1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0 2f2cb1360SIngo Molnar /* 3f2cb1360SIngo Molnar * Scheduler topology setup/handling methods 4f2cb1360SIngo Molnar */ 5f2cb1360SIngo Molnar #include "sched.h" 6f2cb1360SIngo Molnar 7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex); 8f2cb1360SIngo Molnar 9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */ 10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask; 11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2; 12f2cb1360SIngo Molnar 13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 14f2cb1360SIngo Molnar 15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str) 16f2cb1360SIngo Molnar { 179469eb01SPeter Zijlstra sched_debug_enabled = true; 18f2cb1360SIngo Molnar 19f2cb1360SIngo Molnar return 0; 20f2cb1360SIngo Molnar } 21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup); 22f2cb1360SIngo Molnar 23f2cb1360SIngo Molnar static inline bool sched_debug(void) 24f2cb1360SIngo Molnar { 25f2cb1360SIngo Molnar return sched_debug_enabled; 26f2cb1360SIngo Molnar } 27f2cb1360SIngo Molnar 28848785dfSValentin Schneider #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 29848785dfSValentin Schneider const struct sd_flag_debug sd_flag_debug[] = { 30848785dfSValentin Schneider #include <linux/sched/sd_flags.h> 31848785dfSValentin Schneider }; 32848785dfSValentin Schneider #undef SD_FLAG 33848785dfSValentin Schneider 34f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 35f2cb1360SIngo Molnar struct cpumask *groupmask) 36f2cb1360SIngo Molnar { 37f2cb1360SIngo Molnar struct sched_group *group = sd->groups; 3865c5e253SValentin Schneider unsigned long flags = sd->flags; 3965c5e253SValentin Schneider unsigned int idx; 40f2cb1360SIngo Molnar 41f2cb1360SIngo Molnar cpumask_clear(groupmask); 42f2cb1360SIngo Molnar 43005f874dSPeter Zijlstra printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 44005f874dSPeter Zijlstra printk(KERN_CONT "span=%*pbl level=%s\n", 45f2cb1360SIngo Molnar cpumask_pr_args(sched_domain_span(sd)), sd->name); 46f2cb1360SIngo Molnar 47f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 4897fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49f2cb1360SIngo Molnar } 506cd0c583SYi Wang if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 5197fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52f2cb1360SIngo Molnar } 53f2cb1360SIngo Molnar 5465c5e253SValentin Schneider for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 5565c5e253SValentin Schneider unsigned int flag = BIT(idx); 5665c5e253SValentin Schneider unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 5765c5e253SValentin Schneider 5865c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 5965c5e253SValentin Schneider !(sd->child->flags & flag)) 6065c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 6165c5e253SValentin Schneider sd_flag_debug[idx].name); 6265c5e253SValentin Schneider 6365c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 6465c5e253SValentin Schneider !(sd->parent->flags & flag)) 6565c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 6665c5e253SValentin Schneider sd_flag_debug[idx].name); 6765c5e253SValentin Schneider } 6865c5e253SValentin Schneider 69f2cb1360SIngo Molnar printk(KERN_DEBUG "%*s groups:", level + 1, ""); 70f2cb1360SIngo Molnar do { 71f2cb1360SIngo Molnar if (!group) { 72f2cb1360SIngo Molnar printk("\n"); 73f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: group is NULL\n"); 74f2cb1360SIngo Molnar break; 75f2cb1360SIngo Molnar } 76f2cb1360SIngo Molnar 77ae4df9d6SPeter Zijlstra if (!cpumask_weight(sched_group_span(group))) { 78f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 79f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: empty group\n"); 80f2cb1360SIngo Molnar break; 81f2cb1360SIngo Molnar } 82f2cb1360SIngo Molnar 83f2cb1360SIngo Molnar if (!(sd->flags & SD_OVERLAP) && 84ae4df9d6SPeter Zijlstra cpumask_intersects(groupmask, sched_group_span(group))) { 85f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 86f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: repeated CPUs\n"); 87f2cb1360SIngo Molnar break; 88f2cb1360SIngo Molnar } 89f2cb1360SIngo Molnar 90ae4df9d6SPeter Zijlstra cpumask_or(groupmask, groupmask, sched_group_span(group)); 91f2cb1360SIngo Molnar 92005f874dSPeter Zijlstra printk(KERN_CONT " %d:{ span=%*pbl", 93005f874dSPeter Zijlstra group->sgc->id, 94ae4df9d6SPeter Zijlstra cpumask_pr_args(sched_group_span(group))); 95b0151c25SPeter Zijlstra 96af218122SPeter Zijlstra if ((sd->flags & SD_OVERLAP) && 97ae4df9d6SPeter Zijlstra !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 98005f874dSPeter Zijlstra printk(KERN_CONT " mask=%*pbl", 99e5c14b1fSPeter Zijlstra cpumask_pr_args(group_balance_mask(group))); 100b0151c25SPeter Zijlstra } 101b0151c25SPeter Zijlstra 102005f874dSPeter Zijlstra if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 103005f874dSPeter Zijlstra printk(KERN_CONT " cap=%lu", group->sgc->capacity); 104f2cb1360SIngo Molnar 105a420b063SPeter Zijlstra if (group == sd->groups && sd->child && 106a420b063SPeter Zijlstra !cpumask_equal(sched_domain_span(sd->child), 107ae4df9d6SPeter Zijlstra sched_group_span(group))) { 108a420b063SPeter Zijlstra printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 109a420b063SPeter Zijlstra } 110a420b063SPeter Zijlstra 111005f874dSPeter Zijlstra printk(KERN_CONT " }"); 112005f874dSPeter Zijlstra 113f2cb1360SIngo Molnar group = group->next; 114b0151c25SPeter Zijlstra 115b0151c25SPeter Zijlstra if (group != sd->groups) 116b0151c25SPeter Zijlstra printk(KERN_CONT ","); 117b0151c25SPeter Zijlstra 118f2cb1360SIngo Molnar } while (group != sd->groups); 119f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 120f2cb1360SIngo Molnar 121f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), groupmask)) 122f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 123f2cb1360SIngo Molnar 124f2cb1360SIngo Molnar if (sd->parent && 125f2cb1360SIngo Molnar !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 12697fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 127f2cb1360SIngo Molnar return 0; 128f2cb1360SIngo Molnar } 129f2cb1360SIngo Molnar 130f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu) 131f2cb1360SIngo Molnar { 132f2cb1360SIngo Molnar int level = 0; 133f2cb1360SIngo Molnar 134f2cb1360SIngo Molnar if (!sched_debug_enabled) 135f2cb1360SIngo Molnar return; 136f2cb1360SIngo Molnar 137f2cb1360SIngo Molnar if (!sd) { 138f2cb1360SIngo Molnar printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 139f2cb1360SIngo Molnar return; 140f2cb1360SIngo Molnar } 141f2cb1360SIngo Molnar 142005f874dSPeter Zijlstra printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 143f2cb1360SIngo Molnar 144f2cb1360SIngo Molnar for (;;) { 145f2cb1360SIngo Molnar if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 146f2cb1360SIngo Molnar break; 147f2cb1360SIngo Molnar level++; 148f2cb1360SIngo Molnar sd = sd->parent; 149f2cb1360SIngo Molnar if (!sd) 150f2cb1360SIngo Molnar break; 151f2cb1360SIngo Molnar } 152f2cb1360SIngo Molnar } 153f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */ 154f2cb1360SIngo Molnar 155f2cb1360SIngo Molnar # define sched_debug_enabled 0 156f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0) 157f2cb1360SIngo Molnar static inline bool sched_debug(void) 158f2cb1360SIngo Molnar { 159f2cb1360SIngo Molnar return false; 160f2cb1360SIngo Molnar } 161f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */ 162f2cb1360SIngo Molnar 1634fc472f1SValentin Schneider /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 1644fc472f1SValentin Schneider #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 1654fc472f1SValentin Schneider static const unsigned int SD_DEGENERATE_GROUPS_MASK = 1664fc472f1SValentin Schneider #include <linux/sched/sd_flags.h> 1674fc472f1SValentin Schneider 0; 1684fc472f1SValentin Schneider #undef SD_FLAG 1694fc472f1SValentin Schneider 170f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd) 171f2cb1360SIngo Molnar { 172f2cb1360SIngo Molnar if (cpumask_weight(sched_domain_span(sd)) == 1) 173f2cb1360SIngo Molnar return 1; 174f2cb1360SIngo Molnar 175f2cb1360SIngo Molnar /* Following flags need at least 2 groups */ 1766f349818SValentin Schneider if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 1776f349818SValentin Schneider (sd->groups != sd->groups->next)) 178f2cb1360SIngo Molnar return 0; 179f2cb1360SIngo Molnar 180f2cb1360SIngo Molnar /* Following flags don't use groups */ 181f2cb1360SIngo Molnar if (sd->flags & (SD_WAKE_AFFINE)) 182f2cb1360SIngo Molnar return 0; 183f2cb1360SIngo Molnar 184f2cb1360SIngo Molnar return 1; 185f2cb1360SIngo Molnar } 186f2cb1360SIngo Molnar 187f2cb1360SIngo Molnar static int 188f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 189f2cb1360SIngo Molnar { 190f2cb1360SIngo Molnar unsigned long cflags = sd->flags, pflags = parent->flags; 191f2cb1360SIngo Molnar 192f2cb1360SIngo Molnar if (sd_degenerate(parent)) 193f2cb1360SIngo Molnar return 1; 194f2cb1360SIngo Molnar 195f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 196f2cb1360SIngo Molnar return 0; 197f2cb1360SIngo Molnar 198f2cb1360SIngo Molnar /* Flags needing groups don't count if only 1 group in parent */ 199ab65afb0SValentin Schneider if (parent->groups == parent->groups->next) 2003a6712c7SValentin Schneider pflags &= ~SD_DEGENERATE_GROUPS_MASK; 201ab65afb0SValentin Schneider 202f2cb1360SIngo Molnar if (~cflags & pflags) 203f2cb1360SIngo Molnar return 0; 204f2cb1360SIngo Molnar 205f2cb1360SIngo Molnar return 1; 206f2cb1360SIngo Molnar } 207f2cb1360SIngo Molnar 208531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 209f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present); 2108d5d0cfbSQuentin Perret unsigned int sysctl_sched_energy_aware = 1; 211531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex); 212531b5c9fSQuentin Perret bool sched_energy_update; 213531b5c9fSQuentin Perret 21431f6a8c0SIonela Voinescu void rebuild_sched_domains_energy(void) 21531f6a8c0SIonela Voinescu { 21631f6a8c0SIonela Voinescu mutex_lock(&sched_energy_mutex); 21731f6a8c0SIonela Voinescu sched_energy_update = true; 21831f6a8c0SIonela Voinescu rebuild_sched_domains(); 21931f6a8c0SIonela Voinescu sched_energy_update = false; 22031f6a8c0SIonela Voinescu mutex_unlock(&sched_energy_mutex); 22131f6a8c0SIonela Voinescu } 22231f6a8c0SIonela Voinescu 2238d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL 2248d5d0cfbSQuentin Perret int sched_energy_aware_handler(struct ctl_table *table, int write, 22532927393SChristoph Hellwig void *buffer, size_t *lenp, loff_t *ppos) 2268d5d0cfbSQuentin Perret { 2278d5d0cfbSQuentin Perret int ret, state; 2288d5d0cfbSQuentin Perret 2298d5d0cfbSQuentin Perret if (write && !capable(CAP_SYS_ADMIN)) 2308d5d0cfbSQuentin Perret return -EPERM; 2318d5d0cfbSQuentin Perret 2328d5d0cfbSQuentin Perret ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2338d5d0cfbSQuentin Perret if (!ret && write) { 2348d5d0cfbSQuentin Perret state = static_branch_unlikely(&sched_energy_present); 23531f6a8c0SIonela Voinescu if (state != sysctl_sched_energy_aware) 23631f6a8c0SIonela Voinescu rebuild_sched_domains_energy(); 2378d5d0cfbSQuentin Perret } 2388d5d0cfbSQuentin Perret 2398d5d0cfbSQuentin Perret return ret; 2408d5d0cfbSQuentin Perret } 2418d5d0cfbSQuentin Perret #endif 2428d5d0cfbSQuentin Perret 2436aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) 2446aa140faSQuentin Perret { 2456aa140faSQuentin Perret struct perf_domain *tmp; 2466aa140faSQuentin Perret 2476aa140faSQuentin Perret while (pd) { 2486aa140faSQuentin Perret tmp = pd->next; 2496aa140faSQuentin Perret kfree(pd); 2506aa140faSQuentin Perret pd = tmp; 2516aa140faSQuentin Perret } 2526aa140faSQuentin Perret } 2536aa140faSQuentin Perret 2546aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 2556aa140faSQuentin Perret { 2566aa140faSQuentin Perret while (pd) { 2576aa140faSQuentin Perret if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 2586aa140faSQuentin Perret return pd; 2596aa140faSQuentin Perret pd = pd->next; 2606aa140faSQuentin Perret } 2616aa140faSQuentin Perret 2626aa140faSQuentin Perret return NULL; 2636aa140faSQuentin Perret } 2646aa140faSQuentin Perret 2656aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu) 2666aa140faSQuentin Perret { 2676aa140faSQuentin Perret struct em_perf_domain *obj = em_cpu_get(cpu); 2686aa140faSQuentin Perret struct perf_domain *pd; 2696aa140faSQuentin Perret 2706aa140faSQuentin Perret if (!obj) { 2716aa140faSQuentin Perret if (sched_debug()) 2726aa140faSQuentin Perret pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 2736aa140faSQuentin Perret return NULL; 2746aa140faSQuentin Perret } 2756aa140faSQuentin Perret 2766aa140faSQuentin Perret pd = kzalloc(sizeof(*pd), GFP_KERNEL); 2776aa140faSQuentin Perret if (!pd) 2786aa140faSQuentin Perret return NULL; 2796aa140faSQuentin Perret pd->em_pd = obj; 2806aa140faSQuentin Perret 2816aa140faSQuentin Perret return pd; 2826aa140faSQuentin Perret } 2836aa140faSQuentin Perret 2846aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map, 2856aa140faSQuentin Perret struct perf_domain *pd) 2866aa140faSQuentin Perret { 2876aa140faSQuentin Perret if (!sched_debug() || !pd) 2886aa140faSQuentin Perret return; 2896aa140faSQuentin Perret 2906aa140faSQuentin Perret printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 2916aa140faSQuentin Perret 2926aa140faSQuentin Perret while (pd) { 293521b512bSLukasz Luba printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 2946aa140faSQuentin Perret cpumask_first(perf_domain_span(pd)), 2956aa140faSQuentin Perret cpumask_pr_args(perf_domain_span(pd)), 296521b512bSLukasz Luba em_pd_nr_perf_states(pd->em_pd)); 2976aa140faSQuentin Perret pd = pd->next; 2986aa140faSQuentin Perret } 2996aa140faSQuentin Perret 3006aa140faSQuentin Perret printk(KERN_CONT "\n"); 3016aa140faSQuentin Perret } 3026aa140faSQuentin Perret 3036aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp) 3046aa140faSQuentin Perret { 3056aa140faSQuentin Perret struct perf_domain *pd; 3066aa140faSQuentin Perret 3076aa140faSQuentin Perret pd = container_of(rp, struct perf_domain, rcu); 3086aa140faSQuentin Perret free_pd(pd); 3096aa140faSQuentin Perret } 3106aa140faSQuentin Perret 3111f74de87SQuentin Perret static void sched_energy_set(bool has_eas) 3121f74de87SQuentin Perret { 3131f74de87SQuentin Perret if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 3141f74de87SQuentin Perret if (sched_debug()) 3151f74de87SQuentin Perret pr_info("%s: stopping EAS\n", __func__); 3161f74de87SQuentin Perret static_branch_disable_cpuslocked(&sched_energy_present); 3171f74de87SQuentin Perret } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 3181f74de87SQuentin Perret if (sched_debug()) 3191f74de87SQuentin Perret pr_info("%s: starting EAS\n", __func__); 3201f74de87SQuentin Perret static_branch_enable_cpuslocked(&sched_energy_present); 3211f74de87SQuentin Perret } 3221f74de87SQuentin Perret } 3231f74de87SQuentin Perret 324b68a4c0dSQuentin Perret /* 325b68a4c0dSQuentin Perret * EAS can be used on a root domain if it meets all the following conditions: 326b68a4c0dSQuentin Perret * 1. an Energy Model (EM) is available; 327b68a4c0dSQuentin Perret * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 32838502ab4SValentin Schneider * 3. no SMT is detected. 32938502ab4SValentin Schneider * 4. the EM complexity is low enough to keep scheduling overheads low; 33038502ab4SValentin Schneider * 5. schedutil is driving the frequency of all CPUs of the rd; 331*fa50e2b4SIonela Voinescu * 6. frequency invariance support is present; 332b68a4c0dSQuentin Perret * 333b68a4c0dSQuentin Perret * The complexity of the Energy Model is defined as: 334b68a4c0dSQuentin Perret * 335521b512bSLukasz Luba * C = nr_pd * (nr_cpus + nr_ps) 336b68a4c0dSQuentin Perret * 337b68a4c0dSQuentin Perret * with parameters defined as: 338b68a4c0dSQuentin Perret * - nr_pd: the number of performance domains 339b68a4c0dSQuentin Perret * - nr_cpus: the number of CPUs 340521b512bSLukasz Luba * - nr_ps: the sum of the number of performance states of all performance 341b68a4c0dSQuentin Perret * domains (for example, on a system with 2 performance domains, 342521b512bSLukasz Luba * with 10 performance states each, nr_ps = 2 * 10 = 20). 343b68a4c0dSQuentin Perret * 344b68a4c0dSQuentin Perret * It is generally not a good idea to use such a model in the wake-up path on 345b68a4c0dSQuentin Perret * very complex platforms because of the associated scheduling overheads. The 346b68a4c0dSQuentin Perret * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 347521b512bSLukasz Luba * with per-CPU DVFS and less than 8 performance states each, for example. 348b68a4c0dSQuentin Perret */ 349b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048 350b68a4c0dSQuentin Perret 351531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov; 3521f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map) 3536aa140faSQuentin Perret { 354521b512bSLukasz Luba int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 3556aa140faSQuentin Perret struct perf_domain *pd = NULL, *tmp; 3566aa140faSQuentin Perret int cpu = cpumask_first(cpu_map); 3576aa140faSQuentin Perret struct root_domain *rd = cpu_rq(cpu)->rd; 358531b5c9fSQuentin Perret struct cpufreq_policy *policy; 359531b5c9fSQuentin Perret struct cpufreq_governor *gov; 360b68a4c0dSQuentin Perret 3618d5d0cfbSQuentin Perret if (!sysctl_sched_energy_aware) 3628d5d0cfbSQuentin Perret goto free; 3638d5d0cfbSQuentin Perret 364b68a4c0dSQuentin Perret /* EAS is enabled for asymmetric CPU capacity topologies. */ 365b68a4c0dSQuentin Perret if (!per_cpu(sd_asym_cpucapacity, cpu)) { 366b68a4c0dSQuentin Perret if (sched_debug()) { 367b68a4c0dSQuentin Perret pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 368b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 369b68a4c0dSQuentin Perret } 370b68a4c0dSQuentin Perret goto free; 371b68a4c0dSQuentin Perret } 3726aa140faSQuentin Perret 37338502ab4SValentin Schneider /* EAS definitely does *not* handle SMT */ 37438502ab4SValentin Schneider if (sched_smt_active()) { 37538502ab4SValentin Schneider pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 37638502ab4SValentin Schneider cpumask_pr_args(cpu_map)); 37738502ab4SValentin Schneider goto free; 37838502ab4SValentin Schneider } 37938502ab4SValentin Schneider 380*fa50e2b4SIonela Voinescu if (!arch_scale_freq_invariant()) { 381*fa50e2b4SIonela Voinescu if (sched_debug()) { 382*fa50e2b4SIonela Voinescu pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported", 383*fa50e2b4SIonela Voinescu cpumask_pr_args(cpu_map)); 384*fa50e2b4SIonela Voinescu } 385*fa50e2b4SIonela Voinescu goto free; 386*fa50e2b4SIonela Voinescu } 387*fa50e2b4SIonela Voinescu 3886aa140faSQuentin Perret for_each_cpu(i, cpu_map) { 3896aa140faSQuentin Perret /* Skip already covered CPUs. */ 3906aa140faSQuentin Perret if (find_pd(pd, i)) 3916aa140faSQuentin Perret continue; 3926aa140faSQuentin Perret 393531b5c9fSQuentin Perret /* Do not attempt EAS if schedutil is not being used. */ 394531b5c9fSQuentin Perret policy = cpufreq_cpu_get(i); 395531b5c9fSQuentin Perret if (!policy) 396531b5c9fSQuentin Perret goto free; 397531b5c9fSQuentin Perret gov = policy->governor; 398531b5c9fSQuentin Perret cpufreq_cpu_put(policy); 399531b5c9fSQuentin Perret if (gov != &schedutil_gov) { 400531b5c9fSQuentin Perret if (rd->pd) 401531b5c9fSQuentin Perret pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 402531b5c9fSQuentin Perret cpumask_pr_args(cpu_map)); 403531b5c9fSQuentin Perret goto free; 404531b5c9fSQuentin Perret } 405531b5c9fSQuentin Perret 4066aa140faSQuentin Perret /* Create the new pd and add it to the local list. */ 4076aa140faSQuentin Perret tmp = pd_init(i); 4086aa140faSQuentin Perret if (!tmp) 4096aa140faSQuentin Perret goto free; 4106aa140faSQuentin Perret tmp->next = pd; 4116aa140faSQuentin Perret pd = tmp; 412b68a4c0dSQuentin Perret 413b68a4c0dSQuentin Perret /* 414521b512bSLukasz Luba * Count performance domains and performance states for the 415b68a4c0dSQuentin Perret * complexity check. 416b68a4c0dSQuentin Perret */ 417b68a4c0dSQuentin Perret nr_pd++; 418521b512bSLukasz Luba nr_ps += em_pd_nr_perf_states(pd->em_pd); 419b68a4c0dSQuentin Perret } 420b68a4c0dSQuentin Perret 421b68a4c0dSQuentin Perret /* Bail out if the Energy Model complexity is too high. */ 422521b512bSLukasz Luba if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 423b68a4c0dSQuentin Perret WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 424b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 425b68a4c0dSQuentin Perret goto free; 4266aa140faSQuentin Perret } 4276aa140faSQuentin Perret 4286aa140faSQuentin Perret perf_domain_debug(cpu_map, pd); 4296aa140faSQuentin Perret 4306aa140faSQuentin Perret /* Attach the new list of performance domains to the root domain. */ 4316aa140faSQuentin Perret tmp = rd->pd; 4326aa140faSQuentin Perret rcu_assign_pointer(rd->pd, pd); 4336aa140faSQuentin Perret if (tmp) 4346aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4356aa140faSQuentin Perret 4361f74de87SQuentin Perret return !!pd; 4376aa140faSQuentin Perret 4386aa140faSQuentin Perret free: 4396aa140faSQuentin Perret free_pd(pd); 4406aa140faSQuentin Perret tmp = rd->pd; 4416aa140faSQuentin Perret rcu_assign_pointer(rd->pd, NULL); 4426aa140faSQuentin Perret if (tmp) 4436aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4441f74de87SQuentin Perret 4451f74de87SQuentin Perret return false; 4466aa140faSQuentin Perret } 4476aa140faSQuentin Perret #else 4486aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { } 449531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 4506aa140faSQuentin Perret 451f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu) 452f2cb1360SIngo Molnar { 453f2cb1360SIngo Molnar struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 454f2cb1360SIngo Molnar 455f2cb1360SIngo Molnar cpupri_cleanup(&rd->cpupri); 456f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 457f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 458f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 459f2cb1360SIngo Molnar free_cpumask_var(rd->online); 460f2cb1360SIngo Molnar free_cpumask_var(rd->span); 4616aa140faSQuentin Perret free_pd(rd->pd); 462f2cb1360SIngo Molnar kfree(rd); 463f2cb1360SIngo Molnar } 464f2cb1360SIngo Molnar 465f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd) 466f2cb1360SIngo Molnar { 467f2cb1360SIngo Molnar struct root_domain *old_rd = NULL; 468f2cb1360SIngo Molnar unsigned long flags; 469f2cb1360SIngo Molnar 470f2cb1360SIngo Molnar raw_spin_lock_irqsave(&rq->lock, flags); 471f2cb1360SIngo Molnar 472f2cb1360SIngo Molnar if (rq->rd) { 473f2cb1360SIngo Molnar old_rd = rq->rd; 474f2cb1360SIngo Molnar 475f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, old_rd->online)) 476f2cb1360SIngo Molnar set_rq_offline(rq); 477f2cb1360SIngo Molnar 478f2cb1360SIngo Molnar cpumask_clear_cpu(rq->cpu, old_rd->span); 479f2cb1360SIngo Molnar 480f2cb1360SIngo Molnar /* 481f2cb1360SIngo Molnar * If we dont want to free the old_rd yet then 482f2cb1360SIngo Molnar * set old_rd to NULL to skip the freeing later 483f2cb1360SIngo Molnar * in this function: 484f2cb1360SIngo Molnar */ 485f2cb1360SIngo Molnar if (!atomic_dec_and_test(&old_rd->refcount)) 486f2cb1360SIngo Molnar old_rd = NULL; 487f2cb1360SIngo Molnar } 488f2cb1360SIngo Molnar 489f2cb1360SIngo Molnar atomic_inc(&rd->refcount); 490f2cb1360SIngo Molnar rq->rd = rd; 491f2cb1360SIngo Molnar 492f2cb1360SIngo Molnar cpumask_set_cpu(rq->cpu, rd->span); 493f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 494f2cb1360SIngo Molnar set_rq_online(rq); 495f2cb1360SIngo Molnar 496f2cb1360SIngo Molnar raw_spin_unlock_irqrestore(&rq->lock, flags); 497f2cb1360SIngo Molnar 498f2cb1360SIngo Molnar if (old_rd) 499337e9b07SPaul E. McKenney call_rcu(&old_rd->rcu, free_rootdomain); 500f2cb1360SIngo Molnar } 501f2cb1360SIngo Molnar 502364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd) 503364f5665SSteven Rostedt (VMware) { 504364f5665SSteven Rostedt (VMware) atomic_inc(&rd->refcount); 505364f5665SSteven Rostedt (VMware) } 506364f5665SSteven Rostedt (VMware) 507364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd) 508364f5665SSteven Rostedt (VMware) { 509364f5665SSteven Rostedt (VMware) if (!atomic_dec_and_test(&rd->refcount)) 510364f5665SSteven Rostedt (VMware) return; 511364f5665SSteven Rostedt (VMware) 512337e9b07SPaul E. McKenney call_rcu(&rd->rcu, free_rootdomain); 513364f5665SSteven Rostedt (VMware) } 514364f5665SSteven Rostedt (VMware) 515f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd) 516f2cb1360SIngo Molnar { 517f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 518f2cb1360SIngo Molnar goto out; 519f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 520f2cb1360SIngo Molnar goto free_span; 521f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 522f2cb1360SIngo Molnar goto free_online; 523f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 524f2cb1360SIngo Molnar goto free_dlo_mask; 525f2cb1360SIngo Molnar 5264bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI 5274bdced5cSSteven Rostedt (Red Hat) rd->rto_cpu = -1; 5284bdced5cSSteven Rostedt (Red Hat) raw_spin_lock_init(&rd->rto_lock); 5294bdced5cSSteven Rostedt (Red Hat) init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 5304bdced5cSSteven Rostedt (Red Hat) #endif 5314bdced5cSSteven Rostedt (Red Hat) 53226762423SPeng Liu rd->visit_gen = 0; 533f2cb1360SIngo Molnar init_dl_bw(&rd->dl_bw); 534f2cb1360SIngo Molnar if (cpudl_init(&rd->cpudl) != 0) 535f2cb1360SIngo Molnar goto free_rto_mask; 536f2cb1360SIngo Molnar 537f2cb1360SIngo Molnar if (cpupri_init(&rd->cpupri) != 0) 538f2cb1360SIngo Molnar goto free_cpudl; 539f2cb1360SIngo Molnar return 0; 540f2cb1360SIngo Molnar 541f2cb1360SIngo Molnar free_cpudl: 542f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 543f2cb1360SIngo Molnar free_rto_mask: 544f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 545f2cb1360SIngo Molnar free_dlo_mask: 546f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 547f2cb1360SIngo Molnar free_online: 548f2cb1360SIngo Molnar free_cpumask_var(rd->online); 549f2cb1360SIngo Molnar free_span: 550f2cb1360SIngo Molnar free_cpumask_var(rd->span); 551f2cb1360SIngo Molnar out: 552f2cb1360SIngo Molnar return -ENOMEM; 553f2cb1360SIngo Molnar } 554f2cb1360SIngo Molnar 555f2cb1360SIngo Molnar /* 556f2cb1360SIngo Molnar * By default the system creates a single root-domain with all CPUs as 557f2cb1360SIngo Molnar * members (mimicking the global state we have today). 558f2cb1360SIngo Molnar */ 559f2cb1360SIngo Molnar struct root_domain def_root_domain; 560f2cb1360SIngo Molnar 561f2cb1360SIngo Molnar void init_defrootdomain(void) 562f2cb1360SIngo Molnar { 563f2cb1360SIngo Molnar init_rootdomain(&def_root_domain); 564f2cb1360SIngo Molnar 565f2cb1360SIngo Molnar atomic_set(&def_root_domain.refcount, 1); 566f2cb1360SIngo Molnar } 567f2cb1360SIngo Molnar 568f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void) 569f2cb1360SIngo Molnar { 570f2cb1360SIngo Molnar struct root_domain *rd; 571f2cb1360SIngo Molnar 5724d13a06dSViresh Kumar rd = kzalloc(sizeof(*rd), GFP_KERNEL); 573f2cb1360SIngo Molnar if (!rd) 574f2cb1360SIngo Molnar return NULL; 575f2cb1360SIngo Molnar 576f2cb1360SIngo Molnar if (init_rootdomain(rd) != 0) { 577f2cb1360SIngo Molnar kfree(rd); 578f2cb1360SIngo Molnar return NULL; 579f2cb1360SIngo Molnar } 580f2cb1360SIngo Molnar 581f2cb1360SIngo Molnar return rd; 582f2cb1360SIngo Molnar } 583f2cb1360SIngo Molnar 584f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc) 585f2cb1360SIngo Molnar { 586f2cb1360SIngo Molnar struct sched_group *tmp, *first; 587f2cb1360SIngo Molnar 588f2cb1360SIngo Molnar if (!sg) 589f2cb1360SIngo Molnar return; 590f2cb1360SIngo Molnar 591f2cb1360SIngo Molnar first = sg; 592f2cb1360SIngo Molnar do { 593f2cb1360SIngo Molnar tmp = sg->next; 594f2cb1360SIngo Molnar 595f2cb1360SIngo Molnar if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 596f2cb1360SIngo Molnar kfree(sg->sgc); 597f2cb1360SIngo Molnar 598213c5a45SShu Wang if (atomic_dec_and_test(&sg->ref)) 599f2cb1360SIngo Molnar kfree(sg); 600f2cb1360SIngo Molnar sg = tmp; 601f2cb1360SIngo Molnar } while (sg != first); 602f2cb1360SIngo Molnar } 603f2cb1360SIngo Molnar 604f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd) 605f2cb1360SIngo Molnar { 606f2cb1360SIngo Molnar /* 607a090c4f2SPeter Zijlstra * A normal sched domain may have multiple group references, an 608a090c4f2SPeter Zijlstra * overlapping domain, having private groups, only one. Iterate, 609a090c4f2SPeter Zijlstra * dropping group/capacity references, freeing where none remain. 610f2cb1360SIngo Molnar */ 611f2cb1360SIngo Molnar free_sched_groups(sd->groups, 1); 612213c5a45SShu Wang 613f2cb1360SIngo Molnar if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 614f2cb1360SIngo Molnar kfree(sd->shared); 615f2cb1360SIngo Molnar kfree(sd); 616f2cb1360SIngo Molnar } 617f2cb1360SIngo Molnar 618f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu) 619f2cb1360SIngo Molnar { 620f2cb1360SIngo Molnar struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 621f2cb1360SIngo Molnar 622f2cb1360SIngo Molnar while (sd) { 623f2cb1360SIngo Molnar struct sched_domain *parent = sd->parent; 624f2cb1360SIngo Molnar destroy_sched_domain(sd); 625f2cb1360SIngo Molnar sd = parent; 626f2cb1360SIngo Molnar } 627f2cb1360SIngo Molnar } 628f2cb1360SIngo Molnar 629f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd) 630f2cb1360SIngo Molnar { 631f2cb1360SIngo Molnar if (sd) 632f2cb1360SIngo Molnar call_rcu(&sd->rcu, destroy_sched_domains_rcu); 633f2cb1360SIngo Molnar } 634f2cb1360SIngo Molnar 635f2cb1360SIngo Molnar /* 636f2cb1360SIngo Molnar * Keep a special pointer to the highest sched_domain that has 637f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 638f2cb1360SIngo Molnar * allows us to avoid some pointer chasing select_idle_sibling(). 639f2cb1360SIngo Molnar * 640f2cb1360SIngo Molnar * Also keep a unique ID per domain (we use the first CPU number in 641f2cb1360SIngo Molnar * the cpumask of the domain), this allows us to quickly tell if 642f2cb1360SIngo Molnar * two CPUs are in the same cache domain, see cpus_share_cache(). 643f2cb1360SIngo Molnar */ 644994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 645f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size); 646f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id); 647994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 648994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 649994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 650994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 651df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 652f2cb1360SIngo Molnar 653f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu) 654f2cb1360SIngo Molnar { 655f2cb1360SIngo Molnar struct sched_domain_shared *sds = NULL; 656f2cb1360SIngo Molnar struct sched_domain *sd; 657f2cb1360SIngo Molnar int id = cpu; 658f2cb1360SIngo Molnar int size = 1; 659f2cb1360SIngo Molnar 660f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 661f2cb1360SIngo Molnar if (sd) { 662f2cb1360SIngo Molnar id = cpumask_first(sched_domain_span(sd)); 663f2cb1360SIngo Molnar size = cpumask_weight(sched_domain_span(sd)); 664f2cb1360SIngo Molnar sds = sd->shared; 665f2cb1360SIngo Molnar } 666f2cb1360SIngo Molnar 667f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 668f2cb1360SIngo Molnar per_cpu(sd_llc_size, cpu) = size; 669f2cb1360SIngo Molnar per_cpu(sd_llc_id, cpu) = id; 670f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 671f2cb1360SIngo Molnar 672f2cb1360SIngo Molnar sd = lowest_flag_domain(cpu, SD_NUMA); 673f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 674f2cb1360SIngo Molnar 675f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 676011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 677011b27bbSQuentin Perret 678011b27bbSQuentin Perret sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 679011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 680f2cb1360SIngo Molnar } 681f2cb1360SIngo Molnar 682f2cb1360SIngo Molnar /* 683f2cb1360SIngo Molnar * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 684f2cb1360SIngo Molnar * hold the hotplug lock. 685f2cb1360SIngo Molnar */ 686f2cb1360SIngo Molnar static void 687f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 688f2cb1360SIngo Molnar { 689f2cb1360SIngo Molnar struct rq *rq = cpu_rq(cpu); 690f2cb1360SIngo Molnar struct sched_domain *tmp; 691b5b21734SValentin Schneider int numa_distance = 0; 692f2cb1360SIngo Molnar 693f2cb1360SIngo Molnar /* Remove the sched domains which do not contribute to scheduling. */ 694f2cb1360SIngo Molnar for (tmp = sd; tmp; ) { 695f2cb1360SIngo Molnar struct sched_domain *parent = tmp->parent; 696f2cb1360SIngo Molnar if (!parent) 697f2cb1360SIngo Molnar break; 698f2cb1360SIngo Molnar 699f2cb1360SIngo Molnar if (sd_parent_degenerate(tmp, parent)) { 700f2cb1360SIngo Molnar tmp->parent = parent->parent; 701f2cb1360SIngo Molnar if (parent->parent) 702f2cb1360SIngo Molnar parent->parent->child = tmp; 703f2cb1360SIngo Molnar /* 704f2cb1360SIngo Molnar * Transfer SD_PREFER_SIBLING down in case of a 705f2cb1360SIngo Molnar * degenerate parent; the spans match for this 706f2cb1360SIngo Molnar * so the property transfers. 707f2cb1360SIngo Molnar */ 708f2cb1360SIngo Molnar if (parent->flags & SD_PREFER_SIBLING) 709f2cb1360SIngo Molnar tmp->flags |= SD_PREFER_SIBLING; 710f2cb1360SIngo Molnar destroy_sched_domain(parent); 711f2cb1360SIngo Molnar } else 712f2cb1360SIngo Molnar tmp = tmp->parent; 713f2cb1360SIngo Molnar } 714f2cb1360SIngo Molnar 715f2cb1360SIngo Molnar if (sd && sd_degenerate(sd)) { 716f2cb1360SIngo Molnar tmp = sd; 717f2cb1360SIngo Molnar sd = sd->parent; 718f2cb1360SIngo Molnar destroy_sched_domain(tmp); 719f2cb1360SIngo Molnar if (sd) 720f2cb1360SIngo Molnar sd->child = NULL; 721f2cb1360SIngo Molnar } 722f2cb1360SIngo Molnar 723b5b21734SValentin Schneider for (tmp = sd; tmp; tmp = tmp->parent) 724b5b21734SValentin Schneider numa_distance += !!(tmp->flags & SD_NUMA); 725b5b21734SValentin Schneider 726b5b21734SValentin Schneider /* 727b5b21734SValentin Schneider * FIXME: Diameter >=3 is misrepresented. 728b5b21734SValentin Schneider * 729b5b21734SValentin Schneider * Smallest diameter=3 topology is: 730b5b21734SValentin Schneider * 731b5b21734SValentin Schneider * node 0 1 2 3 732b5b21734SValentin Schneider * 0: 10 20 30 40 733b5b21734SValentin Schneider * 1: 20 10 20 30 734b5b21734SValentin Schneider * 2: 30 20 10 20 735b5b21734SValentin Schneider * 3: 40 30 20 10 736b5b21734SValentin Schneider * 737b5b21734SValentin Schneider * 0 --- 1 --- 2 --- 3 738b5b21734SValentin Schneider * 739b5b21734SValentin Schneider * NUMA-3 0-3 N/A N/A 0-3 740b5b21734SValentin Schneider * groups: {0-2},{1-3} {1-3},{0-2} 741b5b21734SValentin Schneider * 742b5b21734SValentin Schneider * NUMA-2 0-2 0-3 0-3 1-3 743b5b21734SValentin Schneider * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 744b5b21734SValentin Schneider * 745b5b21734SValentin Schneider * NUMA-1 0-1 0-2 1-3 2-3 746b5b21734SValentin Schneider * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 747b5b21734SValentin Schneider * 748b5b21734SValentin Schneider * NUMA-0 0 1 2 3 749b5b21734SValentin Schneider * 750b5b21734SValentin Schneider * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 751b5b21734SValentin Schneider * group span isn't a subset of the domain span. 752b5b21734SValentin Schneider */ 753b5b21734SValentin Schneider WARN_ONCE(numa_distance > 2, "Shortest NUMA path spans too many nodes\n"); 754b5b21734SValentin Schneider 755f2cb1360SIngo Molnar sched_domain_debug(sd, cpu); 756f2cb1360SIngo Molnar 757f2cb1360SIngo Molnar rq_attach_root(rq, rd); 758f2cb1360SIngo Molnar tmp = rq->sd; 759f2cb1360SIngo Molnar rcu_assign_pointer(rq->sd, sd); 760bbdacdfeSPeter Zijlstra dirty_sched_domain_sysctl(cpu); 761f2cb1360SIngo Molnar destroy_sched_domains(tmp); 762f2cb1360SIngo Molnar 763f2cb1360SIngo Molnar update_top_cache_domain(cpu); 764f2cb1360SIngo Molnar } 765f2cb1360SIngo Molnar 766f2cb1360SIngo Molnar struct s_data { 76799687cdbSLuc Van Oostenryck struct sched_domain * __percpu *sd; 768f2cb1360SIngo Molnar struct root_domain *rd; 769f2cb1360SIngo Molnar }; 770f2cb1360SIngo Molnar 771f2cb1360SIngo Molnar enum s_alloc { 772f2cb1360SIngo Molnar sa_rootdomain, 773f2cb1360SIngo Molnar sa_sd, 774f2cb1360SIngo Molnar sa_sd_storage, 775f2cb1360SIngo Molnar sa_none, 776f2cb1360SIngo Molnar }; 777f2cb1360SIngo Molnar 778f2cb1360SIngo Molnar /* 77935a566e6SPeter Zijlstra * Return the canonical balance CPU for this group, this is the first CPU 780e5c14b1fSPeter Zijlstra * of this group that's also in the balance mask. 78135a566e6SPeter Zijlstra * 782e5c14b1fSPeter Zijlstra * The balance mask are all those CPUs that could actually end up at this 783e5c14b1fSPeter Zijlstra * group. See build_balance_mask(). 78435a566e6SPeter Zijlstra * 78535a566e6SPeter Zijlstra * Also see should_we_balance(). 78635a566e6SPeter Zijlstra */ 78735a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg) 78835a566e6SPeter Zijlstra { 789e5c14b1fSPeter Zijlstra return cpumask_first(group_balance_mask(sg)); 79035a566e6SPeter Zijlstra } 79135a566e6SPeter Zijlstra 79235a566e6SPeter Zijlstra 79335a566e6SPeter Zijlstra /* 79435a566e6SPeter Zijlstra * NUMA topology (first read the regular topology blurb below) 79535a566e6SPeter Zijlstra * 79635a566e6SPeter Zijlstra * Given a node-distance table, for example: 79735a566e6SPeter Zijlstra * 79835a566e6SPeter Zijlstra * node 0 1 2 3 79935a566e6SPeter Zijlstra * 0: 10 20 30 20 80035a566e6SPeter Zijlstra * 1: 20 10 20 30 80135a566e6SPeter Zijlstra * 2: 30 20 10 20 80235a566e6SPeter Zijlstra * 3: 20 30 20 10 80335a566e6SPeter Zijlstra * 80435a566e6SPeter Zijlstra * which represents a 4 node ring topology like: 80535a566e6SPeter Zijlstra * 80635a566e6SPeter Zijlstra * 0 ----- 1 80735a566e6SPeter Zijlstra * | | 80835a566e6SPeter Zijlstra * | | 80935a566e6SPeter Zijlstra * | | 81035a566e6SPeter Zijlstra * 3 ----- 2 81135a566e6SPeter Zijlstra * 81235a566e6SPeter Zijlstra * We want to construct domains and groups to represent this. The way we go 81335a566e6SPeter Zijlstra * about doing this is to build the domains on 'hops'. For each NUMA level we 81435a566e6SPeter Zijlstra * construct the mask of all nodes reachable in @level hops. 81535a566e6SPeter Zijlstra * 81635a566e6SPeter Zijlstra * For the above NUMA topology that gives 3 levels: 81735a566e6SPeter Zijlstra * 81835a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 0-3 0-3 81935a566e6SPeter Zijlstra * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 82035a566e6SPeter Zijlstra * 82135a566e6SPeter Zijlstra * NUMA-1 0-1,3 0-2 1-3 0,2-3 82235a566e6SPeter Zijlstra * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 82335a566e6SPeter Zijlstra * 82435a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 82535a566e6SPeter Zijlstra * 82635a566e6SPeter Zijlstra * 82735a566e6SPeter Zijlstra * As can be seen; things don't nicely line up as with the regular topology. 82835a566e6SPeter Zijlstra * When we iterate a domain in child domain chunks some nodes can be 82935a566e6SPeter Zijlstra * represented multiple times -- hence the "overlap" naming for this part of 83035a566e6SPeter Zijlstra * the topology. 83135a566e6SPeter Zijlstra * 83235a566e6SPeter Zijlstra * In order to minimize this overlap, we only build enough groups to cover the 83335a566e6SPeter Zijlstra * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 83435a566e6SPeter Zijlstra * 83535a566e6SPeter Zijlstra * Because: 83635a566e6SPeter Zijlstra * 83735a566e6SPeter Zijlstra * - the first group of each domain is its child domain; this 83835a566e6SPeter Zijlstra * gets us the first 0-1,3 83935a566e6SPeter Zijlstra * - the only uncovered node is 2, who's child domain is 1-3. 84035a566e6SPeter Zijlstra * 84135a566e6SPeter Zijlstra * However, because of the overlap, computing a unique CPU for each group is 84235a566e6SPeter Zijlstra * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 84335a566e6SPeter Zijlstra * groups include the CPUs of Node-0, while those CPUs would not in fact ever 84435a566e6SPeter Zijlstra * end up at those groups (they would end up in group: 0-1,3). 84535a566e6SPeter Zijlstra * 846e5c14b1fSPeter Zijlstra * To correct this we have to introduce the group balance mask. This mask 84735a566e6SPeter Zijlstra * will contain those CPUs in the group that can reach this group given the 84835a566e6SPeter Zijlstra * (child) domain tree. 84935a566e6SPeter Zijlstra * 85035a566e6SPeter Zijlstra * With this we can once again compute balance_cpu and sched_group_capacity 85135a566e6SPeter Zijlstra * relations. 85235a566e6SPeter Zijlstra * 85335a566e6SPeter Zijlstra * XXX include words on how balance_cpu is unique and therefore can be 85435a566e6SPeter Zijlstra * used for sched_group_capacity links. 85535a566e6SPeter Zijlstra * 85635a566e6SPeter Zijlstra * 85735a566e6SPeter Zijlstra * Another 'interesting' topology is: 85835a566e6SPeter Zijlstra * 85935a566e6SPeter Zijlstra * node 0 1 2 3 86035a566e6SPeter Zijlstra * 0: 10 20 20 30 86135a566e6SPeter Zijlstra * 1: 20 10 20 20 86235a566e6SPeter Zijlstra * 2: 20 20 10 20 86335a566e6SPeter Zijlstra * 3: 30 20 20 10 86435a566e6SPeter Zijlstra * 86535a566e6SPeter Zijlstra * Which looks a little like: 86635a566e6SPeter Zijlstra * 86735a566e6SPeter Zijlstra * 0 ----- 1 86835a566e6SPeter Zijlstra * | / | 86935a566e6SPeter Zijlstra * | / | 87035a566e6SPeter Zijlstra * | / | 87135a566e6SPeter Zijlstra * 2 ----- 3 87235a566e6SPeter Zijlstra * 87335a566e6SPeter Zijlstra * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 87435a566e6SPeter Zijlstra * are not. 87535a566e6SPeter Zijlstra * 87635a566e6SPeter Zijlstra * This leads to a few particularly weird cases where the sched_domain's are 87797fb7a0aSIngo Molnar * not of the same number for each CPU. Consider: 87835a566e6SPeter Zijlstra * 87935a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 88035a566e6SPeter Zijlstra * groups: {0-2},{1-3} {1-3},{0-2} 88135a566e6SPeter Zijlstra * 88235a566e6SPeter Zijlstra * NUMA-1 0-2 0-3 0-3 1-3 88335a566e6SPeter Zijlstra * 88435a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 88535a566e6SPeter Zijlstra * 88635a566e6SPeter Zijlstra */ 88735a566e6SPeter Zijlstra 88835a566e6SPeter Zijlstra 88935a566e6SPeter Zijlstra /* 890e5c14b1fSPeter Zijlstra * Build the balance mask; it contains only those CPUs that can arrive at this 891e5c14b1fSPeter Zijlstra * group and should be considered to continue balancing. 89235a566e6SPeter Zijlstra * 89335a566e6SPeter Zijlstra * We do this during the group creation pass, therefore the group information 89435a566e6SPeter Zijlstra * isn't complete yet, however since each group represents a (child) domain we 89535a566e6SPeter Zijlstra * can fully construct this using the sched_domain bits (which are already 89635a566e6SPeter Zijlstra * complete). 897f2cb1360SIngo Molnar */ 8981676330eSPeter Zijlstra static void 899e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 900f2cb1360SIngo Molnar { 901ae4df9d6SPeter Zijlstra const struct cpumask *sg_span = sched_group_span(sg); 902f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 903f2cb1360SIngo Molnar struct sched_domain *sibling; 904f2cb1360SIngo Molnar int i; 905f2cb1360SIngo Molnar 9061676330eSPeter Zijlstra cpumask_clear(mask); 9071676330eSPeter Zijlstra 908f32d782eSLauro Ramos Venancio for_each_cpu(i, sg_span) { 909f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 91073bb059fSPeter Zijlstra 91173bb059fSPeter Zijlstra /* 91273bb059fSPeter Zijlstra * Can happen in the asymmetric case, where these siblings are 91373bb059fSPeter Zijlstra * unused. The mask will not be empty because those CPUs that 91473bb059fSPeter Zijlstra * do have the top domain _should_ span the domain. 91573bb059fSPeter Zijlstra */ 91673bb059fSPeter Zijlstra if (!sibling->child) 91773bb059fSPeter Zijlstra continue; 91873bb059fSPeter Zijlstra 91973bb059fSPeter Zijlstra /* If we would not end up here, we can't continue from here */ 92073bb059fSPeter Zijlstra if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 921f2cb1360SIngo Molnar continue; 922f2cb1360SIngo Molnar 9231676330eSPeter Zijlstra cpumask_set_cpu(i, mask); 924f2cb1360SIngo Molnar } 92573bb059fSPeter Zijlstra 92673bb059fSPeter Zijlstra /* We must not have empty masks here */ 9271676330eSPeter Zijlstra WARN_ON_ONCE(cpumask_empty(mask)); 928f2cb1360SIngo Molnar } 929f2cb1360SIngo Molnar 930f2cb1360SIngo Molnar /* 93135a566e6SPeter Zijlstra * XXX: This creates per-node group entries; since the load-balancer will 93235a566e6SPeter Zijlstra * immediately access remote memory to construct this group's load-balance 93335a566e6SPeter Zijlstra * statistics having the groups node local is of dubious benefit. 934f2cb1360SIngo Molnar */ 9358c033469SLauro Ramos Venancio static struct sched_group * 9368c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 9378c033469SLauro Ramos Venancio { 9388c033469SLauro Ramos Venancio struct sched_group *sg; 9398c033469SLauro Ramos Venancio struct cpumask *sg_span; 9408c033469SLauro Ramos Venancio 9418c033469SLauro Ramos Venancio sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 9428c033469SLauro Ramos Venancio GFP_KERNEL, cpu_to_node(cpu)); 9438c033469SLauro Ramos Venancio 9448c033469SLauro Ramos Venancio if (!sg) 9458c033469SLauro Ramos Venancio return NULL; 9468c033469SLauro Ramos Venancio 947ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9488c033469SLauro Ramos Venancio if (sd->child) 9498c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd->child)); 9508c033469SLauro Ramos Venancio else 9518c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd)); 9528c033469SLauro Ramos Venancio 953213c5a45SShu Wang atomic_inc(&sg->ref); 9548c033469SLauro Ramos Venancio return sg; 9558c033469SLauro Ramos Venancio } 9568c033469SLauro Ramos Venancio 9578c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd, 9581676330eSPeter Zijlstra struct sched_group *sg) 9598c033469SLauro Ramos Venancio { 9601676330eSPeter Zijlstra struct cpumask *mask = sched_domains_tmpmask2; 9618c033469SLauro Ramos Venancio struct sd_data *sdd = sd->private; 9628c033469SLauro Ramos Venancio struct cpumask *sg_span; 9631676330eSPeter Zijlstra int cpu; 9641676330eSPeter Zijlstra 965e5c14b1fSPeter Zijlstra build_balance_mask(sd, sg, mask); 966ae4df9d6SPeter Zijlstra cpu = cpumask_first_and(sched_group_span(sg), mask); 9678c033469SLauro Ramos Venancio 9688c033469SLauro Ramos Venancio sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 9698c033469SLauro Ramos Venancio if (atomic_inc_return(&sg->sgc->ref) == 1) 970e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), mask); 97135a566e6SPeter Zijlstra else 972e5c14b1fSPeter Zijlstra WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 9738c033469SLauro Ramos Venancio 9748c033469SLauro Ramos Venancio /* 9758c033469SLauro Ramos Venancio * Initialize sgc->capacity such that even if we mess up the 9768c033469SLauro Ramos Venancio * domains and no possible iteration will get us here, we won't 9778c033469SLauro Ramos Venancio * die on a /0 trap. 9788c033469SLauro Ramos Venancio */ 979ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9808c033469SLauro Ramos Venancio sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 9818c033469SLauro Ramos Venancio sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 982e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 9838c033469SLauro Ramos Venancio } 9848c033469SLauro Ramos Venancio 985f2cb1360SIngo Molnar static int 986f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu) 987f2cb1360SIngo Molnar { 98891eaed0dSPeter Zijlstra struct sched_group *first = NULL, *last = NULL, *sg; 989f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 990f2cb1360SIngo Molnar struct cpumask *covered = sched_domains_tmpmask; 991f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 992f2cb1360SIngo Molnar struct sched_domain *sibling; 993f2cb1360SIngo Molnar int i; 994f2cb1360SIngo Molnar 995f2cb1360SIngo Molnar cpumask_clear(covered); 996f2cb1360SIngo Molnar 9970372dd27SPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 998f2cb1360SIngo Molnar struct cpumask *sg_span; 999f2cb1360SIngo Molnar 1000f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 1001f2cb1360SIngo Molnar continue; 1002f2cb1360SIngo Molnar 1003f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 1004f2cb1360SIngo Molnar 1005c20e1ea4SLauro Ramos Venancio /* 1006c20e1ea4SLauro Ramos Venancio * Asymmetric node setups can result in situations where the 1007c20e1ea4SLauro Ramos Venancio * domain tree is of unequal depth, make sure to skip domains 1008c20e1ea4SLauro Ramos Venancio * that already cover the entire range. 1009c20e1ea4SLauro Ramos Venancio * 1010c20e1ea4SLauro Ramos Venancio * In that case build_sched_domains() will have terminated the 1011c20e1ea4SLauro Ramos Venancio * iteration early and our sibling sd spans will be empty. 1012c20e1ea4SLauro Ramos Venancio * Domains should always include the CPU they're built on, so 1013c20e1ea4SLauro Ramos Venancio * check that. 1014c20e1ea4SLauro Ramos Venancio */ 1015f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1016f2cb1360SIngo Molnar continue; 1017f2cb1360SIngo Molnar 10188c033469SLauro Ramos Venancio sg = build_group_from_child_sched_domain(sibling, cpu); 1019f2cb1360SIngo Molnar if (!sg) 1020f2cb1360SIngo Molnar goto fail; 1021f2cb1360SIngo Molnar 1022ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 1023f2cb1360SIngo Molnar cpumask_or(covered, covered, sg_span); 1024f2cb1360SIngo Molnar 10251676330eSPeter Zijlstra init_overlap_sched_group(sd, sg); 1026f2cb1360SIngo Molnar 1027f2cb1360SIngo Molnar if (!first) 1028f2cb1360SIngo Molnar first = sg; 1029f2cb1360SIngo Molnar if (last) 1030f2cb1360SIngo Molnar last->next = sg; 1031f2cb1360SIngo Molnar last = sg; 1032f2cb1360SIngo Molnar last->next = first; 1033f2cb1360SIngo Molnar } 103491eaed0dSPeter Zijlstra sd->groups = first; 1035f2cb1360SIngo Molnar 1036f2cb1360SIngo Molnar return 0; 1037f2cb1360SIngo Molnar 1038f2cb1360SIngo Molnar fail: 1039f2cb1360SIngo Molnar free_sched_groups(first, 0); 1040f2cb1360SIngo Molnar 1041f2cb1360SIngo Molnar return -ENOMEM; 1042f2cb1360SIngo Molnar } 1043f2cb1360SIngo Molnar 104435a566e6SPeter Zijlstra 104535a566e6SPeter Zijlstra /* 104635a566e6SPeter Zijlstra * Package topology (also see the load-balance blurb in fair.c) 104735a566e6SPeter Zijlstra * 104835a566e6SPeter Zijlstra * The scheduler builds a tree structure to represent a number of important 104935a566e6SPeter Zijlstra * topology features. By default (default_topology[]) these include: 105035a566e6SPeter Zijlstra * 105135a566e6SPeter Zijlstra * - Simultaneous multithreading (SMT) 105235a566e6SPeter Zijlstra * - Multi-Core Cache (MC) 105335a566e6SPeter Zijlstra * - Package (DIE) 105435a566e6SPeter Zijlstra * 105535a566e6SPeter Zijlstra * Where the last one more or less denotes everything up to a NUMA node. 105635a566e6SPeter Zijlstra * 105735a566e6SPeter Zijlstra * The tree consists of 3 primary data structures: 105835a566e6SPeter Zijlstra * 105935a566e6SPeter Zijlstra * sched_domain -> sched_group -> sched_group_capacity 106035a566e6SPeter Zijlstra * ^ ^ ^ ^ 106135a566e6SPeter Zijlstra * `-' `-' 106235a566e6SPeter Zijlstra * 106397fb7a0aSIngo Molnar * The sched_domains are per-CPU and have a two way link (parent & child) and 106435a566e6SPeter Zijlstra * denote the ever growing mask of CPUs belonging to that level of topology. 106535a566e6SPeter Zijlstra * 106635a566e6SPeter Zijlstra * Each sched_domain has a circular (double) linked list of sched_group's, each 106735a566e6SPeter Zijlstra * denoting the domains of the level below (or individual CPUs in case of the 106835a566e6SPeter Zijlstra * first domain level). The sched_group linked by a sched_domain includes the 106935a566e6SPeter Zijlstra * CPU of that sched_domain [*]. 107035a566e6SPeter Zijlstra * 107135a566e6SPeter Zijlstra * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 107235a566e6SPeter Zijlstra * 107335a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 107435a566e6SPeter Zijlstra * 107535a566e6SPeter Zijlstra * DIE [ ] 107635a566e6SPeter Zijlstra * MC [ ] [ ] 107735a566e6SPeter Zijlstra * SMT [ ] [ ] [ ] [ ] 107835a566e6SPeter Zijlstra * 107935a566e6SPeter Zijlstra * - or - 108035a566e6SPeter Zijlstra * 108135a566e6SPeter Zijlstra * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 108235a566e6SPeter Zijlstra * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 108335a566e6SPeter Zijlstra * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 108435a566e6SPeter Zijlstra * 108535a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 108635a566e6SPeter Zijlstra * 108735a566e6SPeter Zijlstra * One way to think about it is: sched_domain moves you up and down among these 108835a566e6SPeter Zijlstra * topology levels, while sched_group moves you sideways through it, at child 108935a566e6SPeter Zijlstra * domain granularity. 109035a566e6SPeter Zijlstra * 109135a566e6SPeter Zijlstra * sched_group_capacity ensures each unique sched_group has shared storage. 109235a566e6SPeter Zijlstra * 109335a566e6SPeter Zijlstra * There are two related construction problems, both require a CPU that 109435a566e6SPeter Zijlstra * uniquely identify each group (for a given domain): 109535a566e6SPeter Zijlstra * 109635a566e6SPeter Zijlstra * - The first is the balance_cpu (see should_we_balance() and the 109735a566e6SPeter Zijlstra * load-balance blub in fair.c); for each group we only want 1 CPU to 109835a566e6SPeter Zijlstra * continue balancing at a higher domain. 109935a566e6SPeter Zijlstra * 110035a566e6SPeter Zijlstra * - The second is the sched_group_capacity; we want all identical groups 110135a566e6SPeter Zijlstra * to share a single sched_group_capacity. 110235a566e6SPeter Zijlstra * 110335a566e6SPeter Zijlstra * Since these topologies are exclusive by construction. That is, its 110435a566e6SPeter Zijlstra * impossible for an SMT thread to belong to multiple cores, and cores to 110535a566e6SPeter Zijlstra * be part of multiple caches. There is a very clear and unique location 110635a566e6SPeter Zijlstra * for each CPU in the hierarchy. 110735a566e6SPeter Zijlstra * 110835a566e6SPeter Zijlstra * Therefore computing a unique CPU for each group is trivial (the iteration 110935a566e6SPeter Zijlstra * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 111035a566e6SPeter Zijlstra * group), we can simply pick the first CPU in each group. 111135a566e6SPeter Zijlstra * 111235a566e6SPeter Zijlstra * 111335a566e6SPeter Zijlstra * [*] in other words, the first group of each domain is its child domain. 111435a566e6SPeter Zijlstra */ 111535a566e6SPeter Zijlstra 11160c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1117f2cb1360SIngo Molnar { 1118f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1119f2cb1360SIngo Molnar struct sched_domain *child = sd->child; 11200c0e776aSPeter Zijlstra struct sched_group *sg; 112167d4f6ffSValentin Schneider bool already_visited; 1122f2cb1360SIngo Molnar 1123f2cb1360SIngo Molnar if (child) 1124f2cb1360SIngo Molnar cpu = cpumask_first(sched_domain_span(child)); 1125f2cb1360SIngo Molnar 11260c0e776aSPeter Zijlstra sg = *per_cpu_ptr(sdd->sg, cpu); 11270c0e776aSPeter Zijlstra sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1128f2cb1360SIngo Molnar 112967d4f6ffSValentin Schneider /* Increase refcounts for claim_allocations: */ 113067d4f6ffSValentin Schneider already_visited = atomic_inc_return(&sg->ref) > 1; 113167d4f6ffSValentin Schneider /* sgc visits should follow a similar trend as sg */ 113267d4f6ffSValentin Schneider WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 113367d4f6ffSValentin Schneider 113467d4f6ffSValentin Schneider /* If we have already visited that group, it's already initialized. */ 113567d4f6ffSValentin Schneider if (already_visited) 113667d4f6ffSValentin Schneider return sg; 11370c0e776aSPeter Zijlstra 11380c0e776aSPeter Zijlstra if (child) { 1139ae4df9d6SPeter Zijlstra cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1140ae4df9d6SPeter Zijlstra cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 11410c0e776aSPeter Zijlstra } else { 1142ae4df9d6SPeter Zijlstra cpumask_set_cpu(cpu, sched_group_span(sg)); 1143e5c14b1fSPeter Zijlstra cpumask_set_cpu(cpu, group_balance_mask(sg)); 1144f2cb1360SIngo Molnar } 1145f2cb1360SIngo Molnar 1146ae4df9d6SPeter Zijlstra sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 11470c0e776aSPeter Zijlstra sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1148e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 11490c0e776aSPeter Zijlstra 11500c0e776aSPeter Zijlstra return sg; 1151f2cb1360SIngo Molnar } 1152f2cb1360SIngo Molnar 1153f2cb1360SIngo Molnar /* 1154f2cb1360SIngo Molnar * build_sched_groups will build a circular linked list of the groups 1155d8743230SValentin Schneider * covered by the given span, will set each group's ->cpumask correctly, 1156d8743230SValentin Schneider * and will initialize their ->sgc. 1157f2cb1360SIngo Molnar * 1158f2cb1360SIngo Molnar * Assumes the sched_domain tree is fully constructed 1159f2cb1360SIngo Molnar */ 1160f2cb1360SIngo Molnar static int 1161f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu) 1162f2cb1360SIngo Molnar { 1163f2cb1360SIngo Molnar struct sched_group *first = NULL, *last = NULL; 1164f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1165f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 1166f2cb1360SIngo Molnar struct cpumask *covered; 1167f2cb1360SIngo Molnar int i; 1168f2cb1360SIngo Molnar 1169f2cb1360SIngo Molnar lockdep_assert_held(&sched_domains_mutex); 1170f2cb1360SIngo Molnar covered = sched_domains_tmpmask; 1171f2cb1360SIngo Molnar 1172f2cb1360SIngo Molnar cpumask_clear(covered); 1173f2cb1360SIngo Molnar 11740c0e776aSPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 1175f2cb1360SIngo Molnar struct sched_group *sg; 1176f2cb1360SIngo Molnar 1177f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 1178f2cb1360SIngo Molnar continue; 1179f2cb1360SIngo Molnar 11800c0e776aSPeter Zijlstra sg = get_group(i, sdd); 1181f2cb1360SIngo Molnar 1182ae4df9d6SPeter Zijlstra cpumask_or(covered, covered, sched_group_span(sg)); 1183f2cb1360SIngo Molnar 1184f2cb1360SIngo Molnar if (!first) 1185f2cb1360SIngo Molnar first = sg; 1186f2cb1360SIngo Molnar if (last) 1187f2cb1360SIngo Molnar last->next = sg; 1188f2cb1360SIngo Molnar last = sg; 1189f2cb1360SIngo Molnar } 1190f2cb1360SIngo Molnar last->next = first; 11910c0e776aSPeter Zijlstra sd->groups = first; 1192f2cb1360SIngo Molnar 1193f2cb1360SIngo Molnar return 0; 1194f2cb1360SIngo Molnar } 1195f2cb1360SIngo Molnar 1196f2cb1360SIngo Molnar /* 1197f2cb1360SIngo Molnar * Initialize sched groups cpu_capacity. 1198f2cb1360SIngo Molnar * 1199f2cb1360SIngo Molnar * cpu_capacity indicates the capacity of sched group, which is used while 1200f2cb1360SIngo Molnar * distributing the load between different sched groups in a sched domain. 1201f2cb1360SIngo Molnar * Typically cpu_capacity for all the groups in a sched domain will be same 1202f2cb1360SIngo Molnar * unless there are asymmetries in the topology. If there are asymmetries, 1203f2cb1360SIngo Molnar * group having more cpu_capacity will pickup more load compared to the 1204f2cb1360SIngo Molnar * group having less cpu_capacity. 1205f2cb1360SIngo Molnar */ 1206f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1207f2cb1360SIngo Molnar { 1208f2cb1360SIngo Molnar struct sched_group *sg = sd->groups; 1209f2cb1360SIngo Molnar 1210f2cb1360SIngo Molnar WARN_ON(!sg); 1211f2cb1360SIngo Molnar 1212f2cb1360SIngo Molnar do { 1213f2cb1360SIngo Molnar int cpu, max_cpu = -1; 1214f2cb1360SIngo Molnar 1215ae4df9d6SPeter Zijlstra sg->group_weight = cpumask_weight(sched_group_span(sg)); 1216f2cb1360SIngo Molnar 1217f2cb1360SIngo Molnar if (!(sd->flags & SD_ASYM_PACKING)) 1218f2cb1360SIngo Molnar goto next; 1219f2cb1360SIngo Molnar 1220ae4df9d6SPeter Zijlstra for_each_cpu(cpu, sched_group_span(sg)) { 1221f2cb1360SIngo Molnar if (max_cpu < 0) 1222f2cb1360SIngo Molnar max_cpu = cpu; 1223f2cb1360SIngo Molnar else if (sched_asym_prefer(cpu, max_cpu)) 1224f2cb1360SIngo Molnar max_cpu = cpu; 1225f2cb1360SIngo Molnar } 1226f2cb1360SIngo Molnar sg->asym_prefer_cpu = max_cpu; 1227f2cb1360SIngo Molnar 1228f2cb1360SIngo Molnar next: 1229f2cb1360SIngo Molnar sg = sg->next; 1230f2cb1360SIngo Molnar } while (sg != sd->groups); 1231f2cb1360SIngo Molnar 1232f2cb1360SIngo Molnar if (cpu != group_balance_cpu(sg)) 1233f2cb1360SIngo Molnar return; 1234f2cb1360SIngo Molnar 1235f2cb1360SIngo Molnar update_group_capacity(sd, cpu); 1236f2cb1360SIngo Molnar } 1237f2cb1360SIngo Molnar 1238f2cb1360SIngo Molnar /* 1239f2cb1360SIngo Molnar * Initializers for schedule domains 1240f2cb1360SIngo Molnar * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1241f2cb1360SIngo Molnar */ 1242f2cb1360SIngo Molnar 1243f2cb1360SIngo Molnar static int default_relax_domain_level = -1; 1244f2cb1360SIngo Molnar int sched_domain_level_max; 1245f2cb1360SIngo Molnar 1246f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str) 1247f2cb1360SIngo Molnar { 1248f2cb1360SIngo Molnar if (kstrtoint(str, 0, &default_relax_domain_level)) 1249f2cb1360SIngo Molnar pr_warn("Unable to set relax_domain_level\n"); 1250f2cb1360SIngo Molnar 1251f2cb1360SIngo Molnar return 1; 1252f2cb1360SIngo Molnar } 1253f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level); 1254f2cb1360SIngo Molnar 1255f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd, 1256f2cb1360SIngo Molnar struct sched_domain_attr *attr) 1257f2cb1360SIngo Molnar { 1258f2cb1360SIngo Molnar int request; 1259f2cb1360SIngo Molnar 1260f2cb1360SIngo Molnar if (!attr || attr->relax_domain_level < 0) { 1261f2cb1360SIngo Molnar if (default_relax_domain_level < 0) 1262f2cb1360SIngo Molnar return; 1263f2cb1360SIngo Molnar request = default_relax_domain_level; 1264f2cb1360SIngo Molnar } else 1265f2cb1360SIngo Molnar request = attr->relax_domain_level; 12669ae7ab20SValentin Schneider 12679ae7ab20SValentin Schneider if (sd->level > request) { 1268f2cb1360SIngo Molnar /* Turn off idle balance on this domain: */ 1269f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1270f2cb1360SIngo Molnar } 1271f2cb1360SIngo Molnar } 1272f2cb1360SIngo Molnar 1273f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map); 1274f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map); 1275f2cb1360SIngo Molnar 1276f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1277f2cb1360SIngo Molnar const struct cpumask *cpu_map) 1278f2cb1360SIngo Molnar { 1279f2cb1360SIngo Molnar switch (what) { 1280f2cb1360SIngo Molnar case sa_rootdomain: 1281f2cb1360SIngo Molnar if (!atomic_read(&d->rd->refcount)) 1282f2cb1360SIngo Molnar free_rootdomain(&d->rd->rcu); 1283df561f66SGustavo A. R. Silva fallthrough; 1284f2cb1360SIngo Molnar case sa_sd: 1285f2cb1360SIngo Molnar free_percpu(d->sd); 1286df561f66SGustavo A. R. Silva fallthrough; 1287f2cb1360SIngo Molnar case sa_sd_storage: 1288f2cb1360SIngo Molnar __sdt_free(cpu_map); 1289df561f66SGustavo A. R. Silva fallthrough; 1290f2cb1360SIngo Molnar case sa_none: 1291f2cb1360SIngo Molnar break; 1292f2cb1360SIngo Molnar } 1293f2cb1360SIngo Molnar } 1294f2cb1360SIngo Molnar 1295f2cb1360SIngo Molnar static enum s_alloc 1296f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1297f2cb1360SIngo Molnar { 1298f2cb1360SIngo Molnar memset(d, 0, sizeof(*d)); 1299f2cb1360SIngo Molnar 1300f2cb1360SIngo Molnar if (__sdt_alloc(cpu_map)) 1301f2cb1360SIngo Molnar return sa_sd_storage; 1302f2cb1360SIngo Molnar d->sd = alloc_percpu(struct sched_domain *); 1303f2cb1360SIngo Molnar if (!d->sd) 1304f2cb1360SIngo Molnar return sa_sd_storage; 1305f2cb1360SIngo Molnar d->rd = alloc_rootdomain(); 1306f2cb1360SIngo Molnar if (!d->rd) 1307f2cb1360SIngo Molnar return sa_sd; 130897fb7a0aSIngo Molnar 1309f2cb1360SIngo Molnar return sa_rootdomain; 1310f2cb1360SIngo Molnar } 1311f2cb1360SIngo Molnar 1312f2cb1360SIngo Molnar /* 1313f2cb1360SIngo Molnar * NULL the sd_data elements we've used to build the sched_domain and 1314f2cb1360SIngo Molnar * sched_group structure so that the subsequent __free_domain_allocs() 1315f2cb1360SIngo Molnar * will not free the data we're using. 1316f2cb1360SIngo Molnar */ 1317f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd) 1318f2cb1360SIngo Molnar { 1319f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1320f2cb1360SIngo Molnar 1321f2cb1360SIngo Molnar WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1322f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, cpu) = NULL; 1323f2cb1360SIngo Molnar 1324f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1325f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, cpu) = NULL; 1326f2cb1360SIngo Molnar 1327f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1328f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, cpu) = NULL; 1329f2cb1360SIngo Molnar 1330f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1331f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1332f2cb1360SIngo Molnar } 1333f2cb1360SIngo Molnar 1334f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1335f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type; 133697fb7a0aSIngo Molnar 133797fb7a0aSIngo Molnar static int sched_domains_numa_levels; 1338f2cb1360SIngo Molnar static int sched_domains_curr_level; 133997fb7a0aSIngo Molnar 134097fb7a0aSIngo Molnar int sched_max_numa_distance; 134197fb7a0aSIngo Molnar static int *sched_domains_numa_distance; 134297fb7a0aSIngo Molnar static struct cpumask ***sched_domains_numa_masks; 1343a55c7454SMatt Fleming int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1344f2cb1360SIngo Molnar #endif 1345f2cb1360SIngo Molnar 1346f2cb1360SIngo Molnar /* 1347f2cb1360SIngo Molnar * SD_flags allowed in topology descriptions. 1348f2cb1360SIngo Molnar * 1349f2cb1360SIngo Molnar * These flags are purely descriptive of the topology and do not prescribe 1350f2cb1360SIngo Molnar * behaviour. Behaviour is artificial and mapped in the below sd_init() 1351f2cb1360SIngo Molnar * function: 1352f2cb1360SIngo Molnar * 1353f2cb1360SIngo Molnar * SD_SHARE_CPUCAPACITY - describes SMT topologies 1354f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCES - describes shared caches 1355f2cb1360SIngo Molnar * SD_NUMA - describes NUMA topologies 1356f2cb1360SIngo Molnar * 1357f2cb1360SIngo Molnar * Odd one out, which beside describing the topology has a quirk also 1358f2cb1360SIngo Molnar * prescribes the desired behaviour that goes along with it: 1359f2cb1360SIngo Molnar * 1360f2cb1360SIngo Molnar * SD_ASYM_PACKING - describes SMT quirks 1361f2cb1360SIngo Molnar */ 1362f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS \ 1363f2cb1360SIngo Molnar (SD_SHARE_CPUCAPACITY | \ 1364f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | \ 1365f2cb1360SIngo Molnar SD_NUMA | \ 1366cfe7ddcbSValentin Schneider SD_ASYM_PACKING) 1367f2cb1360SIngo Molnar 1368f2cb1360SIngo Molnar static struct sched_domain * 1369f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl, 1370f2cb1360SIngo Molnar const struct cpumask *cpu_map, 137105484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1372f2cb1360SIngo Molnar { 1373f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1374f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1375f2cb1360SIngo Molnar int sd_id, sd_weight, sd_flags = 0; 1376f2cb1360SIngo Molnar 1377f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1378f2cb1360SIngo Molnar /* 1379f2cb1360SIngo Molnar * Ugly hack to pass state to sd_numa_mask()... 1380f2cb1360SIngo Molnar */ 1381f2cb1360SIngo Molnar sched_domains_curr_level = tl->numa_level; 1382f2cb1360SIngo Molnar #endif 1383f2cb1360SIngo Molnar 1384f2cb1360SIngo Molnar sd_weight = cpumask_weight(tl->mask(cpu)); 1385f2cb1360SIngo Molnar 1386f2cb1360SIngo Molnar if (tl->sd_flags) 1387f2cb1360SIngo Molnar sd_flags = (*tl->sd_flags)(); 1388f2cb1360SIngo Molnar if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1389f2cb1360SIngo Molnar "wrong sd_flags in topology description\n")) 13909b1b234bSPeng Liu sd_flags &= TOPOLOGY_SD_FLAGS; 1391f2cb1360SIngo Molnar 139205484e09SMorten Rasmussen /* Apply detected topology flags */ 139305484e09SMorten Rasmussen sd_flags |= dflags; 139405484e09SMorten Rasmussen 1395f2cb1360SIngo Molnar *sd = (struct sched_domain){ 1396f2cb1360SIngo Molnar .min_interval = sd_weight, 1397f2cb1360SIngo Molnar .max_interval = 2*sd_weight, 13986e749913SVincent Guittot .busy_factor = 16, 13992208cdaaSVincent Guittot .imbalance_pct = 117, 1400f2cb1360SIngo Molnar 1401f2cb1360SIngo Molnar .cache_nice_tries = 0, 1402f2cb1360SIngo Molnar 140336c5bdc4SValentin Schneider .flags = 1*SD_BALANCE_NEWIDLE 1404f2cb1360SIngo Molnar | 1*SD_BALANCE_EXEC 1405f2cb1360SIngo Molnar | 1*SD_BALANCE_FORK 1406f2cb1360SIngo Molnar | 0*SD_BALANCE_WAKE 1407f2cb1360SIngo Molnar | 1*SD_WAKE_AFFINE 1408f2cb1360SIngo Molnar | 0*SD_SHARE_CPUCAPACITY 1409f2cb1360SIngo Molnar | 0*SD_SHARE_PKG_RESOURCES 1410f2cb1360SIngo Molnar | 0*SD_SERIALIZE 14119c63e84dSMorten Rasmussen | 1*SD_PREFER_SIBLING 1412f2cb1360SIngo Molnar | 0*SD_NUMA 1413f2cb1360SIngo Molnar | sd_flags 1414f2cb1360SIngo Molnar , 1415f2cb1360SIngo Molnar 1416f2cb1360SIngo Molnar .last_balance = jiffies, 1417f2cb1360SIngo Molnar .balance_interval = sd_weight, 1418f2cb1360SIngo Molnar .max_newidle_lb_cost = 0, 1419f2cb1360SIngo Molnar .next_decay_max_lb_cost = jiffies, 1420f2cb1360SIngo Molnar .child = child, 1421f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1422f2cb1360SIngo Molnar .name = tl->name, 1423f2cb1360SIngo Molnar #endif 1424f2cb1360SIngo Molnar }; 1425f2cb1360SIngo Molnar 1426f2cb1360SIngo Molnar cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1427f2cb1360SIngo Molnar sd_id = cpumask_first(sched_domain_span(sd)); 1428f2cb1360SIngo Molnar 1429f2cb1360SIngo Molnar /* 1430f2cb1360SIngo Molnar * Convert topological properties into behaviour. 1431f2cb1360SIngo Molnar */ 1432f2cb1360SIngo Molnar 1433a526d466SMorten Rasmussen /* Don't attempt to spread across CPUs of different capacities. */ 1434a526d466SMorten Rasmussen if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 14359c63e84dSMorten Rasmussen sd->child->flags &= ~SD_PREFER_SIBLING; 14369c63e84dSMorten Rasmussen 1437f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_CPUCAPACITY) { 1438f2cb1360SIngo Molnar sd->imbalance_pct = 110; 1439f2cb1360SIngo Molnar 1440f2cb1360SIngo Molnar } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1441f2cb1360SIngo Molnar sd->imbalance_pct = 117; 1442f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1443f2cb1360SIngo Molnar 1444f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1445f2cb1360SIngo Molnar } else if (sd->flags & SD_NUMA) { 1446f2cb1360SIngo Molnar sd->cache_nice_tries = 2; 1447f2cb1360SIngo Molnar 14489c63e84dSMorten Rasmussen sd->flags &= ~SD_PREFER_SIBLING; 1449f2cb1360SIngo Molnar sd->flags |= SD_SERIALIZE; 1450a55c7454SMatt Fleming if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1451f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_EXEC | 1452f2cb1360SIngo Molnar SD_BALANCE_FORK | 1453f2cb1360SIngo Molnar SD_WAKE_AFFINE); 1454f2cb1360SIngo Molnar } 1455f2cb1360SIngo Molnar 1456f2cb1360SIngo Molnar #endif 1457f2cb1360SIngo Molnar } else { 1458f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1459f2cb1360SIngo Molnar } 1460f2cb1360SIngo Molnar 1461f2cb1360SIngo Molnar /* 1462f2cb1360SIngo Molnar * For all levels sharing cache; connect a sched_domain_shared 1463f2cb1360SIngo Molnar * instance. 1464f2cb1360SIngo Molnar */ 1465f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1466f2cb1360SIngo Molnar sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1467f2cb1360SIngo Molnar atomic_inc(&sd->shared->ref); 1468f2cb1360SIngo Molnar atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1469f2cb1360SIngo Molnar } 1470f2cb1360SIngo Molnar 1471f2cb1360SIngo Molnar sd->private = sdd; 1472f2cb1360SIngo Molnar 1473f2cb1360SIngo Molnar return sd; 1474f2cb1360SIngo Molnar } 1475f2cb1360SIngo Molnar 1476f2cb1360SIngo Molnar /* 1477f2cb1360SIngo Molnar * Topology list, bottom-up. 1478f2cb1360SIngo Molnar */ 1479f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = { 1480f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT 1481f2cb1360SIngo Molnar { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1482f2cb1360SIngo Molnar #endif 1483f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC 1484f2cb1360SIngo Molnar { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1485f2cb1360SIngo Molnar #endif 1486f2cb1360SIngo Molnar { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1487f2cb1360SIngo Molnar { NULL, }, 1488f2cb1360SIngo Molnar }; 1489f2cb1360SIngo Molnar 1490f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology = 1491f2cb1360SIngo Molnar default_topology; 1492f2cb1360SIngo Molnar 1493f2cb1360SIngo Molnar #define for_each_sd_topology(tl) \ 1494f2cb1360SIngo Molnar for (tl = sched_domain_topology; tl->mask; tl++) 1495f2cb1360SIngo Molnar 1496f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl) 1497f2cb1360SIngo Molnar { 1498f2cb1360SIngo Molnar if (WARN_ON_ONCE(sched_smp_initialized)) 1499f2cb1360SIngo Molnar return; 1500f2cb1360SIngo Molnar 1501f2cb1360SIngo Molnar sched_domain_topology = tl; 1502f2cb1360SIngo Molnar } 1503f2cb1360SIngo Molnar 1504f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1505f2cb1360SIngo Molnar 1506f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu) 1507f2cb1360SIngo Molnar { 1508f2cb1360SIngo Molnar return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1509f2cb1360SIngo Molnar } 1510f2cb1360SIngo Molnar 1511f2cb1360SIngo Molnar static void sched_numa_warn(const char *str) 1512f2cb1360SIngo Molnar { 1513f2cb1360SIngo Molnar static int done = false; 1514f2cb1360SIngo Molnar int i,j; 1515f2cb1360SIngo Molnar 1516f2cb1360SIngo Molnar if (done) 1517f2cb1360SIngo Molnar return; 1518f2cb1360SIngo Molnar 1519f2cb1360SIngo Molnar done = true; 1520f2cb1360SIngo Molnar 1521f2cb1360SIngo Molnar printk(KERN_WARNING "ERROR: %s\n\n", str); 1522f2cb1360SIngo Molnar 1523f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1524f2cb1360SIngo Molnar printk(KERN_WARNING " "); 1525f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1526f2cb1360SIngo Molnar printk(KERN_CONT "%02d ", node_distance(i,j)); 1527f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 1528f2cb1360SIngo Molnar } 1529f2cb1360SIngo Molnar printk(KERN_WARNING "\n"); 1530f2cb1360SIngo Molnar } 1531f2cb1360SIngo Molnar 1532f2cb1360SIngo Molnar bool find_numa_distance(int distance) 1533f2cb1360SIngo Molnar { 1534f2cb1360SIngo Molnar int i; 1535f2cb1360SIngo Molnar 1536f2cb1360SIngo Molnar if (distance == node_distance(0, 0)) 1537f2cb1360SIngo Molnar return true; 1538f2cb1360SIngo Molnar 1539f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1540f2cb1360SIngo Molnar if (sched_domains_numa_distance[i] == distance) 1541f2cb1360SIngo Molnar return true; 1542f2cb1360SIngo Molnar } 1543f2cb1360SIngo Molnar 1544f2cb1360SIngo Molnar return false; 1545f2cb1360SIngo Molnar } 1546f2cb1360SIngo Molnar 1547f2cb1360SIngo Molnar /* 1548f2cb1360SIngo Molnar * A system can have three types of NUMA topology: 1549f2cb1360SIngo Molnar * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1550f2cb1360SIngo Molnar * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1551f2cb1360SIngo Molnar * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1552f2cb1360SIngo Molnar * 1553f2cb1360SIngo Molnar * The difference between a glueless mesh topology and a backplane 1554f2cb1360SIngo Molnar * topology lies in whether communication between not directly 1555f2cb1360SIngo Molnar * connected nodes goes through intermediary nodes (where programs 1556f2cb1360SIngo Molnar * could run), or through backplane controllers. This affects 1557f2cb1360SIngo Molnar * placement of programs. 1558f2cb1360SIngo Molnar * 1559f2cb1360SIngo Molnar * The type of topology can be discerned with the following tests: 1560f2cb1360SIngo Molnar * - If the maximum distance between any nodes is 1 hop, the system 1561f2cb1360SIngo Molnar * is directly connected. 1562f2cb1360SIngo Molnar * - If for two nodes A and B, located N > 1 hops away from each other, 1563f2cb1360SIngo Molnar * there is an intermediary node C, which is < N hops away from both 1564f2cb1360SIngo Molnar * nodes A and B, the system is a glueless mesh. 1565f2cb1360SIngo Molnar */ 1566f2cb1360SIngo Molnar static void init_numa_topology_type(void) 1567f2cb1360SIngo Molnar { 1568f2cb1360SIngo Molnar int a, b, c, n; 1569f2cb1360SIngo Molnar 1570f2cb1360SIngo Molnar n = sched_max_numa_distance; 1571f2cb1360SIngo Molnar 1572e5e96fafSSrikar Dronamraju if (sched_domains_numa_levels <= 2) { 1573f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_DIRECT; 1574f2cb1360SIngo Molnar return; 1575f2cb1360SIngo Molnar } 1576f2cb1360SIngo Molnar 1577f2cb1360SIngo Molnar for_each_online_node(a) { 1578f2cb1360SIngo Molnar for_each_online_node(b) { 1579f2cb1360SIngo Molnar /* Find two nodes furthest removed from each other. */ 1580f2cb1360SIngo Molnar if (node_distance(a, b) < n) 1581f2cb1360SIngo Molnar continue; 1582f2cb1360SIngo Molnar 1583f2cb1360SIngo Molnar /* Is there an intermediary node between a and b? */ 1584f2cb1360SIngo Molnar for_each_online_node(c) { 1585f2cb1360SIngo Molnar if (node_distance(a, c) < n && 1586f2cb1360SIngo Molnar node_distance(b, c) < n) { 1587f2cb1360SIngo Molnar sched_numa_topology_type = 1588f2cb1360SIngo Molnar NUMA_GLUELESS_MESH; 1589f2cb1360SIngo Molnar return; 1590f2cb1360SIngo Molnar } 1591f2cb1360SIngo Molnar } 1592f2cb1360SIngo Molnar 1593f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_BACKPLANE; 1594f2cb1360SIngo Molnar return; 1595f2cb1360SIngo Molnar } 1596f2cb1360SIngo Molnar } 1597f2cb1360SIngo Molnar } 1598f2cb1360SIngo Molnar 1599f2cb1360SIngo Molnar void sched_init_numa(void) 1600f2cb1360SIngo Molnar { 1601f2cb1360SIngo Molnar int next_distance, curr_distance = node_distance(0, 0); 1602f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1603f2cb1360SIngo Molnar int level = 0; 1604f2cb1360SIngo Molnar int i, j, k; 1605f2cb1360SIngo Molnar 1606993f0b05SPeter Zijlstra sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1607f2cb1360SIngo Molnar if (!sched_domains_numa_distance) 1608f2cb1360SIngo Molnar return; 1609f2cb1360SIngo Molnar 1610051f3ca0SSuravee Suthikulpanit /* Includes NUMA identity node at level 0. */ 1611051f3ca0SSuravee Suthikulpanit sched_domains_numa_distance[level++] = curr_distance; 1612051f3ca0SSuravee Suthikulpanit sched_domains_numa_levels = level; 1613051f3ca0SSuravee Suthikulpanit 1614f2cb1360SIngo Molnar /* 1615f2cb1360SIngo Molnar * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1616f2cb1360SIngo Molnar * unique distances in the node_distance() table. 1617f2cb1360SIngo Molnar * 1618f2cb1360SIngo Molnar * Assumes node_distance(0,j) includes all distances in 1619f2cb1360SIngo Molnar * node_distance(i,j) in order to avoid cubic time. 1620f2cb1360SIngo Molnar */ 1621f2cb1360SIngo Molnar next_distance = curr_distance; 1622f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1623f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1624f2cb1360SIngo Molnar for (k = 0; k < nr_node_ids; k++) { 1625f2cb1360SIngo Molnar int distance = node_distance(i, k); 1626f2cb1360SIngo Molnar 1627f2cb1360SIngo Molnar if (distance > curr_distance && 1628f2cb1360SIngo Molnar (distance < next_distance || 1629f2cb1360SIngo Molnar next_distance == curr_distance)) 1630f2cb1360SIngo Molnar next_distance = distance; 1631f2cb1360SIngo Molnar 1632f2cb1360SIngo Molnar /* 1633f2cb1360SIngo Molnar * While not a strong assumption it would be nice to know 1634f2cb1360SIngo Molnar * about cases where if node A is connected to B, B is not 1635f2cb1360SIngo Molnar * equally connected to A. 1636f2cb1360SIngo Molnar */ 1637f2cb1360SIngo Molnar if (sched_debug() && node_distance(k, i) != distance) 1638f2cb1360SIngo Molnar sched_numa_warn("Node-distance not symmetric"); 1639f2cb1360SIngo Molnar 1640f2cb1360SIngo Molnar if (sched_debug() && i && !find_numa_distance(distance)) 1641f2cb1360SIngo Molnar sched_numa_warn("Node-0 not representative"); 1642f2cb1360SIngo Molnar } 1643f2cb1360SIngo Molnar if (next_distance != curr_distance) { 1644f2cb1360SIngo Molnar sched_domains_numa_distance[level++] = next_distance; 1645f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1646f2cb1360SIngo Molnar curr_distance = next_distance; 1647f2cb1360SIngo Molnar } else break; 1648f2cb1360SIngo Molnar } 1649f2cb1360SIngo Molnar 1650f2cb1360SIngo Molnar /* 1651f2cb1360SIngo Molnar * In case of sched_debug() we verify the above assumption. 1652f2cb1360SIngo Molnar */ 1653f2cb1360SIngo Molnar if (!sched_debug()) 1654f2cb1360SIngo Molnar break; 1655f2cb1360SIngo Molnar } 1656f2cb1360SIngo Molnar 1657f2cb1360SIngo Molnar /* 1658051f3ca0SSuravee Suthikulpanit * 'level' contains the number of unique distances 1659f2cb1360SIngo Molnar * 1660f2cb1360SIngo Molnar * The sched_domains_numa_distance[] array includes the actual distance 1661f2cb1360SIngo Molnar * numbers. 1662f2cb1360SIngo Molnar */ 1663f2cb1360SIngo Molnar 1664f2cb1360SIngo Molnar /* 1665f2cb1360SIngo Molnar * Here, we should temporarily reset sched_domains_numa_levels to 0. 1666f2cb1360SIngo Molnar * If it fails to allocate memory for array sched_domains_numa_masks[][], 1667f2cb1360SIngo Molnar * the array will contain less then 'level' members. This could be 1668f2cb1360SIngo Molnar * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1669f2cb1360SIngo Molnar * in other functions. 1670f2cb1360SIngo Molnar * 1671f2cb1360SIngo Molnar * We reset it to 'level' at the end of this function. 1672f2cb1360SIngo Molnar */ 1673f2cb1360SIngo Molnar sched_domains_numa_levels = 0; 1674f2cb1360SIngo Molnar 1675f2cb1360SIngo Molnar sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1676f2cb1360SIngo Molnar if (!sched_domains_numa_masks) 1677f2cb1360SIngo Molnar return; 1678f2cb1360SIngo Molnar 1679f2cb1360SIngo Molnar /* 1680f2cb1360SIngo Molnar * Now for each level, construct a mask per node which contains all 1681f2cb1360SIngo Molnar * CPUs of nodes that are that many hops away from us. 1682f2cb1360SIngo Molnar */ 1683f2cb1360SIngo Molnar for (i = 0; i < level; i++) { 1684f2cb1360SIngo Molnar sched_domains_numa_masks[i] = 1685f2cb1360SIngo Molnar kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1686f2cb1360SIngo Molnar if (!sched_domains_numa_masks[i]) 1687f2cb1360SIngo Molnar return; 1688f2cb1360SIngo Molnar 1689f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1690f2cb1360SIngo Molnar struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1691f2cb1360SIngo Molnar if (!mask) 1692f2cb1360SIngo Molnar return; 1693f2cb1360SIngo Molnar 1694f2cb1360SIngo Molnar sched_domains_numa_masks[i][j] = mask; 1695f2cb1360SIngo Molnar 1696f2cb1360SIngo Molnar for_each_node(k) { 1697f2cb1360SIngo Molnar if (node_distance(j, k) > sched_domains_numa_distance[i]) 1698f2cb1360SIngo Molnar continue; 1699f2cb1360SIngo Molnar 1700f2cb1360SIngo Molnar cpumask_or(mask, mask, cpumask_of_node(k)); 1701f2cb1360SIngo Molnar } 1702f2cb1360SIngo Molnar } 1703f2cb1360SIngo Molnar } 1704f2cb1360SIngo Molnar 1705f2cb1360SIngo Molnar /* Compute default topology size */ 1706f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++); 1707f2cb1360SIngo Molnar 1708f2cb1360SIngo Molnar tl = kzalloc((i + level + 1) * 1709f2cb1360SIngo Molnar sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1710f2cb1360SIngo Molnar if (!tl) 1711f2cb1360SIngo Molnar return; 1712f2cb1360SIngo Molnar 1713f2cb1360SIngo Molnar /* 1714f2cb1360SIngo Molnar * Copy the default topology bits.. 1715f2cb1360SIngo Molnar */ 1716f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++) 1717f2cb1360SIngo Molnar tl[i] = sched_domain_topology[i]; 1718f2cb1360SIngo Molnar 1719f2cb1360SIngo Molnar /* 1720051f3ca0SSuravee Suthikulpanit * Add the NUMA identity distance, aka single NODE. 1721051f3ca0SSuravee Suthikulpanit */ 1722051f3ca0SSuravee Suthikulpanit tl[i++] = (struct sched_domain_topology_level){ 1723051f3ca0SSuravee Suthikulpanit .mask = sd_numa_mask, 1724051f3ca0SSuravee Suthikulpanit .numa_level = 0, 1725051f3ca0SSuravee Suthikulpanit SD_INIT_NAME(NODE) 1726051f3ca0SSuravee Suthikulpanit }; 1727051f3ca0SSuravee Suthikulpanit 1728051f3ca0SSuravee Suthikulpanit /* 1729f2cb1360SIngo Molnar * .. and append 'j' levels of NUMA goodness. 1730f2cb1360SIngo Molnar */ 1731051f3ca0SSuravee Suthikulpanit for (j = 1; j < level; i++, j++) { 1732f2cb1360SIngo Molnar tl[i] = (struct sched_domain_topology_level){ 1733f2cb1360SIngo Molnar .mask = sd_numa_mask, 1734f2cb1360SIngo Molnar .sd_flags = cpu_numa_flags, 1735f2cb1360SIngo Molnar .flags = SDTL_OVERLAP, 1736f2cb1360SIngo Molnar .numa_level = j, 1737f2cb1360SIngo Molnar SD_INIT_NAME(NUMA) 1738f2cb1360SIngo Molnar }; 1739f2cb1360SIngo Molnar } 1740f2cb1360SIngo Molnar 1741f2cb1360SIngo Molnar sched_domain_topology = tl; 1742f2cb1360SIngo Molnar 1743f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1744f2cb1360SIngo Molnar sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1745f2cb1360SIngo Molnar 1746f2cb1360SIngo Molnar init_numa_topology_type(); 1747f2cb1360SIngo Molnar } 1748f2cb1360SIngo Molnar 1749f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu) 1750f2cb1360SIngo Molnar { 1751f2cb1360SIngo Molnar int node = cpu_to_node(cpu); 1752f2cb1360SIngo Molnar int i, j; 1753f2cb1360SIngo Molnar 1754f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1755f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1756f2cb1360SIngo Molnar if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1757f2cb1360SIngo Molnar cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1758f2cb1360SIngo Molnar } 1759f2cb1360SIngo Molnar } 1760f2cb1360SIngo Molnar } 1761f2cb1360SIngo Molnar 1762f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu) 1763f2cb1360SIngo Molnar { 1764f2cb1360SIngo Molnar int i, j; 1765f2cb1360SIngo Molnar 1766f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1767f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1768f2cb1360SIngo Molnar cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1769f2cb1360SIngo Molnar } 1770f2cb1360SIngo Molnar } 1771f2cb1360SIngo Molnar 1772e0e8d491SWanpeng Li /* 1773e0e8d491SWanpeng Li * sched_numa_find_closest() - given the NUMA topology, find the cpu 1774e0e8d491SWanpeng Li * closest to @cpu from @cpumask. 1775e0e8d491SWanpeng Li * cpumask: cpumask to find a cpu from 1776e0e8d491SWanpeng Li * cpu: cpu to be close to 1777e0e8d491SWanpeng Li * 1778e0e8d491SWanpeng Li * returns: cpu, or nr_cpu_ids when nothing found. 1779e0e8d491SWanpeng Li */ 1780e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1781e0e8d491SWanpeng Li { 1782e0e8d491SWanpeng Li int i, j = cpu_to_node(cpu); 1783e0e8d491SWanpeng Li 1784e0e8d491SWanpeng Li for (i = 0; i < sched_domains_numa_levels; i++) { 1785e0e8d491SWanpeng Li cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 1786e0e8d491SWanpeng Li if (cpu < nr_cpu_ids) 1787e0e8d491SWanpeng Li return cpu; 1788e0e8d491SWanpeng Li } 1789e0e8d491SWanpeng Li return nr_cpu_ids; 1790e0e8d491SWanpeng Li } 1791e0e8d491SWanpeng Li 1792f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */ 1793f2cb1360SIngo Molnar 1794f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map) 1795f2cb1360SIngo Molnar { 1796f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1797f2cb1360SIngo Molnar int j; 1798f2cb1360SIngo Molnar 1799f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1800f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1801f2cb1360SIngo Molnar 1802f2cb1360SIngo Molnar sdd->sd = alloc_percpu(struct sched_domain *); 1803f2cb1360SIngo Molnar if (!sdd->sd) 1804f2cb1360SIngo Molnar return -ENOMEM; 1805f2cb1360SIngo Molnar 1806f2cb1360SIngo Molnar sdd->sds = alloc_percpu(struct sched_domain_shared *); 1807f2cb1360SIngo Molnar if (!sdd->sds) 1808f2cb1360SIngo Molnar return -ENOMEM; 1809f2cb1360SIngo Molnar 1810f2cb1360SIngo Molnar sdd->sg = alloc_percpu(struct sched_group *); 1811f2cb1360SIngo Molnar if (!sdd->sg) 1812f2cb1360SIngo Molnar return -ENOMEM; 1813f2cb1360SIngo Molnar 1814f2cb1360SIngo Molnar sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1815f2cb1360SIngo Molnar if (!sdd->sgc) 1816f2cb1360SIngo Molnar return -ENOMEM; 1817f2cb1360SIngo Molnar 1818f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1819f2cb1360SIngo Molnar struct sched_domain *sd; 1820f2cb1360SIngo Molnar struct sched_domain_shared *sds; 1821f2cb1360SIngo Molnar struct sched_group *sg; 1822f2cb1360SIngo Molnar struct sched_group_capacity *sgc; 1823f2cb1360SIngo Molnar 1824f2cb1360SIngo Molnar sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1825f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1826f2cb1360SIngo Molnar if (!sd) 1827f2cb1360SIngo Molnar return -ENOMEM; 1828f2cb1360SIngo Molnar 1829f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, j) = sd; 1830f2cb1360SIngo Molnar 1831f2cb1360SIngo Molnar sds = kzalloc_node(sizeof(struct sched_domain_shared), 1832f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1833f2cb1360SIngo Molnar if (!sds) 1834f2cb1360SIngo Molnar return -ENOMEM; 1835f2cb1360SIngo Molnar 1836f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, j) = sds; 1837f2cb1360SIngo Molnar 1838f2cb1360SIngo Molnar sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1839f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1840f2cb1360SIngo Molnar if (!sg) 1841f2cb1360SIngo Molnar return -ENOMEM; 1842f2cb1360SIngo Molnar 1843f2cb1360SIngo Molnar sg->next = sg; 1844f2cb1360SIngo Molnar 1845f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, j) = sg; 1846f2cb1360SIngo Molnar 1847f2cb1360SIngo Molnar sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1848f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1849f2cb1360SIngo Molnar if (!sgc) 1850f2cb1360SIngo Molnar return -ENOMEM; 1851f2cb1360SIngo Molnar 1852005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG 1853005f874dSPeter Zijlstra sgc->id = j; 1854005f874dSPeter Zijlstra #endif 1855005f874dSPeter Zijlstra 1856f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, j) = sgc; 1857f2cb1360SIngo Molnar } 1858f2cb1360SIngo Molnar } 1859f2cb1360SIngo Molnar 1860f2cb1360SIngo Molnar return 0; 1861f2cb1360SIngo Molnar } 1862f2cb1360SIngo Molnar 1863f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map) 1864f2cb1360SIngo Molnar { 1865f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1866f2cb1360SIngo Molnar int j; 1867f2cb1360SIngo Molnar 1868f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1869f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1870f2cb1360SIngo Molnar 1871f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1872f2cb1360SIngo Molnar struct sched_domain *sd; 1873f2cb1360SIngo Molnar 1874f2cb1360SIngo Molnar if (sdd->sd) { 1875f2cb1360SIngo Molnar sd = *per_cpu_ptr(sdd->sd, j); 1876f2cb1360SIngo Molnar if (sd && (sd->flags & SD_OVERLAP)) 1877f2cb1360SIngo Molnar free_sched_groups(sd->groups, 0); 1878f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sd, j)); 1879f2cb1360SIngo Molnar } 1880f2cb1360SIngo Molnar 1881f2cb1360SIngo Molnar if (sdd->sds) 1882f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sds, j)); 1883f2cb1360SIngo Molnar if (sdd->sg) 1884f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sg, j)); 1885f2cb1360SIngo Molnar if (sdd->sgc) 1886f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sgc, j)); 1887f2cb1360SIngo Molnar } 1888f2cb1360SIngo Molnar free_percpu(sdd->sd); 1889f2cb1360SIngo Molnar sdd->sd = NULL; 1890f2cb1360SIngo Molnar free_percpu(sdd->sds); 1891f2cb1360SIngo Molnar sdd->sds = NULL; 1892f2cb1360SIngo Molnar free_percpu(sdd->sg); 1893f2cb1360SIngo Molnar sdd->sg = NULL; 1894f2cb1360SIngo Molnar free_percpu(sdd->sgc); 1895f2cb1360SIngo Molnar sdd->sgc = NULL; 1896f2cb1360SIngo Molnar } 1897f2cb1360SIngo Molnar } 1898f2cb1360SIngo Molnar 1899181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1900f2cb1360SIngo Molnar const struct cpumask *cpu_map, struct sched_domain_attr *attr, 190105484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1902f2cb1360SIngo Molnar { 190305484e09SMorten Rasmussen struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1904f2cb1360SIngo Molnar 1905f2cb1360SIngo Molnar if (child) { 1906f2cb1360SIngo Molnar sd->level = child->level + 1; 1907f2cb1360SIngo Molnar sched_domain_level_max = max(sched_domain_level_max, sd->level); 1908f2cb1360SIngo Molnar child->parent = sd; 1909f2cb1360SIngo Molnar 1910f2cb1360SIngo Molnar if (!cpumask_subset(sched_domain_span(child), 1911f2cb1360SIngo Molnar sched_domain_span(sd))) { 1912f2cb1360SIngo Molnar pr_err("BUG: arch topology borken\n"); 1913f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1914f2cb1360SIngo Molnar pr_err(" the %s domain not a subset of the %s domain\n", 1915f2cb1360SIngo Molnar child->name, sd->name); 1916f2cb1360SIngo Molnar #endif 191797fb7a0aSIngo Molnar /* Fixup, ensure @sd has at least @child CPUs. */ 1918f2cb1360SIngo Molnar cpumask_or(sched_domain_span(sd), 1919f2cb1360SIngo Molnar sched_domain_span(sd), 1920f2cb1360SIngo Molnar sched_domain_span(child)); 1921f2cb1360SIngo Molnar } 1922f2cb1360SIngo Molnar 1923f2cb1360SIngo Molnar } 1924f2cb1360SIngo Molnar set_domain_attribute(sd, attr); 1925f2cb1360SIngo Molnar 1926f2cb1360SIngo Molnar return sd; 1927f2cb1360SIngo Molnar } 1928f2cb1360SIngo Molnar 1929f2cb1360SIngo Molnar /* 1930ccf74128SValentin Schneider * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 1931ccf74128SValentin Schneider * any two given CPUs at this (non-NUMA) topology level. 1932ccf74128SValentin Schneider */ 1933ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl, 1934ccf74128SValentin Schneider const struct cpumask *cpu_map, int cpu) 1935ccf74128SValentin Schneider { 1936ccf74128SValentin Schneider int i; 1937ccf74128SValentin Schneider 1938ccf74128SValentin Schneider /* NUMA levels are allowed to overlap */ 1939ccf74128SValentin Schneider if (tl->flags & SDTL_OVERLAP) 1940ccf74128SValentin Schneider return true; 1941ccf74128SValentin Schneider 1942ccf74128SValentin Schneider /* 1943ccf74128SValentin Schneider * Non-NUMA levels cannot partially overlap - they must be either 1944ccf74128SValentin Schneider * completely equal or completely disjoint. Otherwise we can end up 1945ccf74128SValentin Schneider * breaking the sched_group lists - i.e. a later get_group() pass 1946ccf74128SValentin Schneider * breaks the linking done for an earlier span. 1947ccf74128SValentin Schneider */ 1948ccf74128SValentin Schneider for_each_cpu(i, cpu_map) { 1949ccf74128SValentin Schneider if (i == cpu) 1950ccf74128SValentin Schneider continue; 1951ccf74128SValentin Schneider /* 1952ccf74128SValentin Schneider * We should 'and' all those masks with 'cpu_map' to exactly 1953ccf74128SValentin Schneider * match the topology we're about to build, but that can only 1954ccf74128SValentin Schneider * remove CPUs, which only lessens our ability to detect 1955ccf74128SValentin Schneider * overlaps 1956ccf74128SValentin Schneider */ 1957ccf74128SValentin Schneider if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 1958ccf74128SValentin Schneider cpumask_intersects(tl->mask(cpu), tl->mask(i))) 1959ccf74128SValentin Schneider return false; 1960ccf74128SValentin Schneider } 1961ccf74128SValentin Schneider 1962ccf74128SValentin Schneider return true; 1963ccf74128SValentin Schneider } 1964ccf74128SValentin Schneider 1965ccf74128SValentin Schneider /* 196605484e09SMorten Rasmussen * Find the sched_domain_topology_level where all CPU capacities are visible 196705484e09SMorten Rasmussen * for all CPUs. 196805484e09SMorten Rasmussen */ 196905484e09SMorten Rasmussen static struct sched_domain_topology_level 197005484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map) 197105484e09SMorten Rasmussen { 197205484e09SMorten Rasmussen int i, j, asym_level = 0; 197305484e09SMorten Rasmussen bool asym = false; 197405484e09SMorten Rasmussen struct sched_domain_topology_level *tl, *asym_tl = NULL; 197505484e09SMorten Rasmussen unsigned long cap; 197605484e09SMorten Rasmussen 197705484e09SMorten Rasmussen /* Is there any asymmetry? */ 19788ec59c0fSVincent Guittot cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); 197905484e09SMorten Rasmussen 198005484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19818ec59c0fSVincent Guittot if (arch_scale_cpu_capacity(i) != cap) { 198205484e09SMorten Rasmussen asym = true; 198305484e09SMorten Rasmussen break; 198405484e09SMorten Rasmussen } 198505484e09SMorten Rasmussen } 198605484e09SMorten Rasmussen 198705484e09SMorten Rasmussen if (!asym) 198805484e09SMorten Rasmussen return NULL; 198905484e09SMorten Rasmussen 199005484e09SMorten Rasmussen /* 199105484e09SMorten Rasmussen * Examine topology from all CPU's point of views to detect the lowest 199205484e09SMorten Rasmussen * sched_domain_topology_level where a highest capacity CPU is visible 199305484e09SMorten Rasmussen * to everyone. 199405484e09SMorten Rasmussen */ 199505484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19968ec59c0fSVincent Guittot unsigned long max_capacity = arch_scale_cpu_capacity(i); 199705484e09SMorten Rasmussen int tl_id = 0; 199805484e09SMorten Rasmussen 199905484e09SMorten Rasmussen for_each_sd_topology(tl) { 200005484e09SMorten Rasmussen if (tl_id < asym_level) 200105484e09SMorten Rasmussen goto next_level; 200205484e09SMorten Rasmussen 200305484e09SMorten Rasmussen for_each_cpu_and(j, tl->mask(i), cpu_map) { 200405484e09SMorten Rasmussen unsigned long capacity; 200505484e09SMorten Rasmussen 20068ec59c0fSVincent Guittot capacity = arch_scale_cpu_capacity(j); 200705484e09SMorten Rasmussen 200805484e09SMorten Rasmussen if (capacity <= max_capacity) 200905484e09SMorten Rasmussen continue; 201005484e09SMorten Rasmussen 201105484e09SMorten Rasmussen max_capacity = capacity; 201205484e09SMorten Rasmussen asym_level = tl_id; 201305484e09SMorten Rasmussen asym_tl = tl; 201405484e09SMorten Rasmussen } 201505484e09SMorten Rasmussen next_level: 201605484e09SMorten Rasmussen tl_id++; 201705484e09SMorten Rasmussen } 201805484e09SMorten Rasmussen } 201905484e09SMorten Rasmussen 202005484e09SMorten Rasmussen return asym_tl; 202105484e09SMorten Rasmussen } 202205484e09SMorten Rasmussen 202305484e09SMorten Rasmussen 202405484e09SMorten Rasmussen /* 2025f2cb1360SIngo Molnar * Build sched domains for a given set of CPUs and attach the sched domains 2026f2cb1360SIngo Molnar * to the individual CPUs 2027f2cb1360SIngo Molnar */ 2028f2cb1360SIngo Molnar static int 2029f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2030f2cb1360SIngo Molnar { 2031cd1cb335SValentin Schneider enum s_alloc alloc_state = sa_none; 2032f2cb1360SIngo Molnar struct sched_domain *sd; 2033f2cb1360SIngo Molnar struct s_data d; 2034f2cb1360SIngo Molnar struct rq *rq = NULL; 2035f2cb1360SIngo Molnar int i, ret = -ENOMEM; 203605484e09SMorten Rasmussen struct sched_domain_topology_level *tl_asym; 2037df054e84SMorten Rasmussen bool has_asym = false; 2038f2cb1360SIngo Molnar 2039cd1cb335SValentin Schneider if (WARN_ON(cpumask_empty(cpu_map))) 2040cd1cb335SValentin Schneider goto error; 2041cd1cb335SValentin Schneider 2042f2cb1360SIngo Molnar alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2043f2cb1360SIngo Molnar if (alloc_state != sa_rootdomain) 2044f2cb1360SIngo Molnar goto error; 2045f2cb1360SIngo Molnar 204605484e09SMorten Rasmussen tl_asym = asym_cpu_capacity_level(cpu_map); 204705484e09SMorten Rasmussen 2048f2cb1360SIngo Molnar /* Set up domains for CPUs specified by the cpu_map: */ 2049f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2050f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 2051c200191dSValentin Schneider int dflags = 0; 2052f2cb1360SIngo Molnar 2053f2cb1360SIngo Molnar sd = NULL; 2054f2cb1360SIngo Molnar for_each_sd_topology(tl) { 2055df054e84SMorten Rasmussen if (tl == tl_asym) { 205605484e09SMorten Rasmussen dflags |= SD_ASYM_CPUCAPACITY; 2057df054e84SMorten Rasmussen has_asym = true; 2058df054e84SMorten Rasmussen } 205905484e09SMorten Rasmussen 2060ccf74128SValentin Schneider if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2061ccf74128SValentin Schneider goto error; 2062ccf74128SValentin Schneider 206305484e09SMorten Rasmussen sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 206405484e09SMorten Rasmussen 2065f2cb1360SIngo Molnar if (tl == sched_domain_topology) 2066f2cb1360SIngo Molnar *per_cpu_ptr(d.sd, i) = sd; 2067af85596cSPeter Zijlstra if (tl->flags & SDTL_OVERLAP) 2068f2cb1360SIngo Molnar sd->flags |= SD_OVERLAP; 2069f2cb1360SIngo Molnar if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2070f2cb1360SIngo Molnar break; 2071f2cb1360SIngo Molnar } 2072f2cb1360SIngo Molnar } 2073f2cb1360SIngo Molnar 2074f2cb1360SIngo Molnar /* Build the groups for the domains */ 2075f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2076f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2077f2cb1360SIngo Molnar sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2078f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 2079f2cb1360SIngo Molnar if (build_overlap_sched_groups(sd, i)) 2080f2cb1360SIngo Molnar goto error; 2081f2cb1360SIngo Molnar } else { 2082f2cb1360SIngo Molnar if (build_sched_groups(sd, i)) 2083f2cb1360SIngo Molnar goto error; 2084f2cb1360SIngo Molnar } 2085f2cb1360SIngo Molnar } 2086f2cb1360SIngo Molnar } 2087f2cb1360SIngo Molnar 2088f2cb1360SIngo Molnar /* Calculate CPU capacity for physical packages and nodes */ 2089f2cb1360SIngo Molnar for (i = nr_cpumask_bits-1; i >= 0; i--) { 2090f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, cpu_map)) 2091f2cb1360SIngo Molnar continue; 2092f2cb1360SIngo Molnar 2093f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2094f2cb1360SIngo Molnar claim_allocations(i, sd); 2095f2cb1360SIngo Molnar init_sched_groups_capacity(i, sd); 2096f2cb1360SIngo Molnar } 2097f2cb1360SIngo Molnar } 2098f2cb1360SIngo Molnar 2099f2cb1360SIngo Molnar /* Attach the domains */ 2100f2cb1360SIngo Molnar rcu_read_lock(); 2101f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2102f2cb1360SIngo Molnar rq = cpu_rq(i); 2103f2cb1360SIngo Molnar sd = *per_cpu_ptr(d.sd, i); 2104f2cb1360SIngo Molnar 2105f2cb1360SIngo Molnar /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2106f2cb1360SIngo Molnar if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2107f2cb1360SIngo Molnar WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2108f2cb1360SIngo Molnar 2109f2cb1360SIngo Molnar cpu_attach_domain(sd, d.rd, i); 2110f2cb1360SIngo Molnar } 2111f2cb1360SIngo Molnar rcu_read_unlock(); 2112f2cb1360SIngo Molnar 2113df054e84SMorten Rasmussen if (has_asym) 2114e284df70SValentin Schneider static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2115df054e84SMorten Rasmussen 2116f2cb1360SIngo Molnar if (rq && sched_debug_enabled) { 2117bf5015a5SJuri Lelli pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2118f2cb1360SIngo Molnar cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2119f2cb1360SIngo Molnar } 2120f2cb1360SIngo Molnar 2121f2cb1360SIngo Molnar ret = 0; 2122f2cb1360SIngo Molnar error: 2123f2cb1360SIngo Molnar __free_domain_allocs(&d, alloc_state, cpu_map); 212497fb7a0aSIngo Molnar 2125f2cb1360SIngo Molnar return ret; 2126f2cb1360SIngo Molnar } 2127f2cb1360SIngo Molnar 2128f2cb1360SIngo Molnar /* Current sched domains: */ 2129f2cb1360SIngo Molnar static cpumask_var_t *doms_cur; 2130f2cb1360SIngo Molnar 2131f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */ 2132f2cb1360SIngo Molnar static int ndoms_cur; 2133f2cb1360SIngo Molnar 2134f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */ 2135f2cb1360SIngo Molnar static struct sched_domain_attr *dattr_cur; 2136f2cb1360SIngo Molnar 2137f2cb1360SIngo Molnar /* 2138f2cb1360SIngo Molnar * Special case: If a kmalloc() of a doms_cur partition (array of 2139f2cb1360SIngo Molnar * cpumask) fails, then fallback to a single sched domain, 2140f2cb1360SIngo Molnar * as determined by the single cpumask fallback_doms. 2141f2cb1360SIngo Molnar */ 21428d5dc512SPeter Zijlstra static cpumask_var_t fallback_doms; 2143f2cb1360SIngo Molnar 2144f2cb1360SIngo Molnar /* 2145f2cb1360SIngo Molnar * arch_update_cpu_topology lets virtualized architectures update the 2146f2cb1360SIngo Molnar * CPU core maps. It is supposed to return 1 if the topology changed 2147f2cb1360SIngo Molnar * or 0 if it stayed the same. 2148f2cb1360SIngo Molnar */ 2149f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void) 2150f2cb1360SIngo Molnar { 2151f2cb1360SIngo Molnar return 0; 2152f2cb1360SIngo Molnar } 2153f2cb1360SIngo Molnar 2154f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2155f2cb1360SIngo Molnar { 2156f2cb1360SIngo Molnar int i; 2157f2cb1360SIngo Molnar cpumask_var_t *doms; 2158f2cb1360SIngo Molnar 21596da2ec56SKees Cook doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2160f2cb1360SIngo Molnar if (!doms) 2161f2cb1360SIngo Molnar return NULL; 2162f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) { 2163f2cb1360SIngo Molnar if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2164f2cb1360SIngo Molnar free_sched_domains(doms, i); 2165f2cb1360SIngo Molnar return NULL; 2166f2cb1360SIngo Molnar } 2167f2cb1360SIngo Molnar } 2168f2cb1360SIngo Molnar return doms; 2169f2cb1360SIngo Molnar } 2170f2cb1360SIngo Molnar 2171f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2172f2cb1360SIngo Molnar { 2173f2cb1360SIngo Molnar unsigned int i; 2174f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) 2175f2cb1360SIngo Molnar free_cpumask_var(doms[i]); 2176f2cb1360SIngo Molnar kfree(doms); 2177f2cb1360SIngo Molnar } 2178f2cb1360SIngo Molnar 2179f2cb1360SIngo Molnar /* 2180cb0c0414SJuri Lelli * Set up scheduler domains and groups. For now this just excludes isolated 2181cb0c0414SJuri Lelli * CPUs, but could be used to exclude other special cases in the future. 2182f2cb1360SIngo Molnar */ 21838d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map) 2184f2cb1360SIngo Molnar { 2185f2cb1360SIngo Molnar int err; 2186f2cb1360SIngo Molnar 21878d5dc512SPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 21881676330eSPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 21898d5dc512SPeter Zijlstra zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 21908d5dc512SPeter Zijlstra 2191f2cb1360SIngo Molnar arch_update_cpu_topology(); 2192f2cb1360SIngo Molnar ndoms_cur = 1; 2193f2cb1360SIngo Molnar doms_cur = alloc_sched_domains(ndoms_cur); 2194f2cb1360SIngo Molnar if (!doms_cur) 2195f2cb1360SIngo Molnar doms_cur = &fallback_doms; 2196edb93821SFrederic Weisbecker cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2197f2cb1360SIngo Molnar err = build_sched_domains(doms_cur[0], NULL); 2198f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2199f2cb1360SIngo Molnar 2200f2cb1360SIngo Molnar return err; 2201f2cb1360SIngo Molnar } 2202f2cb1360SIngo Molnar 2203f2cb1360SIngo Molnar /* 2204f2cb1360SIngo Molnar * Detach sched domains from a group of CPUs specified in cpu_map 2205f2cb1360SIngo Molnar * These CPUs will now be attached to the NULL domain 2206f2cb1360SIngo Molnar */ 2207f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map) 2208f2cb1360SIngo Molnar { 2209e284df70SValentin Schneider unsigned int cpu = cpumask_any(cpu_map); 2210f2cb1360SIngo Molnar int i; 2211f2cb1360SIngo Molnar 2212e284df70SValentin Schneider if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2213e284df70SValentin Schneider static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2214e284df70SValentin Schneider 2215f2cb1360SIngo Molnar rcu_read_lock(); 2216f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) 2217f2cb1360SIngo Molnar cpu_attach_domain(NULL, &def_root_domain, i); 2218f2cb1360SIngo Molnar rcu_read_unlock(); 2219f2cb1360SIngo Molnar } 2220f2cb1360SIngo Molnar 2221f2cb1360SIngo Molnar /* handle null as "default" */ 2222f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2223f2cb1360SIngo Molnar struct sched_domain_attr *new, int idx_new) 2224f2cb1360SIngo Molnar { 2225f2cb1360SIngo Molnar struct sched_domain_attr tmp; 2226f2cb1360SIngo Molnar 2227f2cb1360SIngo Molnar /* Fast path: */ 2228f2cb1360SIngo Molnar if (!new && !cur) 2229f2cb1360SIngo Molnar return 1; 2230f2cb1360SIngo Molnar 2231f2cb1360SIngo Molnar tmp = SD_ATTR_INIT; 223297fb7a0aSIngo Molnar 2233f2cb1360SIngo Molnar return !memcmp(cur ? (cur + idx_cur) : &tmp, 2234f2cb1360SIngo Molnar new ? (new + idx_new) : &tmp, 2235f2cb1360SIngo Molnar sizeof(struct sched_domain_attr)); 2236f2cb1360SIngo Molnar } 2237f2cb1360SIngo Molnar 2238f2cb1360SIngo Molnar /* 2239f2cb1360SIngo Molnar * Partition sched domains as specified by the 'ndoms_new' 2240f2cb1360SIngo Molnar * cpumasks in the array doms_new[] of cpumasks. This compares 2241f2cb1360SIngo Molnar * doms_new[] to the current sched domain partitioning, doms_cur[]. 2242f2cb1360SIngo Molnar * It destroys each deleted domain and builds each new domain. 2243f2cb1360SIngo Molnar * 2244f2cb1360SIngo Molnar * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2245f2cb1360SIngo Molnar * The masks don't intersect (don't overlap.) We should setup one 2246f2cb1360SIngo Molnar * sched domain for each mask. CPUs not in any of the cpumasks will 2247f2cb1360SIngo Molnar * not be load balanced. If the same cpumask appears both in the 2248f2cb1360SIngo Molnar * current 'doms_cur' domains and in the new 'doms_new', we can leave 2249f2cb1360SIngo Molnar * it as it is. 2250f2cb1360SIngo Molnar * 2251f2cb1360SIngo Molnar * The passed in 'doms_new' should be allocated using 2252f2cb1360SIngo Molnar * alloc_sched_domains. This routine takes ownership of it and will 2253f2cb1360SIngo Molnar * free_sched_domains it when done with it. If the caller failed the 2254f2cb1360SIngo Molnar * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2255f2cb1360SIngo Molnar * and partition_sched_domains() will fallback to the single partition 2256f2cb1360SIngo Molnar * 'fallback_doms', it also forces the domains to be rebuilt. 2257f2cb1360SIngo Molnar * 2258f2cb1360SIngo Molnar * If doms_new == NULL it will be replaced with cpu_online_mask. 2259f2cb1360SIngo Molnar * ndoms_new == 0 is a special case for destroying existing domains, 2260f2cb1360SIngo Molnar * and it will not create the default domain. 2261f2cb1360SIngo Molnar * 2262c22645f4SMathieu Poirier * Call with hotplug lock and sched_domains_mutex held 2263f2cb1360SIngo Molnar */ 2264c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2265f2cb1360SIngo Molnar struct sched_domain_attr *dattr_new) 2266f2cb1360SIngo Molnar { 22671f74de87SQuentin Perret bool __maybe_unused has_eas = false; 2268f2cb1360SIngo Molnar int i, j, n; 2269f2cb1360SIngo Molnar int new_topology; 2270f2cb1360SIngo Molnar 2271c22645f4SMathieu Poirier lockdep_assert_held(&sched_domains_mutex); 2272f2cb1360SIngo Molnar 2273f2cb1360SIngo Molnar /* Always unregister in case we don't destroy any domains: */ 2274f2cb1360SIngo Molnar unregister_sched_domain_sysctl(); 2275f2cb1360SIngo Molnar 2276f2cb1360SIngo Molnar /* Let the architecture update CPU core mappings: */ 2277f2cb1360SIngo Molnar new_topology = arch_update_cpu_topology(); 2278f2cb1360SIngo Molnar 227909e0dd8eSPeter Zijlstra if (!doms_new) { 228009e0dd8eSPeter Zijlstra WARN_ON_ONCE(dattr_new); 228109e0dd8eSPeter Zijlstra n = 0; 228209e0dd8eSPeter Zijlstra doms_new = alloc_sched_domains(1); 228309e0dd8eSPeter Zijlstra if (doms_new) { 228409e0dd8eSPeter Zijlstra n = 1; 2285edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2286edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 228709e0dd8eSPeter Zijlstra } 228809e0dd8eSPeter Zijlstra } else { 228909e0dd8eSPeter Zijlstra n = ndoms_new; 229009e0dd8eSPeter Zijlstra } 2291f2cb1360SIngo Molnar 2292f2cb1360SIngo Molnar /* Destroy deleted domains: */ 2293f2cb1360SIngo Molnar for (i = 0; i < ndoms_cur; i++) { 2294f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22956aa140faSQuentin Perret if (cpumask_equal(doms_cur[i], doms_new[j]) && 2296f9a25f77SMathieu Poirier dattrs_equal(dattr_cur, i, dattr_new, j)) { 2297f9a25f77SMathieu Poirier struct root_domain *rd; 2298f9a25f77SMathieu Poirier 2299f9a25f77SMathieu Poirier /* 2300f9a25f77SMathieu Poirier * This domain won't be destroyed and as such 2301f9a25f77SMathieu Poirier * its dl_bw->total_bw needs to be cleared. It 2302f9a25f77SMathieu Poirier * will be recomputed in function 2303f9a25f77SMathieu Poirier * update_tasks_root_domain(). 2304f9a25f77SMathieu Poirier */ 2305f9a25f77SMathieu Poirier rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2306f9a25f77SMathieu Poirier dl_clear_root_domain(rd); 2307f2cb1360SIngo Molnar goto match1; 2308f2cb1360SIngo Molnar } 2309f9a25f77SMathieu Poirier } 2310f2cb1360SIngo Molnar /* No match - a current sched domain not in new doms_new[] */ 2311f2cb1360SIngo Molnar detach_destroy_domains(doms_cur[i]); 2312f2cb1360SIngo Molnar match1: 2313f2cb1360SIngo Molnar ; 2314f2cb1360SIngo Molnar } 2315f2cb1360SIngo Molnar 2316f2cb1360SIngo Molnar n = ndoms_cur; 231709e0dd8eSPeter Zijlstra if (!doms_new) { 2318f2cb1360SIngo Molnar n = 0; 2319f2cb1360SIngo Molnar doms_new = &fallback_doms; 2320edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2321edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 2322f2cb1360SIngo Molnar } 2323f2cb1360SIngo Molnar 2324f2cb1360SIngo Molnar /* Build new domains: */ 2325f2cb1360SIngo Molnar for (i = 0; i < ndoms_new; i++) { 2326f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 23276aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 23286aa140faSQuentin Perret dattrs_equal(dattr_new, i, dattr_cur, j)) 2329f2cb1360SIngo Molnar goto match2; 2330f2cb1360SIngo Molnar } 2331f2cb1360SIngo Molnar /* No match - add a new doms_new */ 2332f2cb1360SIngo Molnar build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2333f2cb1360SIngo Molnar match2: 2334f2cb1360SIngo Molnar ; 2335f2cb1360SIngo Molnar } 2336f2cb1360SIngo Molnar 2337531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 23386aa140faSQuentin Perret /* Build perf. domains: */ 23396aa140faSQuentin Perret for (i = 0; i < ndoms_new; i++) { 2340531b5c9fSQuentin Perret for (j = 0; j < n && !sched_energy_update; j++) { 23416aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 23421f74de87SQuentin Perret cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 23431f74de87SQuentin Perret has_eas = true; 23446aa140faSQuentin Perret goto match3; 23456aa140faSQuentin Perret } 23461f74de87SQuentin Perret } 23476aa140faSQuentin Perret /* No match - add perf. domains for a new rd */ 23481f74de87SQuentin Perret has_eas |= build_perf_domains(doms_new[i]); 23496aa140faSQuentin Perret match3: 23506aa140faSQuentin Perret ; 23516aa140faSQuentin Perret } 23521f74de87SQuentin Perret sched_energy_set(has_eas); 23536aa140faSQuentin Perret #endif 23546aa140faSQuentin Perret 2355f2cb1360SIngo Molnar /* Remember the new sched domains: */ 2356f2cb1360SIngo Molnar if (doms_cur != &fallback_doms) 2357f2cb1360SIngo Molnar free_sched_domains(doms_cur, ndoms_cur); 2358f2cb1360SIngo Molnar 2359f2cb1360SIngo Molnar kfree(dattr_cur); 2360f2cb1360SIngo Molnar doms_cur = doms_new; 2361f2cb1360SIngo Molnar dattr_cur = dattr_new; 2362f2cb1360SIngo Molnar ndoms_cur = ndoms_new; 2363f2cb1360SIngo Molnar 2364f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2365c22645f4SMathieu Poirier } 2366f2cb1360SIngo Molnar 2367c22645f4SMathieu Poirier /* 2368c22645f4SMathieu Poirier * Call with hotplug lock held 2369c22645f4SMathieu Poirier */ 2370c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2371c22645f4SMathieu Poirier struct sched_domain_attr *dattr_new) 2372c22645f4SMathieu Poirier { 2373c22645f4SMathieu Poirier mutex_lock(&sched_domains_mutex); 2374c22645f4SMathieu Poirier partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2375f2cb1360SIngo Molnar mutex_unlock(&sched_domains_mutex); 2376f2cb1360SIngo Molnar } 2377