1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0 2f2cb1360SIngo Molnar /* 3f2cb1360SIngo Molnar * Scheduler topology setup/handling methods 4f2cb1360SIngo Molnar */ 5f2cb1360SIngo Molnar #include "sched.h" 6f2cb1360SIngo Molnar 7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex); 8f2cb1360SIngo Molnar 9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */ 10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask; 11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2; 12f2cb1360SIngo Molnar 13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 14f2cb1360SIngo Molnar 15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str) 16f2cb1360SIngo Molnar { 179406415fSPeter Zijlstra sched_debug_verbose = true; 18f2cb1360SIngo Molnar 19f2cb1360SIngo Molnar return 0; 20f2cb1360SIngo Molnar } 219406415fSPeter Zijlstra early_param("sched_verbose", sched_debug_setup); 22f2cb1360SIngo Molnar 23f2cb1360SIngo Molnar static inline bool sched_debug(void) 24f2cb1360SIngo Molnar { 259406415fSPeter Zijlstra return sched_debug_verbose; 26f2cb1360SIngo Molnar } 27f2cb1360SIngo Molnar 28848785dfSValentin Schneider #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 29848785dfSValentin Schneider const struct sd_flag_debug sd_flag_debug[] = { 30848785dfSValentin Schneider #include <linux/sched/sd_flags.h> 31848785dfSValentin Schneider }; 32848785dfSValentin Schneider #undef SD_FLAG 33848785dfSValentin Schneider 34f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 35f2cb1360SIngo Molnar struct cpumask *groupmask) 36f2cb1360SIngo Molnar { 37f2cb1360SIngo Molnar struct sched_group *group = sd->groups; 3865c5e253SValentin Schneider unsigned long flags = sd->flags; 3965c5e253SValentin Schneider unsigned int idx; 40f2cb1360SIngo Molnar 41f2cb1360SIngo Molnar cpumask_clear(groupmask); 42f2cb1360SIngo Molnar 43005f874dSPeter Zijlstra printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 44005f874dSPeter Zijlstra printk(KERN_CONT "span=%*pbl level=%s\n", 45f2cb1360SIngo Molnar cpumask_pr_args(sched_domain_span(sd)), sd->name); 46f2cb1360SIngo Molnar 47f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 4897fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49f2cb1360SIngo Molnar } 506cd0c583SYi Wang if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 5197fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52f2cb1360SIngo Molnar } 53f2cb1360SIngo Molnar 5465c5e253SValentin Schneider for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 5565c5e253SValentin Schneider unsigned int flag = BIT(idx); 5665c5e253SValentin Schneider unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 5765c5e253SValentin Schneider 5865c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 5965c5e253SValentin Schneider !(sd->child->flags & flag)) 6065c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 6165c5e253SValentin Schneider sd_flag_debug[idx].name); 6265c5e253SValentin Schneider 6365c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 6465c5e253SValentin Schneider !(sd->parent->flags & flag)) 6565c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 6665c5e253SValentin Schneider sd_flag_debug[idx].name); 6765c5e253SValentin Schneider } 6865c5e253SValentin Schneider 69f2cb1360SIngo Molnar printk(KERN_DEBUG "%*s groups:", level + 1, ""); 70f2cb1360SIngo Molnar do { 71f2cb1360SIngo Molnar if (!group) { 72f2cb1360SIngo Molnar printk("\n"); 73f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: group is NULL\n"); 74f2cb1360SIngo Molnar break; 75f2cb1360SIngo Molnar } 76f2cb1360SIngo Molnar 77ae4df9d6SPeter Zijlstra if (!cpumask_weight(sched_group_span(group))) { 78f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 79f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: empty group\n"); 80f2cb1360SIngo Molnar break; 81f2cb1360SIngo Molnar } 82f2cb1360SIngo Molnar 83f2cb1360SIngo Molnar if (!(sd->flags & SD_OVERLAP) && 84ae4df9d6SPeter Zijlstra cpumask_intersects(groupmask, sched_group_span(group))) { 85f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 86f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: repeated CPUs\n"); 87f2cb1360SIngo Molnar break; 88f2cb1360SIngo Molnar } 89f2cb1360SIngo Molnar 90ae4df9d6SPeter Zijlstra cpumask_or(groupmask, groupmask, sched_group_span(group)); 91f2cb1360SIngo Molnar 92005f874dSPeter Zijlstra printk(KERN_CONT " %d:{ span=%*pbl", 93005f874dSPeter Zijlstra group->sgc->id, 94ae4df9d6SPeter Zijlstra cpumask_pr_args(sched_group_span(group))); 95b0151c25SPeter Zijlstra 96af218122SPeter Zijlstra if ((sd->flags & SD_OVERLAP) && 97ae4df9d6SPeter Zijlstra !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 98005f874dSPeter Zijlstra printk(KERN_CONT " mask=%*pbl", 99e5c14b1fSPeter Zijlstra cpumask_pr_args(group_balance_mask(group))); 100b0151c25SPeter Zijlstra } 101b0151c25SPeter Zijlstra 102005f874dSPeter Zijlstra if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 103005f874dSPeter Zijlstra printk(KERN_CONT " cap=%lu", group->sgc->capacity); 104f2cb1360SIngo Molnar 105a420b063SPeter Zijlstra if (group == sd->groups && sd->child && 106a420b063SPeter Zijlstra !cpumask_equal(sched_domain_span(sd->child), 107ae4df9d6SPeter Zijlstra sched_group_span(group))) { 108a420b063SPeter Zijlstra printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 109a420b063SPeter Zijlstra } 110a420b063SPeter Zijlstra 111005f874dSPeter Zijlstra printk(KERN_CONT " }"); 112005f874dSPeter Zijlstra 113f2cb1360SIngo Molnar group = group->next; 114b0151c25SPeter Zijlstra 115b0151c25SPeter Zijlstra if (group != sd->groups) 116b0151c25SPeter Zijlstra printk(KERN_CONT ","); 117b0151c25SPeter Zijlstra 118f2cb1360SIngo Molnar } while (group != sd->groups); 119f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 120f2cb1360SIngo Molnar 121f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), groupmask)) 122f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 123f2cb1360SIngo Molnar 124f2cb1360SIngo Molnar if (sd->parent && 125f2cb1360SIngo Molnar !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 12697fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 127f2cb1360SIngo Molnar return 0; 128f2cb1360SIngo Molnar } 129f2cb1360SIngo Molnar 130f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu) 131f2cb1360SIngo Molnar { 132f2cb1360SIngo Molnar int level = 0; 133f2cb1360SIngo Molnar 1349406415fSPeter Zijlstra if (!sched_debug_verbose) 135f2cb1360SIngo Molnar return; 136f2cb1360SIngo Molnar 137f2cb1360SIngo Molnar if (!sd) { 138f2cb1360SIngo Molnar printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 139f2cb1360SIngo Molnar return; 140f2cb1360SIngo Molnar } 141f2cb1360SIngo Molnar 142005f874dSPeter Zijlstra printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 143f2cb1360SIngo Molnar 144f2cb1360SIngo Molnar for (;;) { 145f2cb1360SIngo Molnar if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 146f2cb1360SIngo Molnar break; 147f2cb1360SIngo Molnar level++; 148f2cb1360SIngo Molnar sd = sd->parent; 149f2cb1360SIngo Molnar if (!sd) 150f2cb1360SIngo Molnar break; 151f2cb1360SIngo Molnar } 152f2cb1360SIngo Molnar } 153f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */ 154f2cb1360SIngo Molnar 1559406415fSPeter Zijlstra # define sched_debug_verbose 0 156f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0) 157f2cb1360SIngo Molnar static inline bool sched_debug(void) 158f2cb1360SIngo Molnar { 159f2cb1360SIngo Molnar return false; 160f2cb1360SIngo Molnar } 161f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */ 162f2cb1360SIngo Molnar 1634fc472f1SValentin Schneider /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 1644fc472f1SValentin Schneider #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 1654fc472f1SValentin Schneider static const unsigned int SD_DEGENERATE_GROUPS_MASK = 1664fc472f1SValentin Schneider #include <linux/sched/sd_flags.h> 1674fc472f1SValentin Schneider 0; 1684fc472f1SValentin Schneider #undef SD_FLAG 1694fc472f1SValentin Schneider 170f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd) 171f2cb1360SIngo Molnar { 172f2cb1360SIngo Molnar if (cpumask_weight(sched_domain_span(sd)) == 1) 173f2cb1360SIngo Molnar return 1; 174f2cb1360SIngo Molnar 175f2cb1360SIngo Molnar /* Following flags need at least 2 groups */ 1766f349818SValentin Schneider if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 1776f349818SValentin Schneider (sd->groups != sd->groups->next)) 178f2cb1360SIngo Molnar return 0; 179f2cb1360SIngo Molnar 180f2cb1360SIngo Molnar /* Following flags don't use groups */ 181f2cb1360SIngo Molnar if (sd->flags & (SD_WAKE_AFFINE)) 182f2cb1360SIngo Molnar return 0; 183f2cb1360SIngo Molnar 184f2cb1360SIngo Molnar return 1; 185f2cb1360SIngo Molnar } 186f2cb1360SIngo Molnar 187f2cb1360SIngo Molnar static int 188f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 189f2cb1360SIngo Molnar { 190f2cb1360SIngo Molnar unsigned long cflags = sd->flags, pflags = parent->flags; 191f2cb1360SIngo Molnar 192f2cb1360SIngo Molnar if (sd_degenerate(parent)) 193f2cb1360SIngo Molnar return 1; 194f2cb1360SIngo Molnar 195f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 196f2cb1360SIngo Molnar return 0; 197f2cb1360SIngo Molnar 198f2cb1360SIngo Molnar /* Flags needing groups don't count if only 1 group in parent */ 199ab65afb0SValentin Schneider if (parent->groups == parent->groups->next) 2003a6712c7SValentin Schneider pflags &= ~SD_DEGENERATE_GROUPS_MASK; 201ab65afb0SValentin Schneider 202f2cb1360SIngo Molnar if (~cflags & pflags) 203f2cb1360SIngo Molnar return 0; 204f2cb1360SIngo Molnar 205f2cb1360SIngo Molnar return 1; 206f2cb1360SIngo Molnar } 207f2cb1360SIngo Molnar 208531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 209f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present); 2108d5d0cfbSQuentin Perret unsigned int sysctl_sched_energy_aware = 1; 211531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex); 212531b5c9fSQuentin Perret bool sched_energy_update; 213531b5c9fSQuentin Perret 21431f6a8c0SIonela Voinescu void rebuild_sched_domains_energy(void) 21531f6a8c0SIonela Voinescu { 21631f6a8c0SIonela Voinescu mutex_lock(&sched_energy_mutex); 21731f6a8c0SIonela Voinescu sched_energy_update = true; 21831f6a8c0SIonela Voinescu rebuild_sched_domains(); 21931f6a8c0SIonela Voinescu sched_energy_update = false; 22031f6a8c0SIonela Voinescu mutex_unlock(&sched_energy_mutex); 22131f6a8c0SIonela Voinescu } 22231f6a8c0SIonela Voinescu 2238d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL 2248d5d0cfbSQuentin Perret int sched_energy_aware_handler(struct ctl_table *table, int write, 22532927393SChristoph Hellwig void *buffer, size_t *lenp, loff_t *ppos) 2268d5d0cfbSQuentin Perret { 2278d5d0cfbSQuentin Perret int ret, state; 2288d5d0cfbSQuentin Perret 2298d5d0cfbSQuentin Perret if (write && !capable(CAP_SYS_ADMIN)) 2308d5d0cfbSQuentin Perret return -EPERM; 2318d5d0cfbSQuentin Perret 2328d5d0cfbSQuentin Perret ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2338d5d0cfbSQuentin Perret if (!ret && write) { 2348d5d0cfbSQuentin Perret state = static_branch_unlikely(&sched_energy_present); 23531f6a8c0SIonela Voinescu if (state != sysctl_sched_energy_aware) 23631f6a8c0SIonela Voinescu rebuild_sched_domains_energy(); 2378d5d0cfbSQuentin Perret } 2388d5d0cfbSQuentin Perret 2398d5d0cfbSQuentin Perret return ret; 2408d5d0cfbSQuentin Perret } 2418d5d0cfbSQuentin Perret #endif 2428d5d0cfbSQuentin Perret 2436aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) 2446aa140faSQuentin Perret { 2456aa140faSQuentin Perret struct perf_domain *tmp; 2466aa140faSQuentin Perret 2476aa140faSQuentin Perret while (pd) { 2486aa140faSQuentin Perret tmp = pd->next; 2496aa140faSQuentin Perret kfree(pd); 2506aa140faSQuentin Perret pd = tmp; 2516aa140faSQuentin Perret } 2526aa140faSQuentin Perret } 2536aa140faSQuentin Perret 2546aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 2556aa140faSQuentin Perret { 2566aa140faSQuentin Perret while (pd) { 2576aa140faSQuentin Perret if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 2586aa140faSQuentin Perret return pd; 2596aa140faSQuentin Perret pd = pd->next; 2606aa140faSQuentin Perret } 2616aa140faSQuentin Perret 2626aa140faSQuentin Perret return NULL; 2636aa140faSQuentin Perret } 2646aa140faSQuentin Perret 2656aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu) 2666aa140faSQuentin Perret { 2676aa140faSQuentin Perret struct em_perf_domain *obj = em_cpu_get(cpu); 2686aa140faSQuentin Perret struct perf_domain *pd; 2696aa140faSQuentin Perret 2706aa140faSQuentin Perret if (!obj) { 2716aa140faSQuentin Perret if (sched_debug()) 2726aa140faSQuentin Perret pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 2736aa140faSQuentin Perret return NULL; 2746aa140faSQuentin Perret } 2756aa140faSQuentin Perret 2766aa140faSQuentin Perret pd = kzalloc(sizeof(*pd), GFP_KERNEL); 2776aa140faSQuentin Perret if (!pd) 2786aa140faSQuentin Perret return NULL; 2796aa140faSQuentin Perret pd->em_pd = obj; 2806aa140faSQuentin Perret 2816aa140faSQuentin Perret return pd; 2826aa140faSQuentin Perret } 2836aa140faSQuentin Perret 2846aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map, 2856aa140faSQuentin Perret struct perf_domain *pd) 2866aa140faSQuentin Perret { 2876aa140faSQuentin Perret if (!sched_debug() || !pd) 2886aa140faSQuentin Perret return; 2896aa140faSQuentin Perret 2906aa140faSQuentin Perret printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 2916aa140faSQuentin Perret 2926aa140faSQuentin Perret while (pd) { 293521b512bSLukasz Luba printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 2946aa140faSQuentin Perret cpumask_first(perf_domain_span(pd)), 2956aa140faSQuentin Perret cpumask_pr_args(perf_domain_span(pd)), 296521b512bSLukasz Luba em_pd_nr_perf_states(pd->em_pd)); 2976aa140faSQuentin Perret pd = pd->next; 2986aa140faSQuentin Perret } 2996aa140faSQuentin Perret 3006aa140faSQuentin Perret printk(KERN_CONT "\n"); 3016aa140faSQuentin Perret } 3026aa140faSQuentin Perret 3036aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp) 3046aa140faSQuentin Perret { 3056aa140faSQuentin Perret struct perf_domain *pd; 3066aa140faSQuentin Perret 3076aa140faSQuentin Perret pd = container_of(rp, struct perf_domain, rcu); 3086aa140faSQuentin Perret free_pd(pd); 3096aa140faSQuentin Perret } 3106aa140faSQuentin Perret 3111f74de87SQuentin Perret static void sched_energy_set(bool has_eas) 3121f74de87SQuentin Perret { 3131f74de87SQuentin Perret if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 3141f74de87SQuentin Perret if (sched_debug()) 3151f74de87SQuentin Perret pr_info("%s: stopping EAS\n", __func__); 3161f74de87SQuentin Perret static_branch_disable_cpuslocked(&sched_energy_present); 3171f74de87SQuentin Perret } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 3181f74de87SQuentin Perret if (sched_debug()) 3191f74de87SQuentin Perret pr_info("%s: starting EAS\n", __func__); 3201f74de87SQuentin Perret static_branch_enable_cpuslocked(&sched_energy_present); 3211f74de87SQuentin Perret } 3221f74de87SQuentin Perret } 3231f74de87SQuentin Perret 324b68a4c0dSQuentin Perret /* 325b68a4c0dSQuentin Perret * EAS can be used on a root domain if it meets all the following conditions: 326b68a4c0dSQuentin Perret * 1. an Energy Model (EM) is available; 327b68a4c0dSQuentin Perret * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 32838502ab4SValentin Schneider * 3. no SMT is detected. 32938502ab4SValentin Schneider * 4. the EM complexity is low enough to keep scheduling overheads low; 33038502ab4SValentin Schneider * 5. schedutil is driving the frequency of all CPUs of the rd; 331fa50e2b4SIonela Voinescu * 6. frequency invariance support is present; 332b68a4c0dSQuentin Perret * 333b68a4c0dSQuentin Perret * The complexity of the Energy Model is defined as: 334b68a4c0dSQuentin Perret * 335521b512bSLukasz Luba * C = nr_pd * (nr_cpus + nr_ps) 336b68a4c0dSQuentin Perret * 337b68a4c0dSQuentin Perret * with parameters defined as: 338b68a4c0dSQuentin Perret * - nr_pd: the number of performance domains 339b68a4c0dSQuentin Perret * - nr_cpus: the number of CPUs 340521b512bSLukasz Luba * - nr_ps: the sum of the number of performance states of all performance 341b68a4c0dSQuentin Perret * domains (for example, on a system with 2 performance domains, 342521b512bSLukasz Luba * with 10 performance states each, nr_ps = 2 * 10 = 20). 343b68a4c0dSQuentin Perret * 344b68a4c0dSQuentin Perret * It is generally not a good idea to use such a model in the wake-up path on 345b68a4c0dSQuentin Perret * very complex platforms because of the associated scheduling overheads. The 346b68a4c0dSQuentin Perret * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 347521b512bSLukasz Luba * with per-CPU DVFS and less than 8 performance states each, for example. 348b68a4c0dSQuentin Perret */ 349b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048 350b68a4c0dSQuentin Perret 351531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov; 3521f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map) 3536aa140faSQuentin Perret { 354521b512bSLukasz Luba int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 3556aa140faSQuentin Perret struct perf_domain *pd = NULL, *tmp; 3566aa140faSQuentin Perret int cpu = cpumask_first(cpu_map); 3576aa140faSQuentin Perret struct root_domain *rd = cpu_rq(cpu)->rd; 358531b5c9fSQuentin Perret struct cpufreq_policy *policy; 359531b5c9fSQuentin Perret struct cpufreq_governor *gov; 360b68a4c0dSQuentin Perret 3618d5d0cfbSQuentin Perret if (!sysctl_sched_energy_aware) 3628d5d0cfbSQuentin Perret goto free; 3638d5d0cfbSQuentin Perret 364b68a4c0dSQuentin Perret /* EAS is enabled for asymmetric CPU capacity topologies. */ 365b68a4c0dSQuentin Perret if (!per_cpu(sd_asym_cpucapacity, cpu)) { 366b68a4c0dSQuentin Perret if (sched_debug()) { 367b68a4c0dSQuentin Perret pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 368b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 369b68a4c0dSQuentin Perret } 370b68a4c0dSQuentin Perret goto free; 371b68a4c0dSQuentin Perret } 3726aa140faSQuentin Perret 37338502ab4SValentin Schneider /* EAS definitely does *not* handle SMT */ 37438502ab4SValentin Schneider if (sched_smt_active()) { 37538502ab4SValentin Schneider pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 37638502ab4SValentin Schneider cpumask_pr_args(cpu_map)); 37738502ab4SValentin Schneider goto free; 37838502ab4SValentin Schneider } 37938502ab4SValentin Schneider 380fa50e2b4SIonela Voinescu if (!arch_scale_freq_invariant()) { 381fa50e2b4SIonela Voinescu if (sched_debug()) { 382fa50e2b4SIonela Voinescu pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported", 383fa50e2b4SIonela Voinescu cpumask_pr_args(cpu_map)); 384fa50e2b4SIonela Voinescu } 385fa50e2b4SIonela Voinescu goto free; 386fa50e2b4SIonela Voinescu } 387fa50e2b4SIonela Voinescu 3886aa140faSQuentin Perret for_each_cpu(i, cpu_map) { 3896aa140faSQuentin Perret /* Skip already covered CPUs. */ 3906aa140faSQuentin Perret if (find_pd(pd, i)) 3916aa140faSQuentin Perret continue; 3926aa140faSQuentin Perret 393531b5c9fSQuentin Perret /* Do not attempt EAS if schedutil is not being used. */ 394531b5c9fSQuentin Perret policy = cpufreq_cpu_get(i); 395531b5c9fSQuentin Perret if (!policy) 396531b5c9fSQuentin Perret goto free; 397531b5c9fSQuentin Perret gov = policy->governor; 398531b5c9fSQuentin Perret cpufreq_cpu_put(policy); 399531b5c9fSQuentin Perret if (gov != &schedutil_gov) { 400531b5c9fSQuentin Perret if (rd->pd) 401531b5c9fSQuentin Perret pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 402531b5c9fSQuentin Perret cpumask_pr_args(cpu_map)); 403531b5c9fSQuentin Perret goto free; 404531b5c9fSQuentin Perret } 405531b5c9fSQuentin Perret 4066aa140faSQuentin Perret /* Create the new pd and add it to the local list. */ 4076aa140faSQuentin Perret tmp = pd_init(i); 4086aa140faSQuentin Perret if (!tmp) 4096aa140faSQuentin Perret goto free; 4106aa140faSQuentin Perret tmp->next = pd; 4116aa140faSQuentin Perret pd = tmp; 412b68a4c0dSQuentin Perret 413b68a4c0dSQuentin Perret /* 414521b512bSLukasz Luba * Count performance domains and performance states for the 415b68a4c0dSQuentin Perret * complexity check. 416b68a4c0dSQuentin Perret */ 417b68a4c0dSQuentin Perret nr_pd++; 418521b512bSLukasz Luba nr_ps += em_pd_nr_perf_states(pd->em_pd); 419b68a4c0dSQuentin Perret } 420b68a4c0dSQuentin Perret 421b68a4c0dSQuentin Perret /* Bail out if the Energy Model complexity is too high. */ 422521b512bSLukasz Luba if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 423b68a4c0dSQuentin Perret WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 424b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 425b68a4c0dSQuentin Perret goto free; 4266aa140faSQuentin Perret } 4276aa140faSQuentin Perret 4286aa140faSQuentin Perret perf_domain_debug(cpu_map, pd); 4296aa140faSQuentin Perret 4306aa140faSQuentin Perret /* Attach the new list of performance domains to the root domain. */ 4316aa140faSQuentin Perret tmp = rd->pd; 4326aa140faSQuentin Perret rcu_assign_pointer(rd->pd, pd); 4336aa140faSQuentin Perret if (tmp) 4346aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4356aa140faSQuentin Perret 4361f74de87SQuentin Perret return !!pd; 4376aa140faSQuentin Perret 4386aa140faSQuentin Perret free: 4396aa140faSQuentin Perret free_pd(pd); 4406aa140faSQuentin Perret tmp = rd->pd; 4416aa140faSQuentin Perret rcu_assign_pointer(rd->pd, NULL); 4426aa140faSQuentin Perret if (tmp) 4436aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4441f74de87SQuentin Perret 4451f74de87SQuentin Perret return false; 4466aa140faSQuentin Perret } 4476aa140faSQuentin Perret #else 4486aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { } 449531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 4506aa140faSQuentin Perret 451f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu) 452f2cb1360SIngo Molnar { 453f2cb1360SIngo Molnar struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 454f2cb1360SIngo Molnar 455f2cb1360SIngo Molnar cpupri_cleanup(&rd->cpupri); 456f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 457f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 458f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 459f2cb1360SIngo Molnar free_cpumask_var(rd->online); 460f2cb1360SIngo Molnar free_cpumask_var(rd->span); 4616aa140faSQuentin Perret free_pd(rd->pd); 462f2cb1360SIngo Molnar kfree(rd); 463f2cb1360SIngo Molnar } 464f2cb1360SIngo Molnar 465f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd) 466f2cb1360SIngo Molnar { 467f2cb1360SIngo Molnar struct root_domain *old_rd = NULL; 468f2cb1360SIngo Molnar unsigned long flags; 469f2cb1360SIngo Molnar 4705cb9eaa3SPeter Zijlstra raw_spin_rq_lock_irqsave(rq, flags); 471f2cb1360SIngo Molnar 472f2cb1360SIngo Molnar if (rq->rd) { 473f2cb1360SIngo Molnar old_rd = rq->rd; 474f2cb1360SIngo Molnar 475f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, old_rd->online)) 476f2cb1360SIngo Molnar set_rq_offline(rq); 477f2cb1360SIngo Molnar 478f2cb1360SIngo Molnar cpumask_clear_cpu(rq->cpu, old_rd->span); 479f2cb1360SIngo Molnar 480f2cb1360SIngo Molnar /* 481f2cb1360SIngo Molnar * If we dont want to free the old_rd yet then 482f2cb1360SIngo Molnar * set old_rd to NULL to skip the freeing later 483f2cb1360SIngo Molnar * in this function: 484f2cb1360SIngo Molnar */ 485f2cb1360SIngo Molnar if (!atomic_dec_and_test(&old_rd->refcount)) 486f2cb1360SIngo Molnar old_rd = NULL; 487f2cb1360SIngo Molnar } 488f2cb1360SIngo Molnar 489f2cb1360SIngo Molnar atomic_inc(&rd->refcount); 490f2cb1360SIngo Molnar rq->rd = rd; 491f2cb1360SIngo Molnar 492f2cb1360SIngo Molnar cpumask_set_cpu(rq->cpu, rd->span); 493f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 494f2cb1360SIngo Molnar set_rq_online(rq); 495f2cb1360SIngo Molnar 4965cb9eaa3SPeter Zijlstra raw_spin_rq_unlock_irqrestore(rq, flags); 497f2cb1360SIngo Molnar 498f2cb1360SIngo Molnar if (old_rd) 499337e9b07SPaul E. McKenney call_rcu(&old_rd->rcu, free_rootdomain); 500f2cb1360SIngo Molnar } 501f2cb1360SIngo Molnar 502364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd) 503364f5665SSteven Rostedt (VMware) { 504364f5665SSteven Rostedt (VMware) atomic_inc(&rd->refcount); 505364f5665SSteven Rostedt (VMware) } 506364f5665SSteven Rostedt (VMware) 507364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd) 508364f5665SSteven Rostedt (VMware) { 509364f5665SSteven Rostedt (VMware) if (!atomic_dec_and_test(&rd->refcount)) 510364f5665SSteven Rostedt (VMware) return; 511364f5665SSteven Rostedt (VMware) 512337e9b07SPaul E. McKenney call_rcu(&rd->rcu, free_rootdomain); 513364f5665SSteven Rostedt (VMware) } 514364f5665SSteven Rostedt (VMware) 515f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd) 516f2cb1360SIngo Molnar { 517f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 518f2cb1360SIngo Molnar goto out; 519f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 520f2cb1360SIngo Molnar goto free_span; 521f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 522f2cb1360SIngo Molnar goto free_online; 523f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 524f2cb1360SIngo Molnar goto free_dlo_mask; 525f2cb1360SIngo Molnar 5264bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI 5274bdced5cSSteven Rostedt (Red Hat) rd->rto_cpu = -1; 5284bdced5cSSteven Rostedt (Red Hat) raw_spin_lock_init(&rd->rto_lock); 529da6ff099SSebastian Andrzej Siewior rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); 5304bdced5cSSteven Rostedt (Red Hat) #endif 5314bdced5cSSteven Rostedt (Red Hat) 53226762423SPeng Liu rd->visit_gen = 0; 533f2cb1360SIngo Molnar init_dl_bw(&rd->dl_bw); 534f2cb1360SIngo Molnar if (cpudl_init(&rd->cpudl) != 0) 535f2cb1360SIngo Molnar goto free_rto_mask; 536f2cb1360SIngo Molnar 537f2cb1360SIngo Molnar if (cpupri_init(&rd->cpupri) != 0) 538f2cb1360SIngo Molnar goto free_cpudl; 539f2cb1360SIngo Molnar return 0; 540f2cb1360SIngo Molnar 541f2cb1360SIngo Molnar free_cpudl: 542f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 543f2cb1360SIngo Molnar free_rto_mask: 544f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 545f2cb1360SIngo Molnar free_dlo_mask: 546f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 547f2cb1360SIngo Molnar free_online: 548f2cb1360SIngo Molnar free_cpumask_var(rd->online); 549f2cb1360SIngo Molnar free_span: 550f2cb1360SIngo Molnar free_cpumask_var(rd->span); 551f2cb1360SIngo Molnar out: 552f2cb1360SIngo Molnar return -ENOMEM; 553f2cb1360SIngo Molnar } 554f2cb1360SIngo Molnar 555f2cb1360SIngo Molnar /* 556f2cb1360SIngo Molnar * By default the system creates a single root-domain with all CPUs as 557f2cb1360SIngo Molnar * members (mimicking the global state we have today). 558f2cb1360SIngo Molnar */ 559f2cb1360SIngo Molnar struct root_domain def_root_domain; 560f2cb1360SIngo Molnar 561f2cb1360SIngo Molnar void init_defrootdomain(void) 562f2cb1360SIngo Molnar { 563f2cb1360SIngo Molnar init_rootdomain(&def_root_domain); 564f2cb1360SIngo Molnar 565f2cb1360SIngo Molnar atomic_set(&def_root_domain.refcount, 1); 566f2cb1360SIngo Molnar } 567f2cb1360SIngo Molnar 568f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void) 569f2cb1360SIngo Molnar { 570f2cb1360SIngo Molnar struct root_domain *rd; 571f2cb1360SIngo Molnar 5724d13a06dSViresh Kumar rd = kzalloc(sizeof(*rd), GFP_KERNEL); 573f2cb1360SIngo Molnar if (!rd) 574f2cb1360SIngo Molnar return NULL; 575f2cb1360SIngo Molnar 576f2cb1360SIngo Molnar if (init_rootdomain(rd) != 0) { 577f2cb1360SIngo Molnar kfree(rd); 578f2cb1360SIngo Molnar return NULL; 579f2cb1360SIngo Molnar } 580f2cb1360SIngo Molnar 581f2cb1360SIngo Molnar return rd; 582f2cb1360SIngo Molnar } 583f2cb1360SIngo Molnar 584f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc) 585f2cb1360SIngo Molnar { 586f2cb1360SIngo Molnar struct sched_group *tmp, *first; 587f2cb1360SIngo Molnar 588f2cb1360SIngo Molnar if (!sg) 589f2cb1360SIngo Molnar return; 590f2cb1360SIngo Molnar 591f2cb1360SIngo Molnar first = sg; 592f2cb1360SIngo Molnar do { 593f2cb1360SIngo Molnar tmp = sg->next; 594f2cb1360SIngo Molnar 595f2cb1360SIngo Molnar if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 596f2cb1360SIngo Molnar kfree(sg->sgc); 597f2cb1360SIngo Molnar 598213c5a45SShu Wang if (atomic_dec_and_test(&sg->ref)) 599f2cb1360SIngo Molnar kfree(sg); 600f2cb1360SIngo Molnar sg = tmp; 601f2cb1360SIngo Molnar } while (sg != first); 602f2cb1360SIngo Molnar } 603f2cb1360SIngo Molnar 604f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd) 605f2cb1360SIngo Molnar { 606f2cb1360SIngo Molnar /* 607a090c4f2SPeter Zijlstra * A normal sched domain may have multiple group references, an 608a090c4f2SPeter Zijlstra * overlapping domain, having private groups, only one. Iterate, 609a090c4f2SPeter Zijlstra * dropping group/capacity references, freeing where none remain. 610f2cb1360SIngo Molnar */ 611f2cb1360SIngo Molnar free_sched_groups(sd->groups, 1); 612213c5a45SShu Wang 613f2cb1360SIngo Molnar if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 614f2cb1360SIngo Molnar kfree(sd->shared); 615f2cb1360SIngo Molnar kfree(sd); 616f2cb1360SIngo Molnar } 617f2cb1360SIngo Molnar 618f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu) 619f2cb1360SIngo Molnar { 620f2cb1360SIngo Molnar struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 621f2cb1360SIngo Molnar 622f2cb1360SIngo Molnar while (sd) { 623f2cb1360SIngo Molnar struct sched_domain *parent = sd->parent; 624f2cb1360SIngo Molnar destroy_sched_domain(sd); 625f2cb1360SIngo Molnar sd = parent; 626f2cb1360SIngo Molnar } 627f2cb1360SIngo Molnar } 628f2cb1360SIngo Molnar 629f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd) 630f2cb1360SIngo Molnar { 631f2cb1360SIngo Molnar if (sd) 632f2cb1360SIngo Molnar call_rcu(&sd->rcu, destroy_sched_domains_rcu); 633f2cb1360SIngo Molnar } 634f2cb1360SIngo Molnar 635f2cb1360SIngo Molnar /* 636f2cb1360SIngo Molnar * Keep a special pointer to the highest sched_domain that has 637f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 638f2cb1360SIngo Molnar * allows us to avoid some pointer chasing select_idle_sibling(). 639f2cb1360SIngo Molnar * 640f2cb1360SIngo Molnar * Also keep a unique ID per domain (we use the first CPU number in 641f2cb1360SIngo Molnar * the cpumask of the domain), this allows us to quickly tell if 642f2cb1360SIngo Molnar * two CPUs are in the same cache domain, see cpus_share_cache(). 643f2cb1360SIngo Molnar */ 644994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 645f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size); 646f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id); 647994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 648994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 649994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 650994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 651df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 652f2cb1360SIngo Molnar 653f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu) 654f2cb1360SIngo Molnar { 655f2cb1360SIngo Molnar struct sched_domain_shared *sds = NULL; 656f2cb1360SIngo Molnar struct sched_domain *sd; 657f2cb1360SIngo Molnar int id = cpu; 658f2cb1360SIngo Molnar int size = 1; 659f2cb1360SIngo Molnar 660f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 661f2cb1360SIngo Molnar if (sd) { 662f2cb1360SIngo Molnar id = cpumask_first(sched_domain_span(sd)); 663f2cb1360SIngo Molnar size = cpumask_weight(sched_domain_span(sd)); 664f2cb1360SIngo Molnar sds = sd->shared; 665f2cb1360SIngo Molnar } 666f2cb1360SIngo Molnar 667f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 668f2cb1360SIngo Molnar per_cpu(sd_llc_size, cpu) = size; 669f2cb1360SIngo Molnar per_cpu(sd_llc_id, cpu) = id; 670f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 671f2cb1360SIngo Molnar 672f2cb1360SIngo Molnar sd = lowest_flag_domain(cpu, SD_NUMA); 673f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 674f2cb1360SIngo Molnar 675f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 676011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 677011b27bbSQuentin Perret 678c744dc4aSBeata Michalska sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 679011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 680f2cb1360SIngo Molnar } 681f2cb1360SIngo Molnar 682f2cb1360SIngo Molnar /* 683f2cb1360SIngo Molnar * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 684f2cb1360SIngo Molnar * hold the hotplug lock. 685f2cb1360SIngo Molnar */ 686f2cb1360SIngo Molnar static void 687f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 688f2cb1360SIngo Molnar { 689f2cb1360SIngo Molnar struct rq *rq = cpu_rq(cpu); 690f2cb1360SIngo Molnar struct sched_domain *tmp; 691f2cb1360SIngo Molnar 692f2cb1360SIngo Molnar /* Remove the sched domains which do not contribute to scheduling. */ 693f2cb1360SIngo Molnar for (tmp = sd; tmp; ) { 694f2cb1360SIngo Molnar struct sched_domain *parent = tmp->parent; 695f2cb1360SIngo Molnar if (!parent) 696f2cb1360SIngo Molnar break; 697f2cb1360SIngo Molnar 698f2cb1360SIngo Molnar if (sd_parent_degenerate(tmp, parent)) { 699f2cb1360SIngo Molnar tmp->parent = parent->parent; 700f2cb1360SIngo Molnar if (parent->parent) 701f2cb1360SIngo Molnar parent->parent->child = tmp; 702f2cb1360SIngo Molnar /* 703f2cb1360SIngo Molnar * Transfer SD_PREFER_SIBLING down in case of a 704f2cb1360SIngo Molnar * degenerate parent; the spans match for this 705f2cb1360SIngo Molnar * so the property transfers. 706f2cb1360SIngo Molnar */ 707f2cb1360SIngo Molnar if (parent->flags & SD_PREFER_SIBLING) 708f2cb1360SIngo Molnar tmp->flags |= SD_PREFER_SIBLING; 709f2cb1360SIngo Molnar destroy_sched_domain(parent); 710f2cb1360SIngo Molnar } else 711f2cb1360SIngo Molnar tmp = tmp->parent; 712f2cb1360SIngo Molnar } 713f2cb1360SIngo Molnar 714f2cb1360SIngo Molnar if (sd && sd_degenerate(sd)) { 715f2cb1360SIngo Molnar tmp = sd; 716f2cb1360SIngo Molnar sd = sd->parent; 717f2cb1360SIngo Molnar destroy_sched_domain(tmp); 71816d364baSRicardo Neri if (sd) { 71916d364baSRicardo Neri struct sched_group *sg = sd->groups; 72016d364baSRicardo Neri 72116d364baSRicardo Neri /* 72216d364baSRicardo Neri * sched groups hold the flags of the child sched 72316d364baSRicardo Neri * domain for convenience. Clear such flags since 72416d364baSRicardo Neri * the child is being destroyed. 72516d364baSRicardo Neri */ 72616d364baSRicardo Neri do { 72716d364baSRicardo Neri sg->flags = 0; 72816d364baSRicardo Neri } while (sg != sd->groups); 72916d364baSRicardo Neri 730f2cb1360SIngo Molnar sd->child = NULL; 731f2cb1360SIngo Molnar } 73216d364baSRicardo Neri } 733f2cb1360SIngo Molnar 734f2cb1360SIngo Molnar sched_domain_debug(sd, cpu); 735f2cb1360SIngo Molnar 736f2cb1360SIngo Molnar rq_attach_root(rq, rd); 737f2cb1360SIngo Molnar tmp = rq->sd; 738f2cb1360SIngo Molnar rcu_assign_pointer(rq->sd, sd); 739bbdacdfeSPeter Zijlstra dirty_sched_domain_sysctl(cpu); 740f2cb1360SIngo Molnar destroy_sched_domains(tmp); 741f2cb1360SIngo Molnar 742f2cb1360SIngo Molnar update_top_cache_domain(cpu); 743f2cb1360SIngo Molnar } 744f2cb1360SIngo Molnar 745f2cb1360SIngo Molnar struct s_data { 74699687cdbSLuc Van Oostenryck struct sched_domain * __percpu *sd; 747f2cb1360SIngo Molnar struct root_domain *rd; 748f2cb1360SIngo Molnar }; 749f2cb1360SIngo Molnar 750f2cb1360SIngo Molnar enum s_alloc { 751f2cb1360SIngo Molnar sa_rootdomain, 752f2cb1360SIngo Molnar sa_sd, 753f2cb1360SIngo Molnar sa_sd_storage, 754f2cb1360SIngo Molnar sa_none, 755f2cb1360SIngo Molnar }; 756f2cb1360SIngo Molnar 757f2cb1360SIngo Molnar /* 75835a566e6SPeter Zijlstra * Return the canonical balance CPU for this group, this is the first CPU 759e5c14b1fSPeter Zijlstra * of this group that's also in the balance mask. 76035a566e6SPeter Zijlstra * 761e5c14b1fSPeter Zijlstra * The balance mask are all those CPUs that could actually end up at this 762e5c14b1fSPeter Zijlstra * group. See build_balance_mask(). 76335a566e6SPeter Zijlstra * 76435a566e6SPeter Zijlstra * Also see should_we_balance(). 76535a566e6SPeter Zijlstra */ 76635a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg) 76735a566e6SPeter Zijlstra { 768e5c14b1fSPeter Zijlstra return cpumask_first(group_balance_mask(sg)); 76935a566e6SPeter Zijlstra } 77035a566e6SPeter Zijlstra 77135a566e6SPeter Zijlstra 77235a566e6SPeter Zijlstra /* 77335a566e6SPeter Zijlstra * NUMA topology (first read the regular topology blurb below) 77435a566e6SPeter Zijlstra * 77535a566e6SPeter Zijlstra * Given a node-distance table, for example: 77635a566e6SPeter Zijlstra * 77735a566e6SPeter Zijlstra * node 0 1 2 3 77835a566e6SPeter Zijlstra * 0: 10 20 30 20 77935a566e6SPeter Zijlstra * 1: 20 10 20 30 78035a566e6SPeter Zijlstra * 2: 30 20 10 20 78135a566e6SPeter Zijlstra * 3: 20 30 20 10 78235a566e6SPeter Zijlstra * 78335a566e6SPeter Zijlstra * which represents a 4 node ring topology like: 78435a566e6SPeter Zijlstra * 78535a566e6SPeter Zijlstra * 0 ----- 1 78635a566e6SPeter Zijlstra * | | 78735a566e6SPeter Zijlstra * | | 78835a566e6SPeter Zijlstra * | | 78935a566e6SPeter Zijlstra * 3 ----- 2 79035a566e6SPeter Zijlstra * 79135a566e6SPeter Zijlstra * We want to construct domains and groups to represent this. The way we go 79235a566e6SPeter Zijlstra * about doing this is to build the domains on 'hops'. For each NUMA level we 79335a566e6SPeter Zijlstra * construct the mask of all nodes reachable in @level hops. 79435a566e6SPeter Zijlstra * 79535a566e6SPeter Zijlstra * For the above NUMA topology that gives 3 levels: 79635a566e6SPeter Zijlstra * 79735a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 0-3 0-3 79835a566e6SPeter Zijlstra * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 79935a566e6SPeter Zijlstra * 80035a566e6SPeter Zijlstra * NUMA-1 0-1,3 0-2 1-3 0,2-3 80135a566e6SPeter Zijlstra * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 80235a566e6SPeter Zijlstra * 80335a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 80435a566e6SPeter Zijlstra * 80535a566e6SPeter Zijlstra * 80635a566e6SPeter Zijlstra * As can be seen; things don't nicely line up as with the regular topology. 80735a566e6SPeter Zijlstra * When we iterate a domain in child domain chunks some nodes can be 80835a566e6SPeter Zijlstra * represented multiple times -- hence the "overlap" naming for this part of 80935a566e6SPeter Zijlstra * the topology. 81035a566e6SPeter Zijlstra * 81135a566e6SPeter Zijlstra * In order to minimize this overlap, we only build enough groups to cover the 81235a566e6SPeter Zijlstra * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 81335a566e6SPeter Zijlstra * 81435a566e6SPeter Zijlstra * Because: 81535a566e6SPeter Zijlstra * 81635a566e6SPeter Zijlstra * - the first group of each domain is its child domain; this 81735a566e6SPeter Zijlstra * gets us the first 0-1,3 81835a566e6SPeter Zijlstra * - the only uncovered node is 2, who's child domain is 1-3. 81935a566e6SPeter Zijlstra * 82035a566e6SPeter Zijlstra * However, because of the overlap, computing a unique CPU for each group is 82135a566e6SPeter Zijlstra * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 82235a566e6SPeter Zijlstra * groups include the CPUs of Node-0, while those CPUs would not in fact ever 82335a566e6SPeter Zijlstra * end up at those groups (they would end up in group: 0-1,3). 82435a566e6SPeter Zijlstra * 825e5c14b1fSPeter Zijlstra * To correct this we have to introduce the group balance mask. This mask 82635a566e6SPeter Zijlstra * will contain those CPUs in the group that can reach this group given the 82735a566e6SPeter Zijlstra * (child) domain tree. 82835a566e6SPeter Zijlstra * 82935a566e6SPeter Zijlstra * With this we can once again compute balance_cpu and sched_group_capacity 83035a566e6SPeter Zijlstra * relations. 83135a566e6SPeter Zijlstra * 83235a566e6SPeter Zijlstra * XXX include words on how balance_cpu is unique and therefore can be 83335a566e6SPeter Zijlstra * used for sched_group_capacity links. 83435a566e6SPeter Zijlstra * 83535a566e6SPeter Zijlstra * 83635a566e6SPeter Zijlstra * Another 'interesting' topology is: 83735a566e6SPeter Zijlstra * 83835a566e6SPeter Zijlstra * node 0 1 2 3 83935a566e6SPeter Zijlstra * 0: 10 20 20 30 84035a566e6SPeter Zijlstra * 1: 20 10 20 20 84135a566e6SPeter Zijlstra * 2: 20 20 10 20 84235a566e6SPeter Zijlstra * 3: 30 20 20 10 84335a566e6SPeter Zijlstra * 84435a566e6SPeter Zijlstra * Which looks a little like: 84535a566e6SPeter Zijlstra * 84635a566e6SPeter Zijlstra * 0 ----- 1 84735a566e6SPeter Zijlstra * | / | 84835a566e6SPeter Zijlstra * | / | 84935a566e6SPeter Zijlstra * | / | 85035a566e6SPeter Zijlstra * 2 ----- 3 85135a566e6SPeter Zijlstra * 85235a566e6SPeter Zijlstra * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 85335a566e6SPeter Zijlstra * are not. 85435a566e6SPeter Zijlstra * 85535a566e6SPeter Zijlstra * This leads to a few particularly weird cases where the sched_domain's are 85697fb7a0aSIngo Molnar * not of the same number for each CPU. Consider: 85735a566e6SPeter Zijlstra * 85835a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 85935a566e6SPeter Zijlstra * groups: {0-2},{1-3} {1-3},{0-2} 86035a566e6SPeter Zijlstra * 86135a566e6SPeter Zijlstra * NUMA-1 0-2 0-3 0-3 1-3 86235a566e6SPeter Zijlstra * 86335a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 86435a566e6SPeter Zijlstra * 86535a566e6SPeter Zijlstra */ 86635a566e6SPeter Zijlstra 86735a566e6SPeter Zijlstra 86835a566e6SPeter Zijlstra /* 869e5c14b1fSPeter Zijlstra * Build the balance mask; it contains only those CPUs that can arrive at this 870e5c14b1fSPeter Zijlstra * group and should be considered to continue balancing. 87135a566e6SPeter Zijlstra * 87235a566e6SPeter Zijlstra * We do this during the group creation pass, therefore the group information 87335a566e6SPeter Zijlstra * isn't complete yet, however since each group represents a (child) domain we 87435a566e6SPeter Zijlstra * can fully construct this using the sched_domain bits (which are already 87535a566e6SPeter Zijlstra * complete). 876f2cb1360SIngo Molnar */ 8771676330eSPeter Zijlstra static void 878e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 879f2cb1360SIngo Molnar { 880ae4df9d6SPeter Zijlstra const struct cpumask *sg_span = sched_group_span(sg); 881f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 882f2cb1360SIngo Molnar struct sched_domain *sibling; 883f2cb1360SIngo Molnar int i; 884f2cb1360SIngo Molnar 8851676330eSPeter Zijlstra cpumask_clear(mask); 8861676330eSPeter Zijlstra 887f32d782eSLauro Ramos Venancio for_each_cpu(i, sg_span) { 888f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 88973bb059fSPeter Zijlstra 89073bb059fSPeter Zijlstra /* 89173bb059fSPeter Zijlstra * Can happen in the asymmetric case, where these siblings are 89273bb059fSPeter Zijlstra * unused. The mask will not be empty because those CPUs that 89373bb059fSPeter Zijlstra * do have the top domain _should_ span the domain. 89473bb059fSPeter Zijlstra */ 89573bb059fSPeter Zijlstra if (!sibling->child) 89673bb059fSPeter Zijlstra continue; 89773bb059fSPeter Zijlstra 89873bb059fSPeter Zijlstra /* If we would not end up here, we can't continue from here */ 89973bb059fSPeter Zijlstra if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 900f2cb1360SIngo Molnar continue; 901f2cb1360SIngo Molnar 9021676330eSPeter Zijlstra cpumask_set_cpu(i, mask); 903f2cb1360SIngo Molnar } 90473bb059fSPeter Zijlstra 90573bb059fSPeter Zijlstra /* We must not have empty masks here */ 9061676330eSPeter Zijlstra WARN_ON_ONCE(cpumask_empty(mask)); 907f2cb1360SIngo Molnar } 908f2cb1360SIngo Molnar 909f2cb1360SIngo Molnar /* 91035a566e6SPeter Zijlstra * XXX: This creates per-node group entries; since the load-balancer will 91135a566e6SPeter Zijlstra * immediately access remote memory to construct this group's load-balance 91235a566e6SPeter Zijlstra * statistics having the groups node local is of dubious benefit. 913f2cb1360SIngo Molnar */ 9148c033469SLauro Ramos Venancio static struct sched_group * 9158c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 9168c033469SLauro Ramos Venancio { 9178c033469SLauro Ramos Venancio struct sched_group *sg; 9188c033469SLauro Ramos Venancio struct cpumask *sg_span; 9198c033469SLauro Ramos Venancio 9208c033469SLauro Ramos Venancio sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 9218c033469SLauro Ramos Venancio GFP_KERNEL, cpu_to_node(cpu)); 9228c033469SLauro Ramos Venancio 9238c033469SLauro Ramos Venancio if (!sg) 9248c033469SLauro Ramos Venancio return NULL; 9258c033469SLauro Ramos Venancio 926ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 92716d364baSRicardo Neri if (sd->child) { 9288c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd->child)); 92916d364baSRicardo Neri sg->flags = sd->child->flags; 93016d364baSRicardo Neri } else { 9318c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd)); 93216d364baSRicardo Neri } 9338c033469SLauro Ramos Venancio 934213c5a45SShu Wang atomic_inc(&sg->ref); 9358c033469SLauro Ramos Venancio return sg; 9368c033469SLauro Ramos Venancio } 9378c033469SLauro Ramos Venancio 9388c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd, 9391676330eSPeter Zijlstra struct sched_group *sg) 9408c033469SLauro Ramos Venancio { 9411676330eSPeter Zijlstra struct cpumask *mask = sched_domains_tmpmask2; 9428c033469SLauro Ramos Venancio struct sd_data *sdd = sd->private; 9438c033469SLauro Ramos Venancio struct cpumask *sg_span; 9441676330eSPeter Zijlstra int cpu; 9451676330eSPeter Zijlstra 946e5c14b1fSPeter Zijlstra build_balance_mask(sd, sg, mask); 9470a2b65c0SBarry Song cpu = cpumask_first(mask); 9488c033469SLauro Ramos Venancio 9498c033469SLauro Ramos Venancio sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 9508c033469SLauro Ramos Venancio if (atomic_inc_return(&sg->sgc->ref) == 1) 951e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), mask); 95235a566e6SPeter Zijlstra else 953e5c14b1fSPeter Zijlstra WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 9548c033469SLauro Ramos Venancio 9558c033469SLauro Ramos Venancio /* 9568c033469SLauro Ramos Venancio * Initialize sgc->capacity such that even if we mess up the 9578c033469SLauro Ramos Venancio * domains and no possible iteration will get us here, we won't 9588c033469SLauro Ramos Venancio * die on a /0 trap. 9598c033469SLauro Ramos Venancio */ 960ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9618c033469SLauro Ramos Venancio sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 9628c033469SLauro Ramos Venancio sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 963e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 9648c033469SLauro Ramos Venancio } 9658c033469SLauro Ramos Venancio 966585b6d27SBarry Song static struct sched_domain * 967585b6d27SBarry Song find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 968585b6d27SBarry Song { 969585b6d27SBarry Song /* 970585b6d27SBarry Song * The proper descendant would be the one whose child won't span out 971585b6d27SBarry Song * of sd 972585b6d27SBarry Song */ 973585b6d27SBarry Song while (sibling->child && 974585b6d27SBarry Song !cpumask_subset(sched_domain_span(sibling->child), 975585b6d27SBarry Song sched_domain_span(sd))) 976585b6d27SBarry Song sibling = sibling->child; 977585b6d27SBarry Song 978585b6d27SBarry Song /* 979585b6d27SBarry Song * As we are referencing sgc across different topology level, we need 980585b6d27SBarry Song * to go down to skip those sched_domains which don't contribute to 981585b6d27SBarry Song * scheduling because they will be degenerated in cpu_attach_domain 982585b6d27SBarry Song */ 983585b6d27SBarry Song while (sibling->child && 984585b6d27SBarry Song cpumask_equal(sched_domain_span(sibling->child), 985585b6d27SBarry Song sched_domain_span(sibling))) 986585b6d27SBarry Song sibling = sibling->child; 987585b6d27SBarry Song 988585b6d27SBarry Song return sibling; 989585b6d27SBarry Song } 990585b6d27SBarry Song 991f2cb1360SIngo Molnar static int 992f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu) 993f2cb1360SIngo Molnar { 99491eaed0dSPeter Zijlstra struct sched_group *first = NULL, *last = NULL, *sg; 995f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 996f2cb1360SIngo Molnar struct cpumask *covered = sched_domains_tmpmask; 997f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 998f2cb1360SIngo Molnar struct sched_domain *sibling; 999f2cb1360SIngo Molnar int i; 1000f2cb1360SIngo Molnar 1001f2cb1360SIngo Molnar cpumask_clear(covered); 1002f2cb1360SIngo Molnar 10030372dd27SPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 1004f2cb1360SIngo Molnar struct cpumask *sg_span; 1005f2cb1360SIngo Molnar 1006f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 1007f2cb1360SIngo Molnar continue; 1008f2cb1360SIngo Molnar 1009f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 1010f2cb1360SIngo Molnar 1011c20e1ea4SLauro Ramos Venancio /* 1012c20e1ea4SLauro Ramos Venancio * Asymmetric node setups can result in situations where the 1013c20e1ea4SLauro Ramos Venancio * domain tree is of unequal depth, make sure to skip domains 1014c20e1ea4SLauro Ramos Venancio * that already cover the entire range. 1015c20e1ea4SLauro Ramos Venancio * 1016c20e1ea4SLauro Ramos Venancio * In that case build_sched_domains() will have terminated the 1017c20e1ea4SLauro Ramos Venancio * iteration early and our sibling sd spans will be empty. 1018c20e1ea4SLauro Ramos Venancio * Domains should always include the CPU they're built on, so 1019c20e1ea4SLauro Ramos Venancio * check that. 1020c20e1ea4SLauro Ramos Venancio */ 1021f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1022f2cb1360SIngo Molnar continue; 1023f2cb1360SIngo Molnar 1024585b6d27SBarry Song /* 1025585b6d27SBarry Song * Usually we build sched_group by sibling's child sched_domain 1026585b6d27SBarry Song * But for machines whose NUMA diameter are 3 or above, we move 1027585b6d27SBarry Song * to build sched_group by sibling's proper descendant's child 1028585b6d27SBarry Song * domain because sibling's child sched_domain will span out of 1029585b6d27SBarry Song * the sched_domain being built as below. 1030585b6d27SBarry Song * 1031585b6d27SBarry Song * Smallest diameter=3 topology is: 1032585b6d27SBarry Song * 1033585b6d27SBarry Song * node 0 1 2 3 1034585b6d27SBarry Song * 0: 10 20 30 40 1035585b6d27SBarry Song * 1: 20 10 20 30 1036585b6d27SBarry Song * 2: 30 20 10 20 1037585b6d27SBarry Song * 3: 40 30 20 10 1038585b6d27SBarry Song * 1039585b6d27SBarry Song * 0 --- 1 --- 2 --- 3 1040585b6d27SBarry Song * 1041585b6d27SBarry Song * NUMA-3 0-3 N/A N/A 0-3 1042585b6d27SBarry Song * groups: {0-2},{1-3} {1-3},{0-2} 1043585b6d27SBarry Song * 1044585b6d27SBarry Song * NUMA-2 0-2 0-3 0-3 1-3 1045585b6d27SBarry Song * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1046585b6d27SBarry Song * 1047585b6d27SBarry Song * NUMA-1 0-1 0-2 1-3 2-3 1048585b6d27SBarry Song * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1049585b6d27SBarry Song * 1050585b6d27SBarry Song * NUMA-0 0 1 2 3 1051585b6d27SBarry Song * 1052585b6d27SBarry Song * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1053585b6d27SBarry Song * group span isn't a subset of the domain span. 1054585b6d27SBarry Song */ 1055585b6d27SBarry Song if (sibling->child && 1056585b6d27SBarry Song !cpumask_subset(sched_domain_span(sibling->child), span)) 1057585b6d27SBarry Song sibling = find_descended_sibling(sd, sibling); 1058585b6d27SBarry Song 10598c033469SLauro Ramos Venancio sg = build_group_from_child_sched_domain(sibling, cpu); 1060f2cb1360SIngo Molnar if (!sg) 1061f2cb1360SIngo Molnar goto fail; 1062f2cb1360SIngo Molnar 1063ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 1064f2cb1360SIngo Molnar cpumask_or(covered, covered, sg_span); 1065f2cb1360SIngo Molnar 1066585b6d27SBarry Song init_overlap_sched_group(sibling, sg); 1067f2cb1360SIngo Molnar 1068f2cb1360SIngo Molnar if (!first) 1069f2cb1360SIngo Molnar first = sg; 1070f2cb1360SIngo Molnar if (last) 1071f2cb1360SIngo Molnar last->next = sg; 1072f2cb1360SIngo Molnar last = sg; 1073f2cb1360SIngo Molnar last->next = first; 1074f2cb1360SIngo Molnar } 107591eaed0dSPeter Zijlstra sd->groups = first; 1076f2cb1360SIngo Molnar 1077f2cb1360SIngo Molnar return 0; 1078f2cb1360SIngo Molnar 1079f2cb1360SIngo Molnar fail: 1080f2cb1360SIngo Molnar free_sched_groups(first, 0); 1081f2cb1360SIngo Molnar 1082f2cb1360SIngo Molnar return -ENOMEM; 1083f2cb1360SIngo Molnar } 1084f2cb1360SIngo Molnar 108535a566e6SPeter Zijlstra 108635a566e6SPeter Zijlstra /* 108735a566e6SPeter Zijlstra * Package topology (also see the load-balance blurb in fair.c) 108835a566e6SPeter Zijlstra * 108935a566e6SPeter Zijlstra * The scheduler builds a tree structure to represent a number of important 109035a566e6SPeter Zijlstra * topology features. By default (default_topology[]) these include: 109135a566e6SPeter Zijlstra * 109235a566e6SPeter Zijlstra * - Simultaneous multithreading (SMT) 109335a566e6SPeter Zijlstra * - Multi-Core Cache (MC) 109435a566e6SPeter Zijlstra * - Package (DIE) 109535a566e6SPeter Zijlstra * 109635a566e6SPeter Zijlstra * Where the last one more or less denotes everything up to a NUMA node. 109735a566e6SPeter Zijlstra * 109835a566e6SPeter Zijlstra * The tree consists of 3 primary data structures: 109935a566e6SPeter Zijlstra * 110035a566e6SPeter Zijlstra * sched_domain -> sched_group -> sched_group_capacity 110135a566e6SPeter Zijlstra * ^ ^ ^ ^ 110235a566e6SPeter Zijlstra * `-' `-' 110335a566e6SPeter Zijlstra * 110497fb7a0aSIngo Molnar * The sched_domains are per-CPU and have a two way link (parent & child) and 110535a566e6SPeter Zijlstra * denote the ever growing mask of CPUs belonging to that level of topology. 110635a566e6SPeter Zijlstra * 110735a566e6SPeter Zijlstra * Each sched_domain has a circular (double) linked list of sched_group's, each 110835a566e6SPeter Zijlstra * denoting the domains of the level below (or individual CPUs in case of the 110935a566e6SPeter Zijlstra * first domain level). The sched_group linked by a sched_domain includes the 111035a566e6SPeter Zijlstra * CPU of that sched_domain [*]. 111135a566e6SPeter Zijlstra * 111235a566e6SPeter Zijlstra * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 111335a566e6SPeter Zijlstra * 111435a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 111535a566e6SPeter Zijlstra * 111635a566e6SPeter Zijlstra * DIE [ ] 111735a566e6SPeter Zijlstra * MC [ ] [ ] 111835a566e6SPeter Zijlstra * SMT [ ] [ ] [ ] [ ] 111935a566e6SPeter Zijlstra * 112035a566e6SPeter Zijlstra * - or - 112135a566e6SPeter Zijlstra * 112235a566e6SPeter Zijlstra * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 112335a566e6SPeter Zijlstra * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 112435a566e6SPeter Zijlstra * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 112535a566e6SPeter Zijlstra * 112635a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 112735a566e6SPeter Zijlstra * 112835a566e6SPeter Zijlstra * One way to think about it is: sched_domain moves you up and down among these 112935a566e6SPeter Zijlstra * topology levels, while sched_group moves you sideways through it, at child 113035a566e6SPeter Zijlstra * domain granularity. 113135a566e6SPeter Zijlstra * 113235a566e6SPeter Zijlstra * sched_group_capacity ensures each unique sched_group has shared storage. 113335a566e6SPeter Zijlstra * 113435a566e6SPeter Zijlstra * There are two related construction problems, both require a CPU that 113535a566e6SPeter Zijlstra * uniquely identify each group (for a given domain): 113635a566e6SPeter Zijlstra * 113735a566e6SPeter Zijlstra * - The first is the balance_cpu (see should_we_balance() and the 113835a566e6SPeter Zijlstra * load-balance blub in fair.c); for each group we only want 1 CPU to 113935a566e6SPeter Zijlstra * continue balancing at a higher domain. 114035a566e6SPeter Zijlstra * 114135a566e6SPeter Zijlstra * - The second is the sched_group_capacity; we want all identical groups 114235a566e6SPeter Zijlstra * to share a single sched_group_capacity. 114335a566e6SPeter Zijlstra * 114435a566e6SPeter Zijlstra * Since these topologies are exclusive by construction. That is, its 114535a566e6SPeter Zijlstra * impossible for an SMT thread to belong to multiple cores, and cores to 114635a566e6SPeter Zijlstra * be part of multiple caches. There is a very clear and unique location 114735a566e6SPeter Zijlstra * for each CPU in the hierarchy. 114835a566e6SPeter Zijlstra * 114935a566e6SPeter Zijlstra * Therefore computing a unique CPU for each group is trivial (the iteration 115035a566e6SPeter Zijlstra * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 115135a566e6SPeter Zijlstra * group), we can simply pick the first CPU in each group. 115235a566e6SPeter Zijlstra * 115335a566e6SPeter Zijlstra * 115435a566e6SPeter Zijlstra * [*] in other words, the first group of each domain is its child domain. 115535a566e6SPeter Zijlstra */ 115635a566e6SPeter Zijlstra 11570c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1158f2cb1360SIngo Molnar { 1159f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1160f2cb1360SIngo Molnar struct sched_domain *child = sd->child; 11610c0e776aSPeter Zijlstra struct sched_group *sg; 116267d4f6ffSValentin Schneider bool already_visited; 1163f2cb1360SIngo Molnar 1164f2cb1360SIngo Molnar if (child) 1165f2cb1360SIngo Molnar cpu = cpumask_first(sched_domain_span(child)); 1166f2cb1360SIngo Molnar 11670c0e776aSPeter Zijlstra sg = *per_cpu_ptr(sdd->sg, cpu); 11680c0e776aSPeter Zijlstra sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1169f2cb1360SIngo Molnar 117067d4f6ffSValentin Schneider /* Increase refcounts for claim_allocations: */ 117167d4f6ffSValentin Schneider already_visited = atomic_inc_return(&sg->ref) > 1; 117267d4f6ffSValentin Schneider /* sgc visits should follow a similar trend as sg */ 117367d4f6ffSValentin Schneider WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 117467d4f6ffSValentin Schneider 117567d4f6ffSValentin Schneider /* If we have already visited that group, it's already initialized. */ 117667d4f6ffSValentin Schneider if (already_visited) 117767d4f6ffSValentin Schneider return sg; 11780c0e776aSPeter Zijlstra 11790c0e776aSPeter Zijlstra if (child) { 1180ae4df9d6SPeter Zijlstra cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1181ae4df9d6SPeter Zijlstra cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 118216d364baSRicardo Neri sg->flags = child->flags; 11830c0e776aSPeter Zijlstra } else { 1184ae4df9d6SPeter Zijlstra cpumask_set_cpu(cpu, sched_group_span(sg)); 1185e5c14b1fSPeter Zijlstra cpumask_set_cpu(cpu, group_balance_mask(sg)); 1186f2cb1360SIngo Molnar } 1187f2cb1360SIngo Molnar 1188ae4df9d6SPeter Zijlstra sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 11890c0e776aSPeter Zijlstra sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1190e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 11910c0e776aSPeter Zijlstra 11920c0e776aSPeter Zijlstra return sg; 1193f2cb1360SIngo Molnar } 1194f2cb1360SIngo Molnar 1195f2cb1360SIngo Molnar /* 1196f2cb1360SIngo Molnar * build_sched_groups will build a circular linked list of the groups 1197d8743230SValentin Schneider * covered by the given span, will set each group's ->cpumask correctly, 1198d8743230SValentin Schneider * and will initialize their ->sgc. 1199f2cb1360SIngo Molnar * 1200f2cb1360SIngo Molnar * Assumes the sched_domain tree is fully constructed 1201f2cb1360SIngo Molnar */ 1202f2cb1360SIngo Molnar static int 1203f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu) 1204f2cb1360SIngo Molnar { 1205f2cb1360SIngo Molnar struct sched_group *first = NULL, *last = NULL; 1206f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1207f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 1208f2cb1360SIngo Molnar struct cpumask *covered; 1209f2cb1360SIngo Molnar int i; 1210f2cb1360SIngo Molnar 1211f2cb1360SIngo Molnar lockdep_assert_held(&sched_domains_mutex); 1212f2cb1360SIngo Molnar covered = sched_domains_tmpmask; 1213f2cb1360SIngo Molnar 1214f2cb1360SIngo Molnar cpumask_clear(covered); 1215f2cb1360SIngo Molnar 12160c0e776aSPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 1217f2cb1360SIngo Molnar struct sched_group *sg; 1218f2cb1360SIngo Molnar 1219f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 1220f2cb1360SIngo Molnar continue; 1221f2cb1360SIngo Molnar 12220c0e776aSPeter Zijlstra sg = get_group(i, sdd); 1223f2cb1360SIngo Molnar 1224ae4df9d6SPeter Zijlstra cpumask_or(covered, covered, sched_group_span(sg)); 1225f2cb1360SIngo Molnar 1226f2cb1360SIngo Molnar if (!first) 1227f2cb1360SIngo Molnar first = sg; 1228f2cb1360SIngo Molnar if (last) 1229f2cb1360SIngo Molnar last->next = sg; 1230f2cb1360SIngo Molnar last = sg; 1231f2cb1360SIngo Molnar } 1232f2cb1360SIngo Molnar last->next = first; 12330c0e776aSPeter Zijlstra sd->groups = first; 1234f2cb1360SIngo Molnar 1235f2cb1360SIngo Molnar return 0; 1236f2cb1360SIngo Molnar } 1237f2cb1360SIngo Molnar 1238f2cb1360SIngo Molnar /* 1239f2cb1360SIngo Molnar * Initialize sched groups cpu_capacity. 1240f2cb1360SIngo Molnar * 1241f2cb1360SIngo Molnar * cpu_capacity indicates the capacity of sched group, which is used while 1242f2cb1360SIngo Molnar * distributing the load between different sched groups in a sched domain. 1243f2cb1360SIngo Molnar * Typically cpu_capacity for all the groups in a sched domain will be same 1244f2cb1360SIngo Molnar * unless there are asymmetries in the topology. If there are asymmetries, 1245f2cb1360SIngo Molnar * group having more cpu_capacity will pickup more load compared to the 1246f2cb1360SIngo Molnar * group having less cpu_capacity. 1247f2cb1360SIngo Molnar */ 1248f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1249f2cb1360SIngo Molnar { 1250f2cb1360SIngo Molnar struct sched_group *sg = sd->groups; 1251f2cb1360SIngo Molnar 1252f2cb1360SIngo Molnar WARN_ON(!sg); 1253f2cb1360SIngo Molnar 1254f2cb1360SIngo Molnar do { 1255f2cb1360SIngo Molnar int cpu, max_cpu = -1; 1256f2cb1360SIngo Molnar 1257ae4df9d6SPeter Zijlstra sg->group_weight = cpumask_weight(sched_group_span(sg)); 1258f2cb1360SIngo Molnar 1259f2cb1360SIngo Molnar if (!(sd->flags & SD_ASYM_PACKING)) 1260f2cb1360SIngo Molnar goto next; 1261f2cb1360SIngo Molnar 1262ae4df9d6SPeter Zijlstra for_each_cpu(cpu, sched_group_span(sg)) { 1263f2cb1360SIngo Molnar if (max_cpu < 0) 1264f2cb1360SIngo Molnar max_cpu = cpu; 1265f2cb1360SIngo Molnar else if (sched_asym_prefer(cpu, max_cpu)) 1266f2cb1360SIngo Molnar max_cpu = cpu; 1267f2cb1360SIngo Molnar } 1268f2cb1360SIngo Molnar sg->asym_prefer_cpu = max_cpu; 1269f2cb1360SIngo Molnar 1270f2cb1360SIngo Molnar next: 1271f2cb1360SIngo Molnar sg = sg->next; 1272f2cb1360SIngo Molnar } while (sg != sd->groups); 1273f2cb1360SIngo Molnar 1274f2cb1360SIngo Molnar if (cpu != group_balance_cpu(sg)) 1275f2cb1360SIngo Molnar return; 1276f2cb1360SIngo Molnar 1277f2cb1360SIngo Molnar update_group_capacity(sd, cpu); 1278f2cb1360SIngo Molnar } 1279f2cb1360SIngo Molnar 1280f2cb1360SIngo Molnar /* 1281c744dc4aSBeata Michalska * Asymmetric CPU capacity bits 1282c744dc4aSBeata Michalska */ 1283c744dc4aSBeata Michalska struct asym_cap_data { 1284c744dc4aSBeata Michalska struct list_head link; 1285c744dc4aSBeata Michalska unsigned long capacity; 1286c744dc4aSBeata Michalska unsigned long cpus[]; 1287c744dc4aSBeata Michalska }; 1288c744dc4aSBeata Michalska 1289c744dc4aSBeata Michalska /* 1290c744dc4aSBeata Michalska * Set of available CPUs grouped by their corresponding capacities 1291c744dc4aSBeata Michalska * Each list entry contains a CPU mask reflecting CPUs that share the same 1292c744dc4aSBeata Michalska * capacity. 1293c744dc4aSBeata Michalska * The lifespan of data is unlimited. 1294c744dc4aSBeata Michalska */ 1295c744dc4aSBeata Michalska static LIST_HEAD(asym_cap_list); 1296c744dc4aSBeata Michalska 1297c744dc4aSBeata Michalska #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 1298c744dc4aSBeata Michalska 1299c744dc4aSBeata Michalska /* 1300c744dc4aSBeata Michalska * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1301c744dc4aSBeata Michalska * Provides sd_flags reflecting the asymmetry scope. 1302c744dc4aSBeata Michalska */ 1303c744dc4aSBeata Michalska static inline int 1304c744dc4aSBeata Michalska asym_cpu_capacity_classify(const struct cpumask *sd_span, 1305c744dc4aSBeata Michalska const struct cpumask *cpu_map) 1306c744dc4aSBeata Michalska { 1307c744dc4aSBeata Michalska struct asym_cap_data *entry; 1308c744dc4aSBeata Michalska int count = 0, miss = 0; 1309c744dc4aSBeata Michalska 1310c744dc4aSBeata Michalska /* 1311c744dc4aSBeata Michalska * Count how many unique CPU capacities this domain spans across 1312c744dc4aSBeata Michalska * (compare sched_domain CPUs mask with ones representing available 1313c744dc4aSBeata Michalska * CPUs capacities). Take into account CPUs that might be offline: 1314c744dc4aSBeata Michalska * skip those. 1315c744dc4aSBeata Michalska */ 1316c744dc4aSBeata Michalska list_for_each_entry(entry, &asym_cap_list, link) { 1317c744dc4aSBeata Michalska if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1318c744dc4aSBeata Michalska ++count; 1319c744dc4aSBeata Michalska else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1320c744dc4aSBeata Michalska ++miss; 1321c744dc4aSBeata Michalska } 1322c744dc4aSBeata Michalska 1323c744dc4aSBeata Michalska WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1324c744dc4aSBeata Michalska 1325c744dc4aSBeata Michalska /* No asymmetry detected */ 1326c744dc4aSBeata Michalska if (count < 2) 1327c744dc4aSBeata Michalska return 0; 1328c744dc4aSBeata Michalska /* Some of the available CPU capacity values have not been detected */ 1329c744dc4aSBeata Michalska if (miss) 1330c744dc4aSBeata Michalska return SD_ASYM_CPUCAPACITY; 1331c744dc4aSBeata Michalska 1332c744dc4aSBeata Michalska /* Full asymmetry */ 1333c744dc4aSBeata Michalska return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1334c744dc4aSBeata Michalska 1335c744dc4aSBeata Michalska } 1336c744dc4aSBeata Michalska 1337c744dc4aSBeata Michalska static inline void asym_cpu_capacity_update_data(int cpu) 1338c744dc4aSBeata Michalska { 1339c744dc4aSBeata Michalska unsigned long capacity = arch_scale_cpu_capacity(cpu); 1340c744dc4aSBeata Michalska struct asym_cap_data *entry = NULL; 1341c744dc4aSBeata Michalska 1342c744dc4aSBeata Michalska list_for_each_entry(entry, &asym_cap_list, link) { 1343c744dc4aSBeata Michalska if (capacity == entry->capacity) 1344c744dc4aSBeata Michalska goto done; 1345c744dc4aSBeata Michalska } 1346c744dc4aSBeata Michalska 1347c744dc4aSBeata Michalska entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1348c744dc4aSBeata Michalska if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1349c744dc4aSBeata Michalska return; 1350c744dc4aSBeata Michalska entry->capacity = capacity; 1351c744dc4aSBeata Michalska list_add(&entry->link, &asym_cap_list); 1352c744dc4aSBeata Michalska done: 1353c744dc4aSBeata Michalska __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1354c744dc4aSBeata Michalska } 1355c744dc4aSBeata Michalska 1356c744dc4aSBeata Michalska /* 1357c744dc4aSBeata Michalska * Build-up/update list of CPUs grouped by their capacities 1358c744dc4aSBeata Michalska * An update requires explicit request to rebuild sched domains 1359c744dc4aSBeata Michalska * with state indicating CPU topology changes. 1360c744dc4aSBeata Michalska */ 1361c744dc4aSBeata Michalska static void asym_cpu_capacity_scan(void) 1362c744dc4aSBeata Michalska { 1363c744dc4aSBeata Michalska struct asym_cap_data *entry, *next; 1364c744dc4aSBeata Michalska int cpu; 1365c744dc4aSBeata Michalska 1366c744dc4aSBeata Michalska list_for_each_entry(entry, &asym_cap_list, link) 1367c744dc4aSBeata Michalska cpumask_clear(cpu_capacity_span(entry)); 1368c744dc4aSBeata Michalska 1369c744dc4aSBeata Michalska for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_FLAG_DOMAIN)) 1370c744dc4aSBeata Michalska asym_cpu_capacity_update_data(cpu); 1371c744dc4aSBeata Michalska 1372c744dc4aSBeata Michalska list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1373c744dc4aSBeata Michalska if (cpumask_empty(cpu_capacity_span(entry))) { 1374c744dc4aSBeata Michalska list_del(&entry->link); 1375c744dc4aSBeata Michalska kfree(entry); 1376c744dc4aSBeata Michalska } 1377c744dc4aSBeata Michalska } 1378c744dc4aSBeata Michalska 1379c744dc4aSBeata Michalska /* 1380c744dc4aSBeata Michalska * Only one capacity value has been detected i.e. this system is symmetric. 1381c744dc4aSBeata Michalska * No need to keep this data around. 1382c744dc4aSBeata Michalska */ 1383c744dc4aSBeata Michalska if (list_is_singular(&asym_cap_list)) { 1384c744dc4aSBeata Michalska entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1385c744dc4aSBeata Michalska list_del(&entry->link); 1386c744dc4aSBeata Michalska kfree(entry); 1387c744dc4aSBeata Michalska } 1388c744dc4aSBeata Michalska } 1389c744dc4aSBeata Michalska 1390c744dc4aSBeata Michalska /* 1391f2cb1360SIngo Molnar * Initializers for schedule domains 1392f2cb1360SIngo Molnar * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1393f2cb1360SIngo Molnar */ 1394f2cb1360SIngo Molnar 1395f2cb1360SIngo Molnar static int default_relax_domain_level = -1; 1396f2cb1360SIngo Molnar int sched_domain_level_max; 1397f2cb1360SIngo Molnar 1398f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str) 1399f2cb1360SIngo Molnar { 1400f2cb1360SIngo Molnar if (kstrtoint(str, 0, &default_relax_domain_level)) 1401f2cb1360SIngo Molnar pr_warn("Unable to set relax_domain_level\n"); 1402f2cb1360SIngo Molnar 1403f2cb1360SIngo Molnar return 1; 1404f2cb1360SIngo Molnar } 1405f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level); 1406f2cb1360SIngo Molnar 1407f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd, 1408f2cb1360SIngo Molnar struct sched_domain_attr *attr) 1409f2cb1360SIngo Molnar { 1410f2cb1360SIngo Molnar int request; 1411f2cb1360SIngo Molnar 1412f2cb1360SIngo Molnar if (!attr || attr->relax_domain_level < 0) { 1413f2cb1360SIngo Molnar if (default_relax_domain_level < 0) 1414f2cb1360SIngo Molnar return; 1415f2cb1360SIngo Molnar request = default_relax_domain_level; 1416f2cb1360SIngo Molnar } else 1417f2cb1360SIngo Molnar request = attr->relax_domain_level; 14189ae7ab20SValentin Schneider 14199ae7ab20SValentin Schneider if (sd->level > request) { 1420f2cb1360SIngo Molnar /* Turn off idle balance on this domain: */ 1421f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1422f2cb1360SIngo Molnar } 1423f2cb1360SIngo Molnar } 1424f2cb1360SIngo Molnar 1425f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map); 1426f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map); 1427f2cb1360SIngo Molnar 1428f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1429f2cb1360SIngo Molnar const struct cpumask *cpu_map) 1430f2cb1360SIngo Molnar { 1431f2cb1360SIngo Molnar switch (what) { 1432f2cb1360SIngo Molnar case sa_rootdomain: 1433f2cb1360SIngo Molnar if (!atomic_read(&d->rd->refcount)) 1434f2cb1360SIngo Molnar free_rootdomain(&d->rd->rcu); 1435df561f66SGustavo A. R. Silva fallthrough; 1436f2cb1360SIngo Molnar case sa_sd: 1437f2cb1360SIngo Molnar free_percpu(d->sd); 1438df561f66SGustavo A. R. Silva fallthrough; 1439f2cb1360SIngo Molnar case sa_sd_storage: 1440f2cb1360SIngo Molnar __sdt_free(cpu_map); 1441df561f66SGustavo A. R. Silva fallthrough; 1442f2cb1360SIngo Molnar case sa_none: 1443f2cb1360SIngo Molnar break; 1444f2cb1360SIngo Molnar } 1445f2cb1360SIngo Molnar } 1446f2cb1360SIngo Molnar 1447f2cb1360SIngo Molnar static enum s_alloc 1448f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1449f2cb1360SIngo Molnar { 1450f2cb1360SIngo Molnar memset(d, 0, sizeof(*d)); 1451f2cb1360SIngo Molnar 1452f2cb1360SIngo Molnar if (__sdt_alloc(cpu_map)) 1453f2cb1360SIngo Molnar return sa_sd_storage; 1454f2cb1360SIngo Molnar d->sd = alloc_percpu(struct sched_domain *); 1455f2cb1360SIngo Molnar if (!d->sd) 1456f2cb1360SIngo Molnar return sa_sd_storage; 1457f2cb1360SIngo Molnar d->rd = alloc_rootdomain(); 1458f2cb1360SIngo Molnar if (!d->rd) 1459f2cb1360SIngo Molnar return sa_sd; 146097fb7a0aSIngo Molnar 1461f2cb1360SIngo Molnar return sa_rootdomain; 1462f2cb1360SIngo Molnar } 1463f2cb1360SIngo Molnar 1464f2cb1360SIngo Molnar /* 1465f2cb1360SIngo Molnar * NULL the sd_data elements we've used to build the sched_domain and 1466f2cb1360SIngo Molnar * sched_group structure so that the subsequent __free_domain_allocs() 1467f2cb1360SIngo Molnar * will not free the data we're using. 1468f2cb1360SIngo Molnar */ 1469f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd) 1470f2cb1360SIngo Molnar { 1471f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1472f2cb1360SIngo Molnar 1473f2cb1360SIngo Molnar WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1474f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, cpu) = NULL; 1475f2cb1360SIngo Molnar 1476f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1477f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, cpu) = NULL; 1478f2cb1360SIngo Molnar 1479f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1480f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, cpu) = NULL; 1481f2cb1360SIngo Molnar 1482f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1483f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1484f2cb1360SIngo Molnar } 1485f2cb1360SIngo Molnar 1486f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1487f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type; 148897fb7a0aSIngo Molnar 148997fb7a0aSIngo Molnar static int sched_domains_numa_levels; 1490f2cb1360SIngo Molnar static int sched_domains_curr_level; 149197fb7a0aSIngo Molnar 149297fb7a0aSIngo Molnar int sched_max_numa_distance; 149397fb7a0aSIngo Molnar static int *sched_domains_numa_distance; 149497fb7a0aSIngo Molnar static struct cpumask ***sched_domains_numa_masks; 1495a55c7454SMatt Fleming int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 14960083242cSValentin Schneider 14970083242cSValentin Schneider static unsigned long __read_mostly *sched_numa_onlined_nodes; 1498f2cb1360SIngo Molnar #endif 1499f2cb1360SIngo Molnar 1500f2cb1360SIngo Molnar /* 1501f2cb1360SIngo Molnar * SD_flags allowed in topology descriptions. 1502f2cb1360SIngo Molnar * 1503f2cb1360SIngo Molnar * These flags are purely descriptive of the topology and do not prescribe 1504f2cb1360SIngo Molnar * behaviour. Behaviour is artificial and mapped in the below sd_init() 1505f2cb1360SIngo Molnar * function: 1506f2cb1360SIngo Molnar * 1507f2cb1360SIngo Molnar * SD_SHARE_CPUCAPACITY - describes SMT topologies 1508f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCES - describes shared caches 1509f2cb1360SIngo Molnar * SD_NUMA - describes NUMA topologies 1510f2cb1360SIngo Molnar * 1511f2cb1360SIngo Molnar * Odd one out, which beside describing the topology has a quirk also 1512f2cb1360SIngo Molnar * prescribes the desired behaviour that goes along with it: 1513f2cb1360SIngo Molnar * 1514f2cb1360SIngo Molnar * SD_ASYM_PACKING - describes SMT quirks 1515f2cb1360SIngo Molnar */ 1516f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS \ 1517f2cb1360SIngo Molnar (SD_SHARE_CPUCAPACITY | \ 1518f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | \ 1519f2cb1360SIngo Molnar SD_NUMA | \ 1520cfe7ddcbSValentin Schneider SD_ASYM_PACKING) 1521f2cb1360SIngo Molnar 1522f2cb1360SIngo Molnar static struct sched_domain * 1523f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl, 1524f2cb1360SIngo Molnar const struct cpumask *cpu_map, 1525c744dc4aSBeata Michalska struct sched_domain *child, int cpu) 1526f2cb1360SIngo Molnar { 1527f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1528f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1529f2cb1360SIngo Molnar int sd_id, sd_weight, sd_flags = 0; 1530c744dc4aSBeata Michalska struct cpumask *sd_span; 1531f2cb1360SIngo Molnar 1532f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1533f2cb1360SIngo Molnar /* 1534f2cb1360SIngo Molnar * Ugly hack to pass state to sd_numa_mask()... 1535f2cb1360SIngo Molnar */ 1536f2cb1360SIngo Molnar sched_domains_curr_level = tl->numa_level; 1537f2cb1360SIngo Molnar #endif 1538f2cb1360SIngo Molnar 1539f2cb1360SIngo Molnar sd_weight = cpumask_weight(tl->mask(cpu)); 1540f2cb1360SIngo Molnar 1541f2cb1360SIngo Molnar if (tl->sd_flags) 1542f2cb1360SIngo Molnar sd_flags = (*tl->sd_flags)(); 1543f2cb1360SIngo Molnar if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1544f2cb1360SIngo Molnar "wrong sd_flags in topology description\n")) 15459b1b234bSPeng Liu sd_flags &= TOPOLOGY_SD_FLAGS; 1546f2cb1360SIngo Molnar 1547f2cb1360SIngo Molnar *sd = (struct sched_domain){ 1548f2cb1360SIngo Molnar .min_interval = sd_weight, 1549f2cb1360SIngo Molnar .max_interval = 2*sd_weight, 15506e749913SVincent Guittot .busy_factor = 16, 15512208cdaaSVincent Guittot .imbalance_pct = 117, 1552f2cb1360SIngo Molnar 1553f2cb1360SIngo Molnar .cache_nice_tries = 0, 1554f2cb1360SIngo Molnar 155536c5bdc4SValentin Schneider .flags = 1*SD_BALANCE_NEWIDLE 1556f2cb1360SIngo Molnar | 1*SD_BALANCE_EXEC 1557f2cb1360SIngo Molnar | 1*SD_BALANCE_FORK 1558f2cb1360SIngo Molnar | 0*SD_BALANCE_WAKE 1559f2cb1360SIngo Molnar | 1*SD_WAKE_AFFINE 1560f2cb1360SIngo Molnar | 0*SD_SHARE_CPUCAPACITY 1561f2cb1360SIngo Molnar | 0*SD_SHARE_PKG_RESOURCES 1562f2cb1360SIngo Molnar | 0*SD_SERIALIZE 15639c63e84dSMorten Rasmussen | 1*SD_PREFER_SIBLING 1564f2cb1360SIngo Molnar | 0*SD_NUMA 1565f2cb1360SIngo Molnar | sd_flags 1566f2cb1360SIngo Molnar , 1567f2cb1360SIngo Molnar 1568f2cb1360SIngo Molnar .last_balance = jiffies, 1569f2cb1360SIngo Molnar .balance_interval = sd_weight, 1570f2cb1360SIngo Molnar .max_newidle_lb_cost = 0, 1571*e60b56e4SVincent Guittot .last_decay_max_lb_cost = jiffies, 1572f2cb1360SIngo Molnar .child = child, 1573f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1574f2cb1360SIngo Molnar .name = tl->name, 1575f2cb1360SIngo Molnar #endif 1576f2cb1360SIngo Molnar }; 1577f2cb1360SIngo Molnar 1578c744dc4aSBeata Michalska sd_span = sched_domain_span(sd); 1579c744dc4aSBeata Michalska cpumask_and(sd_span, cpu_map, tl->mask(cpu)); 1580c744dc4aSBeata Michalska sd_id = cpumask_first(sd_span); 1581c744dc4aSBeata Michalska 1582c744dc4aSBeata Michalska sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1583c744dc4aSBeata Michalska 1584c744dc4aSBeata Michalska WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1585c744dc4aSBeata Michalska (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1586c744dc4aSBeata Michalska "CPU capacity asymmetry not supported on SMT\n"); 1587f2cb1360SIngo Molnar 1588f2cb1360SIngo Molnar /* 1589f2cb1360SIngo Molnar * Convert topological properties into behaviour. 1590f2cb1360SIngo Molnar */ 1591a526d466SMorten Rasmussen /* Don't attempt to spread across CPUs of different capacities. */ 1592a526d466SMorten Rasmussen if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 15939c63e84dSMorten Rasmussen sd->child->flags &= ~SD_PREFER_SIBLING; 15949c63e84dSMorten Rasmussen 1595f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_CPUCAPACITY) { 1596f2cb1360SIngo Molnar sd->imbalance_pct = 110; 1597f2cb1360SIngo Molnar 1598f2cb1360SIngo Molnar } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1599f2cb1360SIngo Molnar sd->imbalance_pct = 117; 1600f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1601f2cb1360SIngo Molnar 1602f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1603f2cb1360SIngo Molnar } else if (sd->flags & SD_NUMA) { 1604f2cb1360SIngo Molnar sd->cache_nice_tries = 2; 1605f2cb1360SIngo Molnar 16069c63e84dSMorten Rasmussen sd->flags &= ~SD_PREFER_SIBLING; 1607f2cb1360SIngo Molnar sd->flags |= SD_SERIALIZE; 1608a55c7454SMatt Fleming if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1609f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_EXEC | 1610f2cb1360SIngo Molnar SD_BALANCE_FORK | 1611f2cb1360SIngo Molnar SD_WAKE_AFFINE); 1612f2cb1360SIngo Molnar } 1613f2cb1360SIngo Molnar 1614f2cb1360SIngo Molnar #endif 1615f2cb1360SIngo Molnar } else { 1616f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1617f2cb1360SIngo Molnar } 1618f2cb1360SIngo Molnar 1619f2cb1360SIngo Molnar /* 1620f2cb1360SIngo Molnar * For all levels sharing cache; connect a sched_domain_shared 1621f2cb1360SIngo Molnar * instance. 1622f2cb1360SIngo Molnar */ 1623f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1624f2cb1360SIngo Molnar sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1625f2cb1360SIngo Molnar atomic_inc(&sd->shared->ref); 1626f2cb1360SIngo Molnar atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1627f2cb1360SIngo Molnar } 1628f2cb1360SIngo Molnar 1629f2cb1360SIngo Molnar sd->private = sdd; 1630f2cb1360SIngo Molnar 1631f2cb1360SIngo Molnar return sd; 1632f2cb1360SIngo Molnar } 1633f2cb1360SIngo Molnar 1634f2cb1360SIngo Molnar /* 1635f2cb1360SIngo Molnar * Topology list, bottom-up. 1636f2cb1360SIngo Molnar */ 1637f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = { 1638f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT 1639f2cb1360SIngo Molnar { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1640f2cb1360SIngo Molnar #endif 1641778c558fSBarry Song 1642778c558fSBarry Song #ifdef CONFIG_SCHED_CLUSTER 1643778c558fSBarry Song { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) }, 1644778c558fSBarry Song #endif 1645778c558fSBarry Song 1646f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC 1647f2cb1360SIngo Molnar { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1648f2cb1360SIngo Molnar #endif 1649f2cb1360SIngo Molnar { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1650f2cb1360SIngo Molnar { NULL, }, 1651f2cb1360SIngo Molnar }; 1652f2cb1360SIngo Molnar 1653f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology = 1654f2cb1360SIngo Molnar default_topology; 1655f2cb1360SIngo Molnar 1656f2cb1360SIngo Molnar #define for_each_sd_topology(tl) \ 1657f2cb1360SIngo Molnar for (tl = sched_domain_topology; tl->mask; tl++) 1658f2cb1360SIngo Molnar 1659f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl) 1660f2cb1360SIngo Molnar { 1661f2cb1360SIngo Molnar if (WARN_ON_ONCE(sched_smp_initialized)) 1662f2cb1360SIngo Molnar return; 1663f2cb1360SIngo Molnar 1664f2cb1360SIngo Molnar sched_domain_topology = tl; 1665f2cb1360SIngo Molnar } 1666f2cb1360SIngo Molnar 1667f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1668f2cb1360SIngo Molnar 1669f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu) 1670f2cb1360SIngo Molnar { 1671f2cb1360SIngo Molnar return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1672f2cb1360SIngo Molnar } 1673f2cb1360SIngo Molnar 1674f2cb1360SIngo Molnar static void sched_numa_warn(const char *str) 1675f2cb1360SIngo Molnar { 1676f2cb1360SIngo Molnar static int done = false; 1677f2cb1360SIngo Molnar int i,j; 1678f2cb1360SIngo Molnar 1679f2cb1360SIngo Molnar if (done) 1680f2cb1360SIngo Molnar return; 1681f2cb1360SIngo Molnar 1682f2cb1360SIngo Molnar done = true; 1683f2cb1360SIngo Molnar 1684f2cb1360SIngo Molnar printk(KERN_WARNING "ERROR: %s\n\n", str); 1685f2cb1360SIngo Molnar 1686f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1687f2cb1360SIngo Molnar printk(KERN_WARNING " "); 1688f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1689f2cb1360SIngo Molnar printk(KERN_CONT "%02d ", node_distance(i,j)); 1690f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 1691f2cb1360SIngo Molnar } 1692f2cb1360SIngo Molnar printk(KERN_WARNING "\n"); 1693f2cb1360SIngo Molnar } 1694f2cb1360SIngo Molnar 1695f2cb1360SIngo Molnar bool find_numa_distance(int distance) 1696f2cb1360SIngo Molnar { 1697f2cb1360SIngo Molnar int i; 1698f2cb1360SIngo Molnar 1699f2cb1360SIngo Molnar if (distance == node_distance(0, 0)) 1700f2cb1360SIngo Molnar return true; 1701f2cb1360SIngo Molnar 1702f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1703f2cb1360SIngo Molnar if (sched_domains_numa_distance[i] == distance) 1704f2cb1360SIngo Molnar return true; 1705f2cb1360SIngo Molnar } 1706f2cb1360SIngo Molnar 1707f2cb1360SIngo Molnar return false; 1708f2cb1360SIngo Molnar } 1709f2cb1360SIngo Molnar 1710f2cb1360SIngo Molnar /* 1711f2cb1360SIngo Molnar * A system can have three types of NUMA topology: 1712f2cb1360SIngo Molnar * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1713f2cb1360SIngo Molnar * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1714f2cb1360SIngo Molnar * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1715f2cb1360SIngo Molnar * 1716f2cb1360SIngo Molnar * The difference between a glueless mesh topology and a backplane 1717f2cb1360SIngo Molnar * topology lies in whether communication between not directly 1718f2cb1360SIngo Molnar * connected nodes goes through intermediary nodes (where programs 1719f2cb1360SIngo Molnar * could run), or through backplane controllers. This affects 1720f2cb1360SIngo Molnar * placement of programs. 1721f2cb1360SIngo Molnar * 1722f2cb1360SIngo Molnar * The type of topology can be discerned with the following tests: 1723f2cb1360SIngo Molnar * - If the maximum distance between any nodes is 1 hop, the system 1724f2cb1360SIngo Molnar * is directly connected. 1725f2cb1360SIngo Molnar * - If for two nodes A and B, located N > 1 hops away from each other, 1726f2cb1360SIngo Molnar * there is an intermediary node C, which is < N hops away from both 1727f2cb1360SIngo Molnar * nodes A and B, the system is a glueless mesh. 1728f2cb1360SIngo Molnar */ 1729f2cb1360SIngo Molnar static void init_numa_topology_type(void) 1730f2cb1360SIngo Molnar { 1731f2cb1360SIngo Molnar int a, b, c, n; 1732f2cb1360SIngo Molnar 1733f2cb1360SIngo Molnar n = sched_max_numa_distance; 1734f2cb1360SIngo Molnar 1735e5e96fafSSrikar Dronamraju if (sched_domains_numa_levels <= 2) { 1736f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_DIRECT; 1737f2cb1360SIngo Molnar return; 1738f2cb1360SIngo Molnar } 1739f2cb1360SIngo Molnar 1740f2cb1360SIngo Molnar for_each_online_node(a) { 1741f2cb1360SIngo Molnar for_each_online_node(b) { 1742f2cb1360SIngo Molnar /* Find two nodes furthest removed from each other. */ 1743f2cb1360SIngo Molnar if (node_distance(a, b) < n) 1744f2cb1360SIngo Molnar continue; 1745f2cb1360SIngo Molnar 1746f2cb1360SIngo Molnar /* Is there an intermediary node between a and b? */ 1747f2cb1360SIngo Molnar for_each_online_node(c) { 1748f2cb1360SIngo Molnar if (node_distance(a, c) < n && 1749f2cb1360SIngo Molnar node_distance(b, c) < n) { 1750f2cb1360SIngo Molnar sched_numa_topology_type = 1751f2cb1360SIngo Molnar NUMA_GLUELESS_MESH; 1752f2cb1360SIngo Molnar return; 1753f2cb1360SIngo Molnar } 1754f2cb1360SIngo Molnar } 1755f2cb1360SIngo Molnar 1756f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_BACKPLANE; 1757f2cb1360SIngo Molnar return; 1758f2cb1360SIngo Molnar } 1759f2cb1360SIngo Molnar } 1760f2cb1360SIngo Molnar } 1761f2cb1360SIngo Molnar 1762620a6dc4SValentin Schneider 1763620a6dc4SValentin Schneider #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1764620a6dc4SValentin Schneider 1765f2cb1360SIngo Molnar void sched_init_numa(void) 1766f2cb1360SIngo Molnar { 1767f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1768620a6dc4SValentin Schneider unsigned long *distance_map; 1769620a6dc4SValentin Schneider int nr_levels = 0; 1770620a6dc4SValentin Schneider int i, j; 1771051f3ca0SSuravee Suthikulpanit 1772f2cb1360SIngo Molnar /* 1773f2cb1360SIngo Molnar * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1774f2cb1360SIngo Molnar * unique distances in the node_distance() table. 1775f2cb1360SIngo Molnar */ 1776620a6dc4SValentin Schneider distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1777620a6dc4SValentin Schneider if (!distance_map) 1778620a6dc4SValentin Schneider return; 1779620a6dc4SValentin Schneider 1780620a6dc4SValentin Schneider bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1781f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1782f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1783620a6dc4SValentin Schneider int distance = node_distance(i, j); 1784f2cb1360SIngo Molnar 1785620a6dc4SValentin Schneider if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1786620a6dc4SValentin Schneider sched_numa_warn("Invalid distance value range"); 1787620a6dc4SValentin Schneider return; 1788620a6dc4SValentin Schneider } 1789f2cb1360SIngo Molnar 1790620a6dc4SValentin Schneider bitmap_set(distance_map, distance, 1); 1791620a6dc4SValentin Schneider } 1792620a6dc4SValentin Schneider } 1793f2cb1360SIngo Molnar /* 1794620a6dc4SValentin Schneider * We can now figure out how many unique distance values there are and 1795620a6dc4SValentin Schneider * allocate memory accordingly. 1796f2cb1360SIngo Molnar */ 1797620a6dc4SValentin Schneider nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 1798f2cb1360SIngo Molnar 1799620a6dc4SValentin Schneider sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 1800620a6dc4SValentin Schneider if (!sched_domains_numa_distance) { 1801620a6dc4SValentin Schneider bitmap_free(distance_map); 1802620a6dc4SValentin Schneider return; 1803f2cb1360SIngo Molnar } 1804620a6dc4SValentin Schneider 1805620a6dc4SValentin Schneider for (i = 0, j = 0; i < nr_levels; i++, j++) { 1806620a6dc4SValentin Schneider j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 1807620a6dc4SValentin Schneider sched_domains_numa_distance[i] = j; 1808f2cb1360SIngo Molnar } 1809f2cb1360SIngo Molnar 1810620a6dc4SValentin Schneider bitmap_free(distance_map); 1811620a6dc4SValentin Schneider 1812f2cb1360SIngo Molnar /* 1813620a6dc4SValentin Schneider * 'nr_levels' contains the number of unique distances 1814f2cb1360SIngo Molnar * 1815f2cb1360SIngo Molnar * The sched_domains_numa_distance[] array includes the actual distance 1816f2cb1360SIngo Molnar * numbers. 1817f2cb1360SIngo Molnar */ 1818f2cb1360SIngo Molnar 1819f2cb1360SIngo Molnar /* 1820f2cb1360SIngo Molnar * Here, we should temporarily reset sched_domains_numa_levels to 0. 1821f2cb1360SIngo Molnar * If it fails to allocate memory for array sched_domains_numa_masks[][], 1822620a6dc4SValentin Schneider * the array will contain less then 'nr_levels' members. This could be 1823f2cb1360SIngo Molnar * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1824f2cb1360SIngo Molnar * in other functions. 1825f2cb1360SIngo Molnar * 1826620a6dc4SValentin Schneider * We reset it to 'nr_levels' at the end of this function. 1827f2cb1360SIngo Molnar */ 1828f2cb1360SIngo Molnar sched_domains_numa_levels = 0; 1829f2cb1360SIngo Molnar 1830620a6dc4SValentin Schneider sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 1831f2cb1360SIngo Molnar if (!sched_domains_numa_masks) 1832f2cb1360SIngo Molnar return; 1833f2cb1360SIngo Molnar 1834f2cb1360SIngo Molnar /* 1835f2cb1360SIngo Molnar * Now for each level, construct a mask per node which contains all 1836f2cb1360SIngo Molnar * CPUs of nodes that are that many hops away from us. 1837f2cb1360SIngo Molnar */ 1838620a6dc4SValentin Schneider for (i = 0; i < nr_levels; i++) { 1839f2cb1360SIngo Molnar sched_domains_numa_masks[i] = 1840f2cb1360SIngo Molnar kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1841f2cb1360SIngo Molnar if (!sched_domains_numa_masks[i]) 1842f2cb1360SIngo Molnar return; 1843f2cb1360SIngo Molnar 1844f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1845f2cb1360SIngo Molnar struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1846620a6dc4SValentin Schneider int k; 1847620a6dc4SValentin Schneider 1848f2cb1360SIngo Molnar if (!mask) 1849f2cb1360SIngo Molnar return; 1850f2cb1360SIngo Molnar 1851f2cb1360SIngo Molnar sched_domains_numa_masks[i][j] = mask; 1852f2cb1360SIngo Molnar 1853f2cb1360SIngo Molnar for_each_node(k) { 18540083242cSValentin Schneider /* 18550083242cSValentin Schneider * Distance information can be unreliable for 18560083242cSValentin Schneider * offline nodes, defer building the node 18570083242cSValentin Schneider * masks to its bringup. 18580083242cSValentin Schneider * This relies on all unique distance values 18590083242cSValentin Schneider * still being visible at init time. 18600083242cSValentin Schneider */ 18610083242cSValentin Schneider if (!node_online(j)) 18620083242cSValentin Schneider continue; 18630083242cSValentin Schneider 1864620a6dc4SValentin Schneider if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) 1865620a6dc4SValentin Schneider sched_numa_warn("Node-distance not symmetric"); 1866620a6dc4SValentin Schneider 1867f2cb1360SIngo Molnar if (node_distance(j, k) > sched_domains_numa_distance[i]) 1868f2cb1360SIngo Molnar continue; 1869f2cb1360SIngo Molnar 1870f2cb1360SIngo Molnar cpumask_or(mask, mask, cpumask_of_node(k)); 1871f2cb1360SIngo Molnar } 1872f2cb1360SIngo Molnar } 1873f2cb1360SIngo Molnar } 1874f2cb1360SIngo Molnar 1875f2cb1360SIngo Molnar /* Compute default topology size */ 1876f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++); 1877f2cb1360SIngo Molnar 187871e5f664SDietmar Eggemann tl = kzalloc((i + nr_levels + 1) * 1879f2cb1360SIngo Molnar sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1880f2cb1360SIngo Molnar if (!tl) 1881f2cb1360SIngo Molnar return; 1882f2cb1360SIngo Molnar 1883f2cb1360SIngo Molnar /* 1884f2cb1360SIngo Molnar * Copy the default topology bits.. 1885f2cb1360SIngo Molnar */ 1886f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++) 1887f2cb1360SIngo Molnar tl[i] = sched_domain_topology[i]; 1888f2cb1360SIngo Molnar 1889f2cb1360SIngo Molnar /* 1890051f3ca0SSuravee Suthikulpanit * Add the NUMA identity distance, aka single NODE. 1891051f3ca0SSuravee Suthikulpanit */ 1892051f3ca0SSuravee Suthikulpanit tl[i++] = (struct sched_domain_topology_level){ 1893051f3ca0SSuravee Suthikulpanit .mask = sd_numa_mask, 1894051f3ca0SSuravee Suthikulpanit .numa_level = 0, 1895051f3ca0SSuravee Suthikulpanit SD_INIT_NAME(NODE) 1896051f3ca0SSuravee Suthikulpanit }; 1897051f3ca0SSuravee Suthikulpanit 1898051f3ca0SSuravee Suthikulpanit /* 1899f2cb1360SIngo Molnar * .. and append 'j' levels of NUMA goodness. 1900f2cb1360SIngo Molnar */ 1901620a6dc4SValentin Schneider for (j = 1; j < nr_levels; i++, j++) { 1902f2cb1360SIngo Molnar tl[i] = (struct sched_domain_topology_level){ 1903f2cb1360SIngo Molnar .mask = sd_numa_mask, 1904f2cb1360SIngo Molnar .sd_flags = cpu_numa_flags, 1905f2cb1360SIngo Molnar .flags = SDTL_OVERLAP, 1906f2cb1360SIngo Molnar .numa_level = j, 1907f2cb1360SIngo Molnar SD_INIT_NAME(NUMA) 1908f2cb1360SIngo Molnar }; 1909f2cb1360SIngo Molnar } 1910f2cb1360SIngo Molnar 1911f2cb1360SIngo Molnar sched_domain_topology = tl; 1912f2cb1360SIngo Molnar 1913620a6dc4SValentin Schneider sched_domains_numa_levels = nr_levels; 1914620a6dc4SValentin Schneider sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1]; 1915f2cb1360SIngo Molnar 1916f2cb1360SIngo Molnar init_numa_topology_type(); 19170083242cSValentin Schneider 19180083242cSValentin Schneider sched_numa_onlined_nodes = bitmap_alloc(nr_node_ids, GFP_KERNEL); 19190083242cSValentin Schneider if (!sched_numa_onlined_nodes) 19200083242cSValentin Schneider return; 19210083242cSValentin Schneider 19220083242cSValentin Schneider bitmap_zero(sched_numa_onlined_nodes, nr_node_ids); 19230083242cSValentin Schneider for_each_online_node(i) 19240083242cSValentin Schneider bitmap_set(sched_numa_onlined_nodes, i, 1); 19250083242cSValentin Schneider } 19260083242cSValentin Schneider 19270083242cSValentin Schneider static void __sched_domains_numa_masks_set(unsigned int node) 19280083242cSValentin Schneider { 19290083242cSValentin Schneider int i, j; 19300083242cSValentin Schneider 19310083242cSValentin Schneider /* 19320083242cSValentin Schneider * NUMA masks are not built for offline nodes in sched_init_numa(). 19330083242cSValentin Schneider * Thus, when a CPU of a never-onlined-before node gets plugged in, 19340083242cSValentin Schneider * adding that new CPU to the right NUMA masks is not sufficient: the 19350083242cSValentin Schneider * masks of that CPU's node must also be updated. 19360083242cSValentin Schneider */ 19370083242cSValentin Schneider if (test_bit(node, sched_numa_onlined_nodes)) 19380083242cSValentin Schneider return; 19390083242cSValentin Schneider 19400083242cSValentin Schneider bitmap_set(sched_numa_onlined_nodes, node, 1); 19410083242cSValentin Schneider 19420083242cSValentin Schneider for (i = 0; i < sched_domains_numa_levels; i++) { 19430083242cSValentin Schneider for (j = 0; j < nr_node_ids; j++) { 19440083242cSValentin Schneider if (!node_online(j) || node == j) 19450083242cSValentin Schneider continue; 19460083242cSValentin Schneider 19470083242cSValentin Schneider if (node_distance(j, node) > sched_domains_numa_distance[i]) 19480083242cSValentin Schneider continue; 19490083242cSValentin Schneider 19500083242cSValentin Schneider /* Add remote nodes in our masks */ 19510083242cSValentin Schneider cpumask_or(sched_domains_numa_masks[i][node], 19520083242cSValentin Schneider sched_domains_numa_masks[i][node], 19530083242cSValentin Schneider sched_domains_numa_masks[0][j]); 19540083242cSValentin Schneider } 19550083242cSValentin Schneider } 19560083242cSValentin Schneider 19570083242cSValentin Schneider /* 19580083242cSValentin Schneider * A new node has been brought up, potentially changing the topology 19590083242cSValentin Schneider * classification. 19600083242cSValentin Schneider * 19610083242cSValentin Schneider * Note that this is racy vs any use of sched_numa_topology_type :/ 19620083242cSValentin Schneider */ 19630083242cSValentin Schneider init_numa_topology_type(); 1964f2cb1360SIngo Molnar } 1965f2cb1360SIngo Molnar 1966f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu) 1967f2cb1360SIngo Molnar { 1968f2cb1360SIngo Molnar int node = cpu_to_node(cpu); 1969f2cb1360SIngo Molnar int i, j; 1970f2cb1360SIngo Molnar 19710083242cSValentin Schneider __sched_domains_numa_masks_set(node); 19720083242cSValentin Schneider 1973f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1974f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 19750083242cSValentin Schneider if (!node_online(j)) 19760083242cSValentin Schneider continue; 19770083242cSValentin Schneider 19780083242cSValentin Schneider /* Set ourselves in the remote node's masks */ 1979f2cb1360SIngo Molnar if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1980f2cb1360SIngo Molnar cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1981f2cb1360SIngo Molnar } 1982f2cb1360SIngo Molnar } 1983f2cb1360SIngo Molnar } 1984f2cb1360SIngo Molnar 1985f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu) 1986f2cb1360SIngo Molnar { 1987f2cb1360SIngo Molnar int i, j; 1988f2cb1360SIngo Molnar 1989f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1990f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1991f2cb1360SIngo Molnar cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1992f2cb1360SIngo Molnar } 1993f2cb1360SIngo Molnar } 1994f2cb1360SIngo Molnar 1995e0e8d491SWanpeng Li /* 1996e0e8d491SWanpeng Li * sched_numa_find_closest() - given the NUMA topology, find the cpu 1997e0e8d491SWanpeng Li * closest to @cpu from @cpumask. 1998e0e8d491SWanpeng Li * cpumask: cpumask to find a cpu from 1999e0e8d491SWanpeng Li * cpu: cpu to be close to 2000e0e8d491SWanpeng Li * 2001e0e8d491SWanpeng Li * returns: cpu, or nr_cpu_ids when nothing found. 2002e0e8d491SWanpeng Li */ 2003e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 2004e0e8d491SWanpeng Li { 2005e0e8d491SWanpeng Li int i, j = cpu_to_node(cpu); 2006e0e8d491SWanpeng Li 2007e0e8d491SWanpeng Li for (i = 0; i < sched_domains_numa_levels; i++) { 2008e0e8d491SWanpeng Li cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 2009e0e8d491SWanpeng Li if (cpu < nr_cpu_ids) 2010e0e8d491SWanpeng Li return cpu; 2011e0e8d491SWanpeng Li } 2012e0e8d491SWanpeng Li return nr_cpu_ids; 2013e0e8d491SWanpeng Li } 2014e0e8d491SWanpeng Li 2015f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */ 2016f2cb1360SIngo Molnar 2017f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map) 2018f2cb1360SIngo Molnar { 2019f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 2020f2cb1360SIngo Molnar int j; 2021f2cb1360SIngo Molnar 2022f2cb1360SIngo Molnar for_each_sd_topology(tl) { 2023f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 2024f2cb1360SIngo Molnar 2025f2cb1360SIngo Molnar sdd->sd = alloc_percpu(struct sched_domain *); 2026f2cb1360SIngo Molnar if (!sdd->sd) 2027f2cb1360SIngo Molnar return -ENOMEM; 2028f2cb1360SIngo Molnar 2029f2cb1360SIngo Molnar sdd->sds = alloc_percpu(struct sched_domain_shared *); 2030f2cb1360SIngo Molnar if (!sdd->sds) 2031f2cb1360SIngo Molnar return -ENOMEM; 2032f2cb1360SIngo Molnar 2033f2cb1360SIngo Molnar sdd->sg = alloc_percpu(struct sched_group *); 2034f2cb1360SIngo Molnar if (!sdd->sg) 2035f2cb1360SIngo Molnar return -ENOMEM; 2036f2cb1360SIngo Molnar 2037f2cb1360SIngo Molnar sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2038f2cb1360SIngo Molnar if (!sdd->sgc) 2039f2cb1360SIngo Molnar return -ENOMEM; 2040f2cb1360SIngo Molnar 2041f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 2042f2cb1360SIngo Molnar struct sched_domain *sd; 2043f2cb1360SIngo Molnar struct sched_domain_shared *sds; 2044f2cb1360SIngo Molnar struct sched_group *sg; 2045f2cb1360SIngo Molnar struct sched_group_capacity *sgc; 2046f2cb1360SIngo Molnar 2047f2cb1360SIngo Molnar sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2048f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 2049f2cb1360SIngo Molnar if (!sd) 2050f2cb1360SIngo Molnar return -ENOMEM; 2051f2cb1360SIngo Molnar 2052f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, j) = sd; 2053f2cb1360SIngo Molnar 2054f2cb1360SIngo Molnar sds = kzalloc_node(sizeof(struct sched_domain_shared), 2055f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 2056f2cb1360SIngo Molnar if (!sds) 2057f2cb1360SIngo Molnar return -ENOMEM; 2058f2cb1360SIngo Molnar 2059f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, j) = sds; 2060f2cb1360SIngo Molnar 2061f2cb1360SIngo Molnar sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2062f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 2063f2cb1360SIngo Molnar if (!sg) 2064f2cb1360SIngo Molnar return -ENOMEM; 2065f2cb1360SIngo Molnar 2066f2cb1360SIngo Molnar sg->next = sg; 2067f2cb1360SIngo Molnar 2068f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, j) = sg; 2069f2cb1360SIngo Molnar 2070f2cb1360SIngo Molnar sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2071f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 2072f2cb1360SIngo Molnar if (!sgc) 2073f2cb1360SIngo Molnar return -ENOMEM; 2074f2cb1360SIngo Molnar 2075005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG 2076005f874dSPeter Zijlstra sgc->id = j; 2077005f874dSPeter Zijlstra #endif 2078005f874dSPeter Zijlstra 2079f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, j) = sgc; 2080f2cb1360SIngo Molnar } 2081f2cb1360SIngo Molnar } 2082f2cb1360SIngo Molnar 2083f2cb1360SIngo Molnar return 0; 2084f2cb1360SIngo Molnar } 2085f2cb1360SIngo Molnar 2086f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map) 2087f2cb1360SIngo Molnar { 2088f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 2089f2cb1360SIngo Molnar int j; 2090f2cb1360SIngo Molnar 2091f2cb1360SIngo Molnar for_each_sd_topology(tl) { 2092f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 2093f2cb1360SIngo Molnar 2094f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 2095f2cb1360SIngo Molnar struct sched_domain *sd; 2096f2cb1360SIngo Molnar 2097f2cb1360SIngo Molnar if (sdd->sd) { 2098f2cb1360SIngo Molnar sd = *per_cpu_ptr(sdd->sd, j); 2099f2cb1360SIngo Molnar if (sd && (sd->flags & SD_OVERLAP)) 2100f2cb1360SIngo Molnar free_sched_groups(sd->groups, 0); 2101f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sd, j)); 2102f2cb1360SIngo Molnar } 2103f2cb1360SIngo Molnar 2104f2cb1360SIngo Molnar if (sdd->sds) 2105f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sds, j)); 2106f2cb1360SIngo Molnar if (sdd->sg) 2107f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sg, j)); 2108f2cb1360SIngo Molnar if (sdd->sgc) 2109f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sgc, j)); 2110f2cb1360SIngo Molnar } 2111f2cb1360SIngo Molnar free_percpu(sdd->sd); 2112f2cb1360SIngo Molnar sdd->sd = NULL; 2113f2cb1360SIngo Molnar free_percpu(sdd->sds); 2114f2cb1360SIngo Molnar sdd->sds = NULL; 2115f2cb1360SIngo Molnar free_percpu(sdd->sg); 2116f2cb1360SIngo Molnar sdd->sg = NULL; 2117f2cb1360SIngo Molnar free_percpu(sdd->sgc); 2118f2cb1360SIngo Molnar sdd->sgc = NULL; 2119f2cb1360SIngo Molnar } 2120f2cb1360SIngo Molnar } 2121f2cb1360SIngo Molnar 2122181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2123f2cb1360SIngo Molnar const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2124c744dc4aSBeata Michalska struct sched_domain *child, int cpu) 2125f2cb1360SIngo Molnar { 2126c744dc4aSBeata Michalska struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2127f2cb1360SIngo Molnar 2128f2cb1360SIngo Molnar if (child) { 2129f2cb1360SIngo Molnar sd->level = child->level + 1; 2130f2cb1360SIngo Molnar sched_domain_level_max = max(sched_domain_level_max, sd->level); 2131f2cb1360SIngo Molnar child->parent = sd; 2132f2cb1360SIngo Molnar 2133f2cb1360SIngo Molnar if (!cpumask_subset(sched_domain_span(child), 2134f2cb1360SIngo Molnar sched_domain_span(sd))) { 2135f2cb1360SIngo Molnar pr_err("BUG: arch topology borken\n"); 2136f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 2137f2cb1360SIngo Molnar pr_err(" the %s domain not a subset of the %s domain\n", 2138f2cb1360SIngo Molnar child->name, sd->name); 2139f2cb1360SIngo Molnar #endif 214097fb7a0aSIngo Molnar /* Fixup, ensure @sd has at least @child CPUs. */ 2141f2cb1360SIngo Molnar cpumask_or(sched_domain_span(sd), 2142f2cb1360SIngo Molnar sched_domain_span(sd), 2143f2cb1360SIngo Molnar sched_domain_span(child)); 2144f2cb1360SIngo Molnar } 2145f2cb1360SIngo Molnar 2146f2cb1360SIngo Molnar } 2147f2cb1360SIngo Molnar set_domain_attribute(sd, attr); 2148f2cb1360SIngo Molnar 2149f2cb1360SIngo Molnar return sd; 2150f2cb1360SIngo Molnar } 2151f2cb1360SIngo Molnar 2152f2cb1360SIngo Molnar /* 2153ccf74128SValentin Schneider * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2154ccf74128SValentin Schneider * any two given CPUs at this (non-NUMA) topology level. 2155ccf74128SValentin Schneider */ 2156ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl, 2157ccf74128SValentin Schneider const struct cpumask *cpu_map, int cpu) 2158ccf74128SValentin Schneider { 2159ccf74128SValentin Schneider int i; 2160ccf74128SValentin Schneider 2161ccf74128SValentin Schneider /* NUMA levels are allowed to overlap */ 2162ccf74128SValentin Schneider if (tl->flags & SDTL_OVERLAP) 2163ccf74128SValentin Schneider return true; 2164ccf74128SValentin Schneider 2165ccf74128SValentin Schneider /* 2166ccf74128SValentin Schneider * Non-NUMA levels cannot partially overlap - they must be either 2167ccf74128SValentin Schneider * completely equal or completely disjoint. Otherwise we can end up 2168ccf74128SValentin Schneider * breaking the sched_group lists - i.e. a later get_group() pass 2169ccf74128SValentin Schneider * breaks the linking done for an earlier span. 2170ccf74128SValentin Schneider */ 2171ccf74128SValentin Schneider for_each_cpu(i, cpu_map) { 2172ccf74128SValentin Schneider if (i == cpu) 2173ccf74128SValentin Schneider continue; 2174ccf74128SValentin Schneider /* 2175ccf74128SValentin Schneider * We should 'and' all those masks with 'cpu_map' to exactly 2176ccf74128SValentin Schneider * match the topology we're about to build, but that can only 2177ccf74128SValentin Schneider * remove CPUs, which only lessens our ability to detect 2178ccf74128SValentin Schneider * overlaps 2179ccf74128SValentin Schneider */ 2180ccf74128SValentin Schneider if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 2181ccf74128SValentin Schneider cpumask_intersects(tl->mask(cpu), tl->mask(i))) 2182ccf74128SValentin Schneider return false; 2183ccf74128SValentin Schneider } 2184ccf74128SValentin Schneider 2185ccf74128SValentin Schneider return true; 2186ccf74128SValentin Schneider } 2187ccf74128SValentin Schneider 2188ccf74128SValentin Schneider /* 2189f2cb1360SIngo Molnar * Build sched domains for a given set of CPUs and attach the sched domains 2190f2cb1360SIngo Molnar * to the individual CPUs 2191f2cb1360SIngo Molnar */ 2192f2cb1360SIngo Molnar static int 2193f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2194f2cb1360SIngo Molnar { 2195cd1cb335SValentin Schneider enum s_alloc alloc_state = sa_none; 2196f2cb1360SIngo Molnar struct sched_domain *sd; 2197f2cb1360SIngo Molnar struct s_data d; 2198f2cb1360SIngo Molnar struct rq *rq = NULL; 2199f2cb1360SIngo Molnar int i, ret = -ENOMEM; 2200df054e84SMorten Rasmussen bool has_asym = false; 2201f2cb1360SIngo Molnar 2202cd1cb335SValentin Schneider if (WARN_ON(cpumask_empty(cpu_map))) 2203cd1cb335SValentin Schneider goto error; 2204cd1cb335SValentin Schneider 2205f2cb1360SIngo Molnar alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2206f2cb1360SIngo Molnar if (alloc_state != sa_rootdomain) 2207f2cb1360SIngo Molnar goto error; 2208f2cb1360SIngo Molnar 2209f2cb1360SIngo Molnar /* Set up domains for CPUs specified by the cpu_map: */ 2210f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2211f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 2212f2cb1360SIngo Molnar 2213f2cb1360SIngo Molnar sd = NULL; 2214f2cb1360SIngo Molnar for_each_sd_topology(tl) { 221505484e09SMorten Rasmussen 2216ccf74128SValentin Schneider if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2217ccf74128SValentin Schneider goto error; 2218ccf74128SValentin Schneider 2219c744dc4aSBeata Michalska sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2220c744dc4aSBeata Michalska 2221c744dc4aSBeata Michalska has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 222205484e09SMorten Rasmussen 2223f2cb1360SIngo Molnar if (tl == sched_domain_topology) 2224f2cb1360SIngo Molnar *per_cpu_ptr(d.sd, i) = sd; 2225af85596cSPeter Zijlstra if (tl->flags & SDTL_OVERLAP) 2226f2cb1360SIngo Molnar sd->flags |= SD_OVERLAP; 2227f2cb1360SIngo Molnar if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2228f2cb1360SIngo Molnar break; 2229f2cb1360SIngo Molnar } 2230f2cb1360SIngo Molnar } 2231f2cb1360SIngo Molnar 2232f2cb1360SIngo Molnar /* Build the groups for the domains */ 2233f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2234f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2235f2cb1360SIngo Molnar sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2236f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 2237f2cb1360SIngo Molnar if (build_overlap_sched_groups(sd, i)) 2238f2cb1360SIngo Molnar goto error; 2239f2cb1360SIngo Molnar } else { 2240f2cb1360SIngo Molnar if (build_sched_groups(sd, i)) 2241f2cb1360SIngo Molnar goto error; 2242f2cb1360SIngo Molnar } 2243f2cb1360SIngo Molnar } 2244f2cb1360SIngo Molnar } 2245f2cb1360SIngo Molnar 2246f2cb1360SIngo Molnar /* Calculate CPU capacity for physical packages and nodes */ 2247f2cb1360SIngo Molnar for (i = nr_cpumask_bits-1; i >= 0; i--) { 2248f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, cpu_map)) 2249f2cb1360SIngo Molnar continue; 2250f2cb1360SIngo Molnar 2251f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2252f2cb1360SIngo Molnar claim_allocations(i, sd); 2253f2cb1360SIngo Molnar init_sched_groups_capacity(i, sd); 2254f2cb1360SIngo Molnar } 2255f2cb1360SIngo Molnar } 2256f2cb1360SIngo Molnar 2257f2cb1360SIngo Molnar /* Attach the domains */ 2258f2cb1360SIngo Molnar rcu_read_lock(); 2259f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2260f2cb1360SIngo Molnar rq = cpu_rq(i); 2261f2cb1360SIngo Molnar sd = *per_cpu_ptr(d.sd, i); 2262f2cb1360SIngo Molnar 2263f2cb1360SIngo Molnar /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2264f2cb1360SIngo Molnar if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2265f2cb1360SIngo Molnar WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2266f2cb1360SIngo Molnar 2267f2cb1360SIngo Molnar cpu_attach_domain(sd, d.rd, i); 2268f2cb1360SIngo Molnar } 2269f2cb1360SIngo Molnar rcu_read_unlock(); 2270f2cb1360SIngo Molnar 2271df054e84SMorten Rasmussen if (has_asym) 2272e284df70SValentin Schneider static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2273df054e84SMorten Rasmussen 22749406415fSPeter Zijlstra if (rq && sched_debug_verbose) { 2275bf5015a5SJuri Lelli pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2276f2cb1360SIngo Molnar cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2277f2cb1360SIngo Molnar } 2278f2cb1360SIngo Molnar 2279f2cb1360SIngo Molnar ret = 0; 2280f2cb1360SIngo Molnar error: 2281f2cb1360SIngo Molnar __free_domain_allocs(&d, alloc_state, cpu_map); 228297fb7a0aSIngo Molnar 2283f2cb1360SIngo Molnar return ret; 2284f2cb1360SIngo Molnar } 2285f2cb1360SIngo Molnar 2286f2cb1360SIngo Molnar /* Current sched domains: */ 2287f2cb1360SIngo Molnar static cpumask_var_t *doms_cur; 2288f2cb1360SIngo Molnar 2289f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */ 2290f2cb1360SIngo Molnar static int ndoms_cur; 2291f2cb1360SIngo Molnar 22923b03706fSIngo Molnar /* Attributes of custom domains in 'doms_cur' */ 2293f2cb1360SIngo Molnar static struct sched_domain_attr *dattr_cur; 2294f2cb1360SIngo Molnar 2295f2cb1360SIngo Molnar /* 2296f2cb1360SIngo Molnar * Special case: If a kmalloc() of a doms_cur partition (array of 2297f2cb1360SIngo Molnar * cpumask) fails, then fallback to a single sched domain, 2298f2cb1360SIngo Molnar * as determined by the single cpumask fallback_doms. 2299f2cb1360SIngo Molnar */ 23008d5dc512SPeter Zijlstra static cpumask_var_t fallback_doms; 2301f2cb1360SIngo Molnar 2302f2cb1360SIngo Molnar /* 2303f2cb1360SIngo Molnar * arch_update_cpu_topology lets virtualized architectures update the 2304f2cb1360SIngo Molnar * CPU core maps. It is supposed to return 1 if the topology changed 2305f2cb1360SIngo Molnar * or 0 if it stayed the same. 2306f2cb1360SIngo Molnar */ 2307f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void) 2308f2cb1360SIngo Molnar { 2309f2cb1360SIngo Molnar return 0; 2310f2cb1360SIngo Molnar } 2311f2cb1360SIngo Molnar 2312f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2313f2cb1360SIngo Molnar { 2314f2cb1360SIngo Molnar int i; 2315f2cb1360SIngo Molnar cpumask_var_t *doms; 2316f2cb1360SIngo Molnar 23176da2ec56SKees Cook doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2318f2cb1360SIngo Molnar if (!doms) 2319f2cb1360SIngo Molnar return NULL; 2320f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) { 2321f2cb1360SIngo Molnar if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2322f2cb1360SIngo Molnar free_sched_domains(doms, i); 2323f2cb1360SIngo Molnar return NULL; 2324f2cb1360SIngo Molnar } 2325f2cb1360SIngo Molnar } 2326f2cb1360SIngo Molnar return doms; 2327f2cb1360SIngo Molnar } 2328f2cb1360SIngo Molnar 2329f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2330f2cb1360SIngo Molnar { 2331f2cb1360SIngo Molnar unsigned int i; 2332f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) 2333f2cb1360SIngo Molnar free_cpumask_var(doms[i]); 2334f2cb1360SIngo Molnar kfree(doms); 2335f2cb1360SIngo Molnar } 2336f2cb1360SIngo Molnar 2337f2cb1360SIngo Molnar /* 2338cb0c0414SJuri Lelli * Set up scheduler domains and groups. For now this just excludes isolated 2339cb0c0414SJuri Lelli * CPUs, but could be used to exclude other special cases in the future. 2340f2cb1360SIngo Molnar */ 23418d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map) 2342f2cb1360SIngo Molnar { 2343f2cb1360SIngo Molnar int err; 2344f2cb1360SIngo Molnar 23458d5dc512SPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 23461676330eSPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 23478d5dc512SPeter Zijlstra zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 23488d5dc512SPeter Zijlstra 2349f2cb1360SIngo Molnar arch_update_cpu_topology(); 2350c744dc4aSBeata Michalska asym_cpu_capacity_scan(); 2351f2cb1360SIngo Molnar ndoms_cur = 1; 2352f2cb1360SIngo Molnar doms_cur = alloc_sched_domains(ndoms_cur); 2353f2cb1360SIngo Molnar if (!doms_cur) 2354f2cb1360SIngo Molnar doms_cur = &fallback_doms; 2355edb93821SFrederic Weisbecker cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2356f2cb1360SIngo Molnar err = build_sched_domains(doms_cur[0], NULL); 2357f2cb1360SIngo Molnar 2358f2cb1360SIngo Molnar return err; 2359f2cb1360SIngo Molnar } 2360f2cb1360SIngo Molnar 2361f2cb1360SIngo Molnar /* 2362f2cb1360SIngo Molnar * Detach sched domains from a group of CPUs specified in cpu_map 2363f2cb1360SIngo Molnar * These CPUs will now be attached to the NULL domain 2364f2cb1360SIngo Molnar */ 2365f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map) 2366f2cb1360SIngo Molnar { 2367e284df70SValentin Schneider unsigned int cpu = cpumask_any(cpu_map); 2368f2cb1360SIngo Molnar int i; 2369f2cb1360SIngo Molnar 2370e284df70SValentin Schneider if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2371e284df70SValentin Schneider static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2372e284df70SValentin Schneider 2373f2cb1360SIngo Molnar rcu_read_lock(); 2374f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) 2375f2cb1360SIngo Molnar cpu_attach_domain(NULL, &def_root_domain, i); 2376f2cb1360SIngo Molnar rcu_read_unlock(); 2377f2cb1360SIngo Molnar } 2378f2cb1360SIngo Molnar 2379f2cb1360SIngo Molnar /* handle null as "default" */ 2380f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2381f2cb1360SIngo Molnar struct sched_domain_attr *new, int idx_new) 2382f2cb1360SIngo Molnar { 2383f2cb1360SIngo Molnar struct sched_domain_attr tmp; 2384f2cb1360SIngo Molnar 2385f2cb1360SIngo Molnar /* Fast path: */ 2386f2cb1360SIngo Molnar if (!new && !cur) 2387f2cb1360SIngo Molnar return 1; 2388f2cb1360SIngo Molnar 2389f2cb1360SIngo Molnar tmp = SD_ATTR_INIT; 239097fb7a0aSIngo Molnar 2391f2cb1360SIngo Molnar return !memcmp(cur ? (cur + idx_cur) : &tmp, 2392f2cb1360SIngo Molnar new ? (new + idx_new) : &tmp, 2393f2cb1360SIngo Molnar sizeof(struct sched_domain_attr)); 2394f2cb1360SIngo Molnar } 2395f2cb1360SIngo Molnar 2396f2cb1360SIngo Molnar /* 2397f2cb1360SIngo Molnar * Partition sched domains as specified by the 'ndoms_new' 2398f2cb1360SIngo Molnar * cpumasks in the array doms_new[] of cpumasks. This compares 2399f2cb1360SIngo Molnar * doms_new[] to the current sched domain partitioning, doms_cur[]. 2400f2cb1360SIngo Molnar * It destroys each deleted domain and builds each new domain. 2401f2cb1360SIngo Molnar * 2402f2cb1360SIngo Molnar * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2403f2cb1360SIngo Molnar * The masks don't intersect (don't overlap.) We should setup one 2404f2cb1360SIngo Molnar * sched domain for each mask. CPUs not in any of the cpumasks will 2405f2cb1360SIngo Molnar * not be load balanced. If the same cpumask appears both in the 2406f2cb1360SIngo Molnar * current 'doms_cur' domains and in the new 'doms_new', we can leave 2407f2cb1360SIngo Molnar * it as it is. 2408f2cb1360SIngo Molnar * 2409f2cb1360SIngo Molnar * The passed in 'doms_new' should be allocated using 2410f2cb1360SIngo Molnar * alloc_sched_domains. This routine takes ownership of it and will 2411f2cb1360SIngo Molnar * free_sched_domains it when done with it. If the caller failed the 2412f2cb1360SIngo Molnar * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2413f2cb1360SIngo Molnar * and partition_sched_domains() will fallback to the single partition 2414f2cb1360SIngo Molnar * 'fallback_doms', it also forces the domains to be rebuilt. 2415f2cb1360SIngo Molnar * 2416f2cb1360SIngo Molnar * If doms_new == NULL it will be replaced with cpu_online_mask. 2417f2cb1360SIngo Molnar * ndoms_new == 0 is a special case for destroying existing domains, 2418f2cb1360SIngo Molnar * and it will not create the default domain. 2419f2cb1360SIngo Molnar * 2420c22645f4SMathieu Poirier * Call with hotplug lock and sched_domains_mutex held 2421f2cb1360SIngo Molnar */ 2422c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2423f2cb1360SIngo Molnar struct sched_domain_attr *dattr_new) 2424f2cb1360SIngo Molnar { 24251f74de87SQuentin Perret bool __maybe_unused has_eas = false; 2426f2cb1360SIngo Molnar int i, j, n; 2427f2cb1360SIngo Molnar int new_topology; 2428f2cb1360SIngo Molnar 2429c22645f4SMathieu Poirier lockdep_assert_held(&sched_domains_mutex); 2430f2cb1360SIngo Molnar 2431f2cb1360SIngo Molnar /* Let the architecture update CPU core mappings: */ 2432f2cb1360SIngo Molnar new_topology = arch_update_cpu_topology(); 2433c744dc4aSBeata Michalska /* Trigger rebuilding CPU capacity asymmetry data */ 2434c744dc4aSBeata Michalska if (new_topology) 2435c744dc4aSBeata Michalska asym_cpu_capacity_scan(); 2436f2cb1360SIngo Molnar 243709e0dd8eSPeter Zijlstra if (!doms_new) { 243809e0dd8eSPeter Zijlstra WARN_ON_ONCE(dattr_new); 243909e0dd8eSPeter Zijlstra n = 0; 244009e0dd8eSPeter Zijlstra doms_new = alloc_sched_domains(1); 244109e0dd8eSPeter Zijlstra if (doms_new) { 244209e0dd8eSPeter Zijlstra n = 1; 2443edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2444edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 244509e0dd8eSPeter Zijlstra } 244609e0dd8eSPeter Zijlstra } else { 244709e0dd8eSPeter Zijlstra n = ndoms_new; 244809e0dd8eSPeter Zijlstra } 2449f2cb1360SIngo Molnar 2450f2cb1360SIngo Molnar /* Destroy deleted domains: */ 2451f2cb1360SIngo Molnar for (i = 0; i < ndoms_cur; i++) { 2452f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 24536aa140faSQuentin Perret if (cpumask_equal(doms_cur[i], doms_new[j]) && 2454f9a25f77SMathieu Poirier dattrs_equal(dattr_cur, i, dattr_new, j)) { 2455f9a25f77SMathieu Poirier struct root_domain *rd; 2456f9a25f77SMathieu Poirier 2457f9a25f77SMathieu Poirier /* 2458f9a25f77SMathieu Poirier * This domain won't be destroyed and as such 2459f9a25f77SMathieu Poirier * its dl_bw->total_bw needs to be cleared. It 2460f9a25f77SMathieu Poirier * will be recomputed in function 2461f9a25f77SMathieu Poirier * update_tasks_root_domain(). 2462f9a25f77SMathieu Poirier */ 2463f9a25f77SMathieu Poirier rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2464f9a25f77SMathieu Poirier dl_clear_root_domain(rd); 2465f2cb1360SIngo Molnar goto match1; 2466f2cb1360SIngo Molnar } 2467f9a25f77SMathieu Poirier } 2468f2cb1360SIngo Molnar /* No match - a current sched domain not in new doms_new[] */ 2469f2cb1360SIngo Molnar detach_destroy_domains(doms_cur[i]); 2470f2cb1360SIngo Molnar match1: 2471f2cb1360SIngo Molnar ; 2472f2cb1360SIngo Molnar } 2473f2cb1360SIngo Molnar 2474f2cb1360SIngo Molnar n = ndoms_cur; 247509e0dd8eSPeter Zijlstra if (!doms_new) { 2476f2cb1360SIngo Molnar n = 0; 2477f2cb1360SIngo Molnar doms_new = &fallback_doms; 2478edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2479edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 2480f2cb1360SIngo Molnar } 2481f2cb1360SIngo Molnar 2482f2cb1360SIngo Molnar /* Build new domains: */ 2483f2cb1360SIngo Molnar for (i = 0; i < ndoms_new; i++) { 2484f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 24856aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 24866aa140faSQuentin Perret dattrs_equal(dattr_new, i, dattr_cur, j)) 2487f2cb1360SIngo Molnar goto match2; 2488f2cb1360SIngo Molnar } 2489f2cb1360SIngo Molnar /* No match - add a new doms_new */ 2490f2cb1360SIngo Molnar build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2491f2cb1360SIngo Molnar match2: 2492f2cb1360SIngo Molnar ; 2493f2cb1360SIngo Molnar } 2494f2cb1360SIngo Molnar 2495531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 24966aa140faSQuentin Perret /* Build perf. domains: */ 24976aa140faSQuentin Perret for (i = 0; i < ndoms_new; i++) { 2498531b5c9fSQuentin Perret for (j = 0; j < n && !sched_energy_update; j++) { 24996aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 25001f74de87SQuentin Perret cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 25011f74de87SQuentin Perret has_eas = true; 25026aa140faSQuentin Perret goto match3; 25036aa140faSQuentin Perret } 25041f74de87SQuentin Perret } 25056aa140faSQuentin Perret /* No match - add perf. domains for a new rd */ 25061f74de87SQuentin Perret has_eas |= build_perf_domains(doms_new[i]); 25076aa140faSQuentin Perret match3: 25086aa140faSQuentin Perret ; 25096aa140faSQuentin Perret } 25101f74de87SQuentin Perret sched_energy_set(has_eas); 25116aa140faSQuentin Perret #endif 25126aa140faSQuentin Perret 2513f2cb1360SIngo Molnar /* Remember the new sched domains: */ 2514f2cb1360SIngo Molnar if (doms_cur != &fallback_doms) 2515f2cb1360SIngo Molnar free_sched_domains(doms_cur, ndoms_cur); 2516f2cb1360SIngo Molnar 2517f2cb1360SIngo Molnar kfree(dattr_cur); 2518f2cb1360SIngo Molnar doms_cur = doms_new; 2519f2cb1360SIngo Molnar dattr_cur = dattr_new; 2520f2cb1360SIngo Molnar ndoms_cur = ndoms_new; 2521f2cb1360SIngo Molnar 25223b87f136SPeter Zijlstra update_sched_domain_debugfs(); 2523c22645f4SMathieu Poirier } 2524f2cb1360SIngo Molnar 2525c22645f4SMathieu Poirier /* 2526c22645f4SMathieu Poirier * Call with hotplug lock held 2527c22645f4SMathieu Poirier */ 2528c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2529c22645f4SMathieu Poirier struct sched_domain_attr *dattr_new) 2530c22645f4SMathieu Poirier { 2531c22645f4SMathieu Poirier mutex_lock(&sched_domains_mutex); 2532c22645f4SMathieu Poirier partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2533f2cb1360SIngo Molnar mutex_unlock(&sched_domains_mutex); 2534f2cb1360SIngo Molnar } 2535