xref: /openbmc/linux/kernel/sched/topology.c (revision f2cb13609d5397cdd747f3ed6fb651233851717d)
1*f2cb1360SIngo Molnar /*
2*f2cb1360SIngo Molnar  * Scheduler topology setup/handling methods
3*f2cb1360SIngo Molnar  */
4*f2cb1360SIngo Molnar #include <linux/sched.h>
5*f2cb1360SIngo Molnar #include <linux/mutex.h>
6*f2cb1360SIngo Molnar 
7*f2cb1360SIngo Molnar #include "sched.h"
8*f2cb1360SIngo Molnar 
9*f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex);
10*f2cb1360SIngo Molnar 
11*f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */
12*f2cb1360SIngo Molnar cpumask_var_t sched_domains_tmpmask;
13*f2cb1360SIngo Molnar 
14*f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
15*f2cb1360SIngo Molnar 
16*f2cb1360SIngo Molnar static __read_mostly int sched_debug_enabled;
17*f2cb1360SIngo Molnar 
18*f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str)
19*f2cb1360SIngo Molnar {
20*f2cb1360SIngo Molnar 	sched_debug_enabled = 1;
21*f2cb1360SIngo Molnar 
22*f2cb1360SIngo Molnar 	return 0;
23*f2cb1360SIngo Molnar }
24*f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup);
25*f2cb1360SIngo Molnar 
26*f2cb1360SIngo Molnar static inline bool sched_debug(void)
27*f2cb1360SIngo Molnar {
28*f2cb1360SIngo Molnar 	return sched_debug_enabled;
29*f2cb1360SIngo Molnar }
30*f2cb1360SIngo Molnar 
31*f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
32*f2cb1360SIngo Molnar 				  struct cpumask *groupmask)
33*f2cb1360SIngo Molnar {
34*f2cb1360SIngo Molnar 	struct sched_group *group = sd->groups;
35*f2cb1360SIngo Molnar 
36*f2cb1360SIngo Molnar 	cpumask_clear(groupmask);
37*f2cb1360SIngo Molnar 
38*f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
39*f2cb1360SIngo Molnar 
40*f2cb1360SIngo Molnar 	if (!(sd->flags & SD_LOAD_BALANCE)) {
41*f2cb1360SIngo Molnar 		printk("does not load-balance\n");
42*f2cb1360SIngo Molnar 		if (sd->parent)
43*f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
44*f2cb1360SIngo Molnar 					" has parent");
45*f2cb1360SIngo Molnar 		return -1;
46*f2cb1360SIngo Molnar 	}
47*f2cb1360SIngo Molnar 
48*f2cb1360SIngo Molnar 	printk(KERN_CONT "span %*pbl level %s\n",
49*f2cb1360SIngo Molnar 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
50*f2cb1360SIngo Molnar 
51*f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
52*f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: domain->span does not contain "
53*f2cb1360SIngo Molnar 				"CPU%d\n", cpu);
54*f2cb1360SIngo Molnar 	}
55*f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
56*f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: domain->groups does not contain"
57*f2cb1360SIngo Molnar 				" CPU%d\n", cpu);
58*f2cb1360SIngo Molnar 	}
59*f2cb1360SIngo Molnar 
60*f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
61*f2cb1360SIngo Molnar 	do {
62*f2cb1360SIngo Molnar 		if (!group) {
63*f2cb1360SIngo Molnar 			printk("\n");
64*f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: group is NULL\n");
65*f2cb1360SIngo Molnar 			break;
66*f2cb1360SIngo Molnar 		}
67*f2cb1360SIngo Molnar 
68*f2cb1360SIngo Molnar 		if (!cpumask_weight(sched_group_cpus(group))) {
69*f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
70*f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: empty group\n");
71*f2cb1360SIngo Molnar 			break;
72*f2cb1360SIngo Molnar 		}
73*f2cb1360SIngo Molnar 
74*f2cb1360SIngo Molnar 		if (!(sd->flags & SD_OVERLAP) &&
75*f2cb1360SIngo Molnar 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
76*f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
77*f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: repeated CPUs\n");
78*f2cb1360SIngo Molnar 			break;
79*f2cb1360SIngo Molnar 		}
80*f2cb1360SIngo Molnar 
81*f2cb1360SIngo Molnar 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
82*f2cb1360SIngo Molnar 
83*f2cb1360SIngo Molnar 		printk(KERN_CONT " %*pbl",
84*f2cb1360SIngo Molnar 		       cpumask_pr_args(sched_group_cpus(group)));
85*f2cb1360SIngo Molnar 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
86*f2cb1360SIngo Molnar 			printk(KERN_CONT " (cpu_capacity = %lu)",
87*f2cb1360SIngo Molnar 				group->sgc->capacity);
88*f2cb1360SIngo Molnar 		}
89*f2cb1360SIngo Molnar 
90*f2cb1360SIngo Molnar 		group = group->next;
91*f2cb1360SIngo Molnar 	} while (group != sd->groups);
92*f2cb1360SIngo Molnar 	printk(KERN_CONT "\n");
93*f2cb1360SIngo Molnar 
94*f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
95*f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
96*f2cb1360SIngo Molnar 
97*f2cb1360SIngo Molnar 	if (sd->parent &&
98*f2cb1360SIngo Molnar 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
99*f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: parent span is not a superset "
100*f2cb1360SIngo Molnar 			"of domain->span\n");
101*f2cb1360SIngo Molnar 	return 0;
102*f2cb1360SIngo Molnar }
103*f2cb1360SIngo Molnar 
104*f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu)
105*f2cb1360SIngo Molnar {
106*f2cb1360SIngo Molnar 	int level = 0;
107*f2cb1360SIngo Molnar 
108*f2cb1360SIngo Molnar 	if (!sched_debug_enabled)
109*f2cb1360SIngo Molnar 		return;
110*f2cb1360SIngo Molnar 
111*f2cb1360SIngo Molnar 	if (!sd) {
112*f2cb1360SIngo Molnar 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
113*f2cb1360SIngo Molnar 		return;
114*f2cb1360SIngo Molnar 	}
115*f2cb1360SIngo Molnar 
116*f2cb1360SIngo Molnar 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
117*f2cb1360SIngo Molnar 
118*f2cb1360SIngo Molnar 	for (;;) {
119*f2cb1360SIngo Molnar 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
120*f2cb1360SIngo Molnar 			break;
121*f2cb1360SIngo Molnar 		level++;
122*f2cb1360SIngo Molnar 		sd = sd->parent;
123*f2cb1360SIngo Molnar 		if (!sd)
124*f2cb1360SIngo Molnar 			break;
125*f2cb1360SIngo Molnar 	}
126*f2cb1360SIngo Molnar }
127*f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */
128*f2cb1360SIngo Molnar 
129*f2cb1360SIngo Molnar # define sched_debug_enabled 0
130*f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0)
131*f2cb1360SIngo Molnar static inline bool sched_debug(void)
132*f2cb1360SIngo Molnar {
133*f2cb1360SIngo Molnar 	return false;
134*f2cb1360SIngo Molnar }
135*f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */
136*f2cb1360SIngo Molnar 
137*f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd)
138*f2cb1360SIngo Molnar {
139*f2cb1360SIngo Molnar 	if (cpumask_weight(sched_domain_span(sd)) == 1)
140*f2cb1360SIngo Molnar 		return 1;
141*f2cb1360SIngo Molnar 
142*f2cb1360SIngo Molnar 	/* Following flags need at least 2 groups */
143*f2cb1360SIngo Molnar 	if (sd->flags & (SD_LOAD_BALANCE |
144*f2cb1360SIngo Molnar 			 SD_BALANCE_NEWIDLE |
145*f2cb1360SIngo Molnar 			 SD_BALANCE_FORK |
146*f2cb1360SIngo Molnar 			 SD_BALANCE_EXEC |
147*f2cb1360SIngo Molnar 			 SD_SHARE_CPUCAPACITY |
148*f2cb1360SIngo Molnar 			 SD_ASYM_CPUCAPACITY |
149*f2cb1360SIngo Molnar 			 SD_SHARE_PKG_RESOURCES |
150*f2cb1360SIngo Molnar 			 SD_SHARE_POWERDOMAIN)) {
151*f2cb1360SIngo Molnar 		if (sd->groups != sd->groups->next)
152*f2cb1360SIngo Molnar 			return 0;
153*f2cb1360SIngo Molnar 	}
154*f2cb1360SIngo Molnar 
155*f2cb1360SIngo Molnar 	/* Following flags don't use groups */
156*f2cb1360SIngo Molnar 	if (sd->flags & (SD_WAKE_AFFINE))
157*f2cb1360SIngo Molnar 		return 0;
158*f2cb1360SIngo Molnar 
159*f2cb1360SIngo Molnar 	return 1;
160*f2cb1360SIngo Molnar }
161*f2cb1360SIngo Molnar 
162*f2cb1360SIngo Molnar static int
163*f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
164*f2cb1360SIngo Molnar {
165*f2cb1360SIngo Molnar 	unsigned long cflags = sd->flags, pflags = parent->flags;
166*f2cb1360SIngo Molnar 
167*f2cb1360SIngo Molnar 	if (sd_degenerate(parent))
168*f2cb1360SIngo Molnar 		return 1;
169*f2cb1360SIngo Molnar 
170*f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
171*f2cb1360SIngo Molnar 		return 0;
172*f2cb1360SIngo Molnar 
173*f2cb1360SIngo Molnar 	/* Flags needing groups don't count if only 1 group in parent */
174*f2cb1360SIngo Molnar 	if (parent->groups == parent->groups->next) {
175*f2cb1360SIngo Molnar 		pflags &= ~(SD_LOAD_BALANCE |
176*f2cb1360SIngo Molnar 				SD_BALANCE_NEWIDLE |
177*f2cb1360SIngo Molnar 				SD_BALANCE_FORK |
178*f2cb1360SIngo Molnar 				SD_BALANCE_EXEC |
179*f2cb1360SIngo Molnar 				SD_ASYM_CPUCAPACITY |
180*f2cb1360SIngo Molnar 				SD_SHARE_CPUCAPACITY |
181*f2cb1360SIngo Molnar 				SD_SHARE_PKG_RESOURCES |
182*f2cb1360SIngo Molnar 				SD_PREFER_SIBLING |
183*f2cb1360SIngo Molnar 				SD_SHARE_POWERDOMAIN);
184*f2cb1360SIngo Molnar 		if (nr_node_ids == 1)
185*f2cb1360SIngo Molnar 			pflags &= ~SD_SERIALIZE;
186*f2cb1360SIngo Molnar 	}
187*f2cb1360SIngo Molnar 	if (~cflags & pflags)
188*f2cb1360SIngo Molnar 		return 0;
189*f2cb1360SIngo Molnar 
190*f2cb1360SIngo Molnar 	return 1;
191*f2cb1360SIngo Molnar }
192*f2cb1360SIngo Molnar 
193*f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu)
194*f2cb1360SIngo Molnar {
195*f2cb1360SIngo Molnar 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
196*f2cb1360SIngo Molnar 
197*f2cb1360SIngo Molnar 	cpupri_cleanup(&rd->cpupri);
198*f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
199*f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
200*f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
201*f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
202*f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
203*f2cb1360SIngo Molnar 	kfree(rd);
204*f2cb1360SIngo Molnar }
205*f2cb1360SIngo Molnar 
206*f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd)
207*f2cb1360SIngo Molnar {
208*f2cb1360SIngo Molnar 	struct root_domain *old_rd = NULL;
209*f2cb1360SIngo Molnar 	unsigned long flags;
210*f2cb1360SIngo Molnar 
211*f2cb1360SIngo Molnar 	raw_spin_lock_irqsave(&rq->lock, flags);
212*f2cb1360SIngo Molnar 
213*f2cb1360SIngo Molnar 	if (rq->rd) {
214*f2cb1360SIngo Molnar 		old_rd = rq->rd;
215*f2cb1360SIngo Molnar 
216*f2cb1360SIngo Molnar 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
217*f2cb1360SIngo Molnar 			set_rq_offline(rq);
218*f2cb1360SIngo Molnar 
219*f2cb1360SIngo Molnar 		cpumask_clear_cpu(rq->cpu, old_rd->span);
220*f2cb1360SIngo Molnar 
221*f2cb1360SIngo Molnar 		/*
222*f2cb1360SIngo Molnar 		 * If we dont want to free the old_rd yet then
223*f2cb1360SIngo Molnar 		 * set old_rd to NULL to skip the freeing later
224*f2cb1360SIngo Molnar 		 * in this function:
225*f2cb1360SIngo Molnar 		 */
226*f2cb1360SIngo Molnar 		if (!atomic_dec_and_test(&old_rd->refcount))
227*f2cb1360SIngo Molnar 			old_rd = NULL;
228*f2cb1360SIngo Molnar 	}
229*f2cb1360SIngo Molnar 
230*f2cb1360SIngo Molnar 	atomic_inc(&rd->refcount);
231*f2cb1360SIngo Molnar 	rq->rd = rd;
232*f2cb1360SIngo Molnar 
233*f2cb1360SIngo Molnar 	cpumask_set_cpu(rq->cpu, rd->span);
234*f2cb1360SIngo Molnar 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
235*f2cb1360SIngo Molnar 		set_rq_online(rq);
236*f2cb1360SIngo Molnar 
237*f2cb1360SIngo Molnar 	raw_spin_unlock_irqrestore(&rq->lock, flags);
238*f2cb1360SIngo Molnar 
239*f2cb1360SIngo Molnar 	if (old_rd)
240*f2cb1360SIngo Molnar 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
241*f2cb1360SIngo Molnar }
242*f2cb1360SIngo Molnar 
243*f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd)
244*f2cb1360SIngo Molnar {
245*f2cb1360SIngo Molnar 	memset(rd, 0, sizeof(*rd));
246*f2cb1360SIngo Molnar 
247*f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
248*f2cb1360SIngo Molnar 		goto out;
249*f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
250*f2cb1360SIngo Molnar 		goto free_span;
251*f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
252*f2cb1360SIngo Molnar 		goto free_online;
253*f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
254*f2cb1360SIngo Molnar 		goto free_dlo_mask;
255*f2cb1360SIngo Molnar 
256*f2cb1360SIngo Molnar 	init_dl_bw(&rd->dl_bw);
257*f2cb1360SIngo Molnar 	if (cpudl_init(&rd->cpudl) != 0)
258*f2cb1360SIngo Molnar 		goto free_rto_mask;
259*f2cb1360SIngo Molnar 
260*f2cb1360SIngo Molnar 	if (cpupri_init(&rd->cpupri) != 0)
261*f2cb1360SIngo Molnar 		goto free_cpudl;
262*f2cb1360SIngo Molnar 	return 0;
263*f2cb1360SIngo Molnar 
264*f2cb1360SIngo Molnar free_cpudl:
265*f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
266*f2cb1360SIngo Molnar free_rto_mask:
267*f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
268*f2cb1360SIngo Molnar free_dlo_mask:
269*f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
270*f2cb1360SIngo Molnar free_online:
271*f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
272*f2cb1360SIngo Molnar free_span:
273*f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
274*f2cb1360SIngo Molnar out:
275*f2cb1360SIngo Molnar 	return -ENOMEM;
276*f2cb1360SIngo Molnar }
277*f2cb1360SIngo Molnar 
278*f2cb1360SIngo Molnar /*
279*f2cb1360SIngo Molnar  * By default the system creates a single root-domain with all CPUs as
280*f2cb1360SIngo Molnar  * members (mimicking the global state we have today).
281*f2cb1360SIngo Molnar  */
282*f2cb1360SIngo Molnar struct root_domain def_root_domain;
283*f2cb1360SIngo Molnar 
284*f2cb1360SIngo Molnar void init_defrootdomain(void)
285*f2cb1360SIngo Molnar {
286*f2cb1360SIngo Molnar 	init_rootdomain(&def_root_domain);
287*f2cb1360SIngo Molnar 
288*f2cb1360SIngo Molnar 	atomic_set(&def_root_domain.refcount, 1);
289*f2cb1360SIngo Molnar }
290*f2cb1360SIngo Molnar 
291*f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void)
292*f2cb1360SIngo Molnar {
293*f2cb1360SIngo Molnar 	struct root_domain *rd;
294*f2cb1360SIngo Molnar 
295*f2cb1360SIngo Molnar 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
296*f2cb1360SIngo Molnar 	if (!rd)
297*f2cb1360SIngo Molnar 		return NULL;
298*f2cb1360SIngo Molnar 
299*f2cb1360SIngo Molnar 	if (init_rootdomain(rd) != 0) {
300*f2cb1360SIngo Molnar 		kfree(rd);
301*f2cb1360SIngo Molnar 		return NULL;
302*f2cb1360SIngo Molnar 	}
303*f2cb1360SIngo Molnar 
304*f2cb1360SIngo Molnar 	return rd;
305*f2cb1360SIngo Molnar }
306*f2cb1360SIngo Molnar 
307*f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc)
308*f2cb1360SIngo Molnar {
309*f2cb1360SIngo Molnar 	struct sched_group *tmp, *first;
310*f2cb1360SIngo Molnar 
311*f2cb1360SIngo Molnar 	if (!sg)
312*f2cb1360SIngo Molnar 		return;
313*f2cb1360SIngo Molnar 
314*f2cb1360SIngo Molnar 	first = sg;
315*f2cb1360SIngo Molnar 	do {
316*f2cb1360SIngo Molnar 		tmp = sg->next;
317*f2cb1360SIngo Molnar 
318*f2cb1360SIngo Molnar 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
319*f2cb1360SIngo Molnar 			kfree(sg->sgc);
320*f2cb1360SIngo Molnar 
321*f2cb1360SIngo Molnar 		kfree(sg);
322*f2cb1360SIngo Molnar 		sg = tmp;
323*f2cb1360SIngo Molnar 	} while (sg != first);
324*f2cb1360SIngo Molnar }
325*f2cb1360SIngo Molnar 
326*f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd)
327*f2cb1360SIngo Molnar {
328*f2cb1360SIngo Molnar 	/*
329*f2cb1360SIngo Molnar 	 * If its an overlapping domain it has private groups, iterate and
330*f2cb1360SIngo Molnar 	 * nuke them all.
331*f2cb1360SIngo Molnar 	 */
332*f2cb1360SIngo Molnar 	if (sd->flags & SD_OVERLAP) {
333*f2cb1360SIngo Molnar 		free_sched_groups(sd->groups, 1);
334*f2cb1360SIngo Molnar 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
335*f2cb1360SIngo Molnar 		kfree(sd->groups->sgc);
336*f2cb1360SIngo Molnar 		kfree(sd->groups);
337*f2cb1360SIngo Molnar 	}
338*f2cb1360SIngo Molnar 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
339*f2cb1360SIngo Molnar 		kfree(sd->shared);
340*f2cb1360SIngo Molnar 	kfree(sd);
341*f2cb1360SIngo Molnar }
342*f2cb1360SIngo Molnar 
343*f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu)
344*f2cb1360SIngo Molnar {
345*f2cb1360SIngo Molnar 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
346*f2cb1360SIngo Molnar 
347*f2cb1360SIngo Molnar 	while (sd) {
348*f2cb1360SIngo Molnar 		struct sched_domain *parent = sd->parent;
349*f2cb1360SIngo Molnar 		destroy_sched_domain(sd);
350*f2cb1360SIngo Molnar 		sd = parent;
351*f2cb1360SIngo Molnar 	}
352*f2cb1360SIngo Molnar }
353*f2cb1360SIngo Molnar 
354*f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd)
355*f2cb1360SIngo Molnar {
356*f2cb1360SIngo Molnar 	if (sd)
357*f2cb1360SIngo Molnar 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
358*f2cb1360SIngo Molnar }
359*f2cb1360SIngo Molnar 
360*f2cb1360SIngo Molnar /*
361*f2cb1360SIngo Molnar  * Keep a special pointer to the highest sched_domain that has
362*f2cb1360SIngo Molnar  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
363*f2cb1360SIngo Molnar  * allows us to avoid some pointer chasing select_idle_sibling().
364*f2cb1360SIngo Molnar  *
365*f2cb1360SIngo Molnar  * Also keep a unique ID per domain (we use the first CPU number in
366*f2cb1360SIngo Molnar  * the cpumask of the domain), this allows us to quickly tell if
367*f2cb1360SIngo Molnar  * two CPUs are in the same cache domain, see cpus_share_cache().
368*f2cb1360SIngo Molnar  */
369*f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_llc);
370*f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size);
371*f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id);
372*f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
373*f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_numa);
374*f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_asym);
375*f2cb1360SIngo Molnar 
376*f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu)
377*f2cb1360SIngo Molnar {
378*f2cb1360SIngo Molnar 	struct sched_domain_shared *sds = NULL;
379*f2cb1360SIngo Molnar 	struct sched_domain *sd;
380*f2cb1360SIngo Molnar 	int id = cpu;
381*f2cb1360SIngo Molnar 	int size = 1;
382*f2cb1360SIngo Molnar 
383*f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
384*f2cb1360SIngo Molnar 	if (sd) {
385*f2cb1360SIngo Molnar 		id = cpumask_first(sched_domain_span(sd));
386*f2cb1360SIngo Molnar 		size = cpumask_weight(sched_domain_span(sd));
387*f2cb1360SIngo Molnar 		sds = sd->shared;
388*f2cb1360SIngo Molnar 	}
389*f2cb1360SIngo Molnar 
390*f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
391*f2cb1360SIngo Molnar 	per_cpu(sd_llc_size, cpu) = size;
392*f2cb1360SIngo Molnar 	per_cpu(sd_llc_id, cpu) = id;
393*f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
394*f2cb1360SIngo Molnar 
395*f2cb1360SIngo Molnar 	sd = lowest_flag_domain(cpu, SD_NUMA);
396*f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
397*f2cb1360SIngo Molnar 
398*f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
399*f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
400*f2cb1360SIngo Molnar }
401*f2cb1360SIngo Molnar 
402*f2cb1360SIngo Molnar /*
403*f2cb1360SIngo Molnar  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
404*f2cb1360SIngo Molnar  * hold the hotplug lock.
405*f2cb1360SIngo Molnar  */
406*f2cb1360SIngo Molnar static void
407*f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
408*f2cb1360SIngo Molnar {
409*f2cb1360SIngo Molnar 	struct rq *rq = cpu_rq(cpu);
410*f2cb1360SIngo Molnar 	struct sched_domain *tmp;
411*f2cb1360SIngo Molnar 
412*f2cb1360SIngo Molnar 	/* Remove the sched domains which do not contribute to scheduling. */
413*f2cb1360SIngo Molnar 	for (tmp = sd; tmp; ) {
414*f2cb1360SIngo Molnar 		struct sched_domain *parent = tmp->parent;
415*f2cb1360SIngo Molnar 		if (!parent)
416*f2cb1360SIngo Molnar 			break;
417*f2cb1360SIngo Molnar 
418*f2cb1360SIngo Molnar 		if (sd_parent_degenerate(tmp, parent)) {
419*f2cb1360SIngo Molnar 			tmp->parent = parent->parent;
420*f2cb1360SIngo Molnar 			if (parent->parent)
421*f2cb1360SIngo Molnar 				parent->parent->child = tmp;
422*f2cb1360SIngo Molnar 			/*
423*f2cb1360SIngo Molnar 			 * Transfer SD_PREFER_SIBLING down in case of a
424*f2cb1360SIngo Molnar 			 * degenerate parent; the spans match for this
425*f2cb1360SIngo Molnar 			 * so the property transfers.
426*f2cb1360SIngo Molnar 			 */
427*f2cb1360SIngo Molnar 			if (parent->flags & SD_PREFER_SIBLING)
428*f2cb1360SIngo Molnar 				tmp->flags |= SD_PREFER_SIBLING;
429*f2cb1360SIngo Molnar 			destroy_sched_domain(parent);
430*f2cb1360SIngo Molnar 		} else
431*f2cb1360SIngo Molnar 			tmp = tmp->parent;
432*f2cb1360SIngo Molnar 	}
433*f2cb1360SIngo Molnar 
434*f2cb1360SIngo Molnar 	if (sd && sd_degenerate(sd)) {
435*f2cb1360SIngo Molnar 		tmp = sd;
436*f2cb1360SIngo Molnar 		sd = sd->parent;
437*f2cb1360SIngo Molnar 		destroy_sched_domain(tmp);
438*f2cb1360SIngo Molnar 		if (sd)
439*f2cb1360SIngo Molnar 			sd->child = NULL;
440*f2cb1360SIngo Molnar 	}
441*f2cb1360SIngo Molnar 
442*f2cb1360SIngo Molnar 	sched_domain_debug(sd, cpu);
443*f2cb1360SIngo Molnar 
444*f2cb1360SIngo Molnar 	rq_attach_root(rq, rd);
445*f2cb1360SIngo Molnar 	tmp = rq->sd;
446*f2cb1360SIngo Molnar 	rcu_assign_pointer(rq->sd, sd);
447*f2cb1360SIngo Molnar 	destroy_sched_domains(tmp);
448*f2cb1360SIngo Molnar 
449*f2cb1360SIngo Molnar 	update_top_cache_domain(cpu);
450*f2cb1360SIngo Molnar }
451*f2cb1360SIngo Molnar 
452*f2cb1360SIngo Molnar /* Setup the mask of CPUs configured for isolated domains */
453*f2cb1360SIngo Molnar static int __init isolated_cpu_setup(char *str)
454*f2cb1360SIngo Molnar {
455*f2cb1360SIngo Molnar 	int ret;
456*f2cb1360SIngo Molnar 
457*f2cb1360SIngo Molnar 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
458*f2cb1360SIngo Molnar 	ret = cpulist_parse(str, cpu_isolated_map);
459*f2cb1360SIngo Molnar 	if (ret) {
460*f2cb1360SIngo Molnar 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
461*f2cb1360SIngo Molnar 		return 0;
462*f2cb1360SIngo Molnar 	}
463*f2cb1360SIngo Molnar 	return 1;
464*f2cb1360SIngo Molnar }
465*f2cb1360SIngo Molnar __setup("isolcpus=", isolated_cpu_setup);
466*f2cb1360SIngo Molnar 
467*f2cb1360SIngo Molnar struct s_data {
468*f2cb1360SIngo Molnar 	struct sched_domain ** __percpu sd;
469*f2cb1360SIngo Molnar 	struct root_domain	*rd;
470*f2cb1360SIngo Molnar };
471*f2cb1360SIngo Molnar 
472*f2cb1360SIngo Molnar enum s_alloc {
473*f2cb1360SIngo Molnar 	sa_rootdomain,
474*f2cb1360SIngo Molnar 	sa_sd,
475*f2cb1360SIngo Molnar 	sa_sd_storage,
476*f2cb1360SIngo Molnar 	sa_none,
477*f2cb1360SIngo Molnar };
478*f2cb1360SIngo Molnar 
479*f2cb1360SIngo Molnar /*
480*f2cb1360SIngo Molnar  * Build an iteration mask that can exclude certain CPUs from the upwards
481*f2cb1360SIngo Molnar  * domain traversal.
482*f2cb1360SIngo Molnar  *
483*f2cb1360SIngo Molnar  * Asymmetric node setups can result in situations where the domain tree is of
484*f2cb1360SIngo Molnar  * unequal depth, make sure to skip domains that already cover the entire
485*f2cb1360SIngo Molnar  * range.
486*f2cb1360SIngo Molnar  *
487*f2cb1360SIngo Molnar  * In that case build_sched_domains() will have terminated the iteration early
488*f2cb1360SIngo Molnar  * and our sibling sd spans will be empty. Domains should always include the
489*f2cb1360SIngo Molnar  * CPU they're built on, so check that.
490*f2cb1360SIngo Molnar  */
491*f2cb1360SIngo Molnar static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
492*f2cb1360SIngo Molnar {
493*f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
494*f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
495*f2cb1360SIngo Molnar 	struct sched_domain *sibling;
496*f2cb1360SIngo Molnar 	int i;
497*f2cb1360SIngo Molnar 
498*f2cb1360SIngo Molnar 	for_each_cpu(i, span) {
499*f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
500*f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
501*f2cb1360SIngo Molnar 			continue;
502*f2cb1360SIngo Molnar 
503*f2cb1360SIngo Molnar 		cpumask_set_cpu(i, sched_group_mask(sg));
504*f2cb1360SIngo Molnar 	}
505*f2cb1360SIngo Molnar }
506*f2cb1360SIngo Molnar 
507*f2cb1360SIngo Molnar /*
508*f2cb1360SIngo Molnar  * Return the canonical balance CPU for this group, this is the first CPU
509*f2cb1360SIngo Molnar  * of this group that's also in the iteration mask.
510*f2cb1360SIngo Molnar  */
511*f2cb1360SIngo Molnar int group_balance_cpu(struct sched_group *sg)
512*f2cb1360SIngo Molnar {
513*f2cb1360SIngo Molnar 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
514*f2cb1360SIngo Molnar }
515*f2cb1360SIngo Molnar 
516*f2cb1360SIngo Molnar static int
517*f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu)
518*f2cb1360SIngo Molnar {
519*f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
520*f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
521*f2cb1360SIngo Molnar 	struct cpumask *covered = sched_domains_tmpmask;
522*f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
523*f2cb1360SIngo Molnar 	struct sched_domain *sibling;
524*f2cb1360SIngo Molnar 	int i;
525*f2cb1360SIngo Molnar 
526*f2cb1360SIngo Molnar 	cpumask_clear(covered);
527*f2cb1360SIngo Molnar 
528*f2cb1360SIngo Molnar 	for_each_cpu(i, span) {
529*f2cb1360SIngo Molnar 		struct cpumask *sg_span;
530*f2cb1360SIngo Molnar 
531*f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
532*f2cb1360SIngo Molnar 			continue;
533*f2cb1360SIngo Molnar 
534*f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
535*f2cb1360SIngo Molnar 
536*f2cb1360SIngo Molnar 		/* See the comment near build_group_mask(). */
537*f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
538*f2cb1360SIngo Molnar 			continue;
539*f2cb1360SIngo Molnar 
540*f2cb1360SIngo Molnar 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
541*f2cb1360SIngo Molnar 				GFP_KERNEL, cpu_to_node(cpu));
542*f2cb1360SIngo Molnar 
543*f2cb1360SIngo Molnar 		if (!sg)
544*f2cb1360SIngo Molnar 			goto fail;
545*f2cb1360SIngo Molnar 
546*f2cb1360SIngo Molnar 		sg_span = sched_group_cpus(sg);
547*f2cb1360SIngo Molnar 		if (sibling->child)
548*f2cb1360SIngo Molnar 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
549*f2cb1360SIngo Molnar 		else
550*f2cb1360SIngo Molnar 			cpumask_set_cpu(i, sg_span);
551*f2cb1360SIngo Molnar 
552*f2cb1360SIngo Molnar 		cpumask_or(covered, covered, sg_span);
553*f2cb1360SIngo Molnar 
554*f2cb1360SIngo Molnar 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
555*f2cb1360SIngo Molnar 		if (atomic_inc_return(&sg->sgc->ref) == 1)
556*f2cb1360SIngo Molnar 			build_group_mask(sd, sg);
557*f2cb1360SIngo Molnar 
558*f2cb1360SIngo Molnar 		/*
559*f2cb1360SIngo Molnar 		 * Initialize sgc->capacity such that even if we mess up the
560*f2cb1360SIngo Molnar 		 * domains and no possible iteration will get us here, we won't
561*f2cb1360SIngo Molnar 		 * die on a /0 trap.
562*f2cb1360SIngo Molnar 		 */
563*f2cb1360SIngo Molnar 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
564*f2cb1360SIngo Molnar 		sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
565*f2cb1360SIngo Molnar 
566*f2cb1360SIngo Molnar 		/*
567*f2cb1360SIngo Molnar 		 * Make sure the first group of this domain contains the
568*f2cb1360SIngo Molnar 		 * canonical balance CPU. Otherwise the sched_domain iteration
569*f2cb1360SIngo Molnar 		 * breaks. See update_sg_lb_stats().
570*f2cb1360SIngo Molnar 		 */
571*f2cb1360SIngo Molnar 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
572*f2cb1360SIngo Molnar 		    group_balance_cpu(sg) == cpu)
573*f2cb1360SIngo Molnar 			groups = sg;
574*f2cb1360SIngo Molnar 
575*f2cb1360SIngo Molnar 		if (!first)
576*f2cb1360SIngo Molnar 			first = sg;
577*f2cb1360SIngo Molnar 		if (last)
578*f2cb1360SIngo Molnar 			last->next = sg;
579*f2cb1360SIngo Molnar 		last = sg;
580*f2cb1360SIngo Molnar 		last->next = first;
581*f2cb1360SIngo Molnar 	}
582*f2cb1360SIngo Molnar 	sd->groups = groups;
583*f2cb1360SIngo Molnar 
584*f2cb1360SIngo Molnar 	return 0;
585*f2cb1360SIngo Molnar 
586*f2cb1360SIngo Molnar fail:
587*f2cb1360SIngo Molnar 	free_sched_groups(first, 0);
588*f2cb1360SIngo Molnar 
589*f2cb1360SIngo Molnar 	return -ENOMEM;
590*f2cb1360SIngo Molnar }
591*f2cb1360SIngo Molnar 
592*f2cb1360SIngo Molnar static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
593*f2cb1360SIngo Molnar {
594*f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
595*f2cb1360SIngo Molnar 	struct sched_domain *child = sd->child;
596*f2cb1360SIngo Molnar 
597*f2cb1360SIngo Molnar 	if (child)
598*f2cb1360SIngo Molnar 		cpu = cpumask_first(sched_domain_span(child));
599*f2cb1360SIngo Molnar 
600*f2cb1360SIngo Molnar 	if (sg) {
601*f2cb1360SIngo Molnar 		*sg = *per_cpu_ptr(sdd->sg, cpu);
602*f2cb1360SIngo Molnar 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
603*f2cb1360SIngo Molnar 
604*f2cb1360SIngo Molnar 		/* For claim_allocations: */
605*f2cb1360SIngo Molnar 		atomic_set(&(*sg)->sgc->ref, 1);
606*f2cb1360SIngo Molnar 	}
607*f2cb1360SIngo Molnar 
608*f2cb1360SIngo Molnar 	return cpu;
609*f2cb1360SIngo Molnar }
610*f2cb1360SIngo Molnar 
611*f2cb1360SIngo Molnar /*
612*f2cb1360SIngo Molnar  * build_sched_groups will build a circular linked list of the groups
613*f2cb1360SIngo Molnar  * covered by the given span, and will set each group's ->cpumask correctly,
614*f2cb1360SIngo Molnar  * and ->cpu_capacity to 0.
615*f2cb1360SIngo Molnar  *
616*f2cb1360SIngo Molnar  * Assumes the sched_domain tree is fully constructed
617*f2cb1360SIngo Molnar  */
618*f2cb1360SIngo Molnar static int
619*f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu)
620*f2cb1360SIngo Molnar {
621*f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL;
622*f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
623*f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
624*f2cb1360SIngo Molnar 	struct cpumask *covered;
625*f2cb1360SIngo Molnar 	int i;
626*f2cb1360SIngo Molnar 
627*f2cb1360SIngo Molnar 	get_group(cpu, sdd, &sd->groups);
628*f2cb1360SIngo Molnar 	atomic_inc(&sd->groups->ref);
629*f2cb1360SIngo Molnar 
630*f2cb1360SIngo Molnar 	if (cpu != cpumask_first(span))
631*f2cb1360SIngo Molnar 		return 0;
632*f2cb1360SIngo Molnar 
633*f2cb1360SIngo Molnar 	lockdep_assert_held(&sched_domains_mutex);
634*f2cb1360SIngo Molnar 	covered = sched_domains_tmpmask;
635*f2cb1360SIngo Molnar 
636*f2cb1360SIngo Molnar 	cpumask_clear(covered);
637*f2cb1360SIngo Molnar 
638*f2cb1360SIngo Molnar 	for_each_cpu(i, span) {
639*f2cb1360SIngo Molnar 		struct sched_group *sg;
640*f2cb1360SIngo Molnar 		int group, j;
641*f2cb1360SIngo Molnar 
642*f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
643*f2cb1360SIngo Molnar 			continue;
644*f2cb1360SIngo Molnar 
645*f2cb1360SIngo Molnar 		group = get_group(i, sdd, &sg);
646*f2cb1360SIngo Molnar 		cpumask_setall(sched_group_mask(sg));
647*f2cb1360SIngo Molnar 
648*f2cb1360SIngo Molnar 		for_each_cpu(j, span) {
649*f2cb1360SIngo Molnar 			if (get_group(j, sdd, NULL) != group)
650*f2cb1360SIngo Molnar 				continue;
651*f2cb1360SIngo Molnar 
652*f2cb1360SIngo Molnar 			cpumask_set_cpu(j, covered);
653*f2cb1360SIngo Molnar 			cpumask_set_cpu(j, sched_group_cpus(sg));
654*f2cb1360SIngo Molnar 		}
655*f2cb1360SIngo Molnar 
656*f2cb1360SIngo Molnar 		if (!first)
657*f2cb1360SIngo Molnar 			first = sg;
658*f2cb1360SIngo Molnar 		if (last)
659*f2cb1360SIngo Molnar 			last->next = sg;
660*f2cb1360SIngo Molnar 		last = sg;
661*f2cb1360SIngo Molnar 	}
662*f2cb1360SIngo Molnar 	last->next = first;
663*f2cb1360SIngo Molnar 
664*f2cb1360SIngo Molnar 	return 0;
665*f2cb1360SIngo Molnar }
666*f2cb1360SIngo Molnar 
667*f2cb1360SIngo Molnar /*
668*f2cb1360SIngo Molnar  * Initialize sched groups cpu_capacity.
669*f2cb1360SIngo Molnar  *
670*f2cb1360SIngo Molnar  * cpu_capacity indicates the capacity of sched group, which is used while
671*f2cb1360SIngo Molnar  * distributing the load between different sched groups in a sched domain.
672*f2cb1360SIngo Molnar  * Typically cpu_capacity for all the groups in a sched domain will be same
673*f2cb1360SIngo Molnar  * unless there are asymmetries in the topology. If there are asymmetries,
674*f2cb1360SIngo Molnar  * group having more cpu_capacity will pickup more load compared to the
675*f2cb1360SIngo Molnar  * group having less cpu_capacity.
676*f2cb1360SIngo Molnar  */
677*f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
678*f2cb1360SIngo Molnar {
679*f2cb1360SIngo Molnar 	struct sched_group *sg = sd->groups;
680*f2cb1360SIngo Molnar 
681*f2cb1360SIngo Molnar 	WARN_ON(!sg);
682*f2cb1360SIngo Molnar 
683*f2cb1360SIngo Molnar 	do {
684*f2cb1360SIngo Molnar 		int cpu, max_cpu = -1;
685*f2cb1360SIngo Molnar 
686*f2cb1360SIngo Molnar 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
687*f2cb1360SIngo Molnar 
688*f2cb1360SIngo Molnar 		if (!(sd->flags & SD_ASYM_PACKING))
689*f2cb1360SIngo Molnar 			goto next;
690*f2cb1360SIngo Molnar 
691*f2cb1360SIngo Molnar 		for_each_cpu(cpu, sched_group_cpus(sg)) {
692*f2cb1360SIngo Molnar 			if (max_cpu < 0)
693*f2cb1360SIngo Molnar 				max_cpu = cpu;
694*f2cb1360SIngo Molnar 			else if (sched_asym_prefer(cpu, max_cpu))
695*f2cb1360SIngo Molnar 				max_cpu = cpu;
696*f2cb1360SIngo Molnar 		}
697*f2cb1360SIngo Molnar 		sg->asym_prefer_cpu = max_cpu;
698*f2cb1360SIngo Molnar 
699*f2cb1360SIngo Molnar next:
700*f2cb1360SIngo Molnar 		sg = sg->next;
701*f2cb1360SIngo Molnar 	} while (sg != sd->groups);
702*f2cb1360SIngo Molnar 
703*f2cb1360SIngo Molnar 	if (cpu != group_balance_cpu(sg))
704*f2cb1360SIngo Molnar 		return;
705*f2cb1360SIngo Molnar 
706*f2cb1360SIngo Molnar 	update_group_capacity(sd, cpu);
707*f2cb1360SIngo Molnar }
708*f2cb1360SIngo Molnar 
709*f2cb1360SIngo Molnar /*
710*f2cb1360SIngo Molnar  * Initializers for schedule domains
711*f2cb1360SIngo Molnar  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
712*f2cb1360SIngo Molnar  */
713*f2cb1360SIngo Molnar 
714*f2cb1360SIngo Molnar static int default_relax_domain_level = -1;
715*f2cb1360SIngo Molnar int sched_domain_level_max;
716*f2cb1360SIngo Molnar 
717*f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str)
718*f2cb1360SIngo Molnar {
719*f2cb1360SIngo Molnar 	if (kstrtoint(str, 0, &default_relax_domain_level))
720*f2cb1360SIngo Molnar 		pr_warn("Unable to set relax_domain_level\n");
721*f2cb1360SIngo Molnar 
722*f2cb1360SIngo Molnar 	return 1;
723*f2cb1360SIngo Molnar }
724*f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level);
725*f2cb1360SIngo Molnar 
726*f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd,
727*f2cb1360SIngo Molnar 				 struct sched_domain_attr *attr)
728*f2cb1360SIngo Molnar {
729*f2cb1360SIngo Molnar 	int request;
730*f2cb1360SIngo Molnar 
731*f2cb1360SIngo Molnar 	if (!attr || attr->relax_domain_level < 0) {
732*f2cb1360SIngo Molnar 		if (default_relax_domain_level < 0)
733*f2cb1360SIngo Molnar 			return;
734*f2cb1360SIngo Molnar 		else
735*f2cb1360SIngo Molnar 			request = default_relax_domain_level;
736*f2cb1360SIngo Molnar 	} else
737*f2cb1360SIngo Molnar 		request = attr->relax_domain_level;
738*f2cb1360SIngo Molnar 	if (request < sd->level) {
739*f2cb1360SIngo Molnar 		/* Turn off idle balance on this domain: */
740*f2cb1360SIngo Molnar 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
741*f2cb1360SIngo Molnar 	} else {
742*f2cb1360SIngo Molnar 		/* Turn on idle balance on this domain: */
743*f2cb1360SIngo Molnar 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
744*f2cb1360SIngo Molnar 	}
745*f2cb1360SIngo Molnar }
746*f2cb1360SIngo Molnar 
747*f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map);
748*f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map);
749*f2cb1360SIngo Molnar 
750*f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
751*f2cb1360SIngo Molnar 				 const struct cpumask *cpu_map)
752*f2cb1360SIngo Molnar {
753*f2cb1360SIngo Molnar 	switch (what) {
754*f2cb1360SIngo Molnar 	case sa_rootdomain:
755*f2cb1360SIngo Molnar 		if (!atomic_read(&d->rd->refcount))
756*f2cb1360SIngo Molnar 			free_rootdomain(&d->rd->rcu);
757*f2cb1360SIngo Molnar 		/* Fall through */
758*f2cb1360SIngo Molnar 	case sa_sd:
759*f2cb1360SIngo Molnar 		free_percpu(d->sd);
760*f2cb1360SIngo Molnar 		/* Fall through */
761*f2cb1360SIngo Molnar 	case sa_sd_storage:
762*f2cb1360SIngo Molnar 		__sdt_free(cpu_map);
763*f2cb1360SIngo Molnar 		/* Fall through */
764*f2cb1360SIngo Molnar 	case sa_none:
765*f2cb1360SIngo Molnar 		break;
766*f2cb1360SIngo Molnar 	}
767*f2cb1360SIngo Molnar }
768*f2cb1360SIngo Molnar 
769*f2cb1360SIngo Molnar static enum s_alloc
770*f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
771*f2cb1360SIngo Molnar {
772*f2cb1360SIngo Molnar 	memset(d, 0, sizeof(*d));
773*f2cb1360SIngo Molnar 
774*f2cb1360SIngo Molnar 	if (__sdt_alloc(cpu_map))
775*f2cb1360SIngo Molnar 		return sa_sd_storage;
776*f2cb1360SIngo Molnar 	d->sd = alloc_percpu(struct sched_domain *);
777*f2cb1360SIngo Molnar 	if (!d->sd)
778*f2cb1360SIngo Molnar 		return sa_sd_storage;
779*f2cb1360SIngo Molnar 	d->rd = alloc_rootdomain();
780*f2cb1360SIngo Molnar 	if (!d->rd)
781*f2cb1360SIngo Molnar 		return sa_sd;
782*f2cb1360SIngo Molnar 	return sa_rootdomain;
783*f2cb1360SIngo Molnar }
784*f2cb1360SIngo Molnar 
785*f2cb1360SIngo Molnar /*
786*f2cb1360SIngo Molnar  * NULL the sd_data elements we've used to build the sched_domain and
787*f2cb1360SIngo Molnar  * sched_group structure so that the subsequent __free_domain_allocs()
788*f2cb1360SIngo Molnar  * will not free the data we're using.
789*f2cb1360SIngo Molnar  */
790*f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd)
791*f2cb1360SIngo Molnar {
792*f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
793*f2cb1360SIngo Molnar 
794*f2cb1360SIngo Molnar 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
795*f2cb1360SIngo Molnar 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
796*f2cb1360SIngo Molnar 
797*f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
798*f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
799*f2cb1360SIngo Molnar 
800*f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
801*f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
802*f2cb1360SIngo Molnar 
803*f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
804*f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
805*f2cb1360SIngo Molnar }
806*f2cb1360SIngo Molnar 
807*f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
808*f2cb1360SIngo Molnar static int sched_domains_numa_levels;
809*f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type;
810*f2cb1360SIngo Molnar static int *sched_domains_numa_distance;
811*f2cb1360SIngo Molnar int sched_max_numa_distance;
812*f2cb1360SIngo Molnar static struct cpumask ***sched_domains_numa_masks;
813*f2cb1360SIngo Molnar static int sched_domains_curr_level;
814*f2cb1360SIngo Molnar #endif
815*f2cb1360SIngo Molnar 
816*f2cb1360SIngo Molnar /*
817*f2cb1360SIngo Molnar  * SD_flags allowed in topology descriptions.
818*f2cb1360SIngo Molnar  *
819*f2cb1360SIngo Molnar  * These flags are purely descriptive of the topology and do not prescribe
820*f2cb1360SIngo Molnar  * behaviour. Behaviour is artificial and mapped in the below sd_init()
821*f2cb1360SIngo Molnar  * function:
822*f2cb1360SIngo Molnar  *
823*f2cb1360SIngo Molnar  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
824*f2cb1360SIngo Molnar  *   SD_SHARE_PKG_RESOURCES - describes shared caches
825*f2cb1360SIngo Molnar  *   SD_NUMA                - describes NUMA topologies
826*f2cb1360SIngo Molnar  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
827*f2cb1360SIngo Molnar  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
828*f2cb1360SIngo Molnar  *
829*f2cb1360SIngo Molnar  * Odd one out, which beside describing the topology has a quirk also
830*f2cb1360SIngo Molnar  * prescribes the desired behaviour that goes along with it:
831*f2cb1360SIngo Molnar  *
832*f2cb1360SIngo Molnar  *   SD_ASYM_PACKING        - describes SMT quirks
833*f2cb1360SIngo Molnar  */
834*f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS		\
835*f2cb1360SIngo Molnar 	(SD_SHARE_CPUCAPACITY |		\
836*f2cb1360SIngo Molnar 	 SD_SHARE_PKG_RESOURCES |	\
837*f2cb1360SIngo Molnar 	 SD_NUMA |			\
838*f2cb1360SIngo Molnar 	 SD_ASYM_PACKING |		\
839*f2cb1360SIngo Molnar 	 SD_ASYM_CPUCAPACITY |		\
840*f2cb1360SIngo Molnar 	 SD_SHARE_POWERDOMAIN)
841*f2cb1360SIngo Molnar 
842*f2cb1360SIngo Molnar static struct sched_domain *
843*f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl,
844*f2cb1360SIngo Molnar 	const struct cpumask *cpu_map,
845*f2cb1360SIngo Molnar 	struct sched_domain *child, int cpu)
846*f2cb1360SIngo Molnar {
847*f2cb1360SIngo Molnar 	struct sd_data *sdd = &tl->data;
848*f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
849*f2cb1360SIngo Molnar 	int sd_id, sd_weight, sd_flags = 0;
850*f2cb1360SIngo Molnar 
851*f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
852*f2cb1360SIngo Molnar 	/*
853*f2cb1360SIngo Molnar 	 * Ugly hack to pass state to sd_numa_mask()...
854*f2cb1360SIngo Molnar 	 */
855*f2cb1360SIngo Molnar 	sched_domains_curr_level = tl->numa_level;
856*f2cb1360SIngo Molnar #endif
857*f2cb1360SIngo Molnar 
858*f2cb1360SIngo Molnar 	sd_weight = cpumask_weight(tl->mask(cpu));
859*f2cb1360SIngo Molnar 
860*f2cb1360SIngo Molnar 	if (tl->sd_flags)
861*f2cb1360SIngo Molnar 		sd_flags = (*tl->sd_flags)();
862*f2cb1360SIngo Molnar 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
863*f2cb1360SIngo Molnar 			"wrong sd_flags in topology description\n"))
864*f2cb1360SIngo Molnar 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
865*f2cb1360SIngo Molnar 
866*f2cb1360SIngo Molnar 	*sd = (struct sched_domain){
867*f2cb1360SIngo Molnar 		.min_interval		= sd_weight,
868*f2cb1360SIngo Molnar 		.max_interval		= 2*sd_weight,
869*f2cb1360SIngo Molnar 		.busy_factor		= 32,
870*f2cb1360SIngo Molnar 		.imbalance_pct		= 125,
871*f2cb1360SIngo Molnar 
872*f2cb1360SIngo Molnar 		.cache_nice_tries	= 0,
873*f2cb1360SIngo Molnar 		.busy_idx		= 0,
874*f2cb1360SIngo Molnar 		.idle_idx		= 0,
875*f2cb1360SIngo Molnar 		.newidle_idx		= 0,
876*f2cb1360SIngo Molnar 		.wake_idx		= 0,
877*f2cb1360SIngo Molnar 		.forkexec_idx		= 0,
878*f2cb1360SIngo Molnar 
879*f2cb1360SIngo Molnar 		.flags			= 1*SD_LOAD_BALANCE
880*f2cb1360SIngo Molnar 					| 1*SD_BALANCE_NEWIDLE
881*f2cb1360SIngo Molnar 					| 1*SD_BALANCE_EXEC
882*f2cb1360SIngo Molnar 					| 1*SD_BALANCE_FORK
883*f2cb1360SIngo Molnar 					| 0*SD_BALANCE_WAKE
884*f2cb1360SIngo Molnar 					| 1*SD_WAKE_AFFINE
885*f2cb1360SIngo Molnar 					| 0*SD_SHARE_CPUCAPACITY
886*f2cb1360SIngo Molnar 					| 0*SD_SHARE_PKG_RESOURCES
887*f2cb1360SIngo Molnar 					| 0*SD_SERIALIZE
888*f2cb1360SIngo Molnar 					| 0*SD_PREFER_SIBLING
889*f2cb1360SIngo Molnar 					| 0*SD_NUMA
890*f2cb1360SIngo Molnar 					| sd_flags
891*f2cb1360SIngo Molnar 					,
892*f2cb1360SIngo Molnar 
893*f2cb1360SIngo Molnar 		.last_balance		= jiffies,
894*f2cb1360SIngo Molnar 		.balance_interval	= sd_weight,
895*f2cb1360SIngo Molnar 		.smt_gain		= 0,
896*f2cb1360SIngo Molnar 		.max_newidle_lb_cost	= 0,
897*f2cb1360SIngo Molnar 		.next_decay_max_lb_cost	= jiffies,
898*f2cb1360SIngo Molnar 		.child			= child,
899*f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
900*f2cb1360SIngo Molnar 		.name			= tl->name,
901*f2cb1360SIngo Molnar #endif
902*f2cb1360SIngo Molnar 	};
903*f2cb1360SIngo Molnar 
904*f2cb1360SIngo Molnar 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
905*f2cb1360SIngo Molnar 	sd_id = cpumask_first(sched_domain_span(sd));
906*f2cb1360SIngo Molnar 
907*f2cb1360SIngo Molnar 	/*
908*f2cb1360SIngo Molnar 	 * Convert topological properties into behaviour.
909*f2cb1360SIngo Molnar 	 */
910*f2cb1360SIngo Molnar 
911*f2cb1360SIngo Molnar 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
912*f2cb1360SIngo Molnar 		struct sched_domain *t = sd;
913*f2cb1360SIngo Molnar 
914*f2cb1360SIngo Molnar 		for_each_lower_domain(t)
915*f2cb1360SIngo Molnar 			t->flags |= SD_BALANCE_WAKE;
916*f2cb1360SIngo Molnar 	}
917*f2cb1360SIngo Molnar 
918*f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
919*f2cb1360SIngo Molnar 		sd->flags |= SD_PREFER_SIBLING;
920*f2cb1360SIngo Molnar 		sd->imbalance_pct = 110;
921*f2cb1360SIngo Molnar 		sd->smt_gain = 1178; /* ~15% */
922*f2cb1360SIngo Molnar 
923*f2cb1360SIngo Molnar 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
924*f2cb1360SIngo Molnar 		sd->imbalance_pct = 117;
925*f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
926*f2cb1360SIngo Molnar 		sd->busy_idx = 2;
927*f2cb1360SIngo Molnar 
928*f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
929*f2cb1360SIngo Molnar 	} else if (sd->flags & SD_NUMA) {
930*f2cb1360SIngo Molnar 		sd->cache_nice_tries = 2;
931*f2cb1360SIngo Molnar 		sd->busy_idx = 3;
932*f2cb1360SIngo Molnar 		sd->idle_idx = 2;
933*f2cb1360SIngo Molnar 
934*f2cb1360SIngo Molnar 		sd->flags |= SD_SERIALIZE;
935*f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
936*f2cb1360SIngo Molnar 			sd->flags &= ~(SD_BALANCE_EXEC |
937*f2cb1360SIngo Molnar 				       SD_BALANCE_FORK |
938*f2cb1360SIngo Molnar 				       SD_WAKE_AFFINE);
939*f2cb1360SIngo Molnar 		}
940*f2cb1360SIngo Molnar 
941*f2cb1360SIngo Molnar #endif
942*f2cb1360SIngo Molnar 	} else {
943*f2cb1360SIngo Molnar 		sd->flags |= SD_PREFER_SIBLING;
944*f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
945*f2cb1360SIngo Molnar 		sd->busy_idx = 2;
946*f2cb1360SIngo Molnar 		sd->idle_idx = 1;
947*f2cb1360SIngo Molnar 	}
948*f2cb1360SIngo Molnar 
949*f2cb1360SIngo Molnar 	/*
950*f2cb1360SIngo Molnar 	 * For all levels sharing cache; connect a sched_domain_shared
951*f2cb1360SIngo Molnar 	 * instance.
952*f2cb1360SIngo Molnar 	 */
953*f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
954*f2cb1360SIngo Molnar 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
955*f2cb1360SIngo Molnar 		atomic_inc(&sd->shared->ref);
956*f2cb1360SIngo Molnar 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
957*f2cb1360SIngo Molnar 	}
958*f2cb1360SIngo Molnar 
959*f2cb1360SIngo Molnar 	sd->private = sdd;
960*f2cb1360SIngo Molnar 
961*f2cb1360SIngo Molnar 	return sd;
962*f2cb1360SIngo Molnar }
963*f2cb1360SIngo Molnar 
964*f2cb1360SIngo Molnar /*
965*f2cb1360SIngo Molnar  * Topology list, bottom-up.
966*f2cb1360SIngo Molnar  */
967*f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = {
968*f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT
969*f2cb1360SIngo Molnar 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
970*f2cb1360SIngo Molnar #endif
971*f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC
972*f2cb1360SIngo Molnar 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
973*f2cb1360SIngo Molnar #endif
974*f2cb1360SIngo Molnar 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
975*f2cb1360SIngo Molnar 	{ NULL, },
976*f2cb1360SIngo Molnar };
977*f2cb1360SIngo Molnar 
978*f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology =
979*f2cb1360SIngo Molnar 	default_topology;
980*f2cb1360SIngo Molnar 
981*f2cb1360SIngo Molnar #define for_each_sd_topology(tl)			\
982*f2cb1360SIngo Molnar 	for (tl = sched_domain_topology; tl->mask; tl++)
983*f2cb1360SIngo Molnar 
984*f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl)
985*f2cb1360SIngo Molnar {
986*f2cb1360SIngo Molnar 	if (WARN_ON_ONCE(sched_smp_initialized))
987*f2cb1360SIngo Molnar 		return;
988*f2cb1360SIngo Molnar 
989*f2cb1360SIngo Molnar 	sched_domain_topology = tl;
990*f2cb1360SIngo Molnar }
991*f2cb1360SIngo Molnar 
992*f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
993*f2cb1360SIngo Molnar 
994*f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu)
995*f2cb1360SIngo Molnar {
996*f2cb1360SIngo Molnar 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
997*f2cb1360SIngo Molnar }
998*f2cb1360SIngo Molnar 
999*f2cb1360SIngo Molnar static void sched_numa_warn(const char *str)
1000*f2cb1360SIngo Molnar {
1001*f2cb1360SIngo Molnar 	static int done = false;
1002*f2cb1360SIngo Molnar 	int i,j;
1003*f2cb1360SIngo Molnar 
1004*f2cb1360SIngo Molnar 	if (done)
1005*f2cb1360SIngo Molnar 		return;
1006*f2cb1360SIngo Molnar 
1007*f2cb1360SIngo Molnar 	done = true;
1008*f2cb1360SIngo Molnar 
1009*f2cb1360SIngo Molnar 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1010*f2cb1360SIngo Molnar 
1011*f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1012*f2cb1360SIngo Molnar 		printk(KERN_WARNING "  ");
1013*f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1014*f2cb1360SIngo Molnar 			printk(KERN_CONT "%02d ", node_distance(i,j));
1015*f2cb1360SIngo Molnar 		printk(KERN_CONT "\n");
1016*f2cb1360SIngo Molnar 	}
1017*f2cb1360SIngo Molnar 	printk(KERN_WARNING "\n");
1018*f2cb1360SIngo Molnar }
1019*f2cb1360SIngo Molnar 
1020*f2cb1360SIngo Molnar bool find_numa_distance(int distance)
1021*f2cb1360SIngo Molnar {
1022*f2cb1360SIngo Molnar 	int i;
1023*f2cb1360SIngo Molnar 
1024*f2cb1360SIngo Molnar 	if (distance == node_distance(0, 0))
1025*f2cb1360SIngo Molnar 		return true;
1026*f2cb1360SIngo Molnar 
1027*f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1028*f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[i] == distance)
1029*f2cb1360SIngo Molnar 			return true;
1030*f2cb1360SIngo Molnar 	}
1031*f2cb1360SIngo Molnar 
1032*f2cb1360SIngo Molnar 	return false;
1033*f2cb1360SIngo Molnar }
1034*f2cb1360SIngo Molnar 
1035*f2cb1360SIngo Molnar /*
1036*f2cb1360SIngo Molnar  * A system can have three types of NUMA topology:
1037*f2cb1360SIngo Molnar  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1038*f2cb1360SIngo Molnar  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1039*f2cb1360SIngo Molnar  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1040*f2cb1360SIngo Molnar  *
1041*f2cb1360SIngo Molnar  * The difference between a glueless mesh topology and a backplane
1042*f2cb1360SIngo Molnar  * topology lies in whether communication between not directly
1043*f2cb1360SIngo Molnar  * connected nodes goes through intermediary nodes (where programs
1044*f2cb1360SIngo Molnar  * could run), or through backplane controllers. This affects
1045*f2cb1360SIngo Molnar  * placement of programs.
1046*f2cb1360SIngo Molnar  *
1047*f2cb1360SIngo Molnar  * The type of topology can be discerned with the following tests:
1048*f2cb1360SIngo Molnar  * - If the maximum distance between any nodes is 1 hop, the system
1049*f2cb1360SIngo Molnar  *   is directly connected.
1050*f2cb1360SIngo Molnar  * - If for two nodes A and B, located N > 1 hops away from each other,
1051*f2cb1360SIngo Molnar  *   there is an intermediary node C, which is < N hops away from both
1052*f2cb1360SIngo Molnar  *   nodes A and B, the system is a glueless mesh.
1053*f2cb1360SIngo Molnar  */
1054*f2cb1360SIngo Molnar static void init_numa_topology_type(void)
1055*f2cb1360SIngo Molnar {
1056*f2cb1360SIngo Molnar 	int a, b, c, n;
1057*f2cb1360SIngo Molnar 
1058*f2cb1360SIngo Molnar 	n = sched_max_numa_distance;
1059*f2cb1360SIngo Molnar 
1060*f2cb1360SIngo Molnar 	if (sched_domains_numa_levels <= 1) {
1061*f2cb1360SIngo Molnar 		sched_numa_topology_type = NUMA_DIRECT;
1062*f2cb1360SIngo Molnar 		return;
1063*f2cb1360SIngo Molnar 	}
1064*f2cb1360SIngo Molnar 
1065*f2cb1360SIngo Molnar 	for_each_online_node(a) {
1066*f2cb1360SIngo Molnar 		for_each_online_node(b) {
1067*f2cb1360SIngo Molnar 			/* Find two nodes furthest removed from each other. */
1068*f2cb1360SIngo Molnar 			if (node_distance(a, b) < n)
1069*f2cb1360SIngo Molnar 				continue;
1070*f2cb1360SIngo Molnar 
1071*f2cb1360SIngo Molnar 			/* Is there an intermediary node between a and b? */
1072*f2cb1360SIngo Molnar 			for_each_online_node(c) {
1073*f2cb1360SIngo Molnar 				if (node_distance(a, c) < n &&
1074*f2cb1360SIngo Molnar 				    node_distance(b, c) < n) {
1075*f2cb1360SIngo Molnar 					sched_numa_topology_type =
1076*f2cb1360SIngo Molnar 							NUMA_GLUELESS_MESH;
1077*f2cb1360SIngo Molnar 					return;
1078*f2cb1360SIngo Molnar 				}
1079*f2cb1360SIngo Molnar 			}
1080*f2cb1360SIngo Molnar 
1081*f2cb1360SIngo Molnar 			sched_numa_topology_type = NUMA_BACKPLANE;
1082*f2cb1360SIngo Molnar 			return;
1083*f2cb1360SIngo Molnar 		}
1084*f2cb1360SIngo Molnar 	}
1085*f2cb1360SIngo Molnar }
1086*f2cb1360SIngo Molnar 
1087*f2cb1360SIngo Molnar void sched_init_numa(void)
1088*f2cb1360SIngo Molnar {
1089*f2cb1360SIngo Molnar 	int next_distance, curr_distance = node_distance(0, 0);
1090*f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1091*f2cb1360SIngo Molnar 	int level = 0;
1092*f2cb1360SIngo Molnar 	int i, j, k;
1093*f2cb1360SIngo Molnar 
1094*f2cb1360SIngo Molnar 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1095*f2cb1360SIngo Molnar 	if (!sched_domains_numa_distance)
1096*f2cb1360SIngo Molnar 		return;
1097*f2cb1360SIngo Molnar 
1098*f2cb1360SIngo Molnar 	/*
1099*f2cb1360SIngo Molnar 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1100*f2cb1360SIngo Molnar 	 * unique distances in the node_distance() table.
1101*f2cb1360SIngo Molnar 	 *
1102*f2cb1360SIngo Molnar 	 * Assumes node_distance(0,j) includes all distances in
1103*f2cb1360SIngo Molnar 	 * node_distance(i,j) in order to avoid cubic time.
1104*f2cb1360SIngo Molnar 	 */
1105*f2cb1360SIngo Molnar 	next_distance = curr_distance;
1106*f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1107*f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1108*f2cb1360SIngo Molnar 			for (k = 0; k < nr_node_ids; k++) {
1109*f2cb1360SIngo Molnar 				int distance = node_distance(i, k);
1110*f2cb1360SIngo Molnar 
1111*f2cb1360SIngo Molnar 				if (distance > curr_distance &&
1112*f2cb1360SIngo Molnar 				    (distance < next_distance ||
1113*f2cb1360SIngo Molnar 				     next_distance == curr_distance))
1114*f2cb1360SIngo Molnar 					next_distance = distance;
1115*f2cb1360SIngo Molnar 
1116*f2cb1360SIngo Molnar 				/*
1117*f2cb1360SIngo Molnar 				 * While not a strong assumption it would be nice to know
1118*f2cb1360SIngo Molnar 				 * about cases where if node A is connected to B, B is not
1119*f2cb1360SIngo Molnar 				 * equally connected to A.
1120*f2cb1360SIngo Molnar 				 */
1121*f2cb1360SIngo Molnar 				if (sched_debug() && node_distance(k, i) != distance)
1122*f2cb1360SIngo Molnar 					sched_numa_warn("Node-distance not symmetric");
1123*f2cb1360SIngo Molnar 
1124*f2cb1360SIngo Molnar 				if (sched_debug() && i && !find_numa_distance(distance))
1125*f2cb1360SIngo Molnar 					sched_numa_warn("Node-0 not representative");
1126*f2cb1360SIngo Molnar 			}
1127*f2cb1360SIngo Molnar 			if (next_distance != curr_distance) {
1128*f2cb1360SIngo Molnar 				sched_domains_numa_distance[level++] = next_distance;
1129*f2cb1360SIngo Molnar 				sched_domains_numa_levels = level;
1130*f2cb1360SIngo Molnar 				curr_distance = next_distance;
1131*f2cb1360SIngo Molnar 			} else break;
1132*f2cb1360SIngo Molnar 		}
1133*f2cb1360SIngo Molnar 
1134*f2cb1360SIngo Molnar 		/*
1135*f2cb1360SIngo Molnar 		 * In case of sched_debug() we verify the above assumption.
1136*f2cb1360SIngo Molnar 		 */
1137*f2cb1360SIngo Molnar 		if (!sched_debug())
1138*f2cb1360SIngo Molnar 			break;
1139*f2cb1360SIngo Molnar 	}
1140*f2cb1360SIngo Molnar 
1141*f2cb1360SIngo Molnar 	if (!level)
1142*f2cb1360SIngo Molnar 		return;
1143*f2cb1360SIngo Molnar 
1144*f2cb1360SIngo Molnar 	/*
1145*f2cb1360SIngo Molnar 	 * 'level' contains the number of unique distances, excluding the
1146*f2cb1360SIngo Molnar 	 * identity distance node_distance(i,i).
1147*f2cb1360SIngo Molnar 	 *
1148*f2cb1360SIngo Molnar 	 * The sched_domains_numa_distance[] array includes the actual distance
1149*f2cb1360SIngo Molnar 	 * numbers.
1150*f2cb1360SIngo Molnar 	 */
1151*f2cb1360SIngo Molnar 
1152*f2cb1360SIngo Molnar 	/*
1153*f2cb1360SIngo Molnar 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1154*f2cb1360SIngo Molnar 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1155*f2cb1360SIngo Molnar 	 * the array will contain less then 'level' members. This could be
1156*f2cb1360SIngo Molnar 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1157*f2cb1360SIngo Molnar 	 * in other functions.
1158*f2cb1360SIngo Molnar 	 *
1159*f2cb1360SIngo Molnar 	 * We reset it to 'level' at the end of this function.
1160*f2cb1360SIngo Molnar 	 */
1161*f2cb1360SIngo Molnar 	sched_domains_numa_levels = 0;
1162*f2cb1360SIngo Molnar 
1163*f2cb1360SIngo Molnar 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1164*f2cb1360SIngo Molnar 	if (!sched_domains_numa_masks)
1165*f2cb1360SIngo Molnar 		return;
1166*f2cb1360SIngo Molnar 
1167*f2cb1360SIngo Molnar 	/*
1168*f2cb1360SIngo Molnar 	 * Now for each level, construct a mask per node which contains all
1169*f2cb1360SIngo Molnar 	 * CPUs of nodes that are that many hops away from us.
1170*f2cb1360SIngo Molnar 	 */
1171*f2cb1360SIngo Molnar 	for (i = 0; i < level; i++) {
1172*f2cb1360SIngo Molnar 		sched_domains_numa_masks[i] =
1173*f2cb1360SIngo Molnar 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1174*f2cb1360SIngo Molnar 		if (!sched_domains_numa_masks[i])
1175*f2cb1360SIngo Molnar 			return;
1176*f2cb1360SIngo Molnar 
1177*f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1178*f2cb1360SIngo Molnar 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1179*f2cb1360SIngo Molnar 			if (!mask)
1180*f2cb1360SIngo Molnar 				return;
1181*f2cb1360SIngo Molnar 
1182*f2cb1360SIngo Molnar 			sched_domains_numa_masks[i][j] = mask;
1183*f2cb1360SIngo Molnar 
1184*f2cb1360SIngo Molnar 			for_each_node(k) {
1185*f2cb1360SIngo Molnar 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1186*f2cb1360SIngo Molnar 					continue;
1187*f2cb1360SIngo Molnar 
1188*f2cb1360SIngo Molnar 				cpumask_or(mask, mask, cpumask_of_node(k));
1189*f2cb1360SIngo Molnar 			}
1190*f2cb1360SIngo Molnar 		}
1191*f2cb1360SIngo Molnar 	}
1192*f2cb1360SIngo Molnar 
1193*f2cb1360SIngo Molnar 	/* Compute default topology size */
1194*f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++);
1195*f2cb1360SIngo Molnar 
1196*f2cb1360SIngo Molnar 	tl = kzalloc((i + level + 1) *
1197*f2cb1360SIngo Molnar 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1198*f2cb1360SIngo Molnar 	if (!tl)
1199*f2cb1360SIngo Molnar 		return;
1200*f2cb1360SIngo Molnar 
1201*f2cb1360SIngo Molnar 	/*
1202*f2cb1360SIngo Molnar 	 * Copy the default topology bits..
1203*f2cb1360SIngo Molnar 	 */
1204*f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++)
1205*f2cb1360SIngo Molnar 		tl[i] = sched_domain_topology[i];
1206*f2cb1360SIngo Molnar 
1207*f2cb1360SIngo Molnar 	/*
1208*f2cb1360SIngo Molnar 	 * .. and append 'j' levels of NUMA goodness.
1209*f2cb1360SIngo Molnar 	 */
1210*f2cb1360SIngo Molnar 	for (j = 0; j < level; i++, j++) {
1211*f2cb1360SIngo Molnar 		tl[i] = (struct sched_domain_topology_level){
1212*f2cb1360SIngo Molnar 			.mask = sd_numa_mask,
1213*f2cb1360SIngo Molnar 			.sd_flags = cpu_numa_flags,
1214*f2cb1360SIngo Molnar 			.flags = SDTL_OVERLAP,
1215*f2cb1360SIngo Molnar 			.numa_level = j,
1216*f2cb1360SIngo Molnar 			SD_INIT_NAME(NUMA)
1217*f2cb1360SIngo Molnar 		};
1218*f2cb1360SIngo Molnar 	}
1219*f2cb1360SIngo Molnar 
1220*f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1221*f2cb1360SIngo Molnar 
1222*f2cb1360SIngo Molnar 	sched_domains_numa_levels = level;
1223*f2cb1360SIngo Molnar 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1224*f2cb1360SIngo Molnar 
1225*f2cb1360SIngo Molnar 	init_numa_topology_type();
1226*f2cb1360SIngo Molnar }
1227*f2cb1360SIngo Molnar 
1228*f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu)
1229*f2cb1360SIngo Molnar {
1230*f2cb1360SIngo Molnar 	int node = cpu_to_node(cpu);
1231*f2cb1360SIngo Molnar 	int i, j;
1232*f2cb1360SIngo Molnar 
1233*f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1234*f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1235*f2cb1360SIngo Molnar 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1236*f2cb1360SIngo Molnar 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1237*f2cb1360SIngo Molnar 		}
1238*f2cb1360SIngo Molnar 	}
1239*f2cb1360SIngo Molnar }
1240*f2cb1360SIngo Molnar 
1241*f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu)
1242*f2cb1360SIngo Molnar {
1243*f2cb1360SIngo Molnar 	int i, j;
1244*f2cb1360SIngo Molnar 
1245*f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1246*f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1247*f2cb1360SIngo Molnar 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1248*f2cb1360SIngo Molnar 	}
1249*f2cb1360SIngo Molnar }
1250*f2cb1360SIngo Molnar 
1251*f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */
1252*f2cb1360SIngo Molnar 
1253*f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map)
1254*f2cb1360SIngo Molnar {
1255*f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1256*f2cb1360SIngo Molnar 	int j;
1257*f2cb1360SIngo Molnar 
1258*f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1259*f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1260*f2cb1360SIngo Molnar 
1261*f2cb1360SIngo Molnar 		sdd->sd = alloc_percpu(struct sched_domain *);
1262*f2cb1360SIngo Molnar 		if (!sdd->sd)
1263*f2cb1360SIngo Molnar 			return -ENOMEM;
1264*f2cb1360SIngo Molnar 
1265*f2cb1360SIngo Molnar 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1266*f2cb1360SIngo Molnar 		if (!sdd->sds)
1267*f2cb1360SIngo Molnar 			return -ENOMEM;
1268*f2cb1360SIngo Molnar 
1269*f2cb1360SIngo Molnar 		sdd->sg = alloc_percpu(struct sched_group *);
1270*f2cb1360SIngo Molnar 		if (!sdd->sg)
1271*f2cb1360SIngo Molnar 			return -ENOMEM;
1272*f2cb1360SIngo Molnar 
1273*f2cb1360SIngo Molnar 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1274*f2cb1360SIngo Molnar 		if (!sdd->sgc)
1275*f2cb1360SIngo Molnar 			return -ENOMEM;
1276*f2cb1360SIngo Molnar 
1277*f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1278*f2cb1360SIngo Molnar 			struct sched_domain *sd;
1279*f2cb1360SIngo Molnar 			struct sched_domain_shared *sds;
1280*f2cb1360SIngo Molnar 			struct sched_group *sg;
1281*f2cb1360SIngo Molnar 			struct sched_group_capacity *sgc;
1282*f2cb1360SIngo Molnar 
1283*f2cb1360SIngo Molnar 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1284*f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1285*f2cb1360SIngo Molnar 			if (!sd)
1286*f2cb1360SIngo Molnar 				return -ENOMEM;
1287*f2cb1360SIngo Molnar 
1288*f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sd, j) = sd;
1289*f2cb1360SIngo Molnar 
1290*f2cb1360SIngo Molnar 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1291*f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1292*f2cb1360SIngo Molnar 			if (!sds)
1293*f2cb1360SIngo Molnar 				return -ENOMEM;
1294*f2cb1360SIngo Molnar 
1295*f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sds, j) = sds;
1296*f2cb1360SIngo Molnar 
1297*f2cb1360SIngo Molnar 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1298*f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1299*f2cb1360SIngo Molnar 			if (!sg)
1300*f2cb1360SIngo Molnar 				return -ENOMEM;
1301*f2cb1360SIngo Molnar 
1302*f2cb1360SIngo Molnar 			sg->next = sg;
1303*f2cb1360SIngo Molnar 
1304*f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sg, j) = sg;
1305*f2cb1360SIngo Molnar 
1306*f2cb1360SIngo Molnar 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1307*f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1308*f2cb1360SIngo Molnar 			if (!sgc)
1309*f2cb1360SIngo Molnar 				return -ENOMEM;
1310*f2cb1360SIngo Molnar 
1311*f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1312*f2cb1360SIngo Molnar 		}
1313*f2cb1360SIngo Molnar 	}
1314*f2cb1360SIngo Molnar 
1315*f2cb1360SIngo Molnar 	return 0;
1316*f2cb1360SIngo Molnar }
1317*f2cb1360SIngo Molnar 
1318*f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map)
1319*f2cb1360SIngo Molnar {
1320*f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1321*f2cb1360SIngo Molnar 	int j;
1322*f2cb1360SIngo Molnar 
1323*f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1324*f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1325*f2cb1360SIngo Molnar 
1326*f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1327*f2cb1360SIngo Molnar 			struct sched_domain *sd;
1328*f2cb1360SIngo Molnar 
1329*f2cb1360SIngo Molnar 			if (sdd->sd) {
1330*f2cb1360SIngo Molnar 				sd = *per_cpu_ptr(sdd->sd, j);
1331*f2cb1360SIngo Molnar 				if (sd && (sd->flags & SD_OVERLAP))
1332*f2cb1360SIngo Molnar 					free_sched_groups(sd->groups, 0);
1333*f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sd, j));
1334*f2cb1360SIngo Molnar 			}
1335*f2cb1360SIngo Molnar 
1336*f2cb1360SIngo Molnar 			if (sdd->sds)
1337*f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sds, j));
1338*f2cb1360SIngo Molnar 			if (sdd->sg)
1339*f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sg, j));
1340*f2cb1360SIngo Molnar 			if (sdd->sgc)
1341*f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sgc, j));
1342*f2cb1360SIngo Molnar 		}
1343*f2cb1360SIngo Molnar 		free_percpu(sdd->sd);
1344*f2cb1360SIngo Molnar 		sdd->sd = NULL;
1345*f2cb1360SIngo Molnar 		free_percpu(sdd->sds);
1346*f2cb1360SIngo Molnar 		sdd->sds = NULL;
1347*f2cb1360SIngo Molnar 		free_percpu(sdd->sg);
1348*f2cb1360SIngo Molnar 		sdd->sg = NULL;
1349*f2cb1360SIngo Molnar 		free_percpu(sdd->sgc);
1350*f2cb1360SIngo Molnar 		sdd->sgc = NULL;
1351*f2cb1360SIngo Molnar 	}
1352*f2cb1360SIngo Molnar }
1353*f2cb1360SIngo Molnar 
1354*f2cb1360SIngo Molnar struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1355*f2cb1360SIngo Molnar 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1356*f2cb1360SIngo Molnar 		struct sched_domain *child, int cpu)
1357*f2cb1360SIngo Molnar {
1358*f2cb1360SIngo Molnar 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1359*f2cb1360SIngo Molnar 
1360*f2cb1360SIngo Molnar 	if (child) {
1361*f2cb1360SIngo Molnar 		sd->level = child->level + 1;
1362*f2cb1360SIngo Molnar 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1363*f2cb1360SIngo Molnar 		child->parent = sd;
1364*f2cb1360SIngo Molnar 
1365*f2cb1360SIngo Molnar 		if (!cpumask_subset(sched_domain_span(child),
1366*f2cb1360SIngo Molnar 				    sched_domain_span(sd))) {
1367*f2cb1360SIngo Molnar 			pr_err("BUG: arch topology borken\n");
1368*f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1369*f2cb1360SIngo Molnar 			pr_err("     the %s domain not a subset of the %s domain\n",
1370*f2cb1360SIngo Molnar 					child->name, sd->name);
1371*f2cb1360SIngo Molnar #endif
1372*f2cb1360SIngo Molnar 			/* Fixup, ensure @sd has at least @child cpus. */
1373*f2cb1360SIngo Molnar 			cpumask_or(sched_domain_span(sd),
1374*f2cb1360SIngo Molnar 				   sched_domain_span(sd),
1375*f2cb1360SIngo Molnar 				   sched_domain_span(child));
1376*f2cb1360SIngo Molnar 		}
1377*f2cb1360SIngo Molnar 
1378*f2cb1360SIngo Molnar 	}
1379*f2cb1360SIngo Molnar 	set_domain_attribute(sd, attr);
1380*f2cb1360SIngo Molnar 
1381*f2cb1360SIngo Molnar 	return sd;
1382*f2cb1360SIngo Molnar }
1383*f2cb1360SIngo Molnar 
1384*f2cb1360SIngo Molnar /*
1385*f2cb1360SIngo Molnar  * Build sched domains for a given set of CPUs and attach the sched domains
1386*f2cb1360SIngo Molnar  * to the individual CPUs
1387*f2cb1360SIngo Molnar  */
1388*f2cb1360SIngo Molnar static int
1389*f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1390*f2cb1360SIngo Molnar {
1391*f2cb1360SIngo Molnar 	enum s_alloc alloc_state;
1392*f2cb1360SIngo Molnar 	struct sched_domain *sd;
1393*f2cb1360SIngo Molnar 	struct s_data d;
1394*f2cb1360SIngo Molnar 	struct rq *rq = NULL;
1395*f2cb1360SIngo Molnar 	int i, ret = -ENOMEM;
1396*f2cb1360SIngo Molnar 
1397*f2cb1360SIngo Molnar 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1398*f2cb1360SIngo Molnar 	if (alloc_state != sa_rootdomain)
1399*f2cb1360SIngo Molnar 		goto error;
1400*f2cb1360SIngo Molnar 
1401*f2cb1360SIngo Molnar 	/* Set up domains for CPUs specified by the cpu_map: */
1402*f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1403*f2cb1360SIngo Molnar 		struct sched_domain_topology_level *tl;
1404*f2cb1360SIngo Molnar 
1405*f2cb1360SIngo Molnar 		sd = NULL;
1406*f2cb1360SIngo Molnar 		for_each_sd_topology(tl) {
1407*f2cb1360SIngo Molnar 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1408*f2cb1360SIngo Molnar 			if (tl == sched_domain_topology)
1409*f2cb1360SIngo Molnar 				*per_cpu_ptr(d.sd, i) = sd;
1410*f2cb1360SIngo Molnar 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
1411*f2cb1360SIngo Molnar 				sd->flags |= SD_OVERLAP;
1412*f2cb1360SIngo Molnar 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1413*f2cb1360SIngo Molnar 				break;
1414*f2cb1360SIngo Molnar 		}
1415*f2cb1360SIngo Molnar 	}
1416*f2cb1360SIngo Molnar 
1417*f2cb1360SIngo Molnar 	/* Build the groups for the domains */
1418*f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1419*f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1420*f2cb1360SIngo Molnar 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1421*f2cb1360SIngo Molnar 			if (sd->flags & SD_OVERLAP) {
1422*f2cb1360SIngo Molnar 				if (build_overlap_sched_groups(sd, i))
1423*f2cb1360SIngo Molnar 					goto error;
1424*f2cb1360SIngo Molnar 			} else {
1425*f2cb1360SIngo Molnar 				if (build_sched_groups(sd, i))
1426*f2cb1360SIngo Molnar 					goto error;
1427*f2cb1360SIngo Molnar 			}
1428*f2cb1360SIngo Molnar 		}
1429*f2cb1360SIngo Molnar 	}
1430*f2cb1360SIngo Molnar 
1431*f2cb1360SIngo Molnar 	/* Calculate CPU capacity for physical packages and nodes */
1432*f2cb1360SIngo Molnar 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1433*f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, cpu_map))
1434*f2cb1360SIngo Molnar 			continue;
1435*f2cb1360SIngo Molnar 
1436*f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1437*f2cb1360SIngo Molnar 			claim_allocations(i, sd);
1438*f2cb1360SIngo Molnar 			init_sched_groups_capacity(i, sd);
1439*f2cb1360SIngo Molnar 		}
1440*f2cb1360SIngo Molnar 	}
1441*f2cb1360SIngo Molnar 
1442*f2cb1360SIngo Molnar 	/* Attach the domains */
1443*f2cb1360SIngo Molnar 	rcu_read_lock();
1444*f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1445*f2cb1360SIngo Molnar 		rq = cpu_rq(i);
1446*f2cb1360SIngo Molnar 		sd = *per_cpu_ptr(d.sd, i);
1447*f2cb1360SIngo Molnar 
1448*f2cb1360SIngo Molnar 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1449*f2cb1360SIngo Molnar 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1450*f2cb1360SIngo Molnar 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1451*f2cb1360SIngo Molnar 
1452*f2cb1360SIngo Molnar 		cpu_attach_domain(sd, d.rd, i);
1453*f2cb1360SIngo Molnar 	}
1454*f2cb1360SIngo Molnar 	rcu_read_unlock();
1455*f2cb1360SIngo Molnar 
1456*f2cb1360SIngo Molnar 	if (rq && sched_debug_enabled) {
1457*f2cb1360SIngo Molnar 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1458*f2cb1360SIngo Molnar 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1459*f2cb1360SIngo Molnar 	}
1460*f2cb1360SIngo Molnar 
1461*f2cb1360SIngo Molnar 	ret = 0;
1462*f2cb1360SIngo Molnar error:
1463*f2cb1360SIngo Molnar 	__free_domain_allocs(&d, alloc_state, cpu_map);
1464*f2cb1360SIngo Molnar 	return ret;
1465*f2cb1360SIngo Molnar }
1466*f2cb1360SIngo Molnar 
1467*f2cb1360SIngo Molnar /* Current sched domains: */
1468*f2cb1360SIngo Molnar static cpumask_var_t			*doms_cur;
1469*f2cb1360SIngo Molnar 
1470*f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */
1471*f2cb1360SIngo Molnar static int				ndoms_cur;
1472*f2cb1360SIngo Molnar 
1473*f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */
1474*f2cb1360SIngo Molnar static struct sched_domain_attr		*dattr_cur;
1475*f2cb1360SIngo Molnar 
1476*f2cb1360SIngo Molnar /*
1477*f2cb1360SIngo Molnar  * Special case: If a kmalloc() of a doms_cur partition (array of
1478*f2cb1360SIngo Molnar  * cpumask) fails, then fallback to a single sched domain,
1479*f2cb1360SIngo Molnar  * as determined by the single cpumask fallback_doms.
1480*f2cb1360SIngo Molnar  */
1481*f2cb1360SIngo Molnar cpumask_var_t				fallback_doms;
1482*f2cb1360SIngo Molnar 
1483*f2cb1360SIngo Molnar /*
1484*f2cb1360SIngo Molnar  * arch_update_cpu_topology lets virtualized architectures update the
1485*f2cb1360SIngo Molnar  * CPU core maps. It is supposed to return 1 if the topology changed
1486*f2cb1360SIngo Molnar  * or 0 if it stayed the same.
1487*f2cb1360SIngo Molnar  */
1488*f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void)
1489*f2cb1360SIngo Molnar {
1490*f2cb1360SIngo Molnar 	return 0;
1491*f2cb1360SIngo Molnar }
1492*f2cb1360SIngo Molnar 
1493*f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1494*f2cb1360SIngo Molnar {
1495*f2cb1360SIngo Molnar 	int i;
1496*f2cb1360SIngo Molnar 	cpumask_var_t *doms;
1497*f2cb1360SIngo Molnar 
1498*f2cb1360SIngo Molnar 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1499*f2cb1360SIngo Molnar 	if (!doms)
1500*f2cb1360SIngo Molnar 		return NULL;
1501*f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++) {
1502*f2cb1360SIngo Molnar 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1503*f2cb1360SIngo Molnar 			free_sched_domains(doms, i);
1504*f2cb1360SIngo Molnar 			return NULL;
1505*f2cb1360SIngo Molnar 		}
1506*f2cb1360SIngo Molnar 	}
1507*f2cb1360SIngo Molnar 	return doms;
1508*f2cb1360SIngo Molnar }
1509*f2cb1360SIngo Molnar 
1510*f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1511*f2cb1360SIngo Molnar {
1512*f2cb1360SIngo Molnar 	unsigned int i;
1513*f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++)
1514*f2cb1360SIngo Molnar 		free_cpumask_var(doms[i]);
1515*f2cb1360SIngo Molnar 	kfree(doms);
1516*f2cb1360SIngo Molnar }
1517*f2cb1360SIngo Molnar 
1518*f2cb1360SIngo Molnar /*
1519*f2cb1360SIngo Molnar  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1520*f2cb1360SIngo Molnar  * For now this just excludes isolated CPUs, but could be used to
1521*f2cb1360SIngo Molnar  * exclude other special cases in the future.
1522*f2cb1360SIngo Molnar  */
1523*f2cb1360SIngo Molnar int init_sched_domains(const struct cpumask *cpu_map)
1524*f2cb1360SIngo Molnar {
1525*f2cb1360SIngo Molnar 	int err;
1526*f2cb1360SIngo Molnar 
1527*f2cb1360SIngo Molnar 	arch_update_cpu_topology();
1528*f2cb1360SIngo Molnar 	ndoms_cur = 1;
1529*f2cb1360SIngo Molnar 	doms_cur = alloc_sched_domains(ndoms_cur);
1530*f2cb1360SIngo Molnar 	if (!doms_cur)
1531*f2cb1360SIngo Molnar 		doms_cur = &fallback_doms;
1532*f2cb1360SIngo Molnar 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1533*f2cb1360SIngo Molnar 	err = build_sched_domains(doms_cur[0], NULL);
1534*f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
1535*f2cb1360SIngo Molnar 
1536*f2cb1360SIngo Molnar 	return err;
1537*f2cb1360SIngo Molnar }
1538*f2cb1360SIngo Molnar 
1539*f2cb1360SIngo Molnar /*
1540*f2cb1360SIngo Molnar  * Detach sched domains from a group of CPUs specified in cpu_map
1541*f2cb1360SIngo Molnar  * These CPUs will now be attached to the NULL domain
1542*f2cb1360SIngo Molnar  */
1543*f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map)
1544*f2cb1360SIngo Molnar {
1545*f2cb1360SIngo Molnar 	int i;
1546*f2cb1360SIngo Molnar 
1547*f2cb1360SIngo Molnar 	rcu_read_lock();
1548*f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map)
1549*f2cb1360SIngo Molnar 		cpu_attach_domain(NULL, &def_root_domain, i);
1550*f2cb1360SIngo Molnar 	rcu_read_unlock();
1551*f2cb1360SIngo Molnar }
1552*f2cb1360SIngo Molnar 
1553*f2cb1360SIngo Molnar /* handle null as "default" */
1554*f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1555*f2cb1360SIngo Molnar 			struct sched_domain_attr *new, int idx_new)
1556*f2cb1360SIngo Molnar {
1557*f2cb1360SIngo Molnar 	struct sched_domain_attr tmp;
1558*f2cb1360SIngo Molnar 
1559*f2cb1360SIngo Molnar 	/* Fast path: */
1560*f2cb1360SIngo Molnar 	if (!new && !cur)
1561*f2cb1360SIngo Molnar 		return 1;
1562*f2cb1360SIngo Molnar 
1563*f2cb1360SIngo Molnar 	tmp = SD_ATTR_INIT;
1564*f2cb1360SIngo Molnar 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1565*f2cb1360SIngo Molnar 			new ? (new + idx_new) : &tmp,
1566*f2cb1360SIngo Molnar 			sizeof(struct sched_domain_attr));
1567*f2cb1360SIngo Molnar }
1568*f2cb1360SIngo Molnar 
1569*f2cb1360SIngo Molnar /*
1570*f2cb1360SIngo Molnar  * Partition sched domains as specified by the 'ndoms_new'
1571*f2cb1360SIngo Molnar  * cpumasks in the array doms_new[] of cpumasks. This compares
1572*f2cb1360SIngo Molnar  * doms_new[] to the current sched domain partitioning, doms_cur[].
1573*f2cb1360SIngo Molnar  * It destroys each deleted domain and builds each new domain.
1574*f2cb1360SIngo Molnar  *
1575*f2cb1360SIngo Molnar  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1576*f2cb1360SIngo Molnar  * The masks don't intersect (don't overlap.) We should setup one
1577*f2cb1360SIngo Molnar  * sched domain for each mask. CPUs not in any of the cpumasks will
1578*f2cb1360SIngo Molnar  * not be load balanced. If the same cpumask appears both in the
1579*f2cb1360SIngo Molnar  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1580*f2cb1360SIngo Molnar  * it as it is.
1581*f2cb1360SIngo Molnar  *
1582*f2cb1360SIngo Molnar  * The passed in 'doms_new' should be allocated using
1583*f2cb1360SIngo Molnar  * alloc_sched_domains.  This routine takes ownership of it and will
1584*f2cb1360SIngo Molnar  * free_sched_domains it when done with it. If the caller failed the
1585*f2cb1360SIngo Molnar  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1586*f2cb1360SIngo Molnar  * and partition_sched_domains() will fallback to the single partition
1587*f2cb1360SIngo Molnar  * 'fallback_doms', it also forces the domains to be rebuilt.
1588*f2cb1360SIngo Molnar  *
1589*f2cb1360SIngo Molnar  * If doms_new == NULL it will be replaced with cpu_online_mask.
1590*f2cb1360SIngo Molnar  * ndoms_new == 0 is a special case for destroying existing domains,
1591*f2cb1360SIngo Molnar  * and it will not create the default domain.
1592*f2cb1360SIngo Molnar  *
1593*f2cb1360SIngo Molnar  * Call with hotplug lock held
1594*f2cb1360SIngo Molnar  */
1595*f2cb1360SIngo Molnar void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1596*f2cb1360SIngo Molnar 			     struct sched_domain_attr *dattr_new)
1597*f2cb1360SIngo Molnar {
1598*f2cb1360SIngo Molnar 	int i, j, n;
1599*f2cb1360SIngo Molnar 	int new_topology;
1600*f2cb1360SIngo Molnar 
1601*f2cb1360SIngo Molnar 	mutex_lock(&sched_domains_mutex);
1602*f2cb1360SIngo Molnar 
1603*f2cb1360SIngo Molnar 	/* Always unregister in case we don't destroy any domains: */
1604*f2cb1360SIngo Molnar 	unregister_sched_domain_sysctl();
1605*f2cb1360SIngo Molnar 
1606*f2cb1360SIngo Molnar 	/* Let the architecture update CPU core mappings: */
1607*f2cb1360SIngo Molnar 	new_topology = arch_update_cpu_topology();
1608*f2cb1360SIngo Molnar 
1609*f2cb1360SIngo Molnar 	n = doms_new ? ndoms_new : 0;
1610*f2cb1360SIngo Molnar 
1611*f2cb1360SIngo Molnar 	/* Destroy deleted domains: */
1612*f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_cur; i++) {
1613*f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
1614*f2cb1360SIngo Molnar 			if (cpumask_equal(doms_cur[i], doms_new[j])
1615*f2cb1360SIngo Molnar 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1616*f2cb1360SIngo Molnar 				goto match1;
1617*f2cb1360SIngo Molnar 		}
1618*f2cb1360SIngo Molnar 		/* No match - a current sched domain not in new doms_new[] */
1619*f2cb1360SIngo Molnar 		detach_destroy_domains(doms_cur[i]);
1620*f2cb1360SIngo Molnar match1:
1621*f2cb1360SIngo Molnar 		;
1622*f2cb1360SIngo Molnar 	}
1623*f2cb1360SIngo Molnar 
1624*f2cb1360SIngo Molnar 	n = ndoms_cur;
1625*f2cb1360SIngo Molnar 	if (doms_new == NULL) {
1626*f2cb1360SIngo Molnar 		n = 0;
1627*f2cb1360SIngo Molnar 		doms_new = &fallback_doms;
1628*f2cb1360SIngo Molnar 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1629*f2cb1360SIngo Molnar 		WARN_ON_ONCE(dattr_new);
1630*f2cb1360SIngo Molnar 	}
1631*f2cb1360SIngo Molnar 
1632*f2cb1360SIngo Molnar 	/* Build new domains: */
1633*f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_new; i++) {
1634*f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
1635*f2cb1360SIngo Molnar 			if (cpumask_equal(doms_new[i], doms_cur[j])
1636*f2cb1360SIngo Molnar 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1637*f2cb1360SIngo Molnar 				goto match2;
1638*f2cb1360SIngo Molnar 		}
1639*f2cb1360SIngo Molnar 		/* No match - add a new doms_new */
1640*f2cb1360SIngo Molnar 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1641*f2cb1360SIngo Molnar match2:
1642*f2cb1360SIngo Molnar 		;
1643*f2cb1360SIngo Molnar 	}
1644*f2cb1360SIngo Molnar 
1645*f2cb1360SIngo Molnar 	/* Remember the new sched domains: */
1646*f2cb1360SIngo Molnar 	if (doms_cur != &fallback_doms)
1647*f2cb1360SIngo Molnar 		free_sched_domains(doms_cur, ndoms_cur);
1648*f2cb1360SIngo Molnar 
1649*f2cb1360SIngo Molnar 	kfree(dattr_cur);
1650*f2cb1360SIngo Molnar 	doms_cur = doms_new;
1651*f2cb1360SIngo Molnar 	dattr_cur = dattr_new;
1652*f2cb1360SIngo Molnar 	ndoms_cur = ndoms_new;
1653*f2cb1360SIngo Molnar 
1654*f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
1655*f2cb1360SIngo Molnar 
1656*f2cb1360SIngo Molnar 	mutex_unlock(&sched_domains_mutex);
1657*f2cb1360SIngo Molnar }
1658*f2cb1360SIngo Molnar 
1659