1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 #include "sched.h" 6 7 DEFINE_MUTEX(sched_domains_mutex); 8 9 /* Protected by sched_domains_mutex: */ 10 static cpumask_var_t sched_domains_tmpmask; 11 static cpumask_var_t sched_domains_tmpmask2; 12 13 #ifdef CONFIG_SCHED_DEBUG 14 15 static int __init sched_debug_setup(char *str) 16 { 17 sched_debug_verbose = true; 18 19 return 0; 20 } 21 early_param("sched_verbose", sched_debug_setup); 22 23 static inline bool sched_debug(void) 24 { 25 return sched_debug_verbose; 26 } 27 28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 29 const struct sd_flag_debug sd_flag_debug[] = { 30 #include <linux/sched/sd_flags.h> 31 }; 32 #undef SD_FLAG 33 34 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 35 struct cpumask *groupmask) 36 { 37 struct sched_group *group = sd->groups; 38 unsigned long flags = sd->flags; 39 unsigned int idx; 40 41 cpumask_clear(groupmask); 42 43 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 44 printk(KERN_CONT "span=%*pbl level=%s\n", 45 cpumask_pr_args(sched_domain_span(sd)), sd->name); 46 47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49 } 50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52 } 53 54 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 55 unsigned int flag = BIT(idx); 56 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 57 58 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 59 !(sd->child->flags & flag)) 60 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 61 sd_flag_debug[idx].name); 62 63 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 64 !(sd->parent->flags & flag)) 65 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 66 sd_flag_debug[idx].name); 67 } 68 69 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 70 do { 71 if (!group) { 72 printk("\n"); 73 printk(KERN_ERR "ERROR: group is NULL\n"); 74 break; 75 } 76 77 if (!cpumask_weight(sched_group_span(group))) { 78 printk(KERN_CONT "\n"); 79 printk(KERN_ERR "ERROR: empty group\n"); 80 break; 81 } 82 83 if (!(sd->flags & SD_OVERLAP) && 84 cpumask_intersects(groupmask, sched_group_span(group))) { 85 printk(KERN_CONT "\n"); 86 printk(KERN_ERR "ERROR: repeated CPUs\n"); 87 break; 88 } 89 90 cpumask_or(groupmask, groupmask, sched_group_span(group)); 91 92 printk(KERN_CONT " %d:{ span=%*pbl", 93 group->sgc->id, 94 cpumask_pr_args(sched_group_span(group))); 95 96 if ((sd->flags & SD_OVERLAP) && 97 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 98 printk(KERN_CONT " mask=%*pbl", 99 cpumask_pr_args(group_balance_mask(group))); 100 } 101 102 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 103 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 104 105 if (group == sd->groups && sd->child && 106 !cpumask_equal(sched_domain_span(sd->child), 107 sched_group_span(group))) { 108 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 109 } 110 111 printk(KERN_CONT " }"); 112 113 group = group->next; 114 115 if (group != sd->groups) 116 printk(KERN_CONT ","); 117 118 } while (group != sd->groups); 119 printk(KERN_CONT "\n"); 120 121 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 122 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 123 124 if (sd->parent && 125 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 126 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 127 return 0; 128 } 129 130 static void sched_domain_debug(struct sched_domain *sd, int cpu) 131 { 132 int level = 0; 133 134 if (!sched_debug_verbose) 135 return; 136 137 if (!sd) { 138 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 139 return; 140 } 141 142 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 143 144 for (;;) { 145 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 146 break; 147 level++; 148 sd = sd->parent; 149 if (!sd) 150 break; 151 } 152 } 153 #else /* !CONFIG_SCHED_DEBUG */ 154 155 # define sched_debug_verbose 0 156 # define sched_domain_debug(sd, cpu) do { } while (0) 157 static inline bool sched_debug(void) 158 { 159 return false; 160 } 161 #endif /* CONFIG_SCHED_DEBUG */ 162 163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 165 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 166 #include <linux/sched/sd_flags.h> 167 0; 168 #undef SD_FLAG 169 170 static int sd_degenerate(struct sched_domain *sd) 171 { 172 if (cpumask_weight(sched_domain_span(sd)) == 1) 173 return 1; 174 175 /* Following flags need at least 2 groups */ 176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 177 (sd->groups != sd->groups->next)) 178 return 0; 179 180 /* Following flags don't use groups */ 181 if (sd->flags & (SD_WAKE_AFFINE)) 182 return 0; 183 184 return 1; 185 } 186 187 static int 188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 189 { 190 unsigned long cflags = sd->flags, pflags = parent->flags; 191 192 if (sd_degenerate(parent)) 193 return 1; 194 195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 196 return 0; 197 198 /* Flags needing groups don't count if only 1 group in parent */ 199 if (parent->groups == parent->groups->next) 200 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 201 202 if (~cflags & pflags) 203 return 0; 204 205 return 1; 206 } 207 208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 209 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 210 unsigned int sysctl_sched_energy_aware = 1; 211 DEFINE_MUTEX(sched_energy_mutex); 212 bool sched_energy_update; 213 214 void rebuild_sched_domains_energy(void) 215 { 216 mutex_lock(&sched_energy_mutex); 217 sched_energy_update = true; 218 rebuild_sched_domains(); 219 sched_energy_update = false; 220 mutex_unlock(&sched_energy_mutex); 221 } 222 223 #ifdef CONFIG_PROC_SYSCTL 224 int sched_energy_aware_handler(struct ctl_table *table, int write, 225 void *buffer, size_t *lenp, loff_t *ppos) 226 { 227 int ret, state; 228 229 if (write && !capable(CAP_SYS_ADMIN)) 230 return -EPERM; 231 232 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 233 if (!ret && write) { 234 state = static_branch_unlikely(&sched_energy_present); 235 if (state != sysctl_sched_energy_aware) 236 rebuild_sched_domains_energy(); 237 } 238 239 return ret; 240 } 241 #endif 242 243 static void free_pd(struct perf_domain *pd) 244 { 245 struct perf_domain *tmp; 246 247 while (pd) { 248 tmp = pd->next; 249 kfree(pd); 250 pd = tmp; 251 } 252 } 253 254 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 255 { 256 while (pd) { 257 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 258 return pd; 259 pd = pd->next; 260 } 261 262 return NULL; 263 } 264 265 static struct perf_domain *pd_init(int cpu) 266 { 267 struct em_perf_domain *obj = em_cpu_get(cpu); 268 struct perf_domain *pd; 269 270 if (!obj) { 271 if (sched_debug()) 272 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 273 return NULL; 274 } 275 276 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 277 if (!pd) 278 return NULL; 279 pd->em_pd = obj; 280 281 return pd; 282 } 283 284 static void perf_domain_debug(const struct cpumask *cpu_map, 285 struct perf_domain *pd) 286 { 287 if (!sched_debug() || !pd) 288 return; 289 290 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 291 292 while (pd) { 293 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 294 cpumask_first(perf_domain_span(pd)), 295 cpumask_pr_args(perf_domain_span(pd)), 296 em_pd_nr_perf_states(pd->em_pd)); 297 pd = pd->next; 298 } 299 300 printk(KERN_CONT "\n"); 301 } 302 303 static void destroy_perf_domain_rcu(struct rcu_head *rp) 304 { 305 struct perf_domain *pd; 306 307 pd = container_of(rp, struct perf_domain, rcu); 308 free_pd(pd); 309 } 310 311 static void sched_energy_set(bool has_eas) 312 { 313 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 314 if (sched_debug()) 315 pr_info("%s: stopping EAS\n", __func__); 316 static_branch_disable_cpuslocked(&sched_energy_present); 317 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 318 if (sched_debug()) 319 pr_info("%s: starting EAS\n", __func__); 320 static_branch_enable_cpuslocked(&sched_energy_present); 321 } 322 } 323 324 /* 325 * EAS can be used on a root domain if it meets all the following conditions: 326 * 1. an Energy Model (EM) is available; 327 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 328 * 3. no SMT is detected. 329 * 4. the EM complexity is low enough to keep scheduling overheads low; 330 * 5. schedutil is driving the frequency of all CPUs of the rd; 331 * 6. frequency invariance support is present; 332 * 333 * The complexity of the Energy Model is defined as: 334 * 335 * C = nr_pd * (nr_cpus + nr_ps) 336 * 337 * with parameters defined as: 338 * - nr_pd: the number of performance domains 339 * - nr_cpus: the number of CPUs 340 * - nr_ps: the sum of the number of performance states of all performance 341 * domains (for example, on a system with 2 performance domains, 342 * with 10 performance states each, nr_ps = 2 * 10 = 20). 343 * 344 * It is generally not a good idea to use such a model in the wake-up path on 345 * very complex platforms because of the associated scheduling overheads. The 346 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 347 * with per-CPU DVFS and less than 8 performance states each, for example. 348 */ 349 #define EM_MAX_COMPLEXITY 2048 350 351 extern struct cpufreq_governor schedutil_gov; 352 static bool build_perf_domains(const struct cpumask *cpu_map) 353 { 354 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 355 struct perf_domain *pd = NULL, *tmp; 356 int cpu = cpumask_first(cpu_map); 357 struct root_domain *rd = cpu_rq(cpu)->rd; 358 struct cpufreq_policy *policy; 359 struct cpufreq_governor *gov; 360 361 if (!sysctl_sched_energy_aware) 362 goto free; 363 364 /* EAS is enabled for asymmetric CPU capacity topologies. */ 365 if (!per_cpu(sd_asym_cpucapacity, cpu)) { 366 if (sched_debug()) { 367 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 368 cpumask_pr_args(cpu_map)); 369 } 370 goto free; 371 } 372 373 /* EAS definitely does *not* handle SMT */ 374 if (sched_smt_active()) { 375 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 376 cpumask_pr_args(cpu_map)); 377 goto free; 378 } 379 380 if (!arch_scale_freq_invariant()) { 381 if (sched_debug()) { 382 pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported", 383 cpumask_pr_args(cpu_map)); 384 } 385 goto free; 386 } 387 388 for_each_cpu(i, cpu_map) { 389 /* Skip already covered CPUs. */ 390 if (find_pd(pd, i)) 391 continue; 392 393 /* Do not attempt EAS if schedutil is not being used. */ 394 policy = cpufreq_cpu_get(i); 395 if (!policy) 396 goto free; 397 gov = policy->governor; 398 cpufreq_cpu_put(policy); 399 if (gov != &schedutil_gov) { 400 if (rd->pd) 401 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 402 cpumask_pr_args(cpu_map)); 403 goto free; 404 } 405 406 /* Create the new pd and add it to the local list. */ 407 tmp = pd_init(i); 408 if (!tmp) 409 goto free; 410 tmp->next = pd; 411 pd = tmp; 412 413 /* 414 * Count performance domains and performance states for the 415 * complexity check. 416 */ 417 nr_pd++; 418 nr_ps += em_pd_nr_perf_states(pd->em_pd); 419 } 420 421 /* Bail out if the Energy Model complexity is too high. */ 422 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 423 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 424 cpumask_pr_args(cpu_map)); 425 goto free; 426 } 427 428 perf_domain_debug(cpu_map, pd); 429 430 /* Attach the new list of performance domains to the root domain. */ 431 tmp = rd->pd; 432 rcu_assign_pointer(rd->pd, pd); 433 if (tmp) 434 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 435 436 return !!pd; 437 438 free: 439 free_pd(pd); 440 tmp = rd->pd; 441 rcu_assign_pointer(rd->pd, NULL); 442 if (tmp) 443 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 444 445 return false; 446 } 447 #else 448 static void free_pd(struct perf_domain *pd) { } 449 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 450 451 static void free_rootdomain(struct rcu_head *rcu) 452 { 453 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 454 455 cpupri_cleanup(&rd->cpupri); 456 cpudl_cleanup(&rd->cpudl); 457 free_cpumask_var(rd->dlo_mask); 458 free_cpumask_var(rd->rto_mask); 459 free_cpumask_var(rd->online); 460 free_cpumask_var(rd->span); 461 free_pd(rd->pd); 462 kfree(rd); 463 } 464 465 void rq_attach_root(struct rq *rq, struct root_domain *rd) 466 { 467 struct root_domain *old_rd = NULL; 468 unsigned long flags; 469 470 raw_spin_rq_lock_irqsave(rq, flags); 471 472 if (rq->rd) { 473 old_rd = rq->rd; 474 475 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 476 set_rq_offline(rq); 477 478 cpumask_clear_cpu(rq->cpu, old_rd->span); 479 480 /* 481 * If we dont want to free the old_rd yet then 482 * set old_rd to NULL to skip the freeing later 483 * in this function: 484 */ 485 if (!atomic_dec_and_test(&old_rd->refcount)) 486 old_rd = NULL; 487 } 488 489 atomic_inc(&rd->refcount); 490 rq->rd = rd; 491 492 cpumask_set_cpu(rq->cpu, rd->span); 493 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 494 set_rq_online(rq); 495 496 raw_spin_rq_unlock_irqrestore(rq, flags); 497 498 if (old_rd) 499 call_rcu(&old_rd->rcu, free_rootdomain); 500 } 501 502 void sched_get_rd(struct root_domain *rd) 503 { 504 atomic_inc(&rd->refcount); 505 } 506 507 void sched_put_rd(struct root_domain *rd) 508 { 509 if (!atomic_dec_and_test(&rd->refcount)) 510 return; 511 512 call_rcu(&rd->rcu, free_rootdomain); 513 } 514 515 static int init_rootdomain(struct root_domain *rd) 516 { 517 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 518 goto out; 519 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 520 goto free_span; 521 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 522 goto free_online; 523 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 524 goto free_dlo_mask; 525 526 #ifdef HAVE_RT_PUSH_IPI 527 rd->rto_cpu = -1; 528 raw_spin_lock_init(&rd->rto_lock); 529 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 530 #endif 531 532 rd->visit_gen = 0; 533 init_dl_bw(&rd->dl_bw); 534 if (cpudl_init(&rd->cpudl) != 0) 535 goto free_rto_mask; 536 537 if (cpupri_init(&rd->cpupri) != 0) 538 goto free_cpudl; 539 return 0; 540 541 free_cpudl: 542 cpudl_cleanup(&rd->cpudl); 543 free_rto_mask: 544 free_cpumask_var(rd->rto_mask); 545 free_dlo_mask: 546 free_cpumask_var(rd->dlo_mask); 547 free_online: 548 free_cpumask_var(rd->online); 549 free_span: 550 free_cpumask_var(rd->span); 551 out: 552 return -ENOMEM; 553 } 554 555 /* 556 * By default the system creates a single root-domain with all CPUs as 557 * members (mimicking the global state we have today). 558 */ 559 struct root_domain def_root_domain; 560 561 void init_defrootdomain(void) 562 { 563 init_rootdomain(&def_root_domain); 564 565 atomic_set(&def_root_domain.refcount, 1); 566 } 567 568 static struct root_domain *alloc_rootdomain(void) 569 { 570 struct root_domain *rd; 571 572 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 573 if (!rd) 574 return NULL; 575 576 if (init_rootdomain(rd) != 0) { 577 kfree(rd); 578 return NULL; 579 } 580 581 return rd; 582 } 583 584 static void free_sched_groups(struct sched_group *sg, int free_sgc) 585 { 586 struct sched_group *tmp, *first; 587 588 if (!sg) 589 return; 590 591 first = sg; 592 do { 593 tmp = sg->next; 594 595 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 596 kfree(sg->sgc); 597 598 if (atomic_dec_and_test(&sg->ref)) 599 kfree(sg); 600 sg = tmp; 601 } while (sg != first); 602 } 603 604 static void destroy_sched_domain(struct sched_domain *sd) 605 { 606 /* 607 * A normal sched domain may have multiple group references, an 608 * overlapping domain, having private groups, only one. Iterate, 609 * dropping group/capacity references, freeing where none remain. 610 */ 611 free_sched_groups(sd->groups, 1); 612 613 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 614 kfree(sd->shared); 615 kfree(sd); 616 } 617 618 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 619 { 620 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 621 622 while (sd) { 623 struct sched_domain *parent = sd->parent; 624 destroy_sched_domain(sd); 625 sd = parent; 626 } 627 } 628 629 static void destroy_sched_domains(struct sched_domain *sd) 630 { 631 if (sd) 632 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 633 } 634 635 /* 636 * Keep a special pointer to the highest sched_domain that has 637 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 638 * allows us to avoid some pointer chasing select_idle_sibling(). 639 * 640 * Also keep a unique ID per domain (we use the first CPU number in 641 * the cpumask of the domain), this allows us to quickly tell if 642 * two CPUs are in the same cache domain, see cpus_share_cache(). 643 */ 644 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 645 DEFINE_PER_CPU(int, sd_llc_size); 646 DEFINE_PER_CPU(int, sd_llc_id); 647 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 648 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 649 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 650 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 651 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 652 653 static void update_top_cache_domain(int cpu) 654 { 655 struct sched_domain_shared *sds = NULL; 656 struct sched_domain *sd; 657 int id = cpu; 658 int size = 1; 659 660 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 661 if (sd) { 662 id = cpumask_first(sched_domain_span(sd)); 663 size = cpumask_weight(sched_domain_span(sd)); 664 sds = sd->shared; 665 } 666 667 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 668 per_cpu(sd_llc_size, cpu) = size; 669 per_cpu(sd_llc_id, cpu) = id; 670 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 671 672 sd = lowest_flag_domain(cpu, SD_NUMA); 673 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 674 675 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 676 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 677 678 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 679 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 680 } 681 682 /* 683 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 684 * hold the hotplug lock. 685 */ 686 static void 687 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 688 { 689 struct rq *rq = cpu_rq(cpu); 690 struct sched_domain *tmp; 691 692 /* Remove the sched domains which do not contribute to scheduling. */ 693 for (tmp = sd; tmp; ) { 694 struct sched_domain *parent = tmp->parent; 695 if (!parent) 696 break; 697 698 if (sd_parent_degenerate(tmp, parent)) { 699 tmp->parent = parent->parent; 700 if (parent->parent) 701 parent->parent->child = tmp; 702 /* 703 * Transfer SD_PREFER_SIBLING down in case of a 704 * degenerate parent; the spans match for this 705 * so the property transfers. 706 */ 707 if (parent->flags & SD_PREFER_SIBLING) 708 tmp->flags |= SD_PREFER_SIBLING; 709 destroy_sched_domain(parent); 710 } else 711 tmp = tmp->parent; 712 } 713 714 if (sd && sd_degenerate(sd)) { 715 tmp = sd; 716 sd = sd->parent; 717 destroy_sched_domain(tmp); 718 if (sd) { 719 struct sched_group *sg = sd->groups; 720 721 /* 722 * sched groups hold the flags of the child sched 723 * domain for convenience. Clear such flags since 724 * the child is being destroyed. 725 */ 726 do { 727 sg->flags = 0; 728 } while (sg != sd->groups); 729 730 sd->child = NULL; 731 } 732 } 733 734 sched_domain_debug(sd, cpu); 735 736 rq_attach_root(rq, rd); 737 tmp = rq->sd; 738 rcu_assign_pointer(rq->sd, sd); 739 dirty_sched_domain_sysctl(cpu); 740 destroy_sched_domains(tmp); 741 742 update_top_cache_domain(cpu); 743 } 744 745 struct s_data { 746 struct sched_domain * __percpu *sd; 747 struct root_domain *rd; 748 }; 749 750 enum s_alloc { 751 sa_rootdomain, 752 sa_sd, 753 sa_sd_storage, 754 sa_none, 755 }; 756 757 /* 758 * Return the canonical balance CPU for this group, this is the first CPU 759 * of this group that's also in the balance mask. 760 * 761 * The balance mask are all those CPUs that could actually end up at this 762 * group. See build_balance_mask(). 763 * 764 * Also see should_we_balance(). 765 */ 766 int group_balance_cpu(struct sched_group *sg) 767 { 768 return cpumask_first(group_balance_mask(sg)); 769 } 770 771 772 /* 773 * NUMA topology (first read the regular topology blurb below) 774 * 775 * Given a node-distance table, for example: 776 * 777 * node 0 1 2 3 778 * 0: 10 20 30 20 779 * 1: 20 10 20 30 780 * 2: 30 20 10 20 781 * 3: 20 30 20 10 782 * 783 * which represents a 4 node ring topology like: 784 * 785 * 0 ----- 1 786 * | | 787 * | | 788 * | | 789 * 3 ----- 2 790 * 791 * We want to construct domains and groups to represent this. The way we go 792 * about doing this is to build the domains on 'hops'. For each NUMA level we 793 * construct the mask of all nodes reachable in @level hops. 794 * 795 * For the above NUMA topology that gives 3 levels: 796 * 797 * NUMA-2 0-3 0-3 0-3 0-3 798 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 799 * 800 * NUMA-1 0-1,3 0-2 1-3 0,2-3 801 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 802 * 803 * NUMA-0 0 1 2 3 804 * 805 * 806 * As can be seen; things don't nicely line up as with the regular topology. 807 * When we iterate a domain in child domain chunks some nodes can be 808 * represented multiple times -- hence the "overlap" naming for this part of 809 * the topology. 810 * 811 * In order to minimize this overlap, we only build enough groups to cover the 812 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 813 * 814 * Because: 815 * 816 * - the first group of each domain is its child domain; this 817 * gets us the first 0-1,3 818 * - the only uncovered node is 2, who's child domain is 1-3. 819 * 820 * However, because of the overlap, computing a unique CPU for each group is 821 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 822 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 823 * end up at those groups (they would end up in group: 0-1,3). 824 * 825 * To correct this we have to introduce the group balance mask. This mask 826 * will contain those CPUs in the group that can reach this group given the 827 * (child) domain tree. 828 * 829 * With this we can once again compute balance_cpu and sched_group_capacity 830 * relations. 831 * 832 * XXX include words on how balance_cpu is unique and therefore can be 833 * used for sched_group_capacity links. 834 * 835 * 836 * Another 'interesting' topology is: 837 * 838 * node 0 1 2 3 839 * 0: 10 20 20 30 840 * 1: 20 10 20 20 841 * 2: 20 20 10 20 842 * 3: 30 20 20 10 843 * 844 * Which looks a little like: 845 * 846 * 0 ----- 1 847 * | / | 848 * | / | 849 * | / | 850 * 2 ----- 3 851 * 852 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 853 * are not. 854 * 855 * This leads to a few particularly weird cases where the sched_domain's are 856 * not of the same number for each CPU. Consider: 857 * 858 * NUMA-2 0-3 0-3 859 * groups: {0-2},{1-3} {1-3},{0-2} 860 * 861 * NUMA-1 0-2 0-3 0-3 1-3 862 * 863 * NUMA-0 0 1 2 3 864 * 865 */ 866 867 868 /* 869 * Build the balance mask; it contains only those CPUs that can arrive at this 870 * group and should be considered to continue balancing. 871 * 872 * We do this during the group creation pass, therefore the group information 873 * isn't complete yet, however since each group represents a (child) domain we 874 * can fully construct this using the sched_domain bits (which are already 875 * complete). 876 */ 877 static void 878 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 879 { 880 const struct cpumask *sg_span = sched_group_span(sg); 881 struct sd_data *sdd = sd->private; 882 struct sched_domain *sibling; 883 int i; 884 885 cpumask_clear(mask); 886 887 for_each_cpu(i, sg_span) { 888 sibling = *per_cpu_ptr(sdd->sd, i); 889 890 /* 891 * Can happen in the asymmetric case, where these siblings are 892 * unused. The mask will not be empty because those CPUs that 893 * do have the top domain _should_ span the domain. 894 */ 895 if (!sibling->child) 896 continue; 897 898 /* If we would not end up here, we can't continue from here */ 899 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 900 continue; 901 902 cpumask_set_cpu(i, mask); 903 } 904 905 /* We must not have empty masks here */ 906 WARN_ON_ONCE(cpumask_empty(mask)); 907 } 908 909 /* 910 * XXX: This creates per-node group entries; since the load-balancer will 911 * immediately access remote memory to construct this group's load-balance 912 * statistics having the groups node local is of dubious benefit. 913 */ 914 static struct sched_group * 915 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 916 { 917 struct sched_group *sg; 918 struct cpumask *sg_span; 919 920 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 921 GFP_KERNEL, cpu_to_node(cpu)); 922 923 if (!sg) 924 return NULL; 925 926 sg_span = sched_group_span(sg); 927 if (sd->child) { 928 cpumask_copy(sg_span, sched_domain_span(sd->child)); 929 sg->flags = sd->child->flags; 930 } else { 931 cpumask_copy(sg_span, sched_domain_span(sd)); 932 } 933 934 atomic_inc(&sg->ref); 935 return sg; 936 } 937 938 static void init_overlap_sched_group(struct sched_domain *sd, 939 struct sched_group *sg) 940 { 941 struct cpumask *mask = sched_domains_tmpmask2; 942 struct sd_data *sdd = sd->private; 943 struct cpumask *sg_span; 944 int cpu; 945 946 build_balance_mask(sd, sg, mask); 947 cpu = cpumask_first(mask); 948 949 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 950 if (atomic_inc_return(&sg->sgc->ref) == 1) 951 cpumask_copy(group_balance_mask(sg), mask); 952 else 953 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 954 955 /* 956 * Initialize sgc->capacity such that even if we mess up the 957 * domains and no possible iteration will get us here, we won't 958 * die on a /0 trap. 959 */ 960 sg_span = sched_group_span(sg); 961 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 962 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 963 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 964 } 965 966 static struct sched_domain * 967 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 968 { 969 /* 970 * The proper descendant would be the one whose child won't span out 971 * of sd 972 */ 973 while (sibling->child && 974 !cpumask_subset(sched_domain_span(sibling->child), 975 sched_domain_span(sd))) 976 sibling = sibling->child; 977 978 /* 979 * As we are referencing sgc across different topology level, we need 980 * to go down to skip those sched_domains which don't contribute to 981 * scheduling because they will be degenerated in cpu_attach_domain 982 */ 983 while (sibling->child && 984 cpumask_equal(sched_domain_span(sibling->child), 985 sched_domain_span(sibling))) 986 sibling = sibling->child; 987 988 return sibling; 989 } 990 991 static int 992 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 993 { 994 struct sched_group *first = NULL, *last = NULL, *sg; 995 const struct cpumask *span = sched_domain_span(sd); 996 struct cpumask *covered = sched_domains_tmpmask; 997 struct sd_data *sdd = sd->private; 998 struct sched_domain *sibling; 999 int i; 1000 1001 cpumask_clear(covered); 1002 1003 for_each_cpu_wrap(i, span, cpu) { 1004 struct cpumask *sg_span; 1005 1006 if (cpumask_test_cpu(i, covered)) 1007 continue; 1008 1009 sibling = *per_cpu_ptr(sdd->sd, i); 1010 1011 /* 1012 * Asymmetric node setups can result in situations where the 1013 * domain tree is of unequal depth, make sure to skip domains 1014 * that already cover the entire range. 1015 * 1016 * In that case build_sched_domains() will have terminated the 1017 * iteration early and our sibling sd spans will be empty. 1018 * Domains should always include the CPU they're built on, so 1019 * check that. 1020 */ 1021 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1022 continue; 1023 1024 /* 1025 * Usually we build sched_group by sibling's child sched_domain 1026 * But for machines whose NUMA diameter are 3 or above, we move 1027 * to build sched_group by sibling's proper descendant's child 1028 * domain because sibling's child sched_domain will span out of 1029 * the sched_domain being built as below. 1030 * 1031 * Smallest diameter=3 topology is: 1032 * 1033 * node 0 1 2 3 1034 * 0: 10 20 30 40 1035 * 1: 20 10 20 30 1036 * 2: 30 20 10 20 1037 * 3: 40 30 20 10 1038 * 1039 * 0 --- 1 --- 2 --- 3 1040 * 1041 * NUMA-3 0-3 N/A N/A 0-3 1042 * groups: {0-2},{1-3} {1-3},{0-2} 1043 * 1044 * NUMA-2 0-2 0-3 0-3 1-3 1045 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1046 * 1047 * NUMA-1 0-1 0-2 1-3 2-3 1048 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1049 * 1050 * NUMA-0 0 1 2 3 1051 * 1052 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1053 * group span isn't a subset of the domain span. 1054 */ 1055 if (sibling->child && 1056 !cpumask_subset(sched_domain_span(sibling->child), span)) 1057 sibling = find_descended_sibling(sd, sibling); 1058 1059 sg = build_group_from_child_sched_domain(sibling, cpu); 1060 if (!sg) 1061 goto fail; 1062 1063 sg_span = sched_group_span(sg); 1064 cpumask_or(covered, covered, sg_span); 1065 1066 init_overlap_sched_group(sibling, sg); 1067 1068 if (!first) 1069 first = sg; 1070 if (last) 1071 last->next = sg; 1072 last = sg; 1073 last->next = first; 1074 } 1075 sd->groups = first; 1076 1077 return 0; 1078 1079 fail: 1080 free_sched_groups(first, 0); 1081 1082 return -ENOMEM; 1083 } 1084 1085 1086 /* 1087 * Package topology (also see the load-balance blurb in fair.c) 1088 * 1089 * The scheduler builds a tree structure to represent a number of important 1090 * topology features. By default (default_topology[]) these include: 1091 * 1092 * - Simultaneous multithreading (SMT) 1093 * - Multi-Core Cache (MC) 1094 * - Package (DIE) 1095 * 1096 * Where the last one more or less denotes everything up to a NUMA node. 1097 * 1098 * The tree consists of 3 primary data structures: 1099 * 1100 * sched_domain -> sched_group -> sched_group_capacity 1101 * ^ ^ ^ ^ 1102 * `-' `-' 1103 * 1104 * The sched_domains are per-CPU and have a two way link (parent & child) and 1105 * denote the ever growing mask of CPUs belonging to that level of topology. 1106 * 1107 * Each sched_domain has a circular (double) linked list of sched_group's, each 1108 * denoting the domains of the level below (or individual CPUs in case of the 1109 * first domain level). The sched_group linked by a sched_domain includes the 1110 * CPU of that sched_domain [*]. 1111 * 1112 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1113 * 1114 * CPU 0 1 2 3 4 5 6 7 1115 * 1116 * DIE [ ] 1117 * MC [ ] [ ] 1118 * SMT [ ] [ ] [ ] [ ] 1119 * 1120 * - or - 1121 * 1122 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1123 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1124 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1125 * 1126 * CPU 0 1 2 3 4 5 6 7 1127 * 1128 * One way to think about it is: sched_domain moves you up and down among these 1129 * topology levels, while sched_group moves you sideways through it, at child 1130 * domain granularity. 1131 * 1132 * sched_group_capacity ensures each unique sched_group has shared storage. 1133 * 1134 * There are two related construction problems, both require a CPU that 1135 * uniquely identify each group (for a given domain): 1136 * 1137 * - The first is the balance_cpu (see should_we_balance() and the 1138 * load-balance blub in fair.c); for each group we only want 1 CPU to 1139 * continue balancing at a higher domain. 1140 * 1141 * - The second is the sched_group_capacity; we want all identical groups 1142 * to share a single sched_group_capacity. 1143 * 1144 * Since these topologies are exclusive by construction. That is, its 1145 * impossible for an SMT thread to belong to multiple cores, and cores to 1146 * be part of multiple caches. There is a very clear and unique location 1147 * for each CPU in the hierarchy. 1148 * 1149 * Therefore computing a unique CPU for each group is trivial (the iteration 1150 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1151 * group), we can simply pick the first CPU in each group. 1152 * 1153 * 1154 * [*] in other words, the first group of each domain is its child domain. 1155 */ 1156 1157 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1158 { 1159 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1160 struct sched_domain *child = sd->child; 1161 struct sched_group *sg; 1162 bool already_visited; 1163 1164 if (child) 1165 cpu = cpumask_first(sched_domain_span(child)); 1166 1167 sg = *per_cpu_ptr(sdd->sg, cpu); 1168 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1169 1170 /* Increase refcounts for claim_allocations: */ 1171 already_visited = atomic_inc_return(&sg->ref) > 1; 1172 /* sgc visits should follow a similar trend as sg */ 1173 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1174 1175 /* If we have already visited that group, it's already initialized. */ 1176 if (already_visited) 1177 return sg; 1178 1179 if (child) { 1180 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1181 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1182 sg->flags = child->flags; 1183 } else { 1184 cpumask_set_cpu(cpu, sched_group_span(sg)); 1185 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1186 } 1187 1188 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1189 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1190 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1191 1192 return sg; 1193 } 1194 1195 /* 1196 * build_sched_groups will build a circular linked list of the groups 1197 * covered by the given span, will set each group's ->cpumask correctly, 1198 * and will initialize their ->sgc. 1199 * 1200 * Assumes the sched_domain tree is fully constructed 1201 */ 1202 static int 1203 build_sched_groups(struct sched_domain *sd, int cpu) 1204 { 1205 struct sched_group *first = NULL, *last = NULL; 1206 struct sd_data *sdd = sd->private; 1207 const struct cpumask *span = sched_domain_span(sd); 1208 struct cpumask *covered; 1209 int i; 1210 1211 lockdep_assert_held(&sched_domains_mutex); 1212 covered = sched_domains_tmpmask; 1213 1214 cpumask_clear(covered); 1215 1216 for_each_cpu_wrap(i, span, cpu) { 1217 struct sched_group *sg; 1218 1219 if (cpumask_test_cpu(i, covered)) 1220 continue; 1221 1222 sg = get_group(i, sdd); 1223 1224 cpumask_or(covered, covered, sched_group_span(sg)); 1225 1226 if (!first) 1227 first = sg; 1228 if (last) 1229 last->next = sg; 1230 last = sg; 1231 } 1232 last->next = first; 1233 sd->groups = first; 1234 1235 return 0; 1236 } 1237 1238 /* 1239 * Initialize sched groups cpu_capacity. 1240 * 1241 * cpu_capacity indicates the capacity of sched group, which is used while 1242 * distributing the load between different sched groups in a sched domain. 1243 * Typically cpu_capacity for all the groups in a sched domain will be same 1244 * unless there are asymmetries in the topology. If there are asymmetries, 1245 * group having more cpu_capacity will pickup more load compared to the 1246 * group having less cpu_capacity. 1247 */ 1248 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1249 { 1250 struct sched_group *sg = sd->groups; 1251 1252 WARN_ON(!sg); 1253 1254 do { 1255 int cpu, max_cpu = -1; 1256 1257 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1258 1259 if (!(sd->flags & SD_ASYM_PACKING)) 1260 goto next; 1261 1262 for_each_cpu(cpu, sched_group_span(sg)) { 1263 if (max_cpu < 0) 1264 max_cpu = cpu; 1265 else if (sched_asym_prefer(cpu, max_cpu)) 1266 max_cpu = cpu; 1267 } 1268 sg->asym_prefer_cpu = max_cpu; 1269 1270 next: 1271 sg = sg->next; 1272 } while (sg != sd->groups); 1273 1274 if (cpu != group_balance_cpu(sg)) 1275 return; 1276 1277 update_group_capacity(sd, cpu); 1278 } 1279 1280 /* 1281 * Asymmetric CPU capacity bits 1282 */ 1283 struct asym_cap_data { 1284 struct list_head link; 1285 unsigned long capacity; 1286 unsigned long cpus[]; 1287 }; 1288 1289 /* 1290 * Set of available CPUs grouped by their corresponding capacities 1291 * Each list entry contains a CPU mask reflecting CPUs that share the same 1292 * capacity. 1293 * The lifespan of data is unlimited. 1294 */ 1295 static LIST_HEAD(asym_cap_list); 1296 1297 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 1298 1299 /* 1300 * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1301 * Provides sd_flags reflecting the asymmetry scope. 1302 */ 1303 static inline int 1304 asym_cpu_capacity_classify(const struct cpumask *sd_span, 1305 const struct cpumask *cpu_map) 1306 { 1307 struct asym_cap_data *entry; 1308 int count = 0, miss = 0; 1309 1310 /* 1311 * Count how many unique CPU capacities this domain spans across 1312 * (compare sched_domain CPUs mask with ones representing available 1313 * CPUs capacities). Take into account CPUs that might be offline: 1314 * skip those. 1315 */ 1316 list_for_each_entry(entry, &asym_cap_list, link) { 1317 if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1318 ++count; 1319 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1320 ++miss; 1321 } 1322 1323 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1324 1325 /* No asymmetry detected */ 1326 if (count < 2) 1327 return 0; 1328 /* Some of the available CPU capacity values have not been detected */ 1329 if (miss) 1330 return SD_ASYM_CPUCAPACITY; 1331 1332 /* Full asymmetry */ 1333 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1334 1335 } 1336 1337 static inline void asym_cpu_capacity_update_data(int cpu) 1338 { 1339 unsigned long capacity = arch_scale_cpu_capacity(cpu); 1340 struct asym_cap_data *entry = NULL; 1341 1342 list_for_each_entry(entry, &asym_cap_list, link) { 1343 if (capacity == entry->capacity) 1344 goto done; 1345 } 1346 1347 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1348 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1349 return; 1350 entry->capacity = capacity; 1351 list_add(&entry->link, &asym_cap_list); 1352 done: 1353 __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1354 } 1355 1356 /* 1357 * Build-up/update list of CPUs grouped by their capacities 1358 * An update requires explicit request to rebuild sched domains 1359 * with state indicating CPU topology changes. 1360 */ 1361 static void asym_cpu_capacity_scan(void) 1362 { 1363 struct asym_cap_data *entry, *next; 1364 int cpu; 1365 1366 list_for_each_entry(entry, &asym_cap_list, link) 1367 cpumask_clear(cpu_capacity_span(entry)); 1368 1369 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_FLAG_DOMAIN)) 1370 asym_cpu_capacity_update_data(cpu); 1371 1372 list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1373 if (cpumask_empty(cpu_capacity_span(entry))) { 1374 list_del(&entry->link); 1375 kfree(entry); 1376 } 1377 } 1378 1379 /* 1380 * Only one capacity value has been detected i.e. this system is symmetric. 1381 * No need to keep this data around. 1382 */ 1383 if (list_is_singular(&asym_cap_list)) { 1384 entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1385 list_del(&entry->link); 1386 kfree(entry); 1387 } 1388 } 1389 1390 /* 1391 * Initializers for schedule domains 1392 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1393 */ 1394 1395 static int default_relax_domain_level = -1; 1396 int sched_domain_level_max; 1397 1398 static int __init setup_relax_domain_level(char *str) 1399 { 1400 if (kstrtoint(str, 0, &default_relax_domain_level)) 1401 pr_warn("Unable to set relax_domain_level\n"); 1402 1403 return 1; 1404 } 1405 __setup("relax_domain_level=", setup_relax_domain_level); 1406 1407 static void set_domain_attribute(struct sched_domain *sd, 1408 struct sched_domain_attr *attr) 1409 { 1410 int request; 1411 1412 if (!attr || attr->relax_domain_level < 0) { 1413 if (default_relax_domain_level < 0) 1414 return; 1415 request = default_relax_domain_level; 1416 } else 1417 request = attr->relax_domain_level; 1418 1419 if (sd->level > request) { 1420 /* Turn off idle balance on this domain: */ 1421 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1422 } 1423 } 1424 1425 static void __sdt_free(const struct cpumask *cpu_map); 1426 static int __sdt_alloc(const struct cpumask *cpu_map); 1427 1428 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1429 const struct cpumask *cpu_map) 1430 { 1431 switch (what) { 1432 case sa_rootdomain: 1433 if (!atomic_read(&d->rd->refcount)) 1434 free_rootdomain(&d->rd->rcu); 1435 fallthrough; 1436 case sa_sd: 1437 free_percpu(d->sd); 1438 fallthrough; 1439 case sa_sd_storage: 1440 __sdt_free(cpu_map); 1441 fallthrough; 1442 case sa_none: 1443 break; 1444 } 1445 } 1446 1447 static enum s_alloc 1448 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1449 { 1450 memset(d, 0, sizeof(*d)); 1451 1452 if (__sdt_alloc(cpu_map)) 1453 return sa_sd_storage; 1454 d->sd = alloc_percpu(struct sched_domain *); 1455 if (!d->sd) 1456 return sa_sd_storage; 1457 d->rd = alloc_rootdomain(); 1458 if (!d->rd) 1459 return sa_sd; 1460 1461 return sa_rootdomain; 1462 } 1463 1464 /* 1465 * NULL the sd_data elements we've used to build the sched_domain and 1466 * sched_group structure so that the subsequent __free_domain_allocs() 1467 * will not free the data we're using. 1468 */ 1469 static void claim_allocations(int cpu, struct sched_domain *sd) 1470 { 1471 struct sd_data *sdd = sd->private; 1472 1473 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1474 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1475 1476 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1477 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1478 1479 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1480 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1481 1482 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1483 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1484 } 1485 1486 #ifdef CONFIG_NUMA 1487 enum numa_topology_type sched_numa_topology_type; 1488 1489 static int sched_domains_numa_levels; 1490 static int sched_domains_curr_level; 1491 1492 int sched_max_numa_distance; 1493 static int *sched_domains_numa_distance; 1494 static struct cpumask ***sched_domains_numa_masks; 1495 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1496 1497 static unsigned long __read_mostly *sched_numa_onlined_nodes; 1498 #endif 1499 1500 /* 1501 * SD_flags allowed in topology descriptions. 1502 * 1503 * These flags are purely descriptive of the topology and do not prescribe 1504 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1505 * function: 1506 * 1507 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1508 * SD_SHARE_PKG_RESOURCES - describes shared caches 1509 * SD_NUMA - describes NUMA topologies 1510 * 1511 * Odd one out, which beside describing the topology has a quirk also 1512 * prescribes the desired behaviour that goes along with it: 1513 * 1514 * SD_ASYM_PACKING - describes SMT quirks 1515 */ 1516 #define TOPOLOGY_SD_FLAGS \ 1517 (SD_SHARE_CPUCAPACITY | \ 1518 SD_SHARE_PKG_RESOURCES | \ 1519 SD_NUMA | \ 1520 SD_ASYM_PACKING) 1521 1522 static struct sched_domain * 1523 sd_init(struct sched_domain_topology_level *tl, 1524 const struct cpumask *cpu_map, 1525 struct sched_domain *child, int cpu) 1526 { 1527 struct sd_data *sdd = &tl->data; 1528 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1529 int sd_id, sd_weight, sd_flags = 0; 1530 struct cpumask *sd_span; 1531 1532 #ifdef CONFIG_NUMA 1533 /* 1534 * Ugly hack to pass state to sd_numa_mask()... 1535 */ 1536 sched_domains_curr_level = tl->numa_level; 1537 #endif 1538 1539 sd_weight = cpumask_weight(tl->mask(cpu)); 1540 1541 if (tl->sd_flags) 1542 sd_flags = (*tl->sd_flags)(); 1543 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1544 "wrong sd_flags in topology description\n")) 1545 sd_flags &= TOPOLOGY_SD_FLAGS; 1546 1547 *sd = (struct sched_domain){ 1548 .min_interval = sd_weight, 1549 .max_interval = 2*sd_weight, 1550 .busy_factor = 16, 1551 .imbalance_pct = 117, 1552 1553 .cache_nice_tries = 0, 1554 1555 .flags = 1*SD_BALANCE_NEWIDLE 1556 | 1*SD_BALANCE_EXEC 1557 | 1*SD_BALANCE_FORK 1558 | 0*SD_BALANCE_WAKE 1559 | 1*SD_WAKE_AFFINE 1560 | 0*SD_SHARE_CPUCAPACITY 1561 | 0*SD_SHARE_PKG_RESOURCES 1562 | 0*SD_SERIALIZE 1563 | 1*SD_PREFER_SIBLING 1564 | 0*SD_NUMA 1565 | sd_flags 1566 , 1567 1568 .last_balance = jiffies, 1569 .balance_interval = sd_weight, 1570 .max_newidle_lb_cost = 0, 1571 .next_decay_max_lb_cost = jiffies, 1572 .child = child, 1573 #ifdef CONFIG_SCHED_DEBUG 1574 .name = tl->name, 1575 #endif 1576 }; 1577 1578 sd_span = sched_domain_span(sd); 1579 cpumask_and(sd_span, cpu_map, tl->mask(cpu)); 1580 sd_id = cpumask_first(sd_span); 1581 1582 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1583 1584 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1585 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1586 "CPU capacity asymmetry not supported on SMT\n"); 1587 1588 /* 1589 * Convert topological properties into behaviour. 1590 */ 1591 /* Don't attempt to spread across CPUs of different capacities. */ 1592 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1593 sd->child->flags &= ~SD_PREFER_SIBLING; 1594 1595 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1596 sd->imbalance_pct = 110; 1597 1598 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1599 sd->imbalance_pct = 117; 1600 sd->cache_nice_tries = 1; 1601 1602 #ifdef CONFIG_NUMA 1603 } else if (sd->flags & SD_NUMA) { 1604 sd->cache_nice_tries = 2; 1605 1606 sd->flags &= ~SD_PREFER_SIBLING; 1607 sd->flags |= SD_SERIALIZE; 1608 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1609 sd->flags &= ~(SD_BALANCE_EXEC | 1610 SD_BALANCE_FORK | 1611 SD_WAKE_AFFINE); 1612 } 1613 1614 #endif 1615 } else { 1616 sd->cache_nice_tries = 1; 1617 } 1618 1619 /* 1620 * For all levels sharing cache; connect a sched_domain_shared 1621 * instance. 1622 */ 1623 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1624 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1625 atomic_inc(&sd->shared->ref); 1626 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1627 } 1628 1629 sd->private = sdd; 1630 1631 return sd; 1632 } 1633 1634 /* 1635 * Topology list, bottom-up. 1636 */ 1637 static struct sched_domain_topology_level default_topology[] = { 1638 #ifdef CONFIG_SCHED_SMT 1639 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1640 #endif 1641 #ifdef CONFIG_SCHED_MC 1642 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1643 #endif 1644 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1645 { NULL, }, 1646 }; 1647 1648 static struct sched_domain_topology_level *sched_domain_topology = 1649 default_topology; 1650 1651 #define for_each_sd_topology(tl) \ 1652 for (tl = sched_domain_topology; tl->mask; tl++) 1653 1654 void set_sched_topology(struct sched_domain_topology_level *tl) 1655 { 1656 if (WARN_ON_ONCE(sched_smp_initialized)) 1657 return; 1658 1659 sched_domain_topology = tl; 1660 } 1661 1662 #ifdef CONFIG_NUMA 1663 1664 static const struct cpumask *sd_numa_mask(int cpu) 1665 { 1666 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1667 } 1668 1669 static void sched_numa_warn(const char *str) 1670 { 1671 static int done = false; 1672 int i,j; 1673 1674 if (done) 1675 return; 1676 1677 done = true; 1678 1679 printk(KERN_WARNING "ERROR: %s\n\n", str); 1680 1681 for (i = 0; i < nr_node_ids; i++) { 1682 printk(KERN_WARNING " "); 1683 for (j = 0; j < nr_node_ids; j++) 1684 printk(KERN_CONT "%02d ", node_distance(i,j)); 1685 printk(KERN_CONT "\n"); 1686 } 1687 printk(KERN_WARNING "\n"); 1688 } 1689 1690 bool find_numa_distance(int distance) 1691 { 1692 int i; 1693 1694 if (distance == node_distance(0, 0)) 1695 return true; 1696 1697 for (i = 0; i < sched_domains_numa_levels; i++) { 1698 if (sched_domains_numa_distance[i] == distance) 1699 return true; 1700 } 1701 1702 return false; 1703 } 1704 1705 /* 1706 * A system can have three types of NUMA topology: 1707 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1708 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1709 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1710 * 1711 * The difference between a glueless mesh topology and a backplane 1712 * topology lies in whether communication between not directly 1713 * connected nodes goes through intermediary nodes (where programs 1714 * could run), or through backplane controllers. This affects 1715 * placement of programs. 1716 * 1717 * The type of topology can be discerned with the following tests: 1718 * - If the maximum distance between any nodes is 1 hop, the system 1719 * is directly connected. 1720 * - If for two nodes A and B, located N > 1 hops away from each other, 1721 * there is an intermediary node C, which is < N hops away from both 1722 * nodes A and B, the system is a glueless mesh. 1723 */ 1724 static void init_numa_topology_type(void) 1725 { 1726 int a, b, c, n; 1727 1728 n = sched_max_numa_distance; 1729 1730 if (sched_domains_numa_levels <= 2) { 1731 sched_numa_topology_type = NUMA_DIRECT; 1732 return; 1733 } 1734 1735 for_each_online_node(a) { 1736 for_each_online_node(b) { 1737 /* Find two nodes furthest removed from each other. */ 1738 if (node_distance(a, b) < n) 1739 continue; 1740 1741 /* Is there an intermediary node between a and b? */ 1742 for_each_online_node(c) { 1743 if (node_distance(a, c) < n && 1744 node_distance(b, c) < n) { 1745 sched_numa_topology_type = 1746 NUMA_GLUELESS_MESH; 1747 return; 1748 } 1749 } 1750 1751 sched_numa_topology_type = NUMA_BACKPLANE; 1752 return; 1753 } 1754 } 1755 } 1756 1757 1758 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1759 1760 void sched_init_numa(void) 1761 { 1762 struct sched_domain_topology_level *tl; 1763 unsigned long *distance_map; 1764 int nr_levels = 0; 1765 int i, j; 1766 1767 /* 1768 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1769 * unique distances in the node_distance() table. 1770 */ 1771 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1772 if (!distance_map) 1773 return; 1774 1775 bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1776 for (i = 0; i < nr_node_ids; i++) { 1777 for (j = 0; j < nr_node_ids; j++) { 1778 int distance = node_distance(i, j); 1779 1780 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1781 sched_numa_warn("Invalid distance value range"); 1782 return; 1783 } 1784 1785 bitmap_set(distance_map, distance, 1); 1786 } 1787 } 1788 /* 1789 * We can now figure out how many unique distance values there are and 1790 * allocate memory accordingly. 1791 */ 1792 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 1793 1794 sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 1795 if (!sched_domains_numa_distance) { 1796 bitmap_free(distance_map); 1797 return; 1798 } 1799 1800 for (i = 0, j = 0; i < nr_levels; i++, j++) { 1801 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 1802 sched_domains_numa_distance[i] = j; 1803 } 1804 1805 bitmap_free(distance_map); 1806 1807 /* 1808 * 'nr_levels' contains the number of unique distances 1809 * 1810 * The sched_domains_numa_distance[] array includes the actual distance 1811 * numbers. 1812 */ 1813 1814 /* 1815 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1816 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1817 * the array will contain less then 'nr_levels' members. This could be 1818 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1819 * in other functions. 1820 * 1821 * We reset it to 'nr_levels' at the end of this function. 1822 */ 1823 sched_domains_numa_levels = 0; 1824 1825 sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 1826 if (!sched_domains_numa_masks) 1827 return; 1828 1829 /* 1830 * Now for each level, construct a mask per node which contains all 1831 * CPUs of nodes that are that many hops away from us. 1832 */ 1833 for (i = 0; i < nr_levels; i++) { 1834 sched_domains_numa_masks[i] = 1835 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1836 if (!sched_domains_numa_masks[i]) 1837 return; 1838 1839 for (j = 0; j < nr_node_ids; j++) { 1840 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1841 int k; 1842 1843 if (!mask) 1844 return; 1845 1846 sched_domains_numa_masks[i][j] = mask; 1847 1848 for_each_node(k) { 1849 /* 1850 * Distance information can be unreliable for 1851 * offline nodes, defer building the node 1852 * masks to its bringup. 1853 * This relies on all unique distance values 1854 * still being visible at init time. 1855 */ 1856 if (!node_online(j)) 1857 continue; 1858 1859 if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) 1860 sched_numa_warn("Node-distance not symmetric"); 1861 1862 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1863 continue; 1864 1865 cpumask_or(mask, mask, cpumask_of_node(k)); 1866 } 1867 } 1868 } 1869 1870 /* Compute default topology size */ 1871 for (i = 0; sched_domain_topology[i].mask; i++); 1872 1873 tl = kzalloc((i + nr_levels + 1) * 1874 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1875 if (!tl) 1876 return; 1877 1878 /* 1879 * Copy the default topology bits.. 1880 */ 1881 for (i = 0; sched_domain_topology[i].mask; i++) 1882 tl[i] = sched_domain_topology[i]; 1883 1884 /* 1885 * Add the NUMA identity distance, aka single NODE. 1886 */ 1887 tl[i++] = (struct sched_domain_topology_level){ 1888 .mask = sd_numa_mask, 1889 .numa_level = 0, 1890 SD_INIT_NAME(NODE) 1891 }; 1892 1893 /* 1894 * .. and append 'j' levels of NUMA goodness. 1895 */ 1896 for (j = 1; j < nr_levels; i++, j++) { 1897 tl[i] = (struct sched_domain_topology_level){ 1898 .mask = sd_numa_mask, 1899 .sd_flags = cpu_numa_flags, 1900 .flags = SDTL_OVERLAP, 1901 .numa_level = j, 1902 SD_INIT_NAME(NUMA) 1903 }; 1904 } 1905 1906 sched_domain_topology = tl; 1907 1908 sched_domains_numa_levels = nr_levels; 1909 sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1]; 1910 1911 init_numa_topology_type(); 1912 1913 sched_numa_onlined_nodes = bitmap_alloc(nr_node_ids, GFP_KERNEL); 1914 if (!sched_numa_onlined_nodes) 1915 return; 1916 1917 bitmap_zero(sched_numa_onlined_nodes, nr_node_ids); 1918 for_each_online_node(i) 1919 bitmap_set(sched_numa_onlined_nodes, i, 1); 1920 } 1921 1922 static void __sched_domains_numa_masks_set(unsigned int node) 1923 { 1924 int i, j; 1925 1926 /* 1927 * NUMA masks are not built for offline nodes in sched_init_numa(). 1928 * Thus, when a CPU of a never-onlined-before node gets plugged in, 1929 * adding that new CPU to the right NUMA masks is not sufficient: the 1930 * masks of that CPU's node must also be updated. 1931 */ 1932 if (test_bit(node, sched_numa_onlined_nodes)) 1933 return; 1934 1935 bitmap_set(sched_numa_onlined_nodes, node, 1); 1936 1937 for (i = 0; i < sched_domains_numa_levels; i++) { 1938 for (j = 0; j < nr_node_ids; j++) { 1939 if (!node_online(j) || node == j) 1940 continue; 1941 1942 if (node_distance(j, node) > sched_domains_numa_distance[i]) 1943 continue; 1944 1945 /* Add remote nodes in our masks */ 1946 cpumask_or(sched_domains_numa_masks[i][node], 1947 sched_domains_numa_masks[i][node], 1948 sched_domains_numa_masks[0][j]); 1949 } 1950 } 1951 1952 /* 1953 * A new node has been brought up, potentially changing the topology 1954 * classification. 1955 * 1956 * Note that this is racy vs any use of sched_numa_topology_type :/ 1957 */ 1958 init_numa_topology_type(); 1959 } 1960 1961 void sched_domains_numa_masks_set(unsigned int cpu) 1962 { 1963 int node = cpu_to_node(cpu); 1964 int i, j; 1965 1966 __sched_domains_numa_masks_set(node); 1967 1968 for (i = 0; i < sched_domains_numa_levels; i++) { 1969 for (j = 0; j < nr_node_ids; j++) { 1970 if (!node_online(j)) 1971 continue; 1972 1973 /* Set ourselves in the remote node's masks */ 1974 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1975 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1976 } 1977 } 1978 } 1979 1980 void sched_domains_numa_masks_clear(unsigned int cpu) 1981 { 1982 int i, j; 1983 1984 for (i = 0; i < sched_domains_numa_levels; i++) { 1985 for (j = 0; j < nr_node_ids; j++) 1986 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1987 } 1988 } 1989 1990 /* 1991 * sched_numa_find_closest() - given the NUMA topology, find the cpu 1992 * closest to @cpu from @cpumask. 1993 * cpumask: cpumask to find a cpu from 1994 * cpu: cpu to be close to 1995 * 1996 * returns: cpu, or nr_cpu_ids when nothing found. 1997 */ 1998 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1999 { 2000 int i, j = cpu_to_node(cpu); 2001 2002 for (i = 0; i < sched_domains_numa_levels; i++) { 2003 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 2004 if (cpu < nr_cpu_ids) 2005 return cpu; 2006 } 2007 return nr_cpu_ids; 2008 } 2009 2010 #endif /* CONFIG_NUMA */ 2011 2012 static int __sdt_alloc(const struct cpumask *cpu_map) 2013 { 2014 struct sched_domain_topology_level *tl; 2015 int j; 2016 2017 for_each_sd_topology(tl) { 2018 struct sd_data *sdd = &tl->data; 2019 2020 sdd->sd = alloc_percpu(struct sched_domain *); 2021 if (!sdd->sd) 2022 return -ENOMEM; 2023 2024 sdd->sds = alloc_percpu(struct sched_domain_shared *); 2025 if (!sdd->sds) 2026 return -ENOMEM; 2027 2028 sdd->sg = alloc_percpu(struct sched_group *); 2029 if (!sdd->sg) 2030 return -ENOMEM; 2031 2032 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2033 if (!sdd->sgc) 2034 return -ENOMEM; 2035 2036 for_each_cpu(j, cpu_map) { 2037 struct sched_domain *sd; 2038 struct sched_domain_shared *sds; 2039 struct sched_group *sg; 2040 struct sched_group_capacity *sgc; 2041 2042 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2043 GFP_KERNEL, cpu_to_node(j)); 2044 if (!sd) 2045 return -ENOMEM; 2046 2047 *per_cpu_ptr(sdd->sd, j) = sd; 2048 2049 sds = kzalloc_node(sizeof(struct sched_domain_shared), 2050 GFP_KERNEL, cpu_to_node(j)); 2051 if (!sds) 2052 return -ENOMEM; 2053 2054 *per_cpu_ptr(sdd->sds, j) = sds; 2055 2056 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2057 GFP_KERNEL, cpu_to_node(j)); 2058 if (!sg) 2059 return -ENOMEM; 2060 2061 sg->next = sg; 2062 2063 *per_cpu_ptr(sdd->sg, j) = sg; 2064 2065 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2066 GFP_KERNEL, cpu_to_node(j)); 2067 if (!sgc) 2068 return -ENOMEM; 2069 2070 #ifdef CONFIG_SCHED_DEBUG 2071 sgc->id = j; 2072 #endif 2073 2074 *per_cpu_ptr(sdd->sgc, j) = sgc; 2075 } 2076 } 2077 2078 return 0; 2079 } 2080 2081 static void __sdt_free(const struct cpumask *cpu_map) 2082 { 2083 struct sched_domain_topology_level *tl; 2084 int j; 2085 2086 for_each_sd_topology(tl) { 2087 struct sd_data *sdd = &tl->data; 2088 2089 for_each_cpu(j, cpu_map) { 2090 struct sched_domain *sd; 2091 2092 if (sdd->sd) { 2093 sd = *per_cpu_ptr(sdd->sd, j); 2094 if (sd && (sd->flags & SD_OVERLAP)) 2095 free_sched_groups(sd->groups, 0); 2096 kfree(*per_cpu_ptr(sdd->sd, j)); 2097 } 2098 2099 if (sdd->sds) 2100 kfree(*per_cpu_ptr(sdd->sds, j)); 2101 if (sdd->sg) 2102 kfree(*per_cpu_ptr(sdd->sg, j)); 2103 if (sdd->sgc) 2104 kfree(*per_cpu_ptr(sdd->sgc, j)); 2105 } 2106 free_percpu(sdd->sd); 2107 sdd->sd = NULL; 2108 free_percpu(sdd->sds); 2109 sdd->sds = NULL; 2110 free_percpu(sdd->sg); 2111 sdd->sg = NULL; 2112 free_percpu(sdd->sgc); 2113 sdd->sgc = NULL; 2114 } 2115 } 2116 2117 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2118 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2119 struct sched_domain *child, int cpu) 2120 { 2121 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2122 2123 if (child) { 2124 sd->level = child->level + 1; 2125 sched_domain_level_max = max(sched_domain_level_max, sd->level); 2126 child->parent = sd; 2127 2128 if (!cpumask_subset(sched_domain_span(child), 2129 sched_domain_span(sd))) { 2130 pr_err("BUG: arch topology borken\n"); 2131 #ifdef CONFIG_SCHED_DEBUG 2132 pr_err(" the %s domain not a subset of the %s domain\n", 2133 child->name, sd->name); 2134 #endif 2135 /* Fixup, ensure @sd has at least @child CPUs. */ 2136 cpumask_or(sched_domain_span(sd), 2137 sched_domain_span(sd), 2138 sched_domain_span(child)); 2139 } 2140 2141 } 2142 set_domain_attribute(sd, attr); 2143 2144 return sd; 2145 } 2146 2147 /* 2148 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2149 * any two given CPUs at this (non-NUMA) topology level. 2150 */ 2151 static bool topology_span_sane(struct sched_domain_topology_level *tl, 2152 const struct cpumask *cpu_map, int cpu) 2153 { 2154 int i; 2155 2156 /* NUMA levels are allowed to overlap */ 2157 if (tl->flags & SDTL_OVERLAP) 2158 return true; 2159 2160 /* 2161 * Non-NUMA levels cannot partially overlap - they must be either 2162 * completely equal or completely disjoint. Otherwise we can end up 2163 * breaking the sched_group lists - i.e. a later get_group() pass 2164 * breaks the linking done for an earlier span. 2165 */ 2166 for_each_cpu(i, cpu_map) { 2167 if (i == cpu) 2168 continue; 2169 /* 2170 * We should 'and' all those masks with 'cpu_map' to exactly 2171 * match the topology we're about to build, but that can only 2172 * remove CPUs, which only lessens our ability to detect 2173 * overlaps 2174 */ 2175 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 2176 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 2177 return false; 2178 } 2179 2180 return true; 2181 } 2182 2183 /* 2184 * Build sched domains for a given set of CPUs and attach the sched domains 2185 * to the individual CPUs 2186 */ 2187 static int 2188 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2189 { 2190 enum s_alloc alloc_state = sa_none; 2191 struct sched_domain *sd; 2192 struct s_data d; 2193 struct rq *rq = NULL; 2194 int i, ret = -ENOMEM; 2195 bool has_asym = false; 2196 2197 if (WARN_ON(cpumask_empty(cpu_map))) 2198 goto error; 2199 2200 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2201 if (alloc_state != sa_rootdomain) 2202 goto error; 2203 2204 /* Set up domains for CPUs specified by the cpu_map: */ 2205 for_each_cpu(i, cpu_map) { 2206 struct sched_domain_topology_level *tl; 2207 2208 sd = NULL; 2209 for_each_sd_topology(tl) { 2210 2211 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2212 goto error; 2213 2214 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2215 2216 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 2217 2218 if (tl == sched_domain_topology) 2219 *per_cpu_ptr(d.sd, i) = sd; 2220 if (tl->flags & SDTL_OVERLAP) 2221 sd->flags |= SD_OVERLAP; 2222 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2223 break; 2224 } 2225 } 2226 2227 /* Build the groups for the domains */ 2228 for_each_cpu(i, cpu_map) { 2229 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2230 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2231 if (sd->flags & SD_OVERLAP) { 2232 if (build_overlap_sched_groups(sd, i)) 2233 goto error; 2234 } else { 2235 if (build_sched_groups(sd, i)) 2236 goto error; 2237 } 2238 } 2239 } 2240 2241 /* Calculate CPU capacity for physical packages and nodes */ 2242 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2243 if (!cpumask_test_cpu(i, cpu_map)) 2244 continue; 2245 2246 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2247 claim_allocations(i, sd); 2248 init_sched_groups_capacity(i, sd); 2249 } 2250 } 2251 2252 /* Attach the domains */ 2253 rcu_read_lock(); 2254 for_each_cpu(i, cpu_map) { 2255 rq = cpu_rq(i); 2256 sd = *per_cpu_ptr(d.sd, i); 2257 2258 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2259 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2260 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2261 2262 cpu_attach_domain(sd, d.rd, i); 2263 } 2264 rcu_read_unlock(); 2265 2266 if (has_asym) 2267 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2268 2269 if (rq && sched_debug_verbose) { 2270 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2271 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2272 } 2273 2274 ret = 0; 2275 error: 2276 __free_domain_allocs(&d, alloc_state, cpu_map); 2277 2278 return ret; 2279 } 2280 2281 /* Current sched domains: */ 2282 static cpumask_var_t *doms_cur; 2283 2284 /* Number of sched domains in 'doms_cur': */ 2285 static int ndoms_cur; 2286 2287 /* Attributes of custom domains in 'doms_cur' */ 2288 static struct sched_domain_attr *dattr_cur; 2289 2290 /* 2291 * Special case: If a kmalloc() of a doms_cur partition (array of 2292 * cpumask) fails, then fallback to a single sched domain, 2293 * as determined by the single cpumask fallback_doms. 2294 */ 2295 static cpumask_var_t fallback_doms; 2296 2297 /* 2298 * arch_update_cpu_topology lets virtualized architectures update the 2299 * CPU core maps. It is supposed to return 1 if the topology changed 2300 * or 0 if it stayed the same. 2301 */ 2302 int __weak arch_update_cpu_topology(void) 2303 { 2304 return 0; 2305 } 2306 2307 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2308 { 2309 int i; 2310 cpumask_var_t *doms; 2311 2312 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2313 if (!doms) 2314 return NULL; 2315 for (i = 0; i < ndoms; i++) { 2316 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2317 free_sched_domains(doms, i); 2318 return NULL; 2319 } 2320 } 2321 return doms; 2322 } 2323 2324 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2325 { 2326 unsigned int i; 2327 for (i = 0; i < ndoms; i++) 2328 free_cpumask_var(doms[i]); 2329 kfree(doms); 2330 } 2331 2332 /* 2333 * Set up scheduler domains and groups. For now this just excludes isolated 2334 * CPUs, but could be used to exclude other special cases in the future. 2335 */ 2336 int sched_init_domains(const struct cpumask *cpu_map) 2337 { 2338 int err; 2339 2340 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2341 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2342 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2343 2344 arch_update_cpu_topology(); 2345 asym_cpu_capacity_scan(); 2346 ndoms_cur = 1; 2347 doms_cur = alloc_sched_domains(ndoms_cur); 2348 if (!doms_cur) 2349 doms_cur = &fallback_doms; 2350 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2351 err = build_sched_domains(doms_cur[0], NULL); 2352 2353 return err; 2354 } 2355 2356 /* 2357 * Detach sched domains from a group of CPUs specified in cpu_map 2358 * These CPUs will now be attached to the NULL domain 2359 */ 2360 static void detach_destroy_domains(const struct cpumask *cpu_map) 2361 { 2362 unsigned int cpu = cpumask_any(cpu_map); 2363 int i; 2364 2365 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2366 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2367 2368 rcu_read_lock(); 2369 for_each_cpu(i, cpu_map) 2370 cpu_attach_domain(NULL, &def_root_domain, i); 2371 rcu_read_unlock(); 2372 } 2373 2374 /* handle null as "default" */ 2375 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2376 struct sched_domain_attr *new, int idx_new) 2377 { 2378 struct sched_domain_attr tmp; 2379 2380 /* Fast path: */ 2381 if (!new && !cur) 2382 return 1; 2383 2384 tmp = SD_ATTR_INIT; 2385 2386 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2387 new ? (new + idx_new) : &tmp, 2388 sizeof(struct sched_domain_attr)); 2389 } 2390 2391 /* 2392 * Partition sched domains as specified by the 'ndoms_new' 2393 * cpumasks in the array doms_new[] of cpumasks. This compares 2394 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2395 * It destroys each deleted domain and builds each new domain. 2396 * 2397 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2398 * The masks don't intersect (don't overlap.) We should setup one 2399 * sched domain for each mask. CPUs not in any of the cpumasks will 2400 * not be load balanced. If the same cpumask appears both in the 2401 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2402 * it as it is. 2403 * 2404 * The passed in 'doms_new' should be allocated using 2405 * alloc_sched_domains. This routine takes ownership of it and will 2406 * free_sched_domains it when done with it. If the caller failed the 2407 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2408 * and partition_sched_domains() will fallback to the single partition 2409 * 'fallback_doms', it also forces the domains to be rebuilt. 2410 * 2411 * If doms_new == NULL it will be replaced with cpu_online_mask. 2412 * ndoms_new == 0 is a special case for destroying existing domains, 2413 * and it will not create the default domain. 2414 * 2415 * Call with hotplug lock and sched_domains_mutex held 2416 */ 2417 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2418 struct sched_domain_attr *dattr_new) 2419 { 2420 bool __maybe_unused has_eas = false; 2421 int i, j, n; 2422 int new_topology; 2423 2424 lockdep_assert_held(&sched_domains_mutex); 2425 2426 /* Let the architecture update CPU core mappings: */ 2427 new_topology = arch_update_cpu_topology(); 2428 /* Trigger rebuilding CPU capacity asymmetry data */ 2429 if (new_topology) 2430 asym_cpu_capacity_scan(); 2431 2432 if (!doms_new) { 2433 WARN_ON_ONCE(dattr_new); 2434 n = 0; 2435 doms_new = alloc_sched_domains(1); 2436 if (doms_new) { 2437 n = 1; 2438 cpumask_and(doms_new[0], cpu_active_mask, 2439 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2440 } 2441 } else { 2442 n = ndoms_new; 2443 } 2444 2445 /* Destroy deleted domains: */ 2446 for (i = 0; i < ndoms_cur; i++) { 2447 for (j = 0; j < n && !new_topology; j++) { 2448 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2449 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2450 struct root_domain *rd; 2451 2452 /* 2453 * This domain won't be destroyed and as such 2454 * its dl_bw->total_bw needs to be cleared. It 2455 * will be recomputed in function 2456 * update_tasks_root_domain(). 2457 */ 2458 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2459 dl_clear_root_domain(rd); 2460 goto match1; 2461 } 2462 } 2463 /* No match - a current sched domain not in new doms_new[] */ 2464 detach_destroy_domains(doms_cur[i]); 2465 match1: 2466 ; 2467 } 2468 2469 n = ndoms_cur; 2470 if (!doms_new) { 2471 n = 0; 2472 doms_new = &fallback_doms; 2473 cpumask_and(doms_new[0], cpu_active_mask, 2474 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2475 } 2476 2477 /* Build new domains: */ 2478 for (i = 0; i < ndoms_new; i++) { 2479 for (j = 0; j < n && !new_topology; j++) { 2480 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2481 dattrs_equal(dattr_new, i, dattr_cur, j)) 2482 goto match2; 2483 } 2484 /* No match - add a new doms_new */ 2485 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2486 match2: 2487 ; 2488 } 2489 2490 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2491 /* Build perf. domains: */ 2492 for (i = 0; i < ndoms_new; i++) { 2493 for (j = 0; j < n && !sched_energy_update; j++) { 2494 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2495 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2496 has_eas = true; 2497 goto match3; 2498 } 2499 } 2500 /* No match - add perf. domains for a new rd */ 2501 has_eas |= build_perf_domains(doms_new[i]); 2502 match3: 2503 ; 2504 } 2505 sched_energy_set(has_eas); 2506 #endif 2507 2508 /* Remember the new sched domains: */ 2509 if (doms_cur != &fallback_doms) 2510 free_sched_domains(doms_cur, ndoms_cur); 2511 2512 kfree(dattr_cur); 2513 doms_cur = doms_new; 2514 dattr_cur = dattr_new; 2515 ndoms_cur = ndoms_new; 2516 2517 update_sched_domain_debugfs(); 2518 } 2519 2520 /* 2521 * Call with hotplug lock held 2522 */ 2523 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2524 struct sched_domain_attr *dattr_new) 2525 { 2526 mutex_lock(&sched_domains_mutex); 2527 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2528 mutex_unlock(&sched_domains_mutex); 2529 } 2530