xref: /openbmc/linux/kernel/seccomp.c (revision 0d8315dddd2899f519fe1ca3d4d5cdaf44ea421e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/kernel/seccomp.c
4  *
5  * Copyright 2004-2005  Andrea Arcangeli <andrea@cpushare.com>
6  *
7  * Copyright (C) 2012 Google, Inc.
8  * Will Drewry <wad@chromium.org>
9  *
10  * This defines a simple but solid secure-computing facility.
11  *
12  * Mode 1 uses a fixed list of allowed system calls.
13  * Mode 2 allows user-defined system call filters in the form
14  *        of Berkeley Packet Filters/Linux Socket Filters.
15  */
16 #define pr_fmt(fmt) "seccomp: " fmt
17 
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31 
32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
33 #include <asm/syscall.h>
34 #endif
35 
36 #ifdef CONFIG_SECCOMP_FILTER
37 #include <linux/file.h>
38 #include <linux/filter.h>
39 #include <linux/pid.h>
40 #include <linux/ptrace.h>
41 #include <linux/security.h>
42 #include <linux/tracehook.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46 
47 /*
48  * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49  * wrong direction flag in the ioctl number. This is the broken one,
50  * which the kernel needs to keep supporting until all userspaces stop
51  * using the wrong command number.
52  */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR	SECCOMP_IOR(2, __u64)
54 
55 enum notify_state {
56 	SECCOMP_NOTIFY_INIT,
57 	SECCOMP_NOTIFY_SENT,
58 	SECCOMP_NOTIFY_REPLIED,
59 };
60 
61 struct seccomp_knotif {
62 	/* The struct pid of the task whose filter triggered the notification */
63 	struct task_struct *task;
64 
65 	/* The "cookie" for this request; this is unique for this filter. */
66 	u64 id;
67 
68 	/*
69 	 * The seccomp data. This pointer is valid the entire time this
70 	 * notification is active, since it comes from __seccomp_filter which
71 	 * eclipses the entire lifecycle here.
72 	 */
73 	const struct seccomp_data *data;
74 
75 	/*
76 	 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 	 * struct seccomp_knotif is created and starts out in INIT. Once the
78 	 * handler reads the notification off of an FD, it transitions to SENT.
79 	 * If a signal is received the state transitions back to INIT and
80 	 * another message is sent. When the userspace handler replies, state
81 	 * transitions to REPLIED.
82 	 */
83 	enum notify_state state;
84 
85 	/* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 	int error;
87 	long val;
88 	u32 flags;
89 
90 	/*
91 	 * Signals when this has changed states, such as the listener
92 	 * dying, a new seccomp addfd message, or changing to REPLIED
93 	 */
94 	struct completion ready;
95 
96 	struct list_head list;
97 
98 	/* outstanding addfd requests */
99 	struct list_head addfd;
100 };
101 
102 /**
103  * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104  *
105  * @file: A reference to the file to install in the other task
106  * @fd: The fd number to install it at. If the fd number is -1, it means the
107  *      installing process should allocate the fd as normal.
108  * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109  *         is allowed.
110  * @ret: The return value of the installing process. It is set to the fd num
111  *       upon success (>= 0).
112  * @completion: Indicates that the installing process has completed fd
113  *              installation, or gone away (either due to successful
114  *              reply, or signal)
115  *
116  */
117 struct seccomp_kaddfd {
118 	struct file *file;
119 	int fd;
120 	unsigned int flags;
121 
122 	/* To only be set on reply */
123 	int ret;
124 	struct completion completion;
125 	struct list_head list;
126 };
127 
128 /**
129  * struct notification - container for seccomp userspace notifications. Since
130  * most seccomp filters will not have notification listeners attached and this
131  * structure is fairly large, we store the notification-specific stuff in a
132  * separate structure.
133  *
134  * @request: A semaphore that users of this notification can wait on for
135  *           changes. Actual reads and writes are still controlled with
136  *           filter->notify_lock.
137  * @next_id: The id of the next request.
138  * @notifications: A list of struct seccomp_knotif elements.
139  */
140 struct notification {
141 	struct semaphore request;
142 	u64 next_id;
143 	struct list_head notifications;
144 };
145 
146 #ifdef SECCOMP_ARCH_NATIVE
147 /**
148  * struct action_cache - per-filter cache of seccomp actions per
149  * arch/syscall pair
150  *
151  * @allow_native: A bitmap where each bit represents whether the
152  *		  filter will always allow the syscall, for the
153  *		  native architecture.
154  * @allow_compat: A bitmap where each bit represents whether the
155  *		  filter will always allow the syscall, for the
156  *		  compat architecture.
157  */
158 struct action_cache {
159 	DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
160 #ifdef SECCOMP_ARCH_COMPAT
161 	DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
162 #endif
163 };
164 #else
165 struct action_cache { };
166 
167 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
168 					     const struct seccomp_data *sd)
169 {
170 	return false;
171 }
172 
173 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
174 {
175 }
176 #endif /* SECCOMP_ARCH_NATIVE */
177 
178 /**
179  * struct seccomp_filter - container for seccomp BPF programs
180  *
181  * @refs: Reference count to manage the object lifetime.
182  *	  A filter's reference count is incremented for each directly
183  *	  attached task, once for the dependent filter, and if
184  *	  requested for the user notifier. When @refs reaches zero,
185  *	  the filter can be freed.
186  * @users: A filter's @users count is incremented for each directly
187  *         attached task (filter installation, fork(), thread_sync),
188  *	   and once for the dependent filter (tracked in filter->prev).
189  *	   When it reaches zero it indicates that no direct or indirect
190  *	   users of that filter exist. No new tasks can get associated with
191  *	   this filter after reaching 0. The @users count is always smaller
192  *	   or equal to @refs. Hence, reaching 0 for @users does not mean
193  *	   the filter can be freed.
194  * @cache: cache of arch/syscall mappings to actions
195  * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
196  * @prev: points to a previously installed, or inherited, filter
197  * @prog: the BPF program to evaluate
198  * @notif: the struct that holds all notification related information
199  * @notify_lock: A lock for all notification-related accesses.
200  * @wqh: A wait queue for poll if a notifier is in use.
201  *
202  * seccomp_filter objects are organized in a tree linked via the @prev
203  * pointer.  For any task, it appears to be a singly-linked list starting
204  * with current->seccomp.filter, the most recently attached or inherited filter.
205  * However, multiple filters may share a @prev node, by way of fork(), which
206  * results in a unidirectional tree existing in memory.  This is similar to
207  * how namespaces work.
208  *
209  * seccomp_filter objects should never be modified after being attached
210  * to a task_struct (other than @refs).
211  */
212 struct seccomp_filter {
213 	refcount_t refs;
214 	refcount_t users;
215 	bool log;
216 	struct action_cache cache;
217 	struct seccomp_filter *prev;
218 	struct bpf_prog *prog;
219 	struct notification *notif;
220 	struct mutex notify_lock;
221 	wait_queue_head_t wqh;
222 };
223 
224 /* Limit any path through the tree to 256KB worth of instructions. */
225 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
226 
227 /*
228  * Endianness is explicitly ignored and left for BPF program authors to manage
229  * as per the specific architecture.
230  */
231 static void populate_seccomp_data(struct seccomp_data *sd)
232 {
233 	/*
234 	 * Instead of using current_pt_reg(), we're already doing the work
235 	 * to safely fetch "current", so just use "task" everywhere below.
236 	 */
237 	struct task_struct *task = current;
238 	struct pt_regs *regs = task_pt_regs(task);
239 	unsigned long args[6];
240 
241 	sd->nr = syscall_get_nr(task, regs);
242 	sd->arch = syscall_get_arch(task);
243 	syscall_get_arguments(task, regs, args);
244 	sd->args[0] = args[0];
245 	sd->args[1] = args[1];
246 	sd->args[2] = args[2];
247 	sd->args[3] = args[3];
248 	sd->args[4] = args[4];
249 	sd->args[5] = args[5];
250 	sd->instruction_pointer = KSTK_EIP(task);
251 }
252 
253 /**
254  *	seccomp_check_filter - verify seccomp filter code
255  *	@filter: filter to verify
256  *	@flen: length of filter
257  *
258  * Takes a previously checked filter (by bpf_check_classic) and
259  * redirects all filter code that loads struct sk_buff data
260  * and related data through seccomp_bpf_load.  It also
261  * enforces length and alignment checking of those loads.
262  *
263  * Returns 0 if the rule set is legal or -EINVAL if not.
264  */
265 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
266 {
267 	int pc;
268 	for (pc = 0; pc < flen; pc++) {
269 		struct sock_filter *ftest = &filter[pc];
270 		u16 code = ftest->code;
271 		u32 k = ftest->k;
272 
273 		switch (code) {
274 		case BPF_LD | BPF_W | BPF_ABS:
275 			ftest->code = BPF_LDX | BPF_W | BPF_ABS;
276 			/* 32-bit aligned and not out of bounds. */
277 			if (k >= sizeof(struct seccomp_data) || k & 3)
278 				return -EINVAL;
279 			continue;
280 		case BPF_LD | BPF_W | BPF_LEN:
281 			ftest->code = BPF_LD | BPF_IMM;
282 			ftest->k = sizeof(struct seccomp_data);
283 			continue;
284 		case BPF_LDX | BPF_W | BPF_LEN:
285 			ftest->code = BPF_LDX | BPF_IMM;
286 			ftest->k = sizeof(struct seccomp_data);
287 			continue;
288 		/* Explicitly include allowed calls. */
289 		case BPF_RET | BPF_K:
290 		case BPF_RET | BPF_A:
291 		case BPF_ALU | BPF_ADD | BPF_K:
292 		case BPF_ALU | BPF_ADD | BPF_X:
293 		case BPF_ALU | BPF_SUB | BPF_K:
294 		case BPF_ALU | BPF_SUB | BPF_X:
295 		case BPF_ALU | BPF_MUL | BPF_K:
296 		case BPF_ALU | BPF_MUL | BPF_X:
297 		case BPF_ALU | BPF_DIV | BPF_K:
298 		case BPF_ALU | BPF_DIV | BPF_X:
299 		case BPF_ALU | BPF_AND | BPF_K:
300 		case BPF_ALU | BPF_AND | BPF_X:
301 		case BPF_ALU | BPF_OR | BPF_K:
302 		case BPF_ALU | BPF_OR | BPF_X:
303 		case BPF_ALU | BPF_XOR | BPF_K:
304 		case BPF_ALU | BPF_XOR | BPF_X:
305 		case BPF_ALU | BPF_LSH | BPF_K:
306 		case BPF_ALU | BPF_LSH | BPF_X:
307 		case BPF_ALU | BPF_RSH | BPF_K:
308 		case BPF_ALU | BPF_RSH | BPF_X:
309 		case BPF_ALU | BPF_NEG:
310 		case BPF_LD | BPF_IMM:
311 		case BPF_LDX | BPF_IMM:
312 		case BPF_MISC | BPF_TAX:
313 		case BPF_MISC | BPF_TXA:
314 		case BPF_LD | BPF_MEM:
315 		case BPF_LDX | BPF_MEM:
316 		case BPF_ST:
317 		case BPF_STX:
318 		case BPF_JMP | BPF_JA:
319 		case BPF_JMP | BPF_JEQ | BPF_K:
320 		case BPF_JMP | BPF_JEQ | BPF_X:
321 		case BPF_JMP | BPF_JGE | BPF_K:
322 		case BPF_JMP | BPF_JGE | BPF_X:
323 		case BPF_JMP | BPF_JGT | BPF_K:
324 		case BPF_JMP | BPF_JGT | BPF_X:
325 		case BPF_JMP | BPF_JSET | BPF_K:
326 		case BPF_JMP | BPF_JSET | BPF_X:
327 			continue;
328 		default:
329 			return -EINVAL;
330 		}
331 	}
332 	return 0;
333 }
334 
335 #ifdef SECCOMP_ARCH_NATIVE
336 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
337 						    size_t bitmap_size,
338 						    int syscall_nr)
339 {
340 	if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
341 		return false;
342 	syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
343 
344 	return test_bit(syscall_nr, bitmap);
345 }
346 
347 /**
348  * seccomp_cache_check_allow - lookup seccomp cache
349  * @sfilter: The seccomp filter
350  * @sd: The seccomp data to lookup the cache with
351  *
352  * Returns true if the seccomp_data is cached and allowed.
353  */
354 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
355 					     const struct seccomp_data *sd)
356 {
357 	int syscall_nr = sd->nr;
358 	const struct action_cache *cache = &sfilter->cache;
359 
360 #ifndef SECCOMP_ARCH_COMPAT
361 	/* A native-only architecture doesn't need to check sd->arch. */
362 	return seccomp_cache_check_allow_bitmap(cache->allow_native,
363 						SECCOMP_ARCH_NATIVE_NR,
364 						syscall_nr);
365 #else
366 	if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
367 		return seccomp_cache_check_allow_bitmap(cache->allow_native,
368 							SECCOMP_ARCH_NATIVE_NR,
369 							syscall_nr);
370 	if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
371 		return seccomp_cache_check_allow_bitmap(cache->allow_compat,
372 							SECCOMP_ARCH_COMPAT_NR,
373 							syscall_nr);
374 #endif /* SECCOMP_ARCH_COMPAT */
375 
376 	WARN_ON_ONCE(true);
377 	return false;
378 }
379 #endif /* SECCOMP_ARCH_NATIVE */
380 
381 /**
382  * seccomp_run_filters - evaluates all seccomp filters against @sd
383  * @sd: optional seccomp data to be passed to filters
384  * @match: stores struct seccomp_filter that resulted in the return value,
385  *         unless filter returned SECCOMP_RET_ALLOW, in which case it will
386  *         be unchanged.
387  *
388  * Returns valid seccomp BPF response codes.
389  */
390 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
391 static u32 seccomp_run_filters(const struct seccomp_data *sd,
392 			       struct seccomp_filter **match)
393 {
394 	u32 ret = SECCOMP_RET_ALLOW;
395 	/* Make sure cross-thread synced filter points somewhere sane. */
396 	struct seccomp_filter *f =
397 			READ_ONCE(current->seccomp.filter);
398 
399 	/* Ensure unexpected behavior doesn't result in failing open. */
400 	if (WARN_ON(f == NULL))
401 		return SECCOMP_RET_KILL_PROCESS;
402 
403 	if (seccomp_cache_check_allow(f, sd))
404 		return SECCOMP_RET_ALLOW;
405 
406 	/*
407 	 * All filters in the list are evaluated and the lowest BPF return
408 	 * value always takes priority (ignoring the DATA).
409 	 */
410 	for (; f; f = f->prev) {
411 		u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
412 
413 		if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
414 			ret = cur_ret;
415 			*match = f;
416 		}
417 	}
418 	return ret;
419 }
420 #endif /* CONFIG_SECCOMP_FILTER */
421 
422 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
423 {
424 	assert_spin_locked(&current->sighand->siglock);
425 
426 	if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
427 		return false;
428 
429 	return true;
430 }
431 
432 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
433 
434 static inline void seccomp_assign_mode(struct task_struct *task,
435 				       unsigned long seccomp_mode,
436 				       unsigned long flags)
437 {
438 	assert_spin_locked(&task->sighand->siglock);
439 
440 	task->seccomp.mode = seccomp_mode;
441 	/*
442 	 * Make sure TIF_SECCOMP cannot be set before the mode (and
443 	 * filter) is set.
444 	 */
445 	smp_mb__before_atomic();
446 	/* Assume default seccomp processes want spec flaw mitigation. */
447 	if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
448 		arch_seccomp_spec_mitigate(task);
449 	set_tsk_thread_flag(task, TIF_SECCOMP);
450 }
451 
452 #ifdef CONFIG_SECCOMP_FILTER
453 /* Returns 1 if the parent is an ancestor of the child. */
454 static int is_ancestor(struct seccomp_filter *parent,
455 		       struct seccomp_filter *child)
456 {
457 	/* NULL is the root ancestor. */
458 	if (parent == NULL)
459 		return 1;
460 	for (; child; child = child->prev)
461 		if (child == parent)
462 			return 1;
463 	return 0;
464 }
465 
466 /**
467  * seccomp_can_sync_threads: checks if all threads can be synchronized
468  *
469  * Expects sighand and cred_guard_mutex locks to be held.
470  *
471  * Returns 0 on success, -ve on error, or the pid of a thread which was
472  * either not in the correct seccomp mode or did not have an ancestral
473  * seccomp filter.
474  */
475 static inline pid_t seccomp_can_sync_threads(void)
476 {
477 	struct task_struct *thread, *caller;
478 
479 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
480 	assert_spin_locked(&current->sighand->siglock);
481 
482 	/* Validate all threads being eligible for synchronization. */
483 	caller = current;
484 	for_each_thread(caller, thread) {
485 		pid_t failed;
486 
487 		/* Skip current, since it is initiating the sync. */
488 		if (thread == caller)
489 			continue;
490 
491 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
492 		    (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
493 		     is_ancestor(thread->seccomp.filter,
494 				 caller->seccomp.filter)))
495 			continue;
496 
497 		/* Return the first thread that cannot be synchronized. */
498 		failed = task_pid_vnr(thread);
499 		/* If the pid cannot be resolved, then return -ESRCH */
500 		if (WARN_ON(failed == 0))
501 			failed = -ESRCH;
502 		return failed;
503 	}
504 
505 	return 0;
506 }
507 
508 static inline void seccomp_filter_free(struct seccomp_filter *filter)
509 {
510 	if (filter) {
511 		bpf_prog_destroy(filter->prog);
512 		kfree(filter);
513 	}
514 }
515 
516 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
517 {
518 	while (orig && refcount_dec_and_test(&orig->users)) {
519 		if (waitqueue_active(&orig->wqh))
520 			wake_up_poll(&orig->wqh, EPOLLHUP);
521 		orig = orig->prev;
522 	}
523 }
524 
525 static void __put_seccomp_filter(struct seccomp_filter *orig)
526 {
527 	/* Clean up single-reference branches iteratively. */
528 	while (orig && refcount_dec_and_test(&orig->refs)) {
529 		struct seccomp_filter *freeme = orig;
530 		orig = orig->prev;
531 		seccomp_filter_free(freeme);
532 	}
533 }
534 
535 static void __seccomp_filter_release(struct seccomp_filter *orig)
536 {
537 	/* Notify about any unused filters in the task's former filter tree. */
538 	__seccomp_filter_orphan(orig);
539 	/* Finally drop all references to the task's former tree. */
540 	__put_seccomp_filter(orig);
541 }
542 
543 /**
544  * seccomp_filter_release - Detach the task from its filter tree,
545  *			    drop its reference count, and notify
546  *			    about unused filters
547  *
548  * This function should only be called when the task is exiting as
549  * it detaches it from its filter tree. As such, READ_ONCE() and
550  * barriers are not needed here, as would normally be needed.
551  */
552 void seccomp_filter_release(struct task_struct *tsk)
553 {
554 	struct seccomp_filter *orig = tsk->seccomp.filter;
555 
556 	/* We are effectively holding the siglock by not having any sighand. */
557 	WARN_ON(tsk->sighand != NULL);
558 
559 	/* Detach task from its filter tree. */
560 	tsk->seccomp.filter = NULL;
561 	__seccomp_filter_release(orig);
562 }
563 
564 /**
565  * seccomp_sync_threads: sets all threads to use current's filter
566  *
567  * Expects sighand and cred_guard_mutex locks to be held, and for
568  * seccomp_can_sync_threads() to have returned success already
569  * without dropping the locks.
570  *
571  */
572 static inline void seccomp_sync_threads(unsigned long flags)
573 {
574 	struct task_struct *thread, *caller;
575 
576 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
577 	assert_spin_locked(&current->sighand->siglock);
578 
579 	/* Synchronize all threads. */
580 	caller = current;
581 	for_each_thread(caller, thread) {
582 		/* Skip current, since it needs no changes. */
583 		if (thread == caller)
584 			continue;
585 
586 		/* Get a task reference for the new leaf node. */
587 		get_seccomp_filter(caller);
588 
589 		/*
590 		 * Drop the task reference to the shared ancestor since
591 		 * current's path will hold a reference.  (This also
592 		 * allows a put before the assignment.)
593 		 */
594 		__seccomp_filter_release(thread->seccomp.filter);
595 
596 		/* Make our new filter tree visible. */
597 		smp_store_release(&thread->seccomp.filter,
598 				  caller->seccomp.filter);
599 		atomic_set(&thread->seccomp.filter_count,
600 			   atomic_read(&thread->seccomp.filter_count));
601 
602 		/*
603 		 * Don't let an unprivileged task work around
604 		 * the no_new_privs restriction by creating
605 		 * a thread that sets it up, enters seccomp,
606 		 * then dies.
607 		 */
608 		if (task_no_new_privs(caller))
609 			task_set_no_new_privs(thread);
610 
611 		/*
612 		 * Opt the other thread into seccomp if needed.
613 		 * As threads are considered to be trust-realm
614 		 * equivalent (see ptrace_may_access), it is safe to
615 		 * allow one thread to transition the other.
616 		 */
617 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
618 			seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
619 					    flags);
620 	}
621 }
622 
623 /**
624  * seccomp_prepare_filter: Prepares a seccomp filter for use.
625  * @fprog: BPF program to install
626  *
627  * Returns filter on success or an ERR_PTR on failure.
628  */
629 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
630 {
631 	struct seccomp_filter *sfilter;
632 	int ret;
633 	const bool save_orig =
634 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
635 		true;
636 #else
637 		false;
638 #endif
639 
640 	if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
641 		return ERR_PTR(-EINVAL);
642 
643 	BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
644 
645 	/*
646 	 * Installing a seccomp filter requires that the task has
647 	 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
648 	 * This avoids scenarios where unprivileged tasks can affect the
649 	 * behavior of privileged children.
650 	 */
651 	if (!task_no_new_privs(current) &&
652 	    security_capable(current_cred(), current_user_ns(),
653 				     CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) != 0)
654 		return ERR_PTR(-EACCES);
655 
656 	/* Allocate a new seccomp_filter */
657 	sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
658 	if (!sfilter)
659 		return ERR_PTR(-ENOMEM);
660 
661 	mutex_init(&sfilter->notify_lock);
662 	ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
663 					seccomp_check_filter, save_orig);
664 	if (ret < 0) {
665 		kfree(sfilter);
666 		return ERR_PTR(ret);
667 	}
668 
669 	refcount_set(&sfilter->refs, 1);
670 	refcount_set(&sfilter->users, 1);
671 	init_waitqueue_head(&sfilter->wqh);
672 
673 	return sfilter;
674 }
675 
676 /**
677  * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
678  * @user_filter: pointer to the user data containing a sock_fprog.
679  *
680  * Returns 0 on success and non-zero otherwise.
681  */
682 static struct seccomp_filter *
683 seccomp_prepare_user_filter(const char __user *user_filter)
684 {
685 	struct sock_fprog fprog;
686 	struct seccomp_filter *filter = ERR_PTR(-EFAULT);
687 
688 #ifdef CONFIG_COMPAT
689 	if (in_compat_syscall()) {
690 		struct compat_sock_fprog fprog32;
691 		if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
692 			goto out;
693 		fprog.len = fprog32.len;
694 		fprog.filter = compat_ptr(fprog32.filter);
695 	} else /* falls through to the if below. */
696 #endif
697 	if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
698 		goto out;
699 	filter = seccomp_prepare_filter(&fprog);
700 out:
701 	return filter;
702 }
703 
704 #ifdef SECCOMP_ARCH_NATIVE
705 /**
706  * seccomp_is_const_allow - check if filter is constant allow with given data
707  * @fprog: The BPF programs
708  * @sd: The seccomp data to check against, only syscall number and arch
709  *      number are considered constant.
710  */
711 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
712 				   struct seccomp_data *sd)
713 {
714 	unsigned int reg_value = 0;
715 	unsigned int pc;
716 	bool op_res;
717 
718 	if (WARN_ON_ONCE(!fprog))
719 		return false;
720 
721 	for (pc = 0; pc < fprog->len; pc++) {
722 		struct sock_filter *insn = &fprog->filter[pc];
723 		u16 code = insn->code;
724 		u32 k = insn->k;
725 
726 		switch (code) {
727 		case BPF_LD | BPF_W | BPF_ABS:
728 			switch (k) {
729 			case offsetof(struct seccomp_data, nr):
730 				reg_value = sd->nr;
731 				break;
732 			case offsetof(struct seccomp_data, arch):
733 				reg_value = sd->arch;
734 				break;
735 			default:
736 				/* can't optimize (non-constant value load) */
737 				return false;
738 			}
739 			break;
740 		case BPF_RET | BPF_K:
741 			/* reached return with constant values only, check allow */
742 			return k == SECCOMP_RET_ALLOW;
743 		case BPF_JMP | BPF_JA:
744 			pc += insn->k;
745 			break;
746 		case BPF_JMP | BPF_JEQ | BPF_K:
747 		case BPF_JMP | BPF_JGE | BPF_K:
748 		case BPF_JMP | BPF_JGT | BPF_K:
749 		case BPF_JMP | BPF_JSET | BPF_K:
750 			switch (BPF_OP(code)) {
751 			case BPF_JEQ:
752 				op_res = reg_value == k;
753 				break;
754 			case BPF_JGE:
755 				op_res = reg_value >= k;
756 				break;
757 			case BPF_JGT:
758 				op_res = reg_value > k;
759 				break;
760 			case BPF_JSET:
761 				op_res = !!(reg_value & k);
762 				break;
763 			default:
764 				/* can't optimize (unknown jump) */
765 				return false;
766 			}
767 
768 			pc += op_res ? insn->jt : insn->jf;
769 			break;
770 		case BPF_ALU | BPF_AND | BPF_K:
771 			reg_value &= k;
772 			break;
773 		default:
774 			/* can't optimize (unknown insn) */
775 			return false;
776 		}
777 	}
778 
779 	/* ran off the end of the filter?! */
780 	WARN_ON(1);
781 	return false;
782 }
783 
784 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
785 					 void *bitmap, const void *bitmap_prev,
786 					 size_t bitmap_size, int arch)
787 {
788 	struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
789 	struct seccomp_data sd;
790 	int nr;
791 
792 	if (bitmap_prev) {
793 		/* The new filter must be as restrictive as the last. */
794 		bitmap_copy(bitmap, bitmap_prev, bitmap_size);
795 	} else {
796 		/* Before any filters, all syscalls are always allowed. */
797 		bitmap_fill(bitmap, bitmap_size);
798 	}
799 
800 	for (nr = 0; nr < bitmap_size; nr++) {
801 		/* No bitmap change: not a cacheable action. */
802 		if (!test_bit(nr, bitmap))
803 			continue;
804 
805 		sd.nr = nr;
806 		sd.arch = arch;
807 
808 		/* No bitmap change: continue to always allow. */
809 		if (seccomp_is_const_allow(fprog, &sd))
810 			continue;
811 
812 		/*
813 		 * Not a cacheable action: always run filters.
814 		 * atomic clear_bit() not needed, filter not visible yet.
815 		 */
816 		__clear_bit(nr, bitmap);
817 	}
818 }
819 
820 /**
821  * seccomp_cache_prepare - emulate the filter to find cachable syscalls
822  * @sfilter: The seccomp filter
823  *
824  * Returns 0 if successful or -errno if error occurred.
825  */
826 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
827 {
828 	struct action_cache *cache = &sfilter->cache;
829 	const struct action_cache *cache_prev =
830 		sfilter->prev ? &sfilter->prev->cache : NULL;
831 
832 	seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
833 				     cache_prev ? cache_prev->allow_native : NULL,
834 				     SECCOMP_ARCH_NATIVE_NR,
835 				     SECCOMP_ARCH_NATIVE);
836 
837 #ifdef SECCOMP_ARCH_COMPAT
838 	seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
839 				     cache_prev ? cache_prev->allow_compat : NULL,
840 				     SECCOMP_ARCH_COMPAT_NR,
841 				     SECCOMP_ARCH_COMPAT);
842 #endif /* SECCOMP_ARCH_COMPAT */
843 }
844 #endif /* SECCOMP_ARCH_NATIVE */
845 
846 /**
847  * seccomp_attach_filter: validate and attach filter
848  * @flags:  flags to change filter behavior
849  * @filter: seccomp filter to add to the current process
850  *
851  * Caller must be holding current->sighand->siglock lock.
852  *
853  * Returns 0 on success, -ve on error, or
854  *   - in TSYNC mode: the pid of a thread which was either not in the correct
855  *     seccomp mode or did not have an ancestral seccomp filter
856  *   - in NEW_LISTENER mode: the fd of the new listener
857  */
858 static long seccomp_attach_filter(unsigned int flags,
859 				  struct seccomp_filter *filter)
860 {
861 	unsigned long total_insns;
862 	struct seccomp_filter *walker;
863 
864 	assert_spin_locked(&current->sighand->siglock);
865 
866 	/* Validate resulting filter length. */
867 	total_insns = filter->prog->len;
868 	for (walker = current->seccomp.filter; walker; walker = walker->prev)
869 		total_insns += walker->prog->len + 4;  /* 4 instr penalty */
870 	if (total_insns > MAX_INSNS_PER_PATH)
871 		return -ENOMEM;
872 
873 	/* If thread sync has been requested, check that it is possible. */
874 	if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
875 		int ret;
876 
877 		ret = seccomp_can_sync_threads();
878 		if (ret) {
879 			if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
880 				return -ESRCH;
881 			else
882 				return ret;
883 		}
884 	}
885 
886 	/* Set log flag, if present. */
887 	if (flags & SECCOMP_FILTER_FLAG_LOG)
888 		filter->log = true;
889 
890 	/*
891 	 * If there is an existing filter, make it the prev and don't drop its
892 	 * task reference.
893 	 */
894 	filter->prev = current->seccomp.filter;
895 	seccomp_cache_prepare(filter);
896 	current->seccomp.filter = filter;
897 	atomic_inc(&current->seccomp.filter_count);
898 
899 	/* Now that the new filter is in place, synchronize to all threads. */
900 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
901 		seccomp_sync_threads(flags);
902 
903 	return 0;
904 }
905 
906 static void __get_seccomp_filter(struct seccomp_filter *filter)
907 {
908 	refcount_inc(&filter->refs);
909 }
910 
911 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
912 void get_seccomp_filter(struct task_struct *tsk)
913 {
914 	struct seccomp_filter *orig = tsk->seccomp.filter;
915 	if (!orig)
916 		return;
917 	__get_seccomp_filter(orig);
918 	refcount_inc(&orig->users);
919 }
920 
921 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason)
922 {
923 	clear_siginfo(info);
924 	info->si_signo = SIGSYS;
925 	info->si_code = SYS_SECCOMP;
926 	info->si_call_addr = (void __user *)KSTK_EIP(current);
927 	info->si_errno = reason;
928 	info->si_arch = syscall_get_arch(current);
929 	info->si_syscall = syscall;
930 }
931 
932 /**
933  * seccomp_send_sigsys - signals the task to allow in-process syscall emulation
934  * @syscall: syscall number to send to userland
935  * @reason: filter-supplied reason code to send to userland (via si_errno)
936  *
937  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
938  */
939 static void seccomp_send_sigsys(int syscall, int reason)
940 {
941 	struct kernel_siginfo info;
942 	seccomp_init_siginfo(&info, syscall, reason);
943 	force_sig_info(&info);
944 }
945 #endif	/* CONFIG_SECCOMP_FILTER */
946 
947 /* For use with seccomp_actions_logged */
948 #define SECCOMP_LOG_KILL_PROCESS	(1 << 0)
949 #define SECCOMP_LOG_KILL_THREAD		(1 << 1)
950 #define SECCOMP_LOG_TRAP		(1 << 2)
951 #define SECCOMP_LOG_ERRNO		(1 << 3)
952 #define SECCOMP_LOG_TRACE		(1 << 4)
953 #define SECCOMP_LOG_LOG			(1 << 5)
954 #define SECCOMP_LOG_ALLOW		(1 << 6)
955 #define SECCOMP_LOG_USER_NOTIF		(1 << 7)
956 
957 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
958 				    SECCOMP_LOG_KILL_THREAD  |
959 				    SECCOMP_LOG_TRAP  |
960 				    SECCOMP_LOG_ERRNO |
961 				    SECCOMP_LOG_USER_NOTIF |
962 				    SECCOMP_LOG_TRACE |
963 				    SECCOMP_LOG_LOG;
964 
965 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
966 			       bool requested)
967 {
968 	bool log = false;
969 
970 	switch (action) {
971 	case SECCOMP_RET_ALLOW:
972 		break;
973 	case SECCOMP_RET_TRAP:
974 		log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
975 		break;
976 	case SECCOMP_RET_ERRNO:
977 		log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
978 		break;
979 	case SECCOMP_RET_TRACE:
980 		log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
981 		break;
982 	case SECCOMP_RET_USER_NOTIF:
983 		log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
984 		break;
985 	case SECCOMP_RET_LOG:
986 		log = seccomp_actions_logged & SECCOMP_LOG_LOG;
987 		break;
988 	case SECCOMP_RET_KILL_THREAD:
989 		log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
990 		break;
991 	case SECCOMP_RET_KILL_PROCESS:
992 	default:
993 		log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
994 	}
995 
996 	/*
997 	 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
998 	 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
999 	 * any action from being logged by removing the action name from the
1000 	 * seccomp_actions_logged sysctl.
1001 	 */
1002 	if (!log)
1003 		return;
1004 
1005 	audit_seccomp(syscall, signr, action);
1006 }
1007 
1008 /*
1009  * Secure computing mode 1 allows only read/write/exit/sigreturn.
1010  * To be fully secure this must be combined with rlimit
1011  * to limit the stack allocations too.
1012  */
1013 static const int mode1_syscalls[] = {
1014 	__NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
1015 	-1, /* negative terminated */
1016 };
1017 
1018 static void __secure_computing_strict(int this_syscall)
1019 {
1020 	const int *allowed_syscalls = mode1_syscalls;
1021 #ifdef CONFIG_COMPAT
1022 	if (in_compat_syscall())
1023 		allowed_syscalls = get_compat_mode1_syscalls();
1024 #endif
1025 	do {
1026 		if (*allowed_syscalls == this_syscall)
1027 			return;
1028 	} while (*++allowed_syscalls != -1);
1029 
1030 #ifdef SECCOMP_DEBUG
1031 	dump_stack();
1032 #endif
1033 	seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1034 	do_exit(SIGKILL);
1035 }
1036 
1037 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
1038 void secure_computing_strict(int this_syscall)
1039 {
1040 	int mode = current->seccomp.mode;
1041 
1042 	if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1043 	    unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1044 		return;
1045 
1046 	if (mode == SECCOMP_MODE_DISABLED)
1047 		return;
1048 	else if (mode == SECCOMP_MODE_STRICT)
1049 		__secure_computing_strict(this_syscall);
1050 	else
1051 		BUG();
1052 }
1053 #else
1054 
1055 #ifdef CONFIG_SECCOMP_FILTER
1056 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1057 {
1058 	/*
1059 	 * Note: overflow is ok here, the id just needs to be unique per
1060 	 * filter.
1061 	 */
1062 	lockdep_assert_held(&filter->notify_lock);
1063 	return filter->notif->next_id++;
1064 }
1065 
1066 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd)
1067 {
1068 	/*
1069 	 * Remove the notification, and reset the list pointers, indicating
1070 	 * that it has been handled.
1071 	 */
1072 	list_del_init(&addfd->list);
1073 	addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
1074 	complete(&addfd->completion);
1075 }
1076 
1077 static int seccomp_do_user_notification(int this_syscall,
1078 					struct seccomp_filter *match,
1079 					const struct seccomp_data *sd)
1080 {
1081 	int err;
1082 	u32 flags = 0;
1083 	long ret = 0;
1084 	struct seccomp_knotif n = {};
1085 	struct seccomp_kaddfd *addfd, *tmp;
1086 
1087 	mutex_lock(&match->notify_lock);
1088 	err = -ENOSYS;
1089 	if (!match->notif)
1090 		goto out;
1091 
1092 	n.task = current;
1093 	n.state = SECCOMP_NOTIFY_INIT;
1094 	n.data = sd;
1095 	n.id = seccomp_next_notify_id(match);
1096 	init_completion(&n.ready);
1097 	list_add(&n.list, &match->notif->notifications);
1098 	INIT_LIST_HEAD(&n.addfd);
1099 
1100 	up(&match->notif->request);
1101 	wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1102 	mutex_unlock(&match->notify_lock);
1103 
1104 	/*
1105 	 * This is where we wait for a reply from userspace.
1106 	 */
1107 wait:
1108 	err = wait_for_completion_interruptible(&n.ready);
1109 	mutex_lock(&match->notify_lock);
1110 	if (err == 0) {
1111 		/* Check if we were woken up by a addfd message */
1112 		addfd = list_first_entry_or_null(&n.addfd,
1113 						 struct seccomp_kaddfd, list);
1114 		if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) {
1115 			seccomp_handle_addfd(addfd);
1116 			mutex_unlock(&match->notify_lock);
1117 			goto wait;
1118 		}
1119 		ret = n.val;
1120 		err = n.error;
1121 		flags = n.flags;
1122 	}
1123 
1124 	/* If there were any pending addfd calls, clear them out */
1125 	list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1126 		/* The process went away before we got a chance to handle it */
1127 		addfd->ret = -ESRCH;
1128 		list_del_init(&addfd->list);
1129 		complete(&addfd->completion);
1130 	}
1131 
1132 	/*
1133 	 * Note that it's possible the listener died in between the time when
1134 	 * we were notified of a response (or a signal) and when we were able to
1135 	 * re-acquire the lock, so only delete from the list if the
1136 	 * notification actually exists.
1137 	 *
1138 	 * Also note that this test is only valid because there's no way to
1139 	 * *reattach* to a notifier right now. If one is added, we'll need to
1140 	 * keep track of the notif itself and make sure they match here.
1141 	 */
1142 	if (match->notif)
1143 		list_del(&n.list);
1144 out:
1145 	mutex_unlock(&match->notify_lock);
1146 
1147 	/* Userspace requests to continue the syscall. */
1148 	if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1149 		return 0;
1150 
1151 	syscall_set_return_value(current, current_pt_regs(),
1152 				 err, ret);
1153 	return -1;
1154 }
1155 
1156 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1157 			    const bool recheck_after_trace)
1158 {
1159 	u32 filter_ret, action;
1160 	struct seccomp_filter *match = NULL;
1161 	int data;
1162 	struct seccomp_data sd_local;
1163 
1164 	/*
1165 	 * Make sure that any changes to mode from another thread have
1166 	 * been seen after TIF_SECCOMP was seen.
1167 	 */
1168 	rmb();
1169 
1170 	if (!sd) {
1171 		populate_seccomp_data(&sd_local);
1172 		sd = &sd_local;
1173 	}
1174 
1175 	filter_ret = seccomp_run_filters(sd, &match);
1176 	data = filter_ret & SECCOMP_RET_DATA;
1177 	action = filter_ret & SECCOMP_RET_ACTION_FULL;
1178 
1179 	switch (action) {
1180 	case SECCOMP_RET_ERRNO:
1181 		/* Set low-order bits as an errno, capped at MAX_ERRNO. */
1182 		if (data > MAX_ERRNO)
1183 			data = MAX_ERRNO;
1184 		syscall_set_return_value(current, current_pt_regs(),
1185 					 -data, 0);
1186 		goto skip;
1187 
1188 	case SECCOMP_RET_TRAP:
1189 		/* Show the handler the original registers. */
1190 		syscall_rollback(current, current_pt_regs());
1191 		/* Let the filter pass back 16 bits of data. */
1192 		seccomp_send_sigsys(this_syscall, data);
1193 		goto skip;
1194 
1195 	case SECCOMP_RET_TRACE:
1196 		/* We've been put in this state by the ptracer already. */
1197 		if (recheck_after_trace)
1198 			return 0;
1199 
1200 		/* ENOSYS these calls if there is no tracer attached. */
1201 		if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1202 			syscall_set_return_value(current,
1203 						 current_pt_regs(),
1204 						 -ENOSYS, 0);
1205 			goto skip;
1206 		}
1207 
1208 		/* Allow the BPF to provide the event message */
1209 		ptrace_event(PTRACE_EVENT_SECCOMP, data);
1210 		/*
1211 		 * The delivery of a fatal signal during event
1212 		 * notification may silently skip tracer notification,
1213 		 * which could leave us with a potentially unmodified
1214 		 * syscall that the tracer would have liked to have
1215 		 * changed. Since the process is about to die, we just
1216 		 * force the syscall to be skipped and let the signal
1217 		 * kill the process and correctly handle any tracer exit
1218 		 * notifications.
1219 		 */
1220 		if (fatal_signal_pending(current))
1221 			goto skip;
1222 		/* Check if the tracer forced the syscall to be skipped. */
1223 		this_syscall = syscall_get_nr(current, current_pt_regs());
1224 		if (this_syscall < 0)
1225 			goto skip;
1226 
1227 		/*
1228 		 * Recheck the syscall, since it may have changed. This
1229 		 * intentionally uses a NULL struct seccomp_data to force
1230 		 * a reload of all registers. This does not goto skip since
1231 		 * a skip would have already been reported.
1232 		 */
1233 		if (__seccomp_filter(this_syscall, NULL, true))
1234 			return -1;
1235 
1236 		return 0;
1237 
1238 	case SECCOMP_RET_USER_NOTIF:
1239 		if (seccomp_do_user_notification(this_syscall, match, sd))
1240 			goto skip;
1241 
1242 		return 0;
1243 
1244 	case SECCOMP_RET_LOG:
1245 		seccomp_log(this_syscall, 0, action, true);
1246 		return 0;
1247 
1248 	case SECCOMP_RET_ALLOW:
1249 		/*
1250 		 * Note that the "match" filter will always be NULL for
1251 		 * this action since SECCOMP_RET_ALLOW is the starting
1252 		 * state in seccomp_run_filters().
1253 		 */
1254 		return 0;
1255 
1256 	case SECCOMP_RET_KILL_THREAD:
1257 	case SECCOMP_RET_KILL_PROCESS:
1258 	default:
1259 		seccomp_log(this_syscall, SIGSYS, action, true);
1260 		/* Dump core only if this is the last remaining thread. */
1261 		if (action != SECCOMP_RET_KILL_THREAD ||
1262 		    get_nr_threads(current) == 1) {
1263 			kernel_siginfo_t info;
1264 
1265 			/* Show the original registers in the dump. */
1266 			syscall_rollback(current, current_pt_regs());
1267 			/* Trigger a manual coredump since do_exit skips it. */
1268 			seccomp_init_siginfo(&info, this_syscall, data);
1269 			do_coredump(&info);
1270 		}
1271 		if (action == SECCOMP_RET_KILL_THREAD)
1272 			do_exit(SIGSYS);
1273 		else
1274 			do_group_exit(SIGSYS);
1275 	}
1276 
1277 	unreachable();
1278 
1279 skip:
1280 	seccomp_log(this_syscall, 0, action, match ? match->log : false);
1281 	return -1;
1282 }
1283 #else
1284 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1285 			    const bool recheck_after_trace)
1286 {
1287 	BUG();
1288 }
1289 #endif
1290 
1291 int __secure_computing(const struct seccomp_data *sd)
1292 {
1293 	int mode = current->seccomp.mode;
1294 	int this_syscall;
1295 
1296 	if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1297 	    unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1298 		return 0;
1299 
1300 	this_syscall = sd ? sd->nr :
1301 		syscall_get_nr(current, current_pt_regs());
1302 
1303 	switch (mode) {
1304 	case SECCOMP_MODE_STRICT:
1305 		__secure_computing_strict(this_syscall);  /* may call do_exit */
1306 		return 0;
1307 	case SECCOMP_MODE_FILTER:
1308 		return __seccomp_filter(this_syscall, sd, false);
1309 	default:
1310 		BUG();
1311 	}
1312 }
1313 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1314 
1315 long prctl_get_seccomp(void)
1316 {
1317 	return current->seccomp.mode;
1318 }
1319 
1320 /**
1321  * seccomp_set_mode_strict: internal function for setting strict seccomp
1322  *
1323  * Once current->seccomp.mode is non-zero, it may not be changed.
1324  *
1325  * Returns 0 on success or -EINVAL on failure.
1326  */
1327 static long seccomp_set_mode_strict(void)
1328 {
1329 	const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1330 	long ret = -EINVAL;
1331 
1332 	spin_lock_irq(&current->sighand->siglock);
1333 
1334 	if (!seccomp_may_assign_mode(seccomp_mode))
1335 		goto out;
1336 
1337 #ifdef TIF_NOTSC
1338 	disable_TSC();
1339 #endif
1340 	seccomp_assign_mode(current, seccomp_mode, 0);
1341 	ret = 0;
1342 
1343 out:
1344 	spin_unlock_irq(&current->sighand->siglock);
1345 
1346 	return ret;
1347 }
1348 
1349 #ifdef CONFIG_SECCOMP_FILTER
1350 static void seccomp_notify_free(struct seccomp_filter *filter)
1351 {
1352 	kfree(filter->notif);
1353 	filter->notif = NULL;
1354 }
1355 
1356 static void seccomp_notify_detach(struct seccomp_filter *filter)
1357 {
1358 	struct seccomp_knotif *knotif;
1359 
1360 	if (!filter)
1361 		return;
1362 
1363 	mutex_lock(&filter->notify_lock);
1364 
1365 	/*
1366 	 * If this file is being closed because e.g. the task who owned it
1367 	 * died, let's wake everyone up who was waiting on us.
1368 	 */
1369 	list_for_each_entry(knotif, &filter->notif->notifications, list) {
1370 		if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1371 			continue;
1372 
1373 		knotif->state = SECCOMP_NOTIFY_REPLIED;
1374 		knotif->error = -ENOSYS;
1375 		knotif->val = 0;
1376 
1377 		/*
1378 		 * We do not need to wake up any pending addfd messages, as
1379 		 * the notifier will do that for us, as this just looks
1380 		 * like a standard reply.
1381 		 */
1382 		complete(&knotif->ready);
1383 	}
1384 
1385 	seccomp_notify_free(filter);
1386 	mutex_unlock(&filter->notify_lock);
1387 }
1388 
1389 static int seccomp_notify_release(struct inode *inode, struct file *file)
1390 {
1391 	struct seccomp_filter *filter = file->private_data;
1392 
1393 	seccomp_notify_detach(filter);
1394 	__put_seccomp_filter(filter);
1395 	return 0;
1396 }
1397 
1398 /* must be called with notif_lock held */
1399 static inline struct seccomp_knotif *
1400 find_notification(struct seccomp_filter *filter, u64 id)
1401 {
1402 	struct seccomp_knotif *cur;
1403 
1404 	lockdep_assert_held(&filter->notify_lock);
1405 
1406 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1407 		if (cur->id == id)
1408 			return cur;
1409 	}
1410 
1411 	return NULL;
1412 }
1413 
1414 
1415 static long seccomp_notify_recv(struct seccomp_filter *filter,
1416 				void __user *buf)
1417 {
1418 	struct seccomp_knotif *knotif = NULL, *cur;
1419 	struct seccomp_notif unotif;
1420 	ssize_t ret;
1421 
1422 	/* Verify that we're not given garbage to keep struct extensible. */
1423 	ret = check_zeroed_user(buf, sizeof(unotif));
1424 	if (ret < 0)
1425 		return ret;
1426 	if (!ret)
1427 		return -EINVAL;
1428 
1429 	memset(&unotif, 0, sizeof(unotif));
1430 
1431 	ret = down_interruptible(&filter->notif->request);
1432 	if (ret < 0)
1433 		return ret;
1434 
1435 	mutex_lock(&filter->notify_lock);
1436 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1437 		if (cur->state == SECCOMP_NOTIFY_INIT) {
1438 			knotif = cur;
1439 			break;
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * If we didn't find a notification, it could be that the task was
1445 	 * interrupted by a fatal signal between the time we were woken and
1446 	 * when we were able to acquire the rw lock.
1447 	 */
1448 	if (!knotif) {
1449 		ret = -ENOENT;
1450 		goto out;
1451 	}
1452 
1453 	unotif.id = knotif->id;
1454 	unotif.pid = task_pid_vnr(knotif->task);
1455 	unotif.data = *(knotif->data);
1456 
1457 	knotif->state = SECCOMP_NOTIFY_SENT;
1458 	wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1459 	ret = 0;
1460 out:
1461 	mutex_unlock(&filter->notify_lock);
1462 
1463 	if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1464 		ret = -EFAULT;
1465 
1466 		/*
1467 		 * Userspace screwed up. To make sure that we keep this
1468 		 * notification alive, let's reset it back to INIT. It
1469 		 * may have died when we released the lock, so we need to make
1470 		 * sure it's still around.
1471 		 */
1472 		mutex_lock(&filter->notify_lock);
1473 		knotif = find_notification(filter, unotif.id);
1474 		if (knotif) {
1475 			knotif->state = SECCOMP_NOTIFY_INIT;
1476 			up(&filter->notif->request);
1477 		}
1478 		mutex_unlock(&filter->notify_lock);
1479 	}
1480 
1481 	return ret;
1482 }
1483 
1484 static long seccomp_notify_send(struct seccomp_filter *filter,
1485 				void __user *buf)
1486 {
1487 	struct seccomp_notif_resp resp = {};
1488 	struct seccomp_knotif *knotif;
1489 	long ret;
1490 
1491 	if (copy_from_user(&resp, buf, sizeof(resp)))
1492 		return -EFAULT;
1493 
1494 	if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1495 		return -EINVAL;
1496 
1497 	if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1498 	    (resp.error || resp.val))
1499 		return -EINVAL;
1500 
1501 	ret = mutex_lock_interruptible(&filter->notify_lock);
1502 	if (ret < 0)
1503 		return ret;
1504 
1505 	knotif = find_notification(filter, resp.id);
1506 	if (!knotif) {
1507 		ret = -ENOENT;
1508 		goto out;
1509 	}
1510 
1511 	/* Allow exactly one reply. */
1512 	if (knotif->state != SECCOMP_NOTIFY_SENT) {
1513 		ret = -EINPROGRESS;
1514 		goto out;
1515 	}
1516 
1517 	ret = 0;
1518 	knotif->state = SECCOMP_NOTIFY_REPLIED;
1519 	knotif->error = resp.error;
1520 	knotif->val = resp.val;
1521 	knotif->flags = resp.flags;
1522 	complete(&knotif->ready);
1523 out:
1524 	mutex_unlock(&filter->notify_lock);
1525 	return ret;
1526 }
1527 
1528 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1529 				    void __user *buf)
1530 {
1531 	struct seccomp_knotif *knotif;
1532 	u64 id;
1533 	long ret;
1534 
1535 	if (copy_from_user(&id, buf, sizeof(id)))
1536 		return -EFAULT;
1537 
1538 	ret = mutex_lock_interruptible(&filter->notify_lock);
1539 	if (ret < 0)
1540 		return ret;
1541 
1542 	knotif = find_notification(filter, id);
1543 	if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1544 		ret = 0;
1545 	else
1546 		ret = -ENOENT;
1547 
1548 	mutex_unlock(&filter->notify_lock);
1549 	return ret;
1550 }
1551 
1552 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1553 				 struct seccomp_notif_addfd __user *uaddfd,
1554 				 unsigned int size)
1555 {
1556 	struct seccomp_notif_addfd addfd;
1557 	struct seccomp_knotif *knotif;
1558 	struct seccomp_kaddfd kaddfd;
1559 	int ret;
1560 
1561 	BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1562 	BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1563 
1564 	if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1565 		return -EINVAL;
1566 
1567 	ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1568 	if (ret)
1569 		return ret;
1570 
1571 	if (addfd.newfd_flags & ~O_CLOEXEC)
1572 		return -EINVAL;
1573 
1574 	if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD)
1575 		return -EINVAL;
1576 
1577 	if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1578 		return -EINVAL;
1579 
1580 	kaddfd.file = fget(addfd.srcfd);
1581 	if (!kaddfd.file)
1582 		return -EBADF;
1583 
1584 	kaddfd.flags = addfd.newfd_flags;
1585 	kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ?
1586 		    addfd.newfd : -1;
1587 	init_completion(&kaddfd.completion);
1588 
1589 	ret = mutex_lock_interruptible(&filter->notify_lock);
1590 	if (ret < 0)
1591 		goto out;
1592 
1593 	knotif = find_notification(filter, addfd.id);
1594 	if (!knotif) {
1595 		ret = -ENOENT;
1596 		goto out_unlock;
1597 	}
1598 
1599 	/*
1600 	 * We do not want to allow for FD injection to occur before the
1601 	 * notification has been picked up by a userspace handler, or after
1602 	 * the notification has been replied to.
1603 	 */
1604 	if (knotif->state != SECCOMP_NOTIFY_SENT) {
1605 		ret = -EINPROGRESS;
1606 		goto out_unlock;
1607 	}
1608 
1609 	list_add(&kaddfd.list, &knotif->addfd);
1610 	complete(&knotif->ready);
1611 	mutex_unlock(&filter->notify_lock);
1612 
1613 	/* Now we wait for it to be processed or be interrupted */
1614 	ret = wait_for_completion_interruptible(&kaddfd.completion);
1615 	if (ret == 0) {
1616 		/*
1617 		 * We had a successful completion. The other side has already
1618 		 * removed us from the addfd queue, and
1619 		 * wait_for_completion_interruptible has a memory barrier upon
1620 		 * success that lets us read this value directly without
1621 		 * locking.
1622 		 */
1623 		ret = kaddfd.ret;
1624 		goto out;
1625 	}
1626 
1627 	mutex_lock(&filter->notify_lock);
1628 	/*
1629 	 * Even though we were woken up by a signal and not a successful
1630 	 * completion, a completion may have happened in the mean time.
1631 	 *
1632 	 * We need to check again if the addfd request has been handled,
1633 	 * and if not, we will remove it from the queue.
1634 	 */
1635 	if (list_empty(&kaddfd.list))
1636 		ret = kaddfd.ret;
1637 	else
1638 		list_del(&kaddfd.list);
1639 
1640 out_unlock:
1641 	mutex_unlock(&filter->notify_lock);
1642 out:
1643 	fput(kaddfd.file);
1644 
1645 	return ret;
1646 }
1647 
1648 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1649 				 unsigned long arg)
1650 {
1651 	struct seccomp_filter *filter = file->private_data;
1652 	void __user *buf = (void __user *)arg;
1653 
1654 	/* Fixed-size ioctls */
1655 	switch (cmd) {
1656 	case SECCOMP_IOCTL_NOTIF_RECV:
1657 		return seccomp_notify_recv(filter, buf);
1658 	case SECCOMP_IOCTL_NOTIF_SEND:
1659 		return seccomp_notify_send(filter, buf);
1660 	case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1661 	case SECCOMP_IOCTL_NOTIF_ID_VALID:
1662 		return seccomp_notify_id_valid(filter, buf);
1663 	}
1664 
1665 	/* Extensible Argument ioctls */
1666 #define EA_IOCTL(cmd)	((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1667 	switch (EA_IOCTL(cmd)) {
1668 	case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1669 		return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1670 	default:
1671 		return -EINVAL;
1672 	}
1673 }
1674 
1675 static __poll_t seccomp_notify_poll(struct file *file,
1676 				    struct poll_table_struct *poll_tab)
1677 {
1678 	struct seccomp_filter *filter = file->private_data;
1679 	__poll_t ret = 0;
1680 	struct seccomp_knotif *cur;
1681 
1682 	poll_wait(file, &filter->wqh, poll_tab);
1683 
1684 	if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1685 		return EPOLLERR;
1686 
1687 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1688 		if (cur->state == SECCOMP_NOTIFY_INIT)
1689 			ret |= EPOLLIN | EPOLLRDNORM;
1690 		if (cur->state == SECCOMP_NOTIFY_SENT)
1691 			ret |= EPOLLOUT | EPOLLWRNORM;
1692 		if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1693 			break;
1694 	}
1695 
1696 	mutex_unlock(&filter->notify_lock);
1697 
1698 	if (refcount_read(&filter->users) == 0)
1699 		ret |= EPOLLHUP;
1700 
1701 	return ret;
1702 }
1703 
1704 static const struct file_operations seccomp_notify_ops = {
1705 	.poll = seccomp_notify_poll,
1706 	.release = seccomp_notify_release,
1707 	.unlocked_ioctl = seccomp_notify_ioctl,
1708 	.compat_ioctl = seccomp_notify_ioctl,
1709 };
1710 
1711 static struct file *init_listener(struct seccomp_filter *filter)
1712 {
1713 	struct file *ret;
1714 
1715 	ret = ERR_PTR(-ENOMEM);
1716 	filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1717 	if (!filter->notif)
1718 		goto out;
1719 
1720 	sema_init(&filter->notif->request, 0);
1721 	filter->notif->next_id = get_random_u64();
1722 	INIT_LIST_HEAD(&filter->notif->notifications);
1723 
1724 	ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1725 				 filter, O_RDWR);
1726 	if (IS_ERR(ret))
1727 		goto out_notif;
1728 
1729 	/* The file has a reference to it now */
1730 	__get_seccomp_filter(filter);
1731 
1732 out_notif:
1733 	if (IS_ERR(ret))
1734 		seccomp_notify_free(filter);
1735 out:
1736 	return ret;
1737 }
1738 
1739 /*
1740  * Does @new_child have a listener while an ancestor also has a listener?
1741  * If so, we'll want to reject this filter.
1742  * This only has to be tested for the current process, even in the TSYNC case,
1743  * because TSYNC installs @child with the same parent on all threads.
1744  * Note that @new_child is not hooked up to its parent at this point yet, so
1745  * we use current->seccomp.filter.
1746  */
1747 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1748 {
1749 	struct seccomp_filter *cur;
1750 
1751 	/* must be protected against concurrent TSYNC */
1752 	lockdep_assert_held(&current->sighand->siglock);
1753 
1754 	if (!new_child->notif)
1755 		return false;
1756 	for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1757 		if (cur->notif)
1758 			return true;
1759 	}
1760 
1761 	return false;
1762 }
1763 
1764 /**
1765  * seccomp_set_mode_filter: internal function for setting seccomp filter
1766  * @flags:  flags to change filter behavior
1767  * @filter: struct sock_fprog containing filter
1768  *
1769  * This function may be called repeatedly to install additional filters.
1770  * Every filter successfully installed will be evaluated (in reverse order)
1771  * for each system call the task makes.
1772  *
1773  * Once current->seccomp.mode is non-zero, it may not be changed.
1774  *
1775  * Returns 0 on success or -EINVAL on failure.
1776  */
1777 static long seccomp_set_mode_filter(unsigned int flags,
1778 				    const char __user *filter)
1779 {
1780 	const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1781 	struct seccomp_filter *prepared = NULL;
1782 	long ret = -EINVAL;
1783 	int listener = -1;
1784 	struct file *listener_f = NULL;
1785 
1786 	/* Validate flags. */
1787 	if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1788 		return -EINVAL;
1789 
1790 	/*
1791 	 * In the successful case, NEW_LISTENER returns the new listener fd.
1792 	 * But in the failure case, TSYNC returns the thread that died. If you
1793 	 * combine these two flags, there's no way to tell whether something
1794 	 * succeeded or failed. So, let's disallow this combination if the user
1795 	 * has not explicitly requested no errors from TSYNC.
1796 	 */
1797 	if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1798 	    (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1799 	    ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1800 		return -EINVAL;
1801 
1802 	/* Prepare the new filter before holding any locks. */
1803 	prepared = seccomp_prepare_user_filter(filter);
1804 	if (IS_ERR(prepared))
1805 		return PTR_ERR(prepared);
1806 
1807 	if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1808 		listener = get_unused_fd_flags(O_CLOEXEC);
1809 		if (listener < 0) {
1810 			ret = listener;
1811 			goto out_free;
1812 		}
1813 
1814 		listener_f = init_listener(prepared);
1815 		if (IS_ERR(listener_f)) {
1816 			put_unused_fd(listener);
1817 			ret = PTR_ERR(listener_f);
1818 			goto out_free;
1819 		}
1820 	}
1821 
1822 	/*
1823 	 * Make sure we cannot change seccomp or nnp state via TSYNC
1824 	 * while another thread is in the middle of calling exec.
1825 	 */
1826 	if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1827 	    mutex_lock_killable(&current->signal->cred_guard_mutex))
1828 		goto out_put_fd;
1829 
1830 	spin_lock_irq(&current->sighand->siglock);
1831 
1832 	if (!seccomp_may_assign_mode(seccomp_mode))
1833 		goto out;
1834 
1835 	if (has_duplicate_listener(prepared)) {
1836 		ret = -EBUSY;
1837 		goto out;
1838 	}
1839 
1840 	ret = seccomp_attach_filter(flags, prepared);
1841 	if (ret)
1842 		goto out;
1843 	/* Do not free the successfully attached filter. */
1844 	prepared = NULL;
1845 
1846 	seccomp_assign_mode(current, seccomp_mode, flags);
1847 out:
1848 	spin_unlock_irq(&current->sighand->siglock);
1849 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1850 		mutex_unlock(&current->signal->cred_guard_mutex);
1851 out_put_fd:
1852 	if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1853 		if (ret) {
1854 			listener_f->private_data = NULL;
1855 			fput(listener_f);
1856 			put_unused_fd(listener);
1857 			seccomp_notify_detach(prepared);
1858 		} else {
1859 			fd_install(listener, listener_f);
1860 			ret = listener;
1861 		}
1862 	}
1863 out_free:
1864 	seccomp_filter_free(prepared);
1865 	return ret;
1866 }
1867 #else
1868 static inline long seccomp_set_mode_filter(unsigned int flags,
1869 					   const char __user *filter)
1870 {
1871 	return -EINVAL;
1872 }
1873 #endif
1874 
1875 static long seccomp_get_action_avail(const char __user *uaction)
1876 {
1877 	u32 action;
1878 
1879 	if (copy_from_user(&action, uaction, sizeof(action)))
1880 		return -EFAULT;
1881 
1882 	switch (action) {
1883 	case SECCOMP_RET_KILL_PROCESS:
1884 	case SECCOMP_RET_KILL_THREAD:
1885 	case SECCOMP_RET_TRAP:
1886 	case SECCOMP_RET_ERRNO:
1887 	case SECCOMP_RET_USER_NOTIF:
1888 	case SECCOMP_RET_TRACE:
1889 	case SECCOMP_RET_LOG:
1890 	case SECCOMP_RET_ALLOW:
1891 		break;
1892 	default:
1893 		return -EOPNOTSUPP;
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 static long seccomp_get_notif_sizes(void __user *usizes)
1900 {
1901 	struct seccomp_notif_sizes sizes = {
1902 		.seccomp_notif = sizeof(struct seccomp_notif),
1903 		.seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1904 		.seccomp_data = sizeof(struct seccomp_data),
1905 	};
1906 
1907 	if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1908 		return -EFAULT;
1909 
1910 	return 0;
1911 }
1912 
1913 /* Common entry point for both prctl and syscall. */
1914 static long do_seccomp(unsigned int op, unsigned int flags,
1915 		       void __user *uargs)
1916 {
1917 	switch (op) {
1918 	case SECCOMP_SET_MODE_STRICT:
1919 		if (flags != 0 || uargs != NULL)
1920 			return -EINVAL;
1921 		return seccomp_set_mode_strict();
1922 	case SECCOMP_SET_MODE_FILTER:
1923 		return seccomp_set_mode_filter(flags, uargs);
1924 	case SECCOMP_GET_ACTION_AVAIL:
1925 		if (flags != 0)
1926 			return -EINVAL;
1927 
1928 		return seccomp_get_action_avail(uargs);
1929 	case SECCOMP_GET_NOTIF_SIZES:
1930 		if (flags != 0)
1931 			return -EINVAL;
1932 
1933 		return seccomp_get_notif_sizes(uargs);
1934 	default:
1935 		return -EINVAL;
1936 	}
1937 }
1938 
1939 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1940 			 void __user *, uargs)
1941 {
1942 	return do_seccomp(op, flags, uargs);
1943 }
1944 
1945 /**
1946  * prctl_set_seccomp: configures current->seccomp.mode
1947  * @seccomp_mode: requested mode to use
1948  * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1949  *
1950  * Returns 0 on success or -EINVAL on failure.
1951  */
1952 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1953 {
1954 	unsigned int op;
1955 	void __user *uargs;
1956 
1957 	switch (seccomp_mode) {
1958 	case SECCOMP_MODE_STRICT:
1959 		op = SECCOMP_SET_MODE_STRICT;
1960 		/*
1961 		 * Setting strict mode through prctl always ignored filter,
1962 		 * so make sure it is always NULL here to pass the internal
1963 		 * check in do_seccomp().
1964 		 */
1965 		uargs = NULL;
1966 		break;
1967 	case SECCOMP_MODE_FILTER:
1968 		op = SECCOMP_SET_MODE_FILTER;
1969 		uargs = filter;
1970 		break;
1971 	default:
1972 		return -EINVAL;
1973 	}
1974 
1975 	/* prctl interface doesn't have flags, so they are always zero. */
1976 	return do_seccomp(op, 0, uargs);
1977 }
1978 
1979 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
1980 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
1981 					     unsigned long filter_off)
1982 {
1983 	struct seccomp_filter *orig, *filter;
1984 	unsigned long count;
1985 
1986 	/*
1987 	 * Note: this is only correct because the caller should be the (ptrace)
1988 	 * tracer of the task, otherwise lock_task_sighand is needed.
1989 	 */
1990 	spin_lock_irq(&task->sighand->siglock);
1991 
1992 	if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
1993 		spin_unlock_irq(&task->sighand->siglock);
1994 		return ERR_PTR(-EINVAL);
1995 	}
1996 
1997 	orig = task->seccomp.filter;
1998 	__get_seccomp_filter(orig);
1999 	spin_unlock_irq(&task->sighand->siglock);
2000 
2001 	count = 0;
2002 	for (filter = orig; filter; filter = filter->prev)
2003 		count++;
2004 
2005 	if (filter_off >= count) {
2006 		filter = ERR_PTR(-ENOENT);
2007 		goto out;
2008 	}
2009 
2010 	count -= filter_off;
2011 	for (filter = orig; filter && count > 1; filter = filter->prev)
2012 		count--;
2013 
2014 	if (WARN_ON(count != 1 || !filter)) {
2015 		filter = ERR_PTR(-ENOENT);
2016 		goto out;
2017 	}
2018 
2019 	__get_seccomp_filter(filter);
2020 
2021 out:
2022 	__put_seccomp_filter(orig);
2023 	return filter;
2024 }
2025 
2026 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2027 			void __user *data)
2028 {
2029 	struct seccomp_filter *filter;
2030 	struct sock_fprog_kern *fprog;
2031 	long ret;
2032 
2033 	if (!capable(CAP_SYS_ADMIN) ||
2034 	    current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2035 		return -EACCES;
2036 	}
2037 
2038 	filter = get_nth_filter(task, filter_off);
2039 	if (IS_ERR(filter))
2040 		return PTR_ERR(filter);
2041 
2042 	fprog = filter->prog->orig_prog;
2043 	if (!fprog) {
2044 		/* This must be a new non-cBPF filter, since we save
2045 		 * every cBPF filter's orig_prog above when
2046 		 * CONFIG_CHECKPOINT_RESTORE is enabled.
2047 		 */
2048 		ret = -EMEDIUMTYPE;
2049 		goto out;
2050 	}
2051 
2052 	ret = fprog->len;
2053 	if (!data)
2054 		goto out;
2055 
2056 	if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2057 		ret = -EFAULT;
2058 
2059 out:
2060 	__put_seccomp_filter(filter);
2061 	return ret;
2062 }
2063 
2064 long seccomp_get_metadata(struct task_struct *task,
2065 			  unsigned long size, void __user *data)
2066 {
2067 	long ret;
2068 	struct seccomp_filter *filter;
2069 	struct seccomp_metadata kmd = {};
2070 
2071 	if (!capable(CAP_SYS_ADMIN) ||
2072 	    current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2073 		return -EACCES;
2074 	}
2075 
2076 	size = min_t(unsigned long, size, sizeof(kmd));
2077 
2078 	if (size < sizeof(kmd.filter_off))
2079 		return -EINVAL;
2080 
2081 	if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2082 		return -EFAULT;
2083 
2084 	filter = get_nth_filter(task, kmd.filter_off);
2085 	if (IS_ERR(filter))
2086 		return PTR_ERR(filter);
2087 
2088 	if (filter->log)
2089 		kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2090 
2091 	ret = size;
2092 	if (copy_to_user(data, &kmd, size))
2093 		ret = -EFAULT;
2094 
2095 	__put_seccomp_filter(filter);
2096 	return ret;
2097 }
2098 #endif
2099 
2100 #ifdef CONFIG_SYSCTL
2101 
2102 /* Human readable action names for friendly sysctl interaction */
2103 #define SECCOMP_RET_KILL_PROCESS_NAME	"kill_process"
2104 #define SECCOMP_RET_KILL_THREAD_NAME	"kill_thread"
2105 #define SECCOMP_RET_TRAP_NAME		"trap"
2106 #define SECCOMP_RET_ERRNO_NAME		"errno"
2107 #define SECCOMP_RET_USER_NOTIF_NAME	"user_notif"
2108 #define SECCOMP_RET_TRACE_NAME		"trace"
2109 #define SECCOMP_RET_LOG_NAME		"log"
2110 #define SECCOMP_RET_ALLOW_NAME		"allow"
2111 
2112 static const char seccomp_actions_avail[] =
2113 				SECCOMP_RET_KILL_PROCESS_NAME	" "
2114 				SECCOMP_RET_KILL_THREAD_NAME	" "
2115 				SECCOMP_RET_TRAP_NAME		" "
2116 				SECCOMP_RET_ERRNO_NAME		" "
2117 				SECCOMP_RET_USER_NOTIF_NAME     " "
2118 				SECCOMP_RET_TRACE_NAME		" "
2119 				SECCOMP_RET_LOG_NAME		" "
2120 				SECCOMP_RET_ALLOW_NAME;
2121 
2122 struct seccomp_log_name {
2123 	u32		log;
2124 	const char	*name;
2125 };
2126 
2127 static const struct seccomp_log_name seccomp_log_names[] = {
2128 	{ SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2129 	{ SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2130 	{ SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2131 	{ SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2132 	{ SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2133 	{ SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2134 	{ SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2135 	{ SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2136 	{ }
2137 };
2138 
2139 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2140 					      u32 actions_logged,
2141 					      const char *sep)
2142 {
2143 	const struct seccomp_log_name *cur;
2144 	bool append_sep = false;
2145 
2146 	for (cur = seccomp_log_names; cur->name && size; cur++) {
2147 		ssize_t ret;
2148 
2149 		if (!(actions_logged & cur->log))
2150 			continue;
2151 
2152 		if (append_sep) {
2153 			ret = strscpy(names, sep, size);
2154 			if (ret < 0)
2155 				return false;
2156 
2157 			names += ret;
2158 			size -= ret;
2159 		} else
2160 			append_sep = true;
2161 
2162 		ret = strscpy(names, cur->name, size);
2163 		if (ret < 0)
2164 			return false;
2165 
2166 		names += ret;
2167 		size -= ret;
2168 	}
2169 
2170 	return true;
2171 }
2172 
2173 static bool seccomp_action_logged_from_name(u32 *action_logged,
2174 					    const char *name)
2175 {
2176 	const struct seccomp_log_name *cur;
2177 
2178 	for (cur = seccomp_log_names; cur->name; cur++) {
2179 		if (!strcmp(cur->name, name)) {
2180 			*action_logged = cur->log;
2181 			return true;
2182 		}
2183 	}
2184 
2185 	return false;
2186 }
2187 
2188 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2189 {
2190 	char *name;
2191 
2192 	*actions_logged = 0;
2193 	while ((name = strsep(&names, " ")) && *name) {
2194 		u32 action_logged = 0;
2195 
2196 		if (!seccomp_action_logged_from_name(&action_logged, name))
2197 			return false;
2198 
2199 		*actions_logged |= action_logged;
2200 	}
2201 
2202 	return true;
2203 }
2204 
2205 static int read_actions_logged(struct ctl_table *ro_table, void __user *buffer,
2206 			       size_t *lenp, loff_t *ppos)
2207 {
2208 	char names[sizeof(seccomp_actions_avail)];
2209 	struct ctl_table table;
2210 
2211 	memset(names, 0, sizeof(names));
2212 
2213 	if (!seccomp_names_from_actions_logged(names, sizeof(names),
2214 					       seccomp_actions_logged, " "))
2215 		return -EINVAL;
2216 
2217 	table = *ro_table;
2218 	table.data = names;
2219 	table.maxlen = sizeof(names);
2220 	return proc_dostring(&table, 0, buffer, lenp, ppos);
2221 }
2222 
2223 static int write_actions_logged(struct ctl_table *ro_table, void __user *buffer,
2224 				size_t *lenp, loff_t *ppos, u32 *actions_logged)
2225 {
2226 	char names[sizeof(seccomp_actions_avail)];
2227 	struct ctl_table table;
2228 	int ret;
2229 
2230 	if (!capable(CAP_SYS_ADMIN))
2231 		return -EPERM;
2232 
2233 	memset(names, 0, sizeof(names));
2234 
2235 	table = *ro_table;
2236 	table.data = names;
2237 	table.maxlen = sizeof(names);
2238 	ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2239 	if (ret)
2240 		return ret;
2241 
2242 	if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2243 		return -EINVAL;
2244 
2245 	if (*actions_logged & SECCOMP_LOG_ALLOW)
2246 		return -EINVAL;
2247 
2248 	seccomp_actions_logged = *actions_logged;
2249 	return 0;
2250 }
2251 
2252 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2253 				 int ret)
2254 {
2255 	char names[sizeof(seccomp_actions_avail)];
2256 	char old_names[sizeof(seccomp_actions_avail)];
2257 	const char *new = names;
2258 	const char *old = old_names;
2259 
2260 	if (!audit_enabled)
2261 		return;
2262 
2263 	memset(names, 0, sizeof(names));
2264 	memset(old_names, 0, sizeof(old_names));
2265 
2266 	if (ret)
2267 		new = "?";
2268 	else if (!actions_logged)
2269 		new = "(none)";
2270 	else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2271 						    actions_logged, ","))
2272 		new = "?";
2273 
2274 	if (!old_actions_logged)
2275 		old = "(none)";
2276 	else if (!seccomp_names_from_actions_logged(old_names,
2277 						    sizeof(old_names),
2278 						    old_actions_logged, ","))
2279 		old = "?";
2280 
2281 	return audit_seccomp_actions_logged(new, old, !ret);
2282 }
2283 
2284 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2285 					  void *buffer, size_t *lenp,
2286 					  loff_t *ppos)
2287 {
2288 	int ret;
2289 
2290 	if (write) {
2291 		u32 actions_logged = 0;
2292 		u32 old_actions_logged = seccomp_actions_logged;
2293 
2294 		ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2295 					   &actions_logged);
2296 		audit_actions_logged(actions_logged, old_actions_logged, ret);
2297 	} else
2298 		ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2299 
2300 	return ret;
2301 }
2302 
2303 static struct ctl_path seccomp_sysctl_path[] = {
2304 	{ .procname = "kernel", },
2305 	{ .procname = "seccomp", },
2306 	{ }
2307 };
2308 
2309 static struct ctl_table seccomp_sysctl_table[] = {
2310 	{
2311 		.procname	= "actions_avail",
2312 		.data		= (void *) &seccomp_actions_avail,
2313 		.maxlen		= sizeof(seccomp_actions_avail),
2314 		.mode		= 0444,
2315 		.proc_handler	= proc_dostring,
2316 	},
2317 	{
2318 		.procname	= "actions_logged",
2319 		.mode		= 0644,
2320 		.proc_handler	= seccomp_actions_logged_handler,
2321 	},
2322 	{ }
2323 };
2324 
2325 static int __init seccomp_sysctl_init(void)
2326 {
2327 	struct ctl_table_header *hdr;
2328 
2329 	hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2330 	if (!hdr)
2331 		pr_warn("sysctl registration failed\n");
2332 	else
2333 		kmemleak_not_leak(hdr);
2334 
2335 	return 0;
2336 }
2337 
2338 device_initcall(seccomp_sysctl_init)
2339 
2340 #endif /* CONFIG_SYSCTL */
2341 
2342 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
2343 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */
2344 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name,
2345 					const void *bitmap, size_t bitmap_size)
2346 {
2347 	int nr;
2348 
2349 	for (nr = 0; nr < bitmap_size; nr++) {
2350 		bool cached = test_bit(nr, bitmap);
2351 		char *status = cached ? "ALLOW" : "FILTER";
2352 
2353 		seq_printf(m, "%s %d %s\n", name, nr, status);
2354 	}
2355 }
2356 
2357 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns,
2358 			   struct pid *pid, struct task_struct *task)
2359 {
2360 	struct seccomp_filter *f;
2361 	unsigned long flags;
2362 
2363 	/*
2364 	 * We don't want some sandboxed process to know what their seccomp
2365 	 * filters consist of.
2366 	 */
2367 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
2368 		return -EACCES;
2369 
2370 	if (!lock_task_sighand(task, &flags))
2371 		return -ESRCH;
2372 
2373 	f = READ_ONCE(task->seccomp.filter);
2374 	if (!f) {
2375 		unlock_task_sighand(task, &flags);
2376 		return 0;
2377 	}
2378 
2379 	/* prevent filter from being freed while we are printing it */
2380 	__get_seccomp_filter(f);
2381 	unlock_task_sighand(task, &flags);
2382 
2383 	proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME,
2384 				    f->cache.allow_native,
2385 				    SECCOMP_ARCH_NATIVE_NR);
2386 
2387 #ifdef SECCOMP_ARCH_COMPAT
2388 	proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME,
2389 				    f->cache.allow_compat,
2390 				    SECCOMP_ARCH_COMPAT_NR);
2391 #endif /* SECCOMP_ARCH_COMPAT */
2392 
2393 	__put_seccomp_filter(f);
2394 	return 0;
2395 }
2396 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */
2397