1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0 2f2cb1360SIngo Molnar /* 3f2cb1360SIngo Molnar * Scheduler topology setup/handling methods 4f2cb1360SIngo Molnar */ 5f2cb1360SIngo Molnar #include "sched.h" 6f2cb1360SIngo Molnar 7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex); 8f2cb1360SIngo Molnar 9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */ 10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask; 11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2; 12f2cb1360SIngo Molnar 13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 14f2cb1360SIngo Molnar 15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str) 16f2cb1360SIngo Molnar { 179469eb01SPeter Zijlstra sched_debug_enabled = true; 18f2cb1360SIngo Molnar 19f2cb1360SIngo Molnar return 0; 20f2cb1360SIngo Molnar } 21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup); 22f2cb1360SIngo Molnar 23f2cb1360SIngo Molnar static inline bool sched_debug(void) 24f2cb1360SIngo Molnar { 25f2cb1360SIngo Molnar return sched_debug_enabled; 26f2cb1360SIngo Molnar } 27f2cb1360SIngo Molnar 28f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 29f2cb1360SIngo Molnar struct cpumask *groupmask) 30f2cb1360SIngo Molnar { 31f2cb1360SIngo Molnar struct sched_group *group = sd->groups; 32f2cb1360SIngo Molnar 33f2cb1360SIngo Molnar cpumask_clear(groupmask); 34f2cb1360SIngo Molnar 35005f874dSPeter Zijlstra printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 36005f874dSPeter Zijlstra printk(KERN_CONT "span=%*pbl level=%s\n", 37f2cb1360SIngo Molnar cpumask_pr_args(sched_domain_span(sd)), sd->name); 38f2cb1360SIngo Molnar 39f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 4097fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 41f2cb1360SIngo Molnar } 426cd0c583SYi Wang if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 4397fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 44f2cb1360SIngo Molnar } 45f2cb1360SIngo Molnar 46f2cb1360SIngo Molnar printk(KERN_DEBUG "%*s groups:", level + 1, ""); 47f2cb1360SIngo Molnar do { 48f2cb1360SIngo Molnar if (!group) { 49f2cb1360SIngo Molnar printk("\n"); 50f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: group is NULL\n"); 51f2cb1360SIngo Molnar break; 52f2cb1360SIngo Molnar } 53f2cb1360SIngo Molnar 54ae4df9d6SPeter Zijlstra if (!cpumask_weight(sched_group_span(group))) { 55f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 56f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: empty group\n"); 57f2cb1360SIngo Molnar break; 58f2cb1360SIngo Molnar } 59f2cb1360SIngo Molnar 60f2cb1360SIngo Molnar if (!(sd->flags & SD_OVERLAP) && 61ae4df9d6SPeter Zijlstra cpumask_intersects(groupmask, sched_group_span(group))) { 62f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 63f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: repeated CPUs\n"); 64f2cb1360SIngo Molnar break; 65f2cb1360SIngo Molnar } 66f2cb1360SIngo Molnar 67ae4df9d6SPeter Zijlstra cpumask_or(groupmask, groupmask, sched_group_span(group)); 68f2cb1360SIngo Molnar 69005f874dSPeter Zijlstra printk(KERN_CONT " %d:{ span=%*pbl", 70005f874dSPeter Zijlstra group->sgc->id, 71ae4df9d6SPeter Zijlstra cpumask_pr_args(sched_group_span(group))); 72b0151c25SPeter Zijlstra 73af218122SPeter Zijlstra if ((sd->flags & SD_OVERLAP) && 74ae4df9d6SPeter Zijlstra !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 75005f874dSPeter Zijlstra printk(KERN_CONT " mask=%*pbl", 76e5c14b1fSPeter Zijlstra cpumask_pr_args(group_balance_mask(group))); 77b0151c25SPeter Zijlstra } 78b0151c25SPeter Zijlstra 79005f874dSPeter Zijlstra if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 80005f874dSPeter Zijlstra printk(KERN_CONT " cap=%lu", group->sgc->capacity); 81f2cb1360SIngo Molnar 82a420b063SPeter Zijlstra if (group == sd->groups && sd->child && 83a420b063SPeter Zijlstra !cpumask_equal(sched_domain_span(sd->child), 84ae4df9d6SPeter Zijlstra sched_group_span(group))) { 85a420b063SPeter Zijlstra printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 86a420b063SPeter Zijlstra } 87a420b063SPeter Zijlstra 88005f874dSPeter Zijlstra printk(KERN_CONT " }"); 89005f874dSPeter Zijlstra 90f2cb1360SIngo Molnar group = group->next; 91b0151c25SPeter Zijlstra 92b0151c25SPeter Zijlstra if (group != sd->groups) 93b0151c25SPeter Zijlstra printk(KERN_CONT ","); 94b0151c25SPeter Zijlstra 95f2cb1360SIngo Molnar } while (group != sd->groups); 96f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 97f2cb1360SIngo Molnar 98f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), groupmask)) 99f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 100f2cb1360SIngo Molnar 101f2cb1360SIngo Molnar if (sd->parent && 102f2cb1360SIngo Molnar !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 10397fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 104f2cb1360SIngo Molnar return 0; 105f2cb1360SIngo Molnar } 106f2cb1360SIngo Molnar 107f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu) 108f2cb1360SIngo Molnar { 109f2cb1360SIngo Molnar int level = 0; 110f2cb1360SIngo Molnar 111f2cb1360SIngo Molnar if (!sched_debug_enabled) 112f2cb1360SIngo Molnar return; 113f2cb1360SIngo Molnar 114f2cb1360SIngo Molnar if (!sd) { 115f2cb1360SIngo Molnar printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 116f2cb1360SIngo Molnar return; 117f2cb1360SIngo Molnar } 118f2cb1360SIngo Molnar 119005f874dSPeter Zijlstra printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 120f2cb1360SIngo Molnar 121f2cb1360SIngo Molnar for (;;) { 122f2cb1360SIngo Molnar if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 123f2cb1360SIngo Molnar break; 124f2cb1360SIngo Molnar level++; 125f2cb1360SIngo Molnar sd = sd->parent; 126f2cb1360SIngo Molnar if (!sd) 127f2cb1360SIngo Molnar break; 128f2cb1360SIngo Molnar } 129f2cb1360SIngo Molnar } 130f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */ 131f2cb1360SIngo Molnar 132f2cb1360SIngo Molnar # define sched_debug_enabled 0 133f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0) 134f2cb1360SIngo Molnar static inline bool sched_debug(void) 135f2cb1360SIngo Molnar { 136f2cb1360SIngo Molnar return false; 137f2cb1360SIngo Molnar } 138f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */ 139f2cb1360SIngo Molnar 140f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd) 141f2cb1360SIngo Molnar { 142f2cb1360SIngo Molnar if (cpumask_weight(sched_domain_span(sd)) == 1) 143f2cb1360SIngo Molnar return 1; 144f2cb1360SIngo Molnar 145f2cb1360SIngo Molnar /* Following flags need at least 2 groups */ 146*e669ac8aSValentin Schneider if (sd->flags & (SD_BALANCE_NEWIDLE | 147f2cb1360SIngo Molnar SD_BALANCE_FORK | 148f2cb1360SIngo Molnar SD_BALANCE_EXEC | 149f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 150f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 151f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | 152f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN)) { 153f2cb1360SIngo Molnar if (sd->groups != sd->groups->next) 154f2cb1360SIngo Molnar return 0; 155f2cb1360SIngo Molnar } 156f2cb1360SIngo Molnar 157f2cb1360SIngo Molnar /* Following flags don't use groups */ 158f2cb1360SIngo Molnar if (sd->flags & (SD_WAKE_AFFINE)) 159f2cb1360SIngo Molnar return 0; 160f2cb1360SIngo Molnar 161f2cb1360SIngo Molnar return 1; 162f2cb1360SIngo Molnar } 163f2cb1360SIngo Molnar 164f2cb1360SIngo Molnar static int 165f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 166f2cb1360SIngo Molnar { 167f2cb1360SIngo Molnar unsigned long cflags = sd->flags, pflags = parent->flags; 168f2cb1360SIngo Molnar 169f2cb1360SIngo Molnar if (sd_degenerate(parent)) 170f2cb1360SIngo Molnar return 1; 171f2cb1360SIngo Molnar 172f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 173f2cb1360SIngo Molnar return 0; 174f2cb1360SIngo Molnar 175f2cb1360SIngo Molnar /* Flags needing groups don't count if only 1 group in parent */ 176f2cb1360SIngo Molnar if (parent->groups == parent->groups->next) { 177*e669ac8aSValentin Schneider pflags &= ~(SD_BALANCE_NEWIDLE | 178f2cb1360SIngo Molnar SD_BALANCE_FORK | 179f2cb1360SIngo Molnar SD_BALANCE_EXEC | 180f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 181f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 182f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | 183f2cb1360SIngo Molnar SD_PREFER_SIBLING | 184f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN); 185f2cb1360SIngo Molnar if (nr_node_ids == 1) 186f2cb1360SIngo Molnar pflags &= ~SD_SERIALIZE; 187f2cb1360SIngo Molnar } 188f2cb1360SIngo Molnar if (~cflags & pflags) 189f2cb1360SIngo Molnar return 0; 190f2cb1360SIngo Molnar 191f2cb1360SIngo Molnar return 1; 192f2cb1360SIngo Molnar } 193f2cb1360SIngo Molnar 194531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 195f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present); 1968d5d0cfbSQuentin Perret unsigned int sysctl_sched_energy_aware = 1; 197531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex); 198531b5c9fSQuentin Perret bool sched_energy_update; 199531b5c9fSQuentin Perret 2008d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL 2018d5d0cfbSQuentin Perret int sched_energy_aware_handler(struct ctl_table *table, int write, 2028d5d0cfbSQuentin Perret void __user *buffer, size_t *lenp, loff_t *ppos) 2038d5d0cfbSQuentin Perret { 2048d5d0cfbSQuentin Perret int ret, state; 2058d5d0cfbSQuentin Perret 2068d5d0cfbSQuentin Perret if (write && !capable(CAP_SYS_ADMIN)) 2078d5d0cfbSQuentin Perret return -EPERM; 2088d5d0cfbSQuentin Perret 2098d5d0cfbSQuentin Perret ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2108d5d0cfbSQuentin Perret if (!ret && write) { 2118d5d0cfbSQuentin Perret state = static_branch_unlikely(&sched_energy_present); 2128d5d0cfbSQuentin Perret if (state != sysctl_sched_energy_aware) { 2138d5d0cfbSQuentin Perret mutex_lock(&sched_energy_mutex); 2148d5d0cfbSQuentin Perret sched_energy_update = 1; 2158d5d0cfbSQuentin Perret rebuild_sched_domains(); 2168d5d0cfbSQuentin Perret sched_energy_update = 0; 2178d5d0cfbSQuentin Perret mutex_unlock(&sched_energy_mutex); 2188d5d0cfbSQuentin Perret } 2198d5d0cfbSQuentin Perret } 2208d5d0cfbSQuentin Perret 2218d5d0cfbSQuentin Perret return ret; 2228d5d0cfbSQuentin Perret } 2238d5d0cfbSQuentin Perret #endif 2248d5d0cfbSQuentin Perret 2256aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) 2266aa140faSQuentin Perret { 2276aa140faSQuentin Perret struct perf_domain *tmp; 2286aa140faSQuentin Perret 2296aa140faSQuentin Perret while (pd) { 2306aa140faSQuentin Perret tmp = pd->next; 2316aa140faSQuentin Perret kfree(pd); 2326aa140faSQuentin Perret pd = tmp; 2336aa140faSQuentin Perret } 2346aa140faSQuentin Perret } 2356aa140faSQuentin Perret 2366aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 2376aa140faSQuentin Perret { 2386aa140faSQuentin Perret while (pd) { 2396aa140faSQuentin Perret if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 2406aa140faSQuentin Perret return pd; 2416aa140faSQuentin Perret pd = pd->next; 2426aa140faSQuentin Perret } 2436aa140faSQuentin Perret 2446aa140faSQuentin Perret return NULL; 2456aa140faSQuentin Perret } 2466aa140faSQuentin Perret 2476aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu) 2486aa140faSQuentin Perret { 2496aa140faSQuentin Perret struct em_perf_domain *obj = em_cpu_get(cpu); 2506aa140faSQuentin Perret struct perf_domain *pd; 2516aa140faSQuentin Perret 2526aa140faSQuentin Perret if (!obj) { 2536aa140faSQuentin Perret if (sched_debug()) 2546aa140faSQuentin Perret pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 2556aa140faSQuentin Perret return NULL; 2566aa140faSQuentin Perret } 2576aa140faSQuentin Perret 2586aa140faSQuentin Perret pd = kzalloc(sizeof(*pd), GFP_KERNEL); 2596aa140faSQuentin Perret if (!pd) 2606aa140faSQuentin Perret return NULL; 2616aa140faSQuentin Perret pd->em_pd = obj; 2626aa140faSQuentin Perret 2636aa140faSQuentin Perret return pd; 2646aa140faSQuentin Perret } 2656aa140faSQuentin Perret 2666aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map, 2676aa140faSQuentin Perret struct perf_domain *pd) 2686aa140faSQuentin Perret { 2696aa140faSQuentin Perret if (!sched_debug() || !pd) 2706aa140faSQuentin Perret return; 2716aa140faSQuentin Perret 2726aa140faSQuentin Perret printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 2736aa140faSQuentin Perret 2746aa140faSQuentin Perret while (pd) { 2756aa140faSQuentin Perret printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }", 2766aa140faSQuentin Perret cpumask_first(perf_domain_span(pd)), 2776aa140faSQuentin Perret cpumask_pr_args(perf_domain_span(pd)), 2786aa140faSQuentin Perret em_pd_nr_cap_states(pd->em_pd)); 2796aa140faSQuentin Perret pd = pd->next; 2806aa140faSQuentin Perret } 2816aa140faSQuentin Perret 2826aa140faSQuentin Perret printk(KERN_CONT "\n"); 2836aa140faSQuentin Perret } 2846aa140faSQuentin Perret 2856aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp) 2866aa140faSQuentin Perret { 2876aa140faSQuentin Perret struct perf_domain *pd; 2886aa140faSQuentin Perret 2896aa140faSQuentin Perret pd = container_of(rp, struct perf_domain, rcu); 2906aa140faSQuentin Perret free_pd(pd); 2916aa140faSQuentin Perret } 2926aa140faSQuentin Perret 2931f74de87SQuentin Perret static void sched_energy_set(bool has_eas) 2941f74de87SQuentin Perret { 2951f74de87SQuentin Perret if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 2961f74de87SQuentin Perret if (sched_debug()) 2971f74de87SQuentin Perret pr_info("%s: stopping EAS\n", __func__); 2981f74de87SQuentin Perret static_branch_disable_cpuslocked(&sched_energy_present); 2991f74de87SQuentin Perret } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 3001f74de87SQuentin Perret if (sched_debug()) 3011f74de87SQuentin Perret pr_info("%s: starting EAS\n", __func__); 3021f74de87SQuentin Perret static_branch_enable_cpuslocked(&sched_energy_present); 3031f74de87SQuentin Perret } 3041f74de87SQuentin Perret } 3051f74de87SQuentin Perret 306b68a4c0dSQuentin Perret /* 307b68a4c0dSQuentin Perret * EAS can be used on a root domain if it meets all the following conditions: 308b68a4c0dSQuentin Perret * 1. an Energy Model (EM) is available; 309b68a4c0dSQuentin Perret * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 31038502ab4SValentin Schneider * 3. no SMT is detected. 31138502ab4SValentin Schneider * 4. the EM complexity is low enough to keep scheduling overheads low; 31238502ab4SValentin Schneider * 5. schedutil is driving the frequency of all CPUs of the rd; 313b68a4c0dSQuentin Perret * 314b68a4c0dSQuentin Perret * The complexity of the Energy Model is defined as: 315b68a4c0dSQuentin Perret * 316b68a4c0dSQuentin Perret * C = nr_pd * (nr_cpus + nr_cs) 317b68a4c0dSQuentin Perret * 318b68a4c0dSQuentin Perret * with parameters defined as: 319b68a4c0dSQuentin Perret * - nr_pd: the number of performance domains 320b68a4c0dSQuentin Perret * - nr_cpus: the number of CPUs 321b68a4c0dSQuentin Perret * - nr_cs: the sum of the number of capacity states of all performance 322b68a4c0dSQuentin Perret * domains (for example, on a system with 2 performance domains, 323b68a4c0dSQuentin Perret * with 10 capacity states each, nr_cs = 2 * 10 = 20). 324b68a4c0dSQuentin Perret * 325b68a4c0dSQuentin Perret * It is generally not a good idea to use such a model in the wake-up path on 326b68a4c0dSQuentin Perret * very complex platforms because of the associated scheduling overheads. The 327b68a4c0dSQuentin Perret * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 328b68a4c0dSQuentin Perret * with per-CPU DVFS and less than 8 capacity states each, for example. 329b68a4c0dSQuentin Perret */ 330b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048 331b68a4c0dSQuentin Perret 332531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov; 3331f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map) 3346aa140faSQuentin Perret { 335b68a4c0dSQuentin Perret int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map); 3366aa140faSQuentin Perret struct perf_domain *pd = NULL, *tmp; 3376aa140faSQuentin Perret int cpu = cpumask_first(cpu_map); 3386aa140faSQuentin Perret struct root_domain *rd = cpu_rq(cpu)->rd; 339531b5c9fSQuentin Perret struct cpufreq_policy *policy; 340531b5c9fSQuentin Perret struct cpufreq_governor *gov; 341b68a4c0dSQuentin Perret 3428d5d0cfbSQuentin Perret if (!sysctl_sched_energy_aware) 3438d5d0cfbSQuentin Perret goto free; 3448d5d0cfbSQuentin Perret 345b68a4c0dSQuentin Perret /* EAS is enabled for asymmetric CPU capacity topologies. */ 346b68a4c0dSQuentin Perret if (!per_cpu(sd_asym_cpucapacity, cpu)) { 347b68a4c0dSQuentin Perret if (sched_debug()) { 348b68a4c0dSQuentin Perret pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 349b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 350b68a4c0dSQuentin Perret } 351b68a4c0dSQuentin Perret goto free; 352b68a4c0dSQuentin Perret } 3536aa140faSQuentin Perret 35438502ab4SValentin Schneider /* EAS definitely does *not* handle SMT */ 35538502ab4SValentin Schneider if (sched_smt_active()) { 35638502ab4SValentin Schneider pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 35738502ab4SValentin Schneider cpumask_pr_args(cpu_map)); 35838502ab4SValentin Schneider goto free; 35938502ab4SValentin Schneider } 36038502ab4SValentin Schneider 3616aa140faSQuentin Perret for_each_cpu(i, cpu_map) { 3626aa140faSQuentin Perret /* Skip already covered CPUs. */ 3636aa140faSQuentin Perret if (find_pd(pd, i)) 3646aa140faSQuentin Perret continue; 3656aa140faSQuentin Perret 366531b5c9fSQuentin Perret /* Do not attempt EAS if schedutil is not being used. */ 367531b5c9fSQuentin Perret policy = cpufreq_cpu_get(i); 368531b5c9fSQuentin Perret if (!policy) 369531b5c9fSQuentin Perret goto free; 370531b5c9fSQuentin Perret gov = policy->governor; 371531b5c9fSQuentin Perret cpufreq_cpu_put(policy); 372531b5c9fSQuentin Perret if (gov != &schedutil_gov) { 373531b5c9fSQuentin Perret if (rd->pd) 374531b5c9fSQuentin Perret pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 375531b5c9fSQuentin Perret cpumask_pr_args(cpu_map)); 376531b5c9fSQuentin Perret goto free; 377531b5c9fSQuentin Perret } 378531b5c9fSQuentin Perret 3796aa140faSQuentin Perret /* Create the new pd and add it to the local list. */ 3806aa140faSQuentin Perret tmp = pd_init(i); 3816aa140faSQuentin Perret if (!tmp) 3826aa140faSQuentin Perret goto free; 3836aa140faSQuentin Perret tmp->next = pd; 3846aa140faSQuentin Perret pd = tmp; 385b68a4c0dSQuentin Perret 386b68a4c0dSQuentin Perret /* 387b68a4c0dSQuentin Perret * Count performance domains and capacity states for the 388b68a4c0dSQuentin Perret * complexity check. 389b68a4c0dSQuentin Perret */ 390b68a4c0dSQuentin Perret nr_pd++; 391b68a4c0dSQuentin Perret nr_cs += em_pd_nr_cap_states(pd->em_pd); 392b68a4c0dSQuentin Perret } 393b68a4c0dSQuentin Perret 394b68a4c0dSQuentin Perret /* Bail out if the Energy Model complexity is too high. */ 395b68a4c0dSQuentin Perret if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) { 396b68a4c0dSQuentin Perret WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 397b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 398b68a4c0dSQuentin Perret goto free; 3996aa140faSQuentin Perret } 4006aa140faSQuentin Perret 4016aa140faSQuentin Perret perf_domain_debug(cpu_map, pd); 4026aa140faSQuentin Perret 4036aa140faSQuentin Perret /* Attach the new list of performance domains to the root domain. */ 4046aa140faSQuentin Perret tmp = rd->pd; 4056aa140faSQuentin Perret rcu_assign_pointer(rd->pd, pd); 4066aa140faSQuentin Perret if (tmp) 4076aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4086aa140faSQuentin Perret 4091f74de87SQuentin Perret return !!pd; 4106aa140faSQuentin Perret 4116aa140faSQuentin Perret free: 4126aa140faSQuentin Perret free_pd(pd); 4136aa140faSQuentin Perret tmp = rd->pd; 4146aa140faSQuentin Perret rcu_assign_pointer(rd->pd, NULL); 4156aa140faSQuentin Perret if (tmp) 4166aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4171f74de87SQuentin Perret 4181f74de87SQuentin Perret return false; 4196aa140faSQuentin Perret } 4206aa140faSQuentin Perret #else 4216aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { } 422531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 4236aa140faSQuentin Perret 424f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu) 425f2cb1360SIngo Molnar { 426f2cb1360SIngo Molnar struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 427f2cb1360SIngo Molnar 428f2cb1360SIngo Molnar cpupri_cleanup(&rd->cpupri); 429f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 430f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 431f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 432f2cb1360SIngo Molnar free_cpumask_var(rd->online); 433f2cb1360SIngo Molnar free_cpumask_var(rd->span); 4346aa140faSQuentin Perret free_pd(rd->pd); 435f2cb1360SIngo Molnar kfree(rd); 436f2cb1360SIngo Molnar } 437f2cb1360SIngo Molnar 438f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd) 439f2cb1360SIngo Molnar { 440f2cb1360SIngo Molnar struct root_domain *old_rd = NULL; 441f2cb1360SIngo Molnar unsigned long flags; 442f2cb1360SIngo Molnar 443f2cb1360SIngo Molnar raw_spin_lock_irqsave(&rq->lock, flags); 444f2cb1360SIngo Molnar 445f2cb1360SIngo Molnar if (rq->rd) { 446f2cb1360SIngo Molnar old_rd = rq->rd; 447f2cb1360SIngo Molnar 448f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, old_rd->online)) 449f2cb1360SIngo Molnar set_rq_offline(rq); 450f2cb1360SIngo Molnar 451f2cb1360SIngo Molnar cpumask_clear_cpu(rq->cpu, old_rd->span); 452f2cb1360SIngo Molnar 453f2cb1360SIngo Molnar /* 454f2cb1360SIngo Molnar * If we dont want to free the old_rd yet then 455f2cb1360SIngo Molnar * set old_rd to NULL to skip the freeing later 456f2cb1360SIngo Molnar * in this function: 457f2cb1360SIngo Molnar */ 458f2cb1360SIngo Molnar if (!atomic_dec_and_test(&old_rd->refcount)) 459f2cb1360SIngo Molnar old_rd = NULL; 460f2cb1360SIngo Molnar } 461f2cb1360SIngo Molnar 462f2cb1360SIngo Molnar atomic_inc(&rd->refcount); 463f2cb1360SIngo Molnar rq->rd = rd; 464f2cb1360SIngo Molnar 465f2cb1360SIngo Molnar cpumask_set_cpu(rq->cpu, rd->span); 466f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 467f2cb1360SIngo Molnar set_rq_online(rq); 468f2cb1360SIngo Molnar 469f2cb1360SIngo Molnar raw_spin_unlock_irqrestore(&rq->lock, flags); 470f2cb1360SIngo Molnar 471f2cb1360SIngo Molnar if (old_rd) 472337e9b07SPaul E. McKenney call_rcu(&old_rd->rcu, free_rootdomain); 473f2cb1360SIngo Molnar } 474f2cb1360SIngo Molnar 475364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd) 476364f5665SSteven Rostedt (VMware) { 477364f5665SSteven Rostedt (VMware) atomic_inc(&rd->refcount); 478364f5665SSteven Rostedt (VMware) } 479364f5665SSteven Rostedt (VMware) 480364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd) 481364f5665SSteven Rostedt (VMware) { 482364f5665SSteven Rostedt (VMware) if (!atomic_dec_and_test(&rd->refcount)) 483364f5665SSteven Rostedt (VMware) return; 484364f5665SSteven Rostedt (VMware) 485337e9b07SPaul E. McKenney call_rcu(&rd->rcu, free_rootdomain); 486364f5665SSteven Rostedt (VMware) } 487364f5665SSteven Rostedt (VMware) 488f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd) 489f2cb1360SIngo Molnar { 490f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 491f2cb1360SIngo Molnar goto out; 492f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 493f2cb1360SIngo Molnar goto free_span; 494f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 495f2cb1360SIngo Molnar goto free_online; 496f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 497f2cb1360SIngo Molnar goto free_dlo_mask; 498f2cb1360SIngo Molnar 4994bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI 5004bdced5cSSteven Rostedt (Red Hat) rd->rto_cpu = -1; 5014bdced5cSSteven Rostedt (Red Hat) raw_spin_lock_init(&rd->rto_lock); 5024bdced5cSSteven Rostedt (Red Hat) init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 5034bdced5cSSteven Rostedt (Red Hat) #endif 5044bdced5cSSteven Rostedt (Red Hat) 505f2cb1360SIngo Molnar init_dl_bw(&rd->dl_bw); 506f2cb1360SIngo Molnar if (cpudl_init(&rd->cpudl) != 0) 507f2cb1360SIngo Molnar goto free_rto_mask; 508f2cb1360SIngo Molnar 509f2cb1360SIngo Molnar if (cpupri_init(&rd->cpupri) != 0) 510f2cb1360SIngo Molnar goto free_cpudl; 511f2cb1360SIngo Molnar return 0; 512f2cb1360SIngo Molnar 513f2cb1360SIngo Molnar free_cpudl: 514f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 515f2cb1360SIngo Molnar free_rto_mask: 516f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 517f2cb1360SIngo Molnar free_dlo_mask: 518f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 519f2cb1360SIngo Molnar free_online: 520f2cb1360SIngo Molnar free_cpumask_var(rd->online); 521f2cb1360SIngo Molnar free_span: 522f2cb1360SIngo Molnar free_cpumask_var(rd->span); 523f2cb1360SIngo Molnar out: 524f2cb1360SIngo Molnar return -ENOMEM; 525f2cb1360SIngo Molnar } 526f2cb1360SIngo Molnar 527f2cb1360SIngo Molnar /* 528f2cb1360SIngo Molnar * By default the system creates a single root-domain with all CPUs as 529f2cb1360SIngo Molnar * members (mimicking the global state we have today). 530f2cb1360SIngo Molnar */ 531f2cb1360SIngo Molnar struct root_domain def_root_domain; 532f2cb1360SIngo Molnar 533f2cb1360SIngo Molnar void init_defrootdomain(void) 534f2cb1360SIngo Molnar { 535f2cb1360SIngo Molnar init_rootdomain(&def_root_domain); 536f2cb1360SIngo Molnar 537f2cb1360SIngo Molnar atomic_set(&def_root_domain.refcount, 1); 538f2cb1360SIngo Molnar } 539f2cb1360SIngo Molnar 540f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void) 541f2cb1360SIngo Molnar { 542f2cb1360SIngo Molnar struct root_domain *rd; 543f2cb1360SIngo Molnar 5444d13a06dSViresh Kumar rd = kzalloc(sizeof(*rd), GFP_KERNEL); 545f2cb1360SIngo Molnar if (!rd) 546f2cb1360SIngo Molnar return NULL; 547f2cb1360SIngo Molnar 548f2cb1360SIngo Molnar if (init_rootdomain(rd) != 0) { 549f2cb1360SIngo Molnar kfree(rd); 550f2cb1360SIngo Molnar return NULL; 551f2cb1360SIngo Molnar } 552f2cb1360SIngo Molnar 553f2cb1360SIngo Molnar return rd; 554f2cb1360SIngo Molnar } 555f2cb1360SIngo Molnar 556f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc) 557f2cb1360SIngo Molnar { 558f2cb1360SIngo Molnar struct sched_group *tmp, *first; 559f2cb1360SIngo Molnar 560f2cb1360SIngo Molnar if (!sg) 561f2cb1360SIngo Molnar return; 562f2cb1360SIngo Molnar 563f2cb1360SIngo Molnar first = sg; 564f2cb1360SIngo Molnar do { 565f2cb1360SIngo Molnar tmp = sg->next; 566f2cb1360SIngo Molnar 567f2cb1360SIngo Molnar if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 568f2cb1360SIngo Molnar kfree(sg->sgc); 569f2cb1360SIngo Molnar 570213c5a45SShu Wang if (atomic_dec_and_test(&sg->ref)) 571f2cb1360SIngo Molnar kfree(sg); 572f2cb1360SIngo Molnar sg = tmp; 573f2cb1360SIngo Molnar } while (sg != first); 574f2cb1360SIngo Molnar } 575f2cb1360SIngo Molnar 576f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd) 577f2cb1360SIngo Molnar { 578f2cb1360SIngo Molnar /* 579a090c4f2SPeter Zijlstra * A normal sched domain may have multiple group references, an 580a090c4f2SPeter Zijlstra * overlapping domain, having private groups, only one. Iterate, 581a090c4f2SPeter Zijlstra * dropping group/capacity references, freeing where none remain. 582f2cb1360SIngo Molnar */ 583f2cb1360SIngo Molnar free_sched_groups(sd->groups, 1); 584213c5a45SShu Wang 585f2cb1360SIngo Molnar if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 586f2cb1360SIngo Molnar kfree(sd->shared); 587f2cb1360SIngo Molnar kfree(sd); 588f2cb1360SIngo Molnar } 589f2cb1360SIngo Molnar 590f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu) 591f2cb1360SIngo Molnar { 592f2cb1360SIngo Molnar struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 593f2cb1360SIngo Molnar 594f2cb1360SIngo Molnar while (sd) { 595f2cb1360SIngo Molnar struct sched_domain *parent = sd->parent; 596f2cb1360SIngo Molnar destroy_sched_domain(sd); 597f2cb1360SIngo Molnar sd = parent; 598f2cb1360SIngo Molnar } 599f2cb1360SIngo Molnar } 600f2cb1360SIngo Molnar 601f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd) 602f2cb1360SIngo Molnar { 603f2cb1360SIngo Molnar if (sd) 604f2cb1360SIngo Molnar call_rcu(&sd->rcu, destroy_sched_domains_rcu); 605f2cb1360SIngo Molnar } 606f2cb1360SIngo Molnar 607f2cb1360SIngo Molnar /* 608f2cb1360SIngo Molnar * Keep a special pointer to the highest sched_domain that has 609f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 610f2cb1360SIngo Molnar * allows us to avoid some pointer chasing select_idle_sibling(). 611f2cb1360SIngo Molnar * 612f2cb1360SIngo Molnar * Also keep a unique ID per domain (we use the first CPU number in 613f2cb1360SIngo Molnar * the cpumask of the domain), this allows us to quickly tell if 614f2cb1360SIngo Molnar * two CPUs are in the same cache domain, see cpus_share_cache(). 615f2cb1360SIngo Molnar */ 616994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 617f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size); 618f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id); 619994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 620994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 621994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 622994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 623df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 624f2cb1360SIngo Molnar 625f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu) 626f2cb1360SIngo Molnar { 627f2cb1360SIngo Molnar struct sched_domain_shared *sds = NULL; 628f2cb1360SIngo Molnar struct sched_domain *sd; 629f2cb1360SIngo Molnar int id = cpu; 630f2cb1360SIngo Molnar int size = 1; 631f2cb1360SIngo Molnar 632f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 633f2cb1360SIngo Molnar if (sd) { 634f2cb1360SIngo Molnar id = cpumask_first(sched_domain_span(sd)); 635f2cb1360SIngo Molnar size = cpumask_weight(sched_domain_span(sd)); 636f2cb1360SIngo Molnar sds = sd->shared; 637f2cb1360SIngo Molnar } 638f2cb1360SIngo Molnar 639f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 640f2cb1360SIngo Molnar per_cpu(sd_llc_size, cpu) = size; 641f2cb1360SIngo Molnar per_cpu(sd_llc_id, cpu) = id; 642f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 643f2cb1360SIngo Molnar 644f2cb1360SIngo Molnar sd = lowest_flag_domain(cpu, SD_NUMA); 645f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 646f2cb1360SIngo Molnar 647f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 648011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 649011b27bbSQuentin Perret 650011b27bbSQuentin Perret sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 651011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 652f2cb1360SIngo Molnar } 653f2cb1360SIngo Molnar 654f2cb1360SIngo Molnar /* 655f2cb1360SIngo Molnar * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 656f2cb1360SIngo Molnar * hold the hotplug lock. 657f2cb1360SIngo Molnar */ 658f2cb1360SIngo Molnar static void 659f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 660f2cb1360SIngo Molnar { 661f2cb1360SIngo Molnar struct rq *rq = cpu_rq(cpu); 662f2cb1360SIngo Molnar struct sched_domain *tmp; 663f2cb1360SIngo Molnar 664f2cb1360SIngo Molnar /* Remove the sched domains which do not contribute to scheduling. */ 665f2cb1360SIngo Molnar for (tmp = sd; tmp; ) { 666f2cb1360SIngo Molnar struct sched_domain *parent = tmp->parent; 667f2cb1360SIngo Molnar if (!parent) 668f2cb1360SIngo Molnar break; 669f2cb1360SIngo Molnar 670f2cb1360SIngo Molnar if (sd_parent_degenerate(tmp, parent)) { 671f2cb1360SIngo Molnar tmp->parent = parent->parent; 672f2cb1360SIngo Molnar if (parent->parent) 673f2cb1360SIngo Molnar parent->parent->child = tmp; 674f2cb1360SIngo Molnar /* 675f2cb1360SIngo Molnar * Transfer SD_PREFER_SIBLING down in case of a 676f2cb1360SIngo Molnar * degenerate parent; the spans match for this 677f2cb1360SIngo Molnar * so the property transfers. 678f2cb1360SIngo Molnar */ 679f2cb1360SIngo Molnar if (parent->flags & SD_PREFER_SIBLING) 680f2cb1360SIngo Molnar tmp->flags |= SD_PREFER_SIBLING; 681f2cb1360SIngo Molnar destroy_sched_domain(parent); 682f2cb1360SIngo Molnar } else 683f2cb1360SIngo Molnar tmp = tmp->parent; 684f2cb1360SIngo Molnar } 685f2cb1360SIngo Molnar 686f2cb1360SIngo Molnar if (sd && sd_degenerate(sd)) { 687f2cb1360SIngo Molnar tmp = sd; 688f2cb1360SIngo Molnar sd = sd->parent; 689f2cb1360SIngo Molnar destroy_sched_domain(tmp); 690f2cb1360SIngo Molnar if (sd) 691f2cb1360SIngo Molnar sd->child = NULL; 692f2cb1360SIngo Molnar } 693f2cb1360SIngo Molnar 694f2cb1360SIngo Molnar sched_domain_debug(sd, cpu); 695f2cb1360SIngo Molnar 696f2cb1360SIngo Molnar rq_attach_root(rq, rd); 697f2cb1360SIngo Molnar tmp = rq->sd; 698f2cb1360SIngo Molnar rcu_assign_pointer(rq->sd, sd); 699bbdacdfeSPeter Zijlstra dirty_sched_domain_sysctl(cpu); 700f2cb1360SIngo Molnar destroy_sched_domains(tmp); 701f2cb1360SIngo Molnar 702f2cb1360SIngo Molnar update_top_cache_domain(cpu); 703f2cb1360SIngo Molnar } 704f2cb1360SIngo Molnar 705f2cb1360SIngo Molnar struct s_data { 70699687cdbSLuc Van Oostenryck struct sched_domain * __percpu *sd; 707f2cb1360SIngo Molnar struct root_domain *rd; 708f2cb1360SIngo Molnar }; 709f2cb1360SIngo Molnar 710f2cb1360SIngo Molnar enum s_alloc { 711f2cb1360SIngo Molnar sa_rootdomain, 712f2cb1360SIngo Molnar sa_sd, 713f2cb1360SIngo Molnar sa_sd_storage, 714f2cb1360SIngo Molnar sa_none, 715f2cb1360SIngo Molnar }; 716f2cb1360SIngo Molnar 717f2cb1360SIngo Molnar /* 71835a566e6SPeter Zijlstra * Return the canonical balance CPU for this group, this is the first CPU 719e5c14b1fSPeter Zijlstra * of this group that's also in the balance mask. 72035a566e6SPeter Zijlstra * 721e5c14b1fSPeter Zijlstra * The balance mask are all those CPUs that could actually end up at this 722e5c14b1fSPeter Zijlstra * group. See build_balance_mask(). 72335a566e6SPeter Zijlstra * 72435a566e6SPeter Zijlstra * Also see should_we_balance(). 72535a566e6SPeter Zijlstra */ 72635a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg) 72735a566e6SPeter Zijlstra { 728e5c14b1fSPeter Zijlstra return cpumask_first(group_balance_mask(sg)); 72935a566e6SPeter Zijlstra } 73035a566e6SPeter Zijlstra 73135a566e6SPeter Zijlstra 73235a566e6SPeter Zijlstra /* 73335a566e6SPeter Zijlstra * NUMA topology (first read the regular topology blurb below) 73435a566e6SPeter Zijlstra * 73535a566e6SPeter Zijlstra * Given a node-distance table, for example: 73635a566e6SPeter Zijlstra * 73735a566e6SPeter Zijlstra * node 0 1 2 3 73835a566e6SPeter Zijlstra * 0: 10 20 30 20 73935a566e6SPeter Zijlstra * 1: 20 10 20 30 74035a566e6SPeter Zijlstra * 2: 30 20 10 20 74135a566e6SPeter Zijlstra * 3: 20 30 20 10 74235a566e6SPeter Zijlstra * 74335a566e6SPeter Zijlstra * which represents a 4 node ring topology like: 74435a566e6SPeter Zijlstra * 74535a566e6SPeter Zijlstra * 0 ----- 1 74635a566e6SPeter Zijlstra * | | 74735a566e6SPeter Zijlstra * | | 74835a566e6SPeter Zijlstra * | | 74935a566e6SPeter Zijlstra * 3 ----- 2 75035a566e6SPeter Zijlstra * 75135a566e6SPeter Zijlstra * We want to construct domains and groups to represent this. The way we go 75235a566e6SPeter Zijlstra * about doing this is to build the domains on 'hops'. For each NUMA level we 75335a566e6SPeter Zijlstra * construct the mask of all nodes reachable in @level hops. 75435a566e6SPeter Zijlstra * 75535a566e6SPeter Zijlstra * For the above NUMA topology that gives 3 levels: 75635a566e6SPeter Zijlstra * 75735a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 0-3 0-3 75835a566e6SPeter Zijlstra * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 75935a566e6SPeter Zijlstra * 76035a566e6SPeter Zijlstra * NUMA-1 0-1,3 0-2 1-3 0,2-3 76135a566e6SPeter Zijlstra * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 76235a566e6SPeter Zijlstra * 76335a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 76435a566e6SPeter Zijlstra * 76535a566e6SPeter Zijlstra * 76635a566e6SPeter Zijlstra * As can be seen; things don't nicely line up as with the regular topology. 76735a566e6SPeter Zijlstra * When we iterate a domain in child domain chunks some nodes can be 76835a566e6SPeter Zijlstra * represented multiple times -- hence the "overlap" naming for this part of 76935a566e6SPeter Zijlstra * the topology. 77035a566e6SPeter Zijlstra * 77135a566e6SPeter Zijlstra * In order to minimize this overlap, we only build enough groups to cover the 77235a566e6SPeter Zijlstra * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 77335a566e6SPeter Zijlstra * 77435a566e6SPeter Zijlstra * Because: 77535a566e6SPeter Zijlstra * 77635a566e6SPeter Zijlstra * - the first group of each domain is its child domain; this 77735a566e6SPeter Zijlstra * gets us the first 0-1,3 77835a566e6SPeter Zijlstra * - the only uncovered node is 2, who's child domain is 1-3. 77935a566e6SPeter Zijlstra * 78035a566e6SPeter Zijlstra * However, because of the overlap, computing a unique CPU for each group is 78135a566e6SPeter Zijlstra * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 78235a566e6SPeter Zijlstra * groups include the CPUs of Node-0, while those CPUs would not in fact ever 78335a566e6SPeter Zijlstra * end up at those groups (they would end up in group: 0-1,3). 78435a566e6SPeter Zijlstra * 785e5c14b1fSPeter Zijlstra * To correct this we have to introduce the group balance mask. This mask 78635a566e6SPeter Zijlstra * will contain those CPUs in the group that can reach this group given the 78735a566e6SPeter Zijlstra * (child) domain tree. 78835a566e6SPeter Zijlstra * 78935a566e6SPeter Zijlstra * With this we can once again compute balance_cpu and sched_group_capacity 79035a566e6SPeter Zijlstra * relations. 79135a566e6SPeter Zijlstra * 79235a566e6SPeter Zijlstra * XXX include words on how balance_cpu is unique and therefore can be 79335a566e6SPeter Zijlstra * used for sched_group_capacity links. 79435a566e6SPeter Zijlstra * 79535a566e6SPeter Zijlstra * 79635a566e6SPeter Zijlstra * Another 'interesting' topology is: 79735a566e6SPeter Zijlstra * 79835a566e6SPeter Zijlstra * node 0 1 2 3 79935a566e6SPeter Zijlstra * 0: 10 20 20 30 80035a566e6SPeter Zijlstra * 1: 20 10 20 20 80135a566e6SPeter Zijlstra * 2: 20 20 10 20 80235a566e6SPeter Zijlstra * 3: 30 20 20 10 80335a566e6SPeter Zijlstra * 80435a566e6SPeter Zijlstra * Which looks a little like: 80535a566e6SPeter Zijlstra * 80635a566e6SPeter Zijlstra * 0 ----- 1 80735a566e6SPeter Zijlstra * | / | 80835a566e6SPeter Zijlstra * | / | 80935a566e6SPeter Zijlstra * | / | 81035a566e6SPeter Zijlstra * 2 ----- 3 81135a566e6SPeter Zijlstra * 81235a566e6SPeter Zijlstra * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 81335a566e6SPeter Zijlstra * are not. 81435a566e6SPeter Zijlstra * 81535a566e6SPeter Zijlstra * This leads to a few particularly weird cases where the sched_domain's are 81697fb7a0aSIngo Molnar * not of the same number for each CPU. Consider: 81735a566e6SPeter Zijlstra * 81835a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 81935a566e6SPeter Zijlstra * groups: {0-2},{1-3} {1-3},{0-2} 82035a566e6SPeter Zijlstra * 82135a566e6SPeter Zijlstra * NUMA-1 0-2 0-3 0-3 1-3 82235a566e6SPeter Zijlstra * 82335a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 82435a566e6SPeter Zijlstra * 82535a566e6SPeter Zijlstra */ 82635a566e6SPeter Zijlstra 82735a566e6SPeter Zijlstra 82835a566e6SPeter Zijlstra /* 829e5c14b1fSPeter Zijlstra * Build the balance mask; it contains only those CPUs that can arrive at this 830e5c14b1fSPeter Zijlstra * group and should be considered to continue balancing. 83135a566e6SPeter Zijlstra * 83235a566e6SPeter Zijlstra * We do this during the group creation pass, therefore the group information 83335a566e6SPeter Zijlstra * isn't complete yet, however since each group represents a (child) domain we 83435a566e6SPeter Zijlstra * can fully construct this using the sched_domain bits (which are already 83535a566e6SPeter Zijlstra * complete). 836f2cb1360SIngo Molnar */ 8371676330eSPeter Zijlstra static void 838e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 839f2cb1360SIngo Molnar { 840ae4df9d6SPeter Zijlstra const struct cpumask *sg_span = sched_group_span(sg); 841f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 842f2cb1360SIngo Molnar struct sched_domain *sibling; 843f2cb1360SIngo Molnar int i; 844f2cb1360SIngo Molnar 8451676330eSPeter Zijlstra cpumask_clear(mask); 8461676330eSPeter Zijlstra 847f32d782eSLauro Ramos Venancio for_each_cpu(i, sg_span) { 848f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 84973bb059fSPeter Zijlstra 85073bb059fSPeter Zijlstra /* 85173bb059fSPeter Zijlstra * Can happen in the asymmetric case, where these siblings are 85273bb059fSPeter Zijlstra * unused. The mask will not be empty because those CPUs that 85373bb059fSPeter Zijlstra * do have the top domain _should_ span the domain. 85473bb059fSPeter Zijlstra */ 85573bb059fSPeter Zijlstra if (!sibling->child) 85673bb059fSPeter Zijlstra continue; 85773bb059fSPeter Zijlstra 85873bb059fSPeter Zijlstra /* If we would not end up here, we can't continue from here */ 85973bb059fSPeter Zijlstra if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 860f2cb1360SIngo Molnar continue; 861f2cb1360SIngo Molnar 8621676330eSPeter Zijlstra cpumask_set_cpu(i, mask); 863f2cb1360SIngo Molnar } 86473bb059fSPeter Zijlstra 86573bb059fSPeter Zijlstra /* We must not have empty masks here */ 8661676330eSPeter Zijlstra WARN_ON_ONCE(cpumask_empty(mask)); 867f2cb1360SIngo Molnar } 868f2cb1360SIngo Molnar 869f2cb1360SIngo Molnar /* 87035a566e6SPeter Zijlstra * XXX: This creates per-node group entries; since the load-balancer will 87135a566e6SPeter Zijlstra * immediately access remote memory to construct this group's load-balance 87235a566e6SPeter Zijlstra * statistics having the groups node local is of dubious benefit. 873f2cb1360SIngo Molnar */ 8748c033469SLauro Ramos Venancio static struct sched_group * 8758c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 8768c033469SLauro Ramos Venancio { 8778c033469SLauro Ramos Venancio struct sched_group *sg; 8788c033469SLauro Ramos Venancio struct cpumask *sg_span; 8798c033469SLauro Ramos Venancio 8808c033469SLauro Ramos Venancio sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 8818c033469SLauro Ramos Venancio GFP_KERNEL, cpu_to_node(cpu)); 8828c033469SLauro Ramos Venancio 8838c033469SLauro Ramos Venancio if (!sg) 8848c033469SLauro Ramos Venancio return NULL; 8858c033469SLauro Ramos Venancio 886ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 8878c033469SLauro Ramos Venancio if (sd->child) 8888c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd->child)); 8898c033469SLauro Ramos Venancio else 8908c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd)); 8918c033469SLauro Ramos Venancio 892213c5a45SShu Wang atomic_inc(&sg->ref); 8938c033469SLauro Ramos Venancio return sg; 8948c033469SLauro Ramos Venancio } 8958c033469SLauro Ramos Venancio 8968c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd, 8971676330eSPeter Zijlstra struct sched_group *sg) 8988c033469SLauro Ramos Venancio { 8991676330eSPeter Zijlstra struct cpumask *mask = sched_domains_tmpmask2; 9008c033469SLauro Ramos Venancio struct sd_data *sdd = sd->private; 9018c033469SLauro Ramos Venancio struct cpumask *sg_span; 9021676330eSPeter Zijlstra int cpu; 9031676330eSPeter Zijlstra 904e5c14b1fSPeter Zijlstra build_balance_mask(sd, sg, mask); 905ae4df9d6SPeter Zijlstra cpu = cpumask_first_and(sched_group_span(sg), mask); 9068c033469SLauro Ramos Venancio 9078c033469SLauro Ramos Venancio sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 9088c033469SLauro Ramos Venancio if (atomic_inc_return(&sg->sgc->ref) == 1) 909e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), mask); 91035a566e6SPeter Zijlstra else 911e5c14b1fSPeter Zijlstra WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 9128c033469SLauro Ramos Venancio 9138c033469SLauro Ramos Venancio /* 9148c033469SLauro Ramos Venancio * Initialize sgc->capacity such that even if we mess up the 9158c033469SLauro Ramos Venancio * domains and no possible iteration will get us here, we won't 9168c033469SLauro Ramos Venancio * die on a /0 trap. 9178c033469SLauro Ramos Venancio */ 918ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9198c033469SLauro Ramos Venancio sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 9208c033469SLauro Ramos Venancio sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 921e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 9228c033469SLauro Ramos Venancio } 9238c033469SLauro Ramos Venancio 924f2cb1360SIngo Molnar static int 925f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu) 926f2cb1360SIngo Molnar { 92791eaed0dSPeter Zijlstra struct sched_group *first = NULL, *last = NULL, *sg; 928f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 929f2cb1360SIngo Molnar struct cpumask *covered = sched_domains_tmpmask; 930f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 931f2cb1360SIngo Molnar struct sched_domain *sibling; 932f2cb1360SIngo Molnar int i; 933f2cb1360SIngo Molnar 934f2cb1360SIngo Molnar cpumask_clear(covered); 935f2cb1360SIngo Molnar 9360372dd27SPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 937f2cb1360SIngo Molnar struct cpumask *sg_span; 938f2cb1360SIngo Molnar 939f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 940f2cb1360SIngo Molnar continue; 941f2cb1360SIngo Molnar 942f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 943f2cb1360SIngo Molnar 944c20e1ea4SLauro Ramos Venancio /* 945c20e1ea4SLauro Ramos Venancio * Asymmetric node setups can result in situations where the 946c20e1ea4SLauro Ramos Venancio * domain tree is of unequal depth, make sure to skip domains 947c20e1ea4SLauro Ramos Venancio * that already cover the entire range. 948c20e1ea4SLauro Ramos Venancio * 949c20e1ea4SLauro Ramos Venancio * In that case build_sched_domains() will have terminated the 950c20e1ea4SLauro Ramos Venancio * iteration early and our sibling sd spans will be empty. 951c20e1ea4SLauro Ramos Venancio * Domains should always include the CPU they're built on, so 952c20e1ea4SLauro Ramos Venancio * check that. 953c20e1ea4SLauro Ramos Venancio */ 954f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 955f2cb1360SIngo Molnar continue; 956f2cb1360SIngo Molnar 9578c033469SLauro Ramos Venancio sg = build_group_from_child_sched_domain(sibling, cpu); 958f2cb1360SIngo Molnar if (!sg) 959f2cb1360SIngo Molnar goto fail; 960f2cb1360SIngo Molnar 961ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 962f2cb1360SIngo Molnar cpumask_or(covered, covered, sg_span); 963f2cb1360SIngo Molnar 9641676330eSPeter Zijlstra init_overlap_sched_group(sd, sg); 965f2cb1360SIngo Molnar 966f2cb1360SIngo Molnar if (!first) 967f2cb1360SIngo Molnar first = sg; 968f2cb1360SIngo Molnar if (last) 969f2cb1360SIngo Molnar last->next = sg; 970f2cb1360SIngo Molnar last = sg; 971f2cb1360SIngo Molnar last->next = first; 972f2cb1360SIngo Molnar } 97391eaed0dSPeter Zijlstra sd->groups = first; 974f2cb1360SIngo Molnar 975f2cb1360SIngo Molnar return 0; 976f2cb1360SIngo Molnar 977f2cb1360SIngo Molnar fail: 978f2cb1360SIngo Molnar free_sched_groups(first, 0); 979f2cb1360SIngo Molnar 980f2cb1360SIngo Molnar return -ENOMEM; 981f2cb1360SIngo Molnar } 982f2cb1360SIngo Molnar 98335a566e6SPeter Zijlstra 98435a566e6SPeter Zijlstra /* 98535a566e6SPeter Zijlstra * Package topology (also see the load-balance blurb in fair.c) 98635a566e6SPeter Zijlstra * 98735a566e6SPeter Zijlstra * The scheduler builds a tree structure to represent a number of important 98835a566e6SPeter Zijlstra * topology features. By default (default_topology[]) these include: 98935a566e6SPeter Zijlstra * 99035a566e6SPeter Zijlstra * - Simultaneous multithreading (SMT) 99135a566e6SPeter Zijlstra * - Multi-Core Cache (MC) 99235a566e6SPeter Zijlstra * - Package (DIE) 99335a566e6SPeter Zijlstra * 99435a566e6SPeter Zijlstra * Where the last one more or less denotes everything up to a NUMA node. 99535a566e6SPeter Zijlstra * 99635a566e6SPeter Zijlstra * The tree consists of 3 primary data structures: 99735a566e6SPeter Zijlstra * 99835a566e6SPeter Zijlstra * sched_domain -> sched_group -> sched_group_capacity 99935a566e6SPeter Zijlstra * ^ ^ ^ ^ 100035a566e6SPeter Zijlstra * `-' `-' 100135a566e6SPeter Zijlstra * 100297fb7a0aSIngo Molnar * The sched_domains are per-CPU and have a two way link (parent & child) and 100335a566e6SPeter Zijlstra * denote the ever growing mask of CPUs belonging to that level of topology. 100435a566e6SPeter Zijlstra * 100535a566e6SPeter Zijlstra * Each sched_domain has a circular (double) linked list of sched_group's, each 100635a566e6SPeter Zijlstra * denoting the domains of the level below (or individual CPUs in case of the 100735a566e6SPeter Zijlstra * first domain level). The sched_group linked by a sched_domain includes the 100835a566e6SPeter Zijlstra * CPU of that sched_domain [*]. 100935a566e6SPeter Zijlstra * 101035a566e6SPeter Zijlstra * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 101135a566e6SPeter Zijlstra * 101235a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 101335a566e6SPeter Zijlstra * 101435a566e6SPeter Zijlstra * DIE [ ] 101535a566e6SPeter Zijlstra * MC [ ] [ ] 101635a566e6SPeter Zijlstra * SMT [ ] [ ] [ ] [ ] 101735a566e6SPeter Zijlstra * 101835a566e6SPeter Zijlstra * - or - 101935a566e6SPeter Zijlstra * 102035a566e6SPeter Zijlstra * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 102135a566e6SPeter Zijlstra * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 102235a566e6SPeter Zijlstra * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 102335a566e6SPeter Zijlstra * 102435a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 102535a566e6SPeter Zijlstra * 102635a566e6SPeter Zijlstra * One way to think about it is: sched_domain moves you up and down among these 102735a566e6SPeter Zijlstra * topology levels, while sched_group moves you sideways through it, at child 102835a566e6SPeter Zijlstra * domain granularity. 102935a566e6SPeter Zijlstra * 103035a566e6SPeter Zijlstra * sched_group_capacity ensures each unique sched_group has shared storage. 103135a566e6SPeter Zijlstra * 103235a566e6SPeter Zijlstra * There are two related construction problems, both require a CPU that 103335a566e6SPeter Zijlstra * uniquely identify each group (for a given domain): 103435a566e6SPeter Zijlstra * 103535a566e6SPeter Zijlstra * - The first is the balance_cpu (see should_we_balance() and the 103635a566e6SPeter Zijlstra * load-balance blub in fair.c); for each group we only want 1 CPU to 103735a566e6SPeter Zijlstra * continue balancing at a higher domain. 103835a566e6SPeter Zijlstra * 103935a566e6SPeter Zijlstra * - The second is the sched_group_capacity; we want all identical groups 104035a566e6SPeter Zijlstra * to share a single sched_group_capacity. 104135a566e6SPeter Zijlstra * 104235a566e6SPeter Zijlstra * Since these topologies are exclusive by construction. That is, its 104335a566e6SPeter Zijlstra * impossible for an SMT thread to belong to multiple cores, and cores to 104435a566e6SPeter Zijlstra * be part of multiple caches. There is a very clear and unique location 104535a566e6SPeter Zijlstra * for each CPU in the hierarchy. 104635a566e6SPeter Zijlstra * 104735a566e6SPeter Zijlstra * Therefore computing a unique CPU for each group is trivial (the iteration 104835a566e6SPeter Zijlstra * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 104935a566e6SPeter Zijlstra * group), we can simply pick the first CPU in each group. 105035a566e6SPeter Zijlstra * 105135a566e6SPeter Zijlstra * 105235a566e6SPeter Zijlstra * [*] in other words, the first group of each domain is its child domain. 105335a566e6SPeter Zijlstra */ 105435a566e6SPeter Zijlstra 10550c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1056f2cb1360SIngo Molnar { 1057f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1058f2cb1360SIngo Molnar struct sched_domain *child = sd->child; 10590c0e776aSPeter Zijlstra struct sched_group *sg; 106067d4f6ffSValentin Schneider bool already_visited; 1061f2cb1360SIngo Molnar 1062f2cb1360SIngo Molnar if (child) 1063f2cb1360SIngo Molnar cpu = cpumask_first(sched_domain_span(child)); 1064f2cb1360SIngo Molnar 10650c0e776aSPeter Zijlstra sg = *per_cpu_ptr(sdd->sg, cpu); 10660c0e776aSPeter Zijlstra sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1067f2cb1360SIngo Molnar 106867d4f6ffSValentin Schneider /* Increase refcounts for claim_allocations: */ 106967d4f6ffSValentin Schneider already_visited = atomic_inc_return(&sg->ref) > 1; 107067d4f6ffSValentin Schneider /* sgc visits should follow a similar trend as sg */ 107167d4f6ffSValentin Schneider WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 107267d4f6ffSValentin Schneider 107367d4f6ffSValentin Schneider /* If we have already visited that group, it's already initialized. */ 107467d4f6ffSValentin Schneider if (already_visited) 107567d4f6ffSValentin Schneider return sg; 10760c0e776aSPeter Zijlstra 10770c0e776aSPeter Zijlstra if (child) { 1078ae4df9d6SPeter Zijlstra cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1079ae4df9d6SPeter Zijlstra cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 10800c0e776aSPeter Zijlstra } else { 1081ae4df9d6SPeter Zijlstra cpumask_set_cpu(cpu, sched_group_span(sg)); 1082e5c14b1fSPeter Zijlstra cpumask_set_cpu(cpu, group_balance_mask(sg)); 1083f2cb1360SIngo Molnar } 1084f2cb1360SIngo Molnar 1085ae4df9d6SPeter Zijlstra sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 10860c0e776aSPeter Zijlstra sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1087e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 10880c0e776aSPeter Zijlstra 10890c0e776aSPeter Zijlstra return sg; 1090f2cb1360SIngo Molnar } 1091f2cb1360SIngo Molnar 1092f2cb1360SIngo Molnar /* 1093f2cb1360SIngo Molnar * build_sched_groups will build a circular linked list of the groups 1094d8743230SValentin Schneider * covered by the given span, will set each group's ->cpumask correctly, 1095d8743230SValentin Schneider * and will initialize their ->sgc. 1096f2cb1360SIngo Molnar * 1097f2cb1360SIngo Molnar * Assumes the sched_domain tree is fully constructed 1098f2cb1360SIngo Molnar */ 1099f2cb1360SIngo Molnar static int 1100f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu) 1101f2cb1360SIngo Molnar { 1102f2cb1360SIngo Molnar struct sched_group *first = NULL, *last = NULL; 1103f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1104f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 1105f2cb1360SIngo Molnar struct cpumask *covered; 1106f2cb1360SIngo Molnar int i; 1107f2cb1360SIngo Molnar 1108f2cb1360SIngo Molnar lockdep_assert_held(&sched_domains_mutex); 1109f2cb1360SIngo Molnar covered = sched_domains_tmpmask; 1110f2cb1360SIngo Molnar 1111f2cb1360SIngo Molnar cpumask_clear(covered); 1112f2cb1360SIngo Molnar 11130c0e776aSPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 1114f2cb1360SIngo Molnar struct sched_group *sg; 1115f2cb1360SIngo Molnar 1116f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 1117f2cb1360SIngo Molnar continue; 1118f2cb1360SIngo Molnar 11190c0e776aSPeter Zijlstra sg = get_group(i, sdd); 1120f2cb1360SIngo Molnar 1121ae4df9d6SPeter Zijlstra cpumask_or(covered, covered, sched_group_span(sg)); 1122f2cb1360SIngo Molnar 1123f2cb1360SIngo Molnar if (!first) 1124f2cb1360SIngo Molnar first = sg; 1125f2cb1360SIngo Molnar if (last) 1126f2cb1360SIngo Molnar last->next = sg; 1127f2cb1360SIngo Molnar last = sg; 1128f2cb1360SIngo Molnar } 1129f2cb1360SIngo Molnar last->next = first; 11300c0e776aSPeter Zijlstra sd->groups = first; 1131f2cb1360SIngo Molnar 1132f2cb1360SIngo Molnar return 0; 1133f2cb1360SIngo Molnar } 1134f2cb1360SIngo Molnar 1135f2cb1360SIngo Molnar /* 1136f2cb1360SIngo Molnar * Initialize sched groups cpu_capacity. 1137f2cb1360SIngo Molnar * 1138f2cb1360SIngo Molnar * cpu_capacity indicates the capacity of sched group, which is used while 1139f2cb1360SIngo Molnar * distributing the load between different sched groups in a sched domain. 1140f2cb1360SIngo Molnar * Typically cpu_capacity for all the groups in a sched domain will be same 1141f2cb1360SIngo Molnar * unless there are asymmetries in the topology. If there are asymmetries, 1142f2cb1360SIngo Molnar * group having more cpu_capacity will pickup more load compared to the 1143f2cb1360SIngo Molnar * group having less cpu_capacity. 1144f2cb1360SIngo Molnar */ 1145f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1146f2cb1360SIngo Molnar { 1147f2cb1360SIngo Molnar struct sched_group *sg = sd->groups; 1148f2cb1360SIngo Molnar 1149f2cb1360SIngo Molnar WARN_ON(!sg); 1150f2cb1360SIngo Molnar 1151f2cb1360SIngo Molnar do { 1152f2cb1360SIngo Molnar int cpu, max_cpu = -1; 1153f2cb1360SIngo Molnar 1154ae4df9d6SPeter Zijlstra sg->group_weight = cpumask_weight(sched_group_span(sg)); 1155f2cb1360SIngo Molnar 1156f2cb1360SIngo Molnar if (!(sd->flags & SD_ASYM_PACKING)) 1157f2cb1360SIngo Molnar goto next; 1158f2cb1360SIngo Molnar 1159ae4df9d6SPeter Zijlstra for_each_cpu(cpu, sched_group_span(sg)) { 1160f2cb1360SIngo Molnar if (max_cpu < 0) 1161f2cb1360SIngo Molnar max_cpu = cpu; 1162f2cb1360SIngo Molnar else if (sched_asym_prefer(cpu, max_cpu)) 1163f2cb1360SIngo Molnar max_cpu = cpu; 1164f2cb1360SIngo Molnar } 1165f2cb1360SIngo Molnar sg->asym_prefer_cpu = max_cpu; 1166f2cb1360SIngo Molnar 1167f2cb1360SIngo Molnar next: 1168f2cb1360SIngo Molnar sg = sg->next; 1169f2cb1360SIngo Molnar } while (sg != sd->groups); 1170f2cb1360SIngo Molnar 1171f2cb1360SIngo Molnar if (cpu != group_balance_cpu(sg)) 1172f2cb1360SIngo Molnar return; 1173f2cb1360SIngo Molnar 1174f2cb1360SIngo Molnar update_group_capacity(sd, cpu); 1175f2cb1360SIngo Molnar } 1176f2cb1360SIngo Molnar 1177f2cb1360SIngo Molnar /* 1178f2cb1360SIngo Molnar * Initializers for schedule domains 1179f2cb1360SIngo Molnar * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1180f2cb1360SIngo Molnar */ 1181f2cb1360SIngo Molnar 1182f2cb1360SIngo Molnar static int default_relax_domain_level = -1; 1183f2cb1360SIngo Molnar int sched_domain_level_max; 1184f2cb1360SIngo Molnar 1185f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str) 1186f2cb1360SIngo Molnar { 1187f2cb1360SIngo Molnar if (kstrtoint(str, 0, &default_relax_domain_level)) 1188f2cb1360SIngo Molnar pr_warn("Unable to set relax_domain_level\n"); 1189f2cb1360SIngo Molnar 1190f2cb1360SIngo Molnar return 1; 1191f2cb1360SIngo Molnar } 1192f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level); 1193f2cb1360SIngo Molnar 1194f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd, 1195f2cb1360SIngo Molnar struct sched_domain_attr *attr) 1196f2cb1360SIngo Molnar { 1197f2cb1360SIngo Molnar int request; 1198f2cb1360SIngo Molnar 1199f2cb1360SIngo Molnar if (!attr || attr->relax_domain_level < 0) { 1200f2cb1360SIngo Molnar if (default_relax_domain_level < 0) 1201f2cb1360SIngo Molnar return; 1202f2cb1360SIngo Molnar request = default_relax_domain_level; 1203f2cb1360SIngo Molnar } else 1204f2cb1360SIngo Molnar request = attr->relax_domain_level; 12059ae7ab20SValentin Schneider 12069ae7ab20SValentin Schneider if (sd->level > request) { 1207f2cb1360SIngo Molnar /* Turn off idle balance on this domain: */ 1208f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1209f2cb1360SIngo Molnar } 1210f2cb1360SIngo Molnar } 1211f2cb1360SIngo Molnar 1212f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map); 1213f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map); 1214f2cb1360SIngo Molnar 1215f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1216f2cb1360SIngo Molnar const struct cpumask *cpu_map) 1217f2cb1360SIngo Molnar { 1218f2cb1360SIngo Molnar switch (what) { 1219f2cb1360SIngo Molnar case sa_rootdomain: 1220f2cb1360SIngo Molnar if (!atomic_read(&d->rd->refcount)) 1221f2cb1360SIngo Molnar free_rootdomain(&d->rd->rcu); 1222f2cb1360SIngo Molnar /* Fall through */ 1223f2cb1360SIngo Molnar case sa_sd: 1224f2cb1360SIngo Molnar free_percpu(d->sd); 1225f2cb1360SIngo Molnar /* Fall through */ 1226f2cb1360SIngo Molnar case sa_sd_storage: 1227f2cb1360SIngo Molnar __sdt_free(cpu_map); 1228f2cb1360SIngo Molnar /* Fall through */ 1229f2cb1360SIngo Molnar case sa_none: 1230f2cb1360SIngo Molnar break; 1231f2cb1360SIngo Molnar } 1232f2cb1360SIngo Molnar } 1233f2cb1360SIngo Molnar 1234f2cb1360SIngo Molnar static enum s_alloc 1235f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1236f2cb1360SIngo Molnar { 1237f2cb1360SIngo Molnar memset(d, 0, sizeof(*d)); 1238f2cb1360SIngo Molnar 1239f2cb1360SIngo Molnar if (__sdt_alloc(cpu_map)) 1240f2cb1360SIngo Molnar return sa_sd_storage; 1241f2cb1360SIngo Molnar d->sd = alloc_percpu(struct sched_domain *); 1242f2cb1360SIngo Molnar if (!d->sd) 1243f2cb1360SIngo Molnar return sa_sd_storage; 1244f2cb1360SIngo Molnar d->rd = alloc_rootdomain(); 1245f2cb1360SIngo Molnar if (!d->rd) 1246f2cb1360SIngo Molnar return sa_sd; 124797fb7a0aSIngo Molnar 1248f2cb1360SIngo Molnar return sa_rootdomain; 1249f2cb1360SIngo Molnar } 1250f2cb1360SIngo Molnar 1251f2cb1360SIngo Molnar /* 1252f2cb1360SIngo Molnar * NULL the sd_data elements we've used to build the sched_domain and 1253f2cb1360SIngo Molnar * sched_group structure so that the subsequent __free_domain_allocs() 1254f2cb1360SIngo Molnar * will not free the data we're using. 1255f2cb1360SIngo Molnar */ 1256f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd) 1257f2cb1360SIngo Molnar { 1258f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1259f2cb1360SIngo Molnar 1260f2cb1360SIngo Molnar WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1261f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, cpu) = NULL; 1262f2cb1360SIngo Molnar 1263f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1264f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, cpu) = NULL; 1265f2cb1360SIngo Molnar 1266f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1267f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, cpu) = NULL; 1268f2cb1360SIngo Molnar 1269f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1270f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1271f2cb1360SIngo Molnar } 1272f2cb1360SIngo Molnar 1273f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1274f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type; 127597fb7a0aSIngo Molnar 127697fb7a0aSIngo Molnar static int sched_domains_numa_levels; 1277f2cb1360SIngo Molnar static int sched_domains_curr_level; 127897fb7a0aSIngo Molnar 127997fb7a0aSIngo Molnar int sched_max_numa_distance; 128097fb7a0aSIngo Molnar static int *sched_domains_numa_distance; 128197fb7a0aSIngo Molnar static struct cpumask ***sched_domains_numa_masks; 1282a55c7454SMatt Fleming int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1283f2cb1360SIngo Molnar #endif 1284f2cb1360SIngo Molnar 1285f2cb1360SIngo Molnar /* 1286f2cb1360SIngo Molnar * SD_flags allowed in topology descriptions. 1287f2cb1360SIngo Molnar * 1288f2cb1360SIngo Molnar * These flags are purely descriptive of the topology and do not prescribe 1289f2cb1360SIngo Molnar * behaviour. Behaviour is artificial and mapped in the below sd_init() 1290f2cb1360SIngo Molnar * function: 1291f2cb1360SIngo Molnar * 1292f2cb1360SIngo Molnar * SD_SHARE_CPUCAPACITY - describes SMT topologies 1293f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCES - describes shared caches 1294f2cb1360SIngo Molnar * SD_NUMA - describes NUMA topologies 1295f2cb1360SIngo Molnar * SD_SHARE_POWERDOMAIN - describes shared power domain 1296f2cb1360SIngo Molnar * 1297f2cb1360SIngo Molnar * Odd one out, which beside describing the topology has a quirk also 1298f2cb1360SIngo Molnar * prescribes the desired behaviour that goes along with it: 1299f2cb1360SIngo Molnar * 1300f2cb1360SIngo Molnar * SD_ASYM_PACKING - describes SMT quirks 1301f2cb1360SIngo Molnar */ 1302f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS \ 1303f2cb1360SIngo Molnar (SD_SHARE_CPUCAPACITY | \ 1304f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | \ 1305f2cb1360SIngo Molnar SD_NUMA | \ 1306f2cb1360SIngo Molnar SD_ASYM_PACKING | \ 1307f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN) 1308f2cb1360SIngo Molnar 1309f2cb1360SIngo Molnar static struct sched_domain * 1310f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl, 1311f2cb1360SIngo Molnar const struct cpumask *cpu_map, 131205484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1313f2cb1360SIngo Molnar { 1314f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1315f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1316f2cb1360SIngo Molnar int sd_id, sd_weight, sd_flags = 0; 1317f2cb1360SIngo Molnar 1318f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1319f2cb1360SIngo Molnar /* 1320f2cb1360SIngo Molnar * Ugly hack to pass state to sd_numa_mask()... 1321f2cb1360SIngo Molnar */ 1322f2cb1360SIngo Molnar sched_domains_curr_level = tl->numa_level; 1323f2cb1360SIngo Molnar #endif 1324f2cb1360SIngo Molnar 1325f2cb1360SIngo Molnar sd_weight = cpumask_weight(tl->mask(cpu)); 1326f2cb1360SIngo Molnar 1327f2cb1360SIngo Molnar if (tl->sd_flags) 1328f2cb1360SIngo Molnar sd_flags = (*tl->sd_flags)(); 1329f2cb1360SIngo Molnar if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1330f2cb1360SIngo Molnar "wrong sd_flags in topology description\n")) 1331f2cb1360SIngo Molnar sd_flags &= ~TOPOLOGY_SD_FLAGS; 1332f2cb1360SIngo Molnar 133305484e09SMorten Rasmussen /* Apply detected topology flags */ 133405484e09SMorten Rasmussen sd_flags |= dflags; 133505484e09SMorten Rasmussen 1336f2cb1360SIngo Molnar *sd = (struct sched_domain){ 1337f2cb1360SIngo Molnar .min_interval = sd_weight, 1338f2cb1360SIngo Molnar .max_interval = 2*sd_weight, 1339f2cb1360SIngo Molnar .busy_factor = 32, 1340f2cb1360SIngo Molnar .imbalance_pct = 125, 1341f2cb1360SIngo Molnar 1342f2cb1360SIngo Molnar .cache_nice_tries = 0, 1343f2cb1360SIngo Molnar 1344f2cb1360SIngo Molnar .flags = 1*SD_LOAD_BALANCE 1345f2cb1360SIngo Molnar | 1*SD_BALANCE_NEWIDLE 1346f2cb1360SIngo Molnar | 1*SD_BALANCE_EXEC 1347f2cb1360SIngo Molnar | 1*SD_BALANCE_FORK 1348f2cb1360SIngo Molnar | 0*SD_BALANCE_WAKE 1349f2cb1360SIngo Molnar | 1*SD_WAKE_AFFINE 1350f2cb1360SIngo Molnar | 0*SD_SHARE_CPUCAPACITY 1351f2cb1360SIngo Molnar | 0*SD_SHARE_PKG_RESOURCES 1352f2cb1360SIngo Molnar | 0*SD_SERIALIZE 13539c63e84dSMorten Rasmussen | 1*SD_PREFER_SIBLING 1354f2cb1360SIngo Molnar | 0*SD_NUMA 1355f2cb1360SIngo Molnar | sd_flags 1356f2cb1360SIngo Molnar , 1357f2cb1360SIngo Molnar 1358f2cb1360SIngo Molnar .last_balance = jiffies, 1359f2cb1360SIngo Molnar .balance_interval = sd_weight, 1360f2cb1360SIngo Molnar .max_newidle_lb_cost = 0, 1361f2cb1360SIngo Molnar .next_decay_max_lb_cost = jiffies, 1362f2cb1360SIngo Molnar .child = child, 1363f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1364f2cb1360SIngo Molnar .name = tl->name, 1365f2cb1360SIngo Molnar #endif 1366f2cb1360SIngo Molnar }; 1367f2cb1360SIngo Molnar 1368f2cb1360SIngo Molnar cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1369f2cb1360SIngo Molnar sd_id = cpumask_first(sched_domain_span(sd)); 1370f2cb1360SIngo Molnar 1371f2cb1360SIngo Molnar /* 1372f2cb1360SIngo Molnar * Convert topological properties into behaviour. 1373f2cb1360SIngo Molnar */ 1374f2cb1360SIngo Molnar 1375a526d466SMorten Rasmussen /* Don't attempt to spread across CPUs of different capacities. */ 1376a526d466SMorten Rasmussen if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 13779c63e84dSMorten Rasmussen sd->child->flags &= ~SD_PREFER_SIBLING; 13789c63e84dSMorten Rasmussen 1379f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_CPUCAPACITY) { 1380f2cb1360SIngo Molnar sd->imbalance_pct = 110; 1381f2cb1360SIngo Molnar 1382f2cb1360SIngo Molnar } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1383f2cb1360SIngo Molnar sd->imbalance_pct = 117; 1384f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1385f2cb1360SIngo Molnar 1386f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1387f2cb1360SIngo Molnar } else if (sd->flags & SD_NUMA) { 1388f2cb1360SIngo Molnar sd->cache_nice_tries = 2; 1389f2cb1360SIngo Molnar 13909c63e84dSMorten Rasmussen sd->flags &= ~SD_PREFER_SIBLING; 1391f2cb1360SIngo Molnar sd->flags |= SD_SERIALIZE; 1392a55c7454SMatt Fleming if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1393f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_EXEC | 1394f2cb1360SIngo Molnar SD_BALANCE_FORK | 1395f2cb1360SIngo Molnar SD_WAKE_AFFINE); 1396f2cb1360SIngo Molnar } 1397f2cb1360SIngo Molnar 1398f2cb1360SIngo Molnar #endif 1399f2cb1360SIngo Molnar } else { 1400f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1401f2cb1360SIngo Molnar } 1402f2cb1360SIngo Molnar 1403f2cb1360SIngo Molnar /* 1404f2cb1360SIngo Molnar * For all levels sharing cache; connect a sched_domain_shared 1405f2cb1360SIngo Molnar * instance. 1406f2cb1360SIngo Molnar */ 1407f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1408f2cb1360SIngo Molnar sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1409f2cb1360SIngo Molnar atomic_inc(&sd->shared->ref); 1410f2cb1360SIngo Molnar atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1411f2cb1360SIngo Molnar } 1412f2cb1360SIngo Molnar 1413f2cb1360SIngo Molnar sd->private = sdd; 1414f2cb1360SIngo Molnar 1415f2cb1360SIngo Molnar return sd; 1416f2cb1360SIngo Molnar } 1417f2cb1360SIngo Molnar 1418f2cb1360SIngo Molnar /* 1419f2cb1360SIngo Molnar * Topology list, bottom-up. 1420f2cb1360SIngo Molnar */ 1421f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = { 1422f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT 1423f2cb1360SIngo Molnar { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1424f2cb1360SIngo Molnar #endif 1425f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC 1426f2cb1360SIngo Molnar { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1427f2cb1360SIngo Molnar #endif 1428f2cb1360SIngo Molnar { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1429f2cb1360SIngo Molnar { NULL, }, 1430f2cb1360SIngo Molnar }; 1431f2cb1360SIngo Molnar 1432f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology = 1433f2cb1360SIngo Molnar default_topology; 1434f2cb1360SIngo Molnar 1435f2cb1360SIngo Molnar #define for_each_sd_topology(tl) \ 1436f2cb1360SIngo Molnar for (tl = sched_domain_topology; tl->mask; tl++) 1437f2cb1360SIngo Molnar 1438f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl) 1439f2cb1360SIngo Molnar { 1440f2cb1360SIngo Molnar if (WARN_ON_ONCE(sched_smp_initialized)) 1441f2cb1360SIngo Molnar return; 1442f2cb1360SIngo Molnar 1443f2cb1360SIngo Molnar sched_domain_topology = tl; 1444f2cb1360SIngo Molnar } 1445f2cb1360SIngo Molnar 1446f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1447f2cb1360SIngo Molnar 1448f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu) 1449f2cb1360SIngo Molnar { 1450f2cb1360SIngo Molnar return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1451f2cb1360SIngo Molnar } 1452f2cb1360SIngo Molnar 1453f2cb1360SIngo Molnar static void sched_numa_warn(const char *str) 1454f2cb1360SIngo Molnar { 1455f2cb1360SIngo Molnar static int done = false; 1456f2cb1360SIngo Molnar int i,j; 1457f2cb1360SIngo Molnar 1458f2cb1360SIngo Molnar if (done) 1459f2cb1360SIngo Molnar return; 1460f2cb1360SIngo Molnar 1461f2cb1360SIngo Molnar done = true; 1462f2cb1360SIngo Molnar 1463f2cb1360SIngo Molnar printk(KERN_WARNING "ERROR: %s\n\n", str); 1464f2cb1360SIngo Molnar 1465f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1466f2cb1360SIngo Molnar printk(KERN_WARNING " "); 1467f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1468f2cb1360SIngo Molnar printk(KERN_CONT "%02d ", node_distance(i,j)); 1469f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 1470f2cb1360SIngo Molnar } 1471f2cb1360SIngo Molnar printk(KERN_WARNING "\n"); 1472f2cb1360SIngo Molnar } 1473f2cb1360SIngo Molnar 1474f2cb1360SIngo Molnar bool find_numa_distance(int distance) 1475f2cb1360SIngo Molnar { 1476f2cb1360SIngo Molnar int i; 1477f2cb1360SIngo Molnar 1478f2cb1360SIngo Molnar if (distance == node_distance(0, 0)) 1479f2cb1360SIngo Molnar return true; 1480f2cb1360SIngo Molnar 1481f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1482f2cb1360SIngo Molnar if (sched_domains_numa_distance[i] == distance) 1483f2cb1360SIngo Molnar return true; 1484f2cb1360SIngo Molnar } 1485f2cb1360SIngo Molnar 1486f2cb1360SIngo Molnar return false; 1487f2cb1360SIngo Molnar } 1488f2cb1360SIngo Molnar 1489f2cb1360SIngo Molnar /* 1490f2cb1360SIngo Molnar * A system can have three types of NUMA topology: 1491f2cb1360SIngo Molnar * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1492f2cb1360SIngo Molnar * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1493f2cb1360SIngo Molnar * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1494f2cb1360SIngo Molnar * 1495f2cb1360SIngo Molnar * The difference between a glueless mesh topology and a backplane 1496f2cb1360SIngo Molnar * topology lies in whether communication between not directly 1497f2cb1360SIngo Molnar * connected nodes goes through intermediary nodes (where programs 1498f2cb1360SIngo Molnar * could run), or through backplane controllers. This affects 1499f2cb1360SIngo Molnar * placement of programs. 1500f2cb1360SIngo Molnar * 1501f2cb1360SIngo Molnar * The type of topology can be discerned with the following tests: 1502f2cb1360SIngo Molnar * - If the maximum distance between any nodes is 1 hop, the system 1503f2cb1360SIngo Molnar * is directly connected. 1504f2cb1360SIngo Molnar * - If for two nodes A and B, located N > 1 hops away from each other, 1505f2cb1360SIngo Molnar * there is an intermediary node C, which is < N hops away from both 1506f2cb1360SIngo Molnar * nodes A and B, the system is a glueless mesh. 1507f2cb1360SIngo Molnar */ 1508f2cb1360SIngo Molnar static void init_numa_topology_type(void) 1509f2cb1360SIngo Molnar { 1510f2cb1360SIngo Molnar int a, b, c, n; 1511f2cb1360SIngo Molnar 1512f2cb1360SIngo Molnar n = sched_max_numa_distance; 1513f2cb1360SIngo Molnar 1514e5e96fafSSrikar Dronamraju if (sched_domains_numa_levels <= 2) { 1515f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_DIRECT; 1516f2cb1360SIngo Molnar return; 1517f2cb1360SIngo Molnar } 1518f2cb1360SIngo Molnar 1519f2cb1360SIngo Molnar for_each_online_node(a) { 1520f2cb1360SIngo Molnar for_each_online_node(b) { 1521f2cb1360SIngo Molnar /* Find two nodes furthest removed from each other. */ 1522f2cb1360SIngo Molnar if (node_distance(a, b) < n) 1523f2cb1360SIngo Molnar continue; 1524f2cb1360SIngo Molnar 1525f2cb1360SIngo Molnar /* Is there an intermediary node between a and b? */ 1526f2cb1360SIngo Molnar for_each_online_node(c) { 1527f2cb1360SIngo Molnar if (node_distance(a, c) < n && 1528f2cb1360SIngo Molnar node_distance(b, c) < n) { 1529f2cb1360SIngo Molnar sched_numa_topology_type = 1530f2cb1360SIngo Molnar NUMA_GLUELESS_MESH; 1531f2cb1360SIngo Molnar return; 1532f2cb1360SIngo Molnar } 1533f2cb1360SIngo Molnar } 1534f2cb1360SIngo Molnar 1535f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_BACKPLANE; 1536f2cb1360SIngo Molnar return; 1537f2cb1360SIngo Molnar } 1538f2cb1360SIngo Molnar } 1539f2cb1360SIngo Molnar } 1540f2cb1360SIngo Molnar 1541f2cb1360SIngo Molnar void sched_init_numa(void) 1542f2cb1360SIngo Molnar { 1543f2cb1360SIngo Molnar int next_distance, curr_distance = node_distance(0, 0); 1544f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1545f2cb1360SIngo Molnar int level = 0; 1546f2cb1360SIngo Molnar int i, j, k; 1547f2cb1360SIngo Molnar 1548993f0b05SPeter Zijlstra sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1549f2cb1360SIngo Molnar if (!sched_domains_numa_distance) 1550f2cb1360SIngo Molnar return; 1551f2cb1360SIngo Molnar 1552051f3ca0SSuravee Suthikulpanit /* Includes NUMA identity node at level 0. */ 1553051f3ca0SSuravee Suthikulpanit sched_domains_numa_distance[level++] = curr_distance; 1554051f3ca0SSuravee Suthikulpanit sched_domains_numa_levels = level; 1555051f3ca0SSuravee Suthikulpanit 1556f2cb1360SIngo Molnar /* 1557f2cb1360SIngo Molnar * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1558f2cb1360SIngo Molnar * unique distances in the node_distance() table. 1559f2cb1360SIngo Molnar * 1560f2cb1360SIngo Molnar * Assumes node_distance(0,j) includes all distances in 1561f2cb1360SIngo Molnar * node_distance(i,j) in order to avoid cubic time. 1562f2cb1360SIngo Molnar */ 1563f2cb1360SIngo Molnar next_distance = curr_distance; 1564f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1565f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1566f2cb1360SIngo Molnar for (k = 0; k < nr_node_ids; k++) { 1567f2cb1360SIngo Molnar int distance = node_distance(i, k); 1568f2cb1360SIngo Molnar 1569f2cb1360SIngo Molnar if (distance > curr_distance && 1570f2cb1360SIngo Molnar (distance < next_distance || 1571f2cb1360SIngo Molnar next_distance == curr_distance)) 1572f2cb1360SIngo Molnar next_distance = distance; 1573f2cb1360SIngo Molnar 1574f2cb1360SIngo Molnar /* 1575f2cb1360SIngo Molnar * While not a strong assumption it would be nice to know 1576f2cb1360SIngo Molnar * about cases where if node A is connected to B, B is not 1577f2cb1360SIngo Molnar * equally connected to A. 1578f2cb1360SIngo Molnar */ 1579f2cb1360SIngo Molnar if (sched_debug() && node_distance(k, i) != distance) 1580f2cb1360SIngo Molnar sched_numa_warn("Node-distance not symmetric"); 1581f2cb1360SIngo Molnar 1582f2cb1360SIngo Molnar if (sched_debug() && i && !find_numa_distance(distance)) 1583f2cb1360SIngo Molnar sched_numa_warn("Node-0 not representative"); 1584f2cb1360SIngo Molnar } 1585f2cb1360SIngo Molnar if (next_distance != curr_distance) { 1586f2cb1360SIngo Molnar sched_domains_numa_distance[level++] = next_distance; 1587f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1588f2cb1360SIngo Molnar curr_distance = next_distance; 1589f2cb1360SIngo Molnar } else break; 1590f2cb1360SIngo Molnar } 1591f2cb1360SIngo Molnar 1592f2cb1360SIngo Molnar /* 1593f2cb1360SIngo Molnar * In case of sched_debug() we verify the above assumption. 1594f2cb1360SIngo Molnar */ 1595f2cb1360SIngo Molnar if (!sched_debug()) 1596f2cb1360SIngo Molnar break; 1597f2cb1360SIngo Molnar } 1598f2cb1360SIngo Molnar 1599f2cb1360SIngo Molnar /* 1600051f3ca0SSuravee Suthikulpanit * 'level' contains the number of unique distances 1601f2cb1360SIngo Molnar * 1602f2cb1360SIngo Molnar * The sched_domains_numa_distance[] array includes the actual distance 1603f2cb1360SIngo Molnar * numbers. 1604f2cb1360SIngo Molnar */ 1605f2cb1360SIngo Molnar 1606f2cb1360SIngo Molnar /* 1607f2cb1360SIngo Molnar * Here, we should temporarily reset sched_domains_numa_levels to 0. 1608f2cb1360SIngo Molnar * If it fails to allocate memory for array sched_domains_numa_masks[][], 1609f2cb1360SIngo Molnar * the array will contain less then 'level' members. This could be 1610f2cb1360SIngo Molnar * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1611f2cb1360SIngo Molnar * in other functions. 1612f2cb1360SIngo Molnar * 1613f2cb1360SIngo Molnar * We reset it to 'level' at the end of this function. 1614f2cb1360SIngo Molnar */ 1615f2cb1360SIngo Molnar sched_domains_numa_levels = 0; 1616f2cb1360SIngo Molnar 1617f2cb1360SIngo Molnar sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1618f2cb1360SIngo Molnar if (!sched_domains_numa_masks) 1619f2cb1360SIngo Molnar return; 1620f2cb1360SIngo Molnar 1621f2cb1360SIngo Molnar /* 1622f2cb1360SIngo Molnar * Now for each level, construct a mask per node which contains all 1623f2cb1360SIngo Molnar * CPUs of nodes that are that many hops away from us. 1624f2cb1360SIngo Molnar */ 1625f2cb1360SIngo Molnar for (i = 0; i < level; i++) { 1626f2cb1360SIngo Molnar sched_domains_numa_masks[i] = 1627f2cb1360SIngo Molnar kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1628f2cb1360SIngo Molnar if (!sched_domains_numa_masks[i]) 1629f2cb1360SIngo Molnar return; 1630f2cb1360SIngo Molnar 1631f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1632f2cb1360SIngo Molnar struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1633f2cb1360SIngo Molnar if (!mask) 1634f2cb1360SIngo Molnar return; 1635f2cb1360SIngo Molnar 1636f2cb1360SIngo Molnar sched_domains_numa_masks[i][j] = mask; 1637f2cb1360SIngo Molnar 1638f2cb1360SIngo Molnar for_each_node(k) { 1639f2cb1360SIngo Molnar if (node_distance(j, k) > sched_domains_numa_distance[i]) 1640f2cb1360SIngo Molnar continue; 1641f2cb1360SIngo Molnar 1642f2cb1360SIngo Molnar cpumask_or(mask, mask, cpumask_of_node(k)); 1643f2cb1360SIngo Molnar } 1644f2cb1360SIngo Molnar } 1645f2cb1360SIngo Molnar } 1646f2cb1360SIngo Molnar 1647f2cb1360SIngo Molnar /* Compute default topology size */ 1648f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++); 1649f2cb1360SIngo Molnar 1650f2cb1360SIngo Molnar tl = kzalloc((i + level + 1) * 1651f2cb1360SIngo Molnar sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1652f2cb1360SIngo Molnar if (!tl) 1653f2cb1360SIngo Molnar return; 1654f2cb1360SIngo Molnar 1655f2cb1360SIngo Molnar /* 1656f2cb1360SIngo Molnar * Copy the default topology bits.. 1657f2cb1360SIngo Molnar */ 1658f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++) 1659f2cb1360SIngo Molnar tl[i] = sched_domain_topology[i]; 1660f2cb1360SIngo Molnar 1661f2cb1360SIngo Molnar /* 1662051f3ca0SSuravee Suthikulpanit * Add the NUMA identity distance, aka single NODE. 1663051f3ca0SSuravee Suthikulpanit */ 1664051f3ca0SSuravee Suthikulpanit tl[i++] = (struct sched_domain_topology_level){ 1665051f3ca0SSuravee Suthikulpanit .mask = sd_numa_mask, 1666051f3ca0SSuravee Suthikulpanit .numa_level = 0, 1667051f3ca0SSuravee Suthikulpanit SD_INIT_NAME(NODE) 1668051f3ca0SSuravee Suthikulpanit }; 1669051f3ca0SSuravee Suthikulpanit 1670051f3ca0SSuravee Suthikulpanit /* 1671f2cb1360SIngo Molnar * .. and append 'j' levels of NUMA goodness. 1672f2cb1360SIngo Molnar */ 1673051f3ca0SSuravee Suthikulpanit for (j = 1; j < level; i++, j++) { 1674f2cb1360SIngo Molnar tl[i] = (struct sched_domain_topology_level){ 1675f2cb1360SIngo Molnar .mask = sd_numa_mask, 1676f2cb1360SIngo Molnar .sd_flags = cpu_numa_flags, 1677f2cb1360SIngo Molnar .flags = SDTL_OVERLAP, 1678f2cb1360SIngo Molnar .numa_level = j, 1679f2cb1360SIngo Molnar SD_INIT_NAME(NUMA) 1680f2cb1360SIngo Molnar }; 1681f2cb1360SIngo Molnar } 1682f2cb1360SIngo Molnar 1683f2cb1360SIngo Molnar sched_domain_topology = tl; 1684f2cb1360SIngo Molnar 1685f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1686f2cb1360SIngo Molnar sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1687f2cb1360SIngo Molnar 1688f2cb1360SIngo Molnar init_numa_topology_type(); 1689f2cb1360SIngo Molnar } 1690f2cb1360SIngo Molnar 1691f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu) 1692f2cb1360SIngo Molnar { 1693f2cb1360SIngo Molnar int node = cpu_to_node(cpu); 1694f2cb1360SIngo Molnar int i, j; 1695f2cb1360SIngo Molnar 1696f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1697f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1698f2cb1360SIngo Molnar if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1699f2cb1360SIngo Molnar cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1700f2cb1360SIngo Molnar } 1701f2cb1360SIngo Molnar } 1702f2cb1360SIngo Molnar } 1703f2cb1360SIngo Molnar 1704f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu) 1705f2cb1360SIngo Molnar { 1706f2cb1360SIngo Molnar int i, j; 1707f2cb1360SIngo Molnar 1708f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1709f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1710f2cb1360SIngo Molnar cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1711f2cb1360SIngo Molnar } 1712f2cb1360SIngo Molnar } 1713f2cb1360SIngo Molnar 1714e0e8d491SWanpeng Li /* 1715e0e8d491SWanpeng Li * sched_numa_find_closest() - given the NUMA topology, find the cpu 1716e0e8d491SWanpeng Li * closest to @cpu from @cpumask. 1717e0e8d491SWanpeng Li * cpumask: cpumask to find a cpu from 1718e0e8d491SWanpeng Li * cpu: cpu to be close to 1719e0e8d491SWanpeng Li * 1720e0e8d491SWanpeng Li * returns: cpu, or nr_cpu_ids when nothing found. 1721e0e8d491SWanpeng Li */ 1722e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1723e0e8d491SWanpeng Li { 1724e0e8d491SWanpeng Li int i, j = cpu_to_node(cpu); 1725e0e8d491SWanpeng Li 1726e0e8d491SWanpeng Li for (i = 0; i < sched_domains_numa_levels; i++) { 1727e0e8d491SWanpeng Li cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 1728e0e8d491SWanpeng Li if (cpu < nr_cpu_ids) 1729e0e8d491SWanpeng Li return cpu; 1730e0e8d491SWanpeng Li } 1731e0e8d491SWanpeng Li return nr_cpu_ids; 1732e0e8d491SWanpeng Li } 1733e0e8d491SWanpeng Li 1734f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */ 1735f2cb1360SIngo Molnar 1736f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map) 1737f2cb1360SIngo Molnar { 1738f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1739f2cb1360SIngo Molnar int j; 1740f2cb1360SIngo Molnar 1741f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1742f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1743f2cb1360SIngo Molnar 1744f2cb1360SIngo Molnar sdd->sd = alloc_percpu(struct sched_domain *); 1745f2cb1360SIngo Molnar if (!sdd->sd) 1746f2cb1360SIngo Molnar return -ENOMEM; 1747f2cb1360SIngo Molnar 1748f2cb1360SIngo Molnar sdd->sds = alloc_percpu(struct sched_domain_shared *); 1749f2cb1360SIngo Molnar if (!sdd->sds) 1750f2cb1360SIngo Molnar return -ENOMEM; 1751f2cb1360SIngo Molnar 1752f2cb1360SIngo Molnar sdd->sg = alloc_percpu(struct sched_group *); 1753f2cb1360SIngo Molnar if (!sdd->sg) 1754f2cb1360SIngo Molnar return -ENOMEM; 1755f2cb1360SIngo Molnar 1756f2cb1360SIngo Molnar sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1757f2cb1360SIngo Molnar if (!sdd->sgc) 1758f2cb1360SIngo Molnar return -ENOMEM; 1759f2cb1360SIngo Molnar 1760f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1761f2cb1360SIngo Molnar struct sched_domain *sd; 1762f2cb1360SIngo Molnar struct sched_domain_shared *sds; 1763f2cb1360SIngo Molnar struct sched_group *sg; 1764f2cb1360SIngo Molnar struct sched_group_capacity *sgc; 1765f2cb1360SIngo Molnar 1766f2cb1360SIngo Molnar sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1767f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1768f2cb1360SIngo Molnar if (!sd) 1769f2cb1360SIngo Molnar return -ENOMEM; 1770f2cb1360SIngo Molnar 1771f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, j) = sd; 1772f2cb1360SIngo Molnar 1773f2cb1360SIngo Molnar sds = kzalloc_node(sizeof(struct sched_domain_shared), 1774f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1775f2cb1360SIngo Molnar if (!sds) 1776f2cb1360SIngo Molnar return -ENOMEM; 1777f2cb1360SIngo Molnar 1778f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, j) = sds; 1779f2cb1360SIngo Molnar 1780f2cb1360SIngo Molnar sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1781f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1782f2cb1360SIngo Molnar if (!sg) 1783f2cb1360SIngo Molnar return -ENOMEM; 1784f2cb1360SIngo Molnar 1785f2cb1360SIngo Molnar sg->next = sg; 1786f2cb1360SIngo Molnar 1787f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, j) = sg; 1788f2cb1360SIngo Molnar 1789f2cb1360SIngo Molnar sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1790f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1791f2cb1360SIngo Molnar if (!sgc) 1792f2cb1360SIngo Molnar return -ENOMEM; 1793f2cb1360SIngo Molnar 1794005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG 1795005f874dSPeter Zijlstra sgc->id = j; 1796005f874dSPeter Zijlstra #endif 1797005f874dSPeter Zijlstra 1798f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, j) = sgc; 1799f2cb1360SIngo Molnar } 1800f2cb1360SIngo Molnar } 1801f2cb1360SIngo Molnar 1802f2cb1360SIngo Molnar return 0; 1803f2cb1360SIngo Molnar } 1804f2cb1360SIngo Molnar 1805f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map) 1806f2cb1360SIngo Molnar { 1807f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1808f2cb1360SIngo Molnar int j; 1809f2cb1360SIngo Molnar 1810f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1811f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1812f2cb1360SIngo Molnar 1813f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1814f2cb1360SIngo Molnar struct sched_domain *sd; 1815f2cb1360SIngo Molnar 1816f2cb1360SIngo Molnar if (sdd->sd) { 1817f2cb1360SIngo Molnar sd = *per_cpu_ptr(sdd->sd, j); 1818f2cb1360SIngo Molnar if (sd && (sd->flags & SD_OVERLAP)) 1819f2cb1360SIngo Molnar free_sched_groups(sd->groups, 0); 1820f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sd, j)); 1821f2cb1360SIngo Molnar } 1822f2cb1360SIngo Molnar 1823f2cb1360SIngo Molnar if (sdd->sds) 1824f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sds, j)); 1825f2cb1360SIngo Molnar if (sdd->sg) 1826f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sg, j)); 1827f2cb1360SIngo Molnar if (sdd->sgc) 1828f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sgc, j)); 1829f2cb1360SIngo Molnar } 1830f2cb1360SIngo Molnar free_percpu(sdd->sd); 1831f2cb1360SIngo Molnar sdd->sd = NULL; 1832f2cb1360SIngo Molnar free_percpu(sdd->sds); 1833f2cb1360SIngo Molnar sdd->sds = NULL; 1834f2cb1360SIngo Molnar free_percpu(sdd->sg); 1835f2cb1360SIngo Molnar sdd->sg = NULL; 1836f2cb1360SIngo Molnar free_percpu(sdd->sgc); 1837f2cb1360SIngo Molnar sdd->sgc = NULL; 1838f2cb1360SIngo Molnar } 1839f2cb1360SIngo Molnar } 1840f2cb1360SIngo Molnar 1841181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1842f2cb1360SIngo Molnar const struct cpumask *cpu_map, struct sched_domain_attr *attr, 184305484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1844f2cb1360SIngo Molnar { 184505484e09SMorten Rasmussen struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1846f2cb1360SIngo Molnar 1847f2cb1360SIngo Molnar if (child) { 1848f2cb1360SIngo Molnar sd->level = child->level + 1; 1849f2cb1360SIngo Molnar sched_domain_level_max = max(sched_domain_level_max, sd->level); 1850f2cb1360SIngo Molnar child->parent = sd; 1851f2cb1360SIngo Molnar 1852f2cb1360SIngo Molnar if (!cpumask_subset(sched_domain_span(child), 1853f2cb1360SIngo Molnar sched_domain_span(sd))) { 1854f2cb1360SIngo Molnar pr_err("BUG: arch topology borken\n"); 1855f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1856f2cb1360SIngo Molnar pr_err(" the %s domain not a subset of the %s domain\n", 1857f2cb1360SIngo Molnar child->name, sd->name); 1858f2cb1360SIngo Molnar #endif 185997fb7a0aSIngo Molnar /* Fixup, ensure @sd has at least @child CPUs. */ 1860f2cb1360SIngo Molnar cpumask_or(sched_domain_span(sd), 1861f2cb1360SIngo Molnar sched_domain_span(sd), 1862f2cb1360SIngo Molnar sched_domain_span(child)); 1863f2cb1360SIngo Molnar } 1864f2cb1360SIngo Molnar 1865f2cb1360SIngo Molnar } 1866f2cb1360SIngo Molnar set_domain_attribute(sd, attr); 1867f2cb1360SIngo Molnar 1868f2cb1360SIngo Molnar return sd; 1869f2cb1360SIngo Molnar } 1870f2cb1360SIngo Molnar 1871f2cb1360SIngo Molnar /* 1872ccf74128SValentin Schneider * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 1873ccf74128SValentin Schneider * any two given CPUs at this (non-NUMA) topology level. 1874ccf74128SValentin Schneider */ 1875ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl, 1876ccf74128SValentin Schneider const struct cpumask *cpu_map, int cpu) 1877ccf74128SValentin Schneider { 1878ccf74128SValentin Schneider int i; 1879ccf74128SValentin Schneider 1880ccf74128SValentin Schneider /* NUMA levels are allowed to overlap */ 1881ccf74128SValentin Schneider if (tl->flags & SDTL_OVERLAP) 1882ccf74128SValentin Schneider return true; 1883ccf74128SValentin Schneider 1884ccf74128SValentin Schneider /* 1885ccf74128SValentin Schneider * Non-NUMA levels cannot partially overlap - they must be either 1886ccf74128SValentin Schneider * completely equal or completely disjoint. Otherwise we can end up 1887ccf74128SValentin Schneider * breaking the sched_group lists - i.e. a later get_group() pass 1888ccf74128SValentin Schneider * breaks the linking done for an earlier span. 1889ccf74128SValentin Schneider */ 1890ccf74128SValentin Schneider for_each_cpu(i, cpu_map) { 1891ccf74128SValentin Schneider if (i == cpu) 1892ccf74128SValentin Schneider continue; 1893ccf74128SValentin Schneider /* 1894ccf74128SValentin Schneider * We should 'and' all those masks with 'cpu_map' to exactly 1895ccf74128SValentin Schneider * match the topology we're about to build, but that can only 1896ccf74128SValentin Schneider * remove CPUs, which only lessens our ability to detect 1897ccf74128SValentin Schneider * overlaps 1898ccf74128SValentin Schneider */ 1899ccf74128SValentin Schneider if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 1900ccf74128SValentin Schneider cpumask_intersects(tl->mask(cpu), tl->mask(i))) 1901ccf74128SValentin Schneider return false; 1902ccf74128SValentin Schneider } 1903ccf74128SValentin Schneider 1904ccf74128SValentin Schneider return true; 1905ccf74128SValentin Schneider } 1906ccf74128SValentin Schneider 1907ccf74128SValentin Schneider /* 190805484e09SMorten Rasmussen * Find the sched_domain_topology_level where all CPU capacities are visible 190905484e09SMorten Rasmussen * for all CPUs. 191005484e09SMorten Rasmussen */ 191105484e09SMorten Rasmussen static struct sched_domain_topology_level 191205484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map) 191305484e09SMorten Rasmussen { 191405484e09SMorten Rasmussen int i, j, asym_level = 0; 191505484e09SMorten Rasmussen bool asym = false; 191605484e09SMorten Rasmussen struct sched_domain_topology_level *tl, *asym_tl = NULL; 191705484e09SMorten Rasmussen unsigned long cap; 191805484e09SMorten Rasmussen 191905484e09SMorten Rasmussen /* Is there any asymmetry? */ 19208ec59c0fSVincent Guittot cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); 192105484e09SMorten Rasmussen 192205484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19238ec59c0fSVincent Guittot if (arch_scale_cpu_capacity(i) != cap) { 192405484e09SMorten Rasmussen asym = true; 192505484e09SMorten Rasmussen break; 192605484e09SMorten Rasmussen } 192705484e09SMorten Rasmussen } 192805484e09SMorten Rasmussen 192905484e09SMorten Rasmussen if (!asym) 193005484e09SMorten Rasmussen return NULL; 193105484e09SMorten Rasmussen 193205484e09SMorten Rasmussen /* 193305484e09SMorten Rasmussen * Examine topology from all CPU's point of views to detect the lowest 193405484e09SMorten Rasmussen * sched_domain_topology_level where a highest capacity CPU is visible 193505484e09SMorten Rasmussen * to everyone. 193605484e09SMorten Rasmussen */ 193705484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19388ec59c0fSVincent Guittot unsigned long max_capacity = arch_scale_cpu_capacity(i); 193905484e09SMorten Rasmussen int tl_id = 0; 194005484e09SMorten Rasmussen 194105484e09SMorten Rasmussen for_each_sd_topology(tl) { 194205484e09SMorten Rasmussen if (tl_id < asym_level) 194305484e09SMorten Rasmussen goto next_level; 194405484e09SMorten Rasmussen 194505484e09SMorten Rasmussen for_each_cpu_and(j, tl->mask(i), cpu_map) { 194605484e09SMorten Rasmussen unsigned long capacity; 194705484e09SMorten Rasmussen 19488ec59c0fSVincent Guittot capacity = arch_scale_cpu_capacity(j); 194905484e09SMorten Rasmussen 195005484e09SMorten Rasmussen if (capacity <= max_capacity) 195105484e09SMorten Rasmussen continue; 195205484e09SMorten Rasmussen 195305484e09SMorten Rasmussen max_capacity = capacity; 195405484e09SMorten Rasmussen asym_level = tl_id; 195505484e09SMorten Rasmussen asym_tl = tl; 195605484e09SMorten Rasmussen } 195705484e09SMorten Rasmussen next_level: 195805484e09SMorten Rasmussen tl_id++; 195905484e09SMorten Rasmussen } 196005484e09SMorten Rasmussen } 196105484e09SMorten Rasmussen 196205484e09SMorten Rasmussen return asym_tl; 196305484e09SMorten Rasmussen } 196405484e09SMorten Rasmussen 196505484e09SMorten Rasmussen 196605484e09SMorten Rasmussen /* 1967f2cb1360SIngo Molnar * Build sched domains for a given set of CPUs and attach the sched domains 1968f2cb1360SIngo Molnar * to the individual CPUs 1969f2cb1360SIngo Molnar */ 1970f2cb1360SIngo Molnar static int 1971f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1972f2cb1360SIngo Molnar { 1973cd1cb335SValentin Schneider enum s_alloc alloc_state = sa_none; 1974f2cb1360SIngo Molnar struct sched_domain *sd; 1975f2cb1360SIngo Molnar struct s_data d; 1976f2cb1360SIngo Molnar struct rq *rq = NULL; 1977f2cb1360SIngo Molnar int i, ret = -ENOMEM; 197805484e09SMorten Rasmussen struct sched_domain_topology_level *tl_asym; 1979df054e84SMorten Rasmussen bool has_asym = false; 1980f2cb1360SIngo Molnar 1981cd1cb335SValentin Schneider if (WARN_ON(cpumask_empty(cpu_map))) 1982cd1cb335SValentin Schneider goto error; 1983cd1cb335SValentin Schneider 1984f2cb1360SIngo Molnar alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1985f2cb1360SIngo Molnar if (alloc_state != sa_rootdomain) 1986f2cb1360SIngo Molnar goto error; 1987f2cb1360SIngo Molnar 198805484e09SMorten Rasmussen tl_asym = asym_cpu_capacity_level(cpu_map); 198905484e09SMorten Rasmussen 1990f2cb1360SIngo Molnar /* Set up domains for CPUs specified by the cpu_map: */ 1991f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 1992f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1993f2cb1360SIngo Molnar 1994f2cb1360SIngo Molnar sd = NULL; 1995f2cb1360SIngo Molnar for_each_sd_topology(tl) { 199605484e09SMorten Rasmussen int dflags = 0; 199705484e09SMorten Rasmussen 1998df054e84SMorten Rasmussen if (tl == tl_asym) { 199905484e09SMorten Rasmussen dflags |= SD_ASYM_CPUCAPACITY; 2000df054e84SMorten Rasmussen has_asym = true; 2001df054e84SMorten Rasmussen } 200205484e09SMorten Rasmussen 2003ccf74128SValentin Schneider if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2004ccf74128SValentin Schneider goto error; 2005ccf74128SValentin Schneider 200605484e09SMorten Rasmussen sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 200705484e09SMorten Rasmussen 2008f2cb1360SIngo Molnar if (tl == sched_domain_topology) 2009f2cb1360SIngo Molnar *per_cpu_ptr(d.sd, i) = sd; 2010af85596cSPeter Zijlstra if (tl->flags & SDTL_OVERLAP) 2011f2cb1360SIngo Molnar sd->flags |= SD_OVERLAP; 2012f2cb1360SIngo Molnar if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2013f2cb1360SIngo Molnar break; 2014f2cb1360SIngo Molnar } 2015f2cb1360SIngo Molnar } 2016f2cb1360SIngo Molnar 2017f2cb1360SIngo Molnar /* Build the groups for the domains */ 2018f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2019f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2020f2cb1360SIngo Molnar sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2021f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 2022f2cb1360SIngo Molnar if (build_overlap_sched_groups(sd, i)) 2023f2cb1360SIngo Molnar goto error; 2024f2cb1360SIngo Molnar } else { 2025f2cb1360SIngo Molnar if (build_sched_groups(sd, i)) 2026f2cb1360SIngo Molnar goto error; 2027f2cb1360SIngo Molnar } 2028f2cb1360SIngo Molnar } 2029f2cb1360SIngo Molnar } 2030f2cb1360SIngo Molnar 2031f2cb1360SIngo Molnar /* Calculate CPU capacity for physical packages and nodes */ 2032f2cb1360SIngo Molnar for (i = nr_cpumask_bits-1; i >= 0; i--) { 2033f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, cpu_map)) 2034f2cb1360SIngo Molnar continue; 2035f2cb1360SIngo Molnar 2036f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2037f2cb1360SIngo Molnar claim_allocations(i, sd); 2038f2cb1360SIngo Molnar init_sched_groups_capacity(i, sd); 2039f2cb1360SIngo Molnar } 2040f2cb1360SIngo Molnar } 2041f2cb1360SIngo Molnar 2042f2cb1360SIngo Molnar /* Attach the domains */ 2043f2cb1360SIngo Molnar rcu_read_lock(); 2044f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2045f2cb1360SIngo Molnar rq = cpu_rq(i); 2046f2cb1360SIngo Molnar sd = *per_cpu_ptr(d.sd, i); 2047f2cb1360SIngo Molnar 2048f2cb1360SIngo Molnar /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2049f2cb1360SIngo Molnar if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2050f2cb1360SIngo Molnar WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2051f2cb1360SIngo Molnar 2052f2cb1360SIngo Molnar cpu_attach_domain(sd, d.rd, i); 2053f2cb1360SIngo Molnar } 2054f2cb1360SIngo Molnar rcu_read_unlock(); 2055f2cb1360SIngo Molnar 2056df054e84SMorten Rasmussen if (has_asym) 2057e284df70SValentin Schneider static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2058df054e84SMorten Rasmussen 2059f2cb1360SIngo Molnar if (rq && sched_debug_enabled) { 2060bf5015a5SJuri Lelli pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2061f2cb1360SIngo Molnar cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2062f2cb1360SIngo Molnar } 2063f2cb1360SIngo Molnar 2064f2cb1360SIngo Molnar ret = 0; 2065f2cb1360SIngo Molnar error: 2066f2cb1360SIngo Molnar __free_domain_allocs(&d, alloc_state, cpu_map); 206797fb7a0aSIngo Molnar 2068f2cb1360SIngo Molnar return ret; 2069f2cb1360SIngo Molnar } 2070f2cb1360SIngo Molnar 2071f2cb1360SIngo Molnar /* Current sched domains: */ 2072f2cb1360SIngo Molnar static cpumask_var_t *doms_cur; 2073f2cb1360SIngo Molnar 2074f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */ 2075f2cb1360SIngo Molnar static int ndoms_cur; 2076f2cb1360SIngo Molnar 2077f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */ 2078f2cb1360SIngo Molnar static struct sched_domain_attr *dattr_cur; 2079f2cb1360SIngo Molnar 2080f2cb1360SIngo Molnar /* 2081f2cb1360SIngo Molnar * Special case: If a kmalloc() of a doms_cur partition (array of 2082f2cb1360SIngo Molnar * cpumask) fails, then fallback to a single sched domain, 2083f2cb1360SIngo Molnar * as determined by the single cpumask fallback_doms. 2084f2cb1360SIngo Molnar */ 20858d5dc512SPeter Zijlstra static cpumask_var_t fallback_doms; 2086f2cb1360SIngo Molnar 2087f2cb1360SIngo Molnar /* 2088f2cb1360SIngo Molnar * arch_update_cpu_topology lets virtualized architectures update the 2089f2cb1360SIngo Molnar * CPU core maps. It is supposed to return 1 if the topology changed 2090f2cb1360SIngo Molnar * or 0 if it stayed the same. 2091f2cb1360SIngo Molnar */ 2092f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void) 2093f2cb1360SIngo Molnar { 2094f2cb1360SIngo Molnar return 0; 2095f2cb1360SIngo Molnar } 2096f2cb1360SIngo Molnar 2097f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2098f2cb1360SIngo Molnar { 2099f2cb1360SIngo Molnar int i; 2100f2cb1360SIngo Molnar cpumask_var_t *doms; 2101f2cb1360SIngo Molnar 21026da2ec56SKees Cook doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2103f2cb1360SIngo Molnar if (!doms) 2104f2cb1360SIngo Molnar return NULL; 2105f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) { 2106f2cb1360SIngo Molnar if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2107f2cb1360SIngo Molnar free_sched_domains(doms, i); 2108f2cb1360SIngo Molnar return NULL; 2109f2cb1360SIngo Molnar } 2110f2cb1360SIngo Molnar } 2111f2cb1360SIngo Molnar return doms; 2112f2cb1360SIngo Molnar } 2113f2cb1360SIngo Molnar 2114f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2115f2cb1360SIngo Molnar { 2116f2cb1360SIngo Molnar unsigned int i; 2117f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) 2118f2cb1360SIngo Molnar free_cpumask_var(doms[i]); 2119f2cb1360SIngo Molnar kfree(doms); 2120f2cb1360SIngo Molnar } 2121f2cb1360SIngo Molnar 2122f2cb1360SIngo Molnar /* 2123cb0c0414SJuri Lelli * Set up scheduler domains and groups. For now this just excludes isolated 2124cb0c0414SJuri Lelli * CPUs, but could be used to exclude other special cases in the future. 2125f2cb1360SIngo Molnar */ 21268d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map) 2127f2cb1360SIngo Molnar { 2128f2cb1360SIngo Molnar int err; 2129f2cb1360SIngo Molnar 21308d5dc512SPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 21311676330eSPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 21328d5dc512SPeter Zijlstra zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 21338d5dc512SPeter Zijlstra 2134f2cb1360SIngo Molnar arch_update_cpu_topology(); 2135f2cb1360SIngo Molnar ndoms_cur = 1; 2136f2cb1360SIngo Molnar doms_cur = alloc_sched_domains(ndoms_cur); 2137f2cb1360SIngo Molnar if (!doms_cur) 2138f2cb1360SIngo Molnar doms_cur = &fallback_doms; 2139edb93821SFrederic Weisbecker cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2140f2cb1360SIngo Molnar err = build_sched_domains(doms_cur[0], NULL); 2141f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2142f2cb1360SIngo Molnar 2143f2cb1360SIngo Molnar return err; 2144f2cb1360SIngo Molnar } 2145f2cb1360SIngo Molnar 2146f2cb1360SIngo Molnar /* 2147f2cb1360SIngo Molnar * Detach sched domains from a group of CPUs specified in cpu_map 2148f2cb1360SIngo Molnar * These CPUs will now be attached to the NULL domain 2149f2cb1360SIngo Molnar */ 2150f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map) 2151f2cb1360SIngo Molnar { 2152e284df70SValentin Schneider unsigned int cpu = cpumask_any(cpu_map); 2153f2cb1360SIngo Molnar int i; 2154f2cb1360SIngo Molnar 2155e284df70SValentin Schneider if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2156e284df70SValentin Schneider static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2157e284df70SValentin Schneider 2158f2cb1360SIngo Molnar rcu_read_lock(); 2159f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) 2160f2cb1360SIngo Molnar cpu_attach_domain(NULL, &def_root_domain, i); 2161f2cb1360SIngo Molnar rcu_read_unlock(); 2162f2cb1360SIngo Molnar } 2163f2cb1360SIngo Molnar 2164f2cb1360SIngo Molnar /* handle null as "default" */ 2165f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2166f2cb1360SIngo Molnar struct sched_domain_attr *new, int idx_new) 2167f2cb1360SIngo Molnar { 2168f2cb1360SIngo Molnar struct sched_domain_attr tmp; 2169f2cb1360SIngo Molnar 2170f2cb1360SIngo Molnar /* Fast path: */ 2171f2cb1360SIngo Molnar if (!new && !cur) 2172f2cb1360SIngo Molnar return 1; 2173f2cb1360SIngo Molnar 2174f2cb1360SIngo Molnar tmp = SD_ATTR_INIT; 217597fb7a0aSIngo Molnar 2176f2cb1360SIngo Molnar return !memcmp(cur ? (cur + idx_cur) : &tmp, 2177f2cb1360SIngo Molnar new ? (new + idx_new) : &tmp, 2178f2cb1360SIngo Molnar sizeof(struct sched_domain_attr)); 2179f2cb1360SIngo Molnar } 2180f2cb1360SIngo Molnar 2181f2cb1360SIngo Molnar /* 2182f2cb1360SIngo Molnar * Partition sched domains as specified by the 'ndoms_new' 2183f2cb1360SIngo Molnar * cpumasks in the array doms_new[] of cpumasks. This compares 2184f2cb1360SIngo Molnar * doms_new[] to the current sched domain partitioning, doms_cur[]. 2185f2cb1360SIngo Molnar * It destroys each deleted domain and builds each new domain. 2186f2cb1360SIngo Molnar * 2187f2cb1360SIngo Molnar * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2188f2cb1360SIngo Molnar * The masks don't intersect (don't overlap.) We should setup one 2189f2cb1360SIngo Molnar * sched domain for each mask. CPUs not in any of the cpumasks will 2190f2cb1360SIngo Molnar * not be load balanced. If the same cpumask appears both in the 2191f2cb1360SIngo Molnar * current 'doms_cur' domains and in the new 'doms_new', we can leave 2192f2cb1360SIngo Molnar * it as it is. 2193f2cb1360SIngo Molnar * 2194f2cb1360SIngo Molnar * The passed in 'doms_new' should be allocated using 2195f2cb1360SIngo Molnar * alloc_sched_domains. This routine takes ownership of it and will 2196f2cb1360SIngo Molnar * free_sched_domains it when done with it. If the caller failed the 2197f2cb1360SIngo Molnar * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2198f2cb1360SIngo Molnar * and partition_sched_domains() will fallback to the single partition 2199f2cb1360SIngo Molnar * 'fallback_doms', it also forces the domains to be rebuilt. 2200f2cb1360SIngo Molnar * 2201f2cb1360SIngo Molnar * If doms_new == NULL it will be replaced with cpu_online_mask. 2202f2cb1360SIngo Molnar * ndoms_new == 0 is a special case for destroying existing domains, 2203f2cb1360SIngo Molnar * and it will not create the default domain. 2204f2cb1360SIngo Molnar * 2205c22645f4SMathieu Poirier * Call with hotplug lock and sched_domains_mutex held 2206f2cb1360SIngo Molnar */ 2207c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2208f2cb1360SIngo Molnar struct sched_domain_attr *dattr_new) 2209f2cb1360SIngo Molnar { 22101f74de87SQuentin Perret bool __maybe_unused has_eas = false; 2211f2cb1360SIngo Molnar int i, j, n; 2212f2cb1360SIngo Molnar int new_topology; 2213f2cb1360SIngo Molnar 2214c22645f4SMathieu Poirier lockdep_assert_held(&sched_domains_mutex); 2215f2cb1360SIngo Molnar 2216f2cb1360SIngo Molnar /* Always unregister in case we don't destroy any domains: */ 2217f2cb1360SIngo Molnar unregister_sched_domain_sysctl(); 2218f2cb1360SIngo Molnar 2219f2cb1360SIngo Molnar /* Let the architecture update CPU core mappings: */ 2220f2cb1360SIngo Molnar new_topology = arch_update_cpu_topology(); 2221f2cb1360SIngo Molnar 222209e0dd8eSPeter Zijlstra if (!doms_new) { 222309e0dd8eSPeter Zijlstra WARN_ON_ONCE(dattr_new); 222409e0dd8eSPeter Zijlstra n = 0; 222509e0dd8eSPeter Zijlstra doms_new = alloc_sched_domains(1); 222609e0dd8eSPeter Zijlstra if (doms_new) { 222709e0dd8eSPeter Zijlstra n = 1; 2228edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2229edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 223009e0dd8eSPeter Zijlstra } 223109e0dd8eSPeter Zijlstra } else { 223209e0dd8eSPeter Zijlstra n = ndoms_new; 223309e0dd8eSPeter Zijlstra } 2234f2cb1360SIngo Molnar 2235f2cb1360SIngo Molnar /* Destroy deleted domains: */ 2236f2cb1360SIngo Molnar for (i = 0; i < ndoms_cur; i++) { 2237f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22386aa140faSQuentin Perret if (cpumask_equal(doms_cur[i], doms_new[j]) && 2239f9a25f77SMathieu Poirier dattrs_equal(dattr_cur, i, dattr_new, j)) { 2240f9a25f77SMathieu Poirier struct root_domain *rd; 2241f9a25f77SMathieu Poirier 2242f9a25f77SMathieu Poirier /* 2243f9a25f77SMathieu Poirier * This domain won't be destroyed and as such 2244f9a25f77SMathieu Poirier * its dl_bw->total_bw needs to be cleared. It 2245f9a25f77SMathieu Poirier * will be recomputed in function 2246f9a25f77SMathieu Poirier * update_tasks_root_domain(). 2247f9a25f77SMathieu Poirier */ 2248f9a25f77SMathieu Poirier rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2249f9a25f77SMathieu Poirier dl_clear_root_domain(rd); 2250f2cb1360SIngo Molnar goto match1; 2251f2cb1360SIngo Molnar } 2252f9a25f77SMathieu Poirier } 2253f2cb1360SIngo Molnar /* No match - a current sched domain not in new doms_new[] */ 2254f2cb1360SIngo Molnar detach_destroy_domains(doms_cur[i]); 2255f2cb1360SIngo Molnar match1: 2256f2cb1360SIngo Molnar ; 2257f2cb1360SIngo Molnar } 2258f2cb1360SIngo Molnar 2259f2cb1360SIngo Molnar n = ndoms_cur; 226009e0dd8eSPeter Zijlstra if (!doms_new) { 2261f2cb1360SIngo Molnar n = 0; 2262f2cb1360SIngo Molnar doms_new = &fallback_doms; 2263edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2264edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 2265f2cb1360SIngo Molnar } 2266f2cb1360SIngo Molnar 2267f2cb1360SIngo Molnar /* Build new domains: */ 2268f2cb1360SIngo Molnar for (i = 0; i < ndoms_new; i++) { 2269f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22706aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 22716aa140faSQuentin Perret dattrs_equal(dattr_new, i, dattr_cur, j)) 2272f2cb1360SIngo Molnar goto match2; 2273f2cb1360SIngo Molnar } 2274f2cb1360SIngo Molnar /* No match - add a new doms_new */ 2275f2cb1360SIngo Molnar build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2276f2cb1360SIngo Molnar match2: 2277f2cb1360SIngo Molnar ; 2278f2cb1360SIngo Molnar } 2279f2cb1360SIngo Molnar 2280531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 22816aa140faSQuentin Perret /* Build perf. domains: */ 22826aa140faSQuentin Perret for (i = 0; i < ndoms_new; i++) { 2283531b5c9fSQuentin Perret for (j = 0; j < n && !sched_energy_update; j++) { 22846aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 22851f74de87SQuentin Perret cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 22861f74de87SQuentin Perret has_eas = true; 22876aa140faSQuentin Perret goto match3; 22886aa140faSQuentin Perret } 22891f74de87SQuentin Perret } 22906aa140faSQuentin Perret /* No match - add perf. domains for a new rd */ 22911f74de87SQuentin Perret has_eas |= build_perf_domains(doms_new[i]); 22926aa140faSQuentin Perret match3: 22936aa140faSQuentin Perret ; 22946aa140faSQuentin Perret } 22951f74de87SQuentin Perret sched_energy_set(has_eas); 22966aa140faSQuentin Perret #endif 22976aa140faSQuentin Perret 2298f2cb1360SIngo Molnar /* Remember the new sched domains: */ 2299f2cb1360SIngo Molnar if (doms_cur != &fallback_doms) 2300f2cb1360SIngo Molnar free_sched_domains(doms_cur, ndoms_cur); 2301f2cb1360SIngo Molnar 2302f2cb1360SIngo Molnar kfree(dattr_cur); 2303f2cb1360SIngo Molnar doms_cur = doms_new; 2304f2cb1360SIngo Molnar dattr_cur = dattr_new; 2305f2cb1360SIngo Molnar ndoms_cur = ndoms_new; 2306f2cb1360SIngo Molnar 2307f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2308c22645f4SMathieu Poirier } 2309f2cb1360SIngo Molnar 2310c22645f4SMathieu Poirier /* 2311c22645f4SMathieu Poirier * Call with hotplug lock held 2312c22645f4SMathieu Poirier */ 2313c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2314c22645f4SMathieu Poirier struct sched_domain_attr *dattr_new) 2315c22645f4SMathieu Poirier { 2316c22645f4SMathieu Poirier mutex_lock(&sched_domains_mutex); 2317c22645f4SMathieu Poirier partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2318f2cb1360SIngo Molnar mutex_unlock(&sched_domains_mutex); 2319f2cb1360SIngo Molnar } 2320