1 /* 2 * Generic waiting primitives. 3 * 4 * (C) 2004 Nadia Yvette Chambers, Oracle 5 */ 6 #include <linux/init.h> 7 #include <linux/export.h> 8 #include <linux/sched/signal.h> 9 #include <linux/sched/debug.h> 10 #include <linux/mm.h> 11 #include <linux/wait.h> 12 #include <linux/hash.h> 13 #include <linux/kthread.h> 14 15 void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key) 16 { 17 spin_lock_init(&q->lock); 18 lockdep_set_class_and_name(&q->lock, key, name); 19 INIT_LIST_HEAD(&q->task_list); 20 } 21 22 EXPORT_SYMBOL(__init_waitqueue_head); 23 24 void add_wait_queue(wait_queue_head_t *q, struct wait_queue_entry *wq_entry) 25 { 26 unsigned long flags; 27 28 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 29 spin_lock_irqsave(&q->lock, flags); 30 __add_wait_queue_entry_tail(q, wq_entry); 31 spin_unlock_irqrestore(&q->lock, flags); 32 } 33 EXPORT_SYMBOL(add_wait_queue); 34 35 void add_wait_queue_exclusive(wait_queue_head_t *q, struct wait_queue_entry *wq_entry) 36 { 37 unsigned long flags; 38 39 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 40 spin_lock_irqsave(&q->lock, flags); 41 __add_wait_queue_entry_tail(q, wq_entry); 42 spin_unlock_irqrestore(&q->lock, flags); 43 } 44 EXPORT_SYMBOL(add_wait_queue_exclusive); 45 46 void remove_wait_queue(wait_queue_head_t *q, struct wait_queue_entry *wq_entry) 47 { 48 unsigned long flags; 49 50 spin_lock_irqsave(&q->lock, flags); 51 __remove_wait_queue(q, wq_entry); 52 spin_unlock_irqrestore(&q->lock, flags); 53 } 54 EXPORT_SYMBOL(remove_wait_queue); 55 56 57 /* 58 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 59 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 60 * number) then we wake all the non-exclusive tasks and one exclusive task. 61 * 62 * There are circumstances in which we can try to wake a task which has already 63 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 64 * zero in this (rare) case, and we handle it by continuing to scan the queue. 65 */ 66 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 67 int nr_exclusive, int wake_flags, void *key) 68 { 69 wait_queue_entry_t *curr, *next; 70 71 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 72 unsigned flags = curr->flags; 73 74 if (curr->func(curr, mode, wake_flags, key) && 75 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 76 break; 77 } 78 } 79 80 /** 81 * __wake_up - wake up threads blocked on a waitqueue. 82 * @q: the waitqueue 83 * @mode: which threads 84 * @nr_exclusive: how many wake-one or wake-many threads to wake up 85 * @key: is directly passed to the wakeup function 86 * 87 * It may be assumed that this function implies a write memory barrier before 88 * changing the task state if and only if any tasks are woken up. 89 */ 90 void __wake_up(wait_queue_head_t *q, unsigned int mode, 91 int nr_exclusive, void *key) 92 { 93 unsigned long flags; 94 95 spin_lock_irqsave(&q->lock, flags); 96 __wake_up_common(q, mode, nr_exclusive, 0, key); 97 spin_unlock_irqrestore(&q->lock, flags); 98 } 99 EXPORT_SYMBOL(__wake_up); 100 101 /* 102 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 103 */ 104 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 105 { 106 __wake_up_common(q, mode, nr, 0, NULL); 107 } 108 EXPORT_SYMBOL_GPL(__wake_up_locked); 109 110 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 111 { 112 __wake_up_common(q, mode, 1, 0, key); 113 } 114 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 115 116 /** 117 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 118 * @q: the waitqueue 119 * @mode: which threads 120 * @nr_exclusive: how many wake-one or wake-many threads to wake up 121 * @key: opaque value to be passed to wakeup targets 122 * 123 * The sync wakeup differs that the waker knows that it will schedule 124 * away soon, so while the target thread will be woken up, it will not 125 * be migrated to another CPU - ie. the two threads are 'synchronized' 126 * with each other. This can prevent needless bouncing between CPUs. 127 * 128 * On UP it can prevent extra preemption. 129 * 130 * It may be assumed that this function implies a write memory barrier before 131 * changing the task state if and only if any tasks are woken up. 132 */ 133 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 134 int nr_exclusive, void *key) 135 { 136 unsigned long flags; 137 int wake_flags = 1; /* XXX WF_SYNC */ 138 139 if (unlikely(!q)) 140 return; 141 142 if (unlikely(nr_exclusive != 1)) 143 wake_flags = 0; 144 145 spin_lock_irqsave(&q->lock, flags); 146 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 147 spin_unlock_irqrestore(&q->lock, flags); 148 } 149 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 150 151 /* 152 * __wake_up_sync - see __wake_up_sync_key() 153 */ 154 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 155 { 156 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 157 } 158 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 159 160 /* 161 * Note: we use "set_current_state()" _after_ the wait-queue add, 162 * because we need a memory barrier there on SMP, so that any 163 * wake-function that tests for the wait-queue being active 164 * will be guaranteed to see waitqueue addition _or_ subsequent 165 * tests in this thread will see the wakeup having taken place. 166 * 167 * The spin_unlock() itself is semi-permeable and only protects 168 * one way (it only protects stuff inside the critical region and 169 * stops them from bleeding out - it would still allow subsequent 170 * loads to move into the critical region). 171 */ 172 void 173 prepare_to_wait(wait_queue_head_t *q, struct wait_queue_entry *wq_entry, int state) 174 { 175 unsigned long flags; 176 177 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 178 spin_lock_irqsave(&q->lock, flags); 179 if (list_empty(&wq_entry->task_list)) 180 __add_wait_queue(q, wq_entry); 181 set_current_state(state); 182 spin_unlock_irqrestore(&q->lock, flags); 183 } 184 EXPORT_SYMBOL(prepare_to_wait); 185 186 void 187 prepare_to_wait_exclusive(wait_queue_head_t *q, struct wait_queue_entry *wq_entry, int state) 188 { 189 unsigned long flags; 190 191 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 192 spin_lock_irqsave(&q->lock, flags); 193 if (list_empty(&wq_entry->task_list)) 194 __add_wait_queue_entry_tail(q, wq_entry); 195 set_current_state(state); 196 spin_unlock_irqrestore(&q->lock, flags); 197 } 198 EXPORT_SYMBOL(prepare_to_wait_exclusive); 199 200 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags) 201 { 202 wq_entry->flags = flags; 203 wq_entry->private = current; 204 wq_entry->func = autoremove_wake_function; 205 INIT_LIST_HEAD(&wq_entry->task_list); 206 } 207 EXPORT_SYMBOL(init_wait_entry); 208 209 long prepare_to_wait_event(wait_queue_head_t *q, struct wait_queue_entry *wq_entry, int state) 210 { 211 unsigned long flags; 212 long ret = 0; 213 214 spin_lock_irqsave(&q->lock, flags); 215 if (unlikely(signal_pending_state(state, current))) { 216 /* 217 * Exclusive waiter must not fail if it was selected by wakeup, 218 * it should "consume" the condition we were waiting for. 219 * 220 * The caller will recheck the condition and return success if 221 * we were already woken up, we can not miss the event because 222 * wakeup locks/unlocks the same q->lock. 223 * 224 * But we need to ensure that set-condition + wakeup after that 225 * can't see us, it should wake up another exclusive waiter if 226 * we fail. 227 */ 228 list_del_init(&wq_entry->task_list); 229 ret = -ERESTARTSYS; 230 } else { 231 if (list_empty(&wq_entry->task_list)) { 232 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE) 233 __add_wait_queue_entry_tail(q, wq_entry); 234 else 235 __add_wait_queue(q, wq_entry); 236 } 237 set_current_state(state); 238 } 239 spin_unlock_irqrestore(&q->lock, flags); 240 241 return ret; 242 } 243 EXPORT_SYMBOL(prepare_to_wait_event); 244 245 /* 246 * Note! These two wait functions are entered with the 247 * wait-queue lock held (and interrupts off in the _irq 248 * case), so there is no race with testing the wakeup 249 * condition in the caller before they add the wait 250 * entry to the wake queue. 251 */ 252 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait) 253 { 254 if (likely(list_empty(&wait->task_list))) 255 __add_wait_queue_entry_tail(wq, wait); 256 257 set_current_state(TASK_INTERRUPTIBLE); 258 if (signal_pending(current)) 259 return -ERESTARTSYS; 260 261 spin_unlock(&wq->lock); 262 schedule(); 263 spin_lock(&wq->lock); 264 return 0; 265 } 266 EXPORT_SYMBOL(do_wait_intr); 267 268 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait) 269 { 270 if (likely(list_empty(&wait->task_list))) 271 __add_wait_queue_entry_tail(wq, wait); 272 273 set_current_state(TASK_INTERRUPTIBLE); 274 if (signal_pending(current)) 275 return -ERESTARTSYS; 276 277 spin_unlock_irq(&wq->lock); 278 schedule(); 279 spin_lock_irq(&wq->lock); 280 return 0; 281 } 282 EXPORT_SYMBOL(do_wait_intr_irq); 283 284 /** 285 * finish_wait - clean up after waiting in a queue 286 * @q: waitqueue waited on 287 * @wq_entry: wait descriptor 288 * 289 * Sets current thread back to running state and removes 290 * the wait descriptor from the given waitqueue if still 291 * queued. 292 */ 293 void finish_wait(wait_queue_head_t *q, struct wait_queue_entry *wq_entry) 294 { 295 unsigned long flags; 296 297 __set_current_state(TASK_RUNNING); 298 /* 299 * We can check for list emptiness outside the lock 300 * IFF: 301 * - we use the "careful" check that verifies both 302 * the next and prev pointers, so that there cannot 303 * be any half-pending updates in progress on other 304 * CPU's that we haven't seen yet (and that might 305 * still change the stack area. 306 * and 307 * - all other users take the lock (ie we can only 308 * have _one_ other CPU that looks at or modifies 309 * the list). 310 */ 311 if (!list_empty_careful(&wq_entry->task_list)) { 312 spin_lock_irqsave(&q->lock, flags); 313 list_del_init(&wq_entry->task_list); 314 spin_unlock_irqrestore(&q->lock, flags); 315 } 316 } 317 EXPORT_SYMBOL(finish_wait); 318 319 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 320 { 321 int ret = default_wake_function(wq_entry, mode, sync, key); 322 323 if (ret) 324 list_del_init(&wq_entry->task_list); 325 return ret; 326 } 327 EXPORT_SYMBOL(autoremove_wake_function); 328 329 static inline bool is_kthread_should_stop(void) 330 { 331 return (current->flags & PF_KTHREAD) && kthread_should_stop(); 332 } 333 334 /* 335 * DEFINE_WAIT_FUNC(wait, woken_wake_func); 336 * 337 * add_wait_queue(&wq, &wait); 338 * for (;;) { 339 * if (condition) 340 * break; 341 * 342 * p->state = mode; condition = true; 343 * smp_mb(); // A smp_wmb(); // C 344 * if (!wq_entry->flags & WQ_FLAG_WOKEN) wq_entry->flags |= WQ_FLAG_WOKEN; 345 * schedule() try_to_wake_up(); 346 * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~ 347 * wq_entry->flags &= ~WQ_FLAG_WOKEN; condition = true; 348 * smp_mb() // B smp_wmb(); // C 349 * wq_entry->flags |= WQ_FLAG_WOKEN; 350 * } 351 * remove_wait_queue(&wq, &wait); 352 * 353 */ 354 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout) 355 { 356 set_current_state(mode); /* A */ 357 /* 358 * The above implies an smp_mb(), which matches with the smp_wmb() from 359 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must 360 * also observe all state before the wakeup. 361 */ 362 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop()) 363 timeout = schedule_timeout(timeout); 364 __set_current_state(TASK_RUNNING); 365 366 /* 367 * The below implies an smp_mb(), it too pairs with the smp_wmb() from 368 * woken_wake_function() such that we must either observe the wait 369 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss 370 * an event. 371 */ 372 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */ 373 374 return timeout; 375 } 376 EXPORT_SYMBOL(wait_woken); 377 378 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 379 { 380 /* 381 * Although this function is called under waitqueue lock, LOCK 382 * doesn't imply write barrier and the users expects write 383 * barrier semantics on wakeup functions. The following 384 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up() 385 * and is paired with smp_store_mb() in wait_woken(). 386 */ 387 smp_wmb(); /* C */ 388 wq_entry->flags |= WQ_FLAG_WOKEN; 389 390 return default_wake_function(wq_entry, mode, sync, key); 391 } 392 EXPORT_SYMBOL(woken_wake_function); 393 394 int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *arg) 395 { 396 struct wait_bit_key *key = arg; 397 struct wait_bit_queue *wait_bit 398 = container_of(wq_entry, struct wait_bit_queue, wait); 399 400 if (wait_bit->key.flags != key->flags || 401 wait_bit->key.bit_nr != key->bit_nr || 402 test_bit(key->bit_nr, key->flags)) 403 return 0; 404 else 405 return autoremove_wake_function(wq_entry, mode, sync, key); 406 } 407 EXPORT_SYMBOL(wake_bit_function); 408 409 /* 410 * To allow interruptible waiting and asynchronous (i.e. nonblocking) 411 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are 412 * permitted return codes. Nonzero return codes halt waiting and return. 413 */ 414 int __sched 415 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, 416 wait_bit_action_f *action, unsigned mode) 417 { 418 int ret = 0; 419 420 do { 421 prepare_to_wait(wq, &q->wait, mode); 422 if (test_bit(q->key.bit_nr, q->key.flags)) 423 ret = (*action)(&q->key, mode); 424 } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); 425 finish_wait(wq, &q->wait); 426 return ret; 427 } 428 EXPORT_SYMBOL(__wait_on_bit); 429 430 int __sched out_of_line_wait_on_bit(void *word, int bit, 431 wait_bit_action_f *action, unsigned mode) 432 { 433 wait_queue_head_t *wq = bit_waitqueue(word, bit); 434 DEFINE_WAIT_BIT(wait, word, bit); 435 436 return __wait_on_bit(wq, &wait, action, mode); 437 } 438 EXPORT_SYMBOL(out_of_line_wait_on_bit); 439 440 int __sched out_of_line_wait_on_bit_timeout( 441 void *word, int bit, wait_bit_action_f *action, 442 unsigned mode, unsigned long timeout) 443 { 444 wait_queue_head_t *wq = bit_waitqueue(word, bit); 445 DEFINE_WAIT_BIT(wait, word, bit); 446 447 wait.key.timeout = jiffies + timeout; 448 return __wait_on_bit(wq, &wait, action, mode); 449 } 450 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout); 451 452 int __sched 453 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, 454 wait_bit_action_f *action, unsigned mode) 455 { 456 int ret = 0; 457 458 for (;;) { 459 prepare_to_wait_exclusive(wq, &q->wait, mode); 460 if (test_bit(q->key.bit_nr, q->key.flags)) { 461 ret = action(&q->key, mode); 462 /* 463 * See the comment in prepare_to_wait_event(). 464 * finish_wait() does not necessarily takes wq->lock, 465 * but test_and_set_bit() implies mb() which pairs with 466 * smp_mb__after_atomic() before wake_up_page(). 467 */ 468 if (ret) 469 finish_wait(wq, &q->wait); 470 } 471 if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) { 472 if (!ret) 473 finish_wait(wq, &q->wait); 474 return 0; 475 } else if (ret) { 476 return ret; 477 } 478 } 479 } 480 EXPORT_SYMBOL(__wait_on_bit_lock); 481 482 int __sched out_of_line_wait_on_bit_lock(void *word, int bit, 483 wait_bit_action_f *action, unsigned mode) 484 { 485 wait_queue_head_t *wq = bit_waitqueue(word, bit); 486 DEFINE_WAIT_BIT(wait, word, bit); 487 488 return __wait_on_bit_lock(wq, &wait, action, mode); 489 } 490 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); 491 492 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) 493 { 494 struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); 495 if (waitqueue_active(wq)) 496 __wake_up(wq, TASK_NORMAL, 1, &key); 497 } 498 EXPORT_SYMBOL(__wake_up_bit); 499 500 /** 501 * wake_up_bit - wake up a waiter on a bit 502 * @word: the word being waited on, a kernel virtual address 503 * @bit: the bit of the word being waited on 504 * 505 * There is a standard hashed waitqueue table for generic use. This 506 * is the part of the hashtable's accessor API that wakes up waiters 507 * on a bit. For instance, if one were to have waiters on a bitflag, 508 * one would call wake_up_bit() after clearing the bit. 509 * 510 * In order for this to function properly, as it uses waitqueue_active() 511 * internally, some kind of memory barrier must be done prior to calling 512 * this. Typically, this will be smp_mb__after_atomic(), but in some 513 * cases where bitflags are manipulated non-atomically under a lock, one 514 * may need to use a less regular barrier, such fs/inode.c's smp_mb(), 515 * because spin_unlock() does not guarantee a memory barrier. 516 */ 517 void wake_up_bit(void *word, int bit) 518 { 519 __wake_up_bit(bit_waitqueue(word, bit), word, bit); 520 } 521 EXPORT_SYMBOL(wake_up_bit); 522 523 /* 524 * Manipulate the atomic_t address to produce a better bit waitqueue table hash 525 * index (we're keying off bit -1, but that would produce a horrible hash 526 * value). 527 */ 528 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) 529 { 530 if (BITS_PER_LONG == 64) { 531 unsigned long q = (unsigned long)p; 532 return bit_waitqueue((void *)(q & ~1), q & 1); 533 } 534 return bit_waitqueue(p, 0); 535 } 536 537 static int wake_atomic_t_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, 538 void *arg) 539 { 540 struct wait_bit_key *key = arg; 541 struct wait_bit_queue *wait_bit 542 = container_of(wq_entry, struct wait_bit_queue, wait); 543 atomic_t *val = key->flags; 544 545 if (wait_bit->key.flags != key->flags || 546 wait_bit->key.bit_nr != key->bit_nr || 547 atomic_read(val) != 0) 548 return 0; 549 return autoremove_wake_function(wq_entry, mode, sync, key); 550 } 551 552 /* 553 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, 554 * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero 555 * return codes halt waiting and return. 556 */ 557 static __sched 558 int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q, 559 int (*action)(atomic_t *), unsigned mode) 560 { 561 atomic_t *val; 562 int ret = 0; 563 564 do { 565 prepare_to_wait(wq, &q->wait, mode); 566 val = q->key.flags; 567 if (atomic_read(val) == 0) 568 break; 569 ret = (*action)(val); 570 } while (!ret && atomic_read(val) != 0); 571 finish_wait(wq, &q->wait); 572 return ret; 573 } 574 575 #define DEFINE_WAIT_ATOMIC_T(name, p) \ 576 struct wait_bit_queue name = { \ 577 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \ 578 .wait = { \ 579 .private = current, \ 580 .func = wake_atomic_t_function, \ 581 .task_list = \ 582 LIST_HEAD_INIT((name).wait.task_list), \ 583 }, \ 584 } 585 586 __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), 587 unsigned mode) 588 { 589 wait_queue_head_t *wq = atomic_t_waitqueue(p); 590 DEFINE_WAIT_ATOMIC_T(wait, p); 591 592 return __wait_on_atomic_t(wq, &wait, action, mode); 593 } 594 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); 595 596 /** 597 * wake_up_atomic_t - Wake up a waiter on a atomic_t 598 * @p: The atomic_t being waited on, a kernel virtual address 599 * 600 * Wake up anyone waiting for the atomic_t to go to zero. 601 * 602 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t 603 * check is done by the waiter's wake function, not the by the waker itself). 604 */ 605 void wake_up_atomic_t(atomic_t *p) 606 { 607 __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); 608 } 609 EXPORT_SYMBOL(wake_up_atomic_t); 610 611 __sched int bit_wait(struct wait_bit_key *word, int mode) 612 { 613 schedule(); 614 if (signal_pending_state(mode, current)) 615 return -EINTR; 616 return 0; 617 } 618 EXPORT_SYMBOL(bit_wait); 619 620 __sched int bit_wait_io(struct wait_bit_key *word, int mode) 621 { 622 io_schedule(); 623 if (signal_pending_state(mode, current)) 624 return -EINTR; 625 return 0; 626 } 627 EXPORT_SYMBOL(bit_wait_io); 628 629 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode) 630 { 631 unsigned long now = READ_ONCE(jiffies); 632 if (time_after_eq(now, word->timeout)) 633 return -EAGAIN; 634 schedule_timeout(word->timeout - now); 635 if (signal_pending_state(mode, current)) 636 return -EINTR; 637 return 0; 638 } 639 EXPORT_SYMBOL_GPL(bit_wait_timeout); 640 641 __sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode) 642 { 643 unsigned long now = READ_ONCE(jiffies); 644 if (time_after_eq(now, word->timeout)) 645 return -EAGAIN; 646 io_schedule_timeout(word->timeout - now); 647 if (signal_pending_state(mode, current)) 648 return -EINTR; 649 return 0; 650 } 651 EXPORT_SYMBOL_GPL(bit_wait_io_timeout); 652