1f2cb1360SIngo Molnar /* 2f2cb1360SIngo Molnar * Scheduler topology setup/handling methods 3f2cb1360SIngo Molnar */ 4f2cb1360SIngo Molnar #include <linux/sched.h> 5f2cb1360SIngo Molnar #include <linux/mutex.h> 6f2cb1360SIngo Molnar 7f2cb1360SIngo Molnar #include "sched.h" 8f2cb1360SIngo Molnar 9f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex); 10f2cb1360SIngo Molnar 11f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */ 12f2cb1360SIngo Molnar cpumask_var_t sched_domains_tmpmask; 131676330eSPeter Zijlstra cpumask_var_t sched_domains_tmpmask2; 14f2cb1360SIngo Molnar 15f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 16f2cb1360SIngo Molnar 17f2cb1360SIngo Molnar static __read_mostly int sched_debug_enabled; 18f2cb1360SIngo Molnar 19f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str) 20f2cb1360SIngo Molnar { 21f2cb1360SIngo Molnar sched_debug_enabled = 1; 22f2cb1360SIngo Molnar 23f2cb1360SIngo Molnar return 0; 24f2cb1360SIngo Molnar } 25f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup); 26f2cb1360SIngo Molnar 27f2cb1360SIngo Molnar static inline bool sched_debug(void) 28f2cb1360SIngo Molnar { 29f2cb1360SIngo Molnar return sched_debug_enabled; 30f2cb1360SIngo Molnar } 31f2cb1360SIngo Molnar 32f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 33f2cb1360SIngo Molnar struct cpumask *groupmask) 34f2cb1360SIngo Molnar { 35f2cb1360SIngo Molnar struct sched_group *group = sd->groups; 36f2cb1360SIngo Molnar 37f2cb1360SIngo Molnar cpumask_clear(groupmask); 38f2cb1360SIngo Molnar 39005f874dSPeter Zijlstra printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 40f2cb1360SIngo Molnar 41f2cb1360SIngo Molnar if (!(sd->flags & SD_LOAD_BALANCE)) { 42f2cb1360SIngo Molnar printk("does not load-balance\n"); 43f2cb1360SIngo Molnar if (sd->parent) 44f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 45f2cb1360SIngo Molnar " has parent"); 46f2cb1360SIngo Molnar return -1; 47f2cb1360SIngo Molnar } 48f2cb1360SIngo Molnar 49005f874dSPeter Zijlstra printk(KERN_CONT "span=%*pbl level=%s\n", 50f2cb1360SIngo Molnar cpumask_pr_args(sched_domain_span(sd)), sd->name); 51f2cb1360SIngo Molnar 52f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 53f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: domain->span does not contain " 54f2cb1360SIngo Molnar "CPU%d\n", cpu); 55f2cb1360SIngo Molnar } 56f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 57f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: domain->groups does not contain" 58f2cb1360SIngo Molnar " CPU%d\n", cpu); 59f2cb1360SIngo Molnar } 60f2cb1360SIngo Molnar 61f2cb1360SIngo Molnar printk(KERN_DEBUG "%*s groups:", level + 1, ""); 62f2cb1360SIngo Molnar do { 63f2cb1360SIngo Molnar if (!group) { 64f2cb1360SIngo Molnar printk("\n"); 65f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: group is NULL\n"); 66f2cb1360SIngo Molnar break; 67f2cb1360SIngo Molnar } 68f2cb1360SIngo Molnar 69f2cb1360SIngo Molnar if (!cpumask_weight(sched_group_cpus(group))) { 70f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 71f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: empty group\n"); 72f2cb1360SIngo Molnar break; 73f2cb1360SIngo Molnar } 74f2cb1360SIngo Molnar 75f2cb1360SIngo Molnar if (!(sd->flags & SD_OVERLAP) && 76f2cb1360SIngo Molnar cpumask_intersects(groupmask, sched_group_cpus(group))) { 77f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 78f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: repeated CPUs\n"); 79f2cb1360SIngo Molnar break; 80f2cb1360SIngo Molnar } 81f2cb1360SIngo Molnar 82f2cb1360SIngo Molnar cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 83f2cb1360SIngo Molnar 84005f874dSPeter Zijlstra printk(KERN_CONT " %d:{ span=%*pbl", 85005f874dSPeter Zijlstra group->sgc->id, 86f2cb1360SIngo Molnar cpumask_pr_args(sched_group_cpus(group))); 87b0151c25SPeter Zijlstra 88af218122SPeter Zijlstra if ((sd->flags & SD_OVERLAP) && 89*e5c14b1fSPeter Zijlstra !cpumask_equal(group_balance_mask(group), sched_group_cpus(group))) { 90005f874dSPeter Zijlstra printk(KERN_CONT " mask=%*pbl", 91*e5c14b1fSPeter Zijlstra cpumask_pr_args(group_balance_mask(group))); 92b0151c25SPeter Zijlstra } 93b0151c25SPeter Zijlstra 94005f874dSPeter Zijlstra if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 95005f874dSPeter Zijlstra printk(KERN_CONT " cap=%lu", group->sgc->capacity); 96f2cb1360SIngo Molnar 97a420b063SPeter Zijlstra if (group == sd->groups && sd->child && 98a420b063SPeter Zijlstra !cpumask_equal(sched_domain_span(sd->child), 99a420b063SPeter Zijlstra sched_group_cpus(group))) { 100a420b063SPeter Zijlstra printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 101a420b063SPeter Zijlstra } 102a420b063SPeter Zijlstra 103005f874dSPeter Zijlstra printk(KERN_CONT " }"); 104005f874dSPeter Zijlstra 105f2cb1360SIngo Molnar group = group->next; 106b0151c25SPeter Zijlstra 107b0151c25SPeter Zijlstra if (group != sd->groups) 108b0151c25SPeter Zijlstra printk(KERN_CONT ","); 109b0151c25SPeter Zijlstra 110f2cb1360SIngo Molnar } while (group != sd->groups); 111f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 112f2cb1360SIngo Molnar 113f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), groupmask)) 114f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 115f2cb1360SIngo Molnar 116f2cb1360SIngo Molnar if (sd->parent && 117f2cb1360SIngo Molnar !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 118f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: parent span is not a superset " 119f2cb1360SIngo Molnar "of domain->span\n"); 120f2cb1360SIngo Molnar return 0; 121f2cb1360SIngo Molnar } 122f2cb1360SIngo Molnar 123f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu) 124f2cb1360SIngo Molnar { 125f2cb1360SIngo Molnar int level = 0; 126f2cb1360SIngo Molnar 127f2cb1360SIngo Molnar if (!sched_debug_enabled) 128f2cb1360SIngo Molnar return; 129f2cb1360SIngo Molnar 130f2cb1360SIngo Molnar if (!sd) { 131f2cb1360SIngo Molnar printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 132f2cb1360SIngo Molnar return; 133f2cb1360SIngo Molnar } 134f2cb1360SIngo Molnar 135005f874dSPeter Zijlstra printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 136f2cb1360SIngo Molnar 137f2cb1360SIngo Molnar for (;;) { 138f2cb1360SIngo Molnar if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 139f2cb1360SIngo Molnar break; 140f2cb1360SIngo Molnar level++; 141f2cb1360SIngo Molnar sd = sd->parent; 142f2cb1360SIngo Molnar if (!sd) 143f2cb1360SIngo Molnar break; 144f2cb1360SIngo Molnar } 145f2cb1360SIngo Molnar } 146f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */ 147f2cb1360SIngo Molnar 148f2cb1360SIngo Molnar # define sched_debug_enabled 0 149f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0) 150f2cb1360SIngo Molnar static inline bool sched_debug(void) 151f2cb1360SIngo Molnar { 152f2cb1360SIngo Molnar return false; 153f2cb1360SIngo Molnar } 154f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */ 155f2cb1360SIngo Molnar 156f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd) 157f2cb1360SIngo Molnar { 158f2cb1360SIngo Molnar if (cpumask_weight(sched_domain_span(sd)) == 1) 159f2cb1360SIngo Molnar return 1; 160f2cb1360SIngo Molnar 161f2cb1360SIngo Molnar /* Following flags need at least 2 groups */ 162f2cb1360SIngo Molnar if (sd->flags & (SD_LOAD_BALANCE | 163f2cb1360SIngo Molnar SD_BALANCE_NEWIDLE | 164f2cb1360SIngo Molnar SD_BALANCE_FORK | 165f2cb1360SIngo Molnar SD_BALANCE_EXEC | 166f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 167f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 168f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | 169f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN)) { 170f2cb1360SIngo Molnar if (sd->groups != sd->groups->next) 171f2cb1360SIngo Molnar return 0; 172f2cb1360SIngo Molnar } 173f2cb1360SIngo Molnar 174f2cb1360SIngo Molnar /* Following flags don't use groups */ 175f2cb1360SIngo Molnar if (sd->flags & (SD_WAKE_AFFINE)) 176f2cb1360SIngo Molnar return 0; 177f2cb1360SIngo Molnar 178f2cb1360SIngo Molnar return 1; 179f2cb1360SIngo Molnar } 180f2cb1360SIngo Molnar 181f2cb1360SIngo Molnar static int 182f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 183f2cb1360SIngo Molnar { 184f2cb1360SIngo Molnar unsigned long cflags = sd->flags, pflags = parent->flags; 185f2cb1360SIngo Molnar 186f2cb1360SIngo Molnar if (sd_degenerate(parent)) 187f2cb1360SIngo Molnar return 1; 188f2cb1360SIngo Molnar 189f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 190f2cb1360SIngo Molnar return 0; 191f2cb1360SIngo Molnar 192f2cb1360SIngo Molnar /* Flags needing groups don't count if only 1 group in parent */ 193f2cb1360SIngo Molnar if (parent->groups == parent->groups->next) { 194f2cb1360SIngo Molnar pflags &= ~(SD_LOAD_BALANCE | 195f2cb1360SIngo Molnar SD_BALANCE_NEWIDLE | 196f2cb1360SIngo Molnar SD_BALANCE_FORK | 197f2cb1360SIngo Molnar SD_BALANCE_EXEC | 198f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 199f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 200f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | 201f2cb1360SIngo Molnar SD_PREFER_SIBLING | 202f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN); 203f2cb1360SIngo Molnar if (nr_node_ids == 1) 204f2cb1360SIngo Molnar pflags &= ~SD_SERIALIZE; 205f2cb1360SIngo Molnar } 206f2cb1360SIngo Molnar if (~cflags & pflags) 207f2cb1360SIngo Molnar return 0; 208f2cb1360SIngo Molnar 209f2cb1360SIngo Molnar return 1; 210f2cb1360SIngo Molnar } 211f2cb1360SIngo Molnar 212f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu) 213f2cb1360SIngo Molnar { 214f2cb1360SIngo Molnar struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 215f2cb1360SIngo Molnar 216f2cb1360SIngo Molnar cpupri_cleanup(&rd->cpupri); 217f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 218f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 219f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 220f2cb1360SIngo Molnar free_cpumask_var(rd->online); 221f2cb1360SIngo Molnar free_cpumask_var(rd->span); 222f2cb1360SIngo Molnar kfree(rd); 223f2cb1360SIngo Molnar } 224f2cb1360SIngo Molnar 225f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd) 226f2cb1360SIngo Molnar { 227f2cb1360SIngo Molnar struct root_domain *old_rd = NULL; 228f2cb1360SIngo Molnar unsigned long flags; 229f2cb1360SIngo Molnar 230f2cb1360SIngo Molnar raw_spin_lock_irqsave(&rq->lock, flags); 231f2cb1360SIngo Molnar 232f2cb1360SIngo Molnar if (rq->rd) { 233f2cb1360SIngo Molnar old_rd = rq->rd; 234f2cb1360SIngo Molnar 235f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, old_rd->online)) 236f2cb1360SIngo Molnar set_rq_offline(rq); 237f2cb1360SIngo Molnar 238f2cb1360SIngo Molnar cpumask_clear_cpu(rq->cpu, old_rd->span); 239f2cb1360SIngo Molnar 240f2cb1360SIngo Molnar /* 241f2cb1360SIngo Molnar * If we dont want to free the old_rd yet then 242f2cb1360SIngo Molnar * set old_rd to NULL to skip the freeing later 243f2cb1360SIngo Molnar * in this function: 244f2cb1360SIngo Molnar */ 245f2cb1360SIngo Molnar if (!atomic_dec_and_test(&old_rd->refcount)) 246f2cb1360SIngo Molnar old_rd = NULL; 247f2cb1360SIngo Molnar } 248f2cb1360SIngo Molnar 249f2cb1360SIngo Molnar atomic_inc(&rd->refcount); 250f2cb1360SIngo Molnar rq->rd = rd; 251f2cb1360SIngo Molnar 252f2cb1360SIngo Molnar cpumask_set_cpu(rq->cpu, rd->span); 253f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 254f2cb1360SIngo Molnar set_rq_online(rq); 255f2cb1360SIngo Molnar 256f2cb1360SIngo Molnar raw_spin_unlock_irqrestore(&rq->lock, flags); 257f2cb1360SIngo Molnar 258f2cb1360SIngo Molnar if (old_rd) 259f2cb1360SIngo Molnar call_rcu_sched(&old_rd->rcu, free_rootdomain); 260f2cb1360SIngo Molnar } 261f2cb1360SIngo Molnar 262f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd) 263f2cb1360SIngo Molnar { 264f2cb1360SIngo Molnar memset(rd, 0, sizeof(*rd)); 265f2cb1360SIngo Molnar 266f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 267f2cb1360SIngo Molnar goto out; 268f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 269f2cb1360SIngo Molnar goto free_span; 270f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 271f2cb1360SIngo Molnar goto free_online; 272f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 273f2cb1360SIngo Molnar goto free_dlo_mask; 274f2cb1360SIngo Molnar 275f2cb1360SIngo Molnar init_dl_bw(&rd->dl_bw); 276f2cb1360SIngo Molnar if (cpudl_init(&rd->cpudl) != 0) 277f2cb1360SIngo Molnar goto free_rto_mask; 278f2cb1360SIngo Molnar 279f2cb1360SIngo Molnar if (cpupri_init(&rd->cpupri) != 0) 280f2cb1360SIngo Molnar goto free_cpudl; 281f2cb1360SIngo Molnar return 0; 282f2cb1360SIngo Molnar 283f2cb1360SIngo Molnar free_cpudl: 284f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 285f2cb1360SIngo Molnar free_rto_mask: 286f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 287f2cb1360SIngo Molnar free_dlo_mask: 288f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 289f2cb1360SIngo Molnar free_online: 290f2cb1360SIngo Molnar free_cpumask_var(rd->online); 291f2cb1360SIngo Molnar free_span: 292f2cb1360SIngo Molnar free_cpumask_var(rd->span); 293f2cb1360SIngo Molnar out: 294f2cb1360SIngo Molnar return -ENOMEM; 295f2cb1360SIngo Molnar } 296f2cb1360SIngo Molnar 297f2cb1360SIngo Molnar /* 298f2cb1360SIngo Molnar * By default the system creates a single root-domain with all CPUs as 299f2cb1360SIngo Molnar * members (mimicking the global state we have today). 300f2cb1360SIngo Molnar */ 301f2cb1360SIngo Molnar struct root_domain def_root_domain; 302f2cb1360SIngo Molnar 303f2cb1360SIngo Molnar void init_defrootdomain(void) 304f2cb1360SIngo Molnar { 305f2cb1360SIngo Molnar init_rootdomain(&def_root_domain); 306f2cb1360SIngo Molnar 307f2cb1360SIngo Molnar atomic_set(&def_root_domain.refcount, 1); 308f2cb1360SIngo Molnar } 309f2cb1360SIngo Molnar 310f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void) 311f2cb1360SIngo Molnar { 312f2cb1360SIngo Molnar struct root_domain *rd; 313f2cb1360SIngo Molnar 314f2cb1360SIngo Molnar rd = kmalloc(sizeof(*rd), GFP_KERNEL); 315f2cb1360SIngo Molnar if (!rd) 316f2cb1360SIngo Molnar return NULL; 317f2cb1360SIngo Molnar 318f2cb1360SIngo Molnar if (init_rootdomain(rd) != 0) { 319f2cb1360SIngo Molnar kfree(rd); 320f2cb1360SIngo Molnar return NULL; 321f2cb1360SIngo Molnar } 322f2cb1360SIngo Molnar 323f2cb1360SIngo Molnar return rd; 324f2cb1360SIngo Molnar } 325f2cb1360SIngo Molnar 326f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc) 327f2cb1360SIngo Molnar { 328f2cb1360SIngo Molnar struct sched_group *tmp, *first; 329f2cb1360SIngo Molnar 330f2cb1360SIngo Molnar if (!sg) 331f2cb1360SIngo Molnar return; 332f2cb1360SIngo Molnar 333f2cb1360SIngo Molnar first = sg; 334f2cb1360SIngo Molnar do { 335f2cb1360SIngo Molnar tmp = sg->next; 336f2cb1360SIngo Molnar 337f2cb1360SIngo Molnar if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 338f2cb1360SIngo Molnar kfree(sg->sgc); 339f2cb1360SIngo Molnar 340f2cb1360SIngo Molnar kfree(sg); 341f2cb1360SIngo Molnar sg = tmp; 342f2cb1360SIngo Molnar } while (sg != first); 343f2cb1360SIngo Molnar } 344f2cb1360SIngo Molnar 345f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd) 346f2cb1360SIngo Molnar { 347f2cb1360SIngo Molnar /* 348f2cb1360SIngo Molnar * If its an overlapping domain it has private groups, iterate and 349f2cb1360SIngo Molnar * nuke them all. 350f2cb1360SIngo Molnar */ 351f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 352f2cb1360SIngo Molnar free_sched_groups(sd->groups, 1); 353f2cb1360SIngo Molnar } else if (atomic_dec_and_test(&sd->groups->ref)) { 354f2cb1360SIngo Molnar kfree(sd->groups->sgc); 355f2cb1360SIngo Molnar kfree(sd->groups); 356f2cb1360SIngo Molnar } 357f2cb1360SIngo Molnar if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 358f2cb1360SIngo Molnar kfree(sd->shared); 359f2cb1360SIngo Molnar kfree(sd); 360f2cb1360SIngo Molnar } 361f2cb1360SIngo Molnar 362f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu) 363f2cb1360SIngo Molnar { 364f2cb1360SIngo Molnar struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 365f2cb1360SIngo Molnar 366f2cb1360SIngo Molnar while (sd) { 367f2cb1360SIngo Molnar struct sched_domain *parent = sd->parent; 368f2cb1360SIngo Molnar destroy_sched_domain(sd); 369f2cb1360SIngo Molnar sd = parent; 370f2cb1360SIngo Molnar } 371f2cb1360SIngo Molnar } 372f2cb1360SIngo Molnar 373f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd) 374f2cb1360SIngo Molnar { 375f2cb1360SIngo Molnar if (sd) 376f2cb1360SIngo Molnar call_rcu(&sd->rcu, destroy_sched_domains_rcu); 377f2cb1360SIngo Molnar } 378f2cb1360SIngo Molnar 379f2cb1360SIngo Molnar /* 380f2cb1360SIngo Molnar * Keep a special pointer to the highest sched_domain that has 381f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 382f2cb1360SIngo Molnar * allows us to avoid some pointer chasing select_idle_sibling(). 383f2cb1360SIngo Molnar * 384f2cb1360SIngo Molnar * Also keep a unique ID per domain (we use the first CPU number in 385f2cb1360SIngo Molnar * the cpumask of the domain), this allows us to quickly tell if 386f2cb1360SIngo Molnar * two CPUs are in the same cache domain, see cpus_share_cache(). 387f2cb1360SIngo Molnar */ 388f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_llc); 389f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size); 390f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id); 391f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 392f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_numa); 393f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_asym); 394f2cb1360SIngo Molnar 395f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu) 396f2cb1360SIngo Molnar { 397f2cb1360SIngo Molnar struct sched_domain_shared *sds = NULL; 398f2cb1360SIngo Molnar struct sched_domain *sd; 399f2cb1360SIngo Molnar int id = cpu; 400f2cb1360SIngo Molnar int size = 1; 401f2cb1360SIngo Molnar 402f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 403f2cb1360SIngo Molnar if (sd) { 404f2cb1360SIngo Molnar id = cpumask_first(sched_domain_span(sd)); 405f2cb1360SIngo Molnar size = cpumask_weight(sched_domain_span(sd)); 406f2cb1360SIngo Molnar sds = sd->shared; 407f2cb1360SIngo Molnar } 408f2cb1360SIngo Molnar 409f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 410f2cb1360SIngo Molnar per_cpu(sd_llc_size, cpu) = size; 411f2cb1360SIngo Molnar per_cpu(sd_llc_id, cpu) = id; 412f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 413f2cb1360SIngo Molnar 414f2cb1360SIngo Molnar sd = lowest_flag_domain(cpu, SD_NUMA); 415f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 416f2cb1360SIngo Molnar 417f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 418f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 419f2cb1360SIngo Molnar } 420f2cb1360SIngo Molnar 421f2cb1360SIngo Molnar /* 422f2cb1360SIngo Molnar * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 423f2cb1360SIngo Molnar * hold the hotplug lock. 424f2cb1360SIngo Molnar */ 425f2cb1360SIngo Molnar static void 426f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 427f2cb1360SIngo Molnar { 428f2cb1360SIngo Molnar struct rq *rq = cpu_rq(cpu); 429f2cb1360SIngo Molnar struct sched_domain *tmp; 430f2cb1360SIngo Molnar 431f2cb1360SIngo Molnar /* Remove the sched domains which do not contribute to scheduling. */ 432f2cb1360SIngo Molnar for (tmp = sd; tmp; ) { 433f2cb1360SIngo Molnar struct sched_domain *parent = tmp->parent; 434f2cb1360SIngo Molnar if (!parent) 435f2cb1360SIngo Molnar break; 436f2cb1360SIngo Molnar 437f2cb1360SIngo Molnar if (sd_parent_degenerate(tmp, parent)) { 438f2cb1360SIngo Molnar tmp->parent = parent->parent; 439f2cb1360SIngo Molnar if (parent->parent) 440f2cb1360SIngo Molnar parent->parent->child = tmp; 441f2cb1360SIngo Molnar /* 442f2cb1360SIngo Molnar * Transfer SD_PREFER_SIBLING down in case of a 443f2cb1360SIngo Molnar * degenerate parent; the spans match for this 444f2cb1360SIngo Molnar * so the property transfers. 445f2cb1360SIngo Molnar */ 446f2cb1360SIngo Molnar if (parent->flags & SD_PREFER_SIBLING) 447f2cb1360SIngo Molnar tmp->flags |= SD_PREFER_SIBLING; 448f2cb1360SIngo Molnar destroy_sched_domain(parent); 449f2cb1360SIngo Molnar } else 450f2cb1360SIngo Molnar tmp = tmp->parent; 451f2cb1360SIngo Molnar } 452f2cb1360SIngo Molnar 453f2cb1360SIngo Molnar if (sd && sd_degenerate(sd)) { 454f2cb1360SIngo Molnar tmp = sd; 455f2cb1360SIngo Molnar sd = sd->parent; 456f2cb1360SIngo Molnar destroy_sched_domain(tmp); 457f2cb1360SIngo Molnar if (sd) 458f2cb1360SIngo Molnar sd->child = NULL; 459f2cb1360SIngo Molnar } 460f2cb1360SIngo Molnar 461f2cb1360SIngo Molnar sched_domain_debug(sd, cpu); 462f2cb1360SIngo Molnar 463f2cb1360SIngo Molnar rq_attach_root(rq, rd); 464f2cb1360SIngo Molnar tmp = rq->sd; 465f2cb1360SIngo Molnar rcu_assign_pointer(rq->sd, sd); 466f2cb1360SIngo Molnar destroy_sched_domains(tmp); 467f2cb1360SIngo Molnar 468f2cb1360SIngo Molnar update_top_cache_domain(cpu); 469f2cb1360SIngo Molnar } 470f2cb1360SIngo Molnar 471f2cb1360SIngo Molnar /* Setup the mask of CPUs configured for isolated domains */ 472f2cb1360SIngo Molnar static int __init isolated_cpu_setup(char *str) 473f2cb1360SIngo Molnar { 474f2cb1360SIngo Molnar int ret; 475f2cb1360SIngo Molnar 476f2cb1360SIngo Molnar alloc_bootmem_cpumask_var(&cpu_isolated_map); 477f2cb1360SIngo Molnar ret = cpulist_parse(str, cpu_isolated_map); 478f2cb1360SIngo Molnar if (ret) { 479f2cb1360SIngo Molnar pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 480f2cb1360SIngo Molnar return 0; 481f2cb1360SIngo Molnar } 482f2cb1360SIngo Molnar return 1; 483f2cb1360SIngo Molnar } 484f2cb1360SIngo Molnar __setup("isolcpus=", isolated_cpu_setup); 485f2cb1360SIngo Molnar 486f2cb1360SIngo Molnar struct s_data { 487f2cb1360SIngo Molnar struct sched_domain ** __percpu sd; 488f2cb1360SIngo Molnar struct root_domain *rd; 489f2cb1360SIngo Molnar }; 490f2cb1360SIngo Molnar 491f2cb1360SIngo Molnar enum s_alloc { 492f2cb1360SIngo Molnar sa_rootdomain, 493f2cb1360SIngo Molnar sa_sd, 494f2cb1360SIngo Molnar sa_sd_storage, 495f2cb1360SIngo Molnar sa_none, 496f2cb1360SIngo Molnar }; 497f2cb1360SIngo Molnar 498f2cb1360SIngo Molnar /* 49935a566e6SPeter Zijlstra * Return the canonical balance CPU for this group, this is the first CPU 500*e5c14b1fSPeter Zijlstra * of this group that's also in the balance mask. 50135a566e6SPeter Zijlstra * 502*e5c14b1fSPeter Zijlstra * The balance mask are all those CPUs that could actually end up at this 503*e5c14b1fSPeter Zijlstra * group. See build_balance_mask(). 50435a566e6SPeter Zijlstra * 50535a566e6SPeter Zijlstra * Also see should_we_balance(). 50635a566e6SPeter Zijlstra */ 50735a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg) 50835a566e6SPeter Zijlstra { 509*e5c14b1fSPeter Zijlstra return cpumask_first(group_balance_mask(sg)); 51035a566e6SPeter Zijlstra } 51135a566e6SPeter Zijlstra 51235a566e6SPeter Zijlstra 51335a566e6SPeter Zijlstra /* 51435a566e6SPeter Zijlstra * NUMA topology (first read the regular topology blurb below) 51535a566e6SPeter Zijlstra * 51635a566e6SPeter Zijlstra * Given a node-distance table, for example: 51735a566e6SPeter Zijlstra * 51835a566e6SPeter Zijlstra * node 0 1 2 3 51935a566e6SPeter Zijlstra * 0: 10 20 30 20 52035a566e6SPeter Zijlstra * 1: 20 10 20 30 52135a566e6SPeter Zijlstra * 2: 30 20 10 20 52235a566e6SPeter Zijlstra * 3: 20 30 20 10 52335a566e6SPeter Zijlstra * 52435a566e6SPeter Zijlstra * which represents a 4 node ring topology like: 52535a566e6SPeter Zijlstra * 52635a566e6SPeter Zijlstra * 0 ----- 1 52735a566e6SPeter Zijlstra * | | 52835a566e6SPeter Zijlstra * | | 52935a566e6SPeter Zijlstra * | | 53035a566e6SPeter Zijlstra * 3 ----- 2 53135a566e6SPeter Zijlstra * 53235a566e6SPeter Zijlstra * We want to construct domains and groups to represent this. The way we go 53335a566e6SPeter Zijlstra * about doing this is to build the domains on 'hops'. For each NUMA level we 53435a566e6SPeter Zijlstra * construct the mask of all nodes reachable in @level hops. 53535a566e6SPeter Zijlstra * 53635a566e6SPeter Zijlstra * For the above NUMA topology that gives 3 levels: 53735a566e6SPeter Zijlstra * 53835a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 0-3 0-3 53935a566e6SPeter Zijlstra * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 54035a566e6SPeter Zijlstra * 54135a566e6SPeter Zijlstra * NUMA-1 0-1,3 0-2 1-3 0,2-3 54235a566e6SPeter Zijlstra * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 54335a566e6SPeter Zijlstra * 54435a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 54535a566e6SPeter Zijlstra * 54635a566e6SPeter Zijlstra * 54735a566e6SPeter Zijlstra * As can be seen; things don't nicely line up as with the regular topology. 54835a566e6SPeter Zijlstra * When we iterate a domain in child domain chunks some nodes can be 54935a566e6SPeter Zijlstra * represented multiple times -- hence the "overlap" naming for this part of 55035a566e6SPeter Zijlstra * the topology. 55135a566e6SPeter Zijlstra * 55235a566e6SPeter Zijlstra * In order to minimize this overlap, we only build enough groups to cover the 55335a566e6SPeter Zijlstra * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 55435a566e6SPeter Zijlstra * 55535a566e6SPeter Zijlstra * Because: 55635a566e6SPeter Zijlstra * 55735a566e6SPeter Zijlstra * - the first group of each domain is its child domain; this 55835a566e6SPeter Zijlstra * gets us the first 0-1,3 55935a566e6SPeter Zijlstra * - the only uncovered node is 2, who's child domain is 1-3. 56035a566e6SPeter Zijlstra * 56135a566e6SPeter Zijlstra * However, because of the overlap, computing a unique CPU for each group is 56235a566e6SPeter Zijlstra * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 56335a566e6SPeter Zijlstra * groups include the CPUs of Node-0, while those CPUs would not in fact ever 56435a566e6SPeter Zijlstra * end up at those groups (they would end up in group: 0-1,3). 56535a566e6SPeter Zijlstra * 566*e5c14b1fSPeter Zijlstra * To correct this we have to introduce the group balance mask. This mask 56735a566e6SPeter Zijlstra * will contain those CPUs in the group that can reach this group given the 56835a566e6SPeter Zijlstra * (child) domain tree. 56935a566e6SPeter Zijlstra * 57035a566e6SPeter Zijlstra * With this we can once again compute balance_cpu and sched_group_capacity 57135a566e6SPeter Zijlstra * relations. 57235a566e6SPeter Zijlstra * 57335a566e6SPeter Zijlstra * XXX include words on how balance_cpu is unique and therefore can be 57435a566e6SPeter Zijlstra * used for sched_group_capacity links. 57535a566e6SPeter Zijlstra * 57635a566e6SPeter Zijlstra * 57735a566e6SPeter Zijlstra * Another 'interesting' topology is: 57835a566e6SPeter Zijlstra * 57935a566e6SPeter Zijlstra * node 0 1 2 3 58035a566e6SPeter Zijlstra * 0: 10 20 20 30 58135a566e6SPeter Zijlstra * 1: 20 10 20 20 58235a566e6SPeter Zijlstra * 2: 20 20 10 20 58335a566e6SPeter Zijlstra * 3: 30 20 20 10 58435a566e6SPeter Zijlstra * 58535a566e6SPeter Zijlstra * Which looks a little like: 58635a566e6SPeter Zijlstra * 58735a566e6SPeter Zijlstra * 0 ----- 1 58835a566e6SPeter Zijlstra * | / | 58935a566e6SPeter Zijlstra * | / | 59035a566e6SPeter Zijlstra * | / | 59135a566e6SPeter Zijlstra * 2 ----- 3 59235a566e6SPeter Zijlstra * 59335a566e6SPeter Zijlstra * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 59435a566e6SPeter Zijlstra * are not. 59535a566e6SPeter Zijlstra * 59635a566e6SPeter Zijlstra * This leads to a few particularly weird cases where the sched_domain's are 59735a566e6SPeter Zijlstra * not of the same number for each cpu. Consider: 59835a566e6SPeter Zijlstra * 59935a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 60035a566e6SPeter Zijlstra * groups: {0-2},{1-3} {1-3},{0-2} 60135a566e6SPeter Zijlstra * 60235a566e6SPeter Zijlstra * NUMA-1 0-2 0-3 0-3 1-3 60335a566e6SPeter Zijlstra * 60435a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 60535a566e6SPeter Zijlstra * 60635a566e6SPeter Zijlstra */ 60735a566e6SPeter Zijlstra 60835a566e6SPeter Zijlstra 60935a566e6SPeter Zijlstra /* 610*e5c14b1fSPeter Zijlstra * Build the balance mask; it contains only those CPUs that can arrive at this 611*e5c14b1fSPeter Zijlstra * group and should be considered to continue balancing. 61235a566e6SPeter Zijlstra * 61335a566e6SPeter Zijlstra * We do this during the group creation pass, therefore the group information 61435a566e6SPeter Zijlstra * isn't complete yet, however since each group represents a (child) domain we 61535a566e6SPeter Zijlstra * can fully construct this using the sched_domain bits (which are already 61635a566e6SPeter Zijlstra * complete). 617f2cb1360SIngo Molnar */ 6181676330eSPeter Zijlstra static void 619*e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 620f2cb1360SIngo Molnar { 621f32d782eSLauro Ramos Venancio const struct cpumask *sg_span = sched_group_cpus(sg); 622f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 623f2cb1360SIngo Molnar struct sched_domain *sibling; 624f2cb1360SIngo Molnar int i; 625f2cb1360SIngo Molnar 6261676330eSPeter Zijlstra cpumask_clear(mask); 6271676330eSPeter Zijlstra 628f32d782eSLauro Ramos Venancio for_each_cpu(i, sg_span) { 629f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 63073bb059fSPeter Zijlstra 63173bb059fSPeter Zijlstra /* 63273bb059fSPeter Zijlstra * Can happen in the asymmetric case, where these siblings are 63373bb059fSPeter Zijlstra * unused. The mask will not be empty because those CPUs that 63473bb059fSPeter Zijlstra * do have the top domain _should_ span the domain. 63573bb059fSPeter Zijlstra */ 63673bb059fSPeter Zijlstra if (!sibling->child) 63773bb059fSPeter Zijlstra continue; 63873bb059fSPeter Zijlstra 63973bb059fSPeter Zijlstra /* If we would not end up here, we can't continue from here */ 64073bb059fSPeter Zijlstra if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 641f2cb1360SIngo Molnar continue; 642f2cb1360SIngo Molnar 6431676330eSPeter Zijlstra cpumask_set_cpu(i, mask); 644f2cb1360SIngo Molnar } 64573bb059fSPeter Zijlstra 64673bb059fSPeter Zijlstra /* We must not have empty masks here */ 6471676330eSPeter Zijlstra WARN_ON_ONCE(cpumask_empty(mask)); 648f2cb1360SIngo Molnar } 649f2cb1360SIngo Molnar 650f2cb1360SIngo Molnar /* 65135a566e6SPeter Zijlstra * XXX: This creates per-node group entries; since the load-balancer will 65235a566e6SPeter Zijlstra * immediately access remote memory to construct this group's load-balance 65335a566e6SPeter Zijlstra * statistics having the groups node local is of dubious benefit. 654f2cb1360SIngo Molnar */ 6558c033469SLauro Ramos Venancio static struct sched_group * 6568c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 6578c033469SLauro Ramos Venancio { 6588c033469SLauro Ramos Venancio struct sched_group *sg; 6598c033469SLauro Ramos Venancio struct cpumask *sg_span; 6608c033469SLauro Ramos Venancio 6618c033469SLauro Ramos Venancio sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6628c033469SLauro Ramos Venancio GFP_KERNEL, cpu_to_node(cpu)); 6638c033469SLauro Ramos Venancio 6648c033469SLauro Ramos Venancio if (!sg) 6658c033469SLauro Ramos Venancio return NULL; 6668c033469SLauro Ramos Venancio 6678c033469SLauro Ramos Venancio sg_span = sched_group_cpus(sg); 6688c033469SLauro Ramos Venancio if (sd->child) 6698c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd->child)); 6708c033469SLauro Ramos Venancio else 6718c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd)); 6728c033469SLauro Ramos Venancio 6738c033469SLauro Ramos Venancio return sg; 6748c033469SLauro Ramos Venancio } 6758c033469SLauro Ramos Venancio 6768c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd, 6771676330eSPeter Zijlstra struct sched_group *sg) 6788c033469SLauro Ramos Venancio { 6791676330eSPeter Zijlstra struct cpumask *mask = sched_domains_tmpmask2; 6808c033469SLauro Ramos Venancio struct sd_data *sdd = sd->private; 6818c033469SLauro Ramos Venancio struct cpumask *sg_span; 6821676330eSPeter Zijlstra int cpu; 6831676330eSPeter Zijlstra 684*e5c14b1fSPeter Zijlstra build_balance_mask(sd, sg, mask); 6851676330eSPeter Zijlstra cpu = cpumask_first_and(sched_group_cpus(sg), mask); 6868c033469SLauro Ramos Venancio 6878c033469SLauro Ramos Venancio sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6888c033469SLauro Ramos Venancio if (atomic_inc_return(&sg->sgc->ref) == 1) 689*e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), mask); 69035a566e6SPeter Zijlstra else 691*e5c14b1fSPeter Zijlstra WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 6928c033469SLauro Ramos Venancio 6938c033469SLauro Ramos Venancio /* 6948c033469SLauro Ramos Venancio * Initialize sgc->capacity such that even if we mess up the 6958c033469SLauro Ramos Venancio * domains and no possible iteration will get us here, we won't 6968c033469SLauro Ramos Venancio * die on a /0 trap. 6978c033469SLauro Ramos Venancio */ 6988c033469SLauro Ramos Venancio sg_span = sched_group_cpus(sg); 6998c033469SLauro Ramos Venancio sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 7008c033469SLauro Ramos Venancio sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 7018c033469SLauro Ramos Venancio } 7028c033469SLauro Ramos Venancio 703f2cb1360SIngo Molnar static int 704f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu) 705f2cb1360SIngo Molnar { 70691eaed0dSPeter Zijlstra struct sched_group *first = NULL, *last = NULL, *sg; 707f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 708f2cb1360SIngo Molnar struct cpumask *covered = sched_domains_tmpmask; 709f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 710f2cb1360SIngo Molnar struct sched_domain *sibling; 711f2cb1360SIngo Molnar int i; 712f2cb1360SIngo Molnar 713f2cb1360SIngo Molnar cpumask_clear(covered); 714f2cb1360SIngo Molnar 7150372dd27SPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 716f2cb1360SIngo Molnar struct cpumask *sg_span; 717f2cb1360SIngo Molnar 718f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 719f2cb1360SIngo Molnar continue; 720f2cb1360SIngo Molnar 721f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 722f2cb1360SIngo Molnar 723c20e1ea4SLauro Ramos Venancio /* 724c20e1ea4SLauro Ramos Venancio * Asymmetric node setups can result in situations where the 725c20e1ea4SLauro Ramos Venancio * domain tree is of unequal depth, make sure to skip domains 726c20e1ea4SLauro Ramos Venancio * that already cover the entire range. 727c20e1ea4SLauro Ramos Venancio * 728c20e1ea4SLauro Ramos Venancio * In that case build_sched_domains() will have terminated the 729c20e1ea4SLauro Ramos Venancio * iteration early and our sibling sd spans will be empty. 730c20e1ea4SLauro Ramos Venancio * Domains should always include the CPU they're built on, so 731c20e1ea4SLauro Ramos Venancio * check that. 732c20e1ea4SLauro Ramos Venancio */ 733f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 734f2cb1360SIngo Molnar continue; 735f2cb1360SIngo Molnar 7368c033469SLauro Ramos Venancio sg = build_group_from_child_sched_domain(sibling, cpu); 737f2cb1360SIngo Molnar if (!sg) 738f2cb1360SIngo Molnar goto fail; 739f2cb1360SIngo Molnar 740f2cb1360SIngo Molnar sg_span = sched_group_cpus(sg); 741f2cb1360SIngo Molnar cpumask_or(covered, covered, sg_span); 742f2cb1360SIngo Molnar 7431676330eSPeter Zijlstra init_overlap_sched_group(sd, sg); 744f2cb1360SIngo Molnar 745f2cb1360SIngo Molnar if (!first) 746f2cb1360SIngo Molnar first = sg; 747f2cb1360SIngo Molnar if (last) 748f2cb1360SIngo Molnar last->next = sg; 749f2cb1360SIngo Molnar last = sg; 750f2cb1360SIngo Molnar last->next = first; 751f2cb1360SIngo Molnar } 75291eaed0dSPeter Zijlstra sd->groups = first; 753f2cb1360SIngo Molnar 754f2cb1360SIngo Molnar return 0; 755f2cb1360SIngo Molnar 756f2cb1360SIngo Molnar fail: 757f2cb1360SIngo Molnar free_sched_groups(first, 0); 758f2cb1360SIngo Molnar 759f2cb1360SIngo Molnar return -ENOMEM; 760f2cb1360SIngo Molnar } 761f2cb1360SIngo Molnar 76235a566e6SPeter Zijlstra 76335a566e6SPeter Zijlstra /* 76435a566e6SPeter Zijlstra * Package topology (also see the load-balance blurb in fair.c) 76535a566e6SPeter Zijlstra * 76635a566e6SPeter Zijlstra * The scheduler builds a tree structure to represent a number of important 76735a566e6SPeter Zijlstra * topology features. By default (default_topology[]) these include: 76835a566e6SPeter Zijlstra * 76935a566e6SPeter Zijlstra * - Simultaneous multithreading (SMT) 77035a566e6SPeter Zijlstra * - Multi-Core Cache (MC) 77135a566e6SPeter Zijlstra * - Package (DIE) 77235a566e6SPeter Zijlstra * 77335a566e6SPeter Zijlstra * Where the last one more or less denotes everything up to a NUMA node. 77435a566e6SPeter Zijlstra * 77535a566e6SPeter Zijlstra * The tree consists of 3 primary data structures: 77635a566e6SPeter Zijlstra * 77735a566e6SPeter Zijlstra * sched_domain -> sched_group -> sched_group_capacity 77835a566e6SPeter Zijlstra * ^ ^ ^ ^ 77935a566e6SPeter Zijlstra * `-' `-' 78035a566e6SPeter Zijlstra * 78135a566e6SPeter Zijlstra * The sched_domains are per-cpu and have a two way link (parent & child) and 78235a566e6SPeter Zijlstra * denote the ever growing mask of CPUs belonging to that level of topology. 78335a566e6SPeter Zijlstra * 78435a566e6SPeter Zijlstra * Each sched_domain has a circular (double) linked list of sched_group's, each 78535a566e6SPeter Zijlstra * denoting the domains of the level below (or individual CPUs in case of the 78635a566e6SPeter Zijlstra * first domain level). The sched_group linked by a sched_domain includes the 78735a566e6SPeter Zijlstra * CPU of that sched_domain [*]. 78835a566e6SPeter Zijlstra * 78935a566e6SPeter Zijlstra * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 79035a566e6SPeter Zijlstra * 79135a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 79235a566e6SPeter Zijlstra * 79335a566e6SPeter Zijlstra * DIE [ ] 79435a566e6SPeter Zijlstra * MC [ ] [ ] 79535a566e6SPeter Zijlstra * SMT [ ] [ ] [ ] [ ] 79635a566e6SPeter Zijlstra * 79735a566e6SPeter Zijlstra * - or - 79835a566e6SPeter Zijlstra * 79935a566e6SPeter Zijlstra * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 80035a566e6SPeter Zijlstra * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 80135a566e6SPeter Zijlstra * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 80235a566e6SPeter Zijlstra * 80335a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 80435a566e6SPeter Zijlstra * 80535a566e6SPeter Zijlstra * One way to think about it is: sched_domain moves you up and down among these 80635a566e6SPeter Zijlstra * topology levels, while sched_group moves you sideways through it, at child 80735a566e6SPeter Zijlstra * domain granularity. 80835a566e6SPeter Zijlstra * 80935a566e6SPeter Zijlstra * sched_group_capacity ensures each unique sched_group has shared storage. 81035a566e6SPeter Zijlstra * 81135a566e6SPeter Zijlstra * There are two related construction problems, both require a CPU that 81235a566e6SPeter Zijlstra * uniquely identify each group (for a given domain): 81335a566e6SPeter Zijlstra * 81435a566e6SPeter Zijlstra * - The first is the balance_cpu (see should_we_balance() and the 81535a566e6SPeter Zijlstra * load-balance blub in fair.c); for each group we only want 1 CPU to 81635a566e6SPeter Zijlstra * continue balancing at a higher domain. 81735a566e6SPeter Zijlstra * 81835a566e6SPeter Zijlstra * - The second is the sched_group_capacity; we want all identical groups 81935a566e6SPeter Zijlstra * to share a single sched_group_capacity. 82035a566e6SPeter Zijlstra * 82135a566e6SPeter Zijlstra * Since these topologies are exclusive by construction. That is, its 82235a566e6SPeter Zijlstra * impossible for an SMT thread to belong to multiple cores, and cores to 82335a566e6SPeter Zijlstra * be part of multiple caches. There is a very clear and unique location 82435a566e6SPeter Zijlstra * for each CPU in the hierarchy. 82535a566e6SPeter Zijlstra * 82635a566e6SPeter Zijlstra * Therefore computing a unique CPU for each group is trivial (the iteration 82735a566e6SPeter Zijlstra * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 82835a566e6SPeter Zijlstra * group), we can simply pick the first CPU in each group. 82935a566e6SPeter Zijlstra * 83035a566e6SPeter Zijlstra * 83135a566e6SPeter Zijlstra * [*] in other words, the first group of each domain is its child domain. 83235a566e6SPeter Zijlstra */ 83335a566e6SPeter Zijlstra 8340c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd) 835f2cb1360SIngo Molnar { 836f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 837f2cb1360SIngo Molnar struct sched_domain *child = sd->child; 8380c0e776aSPeter Zijlstra struct sched_group *sg; 839f2cb1360SIngo Molnar 840f2cb1360SIngo Molnar if (child) 841f2cb1360SIngo Molnar cpu = cpumask_first(sched_domain_span(child)); 842f2cb1360SIngo Molnar 8430c0e776aSPeter Zijlstra sg = *per_cpu_ptr(sdd->sg, cpu); 8440c0e776aSPeter Zijlstra sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 845f2cb1360SIngo Molnar 846f2cb1360SIngo Molnar /* For claim_allocations: */ 8470c0e776aSPeter Zijlstra atomic_inc(&sg->ref); 8480c0e776aSPeter Zijlstra atomic_inc(&sg->sgc->ref); 8490c0e776aSPeter Zijlstra 8500c0e776aSPeter Zijlstra if (child) { 8510c0e776aSPeter Zijlstra cpumask_copy(sched_group_cpus(sg), sched_domain_span(child)); 852*e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), sched_group_cpus(sg)); 8530c0e776aSPeter Zijlstra } else { 8540c0e776aSPeter Zijlstra cpumask_set_cpu(cpu, sched_group_cpus(sg)); 855*e5c14b1fSPeter Zijlstra cpumask_set_cpu(cpu, group_balance_mask(sg)); 856f2cb1360SIngo Molnar } 857f2cb1360SIngo Molnar 8580c0e776aSPeter Zijlstra sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_cpus(sg)); 8590c0e776aSPeter Zijlstra sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 8600c0e776aSPeter Zijlstra 8610c0e776aSPeter Zijlstra return sg; 862f2cb1360SIngo Molnar } 863f2cb1360SIngo Molnar 864f2cb1360SIngo Molnar /* 865f2cb1360SIngo Molnar * build_sched_groups will build a circular linked list of the groups 866f2cb1360SIngo Molnar * covered by the given span, and will set each group's ->cpumask correctly, 867f2cb1360SIngo Molnar * and ->cpu_capacity to 0. 868f2cb1360SIngo Molnar * 869f2cb1360SIngo Molnar * Assumes the sched_domain tree is fully constructed 870f2cb1360SIngo Molnar */ 871f2cb1360SIngo Molnar static int 872f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu) 873f2cb1360SIngo Molnar { 874f2cb1360SIngo Molnar struct sched_group *first = NULL, *last = NULL; 875f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 876f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 877f2cb1360SIngo Molnar struct cpumask *covered; 878f2cb1360SIngo Molnar int i; 879f2cb1360SIngo Molnar 880f2cb1360SIngo Molnar lockdep_assert_held(&sched_domains_mutex); 881f2cb1360SIngo Molnar covered = sched_domains_tmpmask; 882f2cb1360SIngo Molnar 883f2cb1360SIngo Molnar cpumask_clear(covered); 884f2cb1360SIngo Molnar 8850c0e776aSPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 886f2cb1360SIngo Molnar struct sched_group *sg; 887f2cb1360SIngo Molnar 888f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 889f2cb1360SIngo Molnar continue; 890f2cb1360SIngo Molnar 8910c0e776aSPeter Zijlstra sg = get_group(i, sdd); 892f2cb1360SIngo Molnar 8930c0e776aSPeter Zijlstra cpumask_or(covered, covered, sched_group_cpus(sg)); 894f2cb1360SIngo Molnar 895f2cb1360SIngo Molnar if (!first) 896f2cb1360SIngo Molnar first = sg; 897f2cb1360SIngo Molnar if (last) 898f2cb1360SIngo Molnar last->next = sg; 899f2cb1360SIngo Molnar last = sg; 900f2cb1360SIngo Molnar } 901f2cb1360SIngo Molnar last->next = first; 9020c0e776aSPeter Zijlstra sd->groups = first; 903f2cb1360SIngo Molnar 904f2cb1360SIngo Molnar return 0; 905f2cb1360SIngo Molnar } 906f2cb1360SIngo Molnar 907f2cb1360SIngo Molnar /* 908f2cb1360SIngo Molnar * Initialize sched groups cpu_capacity. 909f2cb1360SIngo Molnar * 910f2cb1360SIngo Molnar * cpu_capacity indicates the capacity of sched group, which is used while 911f2cb1360SIngo Molnar * distributing the load between different sched groups in a sched domain. 912f2cb1360SIngo Molnar * Typically cpu_capacity for all the groups in a sched domain will be same 913f2cb1360SIngo Molnar * unless there are asymmetries in the topology. If there are asymmetries, 914f2cb1360SIngo Molnar * group having more cpu_capacity will pickup more load compared to the 915f2cb1360SIngo Molnar * group having less cpu_capacity. 916f2cb1360SIngo Molnar */ 917f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 918f2cb1360SIngo Molnar { 919f2cb1360SIngo Molnar struct sched_group *sg = sd->groups; 920f2cb1360SIngo Molnar 921f2cb1360SIngo Molnar WARN_ON(!sg); 922f2cb1360SIngo Molnar 923f2cb1360SIngo Molnar do { 924f2cb1360SIngo Molnar int cpu, max_cpu = -1; 925f2cb1360SIngo Molnar 926f2cb1360SIngo Molnar sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 927f2cb1360SIngo Molnar 928f2cb1360SIngo Molnar if (!(sd->flags & SD_ASYM_PACKING)) 929f2cb1360SIngo Molnar goto next; 930f2cb1360SIngo Molnar 931f2cb1360SIngo Molnar for_each_cpu(cpu, sched_group_cpus(sg)) { 932f2cb1360SIngo Molnar if (max_cpu < 0) 933f2cb1360SIngo Molnar max_cpu = cpu; 934f2cb1360SIngo Molnar else if (sched_asym_prefer(cpu, max_cpu)) 935f2cb1360SIngo Molnar max_cpu = cpu; 936f2cb1360SIngo Molnar } 937f2cb1360SIngo Molnar sg->asym_prefer_cpu = max_cpu; 938f2cb1360SIngo Molnar 939f2cb1360SIngo Molnar next: 940f2cb1360SIngo Molnar sg = sg->next; 941f2cb1360SIngo Molnar } while (sg != sd->groups); 942f2cb1360SIngo Molnar 943f2cb1360SIngo Molnar if (cpu != group_balance_cpu(sg)) 944f2cb1360SIngo Molnar return; 945f2cb1360SIngo Molnar 946f2cb1360SIngo Molnar update_group_capacity(sd, cpu); 947f2cb1360SIngo Molnar } 948f2cb1360SIngo Molnar 949f2cb1360SIngo Molnar /* 950f2cb1360SIngo Molnar * Initializers for schedule domains 951f2cb1360SIngo Molnar * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 952f2cb1360SIngo Molnar */ 953f2cb1360SIngo Molnar 954f2cb1360SIngo Molnar static int default_relax_domain_level = -1; 955f2cb1360SIngo Molnar int sched_domain_level_max; 956f2cb1360SIngo Molnar 957f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str) 958f2cb1360SIngo Molnar { 959f2cb1360SIngo Molnar if (kstrtoint(str, 0, &default_relax_domain_level)) 960f2cb1360SIngo Molnar pr_warn("Unable to set relax_domain_level\n"); 961f2cb1360SIngo Molnar 962f2cb1360SIngo Molnar return 1; 963f2cb1360SIngo Molnar } 964f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level); 965f2cb1360SIngo Molnar 966f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd, 967f2cb1360SIngo Molnar struct sched_domain_attr *attr) 968f2cb1360SIngo Molnar { 969f2cb1360SIngo Molnar int request; 970f2cb1360SIngo Molnar 971f2cb1360SIngo Molnar if (!attr || attr->relax_domain_level < 0) { 972f2cb1360SIngo Molnar if (default_relax_domain_level < 0) 973f2cb1360SIngo Molnar return; 974f2cb1360SIngo Molnar else 975f2cb1360SIngo Molnar request = default_relax_domain_level; 976f2cb1360SIngo Molnar } else 977f2cb1360SIngo Molnar request = attr->relax_domain_level; 978f2cb1360SIngo Molnar if (request < sd->level) { 979f2cb1360SIngo Molnar /* Turn off idle balance on this domain: */ 980f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 981f2cb1360SIngo Molnar } else { 982f2cb1360SIngo Molnar /* Turn on idle balance on this domain: */ 983f2cb1360SIngo Molnar sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 984f2cb1360SIngo Molnar } 985f2cb1360SIngo Molnar } 986f2cb1360SIngo Molnar 987f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map); 988f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map); 989f2cb1360SIngo Molnar 990f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 991f2cb1360SIngo Molnar const struct cpumask *cpu_map) 992f2cb1360SIngo Molnar { 993f2cb1360SIngo Molnar switch (what) { 994f2cb1360SIngo Molnar case sa_rootdomain: 995f2cb1360SIngo Molnar if (!atomic_read(&d->rd->refcount)) 996f2cb1360SIngo Molnar free_rootdomain(&d->rd->rcu); 997f2cb1360SIngo Molnar /* Fall through */ 998f2cb1360SIngo Molnar case sa_sd: 999f2cb1360SIngo Molnar free_percpu(d->sd); 1000f2cb1360SIngo Molnar /* Fall through */ 1001f2cb1360SIngo Molnar case sa_sd_storage: 1002f2cb1360SIngo Molnar __sdt_free(cpu_map); 1003f2cb1360SIngo Molnar /* Fall through */ 1004f2cb1360SIngo Molnar case sa_none: 1005f2cb1360SIngo Molnar break; 1006f2cb1360SIngo Molnar } 1007f2cb1360SIngo Molnar } 1008f2cb1360SIngo Molnar 1009f2cb1360SIngo Molnar static enum s_alloc 1010f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1011f2cb1360SIngo Molnar { 1012f2cb1360SIngo Molnar memset(d, 0, sizeof(*d)); 1013f2cb1360SIngo Molnar 1014f2cb1360SIngo Molnar if (__sdt_alloc(cpu_map)) 1015f2cb1360SIngo Molnar return sa_sd_storage; 1016f2cb1360SIngo Molnar d->sd = alloc_percpu(struct sched_domain *); 1017f2cb1360SIngo Molnar if (!d->sd) 1018f2cb1360SIngo Molnar return sa_sd_storage; 1019f2cb1360SIngo Molnar d->rd = alloc_rootdomain(); 1020f2cb1360SIngo Molnar if (!d->rd) 1021f2cb1360SIngo Molnar return sa_sd; 1022f2cb1360SIngo Molnar return sa_rootdomain; 1023f2cb1360SIngo Molnar } 1024f2cb1360SIngo Molnar 1025f2cb1360SIngo Molnar /* 1026f2cb1360SIngo Molnar * NULL the sd_data elements we've used to build the sched_domain and 1027f2cb1360SIngo Molnar * sched_group structure so that the subsequent __free_domain_allocs() 1028f2cb1360SIngo Molnar * will not free the data we're using. 1029f2cb1360SIngo Molnar */ 1030f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd) 1031f2cb1360SIngo Molnar { 1032f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1033f2cb1360SIngo Molnar 1034f2cb1360SIngo Molnar WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1035f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, cpu) = NULL; 1036f2cb1360SIngo Molnar 1037f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1038f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, cpu) = NULL; 1039f2cb1360SIngo Molnar 1040f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1041f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, cpu) = NULL; 1042f2cb1360SIngo Molnar 1043f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1044f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1045f2cb1360SIngo Molnar } 1046f2cb1360SIngo Molnar 1047f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1048f2cb1360SIngo Molnar static int sched_domains_numa_levels; 1049f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type; 1050f2cb1360SIngo Molnar static int *sched_domains_numa_distance; 1051f2cb1360SIngo Molnar int sched_max_numa_distance; 1052f2cb1360SIngo Molnar static struct cpumask ***sched_domains_numa_masks; 1053f2cb1360SIngo Molnar static int sched_domains_curr_level; 1054f2cb1360SIngo Molnar #endif 1055f2cb1360SIngo Molnar 1056f2cb1360SIngo Molnar /* 1057f2cb1360SIngo Molnar * SD_flags allowed in topology descriptions. 1058f2cb1360SIngo Molnar * 1059f2cb1360SIngo Molnar * These flags are purely descriptive of the topology and do not prescribe 1060f2cb1360SIngo Molnar * behaviour. Behaviour is artificial and mapped in the below sd_init() 1061f2cb1360SIngo Molnar * function: 1062f2cb1360SIngo Molnar * 1063f2cb1360SIngo Molnar * SD_SHARE_CPUCAPACITY - describes SMT topologies 1064f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCES - describes shared caches 1065f2cb1360SIngo Molnar * SD_NUMA - describes NUMA topologies 1066f2cb1360SIngo Molnar * SD_SHARE_POWERDOMAIN - describes shared power domain 1067f2cb1360SIngo Molnar * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 1068f2cb1360SIngo Molnar * 1069f2cb1360SIngo Molnar * Odd one out, which beside describing the topology has a quirk also 1070f2cb1360SIngo Molnar * prescribes the desired behaviour that goes along with it: 1071f2cb1360SIngo Molnar * 1072f2cb1360SIngo Molnar * SD_ASYM_PACKING - describes SMT quirks 1073f2cb1360SIngo Molnar */ 1074f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS \ 1075f2cb1360SIngo Molnar (SD_SHARE_CPUCAPACITY | \ 1076f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | \ 1077f2cb1360SIngo Molnar SD_NUMA | \ 1078f2cb1360SIngo Molnar SD_ASYM_PACKING | \ 1079f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | \ 1080f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN) 1081f2cb1360SIngo Molnar 1082f2cb1360SIngo Molnar static struct sched_domain * 1083f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl, 1084f2cb1360SIngo Molnar const struct cpumask *cpu_map, 1085f2cb1360SIngo Molnar struct sched_domain *child, int cpu) 1086f2cb1360SIngo Molnar { 1087f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1088f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1089f2cb1360SIngo Molnar int sd_id, sd_weight, sd_flags = 0; 1090f2cb1360SIngo Molnar 1091f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1092f2cb1360SIngo Molnar /* 1093f2cb1360SIngo Molnar * Ugly hack to pass state to sd_numa_mask()... 1094f2cb1360SIngo Molnar */ 1095f2cb1360SIngo Molnar sched_domains_curr_level = tl->numa_level; 1096f2cb1360SIngo Molnar #endif 1097f2cb1360SIngo Molnar 1098f2cb1360SIngo Molnar sd_weight = cpumask_weight(tl->mask(cpu)); 1099f2cb1360SIngo Molnar 1100f2cb1360SIngo Molnar if (tl->sd_flags) 1101f2cb1360SIngo Molnar sd_flags = (*tl->sd_flags)(); 1102f2cb1360SIngo Molnar if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1103f2cb1360SIngo Molnar "wrong sd_flags in topology description\n")) 1104f2cb1360SIngo Molnar sd_flags &= ~TOPOLOGY_SD_FLAGS; 1105f2cb1360SIngo Molnar 1106f2cb1360SIngo Molnar *sd = (struct sched_domain){ 1107f2cb1360SIngo Molnar .min_interval = sd_weight, 1108f2cb1360SIngo Molnar .max_interval = 2*sd_weight, 1109f2cb1360SIngo Molnar .busy_factor = 32, 1110f2cb1360SIngo Molnar .imbalance_pct = 125, 1111f2cb1360SIngo Molnar 1112f2cb1360SIngo Molnar .cache_nice_tries = 0, 1113f2cb1360SIngo Molnar .busy_idx = 0, 1114f2cb1360SIngo Molnar .idle_idx = 0, 1115f2cb1360SIngo Molnar .newidle_idx = 0, 1116f2cb1360SIngo Molnar .wake_idx = 0, 1117f2cb1360SIngo Molnar .forkexec_idx = 0, 1118f2cb1360SIngo Molnar 1119f2cb1360SIngo Molnar .flags = 1*SD_LOAD_BALANCE 1120f2cb1360SIngo Molnar | 1*SD_BALANCE_NEWIDLE 1121f2cb1360SIngo Molnar | 1*SD_BALANCE_EXEC 1122f2cb1360SIngo Molnar | 1*SD_BALANCE_FORK 1123f2cb1360SIngo Molnar | 0*SD_BALANCE_WAKE 1124f2cb1360SIngo Molnar | 1*SD_WAKE_AFFINE 1125f2cb1360SIngo Molnar | 0*SD_SHARE_CPUCAPACITY 1126f2cb1360SIngo Molnar | 0*SD_SHARE_PKG_RESOURCES 1127f2cb1360SIngo Molnar | 0*SD_SERIALIZE 1128f2cb1360SIngo Molnar | 0*SD_PREFER_SIBLING 1129f2cb1360SIngo Molnar | 0*SD_NUMA 1130f2cb1360SIngo Molnar | sd_flags 1131f2cb1360SIngo Molnar , 1132f2cb1360SIngo Molnar 1133f2cb1360SIngo Molnar .last_balance = jiffies, 1134f2cb1360SIngo Molnar .balance_interval = sd_weight, 1135f2cb1360SIngo Molnar .smt_gain = 0, 1136f2cb1360SIngo Molnar .max_newidle_lb_cost = 0, 1137f2cb1360SIngo Molnar .next_decay_max_lb_cost = jiffies, 1138f2cb1360SIngo Molnar .child = child, 1139f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1140f2cb1360SIngo Molnar .name = tl->name, 1141f2cb1360SIngo Molnar #endif 1142f2cb1360SIngo Molnar }; 1143f2cb1360SIngo Molnar 1144f2cb1360SIngo Molnar cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1145f2cb1360SIngo Molnar sd_id = cpumask_first(sched_domain_span(sd)); 1146f2cb1360SIngo Molnar 1147f2cb1360SIngo Molnar /* 1148f2cb1360SIngo Molnar * Convert topological properties into behaviour. 1149f2cb1360SIngo Molnar */ 1150f2cb1360SIngo Molnar 1151f2cb1360SIngo Molnar if (sd->flags & SD_ASYM_CPUCAPACITY) { 1152f2cb1360SIngo Molnar struct sched_domain *t = sd; 1153f2cb1360SIngo Molnar 1154f2cb1360SIngo Molnar for_each_lower_domain(t) 1155f2cb1360SIngo Molnar t->flags |= SD_BALANCE_WAKE; 1156f2cb1360SIngo Molnar } 1157f2cb1360SIngo Molnar 1158f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_CPUCAPACITY) { 1159f2cb1360SIngo Molnar sd->flags |= SD_PREFER_SIBLING; 1160f2cb1360SIngo Molnar sd->imbalance_pct = 110; 1161f2cb1360SIngo Molnar sd->smt_gain = 1178; /* ~15% */ 1162f2cb1360SIngo Molnar 1163f2cb1360SIngo Molnar } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1164f2cb1360SIngo Molnar sd->imbalance_pct = 117; 1165f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1166f2cb1360SIngo Molnar sd->busy_idx = 2; 1167f2cb1360SIngo Molnar 1168f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1169f2cb1360SIngo Molnar } else if (sd->flags & SD_NUMA) { 1170f2cb1360SIngo Molnar sd->cache_nice_tries = 2; 1171f2cb1360SIngo Molnar sd->busy_idx = 3; 1172f2cb1360SIngo Molnar sd->idle_idx = 2; 1173f2cb1360SIngo Molnar 1174f2cb1360SIngo Molnar sd->flags |= SD_SERIALIZE; 1175f2cb1360SIngo Molnar if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1176f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_EXEC | 1177f2cb1360SIngo Molnar SD_BALANCE_FORK | 1178f2cb1360SIngo Molnar SD_WAKE_AFFINE); 1179f2cb1360SIngo Molnar } 1180f2cb1360SIngo Molnar 1181f2cb1360SIngo Molnar #endif 1182f2cb1360SIngo Molnar } else { 1183f2cb1360SIngo Molnar sd->flags |= SD_PREFER_SIBLING; 1184f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1185f2cb1360SIngo Molnar sd->busy_idx = 2; 1186f2cb1360SIngo Molnar sd->idle_idx = 1; 1187f2cb1360SIngo Molnar } 1188f2cb1360SIngo Molnar 1189f2cb1360SIngo Molnar /* 1190f2cb1360SIngo Molnar * For all levels sharing cache; connect a sched_domain_shared 1191f2cb1360SIngo Molnar * instance. 1192f2cb1360SIngo Molnar */ 1193f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1194f2cb1360SIngo Molnar sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1195f2cb1360SIngo Molnar atomic_inc(&sd->shared->ref); 1196f2cb1360SIngo Molnar atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1197f2cb1360SIngo Molnar } 1198f2cb1360SIngo Molnar 1199f2cb1360SIngo Molnar sd->private = sdd; 1200f2cb1360SIngo Molnar 1201f2cb1360SIngo Molnar return sd; 1202f2cb1360SIngo Molnar } 1203f2cb1360SIngo Molnar 1204f2cb1360SIngo Molnar /* 1205f2cb1360SIngo Molnar * Topology list, bottom-up. 1206f2cb1360SIngo Molnar */ 1207f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = { 1208f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT 1209f2cb1360SIngo Molnar { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1210f2cb1360SIngo Molnar #endif 1211f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC 1212f2cb1360SIngo Molnar { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1213f2cb1360SIngo Molnar #endif 1214f2cb1360SIngo Molnar { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1215f2cb1360SIngo Molnar { NULL, }, 1216f2cb1360SIngo Molnar }; 1217f2cb1360SIngo Molnar 1218f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology = 1219f2cb1360SIngo Molnar default_topology; 1220f2cb1360SIngo Molnar 1221f2cb1360SIngo Molnar #define for_each_sd_topology(tl) \ 1222f2cb1360SIngo Molnar for (tl = sched_domain_topology; tl->mask; tl++) 1223f2cb1360SIngo Molnar 1224f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl) 1225f2cb1360SIngo Molnar { 1226f2cb1360SIngo Molnar if (WARN_ON_ONCE(sched_smp_initialized)) 1227f2cb1360SIngo Molnar return; 1228f2cb1360SIngo Molnar 1229f2cb1360SIngo Molnar sched_domain_topology = tl; 1230f2cb1360SIngo Molnar } 1231f2cb1360SIngo Molnar 1232f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1233f2cb1360SIngo Molnar 1234f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu) 1235f2cb1360SIngo Molnar { 1236f2cb1360SIngo Molnar return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1237f2cb1360SIngo Molnar } 1238f2cb1360SIngo Molnar 1239f2cb1360SIngo Molnar static void sched_numa_warn(const char *str) 1240f2cb1360SIngo Molnar { 1241f2cb1360SIngo Molnar static int done = false; 1242f2cb1360SIngo Molnar int i,j; 1243f2cb1360SIngo Molnar 1244f2cb1360SIngo Molnar if (done) 1245f2cb1360SIngo Molnar return; 1246f2cb1360SIngo Molnar 1247f2cb1360SIngo Molnar done = true; 1248f2cb1360SIngo Molnar 1249f2cb1360SIngo Molnar printk(KERN_WARNING "ERROR: %s\n\n", str); 1250f2cb1360SIngo Molnar 1251f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1252f2cb1360SIngo Molnar printk(KERN_WARNING " "); 1253f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1254f2cb1360SIngo Molnar printk(KERN_CONT "%02d ", node_distance(i,j)); 1255f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 1256f2cb1360SIngo Molnar } 1257f2cb1360SIngo Molnar printk(KERN_WARNING "\n"); 1258f2cb1360SIngo Molnar } 1259f2cb1360SIngo Molnar 1260f2cb1360SIngo Molnar bool find_numa_distance(int distance) 1261f2cb1360SIngo Molnar { 1262f2cb1360SIngo Molnar int i; 1263f2cb1360SIngo Molnar 1264f2cb1360SIngo Molnar if (distance == node_distance(0, 0)) 1265f2cb1360SIngo Molnar return true; 1266f2cb1360SIngo Molnar 1267f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1268f2cb1360SIngo Molnar if (sched_domains_numa_distance[i] == distance) 1269f2cb1360SIngo Molnar return true; 1270f2cb1360SIngo Molnar } 1271f2cb1360SIngo Molnar 1272f2cb1360SIngo Molnar return false; 1273f2cb1360SIngo Molnar } 1274f2cb1360SIngo Molnar 1275f2cb1360SIngo Molnar /* 1276f2cb1360SIngo Molnar * A system can have three types of NUMA topology: 1277f2cb1360SIngo Molnar * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1278f2cb1360SIngo Molnar * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1279f2cb1360SIngo Molnar * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1280f2cb1360SIngo Molnar * 1281f2cb1360SIngo Molnar * The difference between a glueless mesh topology and a backplane 1282f2cb1360SIngo Molnar * topology lies in whether communication between not directly 1283f2cb1360SIngo Molnar * connected nodes goes through intermediary nodes (where programs 1284f2cb1360SIngo Molnar * could run), or through backplane controllers. This affects 1285f2cb1360SIngo Molnar * placement of programs. 1286f2cb1360SIngo Molnar * 1287f2cb1360SIngo Molnar * The type of topology can be discerned with the following tests: 1288f2cb1360SIngo Molnar * - If the maximum distance between any nodes is 1 hop, the system 1289f2cb1360SIngo Molnar * is directly connected. 1290f2cb1360SIngo Molnar * - If for two nodes A and B, located N > 1 hops away from each other, 1291f2cb1360SIngo Molnar * there is an intermediary node C, which is < N hops away from both 1292f2cb1360SIngo Molnar * nodes A and B, the system is a glueless mesh. 1293f2cb1360SIngo Molnar */ 1294f2cb1360SIngo Molnar static void init_numa_topology_type(void) 1295f2cb1360SIngo Molnar { 1296f2cb1360SIngo Molnar int a, b, c, n; 1297f2cb1360SIngo Molnar 1298f2cb1360SIngo Molnar n = sched_max_numa_distance; 1299f2cb1360SIngo Molnar 1300f2cb1360SIngo Molnar if (sched_domains_numa_levels <= 1) { 1301f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_DIRECT; 1302f2cb1360SIngo Molnar return; 1303f2cb1360SIngo Molnar } 1304f2cb1360SIngo Molnar 1305f2cb1360SIngo Molnar for_each_online_node(a) { 1306f2cb1360SIngo Molnar for_each_online_node(b) { 1307f2cb1360SIngo Molnar /* Find two nodes furthest removed from each other. */ 1308f2cb1360SIngo Molnar if (node_distance(a, b) < n) 1309f2cb1360SIngo Molnar continue; 1310f2cb1360SIngo Molnar 1311f2cb1360SIngo Molnar /* Is there an intermediary node between a and b? */ 1312f2cb1360SIngo Molnar for_each_online_node(c) { 1313f2cb1360SIngo Molnar if (node_distance(a, c) < n && 1314f2cb1360SIngo Molnar node_distance(b, c) < n) { 1315f2cb1360SIngo Molnar sched_numa_topology_type = 1316f2cb1360SIngo Molnar NUMA_GLUELESS_MESH; 1317f2cb1360SIngo Molnar return; 1318f2cb1360SIngo Molnar } 1319f2cb1360SIngo Molnar } 1320f2cb1360SIngo Molnar 1321f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_BACKPLANE; 1322f2cb1360SIngo Molnar return; 1323f2cb1360SIngo Molnar } 1324f2cb1360SIngo Molnar } 1325f2cb1360SIngo Molnar } 1326f2cb1360SIngo Molnar 1327f2cb1360SIngo Molnar void sched_init_numa(void) 1328f2cb1360SIngo Molnar { 1329f2cb1360SIngo Molnar int next_distance, curr_distance = node_distance(0, 0); 1330f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1331f2cb1360SIngo Molnar int level = 0; 1332f2cb1360SIngo Molnar int i, j, k; 1333f2cb1360SIngo Molnar 1334f2cb1360SIngo Molnar sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 1335f2cb1360SIngo Molnar if (!sched_domains_numa_distance) 1336f2cb1360SIngo Molnar return; 1337f2cb1360SIngo Molnar 1338f2cb1360SIngo Molnar /* 1339f2cb1360SIngo Molnar * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1340f2cb1360SIngo Molnar * unique distances in the node_distance() table. 1341f2cb1360SIngo Molnar * 1342f2cb1360SIngo Molnar * Assumes node_distance(0,j) includes all distances in 1343f2cb1360SIngo Molnar * node_distance(i,j) in order to avoid cubic time. 1344f2cb1360SIngo Molnar */ 1345f2cb1360SIngo Molnar next_distance = curr_distance; 1346f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1347f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1348f2cb1360SIngo Molnar for (k = 0; k < nr_node_ids; k++) { 1349f2cb1360SIngo Molnar int distance = node_distance(i, k); 1350f2cb1360SIngo Molnar 1351f2cb1360SIngo Molnar if (distance > curr_distance && 1352f2cb1360SIngo Molnar (distance < next_distance || 1353f2cb1360SIngo Molnar next_distance == curr_distance)) 1354f2cb1360SIngo Molnar next_distance = distance; 1355f2cb1360SIngo Molnar 1356f2cb1360SIngo Molnar /* 1357f2cb1360SIngo Molnar * While not a strong assumption it would be nice to know 1358f2cb1360SIngo Molnar * about cases where if node A is connected to B, B is not 1359f2cb1360SIngo Molnar * equally connected to A. 1360f2cb1360SIngo Molnar */ 1361f2cb1360SIngo Molnar if (sched_debug() && node_distance(k, i) != distance) 1362f2cb1360SIngo Molnar sched_numa_warn("Node-distance not symmetric"); 1363f2cb1360SIngo Molnar 1364f2cb1360SIngo Molnar if (sched_debug() && i && !find_numa_distance(distance)) 1365f2cb1360SIngo Molnar sched_numa_warn("Node-0 not representative"); 1366f2cb1360SIngo Molnar } 1367f2cb1360SIngo Molnar if (next_distance != curr_distance) { 1368f2cb1360SIngo Molnar sched_domains_numa_distance[level++] = next_distance; 1369f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1370f2cb1360SIngo Molnar curr_distance = next_distance; 1371f2cb1360SIngo Molnar } else break; 1372f2cb1360SIngo Molnar } 1373f2cb1360SIngo Molnar 1374f2cb1360SIngo Molnar /* 1375f2cb1360SIngo Molnar * In case of sched_debug() we verify the above assumption. 1376f2cb1360SIngo Molnar */ 1377f2cb1360SIngo Molnar if (!sched_debug()) 1378f2cb1360SIngo Molnar break; 1379f2cb1360SIngo Molnar } 1380f2cb1360SIngo Molnar 1381f2cb1360SIngo Molnar if (!level) 1382f2cb1360SIngo Molnar return; 1383f2cb1360SIngo Molnar 1384f2cb1360SIngo Molnar /* 1385f2cb1360SIngo Molnar * 'level' contains the number of unique distances, excluding the 1386f2cb1360SIngo Molnar * identity distance node_distance(i,i). 1387f2cb1360SIngo Molnar * 1388f2cb1360SIngo Molnar * The sched_domains_numa_distance[] array includes the actual distance 1389f2cb1360SIngo Molnar * numbers. 1390f2cb1360SIngo Molnar */ 1391f2cb1360SIngo Molnar 1392f2cb1360SIngo Molnar /* 1393f2cb1360SIngo Molnar * Here, we should temporarily reset sched_domains_numa_levels to 0. 1394f2cb1360SIngo Molnar * If it fails to allocate memory for array sched_domains_numa_masks[][], 1395f2cb1360SIngo Molnar * the array will contain less then 'level' members. This could be 1396f2cb1360SIngo Molnar * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1397f2cb1360SIngo Molnar * in other functions. 1398f2cb1360SIngo Molnar * 1399f2cb1360SIngo Molnar * We reset it to 'level' at the end of this function. 1400f2cb1360SIngo Molnar */ 1401f2cb1360SIngo Molnar sched_domains_numa_levels = 0; 1402f2cb1360SIngo Molnar 1403f2cb1360SIngo Molnar sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1404f2cb1360SIngo Molnar if (!sched_domains_numa_masks) 1405f2cb1360SIngo Molnar return; 1406f2cb1360SIngo Molnar 1407f2cb1360SIngo Molnar /* 1408f2cb1360SIngo Molnar * Now for each level, construct a mask per node which contains all 1409f2cb1360SIngo Molnar * CPUs of nodes that are that many hops away from us. 1410f2cb1360SIngo Molnar */ 1411f2cb1360SIngo Molnar for (i = 0; i < level; i++) { 1412f2cb1360SIngo Molnar sched_domains_numa_masks[i] = 1413f2cb1360SIngo Molnar kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1414f2cb1360SIngo Molnar if (!sched_domains_numa_masks[i]) 1415f2cb1360SIngo Molnar return; 1416f2cb1360SIngo Molnar 1417f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1418f2cb1360SIngo Molnar struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1419f2cb1360SIngo Molnar if (!mask) 1420f2cb1360SIngo Molnar return; 1421f2cb1360SIngo Molnar 1422f2cb1360SIngo Molnar sched_domains_numa_masks[i][j] = mask; 1423f2cb1360SIngo Molnar 1424f2cb1360SIngo Molnar for_each_node(k) { 1425f2cb1360SIngo Molnar if (node_distance(j, k) > sched_domains_numa_distance[i]) 1426f2cb1360SIngo Molnar continue; 1427f2cb1360SIngo Molnar 1428f2cb1360SIngo Molnar cpumask_or(mask, mask, cpumask_of_node(k)); 1429f2cb1360SIngo Molnar } 1430f2cb1360SIngo Molnar } 1431f2cb1360SIngo Molnar } 1432f2cb1360SIngo Molnar 1433f2cb1360SIngo Molnar /* Compute default topology size */ 1434f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++); 1435f2cb1360SIngo Molnar 1436f2cb1360SIngo Molnar tl = kzalloc((i + level + 1) * 1437f2cb1360SIngo Molnar sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1438f2cb1360SIngo Molnar if (!tl) 1439f2cb1360SIngo Molnar return; 1440f2cb1360SIngo Molnar 1441f2cb1360SIngo Molnar /* 1442f2cb1360SIngo Molnar * Copy the default topology bits.. 1443f2cb1360SIngo Molnar */ 1444f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++) 1445f2cb1360SIngo Molnar tl[i] = sched_domain_topology[i]; 1446f2cb1360SIngo Molnar 1447f2cb1360SIngo Molnar /* 1448f2cb1360SIngo Molnar * .. and append 'j' levels of NUMA goodness. 1449f2cb1360SIngo Molnar */ 1450f2cb1360SIngo Molnar for (j = 0; j < level; i++, j++) { 1451f2cb1360SIngo Molnar tl[i] = (struct sched_domain_topology_level){ 1452f2cb1360SIngo Molnar .mask = sd_numa_mask, 1453f2cb1360SIngo Molnar .sd_flags = cpu_numa_flags, 1454f2cb1360SIngo Molnar .flags = SDTL_OVERLAP, 1455f2cb1360SIngo Molnar .numa_level = j, 1456f2cb1360SIngo Molnar SD_INIT_NAME(NUMA) 1457f2cb1360SIngo Molnar }; 1458f2cb1360SIngo Molnar } 1459f2cb1360SIngo Molnar 1460f2cb1360SIngo Molnar sched_domain_topology = tl; 1461f2cb1360SIngo Molnar 1462f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1463f2cb1360SIngo Molnar sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1464f2cb1360SIngo Molnar 1465f2cb1360SIngo Molnar init_numa_topology_type(); 1466f2cb1360SIngo Molnar } 1467f2cb1360SIngo Molnar 1468f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu) 1469f2cb1360SIngo Molnar { 1470f2cb1360SIngo Molnar int node = cpu_to_node(cpu); 1471f2cb1360SIngo Molnar int i, j; 1472f2cb1360SIngo Molnar 1473f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1474f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1475f2cb1360SIngo Molnar if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1476f2cb1360SIngo Molnar cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1477f2cb1360SIngo Molnar } 1478f2cb1360SIngo Molnar } 1479f2cb1360SIngo Molnar } 1480f2cb1360SIngo Molnar 1481f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu) 1482f2cb1360SIngo Molnar { 1483f2cb1360SIngo Molnar int i, j; 1484f2cb1360SIngo Molnar 1485f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1486f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1487f2cb1360SIngo Molnar cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1488f2cb1360SIngo Molnar } 1489f2cb1360SIngo Molnar } 1490f2cb1360SIngo Molnar 1491f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */ 1492f2cb1360SIngo Molnar 1493f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map) 1494f2cb1360SIngo Molnar { 1495f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1496f2cb1360SIngo Molnar int j; 1497f2cb1360SIngo Molnar 1498f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1499f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1500f2cb1360SIngo Molnar 1501f2cb1360SIngo Molnar sdd->sd = alloc_percpu(struct sched_domain *); 1502f2cb1360SIngo Molnar if (!sdd->sd) 1503f2cb1360SIngo Molnar return -ENOMEM; 1504f2cb1360SIngo Molnar 1505f2cb1360SIngo Molnar sdd->sds = alloc_percpu(struct sched_domain_shared *); 1506f2cb1360SIngo Molnar if (!sdd->sds) 1507f2cb1360SIngo Molnar return -ENOMEM; 1508f2cb1360SIngo Molnar 1509f2cb1360SIngo Molnar sdd->sg = alloc_percpu(struct sched_group *); 1510f2cb1360SIngo Molnar if (!sdd->sg) 1511f2cb1360SIngo Molnar return -ENOMEM; 1512f2cb1360SIngo Molnar 1513f2cb1360SIngo Molnar sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1514f2cb1360SIngo Molnar if (!sdd->sgc) 1515f2cb1360SIngo Molnar return -ENOMEM; 1516f2cb1360SIngo Molnar 1517f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1518f2cb1360SIngo Molnar struct sched_domain *sd; 1519f2cb1360SIngo Molnar struct sched_domain_shared *sds; 1520f2cb1360SIngo Molnar struct sched_group *sg; 1521f2cb1360SIngo Molnar struct sched_group_capacity *sgc; 1522f2cb1360SIngo Molnar 1523f2cb1360SIngo Molnar sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1524f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1525f2cb1360SIngo Molnar if (!sd) 1526f2cb1360SIngo Molnar return -ENOMEM; 1527f2cb1360SIngo Molnar 1528f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, j) = sd; 1529f2cb1360SIngo Molnar 1530f2cb1360SIngo Molnar sds = kzalloc_node(sizeof(struct sched_domain_shared), 1531f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1532f2cb1360SIngo Molnar if (!sds) 1533f2cb1360SIngo Molnar return -ENOMEM; 1534f2cb1360SIngo Molnar 1535f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, j) = sds; 1536f2cb1360SIngo Molnar 1537f2cb1360SIngo Molnar sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1538f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1539f2cb1360SIngo Molnar if (!sg) 1540f2cb1360SIngo Molnar return -ENOMEM; 1541f2cb1360SIngo Molnar 1542f2cb1360SIngo Molnar sg->next = sg; 1543f2cb1360SIngo Molnar 1544f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, j) = sg; 1545f2cb1360SIngo Molnar 1546f2cb1360SIngo Molnar sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1547f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1548f2cb1360SIngo Molnar if (!sgc) 1549f2cb1360SIngo Molnar return -ENOMEM; 1550f2cb1360SIngo Molnar 1551005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG 1552005f874dSPeter Zijlstra sgc->id = j; 1553005f874dSPeter Zijlstra #endif 1554005f874dSPeter Zijlstra 1555f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, j) = sgc; 1556f2cb1360SIngo Molnar } 1557f2cb1360SIngo Molnar } 1558f2cb1360SIngo Molnar 1559f2cb1360SIngo Molnar return 0; 1560f2cb1360SIngo Molnar } 1561f2cb1360SIngo Molnar 1562f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map) 1563f2cb1360SIngo Molnar { 1564f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1565f2cb1360SIngo Molnar int j; 1566f2cb1360SIngo Molnar 1567f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1568f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1569f2cb1360SIngo Molnar 1570f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1571f2cb1360SIngo Molnar struct sched_domain *sd; 1572f2cb1360SIngo Molnar 1573f2cb1360SIngo Molnar if (sdd->sd) { 1574f2cb1360SIngo Molnar sd = *per_cpu_ptr(sdd->sd, j); 1575f2cb1360SIngo Molnar if (sd && (sd->flags & SD_OVERLAP)) 1576f2cb1360SIngo Molnar free_sched_groups(sd->groups, 0); 1577f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sd, j)); 1578f2cb1360SIngo Molnar } 1579f2cb1360SIngo Molnar 1580f2cb1360SIngo Molnar if (sdd->sds) 1581f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sds, j)); 1582f2cb1360SIngo Molnar if (sdd->sg) 1583f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sg, j)); 1584f2cb1360SIngo Molnar if (sdd->sgc) 1585f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sgc, j)); 1586f2cb1360SIngo Molnar } 1587f2cb1360SIngo Molnar free_percpu(sdd->sd); 1588f2cb1360SIngo Molnar sdd->sd = NULL; 1589f2cb1360SIngo Molnar free_percpu(sdd->sds); 1590f2cb1360SIngo Molnar sdd->sds = NULL; 1591f2cb1360SIngo Molnar free_percpu(sdd->sg); 1592f2cb1360SIngo Molnar sdd->sg = NULL; 1593f2cb1360SIngo Molnar free_percpu(sdd->sgc); 1594f2cb1360SIngo Molnar sdd->sgc = NULL; 1595f2cb1360SIngo Molnar } 1596f2cb1360SIngo Molnar } 1597f2cb1360SIngo Molnar 1598f2cb1360SIngo Molnar struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1599f2cb1360SIngo Molnar const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1600f2cb1360SIngo Molnar struct sched_domain *child, int cpu) 1601f2cb1360SIngo Molnar { 1602f2cb1360SIngo Molnar struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 1603f2cb1360SIngo Molnar 1604f2cb1360SIngo Molnar if (child) { 1605f2cb1360SIngo Molnar sd->level = child->level + 1; 1606f2cb1360SIngo Molnar sched_domain_level_max = max(sched_domain_level_max, sd->level); 1607f2cb1360SIngo Molnar child->parent = sd; 1608f2cb1360SIngo Molnar 1609f2cb1360SIngo Molnar if (!cpumask_subset(sched_domain_span(child), 1610f2cb1360SIngo Molnar sched_domain_span(sd))) { 1611f2cb1360SIngo Molnar pr_err("BUG: arch topology borken\n"); 1612f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1613f2cb1360SIngo Molnar pr_err(" the %s domain not a subset of the %s domain\n", 1614f2cb1360SIngo Molnar child->name, sd->name); 1615f2cb1360SIngo Molnar #endif 1616f2cb1360SIngo Molnar /* Fixup, ensure @sd has at least @child cpus. */ 1617f2cb1360SIngo Molnar cpumask_or(sched_domain_span(sd), 1618f2cb1360SIngo Molnar sched_domain_span(sd), 1619f2cb1360SIngo Molnar sched_domain_span(child)); 1620f2cb1360SIngo Molnar } 1621f2cb1360SIngo Molnar 1622f2cb1360SIngo Molnar } 1623f2cb1360SIngo Molnar set_domain_attribute(sd, attr); 1624f2cb1360SIngo Molnar 1625f2cb1360SIngo Molnar return sd; 1626f2cb1360SIngo Molnar } 1627f2cb1360SIngo Molnar 1628f2cb1360SIngo Molnar /* 1629f2cb1360SIngo Molnar * Build sched domains for a given set of CPUs and attach the sched domains 1630f2cb1360SIngo Molnar * to the individual CPUs 1631f2cb1360SIngo Molnar */ 1632f2cb1360SIngo Molnar static int 1633f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1634f2cb1360SIngo Molnar { 1635f2cb1360SIngo Molnar enum s_alloc alloc_state; 1636f2cb1360SIngo Molnar struct sched_domain *sd; 1637f2cb1360SIngo Molnar struct s_data d; 1638f2cb1360SIngo Molnar struct rq *rq = NULL; 1639f2cb1360SIngo Molnar int i, ret = -ENOMEM; 1640f2cb1360SIngo Molnar 1641f2cb1360SIngo Molnar alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1642f2cb1360SIngo Molnar if (alloc_state != sa_rootdomain) 1643f2cb1360SIngo Molnar goto error; 1644f2cb1360SIngo Molnar 1645f2cb1360SIngo Molnar /* Set up domains for CPUs specified by the cpu_map: */ 1646f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 1647f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1648f2cb1360SIngo Molnar 1649f2cb1360SIngo Molnar sd = NULL; 1650f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1651f2cb1360SIngo Molnar sd = build_sched_domain(tl, cpu_map, attr, sd, i); 1652f2cb1360SIngo Molnar if (tl == sched_domain_topology) 1653f2cb1360SIngo Molnar *per_cpu_ptr(d.sd, i) = sd; 1654af85596cSPeter Zijlstra if (tl->flags & SDTL_OVERLAP) 1655f2cb1360SIngo Molnar sd->flags |= SD_OVERLAP; 1656f2cb1360SIngo Molnar if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1657f2cb1360SIngo Molnar break; 1658f2cb1360SIngo Molnar } 1659f2cb1360SIngo Molnar } 1660f2cb1360SIngo Molnar 1661f2cb1360SIngo Molnar /* Build the groups for the domains */ 1662f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 1663f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1664f2cb1360SIngo Molnar sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1665f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 1666f2cb1360SIngo Molnar if (build_overlap_sched_groups(sd, i)) 1667f2cb1360SIngo Molnar goto error; 1668f2cb1360SIngo Molnar } else { 1669f2cb1360SIngo Molnar if (build_sched_groups(sd, i)) 1670f2cb1360SIngo Molnar goto error; 1671f2cb1360SIngo Molnar } 1672f2cb1360SIngo Molnar } 1673f2cb1360SIngo Molnar } 1674f2cb1360SIngo Molnar 1675f2cb1360SIngo Molnar /* Calculate CPU capacity for physical packages and nodes */ 1676f2cb1360SIngo Molnar for (i = nr_cpumask_bits-1; i >= 0; i--) { 1677f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, cpu_map)) 1678f2cb1360SIngo Molnar continue; 1679f2cb1360SIngo Molnar 1680f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1681f2cb1360SIngo Molnar claim_allocations(i, sd); 1682f2cb1360SIngo Molnar init_sched_groups_capacity(i, sd); 1683f2cb1360SIngo Molnar } 1684f2cb1360SIngo Molnar } 1685f2cb1360SIngo Molnar 1686f2cb1360SIngo Molnar /* Attach the domains */ 1687f2cb1360SIngo Molnar rcu_read_lock(); 1688f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 1689f2cb1360SIngo Molnar rq = cpu_rq(i); 1690f2cb1360SIngo Molnar sd = *per_cpu_ptr(d.sd, i); 1691f2cb1360SIngo Molnar 1692f2cb1360SIngo Molnar /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1693f2cb1360SIngo Molnar if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1694f2cb1360SIngo Molnar WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1695f2cb1360SIngo Molnar 1696f2cb1360SIngo Molnar cpu_attach_domain(sd, d.rd, i); 1697f2cb1360SIngo Molnar } 1698f2cb1360SIngo Molnar rcu_read_unlock(); 1699f2cb1360SIngo Molnar 1700f2cb1360SIngo Molnar if (rq && sched_debug_enabled) { 1701f2cb1360SIngo Molnar pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 1702f2cb1360SIngo Molnar cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1703f2cb1360SIngo Molnar } 1704f2cb1360SIngo Molnar 1705f2cb1360SIngo Molnar ret = 0; 1706f2cb1360SIngo Molnar error: 1707f2cb1360SIngo Molnar __free_domain_allocs(&d, alloc_state, cpu_map); 1708f2cb1360SIngo Molnar return ret; 1709f2cb1360SIngo Molnar } 1710f2cb1360SIngo Molnar 1711f2cb1360SIngo Molnar /* Current sched domains: */ 1712f2cb1360SIngo Molnar static cpumask_var_t *doms_cur; 1713f2cb1360SIngo Molnar 1714f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */ 1715f2cb1360SIngo Molnar static int ndoms_cur; 1716f2cb1360SIngo Molnar 1717f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */ 1718f2cb1360SIngo Molnar static struct sched_domain_attr *dattr_cur; 1719f2cb1360SIngo Molnar 1720f2cb1360SIngo Molnar /* 1721f2cb1360SIngo Molnar * Special case: If a kmalloc() of a doms_cur partition (array of 1722f2cb1360SIngo Molnar * cpumask) fails, then fallback to a single sched domain, 1723f2cb1360SIngo Molnar * as determined by the single cpumask fallback_doms. 1724f2cb1360SIngo Molnar */ 17258d5dc512SPeter Zijlstra static cpumask_var_t fallback_doms; 1726f2cb1360SIngo Molnar 1727f2cb1360SIngo Molnar /* 1728f2cb1360SIngo Molnar * arch_update_cpu_topology lets virtualized architectures update the 1729f2cb1360SIngo Molnar * CPU core maps. It is supposed to return 1 if the topology changed 1730f2cb1360SIngo Molnar * or 0 if it stayed the same. 1731f2cb1360SIngo Molnar */ 1732f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void) 1733f2cb1360SIngo Molnar { 1734f2cb1360SIngo Molnar return 0; 1735f2cb1360SIngo Molnar } 1736f2cb1360SIngo Molnar 1737f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1738f2cb1360SIngo Molnar { 1739f2cb1360SIngo Molnar int i; 1740f2cb1360SIngo Molnar cpumask_var_t *doms; 1741f2cb1360SIngo Molnar 1742f2cb1360SIngo Molnar doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 1743f2cb1360SIngo Molnar if (!doms) 1744f2cb1360SIngo Molnar return NULL; 1745f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) { 1746f2cb1360SIngo Molnar if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1747f2cb1360SIngo Molnar free_sched_domains(doms, i); 1748f2cb1360SIngo Molnar return NULL; 1749f2cb1360SIngo Molnar } 1750f2cb1360SIngo Molnar } 1751f2cb1360SIngo Molnar return doms; 1752f2cb1360SIngo Molnar } 1753f2cb1360SIngo Molnar 1754f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1755f2cb1360SIngo Molnar { 1756f2cb1360SIngo Molnar unsigned int i; 1757f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) 1758f2cb1360SIngo Molnar free_cpumask_var(doms[i]); 1759f2cb1360SIngo Molnar kfree(doms); 1760f2cb1360SIngo Molnar } 1761f2cb1360SIngo Molnar 1762f2cb1360SIngo Molnar /* 1763f2cb1360SIngo Molnar * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1764f2cb1360SIngo Molnar * For now this just excludes isolated CPUs, but could be used to 1765f2cb1360SIngo Molnar * exclude other special cases in the future. 1766f2cb1360SIngo Molnar */ 17678d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map) 1768f2cb1360SIngo Molnar { 1769f2cb1360SIngo Molnar int err; 1770f2cb1360SIngo Molnar 17718d5dc512SPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 17721676330eSPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 17738d5dc512SPeter Zijlstra zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 17748d5dc512SPeter Zijlstra 1775f2cb1360SIngo Molnar arch_update_cpu_topology(); 1776f2cb1360SIngo Molnar ndoms_cur = 1; 1777f2cb1360SIngo Molnar doms_cur = alloc_sched_domains(ndoms_cur); 1778f2cb1360SIngo Molnar if (!doms_cur) 1779f2cb1360SIngo Molnar doms_cur = &fallback_doms; 1780f2cb1360SIngo Molnar cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 1781f2cb1360SIngo Molnar err = build_sched_domains(doms_cur[0], NULL); 1782f2cb1360SIngo Molnar register_sched_domain_sysctl(); 1783f2cb1360SIngo Molnar 1784f2cb1360SIngo Molnar return err; 1785f2cb1360SIngo Molnar } 1786f2cb1360SIngo Molnar 1787f2cb1360SIngo Molnar /* 1788f2cb1360SIngo Molnar * Detach sched domains from a group of CPUs specified in cpu_map 1789f2cb1360SIngo Molnar * These CPUs will now be attached to the NULL domain 1790f2cb1360SIngo Molnar */ 1791f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map) 1792f2cb1360SIngo Molnar { 1793f2cb1360SIngo Molnar int i; 1794f2cb1360SIngo Molnar 1795f2cb1360SIngo Molnar rcu_read_lock(); 1796f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) 1797f2cb1360SIngo Molnar cpu_attach_domain(NULL, &def_root_domain, i); 1798f2cb1360SIngo Molnar rcu_read_unlock(); 1799f2cb1360SIngo Molnar } 1800f2cb1360SIngo Molnar 1801f2cb1360SIngo Molnar /* handle null as "default" */ 1802f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1803f2cb1360SIngo Molnar struct sched_domain_attr *new, int idx_new) 1804f2cb1360SIngo Molnar { 1805f2cb1360SIngo Molnar struct sched_domain_attr tmp; 1806f2cb1360SIngo Molnar 1807f2cb1360SIngo Molnar /* Fast path: */ 1808f2cb1360SIngo Molnar if (!new && !cur) 1809f2cb1360SIngo Molnar return 1; 1810f2cb1360SIngo Molnar 1811f2cb1360SIngo Molnar tmp = SD_ATTR_INIT; 1812f2cb1360SIngo Molnar return !memcmp(cur ? (cur + idx_cur) : &tmp, 1813f2cb1360SIngo Molnar new ? (new + idx_new) : &tmp, 1814f2cb1360SIngo Molnar sizeof(struct sched_domain_attr)); 1815f2cb1360SIngo Molnar } 1816f2cb1360SIngo Molnar 1817f2cb1360SIngo Molnar /* 1818f2cb1360SIngo Molnar * Partition sched domains as specified by the 'ndoms_new' 1819f2cb1360SIngo Molnar * cpumasks in the array doms_new[] of cpumasks. This compares 1820f2cb1360SIngo Molnar * doms_new[] to the current sched domain partitioning, doms_cur[]. 1821f2cb1360SIngo Molnar * It destroys each deleted domain and builds each new domain. 1822f2cb1360SIngo Molnar * 1823f2cb1360SIngo Molnar * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1824f2cb1360SIngo Molnar * The masks don't intersect (don't overlap.) We should setup one 1825f2cb1360SIngo Molnar * sched domain for each mask. CPUs not in any of the cpumasks will 1826f2cb1360SIngo Molnar * not be load balanced. If the same cpumask appears both in the 1827f2cb1360SIngo Molnar * current 'doms_cur' domains and in the new 'doms_new', we can leave 1828f2cb1360SIngo Molnar * it as it is. 1829f2cb1360SIngo Molnar * 1830f2cb1360SIngo Molnar * The passed in 'doms_new' should be allocated using 1831f2cb1360SIngo Molnar * alloc_sched_domains. This routine takes ownership of it and will 1832f2cb1360SIngo Molnar * free_sched_domains it when done with it. If the caller failed the 1833f2cb1360SIngo Molnar * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1834f2cb1360SIngo Molnar * and partition_sched_domains() will fallback to the single partition 1835f2cb1360SIngo Molnar * 'fallback_doms', it also forces the domains to be rebuilt. 1836f2cb1360SIngo Molnar * 1837f2cb1360SIngo Molnar * If doms_new == NULL it will be replaced with cpu_online_mask. 1838f2cb1360SIngo Molnar * ndoms_new == 0 is a special case for destroying existing domains, 1839f2cb1360SIngo Molnar * and it will not create the default domain. 1840f2cb1360SIngo Molnar * 1841f2cb1360SIngo Molnar * Call with hotplug lock held 1842f2cb1360SIngo Molnar */ 1843f2cb1360SIngo Molnar void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1844f2cb1360SIngo Molnar struct sched_domain_attr *dattr_new) 1845f2cb1360SIngo Molnar { 1846f2cb1360SIngo Molnar int i, j, n; 1847f2cb1360SIngo Molnar int new_topology; 1848f2cb1360SIngo Molnar 1849f2cb1360SIngo Molnar mutex_lock(&sched_domains_mutex); 1850f2cb1360SIngo Molnar 1851f2cb1360SIngo Molnar /* Always unregister in case we don't destroy any domains: */ 1852f2cb1360SIngo Molnar unregister_sched_domain_sysctl(); 1853f2cb1360SIngo Molnar 1854f2cb1360SIngo Molnar /* Let the architecture update CPU core mappings: */ 1855f2cb1360SIngo Molnar new_topology = arch_update_cpu_topology(); 1856f2cb1360SIngo Molnar 1857f2cb1360SIngo Molnar n = doms_new ? ndoms_new : 0; 1858f2cb1360SIngo Molnar 1859f2cb1360SIngo Molnar /* Destroy deleted domains: */ 1860f2cb1360SIngo Molnar for (i = 0; i < ndoms_cur; i++) { 1861f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 1862f2cb1360SIngo Molnar if (cpumask_equal(doms_cur[i], doms_new[j]) 1863f2cb1360SIngo Molnar && dattrs_equal(dattr_cur, i, dattr_new, j)) 1864f2cb1360SIngo Molnar goto match1; 1865f2cb1360SIngo Molnar } 1866f2cb1360SIngo Molnar /* No match - a current sched domain not in new doms_new[] */ 1867f2cb1360SIngo Molnar detach_destroy_domains(doms_cur[i]); 1868f2cb1360SIngo Molnar match1: 1869f2cb1360SIngo Molnar ; 1870f2cb1360SIngo Molnar } 1871f2cb1360SIngo Molnar 1872f2cb1360SIngo Molnar n = ndoms_cur; 1873f2cb1360SIngo Molnar if (doms_new == NULL) { 1874f2cb1360SIngo Molnar n = 0; 1875f2cb1360SIngo Molnar doms_new = &fallback_doms; 1876f2cb1360SIngo Molnar cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 1877f2cb1360SIngo Molnar WARN_ON_ONCE(dattr_new); 1878f2cb1360SIngo Molnar } 1879f2cb1360SIngo Molnar 1880f2cb1360SIngo Molnar /* Build new domains: */ 1881f2cb1360SIngo Molnar for (i = 0; i < ndoms_new; i++) { 1882f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 1883f2cb1360SIngo Molnar if (cpumask_equal(doms_new[i], doms_cur[j]) 1884f2cb1360SIngo Molnar && dattrs_equal(dattr_new, i, dattr_cur, j)) 1885f2cb1360SIngo Molnar goto match2; 1886f2cb1360SIngo Molnar } 1887f2cb1360SIngo Molnar /* No match - add a new doms_new */ 1888f2cb1360SIngo Molnar build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1889f2cb1360SIngo Molnar match2: 1890f2cb1360SIngo Molnar ; 1891f2cb1360SIngo Molnar } 1892f2cb1360SIngo Molnar 1893f2cb1360SIngo Molnar /* Remember the new sched domains: */ 1894f2cb1360SIngo Molnar if (doms_cur != &fallback_doms) 1895f2cb1360SIngo Molnar free_sched_domains(doms_cur, ndoms_cur); 1896f2cb1360SIngo Molnar 1897f2cb1360SIngo Molnar kfree(dattr_cur); 1898f2cb1360SIngo Molnar doms_cur = doms_new; 1899f2cb1360SIngo Molnar dattr_cur = dattr_new; 1900f2cb1360SIngo Molnar ndoms_cur = ndoms_new; 1901f2cb1360SIngo Molnar 1902f2cb1360SIngo Molnar register_sched_domain_sysctl(); 1903f2cb1360SIngo Molnar 1904f2cb1360SIngo Molnar mutex_unlock(&sched_domains_mutex); 1905f2cb1360SIngo Molnar } 1906f2cb1360SIngo Molnar 1907