1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 #include "sched.h" 6 7 DEFINE_MUTEX(sched_domains_mutex); 8 9 /* Protected by sched_domains_mutex: */ 10 static cpumask_var_t sched_domains_tmpmask; 11 static cpumask_var_t sched_domains_tmpmask2; 12 13 #ifdef CONFIG_SCHED_DEBUG 14 15 static int __init sched_debug_setup(char *str) 16 { 17 sched_debug_enabled = true; 18 19 return 0; 20 } 21 early_param("sched_debug", sched_debug_setup); 22 23 static inline bool sched_debug(void) 24 { 25 return sched_debug_enabled; 26 } 27 28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 29 const struct sd_flag_debug sd_flag_debug[] = { 30 #include <linux/sched/sd_flags.h> 31 }; 32 #undef SD_FLAG 33 34 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 35 struct cpumask *groupmask) 36 { 37 struct sched_group *group = sd->groups; 38 unsigned long flags = sd->flags; 39 unsigned int idx; 40 41 cpumask_clear(groupmask); 42 43 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 44 printk(KERN_CONT "span=%*pbl level=%s\n", 45 cpumask_pr_args(sched_domain_span(sd)), sd->name); 46 47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49 } 50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52 } 53 54 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 55 unsigned int flag = BIT(idx); 56 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 57 58 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 59 !(sd->child->flags & flag)) 60 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 61 sd_flag_debug[idx].name); 62 63 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 64 !(sd->parent->flags & flag)) 65 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 66 sd_flag_debug[idx].name); 67 } 68 69 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 70 do { 71 if (!group) { 72 printk("\n"); 73 printk(KERN_ERR "ERROR: group is NULL\n"); 74 break; 75 } 76 77 if (!cpumask_weight(sched_group_span(group))) { 78 printk(KERN_CONT "\n"); 79 printk(KERN_ERR "ERROR: empty group\n"); 80 break; 81 } 82 83 if (!(sd->flags & SD_OVERLAP) && 84 cpumask_intersects(groupmask, sched_group_span(group))) { 85 printk(KERN_CONT "\n"); 86 printk(KERN_ERR "ERROR: repeated CPUs\n"); 87 break; 88 } 89 90 cpumask_or(groupmask, groupmask, sched_group_span(group)); 91 92 printk(KERN_CONT " %d:{ span=%*pbl", 93 group->sgc->id, 94 cpumask_pr_args(sched_group_span(group))); 95 96 if ((sd->flags & SD_OVERLAP) && 97 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 98 printk(KERN_CONT " mask=%*pbl", 99 cpumask_pr_args(group_balance_mask(group))); 100 } 101 102 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 103 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 104 105 if (group == sd->groups && sd->child && 106 !cpumask_equal(sched_domain_span(sd->child), 107 sched_group_span(group))) { 108 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 109 } 110 111 printk(KERN_CONT " }"); 112 113 group = group->next; 114 115 if (group != sd->groups) 116 printk(KERN_CONT ","); 117 118 } while (group != sd->groups); 119 printk(KERN_CONT "\n"); 120 121 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 122 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 123 124 if (sd->parent && 125 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 126 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 127 return 0; 128 } 129 130 static void sched_domain_debug(struct sched_domain *sd, int cpu) 131 { 132 int level = 0; 133 134 if (!sched_debug_enabled) 135 return; 136 137 if (!sd) { 138 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 139 return; 140 } 141 142 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 143 144 for (;;) { 145 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 146 break; 147 level++; 148 sd = sd->parent; 149 if (!sd) 150 break; 151 } 152 } 153 #else /* !CONFIG_SCHED_DEBUG */ 154 155 # define sched_debug_enabled 0 156 # define sched_domain_debug(sd, cpu) do { } while (0) 157 static inline bool sched_debug(void) 158 { 159 return false; 160 } 161 #endif /* CONFIG_SCHED_DEBUG */ 162 163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 165 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 166 #include <linux/sched/sd_flags.h> 167 0; 168 #undef SD_FLAG 169 170 static int sd_degenerate(struct sched_domain *sd) 171 { 172 if (cpumask_weight(sched_domain_span(sd)) == 1) 173 return 1; 174 175 /* Following flags need at least 2 groups */ 176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 177 (sd->groups != sd->groups->next)) 178 return 0; 179 180 /* Following flags don't use groups */ 181 if (sd->flags & (SD_WAKE_AFFINE)) 182 return 0; 183 184 return 1; 185 } 186 187 static int 188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 189 { 190 unsigned long cflags = sd->flags, pflags = parent->flags; 191 192 if (sd_degenerate(parent)) 193 return 1; 194 195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 196 return 0; 197 198 /* Flags needing groups don't count if only 1 group in parent */ 199 if (parent->groups == parent->groups->next) 200 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 201 202 if (~cflags & pflags) 203 return 0; 204 205 return 1; 206 } 207 208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 209 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 210 unsigned int sysctl_sched_energy_aware = 1; 211 DEFINE_MUTEX(sched_energy_mutex); 212 bool sched_energy_update; 213 214 #ifdef CONFIG_PROC_SYSCTL 215 int sched_energy_aware_handler(struct ctl_table *table, int write, 216 void *buffer, size_t *lenp, loff_t *ppos) 217 { 218 int ret, state; 219 220 if (write && !capable(CAP_SYS_ADMIN)) 221 return -EPERM; 222 223 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 224 if (!ret && write) { 225 state = static_branch_unlikely(&sched_energy_present); 226 if (state != sysctl_sched_energy_aware) { 227 mutex_lock(&sched_energy_mutex); 228 sched_energy_update = 1; 229 rebuild_sched_domains(); 230 sched_energy_update = 0; 231 mutex_unlock(&sched_energy_mutex); 232 } 233 } 234 235 return ret; 236 } 237 #endif 238 239 static void free_pd(struct perf_domain *pd) 240 { 241 struct perf_domain *tmp; 242 243 while (pd) { 244 tmp = pd->next; 245 kfree(pd); 246 pd = tmp; 247 } 248 } 249 250 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 251 { 252 while (pd) { 253 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 254 return pd; 255 pd = pd->next; 256 } 257 258 return NULL; 259 } 260 261 static struct perf_domain *pd_init(int cpu) 262 { 263 struct em_perf_domain *obj = em_cpu_get(cpu); 264 struct perf_domain *pd; 265 266 if (!obj) { 267 if (sched_debug()) 268 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 269 return NULL; 270 } 271 272 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 273 if (!pd) 274 return NULL; 275 pd->em_pd = obj; 276 277 return pd; 278 } 279 280 static void perf_domain_debug(const struct cpumask *cpu_map, 281 struct perf_domain *pd) 282 { 283 if (!sched_debug() || !pd) 284 return; 285 286 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 287 288 while (pd) { 289 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 290 cpumask_first(perf_domain_span(pd)), 291 cpumask_pr_args(perf_domain_span(pd)), 292 em_pd_nr_perf_states(pd->em_pd)); 293 pd = pd->next; 294 } 295 296 printk(KERN_CONT "\n"); 297 } 298 299 static void destroy_perf_domain_rcu(struct rcu_head *rp) 300 { 301 struct perf_domain *pd; 302 303 pd = container_of(rp, struct perf_domain, rcu); 304 free_pd(pd); 305 } 306 307 static void sched_energy_set(bool has_eas) 308 { 309 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 310 if (sched_debug()) 311 pr_info("%s: stopping EAS\n", __func__); 312 static_branch_disable_cpuslocked(&sched_energy_present); 313 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 314 if (sched_debug()) 315 pr_info("%s: starting EAS\n", __func__); 316 static_branch_enable_cpuslocked(&sched_energy_present); 317 } 318 } 319 320 /* 321 * EAS can be used on a root domain if it meets all the following conditions: 322 * 1. an Energy Model (EM) is available; 323 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 324 * 3. no SMT is detected. 325 * 4. the EM complexity is low enough to keep scheduling overheads low; 326 * 5. schedutil is driving the frequency of all CPUs of the rd; 327 * 328 * The complexity of the Energy Model is defined as: 329 * 330 * C = nr_pd * (nr_cpus + nr_ps) 331 * 332 * with parameters defined as: 333 * - nr_pd: the number of performance domains 334 * - nr_cpus: the number of CPUs 335 * - nr_ps: the sum of the number of performance states of all performance 336 * domains (for example, on a system with 2 performance domains, 337 * with 10 performance states each, nr_ps = 2 * 10 = 20). 338 * 339 * It is generally not a good idea to use such a model in the wake-up path on 340 * very complex platforms because of the associated scheduling overheads. The 341 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 342 * with per-CPU DVFS and less than 8 performance states each, for example. 343 */ 344 #define EM_MAX_COMPLEXITY 2048 345 346 extern struct cpufreq_governor schedutil_gov; 347 static bool build_perf_domains(const struct cpumask *cpu_map) 348 { 349 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 350 struct perf_domain *pd = NULL, *tmp; 351 int cpu = cpumask_first(cpu_map); 352 struct root_domain *rd = cpu_rq(cpu)->rd; 353 struct cpufreq_policy *policy; 354 struct cpufreq_governor *gov; 355 356 if (!sysctl_sched_energy_aware) 357 goto free; 358 359 /* EAS is enabled for asymmetric CPU capacity topologies. */ 360 if (!per_cpu(sd_asym_cpucapacity, cpu)) { 361 if (sched_debug()) { 362 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 363 cpumask_pr_args(cpu_map)); 364 } 365 goto free; 366 } 367 368 /* EAS definitely does *not* handle SMT */ 369 if (sched_smt_active()) { 370 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 371 cpumask_pr_args(cpu_map)); 372 goto free; 373 } 374 375 for_each_cpu(i, cpu_map) { 376 /* Skip already covered CPUs. */ 377 if (find_pd(pd, i)) 378 continue; 379 380 /* Do not attempt EAS if schedutil is not being used. */ 381 policy = cpufreq_cpu_get(i); 382 if (!policy) 383 goto free; 384 gov = policy->governor; 385 cpufreq_cpu_put(policy); 386 if (gov != &schedutil_gov) { 387 if (rd->pd) 388 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 389 cpumask_pr_args(cpu_map)); 390 goto free; 391 } 392 393 /* Create the new pd and add it to the local list. */ 394 tmp = pd_init(i); 395 if (!tmp) 396 goto free; 397 tmp->next = pd; 398 pd = tmp; 399 400 /* 401 * Count performance domains and performance states for the 402 * complexity check. 403 */ 404 nr_pd++; 405 nr_ps += em_pd_nr_perf_states(pd->em_pd); 406 } 407 408 /* Bail out if the Energy Model complexity is too high. */ 409 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 410 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 411 cpumask_pr_args(cpu_map)); 412 goto free; 413 } 414 415 perf_domain_debug(cpu_map, pd); 416 417 /* Attach the new list of performance domains to the root domain. */ 418 tmp = rd->pd; 419 rcu_assign_pointer(rd->pd, pd); 420 if (tmp) 421 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 422 423 return !!pd; 424 425 free: 426 free_pd(pd); 427 tmp = rd->pd; 428 rcu_assign_pointer(rd->pd, NULL); 429 if (tmp) 430 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 431 432 return false; 433 } 434 #else 435 static void free_pd(struct perf_domain *pd) { } 436 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 437 438 static void free_rootdomain(struct rcu_head *rcu) 439 { 440 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 441 442 cpupri_cleanup(&rd->cpupri); 443 cpudl_cleanup(&rd->cpudl); 444 free_cpumask_var(rd->dlo_mask); 445 free_cpumask_var(rd->rto_mask); 446 free_cpumask_var(rd->online); 447 free_cpumask_var(rd->span); 448 free_pd(rd->pd); 449 kfree(rd); 450 } 451 452 void rq_attach_root(struct rq *rq, struct root_domain *rd) 453 { 454 struct root_domain *old_rd = NULL; 455 unsigned long flags; 456 457 raw_spin_lock_irqsave(&rq->lock, flags); 458 459 if (rq->rd) { 460 old_rd = rq->rd; 461 462 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 463 set_rq_offline(rq); 464 465 cpumask_clear_cpu(rq->cpu, old_rd->span); 466 467 /* 468 * If we dont want to free the old_rd yet then 469 * set old_rd to NULL to skip the freeing later 470 * in this function: 471 */ 472 if (!atomic_dec_and_test(&old_rd->refcount)) 473 old_rd = NULL; 474 } 475 476 atomic_inc(&rd->refcount); 477 rq->rd = rd; 478 479 cpumask_set_cpu(rq->cpu, rd->span); 480 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 481 set_rq_online(rq); 482 483 raw_spin_unlock_irqrestore(&rq->lock, flags); 484 485 if (old_rd) 486 call_rcu(&old_rd->rcu, free_rootdomain); 487 } 488 489 void sched_get_rd(struct root_domain *rd) 490 { 491 atomic_inc(&rd->refcount); 492 } 493 494 void sched_put_rd(struct root_domain *rd) 495 { 496 if (!atomic_dec_and_test(&rd->refcount)) 497 return; 498 499 call_rcu(&rd->rcu, free_rootdomain); 500 } 501 502 static int init_rootdomain(struct root_domain *rd) 503 { 504 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 505 goto out; 506 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 507 goto free_span; 508 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 509 goto free_online; 510 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 511 goto free_dlo_mask; 512 513 #ifdef HAVE_RT_PUSH_IPI 514 rd->rto_cpu = -1; 515 raw_spin_lock_init(&rd->rto_lock); 516 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 517 #endif 518 519 init_dl_bw(&rd->dl_bw); 520 if (cpudl_init(&rd->cpudl) != 0) 521 goto free_rto_mask; 522 523 if (cpupri_init(&rd->cpupri) != 0) 524 goto free_cpudl; 525 return 0; 526 527 free_cpudl: 528 cpudl_cleanup(&rd->cpudl); 529 free_rto_mask: 530 free_cpumask_var(rd->rto_mask); 531 free_dlo_mask: 532 free_cpumask_var(rd->dlo_mask); 533 free_online: 534 free_cpumask_var(rd->online); 535 free_span: 536 free_cpumask_var(rd->span); 537 out: 538 return -ENOMEM; 539 } 540 541 /* 542 * By default the system creates a single root-domain with all CPUs as 543 * members (mimicking the global state we have today). 544 */ 545 struct root_domain def_root_domain; 546 547 void init_defrootdomain(void) 548 { 549 init_rootdomain(&def_root_domain); 550 551 atomic_set(&def_root_domain.refcount, 1); 552 } 553 554 static struct root_domain *alloc_rootdomain(void) 555 { 556 struct root_domain *rd; 557 558 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 559 if (!rd) 560 return NULL; 561 562 if (init_rootdomain(rd) != 0) { 563 kfree(rd); 564 return NULL; 565 } 566 567 return rd; 568 } 569 570 static void free_sched_groups(struct sched_group *sg, int free_sgc) 571 { 572 struct sched_group *tmp, *first; 573 574 if (!sg) 575 return; 576 577 first = sg; 578 do { 579 tmp = sg->next; 580 581 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 582 kfree(sg->sgc); 583 584 if (atomic_dec_and_test(&sg->ref)) 585 kfree(sg); 586 sg = tmp; 587 } while (sg != first); 588 } 589 590 static void destroy_sched_domain(struct sched_domain *sd) 591 { 592 /* 593 * A normal sched domain may have multiple group references, an 594 * overlapping domain, having private groups, only one. Iterate, 595 * dropping group/capacity references, freeing where none remain. 596 */ 597 free_sched_groups(sd->groups, 1); 598 599 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 600 kfree(sd->shared); 601 kfree(sd); 602 } 603 604 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 605 { 606 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 607 608 while (sd) { 609 struct sched_domain *parent = sd->parent; 610 destroy_sched_domain(sd); 611 sd = parent; 612 } 613 } 614 615 static void destroy_sched_domains(struct sched_domain *sd) 616 { 617 if (sd) 618 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 619 } 620 621 /* 622 * Keep a special pointer to the highest sched_domain that has 623 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 624 * allows us to avoid some pointer chasing select_idle_sibling(). 625 * 626 * Also keep a unique ID per domain (we use the first CPU number in 627 * the cpumask of the domain), this allows us to quickly tell if 628 * two CPUs are in the same cache domain, see cpus_share_cache(). 629 */ 630 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 631 DEFINE_PER_CPU(int, sd_llc_size); 632 DEFINE_PER_CPU(int, sd_llc_id); 633 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 634 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 635 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 636 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 637 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 638 639 static void update_top_cache_domain(int cpu) 640 { 641 struct sched_domain_shared *sds = NULL; 642 struct sched_domain *sd; 643 int id = cpu; 644 int size = 1; 645 646 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 647 if (sd) { 648 id = cpumask_first(sched_domain_span(sd)); 649 size = cpumask_weight(sched_domain_span(sd)); 650 sds = sd->shared; 651 } 652 653 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 654 per_cpu(sd_llc_size, cpu) = size; 655 per_cpu(sd_llc_id, cpu) = id; 656 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 657 658 sd = lowest_flag_domain(cpu, SD_NUMA); 659 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 660 661 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 662 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 663 664 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 665 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 666 } 667 668 /* 669 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 670 * hold the hotplug lock. 671 */ 672 static void 673 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 674 { 675 struct rq *rq = cpu_rq(cpu); 676 struct sched_domain *tmp; 677 678 /* Remove the sched domains which do not contribute to scheduling. */ 679 for (tmp = sd; tmp; ) { 680 struct sched_domain *parent = tmp->parent; 681 if (!parent) 682 break; 683 684 if (sd_parent_degenerate(tmp, parent)) { 685 tmp->parent = parent->parent; 686 if (parent->parent) 687 parent->parent->child = tmp; 688 /* 689 * Transfer SD_PREFER_SIBLING down in case of a 690 * degenerate parent; the spans match for this 691 * so the property transfers. 692 */ 693 if (parent->flags & SD_PREFER_SIBLING) 694 tmp->flags |= SD_PREFER_SIBLING; 695 destroy_sched_domain(parent); 696 } else 697 tmp = tmp->parent; 698 } 699 700 if (sd && sd_degenerate(sd)) { 701 tmp = sd; 702 sd = sd->parent; 703 destroy_sched_domain(tmp); 704 if (sd) 705 sd->child = NULL; 706 } 707 708 sched_domain_debug(sd, cpu); 709 710 rq_attach_root(rq, rd); 711 tmp = rq->sd; 712 rcu_assign_pointer(rq->sd, sd); 713 dirty_sched_domain_sysctl(cpu); 714 destroy_sched_domains(tmp); 715 716 update_top_cache_domain(cpu); 717 } 718 719 struct s_data { 720 struct sched_domain * __percpu *sd; 721 struct root_domain *rd; 722 }; 723 724 enum s_alloc { 725 sa_rootdomain, 726 sa_sd, 727 sa_sd_storage, 728 sa_none, 729 }; 730 731 /* 732 * Return the canonical balance CPU for this group, this is the first CPU 733 * of this group that's also in the balance mask. 734 * 735 * The balance mask are all those CPUs that could actually end up at this 736 * group. See build_balance_mask(). 737 * 738 * Also see should_we_balance(). 739 */ 740 int group_balance_cpu(struct sched_group *sg) 741 { 742 return cpumask_first(group_balance_mask(sg)); 743 } 744 745 746 /* 747 * NUMA topology (first read the regular topology blurb below) 748 * 749 * Given a node-distance table, for example: 750 * 751 * node 0 1 2 3 752 * 0: 10 20 30 20 753 * 1: 20 10 20 30 754 * 2: 30 20 10 20 755 * 3: 20 30 20 10 756 * 757 * which represents a 4 node ring topology like: 758 * 759 * 0 ----- 1 760 * | | 761 * | | 762 * | | 763 * 3 ----- 2 764 * 765 * We want to construct domains and groups to represent this. The way we go 766 * about doing this is to build the domains on 'hops'. For each NUMA level we 767 * construct the mask of all nodes reachable in @level hops. 768 * 769 * For the above NUMA topology that gives 3 levels: 770 * 771 * NUMA-2 0-3 0-3 0-3 0-3 772 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 773 * 774 * NUMA-1 0-1,3 0-2 1-3 0,2-3 775 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 776 * 777 * NUMA-0 0 1 2 3 778 * 779 * 780 * As can be seen; things don't nicely line up as with the regular topology. 781 * When we iterate a domain in child domain chunks some nodes can be 782 * represented multiple times -- hence the "overlap" naming for this part of 783 * the topology. 784 * 785 * In order to minimize this overlap, we only build enough groups to cover the 786 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 787 * 788 * Because: 789 * 790 * - the first group of each domain is its child domain; this 791 * gets us the first 0-1,3 792 * - the only uncovered node is 2, who's child domain is 1-3. 793 * 794 * However, because of the overlap, computing a unique CPU for each group is 795 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 796 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 797 * end up at those groups (they would end up in group: 0-1,3). 798 * 799 * To correct this we have to introduce the group balance mask. This mask 800 * will contain those CPUs in the group that can reach this group given the 801 * (child) domain tree. 802 * 803 * With this we can once again compute balance_cpu and sched_group_capacity 804 * relations. 805 * 806 * XXX include words on how balance_cpu is unique and therefore can be 807 * used for sched_group_capacity links. 808 * 809 * 810 * Another 'interesting' topology is: 811 * 812 * node 0 1 2 3 813 * 0: 10 20 20 30 814 * 1: 20 10 20 20 815 * 2: 20 20 10 20 816 * 3: 30 20 20 10 817 * 818 * Which looks a little like: 819 * 820 * 0 ----- 1 821 * | / | 822 * | / | 823 * | / | 824 * 2 ----- 3 825 * 826 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 827 * are not. 828 * 829 * This leads to a few particularly weird cases where the sched_domain's are 830 * not of the same number for each CPU. Consider: 831 * 832 * NUMA-2 0-3 0-3 833 * groups: {0-2},{1-3} {1-3},{0-2} 834 * 835 * NUMA-1 0-2 0-3 0-3 1-3 836 * 837 * NUMA-0 0 1 2 3 838 * 839 */ 840 841 842 /* 843 * Build the balance mask; it contains only those CPUs that can arrive at this 844 * group and should be considered to continue balancing. 845 * 846 * We do this during the group creation pass, therefore the group information 847 * isn't complete yet, however since each group represents a (child) domain we 848 * can fully construct this using the sched_domain bits (which are already 849 * complete). 850 */ 851 static void 852 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 853 { 854 const struct cpumask *sg_span = sched_group_span(sg); 855 struct sd_data *sdd = sd->private; 856 struct sched_domain *sibling; 857 int i; 858 859 cpumask_clear(mask); 860 861 for_each_cpu(i, sg_span) { 862 sibling = *per_cpu_ptr(sdd->sd, i); 863 864 /* 865 * Can happen in the asymmetric case, where these siblings are 866 * unused. The mask will not be empty because those CPUs that 867 * do have the top domain _should_ span the domain. 868 */ 869 if (!sibling->child) 870 continue; 871 872 /* If we would not end up here, we can't continue from here */ 873 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 874 continue; 875 876 cpumask_set_cpu(i, mask); 877 } 878 879 /* We must not have empty masks here */ 880 WARN_ON_ONCE(cpumask_empty(mask)); 881 } 882 883 /* 884 * XXX: This creates per-node group entries; since the load-balancer will 885 * immediately access remote memory to construct this group's load-balance 886 * statistics having the groups node local is of dubious benefit. 887 */ 888 static struct sched_group * 889 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 890 { 891 struct sched_group *sg; 892 struct cpumask *sg_span; 893 894 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 895 GFP_KERNEL, cpu_to_node(cpu)); 896 897 if (!sg) 898 return NULL; 899 900 sg_span = sched_group_span(sg); 901 if (sd->child) 902 cpumask_copy(sg_span, sched_domain_span(sd->child)); 903 else 904 cpumask_copy(sg_span, sched_domain_span(sd)); 905 906 atomic_inc(&sg->ref); 907 return sg; 908 } 909 910 static void init_overlap_sched_group(struct sched_domain *sd, 911 struct sched_group *sg) 912 { 913 struct cpumask *mask = sched_domains_tmpmask2; 914 struct sd_data *sdd = sd->private; 915 struct cpumask *sg_span; 916 int cpu; 917 918 build_balance_mask(sd, sg, mask); 919 cpu = cpumask_first_and(sched_group_span(sg), mask); 920 921 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 922 if (atomic_inc_return(&sg->sgc->ref) == 1) 923 cpumask_copy(group_balance_mask(sg), mask); 924 else 925 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 926 927 /* 928 * Initialize sgc->capacity such that even if we mess up the 929 * domains and no possible iteration will get us here, we won't 930 * die on a /0 trap. 931 */ 932 sg_span = sched_group_span(sg); 933 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 934 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 935 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 936 } 937 938 static int 939 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 940 { 941 struct sched_group *first = NULL, *last = NULL, *sg; 942 const struct cpumask *span = sched_domain_span(sd); 943 struct cpumask *covered = sched_domains_tmpmask; 944 struct sd_data *sdd = sd->private; 945 struct sched_domain *sibling; 946 int i; 947 948 cpumask_clear(covered); 949 950 for_each_cpu_wrap(i, span, cpu) { 951 struct cpumask *sg_span; 952 953 if (cpumask_test_cpu(i, covered)) 954 continue; 955 956 sibling = *per_cpu_ptr(sdd->sd, i); 957 958 /* 959 * Asymmetric node setups can result in situations where the 960 * domain tree is of unequal depth, make sure to skip domains 961 * that already cover the entire range. 962 * 963 * In that case build_sched_domains() will have terminated the 964 * iteration early and our sibling sd spans will be empty. 965 * Domains should always include the CPU they're built on, so 966 * check that. 967 */ 968 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 969 continue; 970 971 sg = build_group_from_child_sched_domain(sibling, cpu); 972 if (!sg) 973 goto fail; 974 975 sg_span = sched_group_span(sg); 976 cpumask_or(covered, covered, sg_span); 977 978 init_overlap_sched_group(sd, sg); 979 980 if (!first) 981 first = sg; 982 if (last) 983 last->next = sg; 984 last = sg; 985 last->next = first; 986 } 987 sd->groups = first; 988 989 return 0; 990 991 fail: 992 free_sched_groups(first, 0); 993 994 return -ENOMEM; 995 } 996 997 998 /* 999 * Package topology (also see the load-balance blurb in fair.c) 1000 * 1001 * The scheduler builds a tree structure to represent a number of important 1002 * topology features. By default (default_topology[]) these include: 1003 * 1004 * - Simultaneous multithreading (SMT) 1005 * - Multi-Core Cache (MC) 1006 * - Package (DIE) 1007 * 1008 * Where the last one more or less denotes everything up to a NUMA node. 1009 * 1010 * The tree consists of 3 primary data structures: 1011 * 1012 * sched_domain -> sched_group -> sched_group_capacity 1013 * ^ ^ ^ ^ 1014 * `-' `-' 1015 * 1016 * The sched_domains are per-CPU and have a two way link (parent & child) and 1017 * denote the ever growing mask of CPUs belonging to that level of topology. 1018 * 1019 * Each sched_domain has a circular (double) linked list of sched_group's, each 1020 * denoting the domains of the level below (or individual CPUs in case of the 1021 * first domain level). The sched_group linked by a sched_domain includes the 1022 * CPU of that sched_domain [*]. 1023 * 1024 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1025 * 1026 * CPU 0 1 2 3 4 5 6 7 1027 * 1028 * DIE [ ] 1029 * MC [ ] [ ] 1030 * SMT [ ] [ ] [ ] [ ] 1031 * 1032 * - or - 1033 * 1034 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1035 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1036 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1037 * 1038 * CPU 0 1 2 3 4 5 6 7 1039 * 1040 * One way to think about it is: sched_domain moves you up and down among these 1041 * topology levels, while sched_group moves you sideways through it, at child 1042 * domain granularity. 1043 * 1044 * sched_group_capacity ensures each unique sched_group has shared storage. 1045 * 1046 * There are two related construction problems, both require a CPU that 1047 * uniquely identify each group (for a given domain): 1048 * 1049 * - The first is the balance_cpu (see should_we_balance() and the 1050 * load-balance blub in fair.c); for each group we only want 1 CPU to 1051 * continue balancing at a higher domain. 1052 * 1053 * - The second is the sched_group_capacity; we want all identical groups 1054 * to share a single sched_group_capacity. 1055 * 1056 * Since these topologies are exclusive by construction. That is, its 1057 * impossible for an SMT thread to belong to multiple cores, and cores to 1058 * be part of multiple caches. There is a very clear and unique location 1059 * for each CPU in the hierarchy. 1060 * 1061 * Therefore computing a unique CPU for each group is trivial (the iteration 1062 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1063 * group), we can simply pick the first CPU in each group. 1064 * 1065 * 1066 * [*] in other words, the first group of each domain is its child domain. 1067 */ 1068 1069 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1070 { 1071 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1072 struct sched_domain *child = sd->child; 1073 struct sched_group *sg; 1074 bool already_visited; 1075 1076 if (child) 1077 cpu = cpumask_first(sched_domain_span(child)); 1078 1079 sg = *per_cpu_ptr(sdd->sg, cpu); 1080 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1081 1082 /* Increase refcounts for claim_allocations: */ 1083 already_visited = atomic_inc_return(&sg->ref) > 1; 1084 /* sgc visits should follow a similar trend as sg */ 1085 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1086 1087 /* If we have already visited that group, it's already initialized. */ 1088 if (already_visited) 1089 return sg; 1090 1091 if (child) { 1092 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1093 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1094 } else { 1095 cpumask_set_cpu(cpu, sched_group_span(sg)); 1096 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1097 } 1098 1099 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1100 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1101 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1102 1103 return sg; 1104 } 1105 1106 /* 1107 * build_sched_groups will build a circular linked list of the groups 1108 * covered by the given span, will set each group's ->cpumask correctly, 1109 * and will initialize their ->sgc. 1110 * 1111 * Assumes the sched_domain tree is fully constructed 1112 */ 1113 static int 1114 build_sched_groups(struct sched_domain *sd, int cpu) 1115 { 1116 struct sched_group *first = NULL, *last = NULL; 1117 struct sd_data *sdd = sd->private; 1118 const struct cpumask *span = sched_domain_span(sd); 1119 struct cpumask *covered; 1120 int i; 1121 1122 lockdep_assert_held(&sched_domains_mutex); 1123 covered = sched_domains_tmpmask; 1124 1125 cpumask_clear(covered); 1126 1127 for_each_cpu_wrap(i, span, cpu) { 1128 struct sched_group *sg; 1129 1130 if (cpumask_test_cpu(i, covered)) 1131 continue; 1132 1133 sg = get_group(i, sdd); 1134 1135 cpumask_or(covered, covered, sched_group_span(sg)); 1136 1137 if (!first) 1138 first = sg; 1139 if (last) 1140 last->next = sg; 1141 last = sg; 1142 } 1143 last->next = first; 1144 sd->groups = first; 1145 1146 return 0; 1147 } 1148 1149 /* 1150 * Initialize sched groups cpu_capacity. 1151 * 1152 * cpu_capacity indicates the capacity of sched group, which is used while 1153 * distributing the load between different sched groups in a sched domain. 1154 * Typically cpu_capacity for all the groups in a sched domain will be same 1155 * unless there are asymmetries in the topology. If there are asymmetries, 1156 * group having more cpu_capacity will pickup more load compared to the 1157 * group having less cpu_capacity. 1158 */ 1159 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1160 { 1161 struct sched_group *sg = sd->groups; 1162 1163 WARN_ON(!sg); 1164 1165 do { 1166 int cpu, max_cpu = -1; 1167 1168 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1169 1170 if (!(sd->flags & SD_ASYM_PACKING)) 1171 goto next; 1172 1173 for_each_cpu(cpu, sched_group_span(sg)) { 1174 if (max_cpu < 0) 1175 max_cpu = cpu; 1176 else if (sched_asym_prefer(cpu, max_cpu)) 1177 max_cpu = cpu; 1178 } 1179 sg->asym_prefer_cpu = max_cpu; 1180 1181 next: 1182 sg = sg->next; 1183 } while (sg != sd->groups); 1184 1185 if (cpu != group_balance_cpu(sg)) 1186 return; 1187 1188 update_group_capacity(sd, cpu); 1189 } 1190 1191 /* 1192 * Initializers for schedule domains 1193 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1194 */ 1195 1196 static int default_relax_domain_level = -1; 1197 int sched_domain_level_max; 1198 1199 static int __init setup_relax_domain_level(char *str) 1200 { 1201 if (kstrtoint(str, 0, &default_relax_domain_level)) 1202 pr_warn("Unable to set relax_domain_level\n"); 1203 1204 return 1; 1205 } 1206 __setup("relax_domain_level=", setup_relax_domain_level); 1207 1208 static void set_domain_attribute(struct sched_domain *sd, 1209 struct sched_domain_attr *attr) 1210 { 1211 int request; 1212 1213 if (!attr || attr->relax_domain_level < 0) { 1214 if (default_relax_domain_level < 0) 1215 return; 1216 request = default_relax_domain_level; 1217 } else 1218 request = attr->relax_domain_level; 1219 1220 if (sd->level > request) { 1221 /* Turn off idle balance on this domain: */ 1222 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1223 } 1224 } 1225 1226 static void __sdt_free(const struct cpumask *cpu_map); 1227 static int __sdt_alloc(const struct cpumask *cpu_map); 1228 1229 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1230 const struct cpumask *cpu_map) 1231 { 1232 switch (what) { 1233 case sa_rootdomain: 1234 if (!atomic_read(&d->rd->refcount)) 1235 free_rootdomain(&d->rd->rcu); 1236 fallthrough; 1237 case sa_sd: 1238 free_percpu(d->sd); 1239 fallthrough; 1240 case sa_sd_storage: 1241 __sdt_free(cpu_map); 1242 fallthrough; 1243 case sa_none: 1244 break; 1245 } 1246 } 1247 1248 static enum s_alloc 1249 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1250 { 1251 memset(d, 0, sizeof(*d)); 1252 1253 if (__sdt_alloc(cpu_map)) 1254 return sa_sd_storage; 1255 d->sd = alloc_percpu(struct sched_domain *); 1256 if (!d->sd) 1257 return sa_sd_storage; 1258 d->rd = alloc_rootdomain(); 1259 if (!d->rd) 1260 return sa_sd; 1261 1262 return sa_rootdomain; 1263 } 1264 1265 /* 1266 * NULL the sd_data elements we've used to build the sched_domain and 1267 * sched_group structure so that the subsequent __free_domain_allocs() 1268 * will not free the data we're using. 1269 */ 1270 static void claim_allocations(int cpu, struct sched_domain *sd) 1271 { 1272 struct sd_data *sdd = sd->private; 1273 1274 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1275 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1276 1277 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1278 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1279 1280 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1281 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1282 1283 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1284 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1285 } 1286 1287 #ifdef CONFIG_NUMA 1288 enum numa_topology_type sched_numa_topology_type; 1289 1290 static int sched_domains_numa_levels; 1291 static int sched_domains_curr_level; 1292 1293 int sched_max_numa_distance; 1294 static int *sched_domains_numa_distance; 1295 static struct cpumask ***sched_domains_numa_masks; 1296 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1297 #endif 1298 1299 /* 1300 * SD_flags allowed in topology descriptions. 1301 * 1302 * These flags are purely descriptive of the topology and do not prescribe 1303 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1304 * function: 1305 * 1306 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1307 * SD_SHARE_PKG_RESOURCES - describes shared caches 1308 * SD_NUMA - describes NUMA topologies 1309 * 1310 * Odd one out, which beside describing the topology has a quirk also 1311 * prescribes the desired behaviour that goes along with it: 1312 * 1313 * SD_ASYM_PACKING - describes SMT quirks 1314 */ 1315 #define TOPOLOGY_SD_FLAGS \ 1316 (SD_SHARE_CPUCAPACITY | \ 1317 SD_SHARE_PKG_RESOURCES | \ 1318 SD_NUMA | \ 1319 SD_ASYM_PACKING) 1320 1321 static struct sched_domain * 1322 sd_init(struct sched_domain_topology_level *tl, 1323 const struct cpumask *cpu_map, 1324 struct sched_domain *child, int dflags, int cpu) 1325 { 1326 struct sd_data *sdd = &tl->data; 1327 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1328 int sd_id, sd_weight, sd_flags = 0; 1329 1330 #ifdef CONFIG_NUMA 1331 /* 1332 * Ugly hack to pass state to sd_numa_mask()... 1333 */ 1334 sched_domains_curr_level = tl->numa_level; 1335 #endif 1336 1337 sd_weight = cpumask_weight(tl->mask(cpu)); 1338 1339 if (tl->sd_flags) 1340 sd_flags = (*tl->sd_flags)(); 1341 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1342 "wrong sd_flags in topology description\n")) 1343 sd_flags &= TOPOLOGY_SD_FLAGS; 1344 1345 /* Apply detected topology flags */ 1346 sd_flags |= dflags; 1347 1348 *sd = (struct sched_domain){ 1349 .min_interval = sd_weight, 1350 .max_interval = 2*sd_weight, 1351 .busy_factor = 16, 1352 .imbalance_pct = 117, 1353 1354 .cache_nice_tries = 0, 1355 1356 .flags = 1*SD_BALANCE_NEWIDLE 1357 | 1*SD_BALANCE_EXEC 1358 | 1*SD_BALANCE_FORK 1359 | 0*SD_BALANCE_WAKE 1360 | 1*SD_WAKE_AFFINE 1361 | 0*SD_SHARE_CPUCAPACITY 1362 | 0*SD_SHARE_PKG_RESOURCES 1363 | 0*SD_SERIALIZE 1364 | 1*SD_PREFER_SIBLING 1365 | 0*SD_NUMA 1366 | sd_flags 1367 , 1368 1369 .last_balance = jiffies, 1370 .balance_interval = sd_weight, 1371 .max_newidle_lb_cost = 0, 1372 .next_decay_max_lb_cost = jiffies, 1373 .child = child, 1374 #ifdef CONFIG_SCHED_DEBUG 1375 .name = tl->name, 1376 #endif 1377 }; 1378 1379 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1380 sd_id = cpumask_first(sched_domain_span(sd)); 1381 1382 /* 1383 * Convert topological properties into behaviour. 1384 */ 1385 1386 /* Don't attempt to spread across CPUs of different capacities. */ 1387 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1388 sd->child->flags &= ~SD_PREFER_SIBLING; 1389 1390 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1391 sd->imbalance_pct = 110; 1392 1393 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1394 sd->imbalance_pct = 117; 1395 sd->cache_nice_tries = 1; 1396 1397 #ifdef CONFIG_NUMA 1398 } else if (sd->flags & SD_NUMA) { 1399 sd->cache_nice_tries = 2; 1400 1401 sd->flags &= ~SD_PREFER_SIBLING; 1402 sd->flags |= SD_SERIALIZE; 1403 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1404 sd->flags &= ~(SD_BALANCE_EXEC | 1405 SD_BALANCE_FORK | 1406 SD_WAKE_AFFINE); 1407 } 1408 1409 #endif 1410 } else { 1411 sd->cache_nice_tries = 1; 1412 } 1413 1414 /* 1415 * For all levels sharing cache; connect a sched_domain_shared 1416 * instance. 1417 */ 1418 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1419 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1420 atomic_inc(&sd->shared->ref); 1421 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1422 } 1423 1424 sd->private = sdd; 1425 1426 return sd; 1427 } 1428 1429 /* 1430 * Topology list, bottom-up. 1431 */ 1432 static struct sched_domain_topology_level default_topology[] = { 1433 #ifdef CONFIG_SCHED_SMT 1434 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1435 #endif 1436 #ifdef CONFIG_SCHED_MC 1437 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1438 #endif 1439 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1440 { NULL, }, 1441 }; 1442 1443 static struct sched_domain_topology_level *sched_domain_topology = 1444 default_topology; 1445 1446 #define for_each_sd_topology(tl) \ 1447 for (tl = sched_domain_topology; tl->mask; tl++) 1448 1449 void set_sched_topology(struct sched_domain_topology_level *tl) 1450 { 1451 if (WARN_ON_ONCE(sched_smp_initialized)) 1452 return; 1453 1454 sched_domain_topology = tl; 1455 } 1456 1457 #ifdef CONFIG_NUMA 1458 1459 static const struct cpumask *sd_numa_mask(int cpu) 1460 { 1461 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1462 } 1463 1464 static void sched_numa_warn(const char *str) 1465 { 1466 static int done = false; 1467 int i,j; 1468 1469 if (done) 1470 return; 1471 1472 done = true; 1473 1474 printk(KERN_WARNING "ERROR: %s\n\n", str); 1475 1476 for (i = 0; i < nr_node_ids; i++) { 1477 printk(KERN_WARNING " "); 1478 for (j = 0; j < nr_node_ids; j++) 1479 printk(KERN_CONT "%02d ", node_distance(i,j)); 1480 printk(KERN_CONT "\n"); 1481 } 1482 printk(KERN_WARNING "\n"); 1483 } 1484 1485 bool find_numa_distance(int distance) 1486 { 1487 int i; 1488 1489 if (distance == node_distance(0, 0)) 1490 return true; 1491 1492 for (i = 0; i < sched_domains_numa_levels; i++) { 1493 if (sched_domains_numa_distance[i] == distance) 1494 return true; 1495 } 1496 1497 return false; 1498 } 1499 1500 /* 1501 * A system can have three types of NUMA topology: 1502 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1503 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1504 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1505 * 1506 * The difference between a glueless mesh topology and a backplane 1507 * topology lies in whether communication between not directly 1508 * connected nodes goes through intermediary nodes (where programs 1509 * could run), or through backplane controllers. This affects 1510 * placement of programs. 1511 * 1512 * The type of topology can be discerned with the following tests: 1513 * - If the maximum distance between any nodes is 1 hop, the system 1514 * is directly connected. 1515 * - If for two nodes A and B, located N > 1 hops away from each other, 1516 * there is an intermediary node C, which is < N hops away from both 1517 * nodes A and B, the system is a glueless mesh. 1518 */ 1519 static void init_numa_topology_type(void) 1520 { 1521 int a, b, c, n; 1522 1523 n = sched_max_numa_distance; 1524 1525 if (sched_domains_numa_levels <= 2) { 1526 sched_numa_topology_type = NUMA_DIRECT; 1527 return; 1528 } 1529 1530 for_each_online_node(a) { 1531 for_each_online_node(b) { 1532 /* Find two nodes furthest removed from each other. */ 1533 if (node_distance(a, b) < n) 1534 continue; 1535 1536 /* Is there an intermediary node between a and b? */ 1537 for_each_online_node(c) { 1538 if (node_distance(a, c) < n && 1539 node_distance(b, c) < n) { 1540 sched_numa_topology_type = 1541 NUMA_GLUELESS_MESH; 1542 return; 1543 } 1544 } 1545 1546 sched_numa_topology_type = NUMA_BACKPLANE; 1547 return; 1548 } 1549 } 1550 } 1551 1552 void sched_init_numa(void) 1553 { 1554 int next_distance, curr_distance = node_distance(0, 0); 1555 struct sched_domain_topology_level *tl; 1556 int level = 0; 1557 int i, j, k; 1558 1559 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1560 if (!sched_domains_numa_distance) 1561 return; 1562 1563 /* Includes NUMA identity node at level 0. */ 1564 sched_domains_numa_distance[level++] = curr_distance; 1565 sched_domains_numa_levels = level; 1566 1567 /* 1568 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1569 * unique distances in the node_distance() table. 1570 * 1571 * Assumes node_distance(0,j) includes all distances in 1572 * node_distance(i,j) in order to avoid cubic time. 1573 */ 1574 next_distance = curr_distance; 1575 for (i = 0; i < nr_node_ids; i++) { 1576 for (j = 0; j < nr_node_ids; j++) { 1577 for (k = 0; k < nr_node_ids; k++) { 1578 int distance = node_distance(i, k); 1579 1580 if (distance > curr_distance && 1581 (distance < next_distance || 1582 next_distance == curr_distance)) 1583 next_distance = distance; 1584 1585 /* 1586 * While not a strong assumption it would be nice to know 1587 * about cases where if node A is connected to B, B is not 1588 * equally connected to A. 1589 */ 1590 if (sched_debug() && node_distance(k, i) != distance) 1591 sched_numa_warn("Node-distance not symmetric"); 1592 1593 if (sched_debug() && i && !find_numa_distance(distance)) 1594 sched_numa_warn("Node-0 not representative"); 1595 } 1596 if (next_distance != curr_distance) { 1597 sched_domains_numa_distance[level++] = next_distance; 1598 sched_domains_numa_levels = level; 1599 curr_distance = next_distance; 1600 } else break; 1601 } 1602 1603 /* 1604 * In case of sched_debug() we verify the above assumption. 1605 */ 1606 if (!sched_debug()) 1607 break; 1608 } 1609 1610 /* 1611 * 'level' contains the number of unique distances 1612 * 1613 * The sched_domains_numa_distance[] array includes the actual distance 1614 * numbers. 1615 */ 1616 1617 /* 1618 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1619 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1620 * the array will contain less then 'level' members. This could be 1621 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1622 * in other functions. 1623 * 1624 * We reset it to 'level' at the end of this function. 1625 */ 1626 sched_domains_numa_levels = 0; 1627 1628 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1629 if (!sched_domains_numa_masks) 1630 return; 1631 1632 /* 1633 * Now for each level, construct a mask per node which contains all 1634 * CPUs of nodes that are that many hops away from us. 1635 */ 1636 for (i = 0; i < level; i++) { 1637 sched_domains_numa_masks[i] = 1638 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1639 if (!sched_domains_numa_masks[i]) 1640 return; 1641 1642 for (j = 0; j < nr_node_ids; j++) { 1643 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1644 if (!mask) 1645 return; 1646 1647 sched_domains_numa_masks[i][j] = mask; 1648 1649 for_each_node(k) { 1650 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1651 continue; 1652 1653 cpumask_or(mask, mask, cpumask_of_node(k)); 1654 } 1655 } 1656 } 1657 1658 /* Compute default topology size */ 1659 for (i = 0; sched_domain_topology[i].mask; i++); 1660 1661 tl = kzalloc((i + level + 1) * 1662 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1663 if (!tl) 1664 return; 1665 1666 /* 1667 * Copy the default topology bits.. 1668 */ 1669 for (i = 0; sched_domain_topology[i].mask; i++) 1670 tl[i] = sched_domain_topology[i]; 1671 1672 /* 1673 * Add the NUMA identity distance, aka single NODE. 1674 */ 1675 tl[i++] = (struct sched_domain_topology_level){ 1676 .mask = sd_numa_mask, 1677 .numa_level = 0, 1678 SD_INIT_NAME(NODE) 1679 }; 1680 1681 /* 1682 * .. and append 'j' levels of NUMA goodness. 1683 */ 1684 for (j = 1; j < level; i++, j++) { 1685 tl[i] = (struct sched_domain_topology_level){ 1686 .mask = sd_numa_mask, 1687 .sd_flags = cpu_numa_flags, 1688 .flags = SDTL_OVERLAP, 1689 .numa_level = j, 1690 SD_INIT_NAME(NUMA) 1691 }; 1692 } 1693 1694 sched_domain_topology = tl; 1695 1696 sched_domains_numa_levels = level; 1697 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1698 1699 init_numa_topology_type(); 1700 } 1701 1702 void sched_domains_numa_masks_set(unsigned int cpu) 1703 { 1704 int node = cpu_to_node(cpu); 1705 int i, j; 1706 1707 for (i = 0; i < sched_domains_numa_levels; i++) { 1708 for (j = 0; j < nr_node_ids; j++) { 1709 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1710 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1711 } 1712 } 1713 } 1714 1715 void sched_domains_numa_masks_clear(unsigned int cpu) 1716 { 1717 int i, j; 1718 1719 for (i = 0; i < sched_domains_numa_levels; i++) { 1720 for (j = 0; j < nr_node_ids; j++) 1721 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1722 } 1723 } 1724 1725 /* 1726 * sched_numa_find_closest() - given the NUMA topology, find the cpu 1727 * closest to @cpu from @cpumask. 1728 * cpumask: cpumask to find a cpu from 1729 * cpu: cpu to be close to 1730 * 1731 * returns: cpu, or nr_cpu_ids when nothing found. 1732 */ 1733 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1734 { 1735 int i, j = cpu_to_node(cpu); 1736 1737 for (i = 0; i < sched_domains_numa_levels; i++) { 1738 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 1739 if (cpu < nr_cpu_ids) 1740 return cpu; 1741 } 1742 return nr_cpu_ids; 1743 } 1744 1745 #endif /* CONFIG_NUMA */ 1746 1747 static int __sdt_alloc(const struct cpumask *cpu_map) 1748 { 1749 struct sched_domain_topology_level *tl; 1750 int j; 1751 1752 for_each_sd_topology(tl) { 1753 struct sd_data *sdd = &tl->data; 1754 1755 sdd->sd = alloc_percpu(struct sched_domain *); 1756 if (!sdd->sd) 1757 return -ENOMEM; 1758 1759 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1760 if (!sdd->sds) 1761 return -ENOMEM; 1762 1763 sdd->sg = alloc_percpu(struct sched_group *); 1764 if (!sdd->sg) 1765 return -ENOMEM; 1766 1767 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1768 if (!sdd->sgc) 1769 return -ENOMEM; 1770 1771 for_each_cpu(j, cpu_map) { 1772 struct sched_domain *sd; 1773 struct sched_domain_shared *sds; 1774 struct sched_group *sg; 1775 struct sched_group_capacity *sgc; 1776 1777 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1778 GFP_KERNEL, cpu_to_node(j)); 1779 if (!sd) 1780 return -ENOMEM; 1781 1782 *per_cpu_ptr(sdd->sd, j) = sd; 1783 1784 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1785 GFP_KERNEL, cpu_to_node(j)); 1786 if (!sds) 1787 return -ENOMEM; 1788 1789 *per_cpu_ptr(sdd->sds, j) = sds; 1790 1791 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1792 GFP_KERNEL, cpu_to_node(j)); 1793 if (!sg) 1794 return -ENOMEM; 1795 1796 sg->next = sg; 1797 1798 *per_cpu_ptr(sdd->sg, j) = sg; 1799 1800 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1801 GFP_KERNEL, cpu_to_node(j)); 1802 if (!sgc) 1803 return -ENOMEM; 1804 1805 #ifdef CONFIG_SCHED_DEBUG 1806 sgc->id = j; 1807 #endif 1808 1809 *per_cpu_ptr(sdd->sgc, j) = sgc; 1810 } 1811 } 1812 1813 return 0; 1814 } 1815 1816 static void __sdt_free(const struct cpumask *cpu_map) 1817 { 1818 struct sched_domain_topology_level *tl; 1819 int j; 1820 1821 for_each_sd_topology(tl) { 1822 struct sd_data *sdd = &tl->data; 1823 1824 for_each_cpu(j, cpu_map) { 1825 struct sched_domain *sd; 1826 1827 if (sdd->sd) { 1828 sd = *per_cpu_ptr(sdd->sd, j); 1829 if (sd && (sd->flags & SD_OVERLAP)) 1830 free_sched_groups(sd->groups, 0); 1831 kfree(*per_cpu_ptr(sdd->sd, j)); 1832 } 1833 1834 if (sdd->sds) 1835 kfree(*per_cpu_ptr(sdd->sds, j)); 1836 if (sdd->sg) 1837 kfree(*per_cpu_ptr(sdd->sg, j)); 1838 if (sdd->sgc) 1839 kfree(*per_cpu_ptr(sdd->sgc, j)); 1840 } 1841 free_percpu(sdd->sd); 1842 sdd->sd = NULL; 1843 free_percpu(sdd->sds); 1844 sdd->sds = NULL; 1845 free_percpu(sdd->sg); 1846 sdd->sg = NULL; 1847 free_percpu(sdd->sgc); 1848 sdd->sgc = NULL; 1849 } 1850 } 1851 1852 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1853 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1854 struct sched_domain *child, int dflags, int cpu) 1855 { 1856 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1857 1858 if (child) { 1859 sd->level = child->level + 1; 1860 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1861 child->parent = sd; 1862 1863 if (!cpumask_subset(sched_domain_span(child), 1864 sched_domain_span(sd))) { 1865 pr_err("BUG: arch topology borken\n"); 1866 #ifdef CONFIG_SCHED_DEBUG 1867 pr_err(" the %s domain not a subset of the %s domain\n", 1868 child->name, sd->name); 1869 #endif 1870 /* Fixup, ensure @sd has at least @child CPUs. */ 1871 cpumask_or(sched_domain_span(sd), 1872 sched_domain_span(sd), 1873 sched_domain_span(child)); 1874 } 1875 1876 } 1877 set_domain_attribute(sd, attr); 1878 1879 return sd; 1880 } 1881 1882 /* 1883 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 1884 * any two given CPUs at this (non-NUMA) topology level. 1885 */ 1886 static bool topology_span_sane(struct sched_domain_topology_level *tl, 1887 const struct cpumask *cpu_map, int cpu) 1888 { 1889 int i; 1890 1891 /* NUMA levels are allowed to overlap */ 1892 if (tl->flags & SDTL_OVERLAP) 1893 return true; 1894 1895 /* 1896 * Non-NUMA levels cannot partially overlap - they must be either 1897 * completely equal or completely disjoint. Otherwise we can end up 1898 * breaking the sched_group lists - i.e. a later get_group() pass 1899 * breaks the linking done for an earlier span. 1900 */ 1901 for_each_cpu(i, cpu_map) { 1902 if (i == cpu) 1903 continue; 1904 /* 1905 * We should 'and' all those masks with 'cpu_map' to exactly 1906 * match the topology we're about to build, but that can only 1907 * remove CPUs, which only lessens our ability to detect 1908 * overlaps 1909 */ 1910 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 1911 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 1912 return false; 1913 } 1914 1915 return true; 1916 } 1917 1918 /* 1919 * Find the sched_domain_topology_level where all CPU capacities are visible 1920 * for all CPUs. 1921 */ 1922 static struct sched_domain_topology_level 1923 *asym_cpu_capacity_level(const struct cpumask *cpu_map) 1924 { 1925 int i, j, asym_level = 0; 1926 bool asym = false; 1927 struct sched_domain_topology_level *tl, *asym_tl = NULL; 1928 unsigned long cap; 1929 1930 /* Is there any asymmetry? */ 1931 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); 1932 1933 for_each_cpu(i, cpu_map) { 1934 if (arch_scale_cpu_capacity(i) != cap) { 1935 asym = true; 1936 break; 1937 } 1938 } 1939 1940 if (!asym) 1941 return NULL; 1942 1943 /* 1944 * Examine topology from all CPU's point of views to detect the lowest 1945 * sched_domain_topology_level where a highest capacity CPU is visible 1946 * to everyone. 1947 */ 1948 for_each_cpu(i, cpu_map) { 1949 unsigned long max_capacity = arch_scale_cpu_capacity(i); 1950 int tl_id = 0; 1951 1952 for_each_sd_topology(tl) { 1953 if (tl_id < asym_level) 1954 goto next_level; 1955 1956 for_each_cpu_and(j, tl->mask(i), cpu_map) { 1957 unsigned long capacity; 1958 1959 capacity = arch_scale_cpu_capacity(j); 1960 1961 if (capacity <= max_capacity) 1962 continue; 1963 1964 max_capacity = capacity; 1965 asym_level = tl_id; 1966 asym_tl = tl; 1967 } 1968 next_level: 1969 tl_id++; 1970 } 1971 } 1972 1973 return asym_tl; 1974 } 1975 1976 1977 /* 1978 * Build sched domains for a given set of CPUs and attach the sched domains 1979 * to the individual CPUs 1980 */ 1981 static int 1982 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1983 { 1984 enum s_alloc alloc_state = sa_none; 1985 struct sched_domain *sd; 1986 struct s_data d; 1987 struct rq *rq = NULL; 1988 int i, ret = -ENOMEM; 1989 struct sched_domain_topology_level *tl_asym; 1990 bool has_asym = false; 1991 1992 if (WARN_ON(cpumask_empty(cpu_map))) 1993 goto error; 1994 1995 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1996 if (alloc_state != sa_rootdomain) 1997 goto error; 1998 1999 tl_asym = asym_cpu_capacity_level(cpu_map); 2000 2001 /* Set up domains for CPUs specified by the cpu_map: */ 2002 for_each_cpu(i, cpu_map) { 2003 struct sched_domain_topology_level *tl; 2004 int dflags = 0; 2005 2006 sd = NULL; 2007 for_each_sd_topology(tl) { 2008 if (tl == tl_asym) { 2009 dflags |= SD_ASYM_CPUCAPACITY; 2010 has_asym = true; 2011 } 2012 2013 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2014 goto error; 2015 2016 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 2017 2018 if (tl == sched_domain_topology) 2019 *per_cpu_ptr(d.sd, i) = sd; 2020 if (tl->flags & SDTL_OVERLAP) 2021 sd->flags |= SD_OVERLAP; 2022 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2023 break; 2024 } 2025 } 2026 2027 /* Build the groups for the domains */ 2028 for_each_cpu(i, cpu_map) { 2029 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2030 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2031 if (sd->flags & SD_OVERLAP) { 2032 if (build_overlap_sched_groups(sd, i)) 2033 goto error; 2034 } else { 2035 if (build_sched_groups(sd, i)) 2036 goto error; 2037 } 2038 } 2039 } 2040 2041 /* Calculate CPU capacity for physical packages and nodes */ 2042 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2043 if (!cpumask_test_cpu(i, cpu_map)) 2044 continue; 2045 2046 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2047 claim_allocations(i, sd); 2048 init_sched_groups_capacity(i, sd); 2049 } 2050 } 2051 2052 /* Attach the domains */ 2053 rcu_read_lock(); 2054 for_each_cpu(i, cpu_map) { 2055 rq = cpu_rq(i); 2056 sd = *per_cpu_ptr(d.sd, i); 2057 2058 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2059 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2060 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2061 2062 cpu_attach_domain(sd, d.rd, i); 2063 } 2064 rcu_read_unlock(); 2065 2066 if (has_asym) 2067 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2068 2069 if (rq && sched_debug_enabled) { 2070 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2071 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2072 } 2073 2074 ret = 0; 2075 error: 2076 __free_domain_allocs(&d, alloc_state, cpu_map); 2077 2078 return ret; 2079 } 2080 2081 /* Current sched domains: */ 2082 static cpumask_var_t *doms_cur; 2083 2084 /* Number of sched domains in 'doms_cur': */ 2085 static int ndoms_cur; 2086 2087 /* Attribues of custom domains in 'doms_cur' */ 2088 static struct sched_domain_attr *dattr_cur; 2089 2090 /* 2091 * Special case: If a kmalloc() of a doms_cur partition (array of 2092 * cpumask) fails, then fallback to a single sched domain, 2093 * as determined by the single cpumask fallback_doms. 2094 */ 2095 static cpumask_var_t fallback_doms; 2096 2097 /* 2098 * arch_update_cpu_topology lets virtualized architectures update the 2099 * CPU core maps. It is supposed to return 1 if the topology changed 2100 * or 0 if it stayed the same. 2101 */ 2102 int __weak arch_update_cpu_topology(void) 2103 { 2104 return 0; 2105 } 2106 2107 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2108 { 2109 int i; 2110 cpumask_var_t *doms; 2111 2112 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2113 if (!doms) 2114 return NULL; 2115 for (i = 0; i < ndoms; i++) { 2116 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2117 free_sched_domains(doms, i); 2118 return NULL; 2119 } 2120 } 2121 return doms; 2122 } 2123 2124 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2125 { 2126 unsigned int i; 2127 for (i = 0; i < ndoms; i++) 2128 free_cpumask_var(doms[i]); 2129 kfree(doms); 2130 } 2131 2132 /* 2133 * Set up scheduler domains and groups. For now this just excludes isolated 2134 * CPUs, but could be used to exclude other special cases in the future. 2135 */ 2136 int sched_init_domains(const struct cpumask *cpu_map) 2137 { 2138 int err; 2139 2140 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2141 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2142 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2143 2144 arch_update_cpu_topology(); 2145 ndoms_cur = 1; 2146 doms_cur = alloc_sched_domains(ndoms_cur); 2147 if (!doms_cur) 2148 doms_cur = &fallback_doms; 2149 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2150 err = build_sched_domains(doms_cur[0], NULL); 2151 register_sched_domain_sysctl(); 2152 2153 return err; 2154 } 2155 2156 /* 2157 * Detach sched domains from a group of CPUs specified in cpu_map 2158 * These CPUs will now be attached to the NULL domain 2159 */ 2160 static void detach_destroy_domains(const struct cpumask *cpu_map) 2161 { 2162 unsigned int cpu = cpumask_any(cpu_map); 2163 int i; 2164 2165 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2166 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2167 2168 rcu_read_lock(); 2169 for_each_cpu(i, cpu_map) 2170 cpu_attach_domain(NULL, &def_root_domain, i); 2171 rcu_read_unlock(); 2172 } 2173 2174 /* handle null as "default" */ 2175 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2176 struct sched_domain_attr *new, int idx_new) 2177 { 2178 struct sched_domain_attr tmp; 2179 2180 /* Fast path: */ 2181 if (!new && !cur) 2182 return 1; 2183 2184 tmp = SD_ATTR_INIT; 2185 2186 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2187 new ? (new + idx_new) : &tmp, 2188 sizeof(struct sched_domain_attr)); 2189 } 2190 2191 /* 2192 * Partition sched domains as specified by the 'ndoms_new' 2193 * cpumasks in the array doms_new[] of cpumasks. This compares 2194 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2195 * It destroys each deleted domain and builds each new domain. 2196 * 2197 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2198 * The masks don't intersect (don't overlap.) We should setup one 2199 * sched domain for each mask. CPUs not in any of the cpumasks will 2200 * not be load balanced. If the same cpumask appears both in the 2201 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2202 * it as it is. 2203 * 2204 * The passed in 'doms_new' should be allocated using 2205 * alloc_sched_domains. This routine takes ownership of it and will 2206 * free_sched_domains it when done with it. If the caller failed the 2207 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2208 * and partition_sched_domains() will fallback to the single partition 2209 * 'fallback_doms', it also forces the domains to be rebuilt. 2210 * 2211 * If doms_new == NULL it will be replaced with cpu_online_mask. 2212 * ndoms_new == 0 is a special case for destroying existing domains, 2213 * and it will not create the default domain. 2214 * 2215 * Call with hotplug lock and sched_domains_mutex held 2216 */ 2217 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2218 struct sched_domain_attr *dattr_new) 2219 { 2220 bool __maybe_unused has_eas = false; 2221 int i, j, n; 2222 int new_topology; 2223 2224 lockdep_assert_held(&sched_domains_mutex); 2225 2226 /* Always unregister in case we don't destroy any domains: */ 2227 unregister_sched_domain_sysctl(); 2228 2229 /* Let the architecture update CPU core mappings: */ 2230 new_topology = arch_update_cpu_topology(); 2231 2232 if (!doms_new) { 2233 WARN_ON_ONCE(dattr_new); 2234 n = 0; 2235 doms_new = alloc_sched_domains(1); 2236 if (doms_new) { 2237 n = 1; 2238 cpumask_and(doms_new[0], cpu_active_mask, 2239 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2240 } 2241 } else { 2242 n = ndoms_new; 2243 } 2244 2245 /* Destroy deleted domains: */ 2246 for (i = 0; i < ndoms_cur; i++) { 2247 for (j = 0; j < n && !new_topology; j++) { 2248 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2249 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2250 struct root_domain *rd; 2251 2252 /* 2253 * This domain won't be destroyed and as such 2254 * its dl_bw->total_bw needs to be cleared. It 2255 * will be recomputed in function 2256 * update_tasks_root_domain(). 2257 */ 2258 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2259 dl_clear_root_domain(rd); 2260 goto match1; 2261 } 2262 } 2263 /* No match - a current sched domain not in new doms_new[] */ 2264 detach_destroy_domains(doms_cur[i]); 2265 match1: 2266 ; 2267 } 2268 2269 n = ndoms_cur; 2270 if (!doms_new) { 2271 n = 0; 2272 doms_new = &fallback_doms; 2273 cpumask_and(doms_new[0], cpu_active_mask, 2274 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2275 } 2276 2277 /* Build new domains: */ 2278 for (i = 0; i < ndoms_new; i++) { 2279 for (j = 0; j < n && !new_topology; j++) { 2280 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2281 dattrs_equal(dattr_new, i, dattr_cur, j)) 2282 goto match2; 2283 } 2284 /* No match - add a new doms_new */ 2285 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2286 match2: 2287 ; 2288 } 2289 2290 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2291 /* Build perf. domains: */ 2292 for (i = 0; i < ndoms_new; i++) { 2293 for (j = 0; j < n && !sched_energy_update; j++) { 2294 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2295 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2296 has_eas = true; 2297 goto match3; 2298 } 2299 } 2300 /* No match - add perf. domains for a new rd */ 2301 has_eas |= build_perf_domains(doms_new[i]); 2302 match3: 2303 ; 2304 } 2305 sched_energy_set(has_eas); 2306 #endif 2307 2308 /* Remember the new sched domains: */ 2309 if (doms_cur != &fallback_doms) 2310 free_sched_domains(doms_cur, ndoms_cur); 2311 2312 kfree(dattr_cur); 2313 doms_cur = doms_new; 2314 dattr_cur = dattr_new; 2315 ndoms_cur = ndoms_new; 2316 2317 register_sched_domain_sysctl(); 2318 } 2319 2320 /* 2321 * Call with hotplug lock held 2322 */ 2323 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2324 struct sched_domain_attr *dattr_new) 2325 { 2326 mutex_lock(&sched_domains_mutex); 2327 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2328 mutex_unlock(&sched_domains_mutex); 2329 } 2330