1f2cb1360SIngo Molnar /* 2f2cb1360SIngo Molnar * Scheduler topology setup/handling methods 3f2cb1360SIngo Molnar */ 4f2cb1360SIngo Molnar #include <linux/sched.h> 5f2cb1360SIngo Molnar #include <linux/mutex.h> 6f2cb1360SIngo Molnar 7f2cb1360SIngo Molnar #include "sched.h" 8f2cb1360SIngo Molnar 9f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex); 10f2cb1360SIngo Molnar 11f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */ 12f2cb1360SIngo Molnar cpumask_var_t sched_domains_tmpmask; 131676330eSPeter Zijlstra cpumask_var_t sched_domains_tmpmask2; 14f2cb1360SIngo Molnar 15f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 16f2cb1360SIngo Molnar 17f2cb1360SIngo Molnar static __read_mostly int sched_debug_enabled; 18f2cb1360SIngo Molnar 19f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str) 20f2cb1360SIngo Molnar { 21f2cb1360SIngo Molnar sched_debug_enabled = 1; 22f2cb1360SIngo Molnar 23f2cb1360SIngo Molnar return 0; 24f2cb1360SIngo Molnar } 25f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup); 26f2cb1360SIngo Molnar 27f2cb1360SIngo Molnar static inline bool sched_debug(void) 28f2cb1360SIngo Molnar { 29f2cb1360SIngo Molnar return sched_debug_enabled; 30f2cb1360SIngo Molnar } 31f2cb1360SIngo Molnar 32f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 33f2cb1360SIngo Molnar struct cpumask *groupmask) 34f2cb1360SIngo Molnar { 35f2cb1360SIngo Molnar struct sched_group *group = sd->groups; 36f2cb1360SIngo Molnar 37f2cb1360SIngo Molnar cpumask_clear(groupmask); 38f2cb1360SIngo Molnar 39005f874dSPeter Zijlstra printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 40f2cb1360SIngo Molnar 41f2cb1360SIngo Molnar if (!(sd->flags & SD_LOAD_BALANCE)) { 42f2cb1360SIngo Molnar printk("does not load-balance\n"); 43f2cb1360SIngo Molnar if (sd->parent) 44f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 45f2cb1360SIngo Molnar " has parent"); 46f2cb1360SIngo Molnar return -1; 47f2cb1360SIngo Molnar } 48f2cb1360SIngo Molnar 49005f874dSPeter Zijlstra printk(KERN_CONT "span=%*pbl level=%s\n", 50f2cb1360SIngo Molnar cpumask_pr_args(sched_domain_span(sd)), sd->name); 51f2cb1360SIngo Molnar 52f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 53f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: domain->span does not contain " 54f2cb1360SIngo Molnar "CPU%d\n", cpu); 55f2cb1360SIngo Molnar } 56ae4df9d6SPeter Zijlstra if (!cpumask_test_cpu(cpu, sched_group_span(group))) { 57f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: domain->groups does not contain" 58f2cb1360SIngo Molnar " CPU%d\n", cpu); 59f2cb1360SIngo Molnar } 60f2cb1360SIngo Molnar 61f2cb1360SIngo Molnar printk(KERN_DEBUG "%*s groups:", level + 1, ""); 62f2cb1360SIngo Molnar do { 63f2cb1360SIngo Molnar if (!group) { 64f2cb1360SIngo Molnar printk("\n"); 65f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: group is NULL\n"); 66f2cb1360SIngo Molnar break; 67f2cb1360SIngo Molnar } 68f2cb1360SIngo Molnar 69ae4df9d6SPeter Zijlstra if (!cpumask_weight(sched_group_span(group))) { 70f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 71f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: empty group\n"); 72f2cb1360SIngo Molnar break; 73f2cb1360SIngo Molnar } 74f2cb1360SIngo Molnar 75f2cb1360SIngo Molnar if (!(sd->flags & SD_OVERLAP) && 76ae4df9d6SPeter Zijlstra cpumask_intersects(groupmask, sched_group_span(group))) { 77f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 78f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: repeated CPUs\n"); 79f2cb1360SIngo Molnar break; 80f2cb1360SIngo Molnar } 81f2cb1360SIngo Molnar 82ae4df9d6SPeter Zijlstra cpumask_or(groupmask, groupmask, sched_group_span(group)); 83f2cb1360SIngo Molnar 84005f874dSPeter Zijlstra printk(KERN_CONT " %d:{ span=%*pbl", 85005f874dSPeter Zijlstra group->sgc->id, 86ae4df9d6SPeter Zijlstra cpumask_pr_args(sched_group_span(group))); 87b0151c25SPeter Zijlstra 88af218122SPeter Zijlstra if ((sd->flags & SD_OVERLAP) && 89ae4df9d6SPeter Zijlstra !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 90005f874dSPeter Zijlstra printk(KERN_CONT " mask=%*pbl", 91e5c14b1fSPeter Zijlstra cpumask_pr_args(group_balance_mask(group))); 92b0151c25SPeter Zijlstra } 93b0151c25SPeter Zijlstra 94005f874dSPeter Zijlstra if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 95005f874dSPeter Zijlstra printk(KERN_CONT " cap=%lu", group->sgc->capacity); 96f2cb1360SIngo Molnar 97a420b063SPeter Zijlstra if (group == sd->groups && sd->child && 98a420b063SPeter Zijlstra !cpumask_equal(sched_domain_span(sd->child), 99ae4df9d6SPeter Zijlstra sched_group_span(group))) { 100a420b063SPeter Zijlstra printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 101a420b063SPeter Zijlstra } 102a420b063SPeter Zijlstra 103005f874dSPeter Zijlstra printk(KERN_CONT " }"); 104005f874dSPeter Zijlstra 105f2cb1360SIngo Molnar group = group->next; 106b0151c25SPeter Zijlstra 107b0151c25SPeter Zijlstra if (group != sd->groups) 108b0151c25SPeter Zijlstra printk(KERN_CONT ","); 109b0151c25SPeter Zijlstra 110f2cb1360SIngo Molnar } while (group != sd->groups); 111f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 112f2cb1360SIngo Molnar 113f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), groupmask)) 114f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 115f2cb1360SIngo Molnar 116f2cb1360SIngo Molnar if (sd->parent && 117f2cb1360SIngo Molnar !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 118f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: parent span is not a superset " 119f2cb1360SIngo Molnar "of domain->span\n"); 120f2cb1360SIngo Molnar return 0; 121f2cb1360SIngo Molnar } 122f2cb1360SIngo Molnar 123f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu) 124f2cb1360SIngo Molnar { 125f2cb1360SIngo Molnar int level = 0; 126f2cb1360SIngo Molnar 127f2cb1360SIngo Molnar if (!sched_debug_enabled) 128f2cb1360SIngo Molnar return; 129f2cb1360SIngo Molnar 130f2cb1360SIngo Molnar if (!sd) { 131f2cb1360SIngo Molnar printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 132f2cb1360SIngo Molnar return; 133f2cb1360SIngo Molnar } 134f2cb1360SIngo Molnar 135005f874dSPeter Zijlstra printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 136f2cb1360SIngo Molnar 137f2cb1360SIngo Molnar for (;;) { 138f2cb1360SIngo Molnar if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 139f2cb1360SIngo Molnar break; 140f2cb1360SIngo Molnar level++; 141f2cb1360SIngo Molnar sd = sd->parent; 142f2cb1360SIngo Molnar if (!sd) 143f2cb1360SIngo Molnar break; 144f2cb1360SIngo Molnar } 145f2cb1360SIngo Molnar } 146f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */ 147f2cb1360SIngo Molnar 148f2cb1360SIngo Molnar # define sched_debug_enabled 0 149f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0) 150f2cb1360SIngo Molnar static inline bool sched_debug(void) 151f2cb1360SIngo Molnar { 152f2cb1360SIngo Molnar return false; 153f2cb1360SIngo Molnar } 154f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */ 155f2cb1360SIngo Molnar 156f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd) 157f2cb1360SIngo Molnar { 158f2cb1360SIngo Molnar if (cpumask_weight(sched_domain_span(sd)) == 1) 159f2cb1360SIngo Molnar return 1; 160f2cb1360SIngo Molnar 161f2cb1360SIngo Molnar /* Following flags need at least 2 groups */ 162f2cb1360SIngo Molnar if (sd->flags & (SD_LOAD_BALANCE | 163f2cb1360SIngo Molnar SD_BALANCE_NEWIDLE | 164f2cb1360SIngo Molnar SD_BALANCE_FORK | 165f2cb1360SIngo Molnar SD_BALANCE_EXEC | 166f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 167f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 168f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | 169f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN)) { 170f2cb1360SIngo Molnar if (sd->groups != sd->groups->next) 171f2cb1360SIngo Molnar return 0; 172f2cb1360SIngo Molnar } 173f2cb1360SIngo Molnar 174f2cb1360SIngo Molnar /* Following flags don't use groups */ 175f2cb1360SIngo Molnar if (sd->flags & (SD_WAKE_AFFINE)) 176f2cb1360SIngo Molnar return 0; 177f2cb1360SIngo Molnar 178f2cb1360SIngo Molnar return 1; 179f2cb1360SIngo Molnar } 180f2cb1360SIngo Molnar 181f2cb1360SIngo Molnar static int 182f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 183f2cb1360SIngo Molnar { 184f2cb1360SIngo Molnar unsigned long cflags = sd->flags, pflags = parent->flags; 185f2cb1360SIngo Molnar 186f2cb1360SIngo Molnar if (sd_degenerate(parent)) 187f2cb1360SIngo Molnar return 1; 188f2cb1360SIngo Molnar 189f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 190f2cb1360SIngo Molnar return 0; 191f2cb1360SIngo Molnar 192f2cb1360SIngo Molnar /* Flags needing groups don't count if only 1 group in parent */ 193f2cb1360SIngo Molnar if (parent->groups == parent->groups->next) { 194f2cb1360SIngo Molnar pflags &= ~(SD_LOAD_BALANCE | 195f2cb1360SIngo Molnar SD_BALANCE_NEWIDLE | 196f2cb1360SIngo Molnar SD_BALANCE_FORK | 197f2cb1360SIngo Molnar SD_BALANCE_EXEC | 198f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 199f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 200f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | 201f2cb1360SIngo Molnar SD_PREFER_SIBLING | 202f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN); 203f2cb1360SIngo Molnar if (nr_node_ids == 1) 204f2cb1360SIngo Molnar pflags &= ~SD_SERIALIZE; 205f2cb1360SIngo Molnar } 206f2cb1360SIngo Molnar if (~cflags & pflags) 207f2cb1360SIngo Molnar return 0; 208f2cb1360SIngo Molnar 209f2cb1360SIngo Molnar return 1; 210f2cb1360SIngo Molnar } 211f2cb1360SIngo Molnar 212f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu) 213f2cb1360SIngo Molnar { 214f2cb1360SIngo Molnar struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 215f2cb1360SIngo Molnar 216f2cb1360SIngo Molnar cpupri_cleanup(&rd->cpupri); 217f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 218f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 219f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 220f2cb1360SIngo Molnar free_cpumask_var(rd->online); 221f2cb1360SIngo Molnar free_cpumask_var(rd->span); 222f2cb1360SIngo Molnar kfree(rd); 223f2cb1360SIngo Molnar } 224f2cb1360SIngo Molnar 225f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd) 226f2cb1360SIngo Molnar { 227f2cb1360SIngo Molnar struct root_domain *old_rd = NULL; 228f2cb1360SIngo Molnar unsigned long flags; 229f2cb1360SIngo Molnar 230f2cb1360SIngo Molnar raw_spin_lock_irqsave(&rq->lock, flags); 231f2cb1360SIngo Molnar 232f2cb1360SIngo Molnar if (rq->rd) { 233f2cb1360SIngo Molnar old_rd = rq->rd; 234f2cb1360SIngo Molnar 235f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, old_rd->online)) 236f2cb1360SIngo Molnar set_rq_offline(rq); 237f2cb1360SIngo Molnar 238f2cb1360SIngo Molnar cpumask_clear_cpu(rq->cpu, old_rd->span); 239f2cb1360SIngo Molnar 240f2cb1360SIngo Molnar /* 241f2cb1360SIngo Molnar * If we dont want to free the old_rd yet then 242f2cb1360SIngo Molnar * set old_rd to NULL to skip the freeing later 243f2cb1360SIngo Molnar * in this function: 244f2cb1360SIngo Molnar */ 245f2cb1360SIngo Molnar if (!atomic_dec_and_test(&old_rd->refcount)) 246f2cb1360SIngo Molnar old_rd = NULL; 247f2cb1360SIngo Molnar } 248f2cb1360SIngo Molnar 249f2cb1360SIngo Molnar atomic_inc(&rd->refcount); 250f2cb1360SIngo Molnar rq->rd = rd; 251f2cb1360SIngo Molnar 252f2cb1360SIngo Molnar cpumask_set_cpu(rq->cpu, rd->span); 253f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 254f2cb1360SIngo Molnar set_rq_online(rq); 255f2cb1360SIngo Molnar 256f2cb1360SIngo Molnar raw_spin_unlock_irqrestore(&rq->lock, flags); 257f2cb1360SIngo Molnar 258f2cb1360SIngo Molnar if (old_rd) 259f2cb1360SIngo Molnar call_rcu_sched(&old_rd->rcu, free_rootdomain); 260f2cb1360SIngo Molnar } 261f2cb1360SIngo Molnar 262f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd) 263f2cb1360SIngo Molnar { 264f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 265f2cb1360SIngo Molnar goto out; 266f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 267f2cb1360SIngo Molnar goto free_span; 268f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 269f2cb1360SIngo Molnar goto free_online; 270f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 271f2cb1360SIngo Molnar goto free_dlo_mask; 272f2cb1360SIngo Molnar 273f2cb1360SIngo Molnar init_dl_bw(&rd->dl_bw); 274f2cb1360SIngo Molnar if (cpudl_init(&rd->cpudl) != 0) 275f2cb1360SIngo Molnar goto free_rto_mask; 276f2cb1360SIngo Molnar 277f2cb1360SIngo Molnar if (cpupri_init(&rd->cpupri) != 0) 278f2cb1360SIngo Molnar goto free_cpudl; 279f2cb1360SIngo Molnar return 0; 280f2cb1360SIngo Molnar 281f2cb1360SIngo Molnar free_cpudl: 282f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 283f2cb1360SIngo Molnar free_rto_mask: 284f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 285f2cb1360SIngo Molnar free_dlo_mask: 286f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 287f2cb1360SIngo Molnar free_online: 288f2cb1360SIngo Molnar free_cpumask_var(rd->online); 289f2cb1360SIngo Molnar free_span: 290f2cb1360SIngo Molnar free_cpumask_var(rd->span); 291f2cb1360SIngo Molnar out: 292f2cb1360SIngo Molnar return -ENOMEM; 293f2cb1360SIngo Molnar } 294f2cb1360SIngo Molnar 295f2cb1360SIngo Molnar /* 296f2cb1360SIngo Molnar * By default the system creates a single root-domain with all CPUs as 297f2cb1360SIngo Molnar * members (mimicking the global state we have today). 298f2cb1360SIngo Molnar */ 299f2cb1360SIngo Molnar struct root_domain def_root_domain; 300f2cb1360SIngo Molnar 301f2cb1360SIngo Molnar void init_defrootdomain(void) 302f2cb1360SIngo Molnar { 303f2cb1360SIngo Molnar init_rootdomain(&def_root_domain); 304f2cb1360SIngo Molnar 305f2cb1360SIngo Molnar atomic_set(&def_root_domain.refcount, 1); 306f2cb1360SIngo Molnar } 307f2cb1360SIngo Molnar 308f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void) 309f2cb1360SIngo Molnar { 310f2cb1360SIngo Molnar struct root_domain *rd; 311f2cb1360SIngo Molnar 3124d13a06dSViresh Kumar rd = kzalloc(sizeof(*rd), GFP_KERNEL); 313f2cb1360SIngo Molnar if (!rd) 314f2cb1360SIngo Molnar return NULL; 315f2cb1360SIngo Molnar 316f2cb1360SIngo Molnar if (init_rootdomain(rd) != 0) { 317f2cb1360SIngo Molnar kfree(rd); 318f2cb1360SIngo Molnar return NULL; 319f2cb1360SIngo Molnar } 320f2cb1360SIngo Molnar 321f2cb1360SIngo Molnar return rd; 322f2cb1360SIngo Molnar } 323f2cb1360SIngo Molnar 324f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc) 325f2cb1360SIngo Molnar { 326f2cb1360SIngo Molnar struct sched_group *tmp, *first; 327f2cb1360SIngo Molnar 328f2cb1360SIngo Molnar if (!sg) 329f2cb1360SIngo Molnar return; 330f2cb1360SIngo Molnar 331f2cb1360SIngo Molnar first = sg; 332f2cb1360SIngo Molnar do { 333f2cb1360SIngo Molnar tmp = sg->next; 334f2cb1360SIngo Molnar 335f2cb1360SIngo Molnar if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 336f2cb1360SIngo Molnar kfree(sg->sgc); 337f2cb1360SIngo Molnar 338213c5a45SShu Wang if (atomic_dec_and_test(&sg->ref)) 339f2cb1360SIngo Molnar kfree(sg); 340f2cb1360SIngo Molnar sg = tmp; 341f2cb1360SIngo Molnar } while (sg != first); 342f2cb1360SIngo Molnar } 343f2cb1360SIngo Molnar 344f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd) 345f2cb1360SIngo Molnar { 346f2cb1360SIngo Molnar /* 347*a090c4f2SPeter Zijlstra * A normal sched domain may have multiple group references, an 348*a090c4f2SPeter Zijlstra * overlapping domain, having private groups, only one. Iterate, 349*a090c4f2SPeter Zijlstra * dropping group/capacity references, freeing where none remain. 350f2cb1360SIngo Molnar */ 351f2cb1360SIngo Molnar free_sched_groups(sd->groups, 1); 352213c5a45SShu Wang 353f2cb1360SIngo Molnar if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 354f2cb1360SIngo Molnar kfree(sd->shared); 355f2cb1360SIngo Molnar kfree(sd); 356f2cb1360SIngo Molnar } 357f2cb1360SIngo Molnar 358f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu) 359f2cb1360SIngo Molnar { 360f2cb1360SIngo Molnar struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 361f2cb1360SIngo Molnar 362f2cb1360SIngo Molnar while (sd) { 363f2cb1360SIngo Molnar struct sched_domain *parent = sd->parent; 364f2cb1360SIngo Molnar destroy_sched_domain(sd); 365f2cb1360SIngo Molnar sd = parent; 366f2cb1360SIngo Molnar } 367f2cb1360SIngo Molnar } 368f2cb1360SIngo Molnar 369f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd) 370f2cb1360SIngo Molnar { 371f2cb1360SIngo Molnar if (sd) 372f2cb1360SIngo Molnar call_rcu(&sd->rcu, destroy_sched_domains_rcu); 373f2cb1360SIngo Molnar } 374f2cb1360SIngo Molnar 375f2cb1360SIngo Molnar /* 376f2cb1360SIngo Molnar * Keep a special pointer to the highest sched_domain that has 377f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 378f2cb1360SIngo Molnar * allows us to avoid some pointer chasing select_idle_sibling(). 379f2cb1360SIngo Molnar * 380f2cb1360SIngo Molnar * Also keep a unique ID per domain (we use the first CPU number in 381f2cb1360SIngo Molnar * the cpumask of the domain), this allows us to quickly tell if 382f2cb1360SIngo Molnar * two CPUs are in the same cache domain, see cpus_share_cache(). 383f2cb1360SIngo Molnar */ 384f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_llc); 385f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size); 386f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id); 387f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 388f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_numa); 389f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_asym); 390f2cb1360SIngo Molnar 391f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu) 392f2cb1360SIngo Molnar { 393f2cb1360SIngo Molnar struct sched_domain_shared *sds = NULL; 394f2cb1360SIngo Molnar struct sched_domain *sd; 395f2cb1360SIngo Molnar int id = cpu; 396f2cb1360SIngo Molnar int size = 1; 397f2cb1360SIngo Molnar 398f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 399f2cb1360SIngo Molnar if (sd) { 400f2cb1360SIngo Molnar id = cpumask_first(sched_domain_span(sd)); 401f2cb1360SIngo Molnar size = cpumask_weight(sched_domain_span(sd)); 402f2cb1360SIngo Molnar sds = sd->shared; 403f2cb1360SIngo Molnar } 404f2cb1360SIngo Molnar 405f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 406f2cb1360SIngo Molnar per_cpu(sd_llc_size, cpu) = size; 407f2cb1360SIngo Molnar per_cpu(sd_llc_id, cpu) = id; 408f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 409f2cb1360SIngo Molnar 410f2cb1360SIngo Molnar sd = lowest_flag_domain(cpu, SD_NUMA); 411f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 412f2cb1360SIngo Molnar 413f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 414f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 415f2cb1360SIngo Molnar } 416f2cb1360SIngo Molnar 417f2cb1360SIngo Molnar /* 418f2cb1360SIngo Molnar * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 419f2cb1360SIngo Molnar * hold the hotplug lock. 420f2cb1360SIngo Molnar */ 421f2cb1360SIngo Molnar static void 422f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 423f2cb1360SIngo Molnar { 424f2cb1360SIngo Molnar struct rq *rq = cpu_rq(cpu); 425f2cb1360SIngo Molnar struct sched_domain *tmp; 426f2cb1360SIngo Molnar 427f2cb1360SIngo Molnar /* Remove the sched domains which do not contribute to scheduling. */ 428f2cb1360SIngo Molnar for (tmp = sd; tmp; ) { 429f2cb1360SIngo Molnar struct sched_domain *parent = tmp->parent; 430f2cb1360SIngo Molnar if (!parent) 431f2cb1360SIngo Molnar break; 432f2cb1360SIngo Molnar 433f2cb1360SIngo Molnar if (sd_parent_degenerate(tmp, parent)) { 434f2cb1360SIngo Molnar tmp->parent = parent->parent; 435f2cb1360SIngo Molnar if (parent->parent) 436f2cb1360SIngo Molnar parent->parent->child = tmp; 437f2cb1360SIngo Molnar /* 438f2cb1360SIngo Molnar * Transfer SD_PREFER_SIBLING down in case of a 439f2cb1360SIngo Molnar * degenerate parent; the spans match for this 440f2cb1360SIngo Molnar * so the property transfers. 441f2cb1360SIngo Molnar */ 442f2cb1360SIngo Molnar if (parent->flags & SD_PREFER_SIBLING) 443f2cb1360SIngo Molnar tmp->flags |= SD_PREFER_SIBLING; 444f2cb1360SIngo Molnar destroy_sched_domain(parent); 445f2cb1360SIngo Molnar } else 446f2cb1360SIngo Molnar tmp = tmp->parent; 447f2cb1360SIngo Molnar } 448f2cb1360SIngo Molnar 449f2cb1360SIngo Molnar if (sd && sd_degenerate(sd)) { 450f2cb1360SIngo Molnar tmp = sd; 451f2cb1360SIngo Molnar sd = sd->parent; 452f2cb1360SIngo Molnar destroy_sched_domain(tmp); 453f2cb1360SIngo Molnar if (sd) 454f2cb1360SIngo Molnar sd->child = NULL; 455f2cb1360SIngo Molnar } 456f2cb1360SIngo Molnar 457f2cb1360SIngo Molnar sched_domain_debug(sd, cpu); 458f2cb1360SIngo Molnar 459f2cb1360SIngo Molnar rq_attach_root(rq, rd); 460f2cb1360SIngo Molnar tmp = rq->sd; 461f2cb1360SIngo Molnar rcu_assign_pointer(rq->sd, sd); 462f2cb1360SIngo Molnar destroy_sched_domains(tmp); 463f2cb1360SIngo Molnar 464f2cb1360SIngo Molnar update_top_cache_domain(cpu); 465f2cb1360SIngo Molnar } 466f2cb1360SIngo Molnar 467f2cb1360SIngo Molnar /* Setup the mask of CPUs configured for isolated domains */ 468f2cb1360SIngo Molnar static int __init isolated_cpu_setup(char *str) 469f2cb1360SIngo Molnar { 470f2cb1360SIngo Molnar int ret; 471f2cb1360SIngo Molnar 472f2cb1360SIngo Molnar alloc_bootmem_cpumask_var(&cpu_isolated_map); 473f2cb1360SIngo Molnar ret = cpulist_parse(str, cpu_isolated_map); 474f2cb1360SIngo Molnar if (ret) { 475f2cb1360SIngo Molnar pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 476f2cb1360SIngo Molnar return 0; 477f2cb1360SIngo Molnar } 478f2cb1360SIngo Molnar return 1; 479f2cb1360SIngo Molnar } 480f2cb1360SIngo Molnar __setup("isolcpus=", isolated_cpu_setup); 481f2cb1360SIngo Molnar 482f2cb1360SIngo Molnar struct s_data { 483f2cb1360SIngo Molnar struct sched_domain ** __percpu sd; 484f2cb1360SIngo Molnar struct root_domain *rd; 485f2cb1360SIngo Molnar }; 486f2cb1360SIngo Molnar 487f2cb1360SIngo Molnar enum s_alloc { 488f2cb1360SIngo Molnar sa_rootdomain, 489f2cb1360SIngo Molnar sa_sd, 490f2cb1360SIngo Molnar sa_sd_storage, 491f2cb1360SIngo Molnar sa_none, 492f2cb1360SIngo Molnar }; 493f2cb1360SIngo Molnar 494f2cb1360SIngo Molnar /* 49535a566e6SPeter Zijlstra * Return the canonical balance CPU for this group, this is the first CPU 496e5c14b1fSPeter Zijlstra * of this group that's also in the balance mask. 49735a566e6SPeter Zijlstra * 498e5c14b1fSPeter Zijlstra * The balance mask are all those CPUs that could actually end up at this 499e5c14b1fSPeter Zijlstra * group. See build_balance_mask(). 50035a566e6SPeter Zijlstra * 50135a566e6SPeter Zijlstra * Also see should_we_balance(). 50235a566e6SPeter Zijlstra */ 50335a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg) 50435a566e6SPeter Zijlstra { 505e5c14b1fSPeter Zijlstra return cpumask_first(group_balance_mask(sg)); 50635a566e6SPeter Zijlstra } 50735a566e6SPeter Zijlstra 50835a566e6SPeter Zijlstra 50935a566e6SPeter Zijlstra /* 51035a566e6SPeter Zijlstra * NUMA topology (first read the regular topology blurb below) 51135a566e6SPeter Zijlstra * 51235a566e6SPeter Zijlstra * Given a node-distance table, for example: 51335a566e6SPeter Zijlstra * 51435a566e6SPeter Zijlstra * node 0 1 2 3 51535a566e6SPeter Zijlstra * 0: 10 20 30 20 51635a566e6SPeter Zijlstra * 1: 20 10 20 30 51735a566e6SPeter Zijlstra * 2: 30 20 10 20 51835a566e6SPeter Zijlstra * 3: 20 30 20 10 51935a566e6SPeter Zijlstra * 52035a566e6SPeter Zijlstra * which represents a 4 node ring topology like: 52135a566e6SPeter Zijlstra * 52235a566e6SPeter Zijlstra * 0 ----- 1 52335a566e6SPeter Zijlstra * | | 52435a566e6SPeter Zijlstra * | | 52535a566e6SPeter Zijlstra * | | 52635a566e6SPeter Zijlstra * 3 ----- 2 52735a566e6SPeter Zijlstra * 52835a566e6SPeter Zijlstra * We want to construct domains and groups to represent this. The way we go 52935a566e6SPeter Zijlstra * about doing this is to build the domains on 'hops'. For each NUMA level we 53035a566e6SPeter Zijlstra * construct the mask of all nodes reachable in @level hops. 53135a566e6SPeter Zijlstra * 53235a566e6SPeter Zijlstra * For the above NUMA topology that gives 3 levels: 53335a566e6SPeter Zijlstra * 53435a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 0-3 0-3 53535a566e6SPeter Zijlstra * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 53635a566e6SPeter Zijlstra * 53735a566e6SPeter Zijlstra * NUMA-1 0-1,3 0-2 1-3 0,2-3 53835a566e6SPeter Zijlstra * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 53935a566e6SPeter Zijlstra * 54035a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 54135a566e6SPeter Zijlstra * 54235a566e6SPeter Zijlstra * 54335a566e6SPeter Zijlstra * As can be seen; things don't nicely line up as with the regular topology. 54435a566e6SPeter Zijlstra * When we iterate a domain in child domain chunks some nodes can be 54535a566e6SPeter Zijlstra * represented multiple times -- hence the "overlap" naming for this part of 54635a566e6SPeter Zijlstra * the topology. 54735a566e6SPeter Zijlstra * 54835a566e6SPeter Zijlstra * In order to minimize this overlap, we only build enough groups to cover the 54935a566e6SPeter Zijlstra * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 55035a566e6SPeter Zijlstra * 55135a566e6SPeter Zijlstra * Because: 55235a566e6SPeter Zijlstra * 55335a566e6SPeter Zijlstra * - the first group of each domain is its child domain; this 55435a566e6SPeter Zijlstra * gets us the first 0-1,3 55535a566e6SPeter Zijlstra * - the only uncovered node is 2, who's child domain is 1-3. 55635a566e6SPeter Zijlstra * 55735a566e6SPeter Zijlstra * However, because of the overlap, computing a unique CPU for each group is 55835a566e6SPeter Zijlstra * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 55935a566e6SPeter Zijlstra * groups include the CPUs of Node-0, while those CPUs would not in fact ever 56035a566e6SPeter Zijlstra * end up at those groups (they would end up in group: 0-1,3). 56135a566e6SPeter Zijlstra * 562e5c14b1fSPeter Zijlstra * To correct this we have to introduce the group balance mask. This mask 56335a566e6SPeter Zijlstra * will contain those CPUs in the group that can reach this group given the 56435a566e6SPeter Zijlstra * (child) domain tree. 56535a566e6SPeter Zijlstra * 56635a566e6SPeter Zijlstra * With this we can once again compute balance_cpu and sched_group_capacity 56735a566e6SPeter Zijlstra * relations. 56835a566e6SPeter Zijlstra * 56935a566e6SPeter Zijlstra * XXX include words on how balance_cpu is unique and therefore can be 57035a566e6SPeter Zijlstra * used for sched_group_capacity links. 57135a566e6SPeter Zijlstra * 57235a566e6SPeter Zijlstra * 57335a566e6SPeter Zijlstra * Another 'interesting' topology is: 57435a566e6SPeter Zijlstra * 57535a566e6SPeter Zijlstra * node 0 1 2 3 57635a566e6SPeter Zijlstra * 0: 10 20 20 30 57735a566e6SPeter Zijlstra * 1: 20 10 20 20 57835a566e6SPeter Zijlstra * 2: 20 20 10 20 57935a566e6SPeter Zijlstra * 3: 30 20 20 10 58035a566e6SPeter Zijlstra * 58135a566e6SPeter Zijlstra * Which looks a little like: 58235a566e6SPeter Zijlstra * 58335a566e6SPeter Zijlstra * 0 ----- 1 58435a566e6SPeter Zijlstra * | / | 58535a566e6SPeter Zijlstra * | / | 58635a566e6SPeter Zijlstra * | / | 58735a566e6SPeter Zijlstra * 2 ----- 3 58835a566e6SPeter Zijlstra * 58935a566e6SPeter Zijlstra * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 59035a566e6SPeter Zijlstra * are not. 59135a566e6SPeter Zijlstra * 59235a566e6SPeter Zijlstra * This leads to a few particularly weird cases where the sched_domain's are 59335a566e6SPeter Zijlstra * not of the same number for each cpu. Consider: 59435a566e6SPeter Zijlstra * 59535a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 59635a566e6SPeter Zijlstra * groups: {0-2},{1-3} {1-3},{0-2} 59735a566e6SPeter Zijlstra * 59835a566e6SPeter Zijlstra * NUMA-1 0-2 0-3 0-3 1-3 59935a566e6SPeter Zijlstra * 60035a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 60135a566e6SPeter Zijlstra * 60235a566e6SPeter Zijlstra */ 60335a566e6SPeter Zijlstra 60435a566e6SPeter Zijlstra 60535a566e6SPeter Zijlstra /* 606e5c14b1fSPeter Zijlstra * Build the balance mask; it contains only those CPUs that can arrive at this 607e5c14b1fSPeter Zijlstra * group and should be considered to continue balancing. 60835a566e6SPeter Zijlstra * 60935a566e6SPeter Zijlstra * We do this during the group creation pass, therefore the group information 61035a566e6SPeter Zijlstra * isn't complete yet, however since each group represents a (child) domain we 61135a566e6SPeter Zijlstra * can fully construct this using the sched_domain bits (which are already 61235a566e6SPeter Zijlstra * complete). 613f2cb1360SIngo Molnar */ 6141676330eSPeter Zijlstra static void 615e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 616f2cb1360SIngo Molnar { 617ae4df9d6SPeter Zijlstra const struct cpumask *sg_span = sched_group_span(sg); 618f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 619f2cb1360SIngo Molnar struct sched_domain *sibling; 620f2cb1360SIngo Molnar int i; 621f2cb1360SIngo Molnar 6221676330eSPeter Zijlstra cpumask_clear(mask); 6231676330eSPeter Zijlstra 624f32d782eSLauro Ramos Venancio for_each_cpu(i, sg_span) { 625f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 62673bb059fSPeter Zijlstra 62773bb059fSPeter Zijlstra /* 62873bb059fSPeter Zijlstra * Can happen in the asymmetric case, where these siblings are 62973bb059fSPeter Zijlstra * unused. The mask will not be empty because those CPUs that 63073bb059fSPeter Zijlstra * do have the top domain _should_ span the domain. 63173bb059fSPeter Zijlstra */ 63273bb059fSPeter Zijlstra if (!sibling->child) 63373bb059fSPeter Zijlstra continue; 63473bb059fSPeter Zijlstra 63573bb059fSPeter Zijlstra /* If we would not end up here, we can't continue from here */ 63673bb059fSPeter Zijlstra if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 637f2cb1360SIngo Molnar continue; 638f2cb1360SIngo Molnar 6391676330eSPeter Zijlstra cpumask_set_cpu(i, mask); 640f2cb1360SIngo Molnar } 64173bb059fSPeter Zijlstra 64273bb059fSPeter Zijlstra /* We must not have empty masks here */ 6431676330eSPeter Zijlstra WARN_ON_ONCE(cpumask_empty(mask)); 644f2cb1360SIngo Molnar } 645f2cb1360SIngo Molnar 646f2cb1360SIngo Molnar /* 64735a566e6SPeter Zijlstra * XXX: This creates per-node group entries; since the load-balancer will 64835a566e6SPeter Zijlstra * immediately access remote memory to construct this group's load-balance 64935a566e6SPeter Zijlstra * statistics having the groups node local is of dubious benefit. 650f2cb1360SIngo Molnar */ 6518c033469SLauro Ramos Venancio static struct sched_group * 6528c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 6538c033469SLauro Ramos Venancio { 6548c033469SLauro Ramos Venancio struct sched_group *sg; 6558c033469SLauro Ramos Venancio struct cpumask *sg_span; 6568c033469SLauro Ramos Venancio 6578c033469SLauro Ramos Venancio sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6588c033469SLauro Ramos Venancio GFP_KERNEL, cpu_to_node(cpu)); 6598c033469SLauro Ramos Venancio 6608c033469SLauro Ramos Venancio if (!sg) 6618c033469SLauro Ramos Venancio return NULL; 6628c033469SLauro Ramos Venancio 663ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 6648c033469SLauro Ramos Venancio if (sd->child) 6658c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd->child)); 6668c033469SLauro Ramos Venancio else 6678c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd)); 6688c033469SLauro Ramos Venancio 669213c5a45SShu Wang atomic_inc(&sg->ref); 6708c033469SLauro Ramos Venancio return sg; 6718c033469SLauro Ramos Venancio } 6728c033469SLauro Ramos Venancio 6738c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd, 6741676330eSPeter Zijlstra struct sched_group *sg) 6758c033469SLauro Ramos Venancio { 6761676330eSPeter Zijlstra struct cpumask *mask = sched_domains_tmpmask2; 6778c033469SLauro Ramos Venancio struct sd_data *sdd = sd->private; 6788c033469SLauro Ramos Venancio struct cpumask *sg_span; 6791676330eSPeter Zijlstra int cpu; 6801676330eSPeter Zijlstra 681e5c14b1fSPeter Zijlstra build_balance_mask(sd, sg, mask); 682ae4df9d6SPeter Zijlstra cpu = cpumask_first_and(sched_group_span(sg), mask); 6838c033469SLauro Ramos Venancio 6848c033469SLauro Ramos Venancio sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6858c033469SLauro Ramos Venancio if (atomic_inc_return(&sg->sgc->ref) == 1) 686e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), mask); 68735a566e6SPeter Zijlstra else 688e5c14b1fSPeter Zijlstra WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 6898c033469SLauro Ramos Venancio 6908c033469SLauro Ramos Venancio /* 6918c033469SLauro Ramos Venancio * Initialize sgc->capacity such that even if we mess up the 6928c033469SLauro Ramos Venancio * domains and no possible iteration will get us here, we won't 6938c033469SLauro Ramos Venancio * die on a /0 trap. 6948c033469SLauro Ramos Venancio */ 695ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 6968c033469SLauro Ramos Venancio sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6978c033469SLauro Ramos Venancio sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 6988c033469SLauro Ramos Venancio } 6998c033469SLauro Ramos Venancio 700f2cb1360SIngo Molnar static int 701f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu) 702f2cb1360SIngo Molnar { 70391eaed0dSPeter Zijlstra struct sched_group *first = NULL, *last = NULL, *sg; 704f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 705f2cb1360SIngo Molnar struct cpumask *covered = sched_domains_tmpmask; 706f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 707f2cb1360SIngo Molnar struct sched_domain *sibling; 708f2cb1360SIngo Molnar int i; 709f2cb1360SIngo Molnar 710f2cb1360SIngo Molnar cpumask_clear(covered); 711f2cb1360SIngo Molnar 7120372dd27SPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 713f2cb1360SIngo Molnar struct cpumask *sg_span; 714f2cb1360SIngo Molnar 715f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 716f2cb1360SIngo Molnar continue; 717f2cb1360SIngo Molnar 718f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 719f2cb1360SIngo Molnar 720c20e1ea4SLauro Ramos Venancio /* 721c20e1ea4SLauro Ramos Venancio * Asymmetric node setups can result in situations where the 722c20e1ea4SLauro Ramos Venancio * domain tree is of unequal depth, make sure to skip domains 723c20e1ea4SLauro Ramos Venancio * that already cover the entire range. 724c20e1ea4SLauro Ramos Venancio * 725c20e1ea4SLauro Ramos Venancio * In that case build_sched_domains() will have terminated the 726c20e1ea4SLauro Ramos Venancio * iteration early and our sibling sd spans will be empty. 727c20e1ea4SLauro Ramos Venancio * Domains should always include the CPU they're built on, so 728c20e1ea4SLauro Ramos Venancio * check that. 729c20e1ea4SLauro Ramos Venancio */ 730f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 731f2cb1360SIngo Molnar continue; 732f2cb1360SIngo Molnar 7338c033469SLauro Ramos Venancio sg = build_group_from_child_sched_domain(sibling, cpu); 734f2cb1360SIngo Molnar if (!sg) 735f2cb1360SIngo Molnar goto fail; 736f2cb1360SIngo Molnar 737ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 738f2cb1360SIngo Molnar cpumask_or(covered, covered, sg_span); 739f2cb1360SIngo Molnar 7401676330eSPeter Zijlstra init_overlap_sched_group(sd, sg); 741f2cb1360SIngo Molnar 742f2cb1360SIngo Molnar if (!first) 743f2cb1360SIngo Molnar first = sg; 744f2cb1360SIngo Molnar if (last) 745f2cb1360SIngo Molnar last->next = sg; 746f2cb1360SIngo Molnar last = sg; 747f2cb1360SIngo Molnar last->next = first; 748f2cb1360SIngo Molnar } 74991eaed0dSPeter Zijlstra sd->groups = first; 750f2cb1360SIngo Molnar 751f2cb1360SIngo Molnar return 0; 752f2cb1360SIngo Molnar 753f2cb1360SIngo Molnar fail: 754f2cb1360SIngo Molnar free_sched_groups(first, 0); 755f2cb1360SIngo Molnar 756f2cb1360SIngo Molnar return -ENOMEM; 757f2cb1360SIngo Molnar } 758f2cb1360SIngo Molnar 75935a566e6SPeter Zijlstra 76035a566e6SPeter Zijlstra /* 76135a566e6SPeter Zijlstra * Package topology (also see the load-balance blurb in fair.c) 76235a566e6SPeter Zijlstra * 76335a566e6SPeter Zijlstra * The scheduler builds a tree structure to represent a number of important 76435a566e6SPeter Zijlstra * topology features. By default (default_topology[]) these include: 76535a566e6SPeter Zijlstra * 76635a566e6SPeter Zijlstra * - Simultaneous multithreading (SMT) 76735a566e6SPeter Zijlstra * - Multi-Core Cache (MC) 76835a566e6SPeter Zijlstra * - Package (DIE) 76935a566e6SPeter Zijlstra * 77035a566e6SPeter Zijlstra * Where the last one more or less denotes everything up to a NUMA node. 77135a566e6SPeter Zijlstra * 77235a566e6SPeter Zijlstra * The tree consists of 3 primary data structures: 77335a566e6SPeter Zijlstra * 77435a566e6SPeter Zijlstra * sched_domain -> sched_group -> sched_group_capacity 77535a566e6SPeter Zijlstra * ^ ^ ^ ^ 77635a566e6SPeter Zijlstra * `-' `-' 77735a566e6SPeter Zijlstra * 77835a566e6SPeter Zijlstra * The sched_domains are per-cpu and have a two way link (parent & child) and 77935a566e6SPeter Zijlstra * denote the ever growing mask of CPUs belonging to that level of topology. 78035a566e6SPeter Zijlstra * 78135a566e6SPeter Zijlstra * Each sched_domain has a circular (double) linked list of sched_group's, each 78235a566e6SPeter Zijlstra * denoting the domains of the level below (or individual CPUs in case of the 78335a566e6SPeter Zijlstra * first domain level). The sched_group linked by a sched_domain includes the 78435a566e6SPeter Zijlstra * CPU of that sched_domain [*]. 78535a566e6SPeter Zijlstra * 78635a566e6SPeter Zijlstra * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 78735a566e6SPeter Zijlstra * 78835a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 78935a566e6SPeter Zijlstra * 79035a566e6SPeter Zijlstra * DIE [ ] 79135a566e6SPeter Zijlstra * MC [ ] [ ] 79235a566e6SPeter Zijlstra * SMT [ ] [ ] [ ] [ ] 79335a566e6SPeter Zijlstra * 79435a566e6SPeter Zijlstra * - or - 79535a566e6SPeter Zijlstra * 79635a566e6SPeter Zijlstra * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 79735a566e6SPeter Zijlstra * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 79835a566e6SPeter Zijlstra * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 79935a566e6SPeter Zijlstra * 80035a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 80135a566e6SPeter Zijlstra * 80235a566e6SPeter Zijlstra * One way to think about it is: sched_domain moves you up and down among these 80335a566e6SPeter Zijlstra * topology levels, while sched_group moves you sideways through it, at child 80435a566e6SPeter Zijlstra * domain granularity. 80535a566e6SPeter Zijlstra * 80635a566e6SPeter Zijlstra * sched_group_capacity ensures each unique sched_group has shared storage. 80735a566e6SPeter Zijlstra * 80835a566e6SPeter Zijlstra * There are two related construction problems, both require a CPU that 80935a566e6SPeter Zijlstra * uniquely identify each group (for a given domain): 81035a566e6SPeter Zijlstra * 81135a566e6SPeter Zijlstra * - The first is the balance_cpu (see should_we_balance() and the 81235a566e6SPeter Zijlstra * load-balance blub in fair.c); for each group we only want 1 CPU to 81335a566e6SPeter Zijlstra * continue balancing at a higher domain. 81435a566e6SPeter Zijlstra * 81535a566e6SPeter Zijlstra * - The second is the sched_group_capacity; we want all identical groups 81635a566e6SPeter Zijlstra * to share a single sched_group_capacity. 81735a566e6SPeter Zijlstra * 81835a566e6SPeter Zijlstra * Since these topologies are exclusive by construction. That is, its 81935a566e6SPeter Zijlstra * impossible for an SMT thread to belong to multiple cores, and cores to 82035a566e6SPeter Zijlstra * be part of multiple caches. There is a very clear and unique location 82135a566e6SPeter Zijlstra * for each CPU in the hierarchy. 82235a566e6SPeter Zijlstra * 82335a566e6SPeter Zijlstra * Therefore computing a unique CPU for each group is trivial (the iteration 82435a566e6SPeter Zijlstra * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 82535a566e6SPeter Zijlstra * group), we can simply pick the first CPU in each group. 82635a566e6SPeter Zijlstra * 82735a566e6SPeter Zijlstra * 82835a566e6SPeter Zijlstra * [*] in other words, the first group of each domain is its child domain. 82935a566e6SPeter Zijlstra */ 83035a566e6SPeter Zijlstra 8310c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd) 832f2cb1360SIngo Molnar { 833f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 834f2cb1360SIngo Molnar struct sched_domain *child = sd->child; 8350c0e776aSPeter Zijlstra struct sched_group *sg; 836f2cb1360SIngo Molnar 837f2cb1360SIngo Molnar if (child) 838f2cb1360SIngo Molnar cpu = cpumask_first(sched_domain_span(child)); 839f2cb1360SIngo Molnar 8400c0e776aSPeter Zijlstra sg = *per_cpu_ptr(sdd->sg, cpu); 8410c0e776aSPeter Zijlstra sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 842f2cb1360SIngo Molnar 843f2cb1360SIngo Molnar /* For claim_allocations: */ 8440c0e776aSPeter Zijlstra atomic_inc(&sg->ref); 8450c0e776aSPeter Zijlstra atomic_inc(&sg->sgc->ref); 8460c0e776aSPeter Zijlstra 8470c0e776aSPeter Zijlstra if (child) { 848ae4df9d6SPeter Zijlstra cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 849ae4df9d6SPeter Zijlstra cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 8500c0e776aSPeter Zijlstra } else { 851ae4df9d6SPeter Zijlstra cpumask_set_cpu(cpu, sched_group_span(sg)); 852e5c14b1fSPeter Zijlstra cpumask_set_cpu(cpu, group_balance_mask(sg)); 853f2cb1360SIngo Molnar } 854f2cb1360SIngo Molnar 855ae4df9d6SPeter Zijlstra sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 8560c0e776aSPeter Zijlstra sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 8570c0e776aSPeter Zijlstra 8580c0e776aSPeter Zijlstra return sg; 859f2cb1360SIngo Molnar } 860f2cb1360SIngo Molnar 861f2cb1360SIngo Molnar /* 862f2cb1360SIngo Molnar * build_sched_groups will build a circular linked list of the groups 863f2cb1360SIngo Molnar * covered by the given span, and will set each group's ->cpumask correctly, 864f2cb1360SIngo Molnar * and ->cpu_capacity to 0. 865f2cb1360SIngo Molnar * 866f2cb1360SIngo Molnar * Assumes the sched_domain tree is fully constructed 867f2cb1360SIngo Molnar */ 868f2cb1360SIngo Molnar static int 869f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu) 870f2cb1360SIngo Molnar { 871f2cb1360SIngo Molnar struct sched_group *first = NULL, *last = NULL; 872f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 873f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 874f2cb1360SIngo Molnar struct cpumask *covered; 875f2cb1360SIngo Molnar int i; 876f2cb1360SIngo Molnar 877f2cb1360SIngo Molnar lockdep_assert_held(&sched_domains_mutex); 878f2cb1360SIngo Molnar covered = sched_domains_tmpmask; 879f2cb1360SIngo Molnar 880f2cb1360SIngo Molnar cpumask_clear(covered); 881f2cb1360SIngo Molnar 8820c0e776aSPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 883f2cb1360SIngo Molnar struct sched_group *sg; 884f2cb1360SIngo Molnar 885f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 886f2cb1360SIngo Molnar continue; 887f2cb1360SIngo Molnar 8880c0e776aSPeter Zijlstra sg = get_group(i, sdd); 889f2cb1360SIngo Molnar 890ae4df9d6SPeter Zijlstra cpumask_or(covered, covered, sched_group_span(sg)); 891f2cb1360SIngo Molnar 892f2cb1360SIngo Molnar if (!first) 893f2cb1360SIngo Molnar first = sg; 894f2cb1360SIngo Molnar if (last) 895f2cb1360SIngo Molnar last->next = sg; 896f2cb1360SIngo Molnar last = sg; 897f2cb1360SIngo Molnar } 898f2cb1360SIngo Molnar last->next = first; 8990c0e776aSPeter Zijlstra sd->groups = first; 900f2cb1360SIngo Molnar 901f2cb1360SIngo Molnar return 0; 902f2cb1360SIngo Molnar } 903f2cb1360SIngo Molnar 904f2cb1360SIngo Molnar /* 905f2cb1360SIngo Molnar * Initialize sched groups cpu_capacity. 906f2cb1360SIngo Molnar * 907f2cb1360SIngo Molnar * cpu_capacity indicates the capacity of sched group, which is used while 908f2cb1360SIngo Molnar * distributing the load between different sched groups in a sched domain. 909f2cb1360SIngo Molnar * Typically cpu_capacity for all the groups in a sched domain will be same 910f2cb1360SIngo Molnar * unless there are asymmetries in the topology. If there are asymmetries, 911f2cb1360SIngo Molnar * group having more cpu_capacity will pickup more load compared to the 912f2cb1360SIngo Molnar * group having less cpu_capacity. 913f2cb1360SIngo Molnar */ 914f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 915f2cb1360SIngo Molnar { 916f2cb1360SIngo Molnar struct sched_group *sg = sd->groups; 917f2cb1360SIngo Molnar 918f2cb1360SIngo Molnar WARN_ON(!sg); 919f2cb1360SIngo Molnar 920f2cb1360SIngo Molnar do { 921f2cb1360SIngo Molnar int cpu, max_cpu = -1; 922f2cb1360SIngo Molnar 923ae4df9d6SPeter Zijlstra sg->group_weight = cpumask_weight(sched_group_span(sg)); 924f2cb1360SIngo Molnar 925f2cb1360SIngo Molnar if (!(sd->flags & SD_ASYM_PACKING)) 926f2cb1360SIngo Molnar goto next; 927f2cb1360SIngo Molnar 928ae4df9d6SPeter Zijlstra for_each_cpu(cpu, sched_group_span(sg)) { 929f2cb1360SIngo Molnar if (max_cpu < 0) 930f2cb1360SIngo Molnar max_cpu = cpu; 931f2cb1360SIngo Molnar else if (sched_asym_prefer(cpu, max_cpu)) 932f2cb1360SIngo Molnar max_cpu = cpu; 933f2cb1360SIngo Molnar } 934f2cb1360SIngo Molnar sg->asym_prefer_cpu = max_cpu; 935f2cb1360SIngo Molnar 936f2cb1360SIngo Molnar next: 937f2cb1360SIngo Molnar sg = sg->next; 938f2cb1360SIngo Molnar } while (sg != sd->groups); 939f2cb1360SIngo Molnar 940f2cb1360SIngo Molnar if (cpu != group_balance_cpu(sg)) 941f2cb1360SIngo Molnar return; 942f2cb1360SIngo Molnar 943f2cb1360SIngo Molnar update_group_capacity(sd, cpu); 944f2cb1360SIngo Molnar } 945f2cb1360SIngo Molnar 946f2cb1360SIngo Molnar /* 947f2cb1360SIngo Molnar * Initializers for schedule domains 948f2cb1360SIngo Molnar * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 949f2cb1360SIngo Molnar */ 950f2cb1360SIngo Molnar 951f2cb1360SIngo Molnar static int default_relax_domain_level = -1; 952f2cb1360SIngo Molnar int sched_domain_level_max; 953f2cb1360SIngo Molnar 954f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str) 955f2cb1360SIngo Molnar { 956f2cb1360SIngo Molnar if (kstrtoint(str, 0, &default_relax_domain_level)) 957f2cb1360SIngo Molnar pr_warn("Unable to set relax_domain_level\n"); 958f2cb1360SIngo Molnar 959f2cb1360SIngo Molnar return 1; 960f2cb1360SIngo Molnar } 961f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level); 962f2cb1360SIngo Molnar 963f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd, 964f2cb1360SIngo Molnar struct sched_domain_attr *attr) 965f2cb1360SIngo Molnar { 966f2cb1360SIngo Molnar int request; 967f2cb1360SIngo Molnar 968f2cb1360SIngo Molnar if (!attr || attr->relax_domain_level < 0) { 969f2cb1360SIngo Molnar if (default_relax_domain_level < 0) 970f2cb1360SIngo Molnar return; 971f2cb1360SIngo Molnar else 972f2cb1360SIngo Molnar request = default_relax_domain_level; 973f2cb1360SIngo Molnar } else 974f2cb1360SIngo Molnar request = attr->relax_domain_level; 975f2cb1360SIngo Molnar if (request < sd->level) { 976f2cb1360SIngo Molnar /* Turn off idle balance on this domain: */ 977f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 978f2cb1360SIngo Molnar } else { 979f2cb1360SIngo Molnar /* Turn on idle balance on this domain: */ 980f2cb1360SIngo Molnar sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 981f2cb1360SIngo Molnar } 982f2cb1360SIngo Molnar } 983f2cb1360SIngo Molnar 984f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map); 985f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map); 986f2cb1360SIngo Molnar 987f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 988f2cb1360SIngo Molnar const struct cpumask *cpu_map) 989f2cb1360SIngo Molnar { 990f2cb1360SIngo Molnar switch (what) { 991f2cb1360SIngo Molnar case sa_rootdomain: 992f2cb1360SIngo Molnar if (!atomic_read(&d->rd->refcount)) 993f2cb1360SIngo Molnar free_rootdomain(&d->rd->rcu); 994f2cb1360SIngo Molnar /* Fall through */ 995f2cb1360SIngo Molnar case sa_sd: 996f2cb1360SIngo Molnar free_percpu(d->sd); 997f2cb1360SIngo Molnar /* Fall through */ 998f2cb1360SIngo Molnar case sa_sd_storage: 999f2cb1360SIngo Molnar __sdt_free(cpu_map); 1000f2cb1360SIngo Molnar /* Fall through */ 1001f2cb1360SIngo Molnar case sa_none: 1002f2cb1360SIngo Molnar break; 1003f2cb1360SIngo Molnar } 1004f2cb1360SIngo Molnar } 1005f2cb1360SIngo Molnar 1006f2cb1360SIngo Molnar static enum s_alloc 1007f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1008f2cb1360SIngo Molnar { 1009f2cb1360SIngo Molnar memset(d, 0, sizeof(*d)); 1010f2cb1360SIngo Molnar 1011f2cb1360SIngo Molnar if (__sdt_alloc(cpu_map)) 1012f2cb1360SIngo Molnar return sa_sd_storage; 1013f2cb1360SIngo Molnar d->sd = alloc_percpu(struct sched_domain *); 1014f2cb1360SIngo Molnar if (!d->sd) 1015f2cb1360SIngo Molnar return sa_sd_storage; 1016f2cb1360SIngo Molnar d->rd = alloc_rootdomain(); 1017f2cb1360SIngo Molnar if (!d->rd) 1018f2cb1360SIngo Molnar return sa_sd; 1019f2cb1360SIngo Molnar return sa_rootdomain; 1020f2cb1360SIngo Molnar } 1021f2cb1360SIngo Molnar 1022f2cb1360SIngo Molnar /* 1023f2cb1360SIngo Molnar * NULL the sd_data elements we've used to build the sched_domain and 1024f2cb1360SIngo Molnar * sched_group structure so that the subsequent __free_domain_allocs() 1025f2cb1360SIngo Molnar * will not free the data we're using. 1026f2cb1360SIngo Molnar */ 1027f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd) 1028f2cb1360SIngo Molnar { 1029f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1030f2cb1360SIngo Molnar 1031f2cb1360SIngo Molnar WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1032f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, cpu) = NULL; 1033f2cb1360SIngo Molnar 1034f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1035f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, cpu) = NULL; 1036f2cb1360SIngo Molnar 1037f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1038f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, cpu) = NULL; 1039f2cb1360SIngo Molnar 1040f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1041f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1042f2cb1360SIngo Molnar } 1043f2cb1360SIngo Molnar 1044f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1045f2cb1360SIngo Molnar static int sched_domains_numa_levels; 1046f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type; 1047f2cb1360SIngo Molnar static int *sched_domains_numa_distance; 1048f2cb1360SIngo Molnar int sched_max_numa_distance; 1049f2cb1360SIngo Molnar static struct cpumask ***sched_domains_numa_masks; 1050f2cb1360SIngo Molnar static int sched_domains_curr_level; 1051f2cb1360SIngo Molnar #endif 1052f2cb1360SIngo Molnar 1053f2cb1360SIngo Molnar /* 1054f2cb1360SIngo Molnar * SD_flags allowed in topology descriptions. 1055f2cb1360SIngo Molnar * 1056f2cb1360SIngo Molnar * These flags are purely descriptive of the topology and do not prescribe 1057f2cb1360SIngo Molnar * behaviour. Behaviour is artificial and mapped in the below sd_init() 1058f2cb1360SIngo Molnar * function: 1059f2cb1360SIngo Molnar * 1060f2cb1360SIngo Molnar * SD_SHARE_CPUCAPACITY - describes SMT topologies 1061f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCES - describes shared caches 1062f2cb1360SIngo Molnar * SD_NUMA - describes NUMA topologies 1063f2cb1360SIngo Molnar * SD_SHARE_POWERDOMAIN - describes shared power domain 1064f2cb1360SIngo Molnar * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 1065f2cb1360SIngo Molnar * 1066f2cb1360SIngo Molnar * Odd one out, which beside describing the topology has a quirk also 1067f2cb1360SIngo Molnar * prescribes the desired behaviour that goes along with it: 1068f2cb1360SIngo Molnar * 1069f2cb1360SIngo Molnar * SD_ASYM_PACKING - describes SMT quirks 1070f2cb1360SIngo Molnar */ 1071f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS \ 1072f2cb1360SIngo Molnar (SD_SHARE_CPUCAPACITY | \ 1073f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | \ 1074f2cb1360SIngo Molnar SD_NUMA | \ 1075f2cb1360SIngo Molnar SD_ASYM_PACKING | \ 1076f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | \ 1077f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN) 1078f2cb1360SIngo Molnar 1079f2cb1360SIngo Molnar static struct sched_domain * 1080f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl, 1081f2cb1360SIngo Molnar const struct cpumask *cpu_map, 1082f2cb1360SIngo Molnar struct sched_domain *child, int cpu) 1083f2cb1360SIngo Molnar { 1084f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1085f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1086f2cb1360SIngo Molnar int sd_id, sd_weight, sd_flags = 0; 1087f2cb1360SIngo Molnar 1088f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1089f2cb1360SIngo Molnar /* 1090f2cb1360SIngo Molnar * Ugly hack to pass state to sd_numa_mask()... 1091f2cb1360SIngo Molnar */ 1092f2cb1360SIngo Molnar sched_domains_curr_level = tl->numa_level; 1093f2cb1360SIngo Molnar #endif 1094f2cb1360SIngo Molnar 1095f2cb1360SIngo Molnar sd_weight = cpumask_weight(tl->mask(cpu)); 1096f2cb1360SIngo Molnar 1097f2cb1360SIngo Molnar if (tl->sd_flags) 1098f2cb1360SIngo Molnar sd_flags = (*tl->sd_flags)(); 1099f2cb1360SIngo Molnar if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1100f2cb1360SIngo Molnar "wrong sd_flags in topology description\n")) 1101f2cb1360SIngo Molnar sd_flags &= ~TOPOLOGY_SD_FLAGS; 1102f2cb1360SIngo Molnar 1103f2cb1360SIngo Molnar *sd = (struct sched_domain){ 1104f2cb1360SIngo Molnar .min_interval = sd_weight, 1105f2cb1360SIngo Molnar .max_interval = 2*sd_weight, 1106f2cb1360SIngo Molnar .busy_factor = 32, 1107f2cb1360SIngo Molnar .imbalance_pct = 125, 1108f2cb1360SIngo Molnar 1109f2cb1360SIngo Molnar .cache_nice_tries = 0, 1110f2cb1360SIngo Molnar .busy_idx = 0, 1111f2cb1360SIngo Molnar .idle_idx = 0, 1112f2cb1360SIngo Molnar .newidle_idx = 0, 1113f2cb1360SIngo Molnar .wake_idx = 0, 1114f2cb1360SIngo Molnar .forkexec_idx = 0, 1115f2cb1360SIngo Molnar 1116f2cb1360SIngo Molnar .flags = 1*SD_LOAD_BALANCE 1117f2cb1360SIngo Molnar | 1*SD_BALANCE_NEWIDLE 1118f2cb1360SIngo Molnar | 1*SD_BALANCE_EXEC 1119f2cb1360SIngo Molnar | 1*SD_BALANCE_FORK 1120f2cb1360SIngo Molnar | 0*SD_BALANCE_WAKE 1121f2cb1360SIngo Molnar | 1*SD_WAKE_AFFINE 1122f2cb1360SIngo Molnar | 0*SD_SHARE_CPUCAPACITY 1123f2cb1360SIngo Molnar | 0*SD_SHARE_PKG_RESOURCES 1124f2cb1360SIngo Molnar | 0*SD_SERIALIZE 1125f2cb1360SIngo Molnar | 0*SD_PREFER_SIBLING 1126f2cb1360SIngo Molnar | 0*SD_NUMA 1127f2cb1360SIngo Molnar | sd_flags 1128f2cb1360SIngo Molnar , 1129f2cb1360SIngo Molnar 1130f2cb1360SIngo Molnar .last_balance = jiffies, 1131f2cb1360SIngo Molnar .balance_interval = sd_weight, 1132f2cb1360SIngo Molnar .smt_gain = 0, 1133f2cb1360SIngo Molnar .max_newidle_lb_cost = 0, 1134f2cb1360SIngo Molnar .next_decay_max_lb_cost = jiffies, 1135f2cb1360SIngo Molnar .child = child, 1136f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1137f2cb1360SIngo Molnar .name = tl->name, 1138f2cb1360SIngo Molnar #endif 1139f2cb1360SIngo Molnar }; 1140f2cb1360SIngo Molnar 1141f2cb1360SIngo Molnar cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1142f2cb1360SIngo Molnar sd_id = cpumask_first(sched_domain_span(sd)); 1143f2cb1360SIngo Molnar 1144f2cb1360SIngo Molnar /* 1145f2cb1360SIngo Molnar * Convert topological properties into behaviour. 1146f2cb1360SIngo Molnar */ 1147f2cb1360SIngo Molnar 1148f2cb1360SIngo Molnar if (sd->flags & SD_ASYM_CPUCAPACITY) { 1149f2cb1360SIngo Molnar struct sched_domain *t = sd; 1150f2cb1360SIngo Molnar 1151f2cb1360SIngo Molnar for_each_lower_domain(t) 1152f2cb1360SIngo Molnar t->flags |= SD_BALANCE_WAKE; 1153f2cb1360SIngo Molnar } 1154f2cb1360SIngo Molnar 1155f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_CPUCAPACITY) { 1156f2cb1360SIngo Molnar sd->flags |= SD_PREFER_SIBLING; 1157f2cb1360SIngo Molnar sd->imbalance_pct = 110; 1158f2cb1360SIngo Molnar sd->smt_gain = 1178; /* ~15% */ 1159f2cb1360SIngo Molnar 1160f2cb1360SIngo Molnar } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1161f2cb1360SIngo Molnar sd->imbalance_pct = 117; 1162f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1163f2cb1360SIngo Molnar sd->busy_idx = 2; 1164f2cb1360SIngo Molnar 1165f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1166f2cb1360SIngo Molnar } else if (sd->flags & SD_NUMA) { 1167f2cb1360SIngo Molnar sd->cache_nice_tries = 2; 1168f2cb1360SIngo Molnar sd->busy_idx = 3; 1169f2cb1360SIngo Molnar sd->idle_idx = 2; 1170f2cb1360SIngo Molnar 1171f2cb1360SIngo Molnar sd->flags |= SD_SERIALIZE; 1172f2cb1360SIngo Molnar if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1173f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_EXEC | 1174f2cb1360SIngo Molnar SD_BALANCE_FORK | 1175f2cb1360SIngo Molnar SD_WAKE_AFFINE); 1176f2cb1360SIngo Molnar } 1177f2cb1360SIngo Molnar 1178f2cb1360SIngo Molnar #endif 1179f2cb1360SIngo Molnar } else { 1180f2cb1360SIngo Molnar sd->flags |= SD_PREFER_SIBLING; 1181f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1182f2cb1360SIngo Molnar sd->busy_idx = 2; 1183f2cb1360SIngo Molnar sd->idle_idx = 1; 1184f2cb1360SIngo Molnar } 1185f2cb1360SIngo Molnar 1186f2cb1360SIngo Molnar /* 1187f2cb1360SIngo Molnar * For all levels sharing cache; connect a sched_domain_shared 1188f2cb1360SIngo Molnar * instance. 1189f2cb1360SIngo Molnar */ 1190f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1191f2cb1360SIngo Molnar sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1192f2cb1360SIngo Molnar atomic_inc(&sd->shared->ref); 1193f2cb1360SIngo Molnar atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1194f2cb1360SIngo Molnar } 1195f2cb1360SIngo Molnar 1196f2cb1360SIngo Molnar sd->private = sdd; 1197f2cb1360SIngo Molnar 1198f2cb1360SIngo Molnar return sd; 1199f2cb1360SIngo Molnar } 1200f2cb1360SIngo Molnar 1201f2cb1360SIngo Molnar /* 1202f2cb1360SIngo Molnar * Topology list, bottom-up. 1203f2cb1360SIngo Molnar */ 1204f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = { 1205f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT 1206f2cb1360SIngo Molnar { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1207f2cb1360SIngo Molnar #endif 1208f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC 1209f2cb1360SIngo Molnar { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1210f2cb1360SIngo Molnar #endif 1211f2cb1360SIngo Molnar { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1212f2cb1360SIngo Molnar { NULL, }, 1213f2cb1360SIngo Molnar }; 1214f2cb1360SIngo Molnar 1215f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology = 1216f2cb1360SIngo Molnar default_topology; 1217f2cb1360SIngo Molnar 1218f2cb1360SIngo Molnar #define for_each_sd_topology(tl) \ 1219f2cb1360SIngo Molnar for (tl = sched_domain_topology; tl->mask; tl++) 1220f2cb1360SIngo Molnar 1221f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl) 1222f2cb1360SIngo Molnar { 1223f2cb1360SIngo Molnar if (WARN_ON_ONCE(sched_smp_initialized)) 1224f2cb1360SIngo Molnar return; 1225f2cb1360SIngo Molnar 1226f2cb1360SIngo Molnar sched_domain_topology = tl; 1227f2cb1360SIngo Molnar } 1228f2cb1360SIngo Molnar 1229f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1230f2cb1360SIngo Molnar 1231f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu) 1232f2cb1360SIngo Molnar { 1233f2cb1360SIngo Molnar return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1234f2cb1360SIngo Molnar } 1235f2cb1360SIngo Molnar 1236f2cb1360SIngo Molnar static void sched_numa_warn(const char *str) 1237f2cb1360SIngo Molnar { 1238f2cb1360SIngo Molnar static int done = false; 1239f2cb1360SIngo Molnar int i,j; 1240f2cb1360SIngo Molnar 1241f2cb1360SIngo Molnar if (done) 1242f2cb1360SIngo Molnar return; 1243f2cb1360SIngo Molnar 1244f2cb1360SIngo Molnar done = true; 1245f2cb1360SIngo Molnar 1246f2cb1360SIngo Molnar printk(KERN_WARNING "ERROR: %s\n\n", str); 1247f2cb1360SIngo Molnar 1248f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1249f2cb1360SIngo Molnar printk(KERN_WARNING " "); 1250f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1251f2cb1360SIngo Molnar printk(KERN_CONT "%02d ", node_distance(i,j)); 1252f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 1253f2cb1360SIngo Molnar } 1254f2cb1360SIngo Molnar printk(KERN_WARNING "\n"); 1255f2cb1360SIngo Molnar } 1256f2cb1360SIngo Molnar 1257f2cb1360SIngo Molnar bool find_numa_distance(int distance) 1258f2cb1360SIngo Molnar { 1259f2cb1360SIngo Molnar int i; 1260f2cb1360SIngo Molnar 1261f2cb1360SIngo Molnar if (distance == node_distance(0, 0)) 1262f2cb1360SIngo Molnar return true; 1263f2cb1360SIngo Molnar 1264f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1265f2cb1360SIngo Molnar if (sched_domains_numa_distance[i] == distance) 1266f2cb1360SIngo Molnar return true; 1267f2cb1360SIngo Molnar } 1268f2cb1360SIngo Molnar 1269f2cb1360SIngo Molnar return false; 1270f2cb1360SIngo Molnar } 1271f2cb1360SIngo Molnar 1272f2cb1360SIngo Molnar /* 1273f2cb1360SIngo Molnar * A system can have three types of NUMA topology: 1274f2cb1360SIngo Molnar * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1275f2cb1360SIngo Molnar * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1276f2cb1360SIngo Molnar * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1277f2cb1360SIngo Molnar * 1278f2cb1360SIngo Molnar * The difference between a glueless mesh topology and a backplane 1279f2cb1360SIngo Molnar * topology lies in whether communication between not directly 1280f2cb1360SIngo Molnar * connected nodes goes through intermediary nodes (where programs 1281f2cb1360SIngo Molnar * could run), or through backplane controllers. This affects 1282f2cb1360SIngo Molnar * placement of programs. 1283f2cb1360SIngo Molnar * 1284f2cb1360SIngo Molnar * The type of topology can be discerned with the following tests: 1285f2cb1360SIngo Molnar * - If the maximum distance between any nodes is 1 hop, the system 1286f2cb1360SIngo Molnar * is directly connected. 1287f2cb1360SIngo Molnar * - If for two nodes A and B, located N > 1 hops away from each other, 1288f2cb1360SIngo Molnar * there is an intermediary node C, which is < N hops away from both 1289f2cb1360SIngo Molnar * nodes A and B, the system is a glueless mesh. 1290f2cb1360SIngo Molnar */ 1291f2cb1360SIngo Molnar static void init_numa_topology_type(void) 1292f2cb1360SIngo Molnar { 1293f2cb1360SIngo Molnar int a, b, c, n; 1294f2cb1360SIngo Molnar 1295f2cb1360SIngo Molnar n = sched_max_numa_distance; 1296f2cb1360SIngo Molnar 1297f2cb1360SIngo Molnar if (sched_domains_numa_levels <= 1) { 1298f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_DIRECT; 1299f2cb1360SIngo Molnar return; 1300f2cb1360SIngo Molnar } 1301f2cb1360SIngo Molnar 1302f2cb1360SIngo Molnar for_each_online_node(a) { 1303f2cb1360SIngo Molnar for_each_online_node(b) { 1304f2cb1360SIngo Molnar /* Find two nodes furthest removed from each other. */ 1305f2cb1360SIngo Molnar if (node_distance(a, b) < n) 1306f2cb1360SIngo Molnar continue; 1307f2cb1360SIngo Molnar 1308f2cb1360SIngo Molnar /* Is there an intermediary node between a and b? */ 1309f2cb1360SIngo Molnar for_each_online_node(c) { 1310f2cb1360SIngo Molnar if (node_distance(a, c) < n && 1311f2cb1360SIngo Molnar node_distance(b, c) < n) { 1312f2cb1360SIngo Molnar sched_numa_topology_type = 1313f2cb1360SIngo Molnar NUMA_GLUELESS_MESH; 1314f2cb1360SIngo Molnar return; 1315f2cb1360SIngo Molnar } 1316f2cb1360SIngo Molnar } 1317f2cb1360SIngo Molnar 1318f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_BACKPLANE; 1319f2cb1360SIngo Molnar return; 1320f2cb1360SIngo Molnar } 1321f2cb1360SIngo Molnar } 1322f2cb1360SIngo Molnar } 1323f2cb1360SIngo Molnar 1324f2cb1360SIngo Molnar void sched_init_numa(void) 1325f2cb1360SIngo Molnar { 1326f2cb1360SIngo Molnar int next_distance, curr_distance = node_distance(0, 0); 1327f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1328f2cb1360SIngo Molnar int level = 0; 1329f2cb1360SIngo Molnar int i, j, k; 1330f2cb1360SIngo Molnar 1331f2cb1360SIngo Molnar sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 1332f2cb1360SIngo Molnar if (!sched_domains_numa_distance) 1333f2cb1360SIngo Molnar return; 1334f2cb1360SIngo Molnar 1335f2cb1360SIngo Molnar /* 1336f2cb1360SIngo Molnar * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1337f2cb1360SIngo Molnar * unique distances in the node_distance() table. 1338f2cb1360SIngo Molnar * 1339f2cb1360SIngo Molnar * Assumes node_distance(0,j) includes all distances in 1340f2cb1360SIngo Molnar * node_distance(i,j) in order to avoid cubic time. 1341f2cb1360SIngo Molnar */ 1342f2cb1360SIngo Molnar next_distance = curr_distance; 1343f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1344f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1345f2cb1360SIngo Molnar for (k = 0; k < nr_node_ids; k++) { 1346f2cb1360SIngo Molnar int distance = node_distance(i, k); 1347f2cb1360SIngo Molnar 1348f2cb1360SIngo Molnar if (distance > curr_distance && 1349f2cb1360SIngo Molnar (distance < next_distance || 1350f2cb1360SIngo Molnar next_distance == curr_distance)) 1351f2cb1360SIngo Molnar next_distance = distance; 1352f2cb1360SIngo Molnar 1353f2cb1360SIngo Molnar /* 1354f2cb1360SIngo Molnar * While not a strong assumption it would be nice to know 1355f2cb1360SIngo Molnar * about cases where if node A is connected to B, B is not 1356f2cb1360SIngo Molnar * equally connected to A. 1357f2cb1360SIngo Molnar */ 1358f2cb1360SIngo Molnar if (sched_debug() && node_distance(k, i) != distance) 1359f2cb1360SIngo Molnar sched_numa_warn("Node-distance not symmetric"); 1360f2cb1360SIngo Molnar 1361f2cb1360SIngo Molnar if (sched_debug() && i && !find_numa_distance(distance)) 1362f2cb1360SIngo Molnar sched_numa_warn("Node-0 not representative"); 1363f2cb1360SIngo Molnar } 1364f2cb1360SIngo Molnar if (next_distance != curr_distance) { 1365f2cb1360SIngo Molnar sched_domains_numa_distance[level++] = next_distance; 1366f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1367f2cb1360SIngo Molnar curr_distance = next_distance; 1368f2cb1360SIngo Molnar } else break; 1369f2cb1360SIngo Molnar } 1370f2cb1360SIngo Molnar 1371f2cb1360SIngo Molnar /* 1372f2cb1360SIngo Molnar * In case of sched_debug() we verify the above assumption. 1373f2cb1360SIngo Molnar */ 1374f2cb1360SIngo Molnar if (!sched_debug()) 1375f2cb1360SIngo Molnar break; 1376f2cb1360SIngo Molnar } 1377f2cb1360SIngo Molnar 1378f2cb1360SIngo Molnar if (!level) 1379f2cb1360SIngo Molnar return; 1380f2cb1360SIngo Molnar 1381f2cb1360SIngo Molnar /* 1382f2cb1360SIngo Molnar * 'level' contains the number of unique distances, excluding the 1383f2cb1360SIngo Molnar * identity distance node_distance(i,i). 1384f2cb1360SIngo Molnar * 1385f2cb1360SIngo Molnar * The sched_domains_numa_distance[] array includes the actual distance 1386f2cb1360SIngo Molnar * numbers. 1387f2cb1360SIngo Molnar */ 1388f2cb1360SIngo Molnar 1389f2cb1360SIngo Molnar /* 1390f2cb1360SIngo Molnar * Here, we should temporarily reset sched_domains_numa_levels to 0. 1391f2cb1360SIngo Molnar * If it fails to allocate memory for array sched_domains_numa_masks[][], 1392f2cb1360SIngo Molnar * the array will contain less then 'level' members. This could be 1393f2cb1360SIngo Molnar * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1394f2cb1360SIngo Molnar * in other functions. 1395f2cb1360SIngo Molnar * 1396f2cb1360SIngo Molnar * We reset it to 'level' at the end of this function. 1397f2cb1360SIngo Molnar */ 1398f2cb1360SIngo Molnar sched_domains_numa_levels = 0; 1399f2cb1360SIngo Molnar 1400f2cb1360SIngo Molnar sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1401f2cb1360SIngo Molnar if (!sched_domains_numa_masks) 1402f2cb1360SIngo Molnar return; 1403f2cb1360SIngo Molnar 1404f2cb1360SIngo Molnar /* 1405f2cb1360SIngo Molnar * Now for each level, construct a mask per node which contains all 1406f2cb1360SIngo Molnar * CPUs of nodes that are that many hops away from us. 1407f2cb1360SIngo Molnar */ 1408f2cb1360SIngo Molnar for (i = 0; i < level; i++) { 1409f2cb1360SIngo Molnar sched_domains_numa_masks[i] = 1410f2cb1360SIngo Molnar kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1411f2cb1360SIngo Molnar if (!sched_domains_numa_masks[i]) 1412f2cb1360SIngo Molnar return; 1413f2cb1360SIngo Molnar 1414f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1415f2cb1360SIngo Molnar struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1416f2cb1360SIngo Molnar if (!mask) 1417f2cb1360SIngo Molnar return; 1418f2cb1360SIngo Molnar 1419f2cb1360SIngo Molnar sched_domains_numa_masks[i][j] = mask; 1420f2cb1360SIngo Molnar 1421f2cb1360SIngo Molnar for_each_node(k) { 1422f2cb1360SIngo Molnar if (node_distance(j, k) > sched_domains_numa_distance[i]) 1423f2cb1360SIngo Molnar continue; 1424f2cb1360SIngo Molnar 1425f2cb1360SIngo Molnar cpumask_or(mask, mask, cpumask_of_node(k)); 1426f2cb1360SIngo Molnar } 1427f2cb1360SIngo Molnar } 1428f2cb1360SIngo Molnar } 1429f2cb1360SIngo Molnar 1430f2cb1360SIngo Molnar /* Compute default topology size */ 1431f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++); 1432f2cb1360SIngo Molnar 1433f2cb1360SIngo Molnar tl = kzalloc((i + level + 1) * 1434f2cb1360SIngo Molnar sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1435f2cb1360SIngo Molnar if (!tl) 1436f2cb1360SIngo Molnar return; 1437f2cb1360SIngo Molnar 1438f2cb1360SIngo Molnar /* 1439f2cb1360SIngo Molnar * Copy the default topology bits.. 1440f2cb1360SIngo Molnar */ 1441f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++) 1442f2cb1360SIngo Molnar tl[i] = sched_domain_topology[i]; 1443f2cb1360SIngo Molnar 1444f2cb1360SIngo Molnar /* 1445f2cb1360SIngo Molnar * .. and append 'j' levels of NUMA goodness. 1446f2cb1360SIngo Molnar */ 1447f2cb1360SIngo Molnar for (j = 0; j < level; i++, j++) { 1448f2cb1360SIngo Molnar tl[i] = (struct sched_domain_topology_level){ 1449f2cb1360SIngo Molnar .mask = sd_numa_mask, 1450f2cb1360SIngo Molnar .sd_flags = cpu_numa_flags, 1451f2cb1360SIngo Molnar .flags = SDTL_OVERLAP, 1452f2cb1360SIngo Molnar .numa_level = j, 1453f2cb1360SIngo Molnar SD_INIT_NAME(NUMA) 1454f2cb1360SIngo Molnar }; 1455f2cb1360SIngo Molnar } 1456f2cb1360SIngo Molnar 1457f2cb1360SIngo Molnar sched_domain_topology = tl; 1458f2cb1360SIngo Molnar 1459f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1460f2cb1360SIngo Molnar sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1461f2cb1360SIngo Molnar 1462f2cb1360SIngo Molnar init_numa_topology_type(); 1463f2cb1360SIngo Molnar } 1464f2cb1360SIngo Molnar 1465f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu) 1466f2cb1360SIngo Molnar { 1467f2cb1360SIngo Molnar int node = cpu_to_node(cpu); 1468f2cb1360SIngo Molnar int i, j; 1469f2cb1360SIngo Molnar 1470f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1471f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1472f2cb1360SIngo Molnar if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1473f2cb1360SIngo Molnar cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1474f2cb1360SIngo Molnar } 1475f2cb1360SIngo Molnar } 1476f2cb1360SIngo Molnar } 1477f2cb1360SIngo Molnar 1478f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu) 1479f2cb1360SIngo Molnar { 1480f2cb1360SIngo Molnar int i, j; 1481f2cb1360SIngo Molnar 1482f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1483f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1484f2cb1360SIngo Molnar cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1485f2cb1360SIngo Molnar } 1486f2cb1360SIngo Molnar } 1487f2cb1360SIngo Molnar 1488f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */ 1489f2cb1360SIngo Molnar 1490f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map) 1491f2cb1360SIngo Molnar { 1492f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1493f2cb1360SIngo Molnar int j; 1494f2cb1360SIngo Molnar 1495f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1496f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1497f2cb1360SIngo Molnar 1498f2cb1360SIngo Molnar sdd->sd = alloc_percpu(struct sched_domain *); 1499f2cb1360SIngo Molnar if (!sdd->sd) 1500f2cb1360SIngo Molnar return -ENOMEM; 1501f2cb1360SIngo Molnar 1502f2cb1360SIngo Molnar sdd->sds = alloc_percpu(struct sched_domain_shared *); 1503f2cb1360SIngo Molnar if (!sdd->sds) 1504f2cb1360SIngo Molnar return -ENOMEM; 1505f2cb1360SIngo Molnar 1506f2cb1360SIngo Molnar sdd->sg = alloc_percpu(struct sched_group *); 1507f2cb1360SIngo Molnar if (!sdd->sg) 1508f2cb1360SIngo Molnar return -ENOMEM; 1509f2cb1360SIngo Molnar 1510f2cb1360SIngo Molnar sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1511f2cb1360SIngo Molnar if (!sdd->sgc) 1512f2cb1360SIngo Molnar return -ENOMEM; 1513f2cb1360SIngo Molnar 1514f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1515f2cb1360SIngo Molnar struct sched_domain *sd; 1516f2cb1360SIngo Molnar struct sched_domain_shared *sds; 1517f2cb1360SIngo Molnar struct sched_group *sg; 1518f2cb1360SIngo Molnar struct sched_group_capacity *sgc; 1519f2cb1360SIngo Molnar 1520f2cb1360SIngo Molnar sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1521f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1522f2cb1360SIngo Molnar if (!sd) 1523f2cb1360SIngo Molnar return -ENOMEM; 1524f2cb1360SIngo Molnar 1525f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, j) = sd; 1526f2cb1360SIngo Molnar 1527f2cb1360SIngo Molnar sds = kzalloc_node(sizeof(struct sched_domain_shared), 1528f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1529f2cb1360SIngo Molnar if (!sds) 1530f2cb1360SIngo Molnar return -ENOMEM; 1531f2cb1360SIngo Molnar 1532f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, j) = sds; 1533f2cb1360SIngo Molnar 1534f2cb1360SIngo Molnar sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1535f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1536f2cb1360SIngo Molnar if (!sg) 1537f2cb1360SIngo Molnar return -ENOMEM; 1538f2cb1360SIngo Molnar 1539f2cb1360SIngo Molnar sg->next = sg; 1540f2cb1360SIngo Molnar 1541f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, j) = sg; 1542f2cb1360SIngo Molnar 1543f2cb1360SIngo Molnar sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1544f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1545f2cb1360SIngo Molnar if (!sgc) 1546f2cb1360SIngo Molnar return -ENOMEM; 1547f2cb1360SIngo Molnar 1548005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG 1549005f874dSPeter Zijlstra sgc->id = j; 1550005f874dSPeter Zijlstra #endif 1551005f874dSPeter Zijlstra 1552f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, j) = sgc; 1553f2cb1360SIngo Molnar } 1554f2cb1360SIngo Molnar } 1555f2cb1360SIngo Molnar 1556f2cb1360SIngo Molnar return 0; 1557f2cb1360SIngo Molnar } 1558f2cb1360SIngo Molnar 1559f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map) 1560f2cb1360SIngo Molnar { 1561f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1562f2cb1360SIngo Molnar int j; 1563f2cb1360SIngo Molnar 1564f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1565f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1566f2cb1360SIngo Molnar 1567f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1568f2cb1360SIngo Molnar struct sched_domain *sd; 1569f2cb1360SIngo Molnar 1570f2cb1360SIngo Molnar if (sdd->sd) { 1571f2cb1360SIngo Molnar sd = *per_cpu_ptr(sdd->sd, j); 1572f2cb1360SIngo Molnar if (sd && (sd->flags & SD_OVERLAP)) 1573f2cb1360SIngo Molnar free_sched_groups(sd->groups, 0); 1574f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sd, j)); 1575f2cb1360SIngo Molnar } 1576f2cb1360SIngo Molnar 1577f2cb1360SIngo Molnar if (sdd->sds) 1578f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sds, j)); 1579f2cb1360SIngo Molnar if (sdd->sg) 1580f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sg, j)); 1581f2cb1360SIngo Molnar if (sdd->sgc) 1582f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sgc, j)); 1583f2cb1360SIngo Molnar } 1584f2cb1360SIngo Molnar free_percpu(sdd->sd); 1585f2cb1360SIngo Molnar sdd->sd = NULL; 1586f2cb1360SIngo Molnar free_percpu(sdd->sds); 1587f2cb1360SIngo Molnar sdd->sds = NULL; 1588f2cb1360SIngo Molnar free_percpu(sdd->sg); 1589f2cb1360SIngo Molnar sdd->sg = NULL; 1590f2cb1360SIngo Molnar free_percpu(sdd->sgc); 1591f2cb1360SIngo Molnar sdd->sgc = NULL; 1592f2cb1360SIngo Molnar } 1593f2cb1360SIngo Molnar } 1594f2cb1360SIngo Molnar 1595181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1596f2cb1360SIngo Molnar const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1597f2cb1360SIngo Molnar struct sched_domain *child, int cpu) 1598f2cb1360SIngo Molnar { 1599f2cb1360SIngo Molnar struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 1600f2cb1360SIngo Molnar 1601f2cb1360SIngo Molnar if (child) { 1602f2cb1360SIngo Molnar sd->level = child->level + 1; 1603f2cb1360SIngo Molnar sched_domain_level_max = max(sched_domain_level_max, sd->level); 1604f2cb1360SIngo Molnar child->parent = sd; 1605f2cb1360SIngo Molnar 1606f2cb1360SIngo Molnar if (!cpumask_subset(sched_domain_span(child), 1607f2cb1360SIngo Molnar sched_domain_span(sd))) { 1608f2cb1360SIngo Molnar pr_err("BUG: arch topology borken\n"); 1609f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1610f2cb1360SIngo Molnar pr_err(" the %s domain not a subset of the %s domain\n", 1611f2cb1360SIngo Molnar child->name, sd->name); 1612f2cb1360SIngo Molnar #endif 1613f2cb1360SIngo Molnar /* Fixup, ensure @sd has at least @child cpus. */ 1614f2cb1360SIngo Molnar cpumask_or(sched_domain_span(sd), 1615f2cb1360SIngo Molnar sched_domain_span(sd), 1616f2cb1360SIngo Molnar sched_domain_span(child)); 1617f2cb1360SIngo Molnar } 1618f2cb1360SIngo Molnar 1619f2cb1360SIngo Molnar } 1620f2cb1360SIngo Molnar set_domain_attribute(sd, attr); 1621f2cb1360SIngo Molnar 1622f2cb1360SIngo Molnar return sd; 1623f2cb1360SIngo Molnar } 1624f2cb1360SIngo Molnar 1625f2cb1360SIngo Molnar /* 1626f2cb1360SIngo Molnar * Build sched domains for a given set of CPUs and attach the sched domains 1627f2cb1360SIngo Molnar * to the individual CPUs 1628f2cb1360SIngo Molnar */ 1629f2cb1360SIngo Molnar static int 1630f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1631f2cb1360SIngo Molnar { 1632f2cb1360SIngo Molnar enum s_alloc alloc_state; 1633f2cb1360SIngo Molnar struct sched_domain *sd; 1634f2cb1360SIngo Molnar struct s_data d; 1635f2cb1360SIngo Molnar struct rq *rq = NULL; 1636f2cb1360SIngo Molnar int i, ret = -ENOMEM; 1637f2cb1360SIngo Molnar 1638f2cb1360SIngo Molnar alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1639f2cb1360SIngo Molnar if (alloc_state != sa_rootdomain) 1640f2cb1360SIngo Molnar goto error; 1641f2cb1360SIngo Molnar 1642f2cb1360SIngo Molnar /* Set up domains for CPUs specified by the cpu_map: */ 1643f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 1644f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1645f2cb1360SIngo Molnar 1646f2cb1360SIngo Molnar sd = NULL; 1647f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1648f2cb1360SIngo Molnar sd = build_sched_domain(tl, cpu_map, attr, sd, i); 1649f2cb1360SIngo Molnar if (tl == sched_domain_topology) 1650f2cb1360SIngo Molnar *per_cpu_ptr(d.sd, i) = sd; 1651af85596cSPeter Zijlstra if (tl->flags & SDTL_OVERLAP) 1652f2cb1360SIngo Molnar sd->flags |= SD_OVERLAP; 1653f2cb1360SIngo Molnar if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1654f2cb1360SIngo Molnar break; 1655f2cb1360SIngo Molnar } 1656f2cb1360SIngo Molnar } 1657f2cb1360SIngo Molnar 1658f2cb1360SIngo Molnar /* Build the groups for the domains */ 1659f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 1660f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1661f2cb1360SIngo Molnar sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1662f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 1663f2cb1360SIngo Molnar if (build_overlap_sched_groups(sd, i)) 1664f2cb1360SIngo Molnar goto error; 1665f2cb1360SIngo Molnar } else { 1666f2cb1360SIngo Molnar if (build_sched_groups(sd, i)) 1667f2cb1360SIngo Molnar goto error; 1668f2cb1360SIngo Molnar } 1669f2cb1360SIngo Molnar } 1670f2cb1360SIngo Molnar } 1671f2cb1360SIngo Molnar 1672f2cb1360SIngo Molnar /* Calculate CPU capacity for physical packages and nodes */ 1673f2cb1360SIngo Molnar for (i = nr_cpumask_bits-1; i >= 0; i--) { 1674f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, cpu_map)) 1675f2cb1360SIngo Molnar continue; 1676f2cb1360SIngo Molnar 1677f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1678f2cb1360SIngo Molnar claim_allocations(i, sd); 1679f2cb1360SIngo Molnar init_sched_groups_capacity(i, sd); 1680f2cb1360SIngo Molnar } 1681f2cb1360SIngo Molnar } 1682f2cb1360SIngo Molnar 1683f2cb1360SIngo Molnar /* Attach the domains */ 1684f2cb1360SIngo Molnar rcu_read_lock(); 1685f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 1686f2cb1360SIngo Molnar rq = cpu_rq(i); 1687f2cb1360SIngo Molnar sd = *per_cpu_ptr(d.sd, i); 1688f2cb1360SIngo Molnar 1689f2cb1360SIngo Molnar /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1690f2cb1360SIngo Molnar if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1691f2cb1360SIngo Molnar WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1692f2cb1360SIngo Molnar 1693f2cb1360SIngo Molnar cpu_attach_domain(sd, d.rd, i); 1694f2cb1360SIngo Molnar } 1695f2cb1360SIngo Molnar rcu_read_unlock(); 1696f2cb1360SIngo Molnar 1697f2cb1360SIngo Molnar if (rq && sched_debug_enabled) { 1698f2cb1360SIngo Molnar pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 1699f2cb1360SIngo Molnar cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1700f2cb1360SIngo Molnar } 1701f2cb1360SIngo Molnar 1702f2cb1360SIngo Molnar ret = 0; 1703f2cb1360SIngo Molnar error: 1704f2cb1360SIngo Molnar __free_domain_allocs(&d, alloc_state, cpu_map); 1705f2cb1360SIngo Molnar return ret; 1706f2cb1360SIngo Molnar } 1707f2cb1360SIngo Molnar 1708f2cb1360SIngo Molnar /* Current sched domains: */ 1709f2cb1360SIngo Molnar static cpumask_var_t *doms_cur; 1710f2cb1360SIngo Molnar 1711f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */ 1712f2cb1360SIngo Molnar static int ndoms_cur; 1713f2cb1360SIngo Molnar 1714f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */ 1715f2cb1360SIngo Molnar static struct sched_domain_attr *dattr_cur; 1716f2cb1360SIngo Molnar 1717f2cb1360SIngo Molnar /* 1718f2cb1360SIngo Molnar * Special case: If a kmalloc() of a doms_cur partition (array of 1719f2cb1360SIngo Molnar * cpumask) fails, then fallback to a single sched domain, 1720f2cb1360SIngo Molnar * as determined by the single cpumask fallback_doms. 1721f2cb1360SIngo Molnar */ 17228d5dc512SPeter Zijlstra static cpumask_var_t fallback_doms; 1723f2cb1360SIngo Molnar 1724f2cb1360SIngo Molnar /* 1725f2cb1360SIngo Molnar * arch_update_cpu_topology lets virtualized architectures update the 1726f2cb1360SIngo Molnar * CPU core maps. It is supposed to return 1 if the topology changed 1727f2cb1360SIngo Molnar * or 0 if it stayed the same. 1728f2cb1360SIngo Molnar */ 1729f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void) 1730f2cb1360SIngo Molnar { 1731f2cb1360SIngo Molnar return 0; 1732f2cb1360SIngo Molnar } 1733f2cb1360SIngo Molnar 1734f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1735f2cb1360SIngo Molnar { 1736f2cb1360SIngo Molnar int i; 1737f2cb1360SIngo Molnar cpumask_var_t *doms; 1738f2cb1360SIngo Molnar 1739f2cb1360SIngo Molnar doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 1740f2cb1360SIngo Molnar if (!doms) 1741f2cb1360SIngo Molnar return NULL; 1742f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) { 1743f2cb1360SIngo Molnar if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1744f2cb1360SIngo Molnar free_sched_domains(doms, i); 1745f2cb1360SIngo Molnar return NULL; 1746f2cb1360SIngo Molnar } 1747f2cb1360SIngo Molnar } 1748f2cb1360SIngo Molnar return doms; 1749f2cb1360SIngo Molnar } 1750f2cb1360SIngo Molnar 1751f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1752f2cb1360SIngo Molnar { 1753f2cb1360SIngo Molnar unsigned int i; 1754f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) 1755f2cb1360SIngo Molnar free_cpumask_var(doms[i]); 1756f2cb1360SIngo Molnar kfree(doms); 1757f2cb1360SIngo Molnar } 1758f2cb1360SIngo Molnar 1759f2cb1360SIngo Molnar /* 1760f2cb1360SIngo Molnar * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1761f2cb1360SIngo Molnar * For now this just excludes isolated CPUs, but could be used to 1762f2cb1360SIngo Molnar * exclude other special cases in the future. 1763f2cb1360SIngo Molnar */ 17648d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map) 1765f2cb1360SIngo Molnar { 1766f2cb1360SIngo Molnar int err; 1767f2cb1360SIngo Molnar 17688d5dc512SPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 17691676330eSPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 17708d5dc512SPeter Zijlstra zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 17718d5dc512SPeter Zijlstra 1772f2cb1360SIngo Molnar arch_update_cpu_topology(); 1773f2cb1360SIngo Molnar ndoms_cur = 1; 1774f2cb1360SIngo Molnar doms_cur = alloc_sched_domains(ndoms_cur); 1775f2cb1360SIngo Molnar if (!doms_cur) 1776f2cb1360SIngo Molnar doms_cur = &fallback_doms; 1777f2cb1360SIngo Molnar cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 1778f2cb1360SIngo Molnar err = build_sched_domains(doms_cur[0], NULL); 1779f2cb1360SIngo Molnar register_sched_domain_sysctl(); 1780f2cb1360SIngo Molnar 1781f2cb1360SIngo Molnar return err; 1782f2cb1360SIngo Molnar } 1783f2cb1360SIngo Molnar 1784f2cb1360SIngo Molnar /* 1785f2cb1360SIngo Molnar * Detach sched domains from a group of CPUs specified in cpu_map 1786f2cb1360SIngo Molnar * These CPUs will now be attached to the NULL domain 1787f2cb1360SIngo Molnar */ 1788f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map) 1789f2cb1360SIngo Molnar { 1790f2cb1360SIngo Molnar int i; 1791f2cb1360SIngo Molnar 1792f2cb1360SIngo Molnar rcu_read_lock(); 1793f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) 1794f2cb1360SIngo Molnar cpu_attach_domain(NULL, &def_root_domain, i); 1795f2cb1360SIngo Molnar rcu_read_unlock(); 1796f2cb1360SIngo Molnar } 1797f2cb1360SIngo Molnar 1798f2cb1360SIngo Molnar /* handle null as "default" */ 1799f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1800f2cb1360SIngo Molnar struct sched_domain_attr *new, int idx_new) 1801f2cb1360SIngo Molnar { 1802f2cb1360SIngo Molnar struct sched_domain_attr tmp; 1803f2cb1360SIngo Molnar 1804f2cb1360SIngo Molnar /* Fast path: */ 1805f2cb1360SIngo Molnar if (!new && !cur) 1806f2cb1360SIngo Molnar return 1; 1807f2cb1360SIngo Molnar 1808f2cb1360SIngo Molnar tmp = SD_ATTR_INIT; 1809f2cb1360SIngo Molnar return !memcmp(cur ? (cur + idx_cur) : &tmp, 1810f2cb1360SIngo Molnar new ? (new + idx_new) : &tmp, 1811f2cb1360SIngo Molnar sizeof(struct sched_domain_attr)); 1812f2cb1360SIngo Molnar } 1813f2cb1360SIngo Molnar 1814f2cb1360SIngo Molnar /* 1815f2cb1360SIngo Molnar * Partition sched domains as specified by the 'ndoms_new' 1816f2cb1360SIngo Molnar * cpumasks in the array doms_new[] of cpumasks. This compares 1817f2cb1360SIngo Molnar * doms_new[] to the current sched domain partitioning, doms_cur[]. 1818f2cb1360SIngo Molnar * It destroys each deleted domain and builds each new domain. 1819f2cb1360SIngo Molnar * 1820f2cb1360SIngo Molnar * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1821f2cb1360SIngo Molnar * The masks don't intersect (don't overlap.) We should setup one 1822f2cb1360SIngo Molnar * sched domain for each mask. CPUs not in any of the cpumasks will 1823f2cb1360SIngo Molnar * not be load balanced. If the same cpumask appears both in the 1824f2cb1360SIngo Molnar * current 'doms_cur' domains and in the new 'doms_new', we can leave 1825f2cb1360SIngo Molnar * it as it is. 1826f2cb1360SIngo Molnar * 1827f2cb1360SIngo Molnar * The passed in 'doms_new' should be allocated using 1828f2cb1360SIngo Molnar * alloc_sched_domains. This routine takes ownership of it and will 1829f2cb1360SIngo Molnar * free_sched_domains it when done with it. If the caller failed the 1830f2cb1360SIngo Molnar * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1831f2cb1360SIngo Molnar * and partition_sched_domains() will fallback to the single partition 1832f2cb1360SIngo Molnar * 'fallback_doms', it also forces the domains to be rebuilt. 1833f2cb1360SIngo Molnar * 1834f2cb1360SIngo Molnar * If doms_new == NULL it will be replaced with cpu_online_mask. 1835f2cb1360SIngo Molnar * ndoms_new == 0 is a special case for destroying existing domains, 1836f2cb1360SIngo Molnar * and it will not create the default domain. 1837f2cb1360SIngo Molnar * 1838f2cb1360SIngo Molnar * Call with hotplug lock held 1839f2cb1360SIngo Molnar */ 1840f2cb1360SIngo Molnar void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1841f2cb1360SIngo Molnar struct sched_domain_attr *dattr_new) 1842f2cb1360SIngo Molnar { 1843f2cb1360SIngo Molnar int i, j, n; 1844f2cb1360SIngo Molnar int new_topology; 1845f2cb1360SIngo Molnar 1846f2cb1360SIngo Molnar mutex_lock(&sched_domains_mutex); 1847f2cb1360SIngo Molnar 1848f2cb1360SIngo Molnar /* Always unregister in case we don't destroy any domains: */ 1849f2cb1360SIngo Molnar unregister_sched_domain_sysctl(); 1850f2cb1360SIngo Molnar 1851f2cb1360SIngo Molnar /* Let the architecture update CPU core mappings: */ 1852f2cb1360SIngo Molnar new_topology = arch_update_cpu_topology(); 1853f2cb1360SIngo Molnar 1854f2cb1360SIngo Molnar n = doms_new ? ndoms_new : 0; 1855f2cb1360SIngo Molnar 1856f2cb1360SIngo Molnar /* Destroy deleted domains: */ 1857f2cb1360SIngo Molnar for (i = 0; i < ndoms_cur; i++) { 1858f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 1859f2cb1360SIngo Molnar if (cpumask_equal(doms_cur[i], doms_new[j]) 1860f2cb1360SIngo Molnar && dattrs_equal(dattr_cur, i, dattr_new, j)) 1861f2cb1360SIngo Molnar goto match1; 1862f2cb1360SIngo Molnar } 1863f2cb1360SIngo Molnar /* No match - a current sched domain not in new doms_new[] */ 1864f2cb1360SIngo Molnar detach_destroy_domains(doms_cur[i]); 1865f2cb1360SIngo Molnar match1: 1866f2cb1360SIngo Molnar ; 1867f2cb1360SIngo Molnar } 1868f2cb1360SIngo Molnar 1869f2cb1360SIngo Molnar n = ndoms_cur; 1870f2cb1360SIngo Molnar if (doms_new == NULL) { 1871f2cb1360SIngo Molnar n = 0; 1872f2cb1360SIngo Molnar doms_new = &fallback_doms; 1873f2cb1360SIngo Molnar cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 1874f2cb1360SIngo Molnar WARN_ON_ONCE(dattr_new); 1875f2cb1360SIngo Molnar } 1876f2cb1360SIngo Molnar 1877f2cb1360SIngo Molnar /* Build new domains: */ 1878f2cb1360SIngo Molnar for (i = 0; i < ndoms_new; i++) { 1879f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 1880f2cb1360SIngo Molnar if (cpumask_equal(doms_new[i], doms_cur[j]) 1881f2cb1360SIngo Molnar && dattrs_equal(dattr_new, i, dattr_cur, j)) 1882f2cb1360SIngo Molnar goto match2; 1883f2cb1360SIngo Molnar } 1884f2cb1360SIngo Molnar /* No match - add a new doms_new */ 1885f2cb1360SIngo Molnar build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1886f2cb1360SIngo Molnar match2: 1887f2cb1360SIngo Molnar ; 1888f2cb1360SIngo Molnar } 1889f2cb1360SIngo Molnar 1890f2cb1360SIngo Molnar /* Remember the new sched domains: */ 1891f2cb1360SIngo Molnar if (doms_cur != &fallback_doms) 1892f2cb1360SIngo Molnar free_sched_domains(doms_cur, ndoms_cur); 1893f2cb1360SIngo Molnar 1894f2cb1360SIngo Molnar kfree(dattr_cur); 1895f2cb1360SIngo Molnar doms_cur = doms_new; 1896f2cb1360SIngo Molnar dattr_cur = dattr_new; 1897f2cb1360SIngo Molnar ndoms_cur = ndoms_new; 1898f2cb1360SIngo Molnar 1899f2cb1360SIngo Molnar register_sched_domain_sysctl(); 1900f2cb1360SIngo Molnar 1901f2cb1360SIngo Molnar mutex_unlock(&sched_domains_mutex); 1902f2cb1360SIngo Molnar } 1903f2cb1360SIngo Molnar 1904