1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 33 #include <asm/syscall.h> 34 #endif 35 36 #ifdef CONFIG_SECCOMP_FILTER 37 #include <linux/file.h> 38 #include <linux/filter.h> 39 #include <linux/pid.h> 40 #include <linux/ptrace.h> 41 #include <linux/security.h> 42 #include <linux/tracehook.h> 43 #include <linux/uaccess.h> 44 #include <linux/anon_inodes.h> 45 #include <linux/lockdep.h> 46 47 /* 48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 49 * wrong direction flag in the ioctl number. This is the broken one, 50 * which the kernel needs to keep supporting until all userspaces stop 51 * using the wrong command number. 52 */ 53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 54 55 enum notify_state { 56 SECCOMP_NOTIFY_INIT, 57 SECCOMP_NOTIFY_SENT, 58 SECCOMP_NOTIFY_REPLIED, 59 }; 60 61 struct seccomp_knotif { 62 /* The struct pid of the task whose filter triggered the notification */ 63 struct task_struct *task; 64 65 /* The "cookie" for this request; this is unique for this filter. */ 66 u64 id; 67 68 /* 69 * The seccomp data. This pointer is valid the entire time this 70 * notification is active, since it comes from __seccomp_filter which 71 * eclipses the entire lifecycle here. 72 */ 73 const struct seccomp_data *data; 74 75 /* 76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 77 * struct seccomp_knotif is created and starts out in INIT. Once the 78 * handler reads the notification off of an FD, it transitions to SENT. 79 * If a signal is received the state transitions back to INIT and 80 * another message is sent. When the userspace handler replies, state 81 * transitions to REPLIED. 82 */ 83 enum notify_state state; 84 85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 86 int error; 87 long val; 88 u32 flags; 89 90 /* 91 * Signals when this has changed states, such as the listener 92 * dying, a new seccomp addfd message, or changing to REPLIED 93 */ 94 struct completion ready; 95 96 struct list_head list; 97 98 /* outstanding addfd requests */ 99 struct list_head addfd; 100 }; 101 102 /** 103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 104 * 105 * @file: A reference to the file to install in the other task 106 * @fd: The fd number to install it at. If the fd number is -1, it means the 107 * installing process should allocate the fd as normal. 108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 109 * is allowed. 110 * @ret: The return value of the installing process. It is set to the fd num 111 * upon success (>= 0). 112 * @completion: Indicates that the installing process has completed fd 113 * installation, or gone away (either due to successful 114 * reply, or signal) 115 * 116 */ 117 struct seccomp_kaddfd { 118 struct file *file; 119 int fd; 120 unsigned int flags; 121 122 /* To only be set on reply */ 123 int ret; 124 struct completion completion; 125 struct list_head list; 126 }; 127 128 /** 129 * struct notification - container for seccomp userspace notifications. Since 130 * most seccomp filters will not have notification listeners attached and this 131 * structure is fairly large, we store the notification-specific stuff in a 132 * separate structure. 133 * 134 * @request: A semaphore that users of this notification can wait on for 135 * changes. Actual reads and writes are still controlled with 136 * filter->notify_lock. 137 * @next_id: The id of the next request. 138 * @notifications: A list of struct seccomp_knotif elements. 139 */ 140 struct notification { 141 struct semaphore request; 142 u64 next_id; 143 struct list_head notifications; 144 }; 145 146 #ifdef SECCOMP_ARCH_NATIVE 147 /** 148 * struct action_cache - per-filter cache of seccomp actions per 149 * arch/syscall pair 150 * 151 * @allow_native: A bitmap where each bit represents whether the 152 * filter will always allow the syscall, for the 153 * native architecture. 154 * @allow_compat: A bitmap where each bit represents whether the 155 * filter will always allow the syscall, for the 156 * compat architecture. 157 */ 158 struct action_cache { 159 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 160 #ifdef SECCOMP_ARCH_COMPAT 161 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 162 #endif 163 }; 164 #else 165 struct action_cache { }; 166 167 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 168 const struct seccomp_data *sd) 169 { 170 return false; 171 } 172 173 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 174 { 175 } 176 #endif /* SECCOMP_ARCH_NATIVE */ 177 178 /** 179 * struct seccomp_filter - container for seccomp BPF programs 180 * 181 * @refs: Reference count to manage the object lifetime. 182 * A filter's reference count is incremented for each directly 183 * attached task, once for the dependent filter, and if 184 * requested for the user notifier. When @refs reaches zero, 185 * the filter can be freed. 186 * @users: A filter's @users count is incremented for each directly 187 * attached task (filter installation, fork(), thread_sync), 188 * and once for the dependent filter (tracked in filter->prev). 189 * When it reaches zero it indicates that no direct or indirect 190 * users of that filter exist. No new tasks can get associated with 191 * this filter after reaching 0. The @users count is always smaller 192 * or equal to @refs. Hence, reaching 0 for @users does not mean 193 * the filter can be freed. 194 * @cache: cache of arch/syscall mappings to actions 195 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 196 * @prev: points to a previously installed, or inherited, filter 197 * @prog: the BPF program to evaluate 198 * @notif: the struct that holds all notification related information 199 * @notify_lock: A lock for all notification-related accesses. 200 * @wqh: A wait queue for poll if a notifier is in use. 201 * 202 * seccomp_filter objects are organized in a tree linked via the @prev 203 * pointer. For any task, it appears to be a singly-linked list starting 204 * with current->seccomp.filter, the most recently attached or inherited filter. 205 * However, multiple filters may share a @prev node, by way of fork(), which 206 * results in a unidirectional tree existing in memory. This is similar to 207 * how namespaces work. 208 * 209 * seccomp_filter objects should never be modified after being attached 210 * to a task_struct (other than @refs). 211 */ 212 struct seccomp_filter { 213 refcount_t refs; 214 refcount_t users; 215 bool log; 216 struct action_cache cache; 217 struct seccomp_filter *prev; 218 struct bpf_prog *prog; 219 struct notification *notif; 220 struct mutex notify_lock; 221 wait_queue_head_t wqh; 222 }; 223 224 /* Limit any path through the tree to 256KB worth of instructions. */ 225 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 226 227 /* 228 * Endianness is explicitly ignored and left for BPF program authors to manage 229 * as per the specific architecture. 230 */ 231 static void populate_seccomp_data(struct seccomp_data *sd) 232 { 233 /* 234 * Instead of using current_pt_reg(), we're already doing the work 235 * to safely fetch "current", so just use "task" everywhere below. 236 */ 237 struct task_struct *task = current; 238 struct pt_regs *regs = task_pt_regs(task); 239 unsigned long args[6]; 240 241 sd->nr = syscall_get_nr(task, regs); 242 sd->arch = syscall_get_arch(task); 243 syscall_get_arguments(task, regs, args); 244 sd->args[0] = args[0]; 245 sd->args[1] = args[1]; 246 sd->args[2] = args[2]; 247 sd->args[3] = args[3]; 248 sd->args[4] = args[4]; 249 sd->args[5] = args[5]; 250 sd->instruction_pointer = KSTK_EIP(task); 251 } 252 253 /** 254 * seccomp_check_filter - verify seccomp filter code 255 * @filter: filter to verify 256 * @flen: length of filter 257 * 258 * Takes a previously checked filter (by bpf_check_classic) and 259 * redirects all filter code that loads struct sk_buff data 260 * and related data through seccomp_bpf_load. It also 261 * enforces length and alignment checking of those loads. 262 * 263 * Returns 0 if the rule set is legal or -EINVAL if not. 264 */ 265 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 266 { 267 int pc; 268 for (pc = 0; pc < flen; pc++) { 269 struct sock_filter *ftest = &filter[pc]; 270 u16 code = ftest->code; 271 u32 k = ftest->k; 272 273 switch (code) { 274 case BPF_LD | BPF_W | BPF_ABS: 275 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 276 /* 32-bit aligned and not out of bounds. */ 277 if (k >= sizeof(struct seccomp_data) || k & 3) 278 return -EINVAL; 279 continue; 280 case BPF_LD | BPF_W | BPF_LEN: 281 ftest->code = BPF_LD | BPF_IMM; 282 ftest->k = sizeof(struct seccomp_data); 283 continue; 284 case BPF_LDX | BPF_W | BPF_LEN: 285 ftest->code = BPF_LDX | BPF_IMM; 286 ftest->k = sizeof(struct seccomp_data); 287 continue; 288 /* Explicitly include allowed calls. */ 289 case BPF_RET | BPF_K: 290 case BPF_RET | BPF_A: 291 case BPF_ALU | BPF_ADD | BPF_K: 292 case BPF_ALU | BPF_ADD | BPF_X: 293 case BPF_ALU | BPF_SUB | BPF_K: 294 case BPF_ALU | BPF_SUB | BPF_X: 295 case BPF_ALU | BPF_MUL | BPF_K: 296 case BPF_ALU | BPF_MUL | BPF_X: 297 case BPF_ALU | BPF_DIV | BPF_K: 298 case BPF_ALU | BPF_DIV | BPF_X: 299 case BPF_ALU | BPF_AND | BPF_K: 300 case BPF_ALU | BPF_AND | BPF_X: 301 case BPF_ALU | BPF_OR | BPF_K: 302 case BPF_ALU | BPF_OR | BPF_X: 303 case BPF_ALU | BPF_XOR | BPF_K: 304 case BPF_ALU | BPF_XOR | BPF_X: 305 case BPF_ALU | BPF_LSH | BPF_K: 306 case BPF_ALU | BPF_LSH | BPF_X: 307 case BPF_ALU | BPF_RSH | BPF_K: 308 case BPF_ALU | BPF_RSH | BPF_X: 309 case BPF_ALU | BPF_NEG: 310 case BPF_LD | BPF_IMM: 311 case BPF_LDX | BPF_IMM: 312 case BPF_MISC | BPF_TAX: 313 case BPF_MISC | BPF_TXA: 314 case BPF_LD | BPF_MEM: 315 case BPF_LDX | BPF_MEM: 316 case BPF_ST: 317 case BPF_STX: 318 case BPF_JMP | BPF_JA: 319 case BPF_JMP | BPF_JEQ | BPF_K: 320 case BPF_JMP | BPF_JEQ | BPF_X: 321 case BPF_JMP | BPF_JGE | BPF_K: 322 case BPF_JMP | BPF_JGE | BPF_X: 323 case BPF_JMP | BPF_JGT | BPF_K: 324 case BPF_JMP | BPF_JGT | BPF_X: 325 case BPF_JMP | BPF_JSET | BPF_K: 326 case BPF_JMP | BPF_JSET | BPF_X: 327 continue; 328 default: 329 return -EINVAL; 330 } 331 } 332 return 0; 333 } 334 335 #ifdef SECCOMP_ARCH_NATIVE 336 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 337 size_t bitmap_size, 338 int syscall_nr) 339 { 340 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 341 return false; 342 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 343 344 return test_bit(syscall_nr, bitmap); 345 } 346 347 /** 348 * seccomp_cache_check_allow - lookup seccomp cache 349 * @sfilter: The seccomp filter 350 * @sd: The seccomp data to lookup the cache with 351 * 352 * Returns true if the seccomp_data is cached and allowed. 353 */ 354 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 355 const struct seccomp_data *sd) 356 { 357 int syscall_nr = sd->nr; 358 const struct action_cache *cache = &sfilter->cache; 359 360 #ifndef SECCOMP_ARCH_COMPAT 361 /* A native-only architecture doesn't need to check sd->arch. */ 362 return seccomp_cache_check_allow_bitmap(cache->allow_native, 363 SECCOMP_ARCH_NATIVE_NR, 364 syscall_nr); 365 #else 366 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 367 return seccomp_cache_check_allow_bitmap(cache->allow_native, 368 SECCOMP_ARCH_NATIVE_NR, 369 syscall_nr); 370 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 371 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 372 SECCOMP_ARCH_COMPAT_NR, 373 syscall_nr); 374 #endif /* SECCOMP_ARCH_COMPAT */ 375 376 WARN_ON_ONCE(true); 377 return false; 378 } 379 #endif /* SECCOMP_ARCH_NATIVE */ 380 381 /** 382 * seccomp_run_filters - evaluates all seccomp filters against @sd 383 * @sd: optional seccomp data to be passed to filters 384 * @match: stores struct seccomp_filter that resulted in the return value, 385 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 386 * be unchanged. 387 * 388 * Returns valid seccomp BPF response codes. 389 */ 390 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 391 static u32 seccomp_run_filters(const struct seccomp_data *sd, 392 struct seccomp_filter **match) 393 { 394 u32 ret = SECCOMP_RET_ALLOW; 395 /* Make sure cross-thread synced filter points somewhere sane. */ 396 struct seccomp_filter *f = 397 READ_ONCE(current->seccomp.filter); 398 399 /* Ensure unexpected behavior doesn't result in failing open. */ 400 if (WARN_ON(f == NULL)) 401 return SECCOMP_RET_KILL_PROCESS; 402 403 if (seccomp_cache_check_allow(f, sd)) 404 return SECCOMP_RET_ALLOW; 405 406 /* 407 * All filters in the list are evaluated and the lowest BPF return 408 * value always takes priority (ignoring the DATA). 409 */ 410 for (; f; f = f->prev) { 411 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 412 413 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 414 ret = cur_ret; 415 *match = f; 416 } 417 } 418 return ret; 419 } 420 #endif /* CONFIG_SECCOMP_FILTER */ 421 422 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 423 { 424 assert_spin_locked(¤t->sighand->siglock); 425 426 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 427 return false; 428 429 return true; 430 } 431 432 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 433 434 static inline void seccomp_assign_mode(struct task_struct *task, 435 unsigned long seccomp_mode, 436 unsigned long flags) 437 { 438 assert_spin_locked(&task->sighand->siglock); 439 440 task->seccomp.mode = seccomp_mode; 441 /* 442 * Make sure TIF_SECCOMP cannot be set before the mode (and 443 * filter) is set. 444 */ 445 smp_mb__before_atomic(); 446 /* Assume default seccomp processes want spec flaw mitigation. */ 447 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 448 arch_seccomp_spec_mitigate(task); 449 set_tsk_thread_flag(task, TIF_SECCOMP); 450 } 451 452 #ifdef CONFIG_SECCOMP_FILTER 453 /* Returns 1 if the parent is an ancestor of the child. */ 454 static int is_ancestor(struct seccomp_filter *parent, 455 struct seccomp_filter *child) 456 { 457 /* NULL is the root ancestor. */ 458 if (parent == NULL) 459 return 1; 460 for (; child; child = child->prev) 461 if (child == parent) 462 return 1; 463 return 0; 464 } 465 466 /** 467 * seccomp_can_sync_threads: checks if all threads can be synchronized 468 * 469 * Expects sighand and cred_guard_mutex locks to be held. 470 * 471 * Returns 0 on success, -ve on error, or the pid of a thread which was 472 * either not in the correct seccomp mode or did not have an ancestral 473 * seccomp filter. 474 */ 475 static inline pid_t seccomp_can_sync_threads(void) 476 { 477 struct task_struct *thread, *caller; 478 479 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 480 assert_spin_locked(¤t->sighand->siglock); 481 482 /* Validate all threads being eligible for synchronization. */ 483 caller = current; 484 for_each_thread(caller, thread) { 485 pid_t failed; 486 487 /* Skip current, since it is initiating the sync. */ 488 if (thread == caller) 489 continue; 490 491 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 492 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 493 is_ancestor(thread->seccomp.filter, 494 caller->seccomp.filter))) 495 continue; 496 497 /* Return the first thread that cannot be synchronized. */ 498 failed = task_pid_vnr(thread); 499 /* If the pid cannot be resolved, then return -ESRCH */ 500 if (WARN_ON(failed == 0)) 501 failed = -ESRCH; 502 return failed; 503 } 504 505 return 0; 506 } 507 508 static inline void seccomp_filter_free(struct seccomp_filter *filter) 509 { 510 if (filter) { 511 bpf_prog_destroy(filter->prog); 512 kfree(filter); 513 } 514 } 515 516 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 517 { 518 while (orig && refcount_dec_and_test(&orig->users)) { 519 if (waitqueue_active(&orig->wqh)) 520 wake_up_poll(&orig->wqh, EPOLLHUP); 521 orig = orig->prev; 522 } 523 } 524 525 static void __put_seccomp_filter(struct seccomp_filter *orig) 526 { 527 /* Clean up single-reference branches iteratively. */ 528 while (orig && refcount_dec_and_test(&orig->refs)) { 529 struct seccomp_filter *freeme = orig; 530 orig = orig->prev; 531 seccomp_filter_free(freeme); 532 } 533 } 534 535 static void __seccomp_filter_release(struct seccomp_filter *orig) 536 { 537 /* Notify about any unused filters in the task's former filter tree. */ 538 __seccomp_filter_orphan(orig); 539 /* Finally drop all references to the task's former tree. */ 540 __put_seccomp_filter(orig); 541 } 542 543 /** 544 * seccomp_filter_release - Detach the task from its filter tree, 545 * drop its reference count, and notify 546 * about unused filters 547 * 548 * This function should only be called when the task is exiting as 549 * it detaches it from its filter tree. As such, READ_ONCE() and 550 * barriers are not needed here, as would normally be needed. 551 */ 552 void seccomp_filter_release(struct task_struct *tsk) 553 { 554 struct seccomp_filter *orig = tsk->seccomp.filter; 555 556 /* We are effectively holding the siglock by not having any sighand. */ 557 WARN_ON(tsk->sighand != NULL); 558 559 /* Detach task from its filter tree. */ 560 tsk->seccomp.filter = NULL; 561 __seccomp_filter_release(orig); 562 } 563 564 /** 565 * seccomp_sync_threads: sets all threads to use current's filter 566 * 567 * Expects sighand and cred_guard_mutex locks to be held, and for 568 * seccomp_can_sync_threads() to have returned success already 569 * without dropping the locks. 570 * 571 */ 572 static inline void seccomp_sync_threads(unsigned long flags) 573 { 574 struct task_struct *thread, *caller; 575 576 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 577 assert_spin_locked(¤t->sighand->siglock); 578 579 /* Synchronize all threads. */ 580 caller = current; 581 for_each_thread(caller, thread) { 582 /* Skip current, since it needs no changes. */ 583 if (thread == caller) 584 continue; 585 586 /* Get a task reference for the new leaf node. */ 587 get_seccomp_filter(caller); 588 589 /* 590 * Drop the task reference to the shared ancestor since 591 * current's path will hold a reference. (This also 592 * allows a put before the assignment.) 593 */ 594 __seccomp_filter_release(thread->seccomp.filter); 595 596 /* Make our new filter tree visible. */ 597 smp_store_release(&thread->seccomp.filter, 598 caller->seccomp.filter); 599 atomic_set(&thread->seccomp.filter_count, 600 atomic_read(&thread->seccomp.filter_count)); 601 602 /* 603 * Don't let an unprivileged task work around 604 * the no_new_privs restriction by creating 605 * a thread that sets it up, enters seccomp, 606 * then dies. 607 */ 608 if (task_no_new_privs(caller)) 609 task_set_no_new_privs(thread); 610 611 /* 612 * Opt the other thread into seccomp if needed. 613 * As threads are considered to be trust-realm 614 * equivalent (see ptrace_may_access), it is safe to 615 * allow one thread to transition the other. 616 */ 617 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 618 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 619 flags); 620 } 621 } 622 623 /** 624 * seccomp_prepare_filter: Prepares a seccomp filter for use. 625 * @fprog: BPF program to install 626 * 627 * Returns filter on success or an ERR_PTR on failure. 628 */ 629 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 630 { 631 struct seccomp_filter *sfilter; 632 int ret; 633 const bool save_orig = 634 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 635 true; 636 #else 637 false; 638 #endif 639 640 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 641 return ERR_PTR(-EINVAL); 642 643 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 644 645 /* 646 * Installing a seccomp filter requires that the task has 647 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 648 * This avoids scenarios where unprivileged tasks can affect the 649 * behavior of privileged children. 650 */ 651 if (!task_no_new_privs(current) && 652 security_capable(current_cred(), current_user_ns(), 653 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) != 0) 654 return ERR_PTR(-EACCES); 655 656 /* Allocate a new seccomp_filter */ 657 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 658 if (!sfilter) 659 return ERR_PTR(-ENOMEM); 660 661 mutex_init(&sfilter->notify_lock); 662 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 663 seccomp_check_filter, save_orig); 664 if (ret < 0) { 665 kfree(sfilter); 666 return ERR_PTR(ret); 667 } 668 669 refcount_set(&sfilter->refs, 1); 670 refcount_set(&sfilter->users, 1); 671 init_waitqueue_head(&sfilter->wqh); 672 673 return sfilter; 674 } 675 676 /** 677 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 678 * @user_filter: pointer to the user data containing a sock_fprog. 679 * 680 * Returns 0 on success and non-zero otherwise. 681 */ 682 static struct seccomp_filter * 683 seccomp_prepare_user_filter(const char __user *user_filter) 684 { 685 struct sock_fprog fprog; 686 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 687 688 #ifdef CONFIG_COMPAT 689 if (in_compat_syscall()) { 690 struct compat_sock_fprog fprog32; 691 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 692 goto out; 693 fprog.len = fprog32.len; 694 fprog.filter = compat_ptr(fprog32.filter); 695 } else /* falls through to the if below. */ 696 #endif 697 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 698 goto out; 699 filter = seccomp_prepare_filter(&fprog); 700 out: 701 return filter; 702 } 703 704 #ifdef SECCOMP_ARCH_NATIVE 705 /** 706 * seccomp_is_const_allow - check if filter is constant allow with given data 707 * @fprog: The BPF programs 708 * @sd: The seccomp data to check against, only syscall number and arch 709 * number are considered constant. 710 */ 711 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 712 struct seccomp_data *sd) 713 { 714 unsigned int reg_value = 0; 715 unsigned int pc; 716 bool op_res; 717 718 if (WARN_ON_ONCE(!fprog)) 719 return false; 720 721 for (pc = 0; pc < fprog->len; pc++) { 722 struct sock_filter *insn = &fprog->filter[pc]; 723 u16 code = insn->code; 724 u32 k = insn->k; 725 726 switch (code) { 727 case BPF_LD | BPF_W | BPF_ABS: 728 switch (k) { 729 case offsetof(struct seccomp_data, nr): 730 reg_value = sd->nr; 731 break; 732 case offsetof(struct seccomp_data, arch): 733 reg_value = sd->arch; 734 break; 735 default: 736 /* can't optimize (non-constant value load) */ 737 return false; 738 } 739 break; 740 case BPF_RET | BPF_K: 741 /* reached return with constant values only, check allow */ 742 return k == SECCOMP_RET_ALLOW; 743 case BPF_JMP | BPF_JA: 744 pc += insn->k; 745 break; 746 case BPF_JMP | BPF_JEQ | BPF_K: 747 case BPF_JMP | BPF_JGE | BPF_K: 748 case BPF_JMP | BPF_JGT | BPF_K: 749 case BPF_JMP | BPF_JSET | BPF_K: 750 switch (BPF_OP(code)) { 751 case BPF_JEQ: 752 op_res = reg_value == k; 753 break; 754 case BPF_JGE: 755 op_res = reg_value >= k; 756 break; 757 case BPF_JGT: 758 op_res = reg_value > k; 759 break; 760 case BPF_JSET: 761 op_res = !!(reg_value & k); 762 break; 763 default: 764 /* can't optimize (unknown jump) */ 765 return false; 766 } 767 768 pc += op_res ? insn->jt : insn->jf; 769 break; 770 case BPF_ALU | BPF_AND | BPF_K: 771 reg_value &= k; 772 break; 773 default: 774 /* can't optimize (unknown insn) */ 775 return false; 776 } 777 } 778 779 /* ran off the end of the filter?! */ 780 WARN_ON(1); 781 return false; 782 } 783 784 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 785 void *bitmap, const void *bitmap_prev, 786 size_t bitmap_size, int arch) 787 { 788 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 789 struct seccomp_data sd; 790 int nr; 791 792 if (bitmap_prev) { 793 /* The new filter must be as restrictive as the last. */ 794 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 795 } else { 796 /* Before any filters, all syscalls are always allowed. */ 797 bitmap_fill(bitmap, bitmap_size); 798 } 799 800 for (nr = 0; nr < bitmap_size; nr++) { 801 /* No bitmap change: not a cacheable action. */ 802 if (!test_bit(nr, bitmap)) 803 continue; 804 805 sd.nr = nr; 806 sd.arch = arch; 807 808 /* No bitmap change: continue to always allow. */ 809 if (seccomp_is_const_allow(fprog, &sd)) 810 continue; 811 812 /* 813 * Not a cacheable action: always run filters. 814 * atomic clear_bit() not needed, filter not visible yet. 815 */ 816 __clear_bit(nr, bitmap); 817 } 818 } 819 820 /** 821 * seccomp_cache_prepare - emulate the filter to find cachable syscalls 822 * @sfilter: The seccomp filter 823 * 824 * Returns 0 if successful or -errno if error occurred. 825 */ 826 static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 827 { 828 struct action_cache *cache = &sfilter->cache; 829 const struct action_cache *cache_prev = 830 sfilter->prev ? &sfilter->prev->cache : NULL; 831 832 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 833 cache_prev ? cache_prev->allow_native : NULL, 834 SECCOMP_ARCH_NATIVE_NR, 835 SECCOMP_ARCH_NATIVE); 836 837 #ifdef SECCOMP_ARCH_COMPAT 838 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 839 cache_prev ? cache_prev->allow_compat : NULL, 840 SECCOMP_ARCH_COMPAT_NR, 841 SECCOMP_ARCH_COMPAT); 842 #endif /* SECCOMP_ARCH_COMPAT */ 843 } 844 #endif /* SECCOMP_ARCH_NATIVE */ 845 846 /** 847 * seccomp_attach_filter: validate and attach filter 848 * @flags: flags to change filter behavior 849 * @filter: seccomp filter to add to the current process 850 * 851 * Caller must be holding current->sighand->siglock lock. 852 * 853 * Returns 0 on success, -ve on error, or 854 * - in TSYNC mode: the pid of a thread which was either not in the correct 855 * seccomp mode or did not have an ancestral seccomp filter 856 * - in NEW_LISTENER mode: the fd of the new listener 857 */ 858 static long seccomp_attach_filter(unsigned int flags, 859 struct seccomp_filter *filter) 860 { 861 unsigned long total_insns; 862 struct seccomp_filter *walker; 863 864 assert_spin_locked(¤t->sighand->siglock); 865 866 /* Validate resulting filter length. */ 867 total_insns = filter->prog->len; 868 for (walker = current->seccomp.filter; walker; walker = walker->prev) 869 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 870 if (total_insns > MAX_INSNS_PER_PATH) 871 return -ENOMEM; 872 873 /* If thread sync has been requested, check that it is possible. */ 874 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 875 int ret; 876 877 ret = seccomp_can_sync_threads(); 878 if (ret) { 879 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 880 return -ESRCH; 881 else 882 return ret; 883 } 884 } 885 886 /* Set log flag, if present. */ 887 if (flags & SECCOMP_FILTER_FLAG_LOG) 888 filter->log = true; 889 890 /* 891 * If there is an existing filter, make it the prev and don't drop its 892 * task reference. 893 */ 894 filter->prev = current->seccomp.filter; 895 seccomp_cache_prepare(filter); 896 current->seccomp.filter = filter; 897 atomic_inc(¤t->seccomp.filter_count); 898 899 /* Now that the new filter is in place, synchronize to all threads. */ 900 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 901 seccomp_sync_threads(flags); 902 903 return 0; 904 } 905 906 static void __get_seccomp_filter(struct seccomp_filter *filter) 907 { 908 refcount_inc(&filter->refs); 909 } 910 911 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 912 void get_seccomp_filter(struct task_struct *tsk) 913 { 914 struct seccomp_filter *orig = tsk->seccomp.filter; 915 if (!orig) 916 return; 917 __get_seccomp_filter(orig); 918 refcount_inc(&orig->users); 919 } 920 921 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason) 922 { 923 clear_siginfo(info); 924 info->si_signo = SIGSYS; 925 info->si_code = SYS_SECCOMP; 926 info->si_call_addr = (void __user *)KSTK_EIP(current); 927 info->si_errno = reason; 928 info->si_arch = syscall_get_arch(current); 929 info->si_syscall = syscall; 930 } 931 932 /** 933 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation 934 * @syscall: syscall number to send to userland 935 * @reason: filter-supplied reason code to send to userland (via si_errno) 936 * 937 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 938 */ 939 static void seccomp_send_sigsys(int syscall, int reason) 940 { 941 struct kernel_siginfo info; 942 seccomp_init_siginfo(&info, syscall, reason); 943 force_sig_info(&info); 944 } 945 #endif /* CONFIG_SECCOMP_FILTER */ 946 947 /* For use with seccomp_actions_logged */ 948 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 949 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 950 #define SECCOMP_LOG_TRAP (1 << 2) 951 #define SECCOMP_LOG_ERRNO (1 << 3) 952 #define SECCOMP_LOG_TRACE (1 << 4) 953 #define SECCOMP_LOG_LOG (1 << 5) 954 #define SECCOMP_LOG_ALLOW (1 << 6) 955 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 956 957 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 958 SECCOMP_LOG_KILL_THREAD | 959 SECCOMP_LOG_TRAP | 960 SECCOMP_LOG_ERRNO | 961 SECCOMP_LOG_USER_NOTIF | 962 SECCOMP_LOG_TRACE | 963 SECCOMP_LOG_LOG; 964 965 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 966 bool requested) 967 { 968 bool log = false; 969 970 switch (action) { 971 case SECCOMP_RET_ALLOW: 972 break; 973 case SECCOMP_RET_TRAP: 974 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 975 break; 976 case SECCOMP_RET_ERRNO: 977 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 978 break; 979 case SECCOMP_RET_TRACE: 980 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 981 break; 982 case SECCOMP_RET_USER_NOTIF: 983 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 984 break; 985 case SECCOMP_RET_LOG: 986 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 987 break; 988 case SECCOMP_RET_KILL_THREAD: 989 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 990 break; 991 case SECCOMP_RET_KILL_PROCESS: 992 default: 993 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 994 } 995 996 /* 997 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 998 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 999 * any action from being logged by removing the action name from the 1000 * seccomp_actions_logged sysctl. 1001 */ 1002 if (!log) 1003 return; 1004 1005 audit_seccomp(syscall, signr, action); 1006 } 1007 1008 /* 1009 * Secure computing mode 1 allows only read/write/exit/sigreturn. 1010 * To be fully secure this must be combined with rlimit 1011 * to limit the stack allocations too. 1012 */ 1013 static const int mode1_syscalls[] = { 1014 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 1015 -1, /* negative terminated */ 1016 }; 1017 1018 static void __secure_computing_strict(int this_syscall) 1019 { 1020 const int *allowed_syscalls = mode1_syscalls; 1021 #ifdef CONFIG_COMPAT 1022 if (in_compat_syscall()) 1023 allowed_syscalls = get_compat_mode1_syscalls(); 1024 #endif 1025 do { 1026 if (*allowed_syscalls == this_syscall) 1027 return; 1028 } while (*++allowed_syscalls != -1); 1029 1030 #ifdef SECCOMP_DEBUG 1031 dump_stack(); 1032 #endif 1033 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1034 do_exit(SIGKILL); 1035 } 1036 1037 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1038 void secure_computing_strict(int this_syscall) 1039 { 1040 int mode = current->seccomp.mode; 1041 1042 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1043 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1044 return; 1045 1046 if (mode == SECCOMP_MODE_DISABLED) 1047 return; 1048 else if (mode == SECCOMP_MODE_STRICT) 1049 __secure_computing_strict(this_syscall); 1050 else 1051 BUG(); 1052 } 1053 #else 1054 1055 #ifdef CONFIG_SECCOMP_FILTER 1056 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1057 { 1058 /* 1059 * Note: overflow is ok here, the id just needs to be unique per 1060 * filter. 1061 */ 1062 lockdep_assert_held(&filter->notify_lock); 1063 return filter->notif->next_id++; 1064 } 1065 1066 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd) 1067 { 1068 /* 1069 * Remove the notification, and reset the list pointers, indicating 1070 * that it has been handled. 1071 */ 1072 list_del_init(&addfd->list); 1073 addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); 1074 complete(&addfd->completion); 1075 } 1076 1077 static int seccomp_do_user_notification(int this_syscall, 1078 struct seccomp_filter *match, 1079 const struct seccomp_data *sd) 1080 { 1081 int err; 1082 u32 flags = 0; 1083 long ret = 0; 1084 struct seccomp_knotif n = {}; 1085 struct seccomp_kaddfd *addfd, *tmp; 1086 1087 mutex_lock(&match->notify_lock); 1088 err = -ENOSYS; 1089 if (!match->notif) 1090 goto out; 1091 1092 n.task = current; 1093 n.state = SECCOMP_NOTIFY_INIT; 1094 n.data = sd; 1095 n.id = seccomp_next_notify_id(match); 1096 init_completion(&n.ready); 1097 list_add(&n.list, &match->notif->notifications); 1098 INIT_LIST_HEAD(&n.addfd); 1099 1100 up(&match->notif->request); 1101 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1102 mutex_unlock(&match->notify_lock); 1103 1104 /* 1105 * This is where we wait for a reply from userspace. 1106 */ 1107 wait: 1108 err = wait_for_completion_interruptible(&n.ready); 1109 mutex_lock(&match->notify_lock); 1110 if (err == 0) { 1111 /* Check if we were woken up by a addfd message */ 1112 addfd = list_first_entry_or_null(&n.addfd, 1113 struct seccomp_kaddfd, list); 1114 if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) { 1115 seccomp_handle_addfd(addfd); 1116 mutex_unlock(&match->notify_lock); 1117 goto wait; 1118 } 1119 ret = n.val; 1120 err = n.error; 1121 flags = n.flags; 1122 } 1123 1124 /* If there were any pending addfd calls, clear them out */ 1125 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1126 /* The process went away before we got a chance to handle it */ 1127 addfd->ret = -ESRCH; 1128 list_del_init(&addfd->list); 1129 complete(&addfd->completion); 1130 } 1131 1132 /* 1133 * Note that it's possible the listener died in between the time when 1134 * we were notified of a response (or a signal) and when we were able to 1135 * re-acquire the lock, so only delete from the list if the 1136 * notification actually exists. 1137 * 1138 * Also note that this test is only valid because there's no way to 1139 * *reattach* to a notifier right now. If one is added, we'll need to 1140 * keep track of the notif itself and make sure they match here. 1141 */ 1142 if (match->notif) 1143 list_del(&n.list); 1144 out: 1145 mutex_unlock(&match->notify_lock); 1146 1147 /* Userspace requests to continue the syscall. */ 1148 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1149 return 0; 1150 1151 syscall_set_return_value(current, current_pt_regs(), 1152 err, ret); 1153 return -1; 1154 } 1155 1156 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1157 const bool recheck_after_trace) 1158 { 1159 u32 filter_ret, action; 1160 struct seccomp_filter *match = NULL; 1161 int data; 1162 struct seccomp_data sd_local; 1163 1164 /* 1165 * Make sure that any changes to mode from another thread have 1166 * been seen after TIF_SECCOMP was seen. 1167 */ 1168 rmb(); 1169 1170 if (!sd) { 1171 populate_seccomp_data(&sd_local); 1172 sd = &sd_local; 1173 } 1174 1175 filter_ret = seccomp_run_filters(sd, &match); 1176 data = filter_ret & SECCOMP_RET_DATA; 1177 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1178 1179 switch (action) { 1180 case SECCOMP_RET_ERRNO: 1181 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1182 if (data > MAX_ERRNO) 1183 data = MAX_ERRNO; 1184 syscall_set_return_value(current, current_pt_regs(), 1185 -data, 0); 1186 goto skip; 1187 1188 case SECCOMP_RET_TRAP: 1189 /* Show the handler the original registers. */ 1190 syscall_rollback(current, current_pt_regs()); 1191 /* Let the filter pass back 16 bits of data. */ 1192 seccomp_send_sigsys(this_syscall, data); 1193 goto skip; 1194 1195 case SECCOMP_RET_TRACE: 1196 /* We've been put in this state by the ptracer already. */ 1197 if (recheck_after_trace) 1198 return 0; 1199 1200 /* ENOSYS these calls if there is no tracer attached. */ 1201 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1202 syscall_set_return_value(current, 1203 current_pt_regs(), 1204 -ENOSYS, 0); 1205 goto skip; 1206 } 1207 1208 /* Allow the BPF to provide the event message */ 1209 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1210 /* 1211 * The delivery of a fatal signal during event 1212 * notification may silently skip tracer notification, 1213 * which could leave us with a potentially unmodified 1214 * syscall that the tracer would have liked to have 1215 * changed. Since the process is about to die, we just 1216 * force the syscall to be skipped and let the signal 1217 * kill the process and correctly handle any tracer exit 1218 * notifications. 1219 */ 1220 if (fatal_signal_pending(current)) 1221 goto skip; 1222 /* Check if the tracer forced the syscall to be skipped. */ 1223 this_syscall = syscall_get_nr(current, current_pt_regs()); 1224 if (this_syscall < 0) 1225 goto skip; 1226 1227 /* 1228 * Recheck the syscall, since it may have changed. This 1229 * intentionally uses a NULL struct seccomp_data to force 1230 * a reload of all registers. This does not goto skip since 1231 * a skip would have already been reported. 1232 */ 1233 if (__seccomp_filter(this_syscall, NULL, true)) 1234 return -1; 1235 1236 return 0; 1237 1238 case SECCOMP_RET_USER_NOTIF: 1239 if (seccomp_do_user_notification(this_syscall, match, sd)) 1240 goto skip; 1241 1242 return 0; 1243 1244 case SECCOMP_RET_LOG: 1245 seccomp_log(this_syscall, 0, action, true); 1246 return 0; 1247 1248 case SECCOMP_RET_ALLOW: 1249 /* 1250 * Note that the "match" filter will always be NULL for 1251 * this action since SECCOMP_RET_ALLOW is the starting 1252 * state in seccomp_run_filters(). 1253 */ 1254 return 0; 1255 1256 case SECCOMP_RET_KILL_THREAD: 1257 case SECCOMP_RET_KILL_PROCESS: 1258 default: 1259 seccomp_log(this_syscall, SIGSYS, action, true); 1260 /* Dump core only if this is the last remaining thread. */ 1261 if (action != SECCOMP_RET_KILL_THREAD || 1262 get_nr_threads(current) == 1) { 1263 kernel_siginfo_t info; 1264 1265 /* Show the original registers in the dump. */ 1266 syscall_rollback(current, current_pt_regs()); 1267 /* Trigger a manual coredump since do_exit skips it. */ 1268 seccomp_init_siginfo(&info, this_syscall, data); 1269 do_coredump(&info); 1270 } 1271 if (action == SECCOMP_RET_KILL_THREAD) 1272 do_exit(SIGSYS); 1273 else 1274 do_group_exit(SIGSYS); 1275 } 1276 1277 unreachable(); 1278 1279 skip: 1280 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1281 return -1; 1282 } 1283 #else 1284 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1285 const bool recheck_after_trace) 1286 { 1287 BUG(); 1288 } 1289 #endif 1290 1291 int __secure_computing(const struct seccomp_data *sd) 1292 { 1293 int mode = current->seccomp.mode; 1294 int this_syscall; 1295 1296 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1297 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1298 return 0; 1299 1300 this_syscall = sd ? sd->nr : 1301 syscall_get_nr(current, current_pt_regs()); 1302 1303 switch (mode) { 1304 case SECCOMP_MODE_STRICT: 1305 __secure_computing_strict(this_syscall); /* may call do_exit */ 1306 return 0; 1307 case SECCOMP_MODE_FILTER: 1308 return __seccomp_filter(this_syscall, sd, false); 1309 default: 1310 BUG(); 1311 } 1312 } 1313 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1314 1315 long prctl_get_seccomp(void) 1316 { 1317 return current->seccomp.mode; 1318 } 1319 1320 /** 1321 * seccomp_set_mode_strict: internal function for setting strict seccomp 1322 * 1323 * Once current->seccomp.mode is non-zero, it may not be changed. 1324 * 1325 * Returns 0 on success or -EINVAL on failure. 1326 */ 1327 static long seccomp_set_mode_strict(void) 1328 { 1329 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1330 long ret = -EINVAL; 1331 1332 spin_lock_irq(¤t->sighand->siglock); 1333 1334 if (!seccomp_may_assign_mode(seccomp_mode)) 1335 goto out; 1336 1337 #ifdef TIF_NOTSC 1338 disable_TSC(); 1339 #endif 1340 seccomp_assign_mode(current, seccomp_mode, 0); 1341 ret = 0; 1342 1343 out: 1344 spin_unlock_irq(¤t->sighand->siglock); 1345 1346 return ret; 1347 } 1348 1349 #ifdef CONFIG_SECCOMP_FILTER 1350 static void seccomp_notify_free(struct seccomp_filter *filter) 1351 { 1352 kfree(filter->notif); 1353 filter->notif = NULL; 1354 } 1355 1356 static void seccomp_notify_detach(struct seccomp_filter *filter) 1357 { 1358 struct seccomp_knotif *knotif; 1359 1360 if (!filter) 1361 return; 1362 1363 mutex_lock(&filter->notify_lock); 1364 1365 /* 1366 * If this file is being closed because e.g. the task who owned it 1367 * died, let's wake everyone up who was waiting on us. 1368 */ 1369 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1370 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1371 continue; 1372 1373 knotif->state = SECCOMP_NOTIFY_REPLIED; 1374 knotif->error = -ENOSYS; 1375 knotif->val = 0; 1376 1377 /* 1378 * We do not need to wake up any pending addfd messages, as 1379 * the notifier will do that for us, as this just looks 1380 * like a standard reply. 1381 */ 1382 complete(&knotif->ready); 1383 } 1384 1385 seccomp_notify_free(filter); 1386 mutex_unlock(&filter->notify_lock); 1387 } 1388 1389 static int seccomp_notify_release(struct inode *inode, struct file *file) 1390 { 1391 struct seccomp_filter *filter = file->private_data; 1392 1393 seccomp_notify_detach(filter); 1394 __put_seccomp_filter(filter); 1395 return 0; 1396 } 1397 1398 /* must be called with notif_lock held */ 1399 static inline struct seccomp_knotif * 1400 find_notification(struct seccomp_filter *filter, u64 id) 1401 { 1402 struct seccomp_knotif *cur; 1403 1404 lockdep_assert_held(&filter->notify_lock); 1405 1406 list_for_each_entry(cur, &filter->notif->notifications, list) { 1407 if (cur->id == id) 1408 return cur; 1409 } 1410 1411 return NULL; 1412 } 1413 1414 1415 static long seccomp_notify_recv(struct seccomp_filter *filter, 1416 void __user *buf) 1417 { 1418 struct seccomp_knotif *knotif = NULL, *cur; 1419 struct seccomp_notif unotif; 1420 ssize_t ret; 1421 1422 /* Verify that we're not given garbage to keep struct extensible. */ 1423 ret = check_zeroed_user(buf, sizeof(unotif)); 1424 if (ret < 0) 1425 return ret; 1426 if (!ret) 1427 return -EINVAL; 1428 1429 memset(&unotif, 0, sizeof(unotif)); 1430 1431 ret = down_interruptible(&filter->notif->request); 1432 if (ret < 0) 1433 return ret; 1434 1435 mutex_lock(&filter->notify_lock); 1436 list_for_each_entry(cur, &filter->notif->notifications, list) { 1437 if (cur->state == SECCOMP_NOTIFY_INIT) { 1438 knotif = cur; 1439 break; 1440 } 1441 } 1442 1443 /* 1444 * If we didn't find a notification, it could be that the task was 1445 * interrupted by a fatal signal between the time we were woken and 1446 * when we were able to acquire the rw lock. 1447 */ 1448 if (!knotif) { 1449 ret = -ENOENT; 1450 goto out; 1451 } 1452 1453 unotif.id = knotif->id; 1454 unotif.pid = task_pid_vnr(knotif->task); 1455 unotif.data = *(knotif->data); 1456 1457 knotif->state = SECCOMP_NOTIFY_SENT; 1458 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1459 ret = 0; 1460 out: 1461 mutex_unlock(&filter->notify_lock); 1462 1463 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1464 ret = -EFAULT; 1465 1466 /* 1467 * Userspace screwed up. To make sure that we keep this 1468 * notification alive, let's reset it back to INIT. It 1469 * may have died when we released the lock, so we need to make 1470 * sure it's still around. 1471 */ 1472 mutex_lock(&filter->notify_lock); 1473 knotif = find_notification(filter, unotif.id); 1474 if (knotif) { 1475 knotif->state = SECCOMP_NOTIFY_INIT; 1476 up(&filter->notif->request); 1477 } 1478 mutex_unlock(&filter->notify_lock); 1479 } 1480 1481 return ret; 1482 } 1483 1484 static long seccomp_notify_send(struct seccomp_filter *filter, 1485 void __user *buf) 1486 { 1487 struct seccomp_notif_resp resp = {}; 1488 struct seccomp_knotif *knotif; 1489 long ret; 1490 1491 if (copy_from_user(&resp, buf, sizeof(resp))) 1492 return -EFAULT; 1493 1494 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1495 return -EINVAL; 1496 1497 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1498 (resp.error || resp.val)) 1499 return -EINVAL; 1500 1501 ret = mutex_lock_interruptible(&filter->notify_lock); 1502 if (ret < 0) 1503 return ret; 1504 1505 knotif = find_notification(filter, resp.id); 1506 if (!knotif) { 1507 ret = -ENOENT; 1508 goto out; 1509 } 1510 1511 /* Allow exactly one reply. */ 1512 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1513 ret = -EINPROGRESS; 1514 goto out; 1515 } 1516 1517 ret = 0; 1518 knotif->state = SECCOMP_NOTIFY_REPLIED; 1519 knotif->error = resp.error; 1520 knotif->val = resp.val; 1521 knotif->flags = resp.flags; 1522 complete(&knotif->ready); 1523 out: 1524 mutex_unlock(&filter->notify_lock); 1525 return ret; 1526 } 1527 1528 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1529 void __user *buf) 1530 { 1531 struct seccomp_knotif *knotif; 1532 u64 id; 1533 long ret; 1534 1535 if (copy_from_user(&id, buf, sizeof(id))) 1536 return -EFAULT; 1537 1538 ret = mutex_lock_interruptible(&filter->notify_lock); 1539 if (ret < 0) 1540 return ret; 1541 1542 knotif = find_notification(filter, id); 1543 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1544 ret = 0; 1545 else 1546 ret = -ENOENT; 1547 1548 mutex_unlock(&filter->notify_lock); 1549 return ret; 1550 } 1551 1552 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1553 struct seccomp_notif_addfd __user *uaddfd, 1554 unsigned int size) 1555 { 1556 struct seccomp_notif_addfd addfd; 1557 struct seccomp_knotif *knotif; 1558 struct seccomp_kaddfd kaddfd; 1559 int ret; 1560 1561 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1562 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1563 1564 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1565 return -EINVAL; 1566 1567 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1568 if (ret) 1569 return ret; 1570 1571 if (addfd.newfd_flags & ~O_CLOEXEC) 1572 return -EINVAL; 1573 1574 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD) 1575 return -EINVAL; 1576 1577 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1578 return -EINVAL; 1579 1580 kaddfd.file = fget(addfd.srcfd); 1581 if (!kaddfd.file) 1582 return -EBADF; 1583 1584 kaddfd.flags = addfd.newfd_flags; 1585 kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ? 1586 addfd.newfd : -1; 1587 init_completion(&kaddfd.completion); 1588 1589 ret = mutex_lock_interruptible(&filter->notify_lock); 1590 if (ret < 0) 1591 goto out; 1592 1593 knotif = find_notification(filter, addfd.id); 1594 if (!knotif) { 1595 ret = -ENOENT; 1596 goto out_unlock; 1597 } 1598 1599 /* 1600 * We do not want to allow for FD injection to occur before the 1601 * notification has been picked up by a userspace handler, or after 1602 * the notification has been replied to. 1603 */ 1604 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1605 ret = -EINPROGRESS; 1606 goto out_unlock; 1607 } 1608 1609 list_add(&kaddfd.list, &knotif->addfd); 1610 complete(&knotif->ready); 1611 mutex_unlock(&filter->notify_lock); 1612 1613 /* Now we wait for it to be processed or be interrupted */ 1614 ret = wait_for_completion_interruptible(&kaddfd.completion); 1615 if (ret == 0) { 1616 /* 1617 * We had a successful completion. The other side has already 1618 * removed us from the addfd queue, and 1619 * wait_for_completion_interruptible has a memory barrier upon 1620 * success that lets us read this value directly without 1621 * locking. 1622 */ 1623 ret = kaddfd.ret; 1624 goto out; 1625 } 1626 1627 mutex_lock(&filter->notify_lock); 1628 /* 1629 * Even though we were woken up by a signal and not a successful 1630 * completion, a completion may have happened in the mean time. 1631 * 1632 * We need to check again if the addfd request has been handled, 1633 * and if not, we will remove it from the queue. 1634 */ 1635 if (list_empty(&kaddfd.list)) 1636 ret = kaddfd.ret; 1637 else 1638 list_del(&kaddfd.list); 1639 1640 out_unlock: 1641 mutex_unlock(&filter->notify_lock); 1642 out: 1643 fput(kaddfd.file); 1644 1645 return ret; 1646 } 1647 1648 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1649 unsigned long arg) 1650 { 1651 struct seccomp_filter *filter = file->private_data; 1652 void __user *buf = (void __user *)arg; 1653 1654 /* Fixed-size ioctls */ 1655 switch (cmd) { 1656 case SECCOMP_IOCTL_NOTIF_RECV: 1657 return seccomp_notify_recv(filter, buf); 1658 case SECCOMP_IOCTL_NOTIF_SEND: 1659 return seccomp_notify_send(filter, buf); 1660 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1661 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1662 return seccomp_notify_id_valid(filter, buf); 1663 } 1664 1665 /* Extensible Argument ioctls */ 1666 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1667 switch (EA_IOCTL(cmd)) { 1668 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1669 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1670 default: 1671 return -EINVAL; 1672 } 1673 } 1674 1675 static __poll_t seccomp_notify_poll(struct file *file, 1676 struct poll_table_struct *poll_tab) 1677 { 1678 struct seccomp_filter *filter = file->private_data; 1679 __poll_t ret = 0; 1680 struct seccomp_knotif *cur; 1681 1682 poll_wait(file, &filter->wqh, poll_tab); 1683 1684 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1685 return EPOLLERR; 1686 1687 list_for_each_entry(cur, &filter->notif->notifications, list) { 1688 if (cur->state == SECCOMP_NOTIFY_INIT) 1689 ret |= EPOLLIN | EPOLLRDNORM; 1690 if (cur->state == SECCOMP_NOTIFY_SENT) 1691 ret |= EPOLLOUT | EPOLLWRNORM; 1692 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1693 break; 1694 } 1695 1696 mutex_unlock(&filter->notify_lock); 1697 1698 if (refcount_read(&filter->users) == 0) 1699 ret |= EPOLLHUP; 1700 1701 return ret; 1702 } 1703 1704 static const struct file_operations seccomp_notify_ops = { 1705 .poll = seccomp_notify_poll, 1706 .release = seccomp_notify_release, 1707 .unlocked_ioctl = seccomp_notify_ioctl, 1708 .compat_ioctl = seccomp_notify_ioctl, 1709 }; 1710 1711 static struct file *init_listener(struct seccomp_filter *filter) 1712 { 1713 struct file *ret; 1714 1715 ret = ERR_PTR(-ENOMEM); 1716 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1717 if (!filter->notif) 1718 goto out; 1719 1720 sema_init(&filter->notif->request, 0); 1721 filter->notif->next_id = get_random_u64(); 1722 INIT_LIST_HEAD(&filter->notif->notifications); 1723 1724 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1725 filter, O_RDWR); 1726 if (IS_ERR(ret)) 1727 goto out_notif; 1728 1729 /* The file has a reference to it now */ 1730 __get_seccomp_filter(filter); 1731 1732 out_notif: 1733 if (IS_ERR(ret)) 1734 seccomp_notify_free(filter); 1735 out: 1736 return ret; 1737 } 1738 1739 /* 1740 * Does @new_child have a listener while an ancestor also has a listener? 1741 * If so, we'll want to reject this filter. 1742 * This only has to be tested for the current process, even in the TSYNC case, 1743 * because TSYNC installs @child with the same parent on all threads. 1744 * Note that @new_child is not hooked up to its parent at this point yet, so 1745 * we use current->seccomp.filter. 1746 */ 1747 static bool has_duplicate_listener(struct seccomp_filter *new_child) 1748 { 1749 struct seccomp_filter *cur; 1750 1751 /* must be protected against concurrent TSYNC */ 1752 lockdep_assert_held(¤t->sighand->siglock); 1753 1754 if (!new_child->notif) 1755 return false; 1756 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1757 if (cur->notif) 1758 return true; 1759 } 1760 1761 return false; 1762 } 1763 1764 /** 1765 * seccomp_set_mode_filter: internal function for setting seccomp filter 1766 * @flags: flags to change filter behavior 1767 * @filter: struct sock_fprog containing filter 1768 * 1769 * This function may be called repeatedly to install additional filters. 1770 * Every filter successfully installed will be evaluated (in reverse order) 1771 * for each system call the task makes. 1772 * 1773 * Once current->seccomp.mode is non-zero, it may not be changed. 1774 * 1775 * Returns 0 on success or -EINVAL on failure. 1776 */ 1777 static long seccomp_set_mode_filter(unsigned int flags, 1778 const char __user *filter) 1779 { 1780 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1781 struct seccomp_filter *prepared = NULL; 1782 long ret = -EINVAL; 1783 int listener = -1; 1784 struct file *listener_f = NULL; 1785 1786 /* Validate flags. */ 1787 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1788 return -EINVAL; 1789 1790 /* 1791 * In the successful case, NEW_LISTENER returns the new listener fd. 1792 * But in the failure case, TSYNC returns the thread that died. If you 1793 * combine these two flags, there's no way to tell whether something 1794 * succeeded or failed. So, let's disallow this combination if the user 1795 * has not explicitly requested no errors from TSYNC. 1796 */ 1797 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1798 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1799 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1800 return -EINVAL; 1801 1802 /* Prepare the new filter before holding any locks. */ 1803 prepared = seccomp_prepare_user_filter(filter); 1804 if (IS_ERR(prepared)) 1805 return PTR_ERR(prepared); 1806 1807 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1808 listener = get_unused_fd_flags(O_CLOEXEC); 1809 if (listener < 0) { 1810 ret = listener; 1811 goto out_free; 1812 } 1813 1814 listener_f = init_listener(prepared); 1815 if (IS_ERR(listener_f)) { 1816 put_unused_fd(listener); 1817 ret = PTR_ERR(listener_f); 1818 goto out_free; 1819 } 1820 } 1821 1822 /* 1823 * Make sure we cannot change seccomp or nnp state via TSYNC 1824 * while another thread is in the middle of calling exec. 1825 */ 1826 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1827 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1828 goto out_put_fd; 1829 1830 spin_lock_irq(¤t->sighand->siglock); 1831 1832 if (!seccomp_may_assign_mode(seccomp_mode)) 1833 goto out; 1834 1835 if (has_duplicate_listener(prepared)) { 1836 ret = -EBUSY; 1837 goto out; 1838 } 1839 1840 ret = seccomp_attach_filter(flags, prepared); 1841 if (ret) 1842 goto out; 1843 /* Do not free the successfully attached filter. */ 1844 prepared = NULL; 1845 1846 seccomp_assign_mode(current, seccomp_mode, flags); 1847 out: 1848 spin_unlock_irq(¤t->sighand->siglock); 1849 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 1850 mutex_unlock(¤t->signal->cred_guard_mutex); 1851 out_put_fd: 1852 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1853 if (ret) { 1854 listener_f->private_data = NULL; 1855 fput(listener_f); 1856 put_unused_fd(listener); 1857 seccomp_notify_detach(prepared); 1858 } else { 1859 fd_install(listener, listener_f); 1860 ret = listener; 1861 } 1862 } 1863 out_free: 1864 seccomp_filter_free(prepared); 1865 return ret; 1866 } 1867 #else 1868 static inline long seccomp_set_mode_filter(unsigned int flags, 1869 const char __user *filter) 1870 { 1871 return -EINVAL; 1872 } 1873 #endif 1874 1875 static long seccomp_get_action_avail(const char __user *uaction) 1876 { 1877 u32 action; 1878 1879 if (copy_from_user(&action, uaction, sizeof(action))) 1880 return -EFAULT; 1881 1882 switch (action) { 1883 case SECCOMP_RET_KILL_PROCESS: 1884 case SECCOMP_RET_KILL_THREAD: 1885 case SECCOMP_RET_TRAP: 1886 case SECCOMP_RET_ERRNO: 1887 case SECCOMP_RET_USER_NOTIF: 1888 case SECCOMP_RET_TRACE: 1889 case SECCOMP_RET_LOG: 1890 case SECCOMP_RET_ALLOW: 1891 break; 1892 default: 1893 return -EOPNOTSUPP; 1894 } 1895 1896 return 0; 1897 } 1898 1899 static long seccomp_get_notif_sizes(void __user *usizes) 1900 { 1901 struct seccomp_notif_sizes sizes = { 1902 .seccomp_notif = sizeof(struct seccomp_notif), 1903 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 1904 .seccomp_data = sizeof(struct seccomp_data), 1905 }; 1906 1907 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 1908 return -EFAULT; 1909 1910 return 0; 1911 } 1912 1913 /* Common entry point for both prctl and syscall. */ 1914 static long do_seccomp(unsigned int op, unsigned int flags, 1915 void __user *uargs) 1916 { 1917 switch (op) { 1918 case SECCOMP_SET_MODE_STRICT: 1919 if (flags != 0 || uargs != NULL) 1920 return -EINVAL; 1921 return seccomp_set_mode_strict(); 1922 case SECCOMP_SET_MODE_FILTER: 1923 return seccomp_set_mode_filter(flags, uargs); 1924 case SECCOMP_GET_ACTION_AVAIL: 1925 if (flags != 0) 1926 return -EINVAL; 1927 1928 return seccomp_get_action_avail(uargs); 1929 case SECCOMP_GET_NOTIF_SIZES: 1930 if (flags != 0) 1931 return -EINVAL; 1932 1933 return seccomp_get_notif_sizes(uargs); 1934 default: 1935 return -EINVAL; 1936 } 1937 } 1938 1939 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 1940 void __user *, uargs) 1941 { 1942 return do_seccomp(op, flags, uargs); 1943 } 1944 1945 /** 1946 * prctl_set_seccomp: configures current->seccomp.mode 1947 * @seccomp_mode: requested mode to use 1948 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 1949 * 1950 * Returns 0 on success or -EINVAL on failure. 1951 */ 1952 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 1953 { 1954 unsigned int op; 1955 void __user *uargs; 1956 1957 switch (seccomp_mode) { 1958 case SECCOMP_MODE_STRICT: 1959 op = SECCOMP_SET_MODE_STRICT; 1960 /* 1961 * Setting strict mode through prctl always ignored filter, 1962 * so make sure it is always NULL here to pass the internal 1963 * check in do_seccomp(). 1964 */ 1965 uargs = NULL; 1966 break; 1967 case SECCOMP_MODE_FILTER: 1968 op = SECCOMP_SET_MODE_FILTER; 1969 uargs = filter; 1970 break; 1971 default: 1972 return -EINVAL; 1973 } 1974 1975 /* prctl interface doesn't have flags, so they are always zero. */ 1976 return do_seccomp(op, 0, uargs); 1977 } 1978 1979 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 1980 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 1981 unsigned long filter_off) 1982 { 1983 struct seccomp_filter *orig, *filter; 1984 unsigned long count; 1985 1986 /* 1987 * Note: this is only correct because the caller should be the (ptrace) 1988 * tracer of the task, otherwise lock_task_sighand is needed. 1989 */ 1990 spin_lock_irq(&task->sighand->siglock); 1991 1992 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 1993 spin_unlock_irq(&task->sighand->siglock); 1994 return ERR_PTR(-EINVAL); 1995 } 1996 1997 orig = task->seccomp.filter; 1998 __get_seccomp_filter(orig); 1999 spin_unlock_irq(&task->sighand->siglock); 2000 2001 count = 0; 2002 for (filter = orig; filter; filter = filter->prev) 2003 count++; 2004 2005 if (filter_off >= count) { 2006 filter = ERR_PTR(-ENOENT); 2007 goto out; 2008 } 2009 2010 count -= filter_off; 2011 for (filter = orig; filter && count > 1; filter = filter->prev) 2012 count--; 2013 2014 if (WARN_ON(count != 1 || !filter)) { 2015 filter = ERR_PTR(-ENOENT); 2016 goto out; 2017 } 2018 2019 __get_seccomp_filter(filter); 2020 2021 out: 2022 __put_seccomp_filter(orig); 2023 return filter; 2024 } 2025 2026 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2027 void __user *data) 2028 { 2029 struct seccomp_filter *filter; 2030 struct sock_fprog_kern *fprog; 2031 long ret; 2032 2033 if (!capable(CAP_SYS_ADMIN) || 2034 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2035 return -EACCES; 2036 } 2037 2038 filter = get_nth_filter(task, filter_off); 2039 if (IS_ERR(filter)) 2040 return PTR_ERR(filter); 2041 2042 fprog = filter->prog->orig_prog; 2043 if (!fprog) { 2044 /* This must be a new non-cBPF filter, since we save 2045 * every cBPF filter's orig_prog above when 2046 * CONFIG_CHECKPOINT_RESTORE is enabled. 2047 */ 2048 ret = -EMEDIUMTYPE; 2049 goto out; 2050 } 2051 2052 ret = fprog->len; 2053 if (!data) 2054 goto out; 2055 2056 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2057 ret = -EFAULT; 2058 2059 out: 2060 __put_seccomp_filter(filter); 2061 return ret; 2062 } 2063 2064 long seccomp_get_metadata(struct task_struct *task, 2065 unsigned long size, void __user *data) 2066 { 2067 long ret; 2068 struct seccomp_filter *filter; 2069 struct seccomp_metadata kmd = {}; 2070 2071 if (!capable(CAP_SYS_ADMIN) || 2072 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2073 return -EACCES; 2074 } 2075 2076 size = min_t(unsigned long, size, sizeof(kmd)); 2077 2078 if (size < sizeof(kmd.filter_off)) 2079 return -EINVAL; 2080 2081 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2082 return -EFAULT; 2083 2084 filter = get_nth_filter(task, kmd.filter_off); 2085 if (IS_ERR(filter)) 2086 return PTR_ERR(filter); 2087 2088 if (filter->log) 2089 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2090 2091 ret = size; 2092 if (copy_to_user(data, &kmd, size)) 2093 ret = -EFAULT; 2094 2095 __put_seccomp_filter(filter); 2096 return ret; 2097 } 2098 #endif 2099 2100 #ifdef CONFIG_SYSCTL 2101 2102 /* Human readable action names for friendly sysctl interaction */ 2103 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2104 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2105 #define SECCOMP_RET_TRAP_NAME "trap" 2106 #define SECCOMP_RET_ERRNO_NAME "errno" 2107 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2108 #define SECCOMP_RET_TRACE_NAME "trace" 2109 #define SECCOMP_RET_LOG_NAME "log" 2110 #define SECCOMP_RET_ALLOW_NAME "allow" 2111 2112 static const char seccomp_actions_avail[] = 2113 SECCOMP_RET_KILL_PROCESS_NAME " " 2114 SECCOMP_RET_KILL_THREAD_NAME " " 2115 SECCOMP_RET_TRAP_NAME " " 2116 SECCOMP_RET_ERRNO_NAME " " 2117 SECCOMP_RET_USER_NOTIF_NAME " " 2118 SECCOMP_RET_TRACE_NAME " " 2119 SECCOMP_RET_LOG_NAME " " 2120 SECCOMP_RET_ALLOW_NAME; 2121 2122 struct seccomp_log_name { 2123 u32 log; 2124 const char *name; 2125 }; 2126 2127 static const struct seccomp_log_name seccomp_log_names[] = { 2128 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2129 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2130 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2131 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2132 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2133 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2134 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2135 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2136 { } 2137 }; 2138 2139 static bool seccomp_names_from_actions_logged(char *names, size_t size, 2140 u32 actions_logged, 2141 const char *sep) 2142 { 2143 const struct seccomp_log_name *cur; 2144 bool append_sep = false; 2145 2146 for (cur = seccomp_log_names; cur->name && size; cur++) { 2147 ssize_t ret; 2148 2149 if (!(actions_logged & cur->log)) 2150 continue; 2151 2152 if (append_sep) { 2153 ret = strscpy(names, sep, size); 2154 if (ret < 0) 2155 return false; 2156 2157 names += ret; 2158 size -= ret; 2159 } else 2160 append_sep = true; 2161 2162 ret = strscpy(names, cur->name, size); 2163 if (ret < 0) 2164 return false; 2165 2166 names += ret; 2167 size -= ret; 2168 } 2169 2170 return true; 2171 } 2172 2173 static bool seccomp_action_logged_from_name(u32 *action_logged, 2174 const char *name) 2175 { 2176 const struct seccomp_log_name *cur; 2177 2178 for (cur = seccomp_log_names; cur->name; cur++) { 2179 if (!strcmp(cur->name, name)) { 2180 *action_logged = cur->log; 2181 return true; 2182 } 2183 } 2184 2185 return false; 2186 } 2187 2188 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2189 { 2190 char *name; 2191 2192 *actions_logged = 0; 2193 while ((name = strsep(&names, " ")) && *name) { 2194 u32 action_logged = 0; 2195 2196 if (!seccomp_action_logged_from_name(&action_logged, name)) 2197 return false; 2198 2199 *actions_logged |= action_logged; 2200 } 2201 2202 return true; 2203 } 2204 2205 static int read_actions_logged(struct ctl_table *ro_table, void __user *buffer, 2206 size_t *lenp, loff_t *ppos) 2207 { 2208 char names[sizeof(seccomp_actions_avail)]; 2209 struct ctl_table table; 2210 2211 memset(names, 0, sizeof(names)); 2212 2213 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2214 seccomp_actions_logged, " ")) 2215 return -EINVAL; 2216 2217 table = *ro_table; 2218 table.data = names; 2219 table.maxlen = sizeof(names); 2220 return proc_dostring(&table, 0, buffer, lenp, ppos); 2221 } 2222 2223 static int write_actions_logged(struct ctl_table *ro_table, void __user *buffer, 2224 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2225 { 2226 char names[sizeof(seccomp_actions_avail)]; 2227 struct ctl_table table; 2228 int ret; 2229 2230 if (!capable(CAP_SYS_ADMIN)) 2231 return -EPERM; 2232 2233 memset(names, 0, sizeof(names)); 2234 2235 table = *ro_table; 2236 table.data = names; 2237 table.maxlen = sizeof(names); 2238 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2239 if (ret) 2240 return ret; 2241 2242 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2243 return -EINVAL; 2244 2245 if (*actions_logged & SECCOMP_LOG_ALLOW) 2246 return -EINVAL; 2247 2248 seccomp_actions_logged = *actions_logged; 2249 return 0; 2250 } 2251 2252 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2253 int ret) 2254 { 2255 char names[sizeof(seccomp_actions_avail)]; 2256 char old_names[sizeof(seccomp_actions_avail)]; 2257 const char *new = names; 2258 const char *old = old_names; 2259 2260 if (!audit_enabled) 2261 return; 2262 2263 memset(names, 0, sizeof(names)); 2264 memset(old_names, 0, sizeof(old_names)); 2265 2266 if (ret) 2267 new = "?"; 2268 else if (!actions_logged) 2269 new = "(none)"; 2270 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2271 actions_logged, ",")) 2272 new = "?"; 2273 2274 if (!old_actions_logged) 2275 old = "(none)"; 2276 else if (!seccomp_names_from_actions_logged(old_names, 2277 sizeof(old_names), 2278 old_actions_logged, ",")) 2279 old = "?"; 2280 2281 return audit_seccomp_actions_logged(new, old, !ret); 2282 } 2283 2284 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, 2285 void *buffer, size_t *lenp, 2286 loff_t *ppos) 2287 { 2288 int ret; 2289 2290 if (write) { 2291 u32 actions_logged = 0; 2292 u32 old_actions_logged = seccomp_actions_logged; 2293 2294 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2295 &actions_logged); 2296 audit_actions_logged(actions_logged, old_actions_logged, ret); 2297 } else 2298 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2299 2300 return ret; 2301 } 2302 2303 static struct ctl_path seccomp_sysctl_path[] = { 2304 { .procname = "kernel", }, 2305 { .procname = "seccomp", }, 2306 { } 2307 }; 2308 2309 static struct ctl_table seccomp_sysctl_table[] = { 2310 { 2311 .procname = "actions_avail", 2312 .data = (void *) &seccomp_actions_avail, 2313 .maxlen = sizeof(seccomp_actions_avail), 2314 .mode = 0444, 2315 .proc_handler = proc_dostring, 2316 }, 2317 { 2318 .procname = "actions_logged", 2319 .mode = 0644, 2320 .proc_handler = seccomp_actions_logged_handler, 2321 }, 2322 { } 2323 }; 2324 2325 static int __init seccomp_sysctl_init(void) 2326 { 2327 struct ctl_table_header *hdr; 2328 2329 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table); 2330 if (!hdr) 2331 pr_warn("sysctl registration failed\n"); 2332 else 2333 kmemleak_not_leak(hdr); 2334 2335 return 0; 2336 } 2337 2338 device_initcall(seccomp_sysctl_init) 2339 2340 #endif /* CONFIG_SYSCTL */ 2341 2342 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 2343 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ 2344 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, 2345 const void *bitmap, size_t bitmap_size) 2346 { 2347 int nr; 2348 2349 for (nr = 0; nr < bitmap_size; nr++) { 2350 bool cached = test_bit(nr, bitmap); 2351 char *status = cached ? "ALLOW" : "FILTER"; 2352 2353 seq_printf(m, "%s %d %s\n", name, nr, status); 2354 } 2355 } 2356 2357 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, 2358 struct pid *pid, struct task_struct *task) 2359 { 2360 struct seccomp_filter *f; 2361 unsigned long flags; 2362 2363 /* 2364 * We don't want some sandboxed process to know what their seccomp 2365 * filters consist of. 2366 */ 2367 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 2368 return -EACCES; 2369 2370 if (!lock_task_sighand(task, &flags)) 2371 return -ESRCH; 2372 2373 f = READ_ONCE(task->seccomp.filter); 2374 if (!f) { 2375 unlock_task_sighand(task, &flags); 2376 return 0; 2377 } 2378 2379 /* prevent filter from being freed while we are printing it */ 2380 __get_seccomp_filter(f); 2381 unlock_task_sighand(task, &flags); 2382 2383 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, 2384 f->cache.allow_native, 2385 SECCOMP_ARCH_NATIVE_NR); 2386 2387 #ifdef SECCOMP_ARCH_COMPAT 2388 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, 2389 f->cache.allow_compat, 2390 SECCOMP_ARCH_COMPAT_NR); 2391 #endif /* SECCOMP_ARCH_COMPAT */ 2392 2393 __put_seccomp_filter(f); 2394 return 0; 2395 } 2396 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */ 2397