.filter; walker; walker = walker->prev) 866 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 867 if (total_insns > MAX_INSNS_PER_PATH) 868 return -ENOMEM; 869 870 /* If thread sync has been requested, check that it is possible. */ 871 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 872 int ret; 873 874 ret = seccomp_can_sync_threads(); 875 if (ret) { 876 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 877 return -ESRCH; 878 else 879 return ret; 880 } 881 } 882 883 /* Set log flag, if present. */ 884 if (flags & SECCOMP_FILTER_FLAG_LOG) 885 filter->log = true; 886 887 /* 888 * If there is an existing filter, make it the prev and don't drop its 889 * task reference. 890 */ 891 filter->prev = current->seccomp.filter; 892 seccomp_cache_prepare(filter); 893 current->seccomp.filter = filter; 894 atomic_inc(¤t->seccomp.filter_count); 895 896 /* Now that the new filter is in place, synchronize to all threads. */ 897 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 898 seccomp_sync_threads(flags); 899 900 return 0; 901 } 902 903 static void __get_seccomp_filter(struct seccomp_filter *filter) 904 { 905 refcount_inc(&filter->refs); 906 } 907 908 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 909 void get_seccomp_filter(struct task_struct *tsk) 910 { 911 struct seccomp_filter *orig = tsk->seccomp.filter; 912 if (!orig) 913 return; 914 __get_seccomp_filter(orig); 915 refcount_inc(&orig->users); 916 } 917 918 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason) 919 { 920 clear_siginfo(info); 921 info->si_signo = SIGSYS; 922 info->si_code = SYS_SECCOMP; 923 info->si_call_addr = (void __user *)KSTK_EIP(current); 924 info->si_errno = reason; 925 info->si_arch = syscall_get_arch(current); 926 info->si_syscall = syscall; 927 } 928 929 /** 930 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation 931 * @syscall: syscall number to send to userland 932 * @reason: filter-supplied reason code to send to userland (via si_errno) 933 * 934 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 935 */ 936 static void seccomp_send_sigsys(int syscall, int reason) 937 { 938 struct kernel_siginfo info; 939 seccomp_init_siginfo(&info, syscall, reason); 940 force_sig_info(&info); 941 } 942 #endif /* CONFIG_SECCOMP_FILTER */ 943 944 /* For use with seccomp_actions_logged */ 945 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 946 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 947 #define SECCOMP_LOG_TRAP (1 << 2) 948 #define SECCOMP_LOG_ERRNO (1 << 3) 949 #define SECCOMP_LOG_TRACE (1 << 4) 950 #define SECCOMP_LOG_LOG (1 << 5) 951 #define SECCOMP_LOG_ALLOW (1 << 6) 952 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 953 954 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 955 SECCOMP_LOG_KILL_THREAD | 956 SECCOMP_LOG_TRAP | 957 SECCOMP_LOG_ERRNO | 958 SECCOMP_LOG_USER_NOTIF | 959 SECCOMP_LOG_TRACE | 960 SECCOMP_LOG_LOG; 961 962 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 963 bool requested) 964 { 965 bool log = false; 966 967 switch (action) { 968 case SECCOMP_RET_ALLOW: 969 break; 970 case SECCOMP_RET_TRAP: 971 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 972 break; 973 case SECCOMP_RET_ERRNO: 974 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 975 break; 976 case SECCOMP_RET_TRACE: 977 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 978 break; 979 case SECCOMP_RET_USER_NOTIF: 980 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 981 break; 982 case SECCOMP_RET_LOG: 983 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 984 break; 985 case SECCOMP_RET_KILL_THREAD: 986 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 987 break; 988 case SECCOMP_RET_KILL_PROCESS: 989 default: 990 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 991 } 992 993 /* 994 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 995 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 996 * any action from being logged by removing the action name from the 997 * seccomp_actions_logged sysctl. 998 */ 999 if (!log) 1000 return; 1001 1002 audit_seccomp(syscall, signr, action); 1003 } 1004 1005 /* 1006 * Secure computing mode 1 allows only read/write/exit/sigreturn. 1007 * To be fully secure this must be combined with rlimit 1008 * to limit the stack allocations too. 1009 */ 1010 static const int mode1_syscalls[] = { 1011 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 1012 -1, /* negative terminated */ 1013 }; 1014 1015 static void __secure_computing_strict(int this_syscall) 1016 { 1017 const int *allowed_syscalls = mode1_syscalls; 1018 #ifdef CONFIG_COMPAT 1019 if (in_compat_syscall()) 1020 allowed_syscalls = get_compat_mode1_syscalls(); 1021 #endif 1022 do { 1023 if (*allowed_syscalls == this_syscall) 1024 return; 1025 } while (*++allowed_syscalls != -1); 1026 1027 #ifdef SECCOMP_DEBUG 1028 dump_stack(); 1029 #endif 1030 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1031 do_exit(SIGKILL); 1032 } 1033 1034 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1035 void secure_computing_strict(int this_syscall) 1036 { 1037 int mode = current->seccomp.mode; 1038 1039 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1040 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1041 return; 1042 1043 if (mode == SECCOMP_MODE_DISABLED) 1044 return; 1045 else if (mode == SECCOMP_MODE_STRICT) 1046 __secure_computing_strict(this_syscall); 1047 else 1048 BUG(); 1049 } 1050 #else 1051 1052 #ifdef CONFIG_SECCOMP_FILTER 1053 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1054 { 1055 /* 1056 * Note: overflow is ok here, the id just needs to be unique per 1057 * filter. 1058 */ 1059 lockdep_assert_held(&filter->notify_lock); 1060 return filter->notif->next_id++; 1061 } 1062 1063 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd) 1064 { 1065 /* 1066 * Remove the notification, and reset the list pointers, indicating 1067 * that it has been handled. 1068 */ 1069 list_del_init(&addfd->list); 1070 addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); 1071 complete(&addfd->completion); 1072 } 1073 1074 static int seccomp_do_user_notification(int this_syscall, 1075 struct seccomp_filter *match, 1076 const struct seccomp_data *sd) 1077 { 1078 int err; 1079 u32 flags = 0; 1080 long ret = 0; 1081 struct seccomp_knotif n = {}; 1082 struct seccomp_kaddfd *addfd, *tmp; 1083 1084 mutex_lock(&match->notify_lock); 1085 err = -ENOSYS; 1086 if (!match->notif) 1087 goto out; 1088 1089 n.task = current; 1090 n.state = SECCOMP_NOTIFY_INIT; 1091 n.data = sd; 1092 n.id = seccomp_next_notify_id(match); 1093 init_completion(&n.ready); 1094 list_add(&n.list, &match->notif->notifications); 1095 INIT_LIST_HEAD(&n.addfd); 1096 1097 up(&match->notif->request); 1098 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1099 mutex_unlock(&match->notify_lock); 1100 1101 /* 1102 * This is where we wait for a reply from userspace. 1103 */ 1104 wait: 1105 err = wait_for_completion_interruptible(&n.ready); 1106 mutex_lock(&match->notify_lock); 1107 if (err == 0) { 1108 /* Check if we were woken up by a addfd message */ 1109 addfd = list_first_entry_or_null(&n.addfd, 1110 struct seccomp_kaddfd, list); 1111 if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) { 1112 seccomp_handle_addfd(addfd); 1113 mutex_unlock(&match->notify_lock); 1114 goto wait; 1115 } 1116 ret = n.val; 1117 err = n.error; 1118 flags = n.flags; 1119 } 1120 1121 /* If there were any pending addfd calls, clear them out */ 1122 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1123 /* The process went away before we got a chance to handle it */ 1124 addfd->ret = -ESRCH; 1125 list_del_init(&addfd->list); 1126 complete(&addfd->completion); 1127 } 1128 1129 /* 1130 * Note that it's possible the listener died in between the time when 1131 * we were notified of a response (or a signal) and when we were able to 1132 * re-acquire the lock, so only delete from the list if the 1133 * notification actually exists. 1134 * 1135 * Also note that this test is only valid because there's no way to 1136 * *reattach* to a notifier right now. If one is added, we'll need to 1137 * keep track of the notif itself and make sure they match here. 1138 */ 1139 if (match->notif) 1140 list_del(&n.list); 1141 out: 1142 mutex_unlock(&match->notify_lock); 1143 1144 /* Userspace requests to continue the syscall. */ 1145 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1146 return 0; 1147 1148 syscall_set_return_value(current, current_pt_regs(), 1149 err, ret); 1150 return -1; 1151 } 1152 1153 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1154 const bool recheck_after_trace) 1155 { 1156 u32 filter_ret, action; 1157 struct seccomp_filter *match = NULL; 1158 int data; 1159 struct seccomp_data sd_local; 1160 1161 /* 1162 * Make sure that any changes to mode from another thread have 1163 * been seen after TIF_SECCOMP was seen. 1164 */ 1165 rmb(); 1166 1167 if (!sd) { 1168 populate_seccomp_data(&sd_local); 1169 sd = &sd_local; 1170 } 1171 1172 filter_ret = seccomp_run_filters(sd, &match); 1173 data = filter_ret & SECCOMP_RET_DATA; 1174 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1175 1176 switch (action) { 1177 case SECCOMP_RET_ERRNO: 1178 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1179 if (data > MAX_ERRNO) 1180 data = MAX_ERRNO; 1181 syscall_set_return_value(current, current_pt_regs(), 1182 -data, 0); 1183 goto skip; 1184 1185 case SECCOMP_RET_TRAP: 1186 /* Show the handler the original registers. */ 1187 syscall_rollback(current, current_pt_regs()); 1188 /* Let the filter pass back 16 bits of data. */ 1189 seccomp_send_sigsys(this_syscall, data); 1190 goto skip; 1191 1192 case SECCOMP_RET_TRACE: 1193 /* We've been put in this state by the ptracer already. */ 1194 if (recheck_after_trace) 1195 return 0; 1196 1197 /* ENOSYS these calls if there is no tracer attached. */ 1198 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1199 syscall_set_return_value(current, 1200 current_pt_regs(), 1201 -ENOSYS, 0); 1202 goto skip; 1203 } 1204 1205 /* Allow the BPF to provide the event message */ 1206 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1207 /* 1208 * The delivery of a fatal signal during event 1209 * notification may silently skip tracer notification, 1210 * which could leave us with a potentially unmodified 1211 * syscall that the tracer would have liked to have 1212 * changed. Since the process is about to die, we just 1213 * force the syscall to be skipped and let the signal 1214 * kill the process and correctly handle any tracer exit 1215 * notifications. 1216 */ 1217 if (fatal_signal_pending(current)) 1218 goto skip; 1219 /* Check if the tracer forced the syscall to be skipped. */ 1220 this_syscall = syscall_get_nr(current, current_pt_regs()); 1221 if (this_syscall < 0) 1222 goto skip; 1223 1224 /* 1225 * Recheck the syscall, since it may have changed. This 1226 * intentionally uses a NULL struct seccomp_data to force 1227 * a reload of all registers. This does not goto skip since 1228 * a skip would have already been reported. 1229 */ 1230 if (__seccomp_filter(this_syscall, NULL, true)) 1231 return -1; 1232 1233 return 0; 1234 1235 case SECCOMP_RET_USER_NOTIF: 1236 if (seccomp_do_user_notification(this_syscall, match, sd)) 1237 goto skip; 1238 1239 return 0; 1240 1241 case SECCOMP_RET_LOG: 1242 seccomp_log(this_syscall, 0, action, true); 1243 return 0; 1244 1245 case SECCOMP_RET_ALLOW: 1246 /* 1247 * Note that the "match" filter will always be NULL for 1248 * this action since SECCOMP_RET_ALLOW is the starting 1249 * state in seccomp_run_filters(). 1250 */ 1251 return 0; 1252 1253 case SECCOMP_RET_KILL_THREAD: 1254 case SECCOMP_RET_KILL_PROCESS: 1255 default: 1256 seccomp_log(this_syscall, SIGSYS, action, true); 1257 /* Dump core only if this is the last remaining thread. */ 1258 if (action != SECCOMP_RET_KILL_THREAD || 1259 get_nr_threads(current) == 1) { 1260 kernel_siginfo_t info; 1261 1262 /* Show the original registers in the dump. */ 1263 syscall_rollback(current, current_pt_regs()); 1264 /* Trigger a manual coredump since do_exit skips it. */ 1265 seccomp_init_siginfo(&info, this_syscall, data); 1266 do_coredump(&info); 1267 } 1268 if (action == SECCOMP_RET_KILL_THREAD) 1269 do_exit(SIGSYS); 1270 else 1271 do_group_exit(SIGSYS); 1272 } 1273 1274 unreachable(); 1275 1276 skip: 1277 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1278 return -1; 1279 } 1280 #else 1281 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1282 const bool recheck_after_trace) 1283 { 1284 BUG(); 1285 } 1286 #endif 1287 1288 int __secure_computing(const struct seccomp_data *sd) 1289 { 1290 int mode = current->seccomp.mode; 1291 int this_syscall; 1292 1293 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1294 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1295 return 0; 1296 1297 this_syscall = sd ? sd->nr : 1298 syscall_get_nr(current, current_pt_regs()); 1299 1300 switch (mode) { 1301 case SECCOMP_MODE_STRICT: 1302 __secure_computing_strict(this_syscall); /* may call do_exit */ 1303 return 0; 1304 case SECCOMP_MODE_FILTER: 1305 return __seccomp_filter(this_syscall, sd, false); 1306 default: 1307 BUG(); 1308 } 1309 } 1310 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1311 1312 long prctl_get_seccomp(void) 1313 { 1314 return current->seccomp.mode; 1315 } 1316 1317 /** 1318 * seccomp_set_mode_strict: internal function for setting strict seccomp 1319 * 1320 * Once current->seccomp.mode is non-zero, it may not be changed. 1321 * 1322 * Returns 0 on success or -EINVAL on failure. 1323 */ 1324 static long seccomp_set_mode_strict(void) 1325 { 1326 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1327 long ret = -EINVAL; 1328 1329 spin_lock_irq(¤t->sighand->siglock); 1330 1331 if (!seccomp_may_assign_mode(seccomp_mode)) 1332 goto out; 1333 1334 #ifdef TIF_NOTSC 1335 disable_TSC(); 1336 #endif 1337 seccomp_assign_mode(current, seccomp_mode, 0); 1338 ret = 0; 1339 1340 out: 1341 spin_unlock_irq(¤t->sighand->siglock); 1342 1343 return ret; 1344 } 1345 1346 #ifdef CONFIG_SECCOMP_FILTER 1347 static void seccomp_notify_free(struct seccomp_filter *filter) 1348 { 1349 kfree(filter->notif); 1350 filter->notif = NULL; 1351 } 1352 1353 static void seccomp_notify_detach(struct seccomp_filter *filter) 1354 { 1355 struct seccomp_knotif *knotif; 1356 1357 if (!filter) 1358 return; 1359 1360 mutex_lock(&filter->notify_lock); 1361 1362 /* 1363 * If this file is being closed because e.g. the task who owned it 1364 * died, let's wake everyone up who was waiting on us. 1365 */ 1366 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1367 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1368 continue; 1369 1370 knotif->state = SECCOMP_NOTIFY_REPLIED; 1371 knotif->error = -ENOSYS; 1372 knotif->val = 0; 1373 1374 /* 1375 * We do not need to wake up any pending addfd messages, as 1376 * the notifier will do that for us, as this just looks 1377 * like a standard reply. 1378 */ 1379 complete(&knotif->ready); 1380 } 1381 1382 seccomp_notify_free(filter); 1383 mutex_unlock(&filter->notify_lock); 1384 } 1385 1386 static int seccomp_notify_release(struct inode *inode, struct file *file) 1387 { 1388 struct seccomp_filter *filter = file->private_data; 1389 1390 seccomp_notify_detach(filter); 1391 __put_seccomp_filter(filter); 1392 return 0; 1393 } 1394 1395 /* must be called with notif_lock held */ 1396 static inline struct seccomp_knotif * 1397 find_notification(struct seccomp_filter *filter, u64 id) 1398 { 1399 struct seccomp_knotif *cur; 1400 1401 lockdep_assert_held(&filter->notify_lock); 1402 1403 list_for_each_entry(cur, &filter->notif->notifications, list) { 1404 if (cur->id == id) 1405 return cur; 1406 } 1407 1408 return NULL; 1409 } 1410 1411 1412 static long seccomp_notify_recv(struct seccomp_filter *filter, 1413 void __user *buf) 1414 { 1415 struct seccomp_knotif *knotif = NULL, *cur; 1416 struct seccomp_notif unotif; 1417 ssize_t ret; 1418 1419 /* Verify that we're not given garbage to keep struct extensible. */ 1420 ret = check_zeroed_user(buf, sizeof(unotif)); 1421 if (ret < 0) 1422 return ret; 1423 if (!ret) 1424 return -EINVAL; 1425 1426 memset(&unotif, 0, sizeof(unotif)); 1427 1428 ret = down_interruptible(&filter->notif->request); 1429 if (ret < 0) 1430 return ret; 1431 1432 mutex_lock(&filter->notify_lock); 1433 list_for_each_entry(cur, &filter->notif->notifications, list) { 1434 if (cur->state == SECCOMP_NOTIFY_INIT) { 1435 knotif = cur; 1436 break; 1437 } 1438 } 1439 1440 /* 1441 * If we didn't find a notification, it could be that the task was 1442 * interrupted by a fatal signal between the time we were woken and 1443 * when we were able to acquire the rw lock. 1444 */ 1445 if (!knotif) { 1446 ret = -ENOENT; 1447 goto out; 1448 } 1449 1450 unotif.id = knotif->id; 1451 unotif.pid = task_pid_vnr(knotif->task); 1452 unotif.data = *(knotif->data); 1453 1454 knotif->state = SECCOMP_NOTIFY_SENT; 1455 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1456 ret = 0; 1457 out: 1458 mutex_unlock(&filter->notify_lock); 1459 1460 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1461 ret = -EFAULT; 1462 1463 /* 1464 * Userspace screwed up. To make sure that we keep this 1465 * notification alive, let's reset it back to INIT. It 1466 * may have died when we released the lock, so we need to make 1467 * sure it's still around. 1468 */ 1469 mutex_lock(&filter->notify_lock); 1470 knotif = find_notification(filter, unotif.id); 1471 if (knotif) { 1472 knotif->state = SECCOMP_NOTIFY_INIT; 1473 up(&filter->notif->request); 1474 } 1475 mutex_unlock(&filter->notify_lock); 1476 } 1477 1478 return ret; 1479 } 1480 1481 static long seccomp_notify_send(struct seccomp_filter *filter, 1482 void __user *buf) 1483 { 1484 struct seccomp_notif_resp resp = {}; 1485 struct seccomp_knotif *knotif; 1486 long ret; 1487 1488 if (copy_from_user(&resp, buf, sizeof(resp))) 1489 return -EFAULT; 1490 1491 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1492 return -EINVAL; 1493 1494 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1495 (resp.error || resp.val)) 1496 return -EINVAL; 1497 1498 ret = mutex_lock_interruptible(&filter->notify_lock); 1499 if (ret < 0) 1500 return ret; 1501 1502 knotif = find_notification(filter, resp.id); 1503 if (!knotif) { 1504 ret = -ENOENT; 1505 goto out; 1506 } 1507 1508 /* Allow exactly one reply. */ 1509 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1510 ret = -EINPROGRESS; 1511 goto out; 1512 } 1513 1514 ret = 0; 1515 knotif->state = SECCOMP_NOTIFY_REPLIED; 1516 knotif->error = resp.error; 1517 knotif->val = resp.val; 1518 knotif->flags = resp.flags; 1519 complete(&knotif->ready); 1520 out: 1521 mutex_unlock(&filter->notify_lock); 1522 return ret; 1523 } 1524 1525 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1526 void __user *buf) 1527 { 1528 struct seccomp_knotif *knotif; 1529 u64 id; 1530 long ret; 1531 1532 if (copy_from_user(&id, buf, sizeof(id))) 1533 return -EFAULT; 1534 1535 ret = mutex_lock_interruptible(&filter->notify_lock); 1536 if (ret < 0) 1537 return ret; 1538 1539 knotif = find_notification(filter, id); 1540 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1541 ret = 0; 1542 else 1543 ret = -ENOENT; 1544 1545 mutex_unlock(&filter->notify_lock); 1546 return ret; 1547 } 1548 1549 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1550 struct seccomp_notif_addfd __user *uaddfd, 1551 unsigned int size) 1552 { 1553 struct seccomp_notif_addfd addfd; 1554 struct seccomp_knotif *knotif; 1555 struct seccomp_kaddfd kaddfd; 1556 int ret; 1557 1558 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1559 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1560 1561 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1562 return -EINVAL; 1563 1564 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1565 if (ret) 1566 return ret; 1567 1568 if (addfd.newfd_flags & ~O_CLOEXEC) 1569 return -EINVAL; 1570 1571 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD) 1572 return -EINVAL; 1573 1574 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1575 return -EINVAL; 1576 1577 kaddfd.file = fget(addfd.srcfd); 1578 if (!kaddfd.file) 1579 return -EBADF; 1580 1581 kaddfd.flags = addfd.newfd_flags; 1582 kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ? 1583 addfd.newfd : -1; 1584 init_completion(&kaddfd.completion); 1585 1586 ret = mutex_lock_interruptible(&filter->notify_lock); 1587 if (ret < 0) 1588 goto out; 1589 1590 knotif = find_notification(filter, addfd.id); 1591 if (!knotif) { 1592 ret = -ENOENT; 1593 goto out_unlock; 1594 } 1595 1596 /* 1597 * We do not want to allow for FD injection to occur before the 1598 * notification has been picked up by a userspace handler, or after 1599 * the notification has been replied to. 1600 */ 1601 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1602 ret = -EINPROGRESS; 1603 goto out_unlock; 1604 } 1605 1606 list_add(&kaddfd.list, &knotif->addfd); 1607 complete(&knotif->ready); 1608 mutex_unlock(&filter->notify_lock); 1609 1610 /* Now we wait for it to be processed or be interrupted */ 1611 ret = wait_for_completion_interruptible(&kaddfd.completion); 1612 if (ret == 0) { 1613 /* 1614 * We had a successful completion. The other side has already 1615 * removed us from the addfd queue, and 1616 * wait_for_completion_interruptible has a memory barrier upon 1617 * success that lets us read this value directly without 1618 * locking. 1619 */ 1620 ret = kaddfd.ret; 1621 goto out; 1622 } 1623 1624 mutex_lock(&filter->notify_lock); 1625 /* 1626 * Even though we were woken up by a signal and not a successful 1627 * completion, a completion may have happened in the mean time. 1628 * 1629 * We need to check again if the addfd request has been handled, 1630 * and if not, we will remove it from the queue. 1631 */ 1632 if (list_empty(&kaddfd.list)) 1633 ret = kaddfd.ret; 1634 else 1635 list_del(&kaddfd.list); 1636 1637 out_unlock: 1638 mutex_unlock(&filter->notify_lock); 1639 out: 1640 fput(kaddfd.file); 1641 1642 return ret; 1643 } 1644 1645 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1646 unsigned long arg) 1647 { 1648 struct seccomp_filter *filter = file->private_data; 1649 void __user *buf = (void __user *)arg; 1650 1651 /* Fixed-size ioctls */ 1652 switch (cmd) { 1653 case SECCOMP_IOCTL_NOTIF_RECV: 1654 return seccomp_notify_recv(filter, buf); 1655 case SECCOMP_IOCTL_NOTIF_SEND: 1656 return seccomp_notify_send(filter, buf); 1657 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1658 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1659 return seccomp_notify_id_valid(filter, buf); 1660 } 1661 1662 /* Extensible Argument ioctls */ 1663 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1664 switch (EA_IOCTL(cmd)) { 1665 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1666 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1667 default: 1668 return -EINVAL; 1669 } 1670 } 1671 1672 static __poll_t seccomp_notify_poll(struct file *file, 1673 struct poll_table_struct *poll_tab) 1674 { 1675 struct seccomp_filter *filter = file->private_data; 1676 __poll_t ret = 0; 1677 struct seccomp_knotif *cur; 1678 1679 poll_wait(file, &filter->wqh, poll_tab); 1680 1681 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1682 return EPOLLERR; 1683 1684 list_for_each_entry(cur, &filter->notif->notifications, list) { 1685 if (cur->state == SECCOMP_NOTIFY_INIT) 1686 ret |= EPOLLIN | EPOLLRDNORM; 1687 if (cur->state == SECCOMP_NOTIFY_SENT) 1688 ret |= EPOLLOUT | EPOLLWRNORM; 1689 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1690 break; 1691 } 1692 1693 mutex_unlock(&filter->notify_lock); 1694 1695 if (refcount_read(&filter->users) == 0) 1696 ret |= EPOLLHUP; 1697 1698 return ret; 1699 } 1700 1701 static const struct file_operations seccomp_notify_ops = { 1702 .poll = seccomp_notify_poll, 1703 .release = seccomp_notify_release, 1704 .unlocked_ioctl = seccomp_notify_ioctl, 1705 .compat_ioctl = seccomp_notify_ioctl, 1706 }; 1707 1708 static struct file *init_listener(struct seccomp_filter *filter) 1709 { 1710 struct file *ret; 1711 1712 ret = ERR_PTR(-ENOMEM); 1713 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1714 if (!filter->notif) 1715 goto out; 1716 1717 sema_init(&filter->notif->request, 0); 1718 filter->notif->next_id = get_random_u64(); 1719 INIT_LIST_HEAD(&filter->notif->notifications); 1720 1721 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1722 filter, O_RDWR); 1723 if (IS_ERR(ret)) 1724 goto out_notif; 1725 1726 /* The file has a reference to it now */ 1727 __get_seccomp_filter(filter); 1728 1729 out_notif: 1730 if (IS_ERR(ret)) 1731 seccomp_notify_free(filter); 1732 out: 1733 return ret; 1734 } 1735 1736 /* 1737 * Does @new_child have a listener while an ancestor also has a listener? 1738 * If so, we'll want to reject this filter. 1739 * This only has to be tested for the current process, even in the TSYNC case, 1740 * because TSYNC installs @child with the same parent on all threads. 1741 * Note that @new_child is not hooked up to its parent at this point yet, so 1742 * we use current->seccomp.filter. 1743 */ 1744 static bool has_duplicate_listener(struct seccomp_filter *new_child) 1745 { 1746 struct seccomp_filter *cur; 1747 1748 /* must be protected against concurrent TSYNC */ 1749 lockdep_assert_held(¤t->sighand->siglock); 1750 1751 if (!new_child->notif) 1752 return false; 1753 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1754 if (cur->notif) 1755 return true; 1756 } 1757 1758 return false; 1759 } 1760 1761 /** 1762 * seccomp_set_mode_filter: internal function for setting seccomp filter 1763 * @flags: flags to change filter behavior 1764 * @filter: struct sock_fprog containing filter 1765 * 1766 * This function may be called repeatedly to install additional filters. 1767 * Every filter successfully installed will be evaluated (in reverse order) 1768 * for each system call the task makes. 1769 * 1770 * Once current->seccomp.mode is non-zero, it may not be changed. 1771 * 1772 * Returns 0 on success or -EINVAL on failure. 1773 */ 1774 static long seccomp_set_mode_filter(unsigned int flags, 1775 const char __user *filter) 1776 { 1777 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1778 struct seccomp_filter *prepared = NULL; 1779 long ret = -EINVAL; 1780 int listener = -1; 1781 struct file *listener_f = NULL; 1782 1783 /* Validate flags. */ 1784 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1785 return -EINVAL; 1786 1787 /* 1788 * In the successful case, NEW_LISTENER returns the new listener fd. 1789 * But in the failure case, TSYNC returns the thread that died. If you 1790 * combine these two flags, there's no way to tell whether something 1791 * succeeded or failed. So, let's disallow this combination if the user 1792 * has not explicitly requested no errors from TSYNC. 1793 */ 1794 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1795 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1796 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1797 return -EINVAL; 1798 1799 /* Prepare the new filter before holding any locks. */ 1800 prepared = seccomp_prepare_user_filter(filter); 1801 if (IS_ERR(prepared)) 1802 return PTR_ERR(prepared); 1803 1804 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1805 listener = get_unused_fd_flags(O_CLOEXEC); 1806 if (listener < 0) { 1807 ret = listener; 1808 goto out_free; 1809 } 1810 1811 listener_f = init_listener(prepared); 1812 if (IS_ERR(listener_f)) { 1813 put_unused_fd(listener); 1814 ret = PTR_ERR(listener_f); 1815 goto out_free; 1816 } 1817 } 1818 1819 /* 1820 * Make sure we cannot change seccomp or nnp state via TSYNC 1821 * while another thread is in the middle of calling exec. 1822 */ 1823 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1824 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1825 goto out_put_fd; 1826 1827 spin_lock_irq(¤t->sighand->siglock); 1828 1829 if (!seccomp_may_assign_mode(seccomp_mode)) 1830 goto out; 1831 1832 if (has_duplicate_listener(prepared)) { 1833 ret = -EBUSY; 1834 goto out; 1835 } 1836 1837 ret = seccomp_attach_filter(flags, prepared); 1838 if (ret) 1839 goto out; 1840 /* Do not free the successfully attached filter. */ 1841 prepared = NULL; 1842 1843 seccomp_assign_mode(current, seccomp_mode, flags); 1844 out: 1845 spin_unlock_irq(¤t->sighand->siglock); 1846 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 1847 mutex_unlock(¤t->signal->cred_guard_mutex); 1848 out_put_fd: 1849 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1850 if (ret) { 1851 listener_f->private_data = NULL; 1852 fput(listener_f); 1853 put_unused_fd(listener); 1854 seccomp_notify_detach(prepared); 1855 } else { 1856 fd_install(listener, listener_f); 1857 ret = listener; 1858 } 1859 } 1860 out_free: 1861 seccomp_filter_free(prepared); 1862 return ret; 1863 } 1864 #else 1865 static inline long seccomp_set_mode_filter(unsigned int flags, 1866 const char __user *filter) 1867 { 1868 return -EINVAL; 1869 } 1870 #endif 1871 1872 static long seccomp_get_action_avail(const char __user *uaction) 1873 { 1874 u32 action; 1875 1876 if (copy_from_user(&action, uaction, sizeof(action))) 1877 return -EFAULT; 1878 1879 switch (action) { 1880 case SECCOMP_RET_KILL_PROCESS: 1881 case SECCOMP_RET_KILL_THREAD: 1882 case SECCOMP_RET_TRAP: 1883 case SECCOMP_RET_ERRNO: 1884 case SECCOMP_RET_USER_NOTIF: 1885 case SECCOMP_RET_TRACE: 1886 case SECCOMP_RET_LOG: 1887 case SECCOMP_RET_ALLOW: 1888 break; 1889 default: 1890 return -EOPNOTSUPP; 1891 } 1892 1893 return 0; 1894 } 1895 1896 static long seccomp_get_notif_sizes(void __user *usizes) 1897 { 1898 struct seccomp_notif_sizes sizes = { 1899 .seccomp_notif = sizeof(struct seccomp_notif), 1900 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 1901 .seccomp_data = sizeof(struct seccomp_data), 1902 }; 1903 1904 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 1905 return -EFAULT; 1906 1907 return 0; 1908 } 1909 1910 /* Common entry point for both prctl and syscall. */ 1911 static long do_seccomp(unsigned int op, unsigned int flags, 1912 void __user *uargs) 1913 { 1914 switch (op) { 1915 case SECCOMP_SET_MODE_STRICT: 1916 if (flags != 0 || uargs != NULL) 1917 return -EINVAL; 1918 return seccomp_set_mode_strict(); 1919 case SECCOMP_SET_MODE_FILTER: 1920 return seccomp_set_mode_filter(flags, uargs); 1921 case SECCOMP_GET_ACTION_AVAIL: 1922 if (flags != 0) 1923 return -EINVAL; 1924 1925 return seccomp_get_action_avail(uargs); 1926 case SECCOMP_GET_NOTIF_SIZES: 1927 if (flags != 0) 1928 return -EINVAL; 1929 1930 return seccomp_get_notif_sizes(uargs); 1931 default: 1932 return -EINVAL; 1933 } 1934 } 1935 1936 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 1937 void __user *, uargs) 1938 { 1939 return do_seccomp(op, flags, uargs); 1940 } 1941 1942 /** 1943 * prctl_set_seccomp: configures current->seccomp.mode 1944 * @seccomp_mode: requested mode to use 1945 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 1946 * 1947 * Returns 0 on success or -EINVAL on failure. 1948 */ 1949 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 1950 { 1951 unsigned int op; 1952 void __user *uargs; 1953 1954 switch (seccomp_mode) { 1955 case SECCOMP_MODE_STRICT: 1956 op = SECCOMP_SET_MODE_STRICT; 1957 /* 1958 * Setting strict mode through prctl always ignored filter, 1959 * so make sure it is always NULL here to pass the internal 1960 * check in do_seccomp(). 1961 */ 1962 uargs = NULL; 1963 break; 1964 case SECCOMP_MODE_FILTER: 1965 op = SECCOMP_SET_MODE_FILTER; 1966 uargs = filter; 1967 break; 1968 default: 1969 return -EINVAL; 1970 } 1971 1972 /* prctl interface doesn't have flags, so they are always zero. */ 1973 return do_seccomp(op, 0, uargs); 1974 } 1975 1976 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 1977 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 1978 unsigned long filter_off) 1979 { 1980 struct seccomp_filter *orig, *filter; 1981 unsigned long count; 1982 1983 /* 1984 * Note: this is only correct because the caller should be the (ptrace) 1985 * tracer of the task, otherwise lock_task_sighand is needed. 1986 */ 1987 spin_lock_irq(&task->sighand->siglock); 1988 1989 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 1990 spin_unlock_irq(&task->sighand->siglock); 1991 return ERR_PTR(-EINVAL); 1992 } 1993 1994 orig = task->seccomp.filter; 1995 __get_seccomp_filter(orig); 1996 spin_unlock_irq(&task->sighand->siglock); 1997 1998 count = 0; 1999 for (filter = orig; filter; filter = filter->prev) 2000 count++; 2001 2002 if (filter_off >= count) { 2003 filter = ERR_PTR(-ENOENT); 2004 goto out; 2005 } 2006 2007 count -= filter_off; 2008 for (filter = orig; filter && count > 1; filter = filter->prev) 2009 count--; 2010 2011 if (WARN_ON(count != 1 || !filter)) { 2012 filter = ERR_PTR(-ENOENT); 2013 goto out; 2014 } 2015 2016 __get_seccomp_filter(filter); 2017 2018 out: 2019 __put_seccomp_filter(orig); 2020 return filter; 2021 } 2022 2023 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2024 void __user *data) 2025 { 2026 struct seccomp_filter *filter; 2027 struct sock_fprog_kern *fprog; 2028 long ret; 2029 2030 if (!capable(CAP_SYS_ADMIN) || 2031 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2032 return -EACCES; 2033 } 2034 2035 filter = get_nth_filter(task, filter_off); 2036 if (IS_ERR(filter)) 2037 return PTR_ERR(filter); 2038 2039 fprog = filter->prog->orig_prog; 2040 if (!fprog) { 2041 /* This must be a new non-cBPF filter, since we save 2042 * every cBPF filter's orig_prog above when 2043 * CONFIG_CHECKPOINT_RESTORE is enabled. 2044 */ 2045 ret = -EMEDIUMTYPE; 2046 goto out; 2047 } 2048 2049 ret = fprog->len; 2050 if (!data) 2051 goto out; 2052 2053 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2054 ret = -EFAULT; 2055 2056 out: 2057 __put_seccomp_filter(filter); 2058 return ret; 2059 } 2060 2061 long seccomp_get_metadata(struct task_struct *task, 2062 unsigned long size, void __user *data) 2063 { 2064 long ret; 2065 struct seccomp_filter *filter; 2066 struct seccomp_metadata kmd = {}; 2067 2068 if (!capable(CAP_SYS_ADMIN) || 2069 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2070 return -EACCES; 2071 } 2072 2073 size = min_t(unsigned long, size, sizeof(kmd)); 2074 2075 if (size < sizeof(kmd.filter_off)) 2076 return -EINVAL; 2077 2078 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2079 return -EFAULT; 2080 2081 filter = get_nth_filter(task, kmd.filter_off); 2082 if (IS_ERR(filter)) 2083 return PTR_ERR(filter); 2084 2085 if (filter->log) 2086 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2087 2088 ret = size; 2089 if (copy_to_user(data, &kmd, size)) 2090 ret = -EFAULT; 2091 2092 __put_seccomp_filter(filter); 2093 return ret; 2094 } 2095 #endif 2096 2097 #ifdef CONFIG_SYSCTL 2098 2099 /* Human readable action names for friendly sysctl interaction */ 2100 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2101 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2102 #define SECCOMP_RET_TRAP_NAME "trap" 2103 #define SECCOMP_RET_ERRNO_NAME "errno" 2104 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2105 #define SECCOMP_RET_TRACE_NAME "trace" 2106 #define SECCOMP_RET_LOG_NAME "log" 2107 #define SECCOMP_RET_ALLOW_NAME "allow" 2108 2109 static const char seccomp_actions_avail[] = 2110 SECCOMP_RET_KILL_PROCESS_NAME " " 2111 SECCOMP_RET_KILL_THREAD_NAME " " 2112 SECCOMP_RET_TRAP_NAME " " 2113 SECCOMP_RET_ERRNO_NAME " " 2114 SECCOMP_RET_USER_NOTIF_NAME " " 2115 SECCOMP_RET_TRACE_NAME " " 2116 SECCOMP_RET_LOG_NAME " " 2117 SECCOMP_RET_ALLOW_NAME; 2118 2119 struct seccomp_log_name { 2120 u32 log; 2121 const char *name; 2122 }; 2123 2124 static const struct seccomp_log_name seccomp_log_names[] = { 2125 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2126 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2127 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2128 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2129 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2130 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2131 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2132 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2133 { } 2134 }; 2135 2136 static bool seccomp_names_from_actions_logged(char *names, size_t size, 2137 u32 actions_logged, 2138 const char *sep) 2139 { 2140 const struct seccomp_log_name *cur; 2141 bool append_sep = false; 2142 2143 for (cur = seccomp_log_names; cur->name && size; cur++) { 2144 ssize_t ret; 2145 2146 if (!(actions_logged & cur->log)) 2147 continue; 2148 2149 if (append_sep) { 2150 ret = strscpy(names, sep, size); 2151 if (ret < 0) 2152 return false; 2153 2154 names += ret; 2155 size -= ret; 2156 } else 2157 append_sep = true; 2158 2159 ret = strscpy(names, cur->name, size); 2160 if (ret < 0) 2161 return false; 2162 2163 names += ret; 2164 size -= ret; 2165 } 2166 2167 return true; 2168 } 2169 2170 static bool seccomp_action_logged_from_name(u32 *action_logged, 2171 const char *name) 2172 { 2173 const struct seccomp_log_name *cur; 2174 2175 for (cur = seccomp_log_names; cur->name; cur++) { 2176 if (!strcmp(cur->name, name)) { 2177 *action_logged = cur->log; 2178 return true; 2179 } 2180 } 2181 2182 return false; 2183 } 2184 2185 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2186 { 2187 char *name; 2188 2189 *actions_logged = 0; 2190 while ((name = strsep(&names, " ")) && *name) { 2191 u32 action_logged = 0; 2192 2193 if (!seccomp_action_logged_from_name(&action_logged, name)) 2194 return false; 2195 2196 *actions_logged |= action_logged; 2197 } 2198 2199 return true; 2200 } 2201 2202 static int read_actions_logged(struct ctl_table *ro_table, void __user *buffer, 2203 size_t *lenp, loff_t *ppos) 2204 { 2205 char names[sizeof(seccomp_actions_avail)]; 2206 struct ctl_table table; 2207 2208 memset(names, 0, sizeof(names)); 2209 2210 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2211 seccomp_actions_logged, " ")) 2212 return -EINVAL; 2213 2214 table = *ro_table; 2215 table.data = names; 2216 table.maxlen = sizeof(names); 2217 return proc_dostring(&table, 0, buffer, lenp, ppos); 2218 } 2219 2220 static int write_actions_logged(struct ctl_table *ro_table, void __user *buffer, 2221 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2222 { 2223 char names[sizeof(seccomp_actions_avail)]; 2224 struct ctl_table table; 2225 int ret; 2226 2227 if (!capable(CAP_SYS_ADMIN)) 2228 return -EPERM; 2229 2230 memset(names, 0, sizeof(names)); 2231 2232 table = *ro_table; 2233 table.data = names; 2234 table.maxlen = sizeof(names); 2235 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2236 if (ret) 2237 return ret; 2238 2239 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2240 return -EINVAL; 2241 2242 if (*actions_logged & SECCOMP_LOG_ALLOW) 2243 return -EINVAL; 2244 2245 seccomp_actions_logged = *actions_logged; 2246 return 0; 2247 } 2248 2249 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2250 int ret) 2251 { 2252 char names[sizeof(seccomp_actions_avail)]; 2253 char old_names[sizeof(seccomp_actions_avail)]; 2254 const char *new = names; 2255 const char *old = old_names; 2256 2257 if (!audit_enabled) 2258 return; 2259 2260 memset(names, 0, sizeof(names)); 2261 memset(old_names, 0, sizeof(old_names)); 2262 2263 if (ret) 2264 new = "?"; 2265 else if (!actions_logged) 2266 new = "(none)"; 2267 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2268 actions_logged, ",")) 2269 new = "?"; 2270 2271 if (!old_actions_logged) 2272 old = "(none)"; 2273 else if (!seccomp_names_from_actions_logged(old_names, 2274 sizeof(old_names), 2275 old_actions_logged, ",")) 2276 old = "?"; 2277 2278 return audit_seccomp_actions_logged(new, old, !ret); 2279 } 2280 2281 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, 2282 void *buffer, size_t *lenp, 2283 loff_t *ppos) 2284 { 2285 int ret; 2286 2287 if (write) { 2288 u32 actions_logged = 0; 2289 u32 old_actions_logged = seccomp_actions_logged; 2290 2291 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2292 &actions_logged); 2293 audit_actions_logged(actions_logged, old_actions_logged, ret); 2294 } else 2295 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2296 2297 return ret; 2298 } 2299 2300 static struct ctl_path seccomp_sysctl_path[] = { 2301 { .procname = "kernel", }, 2302 { .procname = "seccomp", }, 2303 { } 2304 }; 2305 2306 static struct ctl_table seccomp_sysctl_table[] = { 2307 { 2308 .procname = "actions_avail", 2309 .data = (void *) &seccomp_actions_avail, 2310 .maxlen = sizeof(seccomp_actions_avail), 2311 .mode = 0444, 2312 .proc_handler = proc_dostring, 2313 }, 2314 { 2315 .procname = "actions_logged", 2316 .mode = 0644, 2317 .proc_handler = seccomp_actions_logged_handler, 2318 }, 2319 { } 2320 }; 2321 2322 static int __init seccomp_sysctl_init(void) 2323 { 2324 struct ctl_table_header *hdr; 2325 2326 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table); 2327 if (!hdr) 2328 pr_warn("sysctl registration failed\n"); 2329 else 2330 kmemleak_not_leak(hdr); 2331 2332 return 0; 2333 } 2334 2335 device_initcall(seccomp_sysctl_init) 2336 2337 #endif /* CONFIG_SYSCTL */ 2338