1 /* 2 * Scheduler topology setup/handling methods 3 */ 4 #include <linux/sched.h> 5 #include <linux/mutex.h> 6 7 #include "sched.h" 8 9 DEFINE_MUTEX(sched_domains_mutex); 10 11 /* Protected by sched_domains_mutex: */ 12 cpumask_var_t sched_domains_tmpmask; 13 14 #ifdef CONFIG_SCHED_DEBUG 15 16 static __read_mostly int sched_debug_enabled; 17 18 static int __init sched_debug_setup(char *str) 19 { 20 sched_debug_enabled = 1; 21 22 return 0; 23 } 24 early_param("sched_debug", sched_debug_setup); 25 26 static inline bool sched_debug(void) 27 { 28 return sched_debug_enabled; 29 } 30 31 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 32 struct cpumask *groupmask) 33 { 34 struct sched_group *group = sd->groups; 35 36 cpumask_clear(groupmask); 37 38 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 39 40 if (!(sd->flags & SD_LOAD_BALANCE)) { 41 printk("does not load-balance\n"); 42 if (sd->parent) 43 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 44 " has parent"); 45 return -1; 46 } 47 48 printk(KERN_CONT "span %*pbl level %s\n", 49 cpumask_pr_args(sched_domain_span(sd)), sd->name); 50 51 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 52 printk(KERN_ERR "ERROR: domain->span does not contain " 53 "CPU%d\n", cpu); 54 } 55 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 56 printk(KERN_ERR "ERROR: domain->groups does not contain" 57 " CPU%d\n", cpu); 58 } 59 60 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 61 do { 62 if (!group) { 63 printk("\n"); 64 printk(KERN_ERR "ERROR: group is NULL\n"); 65 break; 66 } 67 68 if (!cpumask_weight(sched_group_cpus(group))) { 69 printk(KERN_CONT "\n"); 70 printk(KERN_ERR "ERROR: empty group\n"); 71 break; 72 } 73 74 if (!(sd->flags & SD_OVERLAP) && 75 cpumask_intersects(groupmask, sched_group_cpus(group))) { 76 printk(KERN_CONT "\n"); 77 printk(KERN_ERR "ERROR: repeated CPUs\n"); 78 break; 79 } 80 81 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 82 83 printk(KERN_CONT " %*pbl", 84 cpumask_pr_args(sched_group_cpus(group))); 85 86 if ((sd->flags & SD_OVERLAP) && !cpumask_full(sched_group_mask(group))) { 87 printk(KERN_CONT " (mask: %*pbl)", 88 cpumask_pr_args(sched_group_mask(group))); 89 } 90 91 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 92 printk(KERN_CONT " (cpu_capacity: %lu)", 93 group->sgc->capacity); 94 } 95 96 group = group->next; 97 98 if (group != sd->groups) 99 printk(KERN_CONT ","); 100 101 } while (group != sd->groups); 102 printk(KERN_CONT "\n"); 103 104 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 105 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 106 107 if (sd->parent && 108 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 109 printk(KERN_ERR "ERROR: parent span is not a superset " 110 "of domain->span\n"); 111 return 0; 112 } 113 114 static void sched_domain_debug(struct sched_domain *sd, int cpu) 115 { 116 int level = 0; 117 118 if (!sched_debug_enabled) 119 return; 120 121 if (!sd) { 122 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 123 return; 124 } 125 126 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 127 128 for (;;) { 129 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 130 break; 131 level++; 132 sd = sd->parent; 133 if (!sd) 134 break; 135 } 136 } 137 #else /* !CONFIG_SCHED_DEBUG */ 138 139 # define sched_debug_enabled 0 140 # define sched_domain_debug(sd, cpu) do { } while (0) 141 static inline bool sched_debug(void) 142 { 143 return false; 144 } 145 #endif /* CONFIG_SCHED_DEBUG */ 146 147 static int sd_degenerate(struct sched_domain *sd) 148 { 149 if (cpumask_weight(sched_domain_span(sd)) == 1) 150 return 1; 151 152 /* Following flags need at least 2 groups */ 153 if (sd->flags & (SD_LOAD_BALANCE | 154 SD_BALANCE_NEWIDLE | 155 SD_BALANCE_FORK | 156 SD_BALANCE_EXEC | 157 SD_SHARE_CPUCAPACITY | 158 SD_ASYM_CPUCAPACITY | 159 SD_SHARE_PKG_RESOURCES | 160 SD_SHARE_POWERDOMAIN)) { 161 if (sd->groups != sd->groups->next) 162 return 0; 163 } 164 165 /* Following flags don't use groups */ 166 if (sd->flags & (SD_WAKE_AFFINE)) 167 return 0; 168 169 return 1; 170 } 171 172 static int 173 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 174 { 175 unsigned long cflags = sd->flags, pflags = parent->flags; 176 177 if (sd_degenerate(parent)) 178 return 1; 179 180 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 181 return 0; 182 183 /* Flags needing groups don't count if only 1 group in parent */ 184 if (parent->groups == parent->groups->next) { 185 pflags &= ~(SD_LOAD_BALANCE | 186 SD_BALANCE_NEWIDLE | 187 SD_BALANCE_FORK | 188 SD_BALANCE_EXEC | 189 SD_ASYM_CPUCAPACITY | 190 SD_SHARE_CPUCAPACITY | 191 SD_SHARE_PKG_RESOURCES | 192 SD_PREFER_SIBLING | 193 SD_SHARE_POWERDOMAIN); 194 if (nr_node_ids == 1) 195 pflags &= ~SD_SERIALIZE; 196 } 197 if (~cflags & pflags) 198 return 0; 199 200 return 1; 201 } 202 203 static void free_rootdomain(struct rcu_head *rcu) 204 { 205 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 206 207 cpupri_cleanup(&rd->cpupri); 208 cpudl_cleanup(&rd->cpudl); 209 free_cpumask_var(rd->dlo_mask); 210 free_cpumask_var(rd->rto_mask); 211 free_cpumask_var(rd->online); 212 free_cpumask_var(rd->span); 213 kfree(rd); 214 } 215 216 void rq_attach_root(struct rq *rq, struct root_domain *rd) 217 { 218 struct root_domain *old_rd = NULL; 219 unsigned long flags; 220 221 raw_spin_lock_irqsave(&rq->lock, flags); 222 223 if (rq->rd) { 224 old_rd = rq->rd; 225 226 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 227 set_rq_offline(rq); 228 229 cpumask_clear_cpu(rq->cpu, old_rd->span); 230 231 /* 232 * If we dont want to free the old_rd yet then 233 * set old_rd to NULL to skip the freeing later 234 * in this function: 235 */ 236 if (!atomic_dec_and_test(&old_rd->refcount)) 237 old_rd = NULL; 238 } 239 240 atomic_inc(&rd->refcount); 241 rq->rd = rd; 242 243 cpumask_set_cpu(rq->cpu, rd->span); 244 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 245 set_rq_online(rq); 246 247 raw_spin_unlock_irqrestore(&rq->lock, flags); 248 249 if (old_rd) 250 call_rcu_sched(&old_rd->rcu, free_rootdomain); 251 } 252 253 static int init_rootdomain(struct root_domain *rd) 254 { 255 memset(rd, 0, sizeof(*rd)); 256 257 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 258 goto out; 259 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 260 goto free_span; 261 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 262 goto free_online; 263 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 264 goto free_dlo_mask; 265 266 init_dl_bw(&rd->dl_bw); 267 if (cpudl_init(&rd->cpudl) != 0) 268 goto free_rto_mask; 269 270 if (cpupri_init(&rd->cpupri) != 0) 271 goto free_cpudl; 272 return 0; 273 274 free_cpudl: 275 cpudl_cleanup(&rd->cpudl); 276 free_rto_mask: 277 free_cpumask_var(rd->rto_mask); 278 free_dlo_mask: 279 free_cpumask_var(rd->dlo_mask); 280 free_online: 281 free_cpumask_var(rd->online); 282 free_span: 283 free_cpumask_var(rd->span); 284 out: 285 return -ENOMEM; 286 } 287 288 /* 289 * By default the system creates a single root-domain with all CPUs as 290 * members (mimicking the global state we have today). 291 */ 292 struct root_domain def_root_domain; 293 294 void init_defrootdomain(void) 295 { 296 init_rootdomain(&def_root_domain); 297 298 atomic_set(&def_root_domain.refcount, 1); 299 } 300 301 static struct root_domain *alloc_rootdomain(void) 302 { 303 struct root_domain *rd; 304 305 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 306 if (!rd) 307 return NULL; 308 309 if (init_rootdomain(rd) != 0) { 310 kfree(rd); 311 return NULL; 312 } 313 314 return rd; 315 } 316 317 static void free_sched_groups(struct sched_group *sg, int free_sgc) 318 { 319 struct sched_group *tmp, *first; 320 321 if (!sg) 322 return; 323 324 first = sg; 325 do { 326 tmp = sg->next; 327 328 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 329 kfree(sg->sgc); 330 331 kfree(sg); 332 sg = tmp; 333 } while (sg != first); 334 } 335 336 static void destroy_sched_domain(struct sched_domain *sd) 337 { 338 /* 339 * If its an overlapping domain it has private groups, iterate and 340 * nuke them all. 341 */ 342 if (sd->flags & SD_OVERLAP) { 343 free_sched_groups(sd->groups, 1); 344 } else if (atomic_dec_and_test(&sd->groups->ref)) { 345 kfree(sd->groups->sgc); 346 kfree(sd->groups); 347 } 348 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 349 kfree(sd->shared); 350 kfree(sd); 351 } 352 353 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 354 { 355 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 356 357 while (sd) { 358 struct sched_domain *parent = sd->parent; 359 destroy_sched_domain(sd); 360 sd = parent; 361 } 362 } 363 364 static void destroy_sched_domains(struct sched_domain *sd) 365 { 366 if (sd) 367 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 368 } 369 370 /* 371 * Keep a special pointer to the highest sched_domain that has 372 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 373 * allows us to avoid some pointer chasing select_idle_sibling(). 374 * 375 * Also keep a unique ID per domain (we use the first CPU number in 376 * the cpumask of the domain), this allows us to quickly tell if 377 * two CPUs are in the same cache domain, see cpus_share_cache(). 378 */ 379 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 380 DEFINE_PER_CPU(int, sd_llc_size); 381 DEFINE_PER_CPU(int, sd_llc_id); 382 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 383 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 384 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 385 386 static void update_top_cache_domain(int cpu) 387 { 388 struct sched_domain_shared *sds = NULL; 389 struct sched_domain *sd; 390 int id = cpu; 391 int size = 1; 392 393 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 394 if (sd) { 395 id = cpumask_first(sched_domain_span(sd)); 396 size = cpumask_weight(sched_domain_span(sd)); 397 sds = sd->shared; 398 } 399 400 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 401 per_cpu(sd_llc_size, cpu) = size; 402 per_cpu(sd_llc_id, cpu) = id; 403 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 404 405 sd = lowest_flag_domain(cpu, SD_NUMA); 406 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 407 408 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 409 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 410 } 411 412 /* 413 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 414 * hold the hotplug lock. 415 */ 416 static void 417 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 418 { 419 struct rq *rq = cpu_rq(cpu); 420 struct sched_domain *tmp; 421 422 /* Remove the sched domains which do not contribute to scheduling. */ 423 for (tmp = sd; tmp; ) { 424 struct sched_domain *parent = tmp->parent; 425 if (!parent) 426 break; 427 428 if (sd_parent_degenerate(tmp, parent)) { 429 tmp->parent = parent->parent; 430 if (parent->parent) 431 parent->parent->child = tmp; 432 /* 433 * Transfer SD_PREFER_SIBLING down in case of a 434 * degenerate parent; the spans match for this 435 * so the property transfers. 436 */ 437 if (parent->flags & SD_PREFER_SIBLING) 438 tmp->flags |= SD_PREFER_SIBLING; 439 destroy_sched_domain(parent); 440 } else 441 tmp = tmp->parent; 442 } 443 444 if (sd && sd_degenerate(sd)) { 445 tmp = sd; 446 sd = sd->parent; 447 destroy_sched_domain(tmp); 448 if (sd) 449 sd->child = NULL; 450 } 451 452 sched_domain_debug(sd, cpu); 453 454 rq_attach_root(rq, rd); 455 tmp = rq->sd; 456 rcu_assign_pointer(rq->sd, sd); 457 destroy_sched_domains(tmp); 458 459 update_top_cache_domain(cpu); 460 } 461 462 /* Setup the mask of CPUs configured for isolated domains */ 463 static int __init isolated_cpu_setup(char *str) 464 { 465 int ret; 466 467 alloc_bootmem_cpumask_var(&cpu_isolated_map); 468 ret = cpulist_parse(str, cpu_isolated_map); 469 if (ret) { 470 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 471 return 0; 472 } 473 return 1; 474 } 475 __setup("isolcpus=", isolated_cpu_setup); 476 477 struct s_data { 478 struct sched_domain ** __percpu sd; 479 struct root_domain *rd; 480 }; 481 482 enum s_alloc { 483 sa_rootdomain, 484 sa_sd, 485 sa_sd_storage, 486 sa_none, 487 }; 488 489 /* 490 * Build an iteration mask that can exclude certain CPUs from the upwards 491 * domain traversal. 492 * 493 * Asymmetric node setups can result in situations where the domain tree is of 494 * unequal depth, make sure to skip domains that already cover the entire 495 * range. 496 * 497 * In that case build_sched_domains() will have terminated the iteration early 498 * and our sibling sd spans will be empty. Domains should always include the 499 * CPU they're built on, so check that. 500 */ 501 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 502 { 503 const struct cpumask *span = sched_domain_span(sd); 504 struct sd_data *sdd = sd->private; 505 struct sched_domain *sibling; 506 int i; 507 508 for_each_cpu(i, span) { 509 sibling = *per_cpu_ptr(sdd->sd, i); 510 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 511 continue; 512 513 cpumask_set_cpu(i, sched_group_mask(sg)); 514 } 515 } 516 517 /* 518 * Return the canonical balance CPU for this group, this is the first CPU 519 * of this group that's also in the iteration mask. 520 */ 521 int group_balance_cpu(struct sched_group *sg) 522 { 523 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 524 } 525 526 static struct sched_group * 527 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 528 { 529 struct sched_group *sg; 530 struct cpumask *sg_span; 531 532 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 533 GFP_KERNEL, cpu_to_node(cpu)); 534 535 if (!sg) 536 return NULL; 537 538 sg_span = sched_group_cpus(sg); 539 if (sd->child) 540 cpumask_copy(sg_span, sched_domain_span(sd->child)); 541 else 542 cpumask_copy(sg_span, sched_domain_span(sd)); 543 544 return sg; 545 } 546 547 static void init_overlap_sched_group(struct sched_domain *sd, 548 struct sched_group *sg, int cpu) 549 { 550 struct sd_data *sdd = sd->private; 551 struct cpumask *sg_span; 552 553 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 554 if (atomic_inc_return(&sg->sgc->ref) == 1) 555 build_group_mask(sd, sg); 556 557 /* 558 * Initialize sgc->capacity such that even if we mess up the 559 * domains and no possible iteration will get us here, we won't 560 * die on a /0 trap. 561 */ 562 sg_span = sched_group_cpus(sg); 563 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 564 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 565 } 566 567 static int 568 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 569 { 570 struct sched_group *first = NULL, *last = NULL, *sg; 571 const struct cpumask *span = sched_domain_span(sd); 572 struct cpumask *covered = sched_domains_tmpmask; 573 struct sd_data *sdd = sd->private; 574 struct sched_domain *sibling; 575 int i; 576 577 cpumask_clear(covered); 578 579 for_each_cpu_wrap(i, span, cpu) { 580 struct cpumask *sg_span; 581 582 if (cpumask_test_cpu(i, covered)) 583 continue; 584 585 sibling = *per_cpu_ptr(sdd->sd, i); 586 587 /* See the comment near build_group_mask(). */ 588 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 589 continue; 590 591 sg = build_group_from_child_sched_domain(sibling, cpu); 592 if (!sg) 593 goto fail; 594 595 sg_span = sched_group_cpus(sg); 596 cpumask_or(covered, covered, sg_span); 597 598 init_overlap_sched_group(sd, sg, i); 599 600 if (!first) 601 first = sg; 602 if (last) 603 last->next = sg; 604 last = sg; 605 last->next = first; 606 } 607 sd->groups = first; 608 609 return 0; 610 611 fail: 612 free_sched_groups(first, 0); 613 614 return -ENOMEM; 615 } 616 617 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 618 { 619 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 620 struct sched_domain *child = sd->child; 621 622 if (child) 623 cpu = cpumask_first(sched_domain_span(child)); 624 625 if (sg) { 626 *sg = *per_cpu_ptr(sdd->sg, cpu); 627 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 628 629 /* For claim_allocations: */ 630 atomic_set(&(*sg)->sgc->ref, 1); 631 } 632 633 return cpu; 634 } 635 636 /* 637 * build_sched_groups will build a circular linked list of the groups 638 * covered by the given span, and will set each group's ->cpumask correctly, 639 * and ->cpu_capacity to 0. 640 * 641 * Assumes the sched_domain tree is fully constructed 642 */ 643 static int 644 build_sched_groups(struct sched_domain *sd, int cpu) 645 { 646 struct sched_group *first = NULL, *last = NULL; 647 struct sd_data *sdd = sd->private; 648 const struct cpumask *span = sched_domain_span(sd); 649 struct cpumask *covered; 650 int i; 651 652 get_group(cpu, sdd, &sd->groups); 653 atomic_inc(&sd->groups->ref); 654 655 if (cpu != cpumask_first(span)) 656 return 0; 657 658 lockdep_assert_held(&sched_domains_mutex); 659 covered = sched_domains_tmpmask; 660 661 cpumask_clear(covered); 662 663 for_each_cpu(i, span) { 664 struct sched_group *sg; 665 int group, j; 666 667 if (cpumask_test_cpu(i, covered)) 668 continue; 669 670 group = get_group(i, sdd, &sg); 671 cpumask_setall(sched_group_mask(sg)); 672 673 for_each_cpu(j, span) { 674 if (get_group(j, sdd, NULL) != group) 675 continue; 676 677 cpumask_set_cpu(j, covered); 678 cpumask_set_cpu(j, sched_group_cpus(sg)); 679 } 680 681 if (!first) 682 first = sg; 683 if (last) 684 last->next = sg; 685 last = sg; 686 } 687 last->next = first; 688 689 return 0; 690 } 691 692 /* 693 * Initialize sched groups cpu_capacity. 694 * 695 * cpu_capacity indicates the capacity of sched group, which is used while 696 * distributing the load between different sched groups in a sched domain. 697 * Typically cpu_capacity for all the groups in a sched domain will be same 698 * unless there are asymmetries in the topology. If there are asymmetries, 699 * group having more cpu_capacity will pickup more load compared to the 700 * group having less cpu_capacity. 701 */ 702 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 703 { 704 struct sched_group *sg = sd->groups; 705 706 WARN_ON(!sg); 707 708 do { 709 int cpu, max_cpu = -1; 710 711 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 712 713 if (!(sd->flags & SD_ASYM_PACKING)) 714 goto next; 715 716 for_each_cpu(cpu, sched_group_cpus(sg)) { 717 if (max_cpu < 0) 718 max_cpu = cpu; 719 else if (sched_asym_prefer(cpu, max_cpu)) 720 max_cpu = cpu; 721 } 722 sg->asym_prefer_cpu = max_cpu; 723 724 next: 725 sg = sg->next; 726 } while (sg != sd->groups); 727 728 if (cpu != group_balance_cpu(sg)) 729 return; 730 731 update_group_capacity(sd, cpu); 732 } 733 734 /* 735 * Initializers for schedule domains 736 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 737 */ 738 739 static int default_relax_domain_level = -1; 740 int sched_domain_level_max; 741 742 static int __init setup_relax_domain_level(char *str) 743 { 744 if (kstrtoint(str, 0, &default_relax_domain_level)) 745 pr_warn("Unable to set relax_domain_level\n"); 746 747 return 1; 748 } 749 __setup("relax_domain_level=", setup_relax_domain_level); 750 751 static void set_domain_attribute(struct sched_domain *sd, 752 struct sched_domain_attr *attr) 753 { 754 int request; 755 756 if (!attr || attr->relax_domain_level < 0) { 757 if (default_relax_domain_level < 0) 758 return; 759 else 760 request = default_relax_domain_level; 761 } else 762 request = attr->relax_domain_level; 763 if (request < sd->level) { 764 /* Turn off idle balance on this domain: */ 765 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 766 } else { 767 /* Turn on idle balance on this domain: */ 768 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 769 } 770 } 771 772 static void __sdt_free(const struct cpumask *cpu_map); 773 static int __sdt_alloc(const struct cpumask *cpu_map); 774 775 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 776 const struct cpumask *cpu_map) 777 { 778 switch (what) { 779 case sa_rootdomain: 780 if (!atomic_read(&d->rd->refcount)) 781 free_rootdomain(&d->rd->rcu); 782 /* Fall through */ 783 case sa_sd: 784 free_percpu(d->sd); 785 /* Fall through */ 786 case sa_sd_storage: 787 __sdt_free(cpu_map); 788 /* Fall through */ 789 case sa_none: 790 break; 791 } 792 } 793 794 static enum s_alloc 795 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 796 { 797 memset(d, 0, sizeof(*d)); 798 799 if (__sdt_alloc(cpu_map)) 800 return sa_sd_storage; 801 d->sd = alloc_percpu(struct sched_domain *); 802 if (!d->sd) 803 return sa_sd_storage; 804 d->rd = alloc_rootdomain(); 805 if (!d->rd) 806 return sa_sd; 807 return sa_rootdomain; 808 } 809 810 /* 811 * NULL the sd_data elements we've used to build the sched_domain and 812 * sched_group structure so that the subsequent __free_domain_allocs() 813 * will not free the data we're using. 814 */ 815 static void claim_allocations(int cpu, struct sched_domain *sd) 816 { 817 struct sd_data *sdd = sd->private; 818 819 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 820 *per_cpu_ptr(sdd->sd, cpu) = NULL; 821 822 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 823 *per_cpu_ptr(sdd->sds, cpu) = NULL; 824 825 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 826 *per_cpu_ptr(sdd->sg, cpu) = NULL; 827 828 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 829 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 830 } 831 832 #ifdef CONFIG_NUMA 833 static int sched_domains_numa_levels; 834 enum numa_topology_type sched_numa_topology_type; 835 static int *sched_domains_numa_distance; 836 int sched_max_numa_distance; 837 static struct cpumask ***sched_domains_numa_masks; 838 static int sched_domains_curr_level; 839 #endif 840 841 /* 842 * SD_flags allowed in topology descriptions. 843 * 844 * These flags are purely descriptive of the topology and do not prescribe 845 * behaviour. Behaviour is artificial and mapped in the below sd_init() 846 * function: 847 * 848 * SD_SHARE_CPUCAPACITY - describes SMT topologies 849 * SD_SHARE_PKG_RESOURCES - describes shared caches 850 * SD_NUMA - describes NUMA topologies 851 * SD_SHARE_POWERDOMAIN - describes shared power domain 852 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 853 * 854 * Odd one out, which beside describing the topology has a quirk also 855 * prescribes the desired behaviour that goes along with it: 856 * 857 * SD_ASYM_PACKING - describes SMT quirks 858 */ 859 #define TOPOLOGY_SD_FLAGS \ 860 (SD_SHARE_CPUCAPACITY | \ 861 SD_SHARE_PKG_RESOURCES | \ 862 SD_NUMA | \ 863 SD_ASYM_PACKING | \ 864 SD_ASYM_CPUCAPACITY | \ 865 SD_SHARE_POWERDOMAIN) 866 867 static struct sched_domain * 868 sd_init(struct sched_domain_topology_level *tl, 869 const struct cpumask *cpu_map, 870 struct sched_domain *child, int cpu) 871 { 872 struct sd_data *sdd = &tl->data; 873 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 874 int sd_id, sd_weight, sd_flags = 0; 875 876 #ifdef CONFIG_NUMA 877 /* 878 * Ugly hack to pass state to sd_numa_mask()... 879 */ 880 sched_domains_curr_level = tl->numa_level; 881 #endif 882 883 sd_weight = cpumask_weight(tl->mask(cpu)); 884 885 if (tl->sd_flags) 886 sd_flags = (*tl->sd_flags)(); 887 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 888 "wrong sd_flags in topology description\n")) 889 sd_flags &= ~TOPOLOGY_SD_FLAGS; 890 891 *sd = (struct sched_domain){ 892 .min_interval = sd_weight, 893 .max_interval = 2*sd_weight, 894 .busy_factor = 32, 895 .imbalance_pct = 125, 896 897 .cache_nice_tries = 0, 898 .busy_idx = 0, 899 .idle_idx = 0, 900 .newidle_idx = 0, 901 .wake_idx = 0, 902 .forkexec_idx = 0, 903 904 .flags = 1*SD_LOAD_BALANCE 905 | 1*SD_BALANCE_NEWIDLE 906 | 1*SD_BALANCE_EXEC 907 | 1*SD_BALANCE_FORK 908 | 0*SD_BALANCE_WAKE 909 | 1*SD_WAKE_AFFINE 910 | 0*SD_SHARE_CPUCAPACITY 911 | 0*SD_SHARE_PKG_RESOURCES 912 | 0*SD_SERIALIZE 913 | 0*SD_PREFER_SIBLING 914 | 0*SD_NUMA 915 | sd_flags 916 , 917 918 .last_balance = jiffies, 919 .balance_interval = sd_weight, 920 .smt_gain = 0, 921 .max_newidle_lb_cost = 0, 922 .next_decay_max_lb_cost = jiffies, 923 .child = child, 924 #ifdef CONFIG_SCHED_DEBUG 925 .name = tl->name, 926 #endif 927 }; 928 929 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 930 sd_id = cpumask_first(sched_domain_span(sd)); 931 932 /* 933 * Convert topological properties into behaviour. 934 */ 935 936 if (sd->flags & SD_ASYM_CPUCAPACITY) { 937 struct sched_domain *t = sd; 938 939 for_each_lower_domain(t) 940 t->flags |= SD_BALANCE_WAKE; 941 } 942 943 if (sd->flags & SD_SHARE_CPUCAPACITY) { 944 sd->flags |= SD_PREFER_SIBLING; 945 sd->imbalance_pct = 110; 946 sd->smt_gain = 1178; /* ~15% */ 947 948 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 949 sd->imbalance_pct = 117; 950 sd->cache_nice_tries = 1; 951 sd->busy_idx = 2; 952 953 #ifdef CONFIG_NUMA 954 } else if (sd->flags & SD_NUMA) { 955 sd->cache_nice_tries = 2; 956 sd->busy_idx = 3; 957 sd->idle_idx = 2; 958 959 sd->flags |= SD_SERIALIZE; 960 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 961 sd->flags &= ~(SD_BALANCE_EXEC | 962 SD_BALANCE_FORK | 963 SD_WAKE_AFFINE); 964 } 965 966 #endif 967 } else { 968 sd->flags |= SD_PREFER_SIBLING; 969 sd->cache_nice_tries = 1; 970 sd->busy_idx = 2; 971 sd->idle_idx = 1; 972 } 973 974 /* 975 * For all levels sharing cache; connect a sched_domain_shared 976 * instance. 977 */ 978 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 979 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 980 atomic_inc(&sd->shared->ref); 981 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 982 } 983 984 sd->private = sdd; 985 986 return sd; 987 } 988 989 /* 990 * Topology list, bottom-up. 991 */ 992 static struct sched_domain_topology_level default_topology[] = { 993 #ifdef CONFIG_SCHED_SMT 994 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 995 #endif 996 #ifdef CONFIG_SCHED_MC 997 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 998 #endif 999 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1000 { NULL, }, 1001 }; 1002 1003 static struct sched_domain_topology_level *sched_domain_topology = 1004 default_topology; 1005 1006 #define for_each_sd_topology(tl) \ 1007 for (tl = sched_domain_topology; tl->mask; tl++) 1008 1009 void set_sched_topology(struct sched_domain_topology_level *tl) 1010 { 1011 if (WARN_ON_ONCE(sched_smp_initialized)) 1012 return; 1013 1014 sched_domain_topology = tl; 1015 } 1016 1017 #ifdef CONFIG_NUMA 1018 1019 static const struct cpumask *sd_numa_mask(int cpu) 1020 { 1021 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1022 } 1023 1024 static void sched_numa_warn(const char *str) 1025 { 1026 static int done = false; 1027 int i,j; 1028 1029 if (done) 1030 return; 1031 1032 done = true; 1033 1034 printk(KERN_WARNING "ERROR: %s\n\n", str); 1035 1036 for (i = 0; i < nr_node_ids; i++) { 1037 printk(KERN_WARNING " "); 1038 for (j = 0; j < nr_node_ids; j++) 1039 printk(KERN_CONT "%02d ", node_distance(i,j)); 1040 printk(KERN_CONT "\n"); 1041 } 1042 printk(KERN_WARNING "\n"); 1043 } 1044 1045 bool find_numa_distance(int distance) 1046 { 1047 int i; 1048 1049 if (distance == node_distance(0, 0)) 1050 return true; 1051 1052 for (i = 0; i < sched_domains_numa_levels; i++) { 1053 if (sched_domains_numa_distance[i] == distance) 1054 return true; 1055 } 1056 1057 return false; 1058 } 1059 1060 /* 1061 * A system can have three types of NUMA topology: 1062 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1063 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1064 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1065 * 1066 * The difference between a glueless mesh topology and a backplane 1067 * topology lies in whether communication between not directly 1068 * connected nodes goes through intermediary nodes (where programs 1069 * could run), or through backplane controllers. This affects 1070 * placement of programs. 1071 * 1072 * The type of topology can be discerned with the following tests: 1073 * - If the maximum distance between any nodes is 1 hop, the system 1074 * is directly connected. 1075 * - If for two nodes A and B, located N > 1 hops away from each other, 1076 * there is an intermediary node C, which is < N hops away from both 1077 * nodes A and B, the system is a glueless mesh. 1078 */ 1079 static void init_numa_topology_type(void) 1080 { 1081 int a, b, c, n; 1082 1083 n = sched_max_numa_distance; 1084 1085 if (sched_domains_numa_levels <= 1) { 1086 sched_numa_topology_type = NUMA_DIRECT; 1087 return; 1088 } 1089 1090 for_each_online_node(a) { 1091 for_each_online_node(b) { 1092 /* Find two nodes furthest removed from each other. */ 1093 if (node_distance(a, b) < n) 1094 continue; 1095 1096 /* Is there an intermediary node between a and b? */ 1097 for_each_online_node(c) { 1098 if (node_distance(a, c) < n && 1099 node_distance(b, c) < n) { 1100 sched_numa_topology_type = 1101 NUMA_GLUELESS_MESH; 1102 return; 1103 } 1104 } 1105 1106 sched_numa_topology_type = NUMA_BACKPLANE; 1107 return; 1108 } 1109 } 1110 } 1111 1112 void sched_init_numa(void) 1113 { 1114 int next_distance, curr_distance = node_distance(0, 0); 1115 struct sched_domain_topology_level *tl; 1116 int level = 0; 1117 int i, j, k; 1118 1119 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 1120 if (!sched_domains_numa_distance) 1121 return; 1122 1123 /* 1124 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1125 * unique distances in the node_distance() table. 1126 * 1127 * Assumes node_distance(0,j) includes all distances in 1128 * node_distance(i,j) in order to avoid cubic time. 1129 */ 1130 next_distance = curr_distance; 1131 for (i = 0; i < nr_node_ids; i++) { 1132 for (j = 0; j < nr_node_ids; j++) { 1133 for (k = 0; k < nr_node_ids; k++) { 1134 int distance = node_distance(i, k); 1135 1136 if (distance > curr_distance && 1137 (distance < next_distance || 1138 next_distance == curr_distance)) 1139 next_distance = distance; 1140 1141 /* 1142 * While not a strong assumption it would be nice to know 1143 * about cases where if node A is connected to B, B is not 1144 * equally connected to A. 1145 */ 1146 if (sched_debug() && node_distance(k, i) != distance) 1147 sched_numa_warn("Node-distance not symmetric"); 1148 1149 if (sched_debug() && i && !find_numa_distance(distance)) 1150 sched_numa_warn("Node-0 not representative"); 1151 } 1152 if (next_distance != curr_distance) { 1153 sched_domains_numa_distance[level++] = next_distance; 1154 sched_domains_numa_levels = level; 1155 curr_distance = next_distance; 1156 } else break; 1157 } 1158 1159 /* 1160 * In case of sched_debug() we verify the above assumption. 1161 */ 1162 if (!sched_debug()) 1163 break; 1164 } 1165 1166 if (!level) 1167 return; 1168 1169 /* 1170 * 'level' contains the number of unique distances, excluding the 1171 * identity distance node_distance(i,i). 1172 * 1173 * The sched_domains_numa_distance[] array includes the actual distance 1174 * numbers. 1175 */ 1176 1177 /* 1178 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1179 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1180 * the array will contain less then 'level' members. This could be 1181 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1182 * in other functions. 1183 * 1184 * We reset it to 'level' at the end of this function. 1185 */ 1186 sched_domains_numa_levels = 0; 1187 1188 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1189 if (!sched_domains_numa_masks) 1190 return; 1191 1192 /* 1193 * Now for each level, construct a mask per node which contains all 1194 * CPUs of nodes that are that many hops away from us. 1195 */ 1196 for (i = 0; i < level; i++) { 1197 sched_domains_numa_masks[i] = 1198 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1199 if (!sched_domains_numa_masks[i]) 1200 return; 1201 1202 for (j = 0; j < nr_node_ids; j++) { 1203 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1204 if (!mask) 1205 return; 1206 1207 sched_domains_numa_masks[i][j] = mask; 1208 1209 for_each_node(k) { 1210 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1211 continue; 1212 1213 cpumask_or(mask, mask, cpumask_of_node(k)); 1214 } 1215 } 1216 } 1217 1218 /* Compute default topology size */ 1219 for (i = 0; sched_domain_topology[i].mask; i++); 1220 1221 tl = kzalloc((i + level + 1) * 1222 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1223 if (!tl) 1224 return; 1225 1226 /* 1227 * Copy the default topology bits.. 1228 */ 1229 for (i = 0; sched_domain_topology[i].mask; i++) 1230 tl[i] = sched_domain_topology[i]; 1231 1232 /* 1233 * .. and append 'j' levels of NUMA goodness. 1234 */ 1235 for (j = 0; j < level; i++, j++) { 1236 tl[i] = (struct sched_domain_topology_level){ 1237 .mask = sd_numa_mask, 1238 .sd_flags = cpu_numa_flags, 1239 .flags = SDTL_OVERLAP, 1240 .numa_level = j, 1241 SD_INIT_NAME(NUMA) 1242 }; 1243 } 1244 1245 sched_domain_topology = tl; 1246 1247 sched_domains_numa_levels = level; 1248 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1249 1250 init_numa_topology_type(); 1251 } 1252 1253 void sched_domains_numa_masks_set(unsigned int cpu) 1254 { 1255 int node = cpu_to_node(cpu); 1256 int i, j; 1257 1258 for (i = 0; i < sched_domains_numa_levels; i++) { 1259 for (j = 0; j < nr_node_ids; j++) { 1260 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1261 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1262 } 1263 } 1264 } 1265 1266 void sched_domains_numa_masks_clear(unsigned int cpu) 1267 { 1268 int i, j; 1269 1270 for (i = 0; i < sched_domains_numa_levels; i++) { 1271 for (j = 0; j < nr_node_ids; j++) 1272 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1273 } 1274 } 1275 1276 #endif /* CONFIG_NUMA */ 1277 1278 static int __sdt_alloc(const struct cpumask *cpu_map) 1279 { 1280 struct sched_domain_topology_level *tl; 1281 int j; 1282 1283 for_each_sd_topology(tl) { 1284 struct sd_data *sdd = &tl->data; 1285 1286 sdd->sd = alloc_percpu(struct sched_domain *); 1287 if (!sdd->sd) 1288 return -ENOMEM; 1289 1290 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1291 if (!sdd->sds) 1292 return -ENOMEM; 1293 1294 sdd->sg = alloc_percpu(struct sched_group *); 1295 if (!sdd->sg) 1296 return -ENOMEM; 1297 1298 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1299 if (!sdd->sgc) 1300 return -ENOMEM; 1301 1302 for_each_cpu(j, cpu_map) { 1303 struct sched_domain *sd; 1304 struct sched_domain_shared *sds; 1305 struct sched_group *sg; 1306 struct sched_group_capacity *sgc; 1307 1308 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1309 GFP_KERNEL, cpu_to_node(j)); 1310 if (!sd) 1311 return -ENOMEM; 1312 1313 *per_cpu_ptr(sdd->sd, j) = sd; 1314 1315 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1316 GFP_KERNEL, cpu_to_node(j)); 1317 if (!sds) 1318 return -ENOMEM; 1319 1320 *per_cpu_ptr(sdd->sds, j) = sds; 1321 1322 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1323 GFP_KERNEL, cpu_to_node(j)); 1324 if (!sg) 1325 return -ENOMEM; 1326 1327 sg->next = sg; 1328 1329 *per_cpu_ptr(sdd->sg, j) = sg; 1330 1331 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1332 GFP_KERNEL, cpu_to_node(j)); 1333 if (!sgc) 1334 return -ENOMEM; 1335 1336 *per_cpu_ptr(sdd->sgc, j) = sgc; 1337 } 1338 } 1339 1340 return 0; 1341 } 1342 1343 static void __sdt_free(const struct cpumask *cpu_map) 1344 { 1345 struct sched_domain_topology_level *tl; 1346 int j; 1347 1348 for_each_sd_topology(tl) { 1349 struct sd_data *sdd = &tl->data; 1350 1351 for_each_cpu(j, cpu_map) { 1352 struct sched_domain *sd; 1353 1354 if (sdd->sd) { 1355 sd = *per_cpu_ptr(sdd->sd, j); 1356 if (sd && (sd->flags & SD_OVERLAP)) 1357 free_sched_groups(sd->groups, 0); 1358 kfree(*per_cpu_ptr(sdd->sd, j)); 1359 } 1360 1361 if (sdd->sds) 1362 kfree(*per_cpu_ptr(sdd->sds, j)); 1363 if (sdd->sg) 1364 kfree(*per_cpu_ptr(sdd->sg, j)); 1365 if (sdd->sgc) 1366 kfree(*per_cpu_ptr(sdd->sgc, j)); 1367 } 1368 free_percpu(sdd->sd); 1369 sdd->sd = NULL; 1370 free_percpu(sdd->sds); 1371 sdd->sds = NULL; 1372 free_percpu(sdd->sg); 1373 sdd->sg = NULL; 1374 free_percpu(sdd->sgc); 1375 sdd->sgc = NULL; 1376 } 1377 } 1378 1379 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1380 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1381 struct sched_domain *child, int cpu) 1382 { 1383 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 1384 1385 if (child) { 1386 sd->level = child->level + 1; 1387 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1388 child->parent = sd; 1389 1390 if (!cpumask_subset(sched_domain_span(child), 1391 sched_domain_span(sd))) { 1392 pr_err("BUG: arch topology borken\n"); 1393 #ifdef CONFIG_SCHED_DEBUG 1394 pr_err(" the %s domain not a subset of the %s domain\n", 1395 child->name, sd->name); 1396 #endif 1397 /* Fixup, ensure @sd has at least @child cpus. */ 1398 cpumask_or(sched_domain_span(sd), 1399 sched_domain_span(sd), 1400 sched_domain_span(child)); 1401 } 1402 1403 } 1404 set_domain_attribute(sd, attr); 1405 1406 return sd; 1407 } 1408 1409 /* 1410 * Build sched domains for a given set of CPUs and attach the sched domains 1411 * to the individual CPUs 1412 */ 1413 static int 1414 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1415 { 1416 enum s_alloc alloc_state; 1417 struct sched_domain *sd; 1418 struct s_data d; 1419 struct rq *rq = NULL; 1420 int i, ret = -ENOMEM; 1421 1422 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1423 if (alloc_state != sa_rootdomain) 1424 goto error; 1425 1426 /* Set up domains for CPUs specified by the cpu_map: */ 1427 for_each_cpu(i, cpu_map) { 1428 struct sched_domain_topology_level *tl; 1429 1430 sd = NULL; 1431 for_each_sd_topology(tl) { 1432 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 1433 if (tl == sched_domain_topology) 1434 *per_cpu_ptr(d.sd, i) = sd; 1435 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 1436 sd->flags |= SD_OVERLAP; 1437 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1438 break; 1439 } 1440 } 1441 1442 /* Build the groups for the domains */ 1443 for_each_cpu(i, cpu_map) { 1444 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1445 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1446 if (sd->flags & SD_OVERLAP) { 1447 if (build_overlap_sched_groups(sd, i)) 1448 goto error; 1449 } else { 1450 if (build_sched_groups(sd, i)) 1451 goto error; 1452 } 1453 } 1454 } 1455 1456 /* Calculate CPU capacity for physical packages and nodes */ 1457 for (i = nr_cpumask_bits-1; i >= 0; i--) { 1458 if (!cpumask_test_cpu(i, cpu_map)) 1459 continue; 1460 1461 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1462 claim_allocations(i, sd); 1463 init_sched_groups_capacity(i, sd); 1464 } 1465 } 1466 1467 /* Attach the domains */ 1468 rcu_read_lock(); 1469 for_each_cpu(i, cpu_map) { 1470 rq = cpu_rq(i); 1471 sd = *per_cpu_ptr(d.sd, i); 1472 1473 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1474 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1475 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1476 1477 cpu_attach_domain(sd, d.rd, i); 1478 } 1479 rcu_read_unlock(); 1480 1481 if (rq && sched_debug_enabled) { 1482 pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 1483 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1484 } 1485 1486 ret = 0; 1487 error: 1488 __free_domain_allocs(&d, alloc_state, cpu_map); 1489 return ret; 1490 } 1491 1492 /* Current sched domains: */ 1493 static cpumask_var_t *doms_cur; 1494 1495 /* Number of sched domains in 'doms_cur': */ 1496 static int ndoms_cur; 1497 1498 /* Attribues of custom domains in 'doms_cur' */ 1499 static struct sched_domain_attr *dattr_cur; 1500 1501 /* 1502 * Special case: If a kmalloc() of a doms_cur partition (array of 1503 * cpumask) fails, then fallback to a single sched domain, 1504 * as determined by the single cpumask fallback_doms. 1505 */ 1506 cpumask_var_t fallback_doms; 1507 1508 /* 1509 * arch_update_cpu_topology lets virtualized architectures update the 1510 * CPU core maps. It is supposed to return 1 if the topology changed 1511 * or 0 if it stayed the same. 1512 */ 1513 int __weak arch_update_cpu_topology(void) 1514 { 1515 return 0; 1516 } 1517 1518 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1519 { 1520 int i; 1521 cpumask_var_t *doms; 1522 1523 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 1524 if (!doms) 1525 return NULL; 1526 for (i = 0; i < ndoms; i++) { 1527 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1528 free_sched_domains(doms, i); 1529 return NULL; 1530 } 1531 } 1532 return doms; 1533 } 1534 1535 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1536 { 1537 unsigned int i; 1538 for (i = 0; i < ndoms; i++) 1539 free_cpumask_var(doms[i]); 1540 kfree(doms); 1541 } 1542 1543 /* 1544 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1545 * For now this just excludes isolated CPUs, but could be used to 1546 * exclude other special cases in the future. 1547 */ 1548 int init_sched_domains(const struct cpumask *cpu_map) 1549 { 1550 int err; 1551 1552 arch_update_cpu_topology(); 1553 ndoms_cur = 1; 1554 doms_cur = alloc_sched_domains(ndoms_cur); 1555 if (!doms_cur) 1556 doms_cur = &fallback_doms; 1557 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 1558 err = build_sched_domains(doms_cur[0], NULL); 1559 register_sched_domain_sysctl(); 1560 1561 return err; 1562 } 1563 1564 /* 1565 * Detach sched domains from a group of CPUs specified in cpu_map 1566 * These CPUs will now be attached to the NULL domain 1567 */ 1568 static void detach_destroy_domains(const struct cpumask *cpu_map) 1569 { 1570 int i; 1571 1572 rcu_read_lock(); 1573 for_each_cpu(i, cpu_map) 1574 cpu_attach_domain(NULL, &def_root_domain, i); 1575 rcu_read_unlock(); 1576 } 1577 1578 /* handle null as "default" */ 1579 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1580 struct sched_domain_attr *new, int idx_new) 1581 { 1582 struct sched_domain_attr tmp; 1583 1584 /* Fast path: */ 1585 if (!new && !cur) 1586 return 1; 1587 1588 tmp = SD_ATTR_INIT; 1589 return !memcmp(cur ? (cur + idx_cur) : &tmp, 1590 new ? (new + idx_new) : &tmp, 1591 sizeof(struct sched_domain_attr)); 1592 } 1593 1594 /* 1595 * Partition sched domains as specified by the 'ndoms_new' 1596 * cpumasks in the array doms_new[] of cpumasks. This compares 1597 * doms_new[] to the current sched domain partitioning, doms_cur[]. 1598 * It destroys each deleted domain and builds each new domain. 1599 * 1600 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1601 * The masks don't intersect (don't overlap.) We should setup one 1602 * sched domain for each mask. CPUs not in any of the cpumasks will 1603 * not be load balanced. If the same cpumask appears both in the 1604 * current 'doms_cur' domains and in the new 'doms_new', we can leave 1605 * it as it is. 1606 * 1607 * The passed in 'doms_new' should be allocated using 1608 * alloc_sched_domains. This routine takes ownership of it and will 1609 * free_sched_domains it when done with it. If the caller failed the 1610 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1611 * and partition_sched_domains() will fallback to the single partition 1612 * 'fallback_doms', it also forces the domains to be rebuilt. 1613 * 1614 * If doms_new == NULL it will be replaced with cpu_online_mask. 1615 * ndoms_new == 0 is a special case for destroying existing domains, 1616 * and it will not create the default domain. 1617 * 1618 * Call with hotplug lock held 1619 */ 1620 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1621 struct sched_domain_attr *dattr_new) 1622 { 1623 int i, j, n; 1624 int new_topology; 1625 1626 mutex_lock(&sched_domains_mutex); 1627 1628 /* Always unregister in case we don't destroy any domains: */ 1629 unregister_sched_domain_sysctl(); 1630 1631 /* Let the architecture update CPU core mappings: */ 1632 new_topology = arch_update_cpu_topology(); 1633 1634 n = doms_new ? ndoms_new : 0; 1635 1636 /* Destroy deleted domains: */ 1637 for (i = 0; i < ndoms_cur; i++) { 1638 for (j = 0; j < n && !new_topology; j++) { 1639 if (cpumask_equal(doms_cur[i], doms_new[j]) 1640 && dattrs_equal(dattr_cur, i, dattr_new, j)) 1641 goto match1; 1642 } 1643 /* No match - a current sched domain not in new doms_new[] */ 1644 detach_destroy_domains(doms_cur[i]); 1645 match1: 1646 ; 1647 } 1648 1649 n = ndoms_cur; 1650 if (doms_new == NULL) { 1651 n = 0; 1652 doms_new = &fallback_doms; 1653 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 1654 WARN_ON_ONCE(dattr_new); 1655 } 1656 1657 /* Build new domains: */ 1658 for (i = 0; i < ndoms_new; i++) { 1659 for (j = 0; j < n && !new_topology; j++) { 1660 if (cpumask_equal(doms_new[i], doms_cur[j]) 1661 && dattrs_equal(dattr_new, i, dattr_cur, j)) 1662 goto match2; 1663 } 1664 /* No match - add a new doms_new */ 1665 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1666 match2: 1667 ; 1668 } 1669 1670 /* Remember the new sched domains: */ 1671 if (doms_cur != &fallback_doms) 1672 free_sched_domains(doms_cur, ndoms_cur); 1673 1674 kfree(dattr_cur); 1675 doms_cur = doms_new; 1676 dattr_cur = dattr_new; 1677 ndoms_cur = ndoms_new; 1678 1679 register_sched_domain_sysctl(); 1680 1681 mutex_unlock(&sched_domains_mutex); 1682 } 1683 1684