xref: /openbmc/linux/kernel/sched/topology.c (revision 993f0b0510dad98b4e6e39506834dab0d13fd539)
1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0
2f2cb1360SIngo Molnar /*
3f2cb1360SIngo Molnar  * Scheduler topology setup/handling methods
4f2cb1360SIngo Molnar  */
5f2cb1360SIngo Molnar #include "sched.h"
6f2cb1360SIngo Molnar 
7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex);
8f2cb1360SIngo Molnar 
9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */
10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask;
11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2;
12f2cb1360SIngo Molnar 
13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
14f2cb1360SIngo Molnar 
15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str)
16f2cb1360SIngo Molnar {
179469eb01SPeter Zijlstra 	sched_debug_enabled = true;
18f2cb1360SIngo Molnar 
19f2cb1360SIngo Molnar 	return 0;
20f2cb1360SIngo Molnar }
21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup);
22f2cb1360SIngo Molnar 
23f2cb1360SIngo Molnar static inline bool sched_debug(void)
24f2cb1360SIngo Molnar {
25f2cb1360SIngo Molnar 	return sched_debug_enabled;
26f2cb1360SIngo Molnar }
27f2cb1360SIngo Molnar 
28f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29f2cb1360SIngo Molnar 				  struct cpumask *groupmask)
30f2cb1360SIngo Molnar {
31f2cb1360SIngo Molnar 	struct sched_group *group = sd->groups;
32f2cb1360SIngo Molnar 
33f2cb1360SIngo Molnar 	cpumask_clear(groupmask);
34f2cb1360SIngo Molnar 
35005f874dSPeter Zijlstra 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36f2cb1360SIngo Molnar 
37f2cb1360SIngo Molnar 	if (!(sd->flags & SD_LOAD_BALANCE)) {
38f2cb1360SIngo Molnar 		printk("does not load-balance\n");
39f2cb1360SIngo Molnar 		if (sd->parent)
4097fb7a0aSIngo Molnar 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41f2cb1360SIngo Molnar 		return -1;
42f2cb1360SIngo Molnar 	}
43f2cb1360SIngo Molnar 
44005f874dSPeter Zijlstra 	printk(KERN_CONT "span=%*pbl level=%s\n",
45f2cb1360SIngo Molnar 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46f2cb1360SIngo Molnar 
47f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4897fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49f2cb1360SIngo Molnar 	}
506cd0c583SYi Wang 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
5197fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52f2cb1360SIngo Molnar 	}
53f2cb1360SIngo Molnar 
54f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
55f2cb1360SIngo Molnar 	do {
56f2cb1360SIngo Molnar 		if (!group) {
57f2cb1360SIngo Molnar 			printk("\n");
58f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: group is NULL\n");
59f2cb1360SIngo Molnar 			break;
60f2cb1360SIngo Molnar 		}
61f2cb1360SIngo Molnar 
62ae4df9d6SPeter Zijlstra 		if (!cpumask_weight(sched_group_span(group))) {
63f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
64f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: empty group\n");
65f2cb1360SIngo Molnar 			break;
66f2cb1360SIngo Molnar 		}
67f2cb1360SIngo Molnar 
68f2cb1360SIngo Molnar 		if (!(sd->flags & SD_OVERLAP) &&
69ae4df9d6SPeter Zijlstra 		    cpumask_intersects(groupmask, sched_group_span(group))) {
70f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
71f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: repeated CPUs\n");
72f2cb1360SIngo Molnar 			break;
73f2cb1360SIngo Molnar 		}
74f2cb1360SIngo Molnar 
75ae4df9d6SPeter Zijlstra 		cpumask_or(groupmask, groupmask, sched_group_span(group));
76f2cb1360SIngo Molnar 
77005f874dSPeter Zijlstra 		printk(KERN_CONT " %d:{ span=%*pbl",
78005f874dSPeter Zijlstra 				group->sgc->id,
79ae4df9d6SPeter Zijlstra 				cpumask_pr_args(sched_group_span(group)));
80b0151c25SPeter Zijlstra 
81af218122SPeter Zijlstra 		if ((sd->flags & SD_OVERLAP) &&
82ae4df9d6SPeter Zijlstra 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83005f874dSPeter Zijlstra 			printk(KERN_CONT " mask=%*pbl",
84e5c14b1fSPeter Zijlstra 				cpumask_pr_args(group_balance_mask(group)));
85b0151c25SPeter Zijlstra 		}
86b0151c25SPeter Zijlstra 
87005f874dSPeter Zijlstra 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88005f874dSPeter Zijlstra 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89f2cb1360SIngo Molnar 
90a420b063SPeter Zijlstra 		if (group == sd->groups && sd->child &&
91a420b063SPeter Zijlstra 		    !cpumask_equal(sched_domain_span(sd->child),
92ae4df9d6SPeter Zijlstra 				   sched_group_span(group))) {
93a420b063SPeter Zijlstra 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94a420b063SPeter Zijlstra 		}
95a420b063SPeter Zijlstra 
96005f874dSPeter Zijlstra 		printk(KERN_CONT " }");
97005f874dSPeter Zijlstra 
98f2cb1360SIngo Molnar 		group = group->next;
99b0151c25SPeter Zijlstra 
100b0151c25SPeter Zijlstra 		if (group != sd->groups)
101b0151c25SPeter Zijlstra 			printk(KERN_CONT ",");
102b0151c25SPeter Zijlstra 
103f2cb1360SIngo Molnar 	} while (group != sd->groups);
104f2cb1360SIngo Molnar 	printk(KERN_CONT "\n");
105f2cb1360SIngo Molnar 
106f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
107f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108f2cb1360SIngo Molnar 
109f2cb1360SIngo Molnar 	if (sd->parent &&
110f2cb1360SIngo Molnar 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
11197fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112f2cb1360SIngo Molnar 	return 0;
113f2cb1360SIngo Molnar }
114f2cb1360SIngo Molnar 
115f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu)
116f2cb1360SIngo Molnar {
117f2cb1360SIngo Molnar 	int level = 0;
118f2cb1360SIngo Molnar 
119f2cb1360SIngo Molnar 	if (!sched_debug_enabled)
120f2cb1360SIngo Molnar 		return;
121f2cb1360SIngo Molnar 
122f2cb1360SIngo Molnar 	if (!sd) {
123f2cb1360SIngo Molnar 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124f2cb1360SIngo Molnar 		return;
125f2cb1360SIngo Molnar 	}
126f2cb1360SIngo Molnar 
127005f874dSPeter Zijlstra 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128f2cb1360SIngo Molnar 
129f2cb1360SIngo Molnar 	for (;;) {
130f2cb1360SIngo Molnar 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131f2cb1360SIngo Molnar 			break;
132f2cb1360SIngo Molnar 		level++;
133f2cb1360SIngo Molnar 		sd = sd->parent;
134f2cb1360SIngo Molnar 		if (!sd)
135f2cb1360SIngo Molnar 			break;
136f2cb1360SIngo Molnar 	}
137f2cb1360SIngo Molnar }
138f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */
139f2cb1360SIngo Molnar 
140f2cb1360SIngo Molnar # define sched_debug_enabled 0
141f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0)
142f2cb1360SIngo Molnar static inline bool sched_debug(void)
143f2cb1360SIngo Molnar {
144f2cb1360SIngo Molnar 	return false;
145f2cb1360SIngo Molnar }
146f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */
147f2cb1360SIngo Molnar 
148f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd)
149f2cb1360SIngo Molnar {
150f2cb1360SIngo Molnar 	if (cpumask_weight(sched_domain_span(sd)) == 1)
151f2cb1360SIngo Molnar 		return 1;
152f2cb1360SIngo Molnar 
153f2cb1360SIngo Molnar 	/* Following flags need at least 2 groups */
154f2cb1360SIngo Molnar 	if (sd->flags & (SD_LOAD_BALANCE |
155f2cb1360SIngo Molnar 			 SD_BALANCE_NEWIDLE |
156f2cb1360SIngo Molnar 			 SD_BALANCE_FORK |
157f2cb1360SIngo Molnar 			 SD_BALANCE_EXEC |
158f2cb1360SIngo Molnar 			 SD_SHARE_CPUCAPACITY |
159f2cb1360SIngo Molnar 			 SD_ASYM_CPUCAPACITY |
160f2cb1360SIngo Molnar 			 SD_SHARE_PKG_RESOURCES |
161f2cb1360SIngo Molnar 			 SD_SHARE_POWERDOMAIN)) {
162f2cb1360SIngo Molnar 		if (sd->groups != sd->groups->next)
163f2cb1360SIngo Molnar 			return 0;
164f2cb1360SIngo Molnar 	}
165f2cb1360SIngo Molnar 
166f2cb1360SIngo Molnar 	/* Following flags don't use groups */
167f2cb1360SIngo Molnar 	if (sd->flags & (SD_WAKE_AFFINE))
168f2cb1360SIngo Molnar 		return 0;
169f2cb1360SIngo Molnar 
170f2cb1360SIngo Molnar 	return 1;
171f2cb1360SIngo Molnar }
172f2cb1360SIngo Molnar 
173f2cb1360SIngo Molnar static int
174f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175f2cb1360SIngo Molnar {
176f2cb1360SIngo Molnar 	unsigned long cflags = sd->flags, pflags = parent->flags;
177f2cb1360SIngo Molnar 
178f2cb1360SIngo Molnar 	if (sd_degenerate(parent))
179f2cb1360SIngo Molnar 		return 1;
180f2cb1360SIngo Molnar 
181f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182f2cb1360SIngo Molnar 		return 0;
183f2cb1360SIngo Molnar 
184f2cb1360SIngo Molnar 	/* Flags needing groups don't count if only 1 group in parent */
185f2cb1360SIngo Molnar 	if (parent->groups == parent->groups->next) {
186f2cb1360SIngo Molnar 		pflags &= ~(SD_LOAD_BALANCE |
187f2cb1360SIngo Molnar 				SD_BALANCE_NEWIDLE |
188f2cb1360SIngo Molnar 				SD_BALANCE_FORK |
189f2cb1360SIngo Molnar 				SD_BALANCE_EXEC |
190f2cb1360SIngo Molnar 				SD_ASYM_CPUCAPACITY |
191f2cb1360SIngo Molnar 				SD_SHARE_CPUCAPACITY |
192f2cb1360SIngo Molnar 				SD_SHARE_PKG_RESOURCES |
193f2cb1360SIngo Molnar 				SD_PREFER_SIBLING |
194f2cb1360SIngo Molnar 				SD_SHARE_POWERDOMAIN);
195f2cb1360SIngo Molnar 		if (nr_node_ids == 1)
196f2cb1360SIngo Molnar 			pflags &= ~SD_SERIALIZE;
197f2cb1360SIngo Molnar 	}
198f2cb1360SIngo Molnar 	if (~cflags & pflags)
199f2cb1360SIngo Molnar 		return 0;
200f2cb1360SIngo Molnar 
201f2cb1360SIngo Molnar 	return 1;
202f2cb1360SIngo Molnar }
203f2cb1360SIngo Molnar 
204f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu)
205f2cb1360SIngo Molnar {
206f2cb1360SIngo Molnar 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
207f2cb1360SIngo Molnar 
208f2cb1360SIngo Molnar 	cpupri_cleanup(&rd->cpupri);
209f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
210f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
211f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
212f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
213f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
214f2cb1360SIngo Molnar 	kfree(rd);
215f2cb1360SIngo Molnar }
216f2cb1360SIngo Molnar 
217f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd)
218f2cb1360SIngo Molnar {
219f2cb1360SIngo Molnar 	struct root_domain *old_rd = NULL;
220f2cb1360SIngo Molnar 	unsigned long flags;
221f2cb1360SIngo Molnar 
222f2cb1360SIngo Molnar 	raw_spin_lock_irqsave(&rq->lock, flags);
223f2cb1360SIngo Molnar 
224f2cb1360SIngo Molnar 	if (rq->rd) {
225f2cb1360SIngo Molnar 		old_rd = rq->rd;
226f2cb1360SIngo Molnar 
227f2cb1360SIngo Molnar 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
228f2cb1360SIngo Molnar 			set_rq_offline(rq);
229f2cb1360SIngo Molnar 
230f2cb1360SIngo Molnar 		cpumask_clear_cpu(rq->cpu, old_rd->span);
231f2cb1360SIngo Molnar 
232f2cb1360SIngo Molnar 		/*
233f2cb1360SIngo Molnar 		 * If we dont want to free the old_rd yet then
234f2cb1360SIngo Molnar 		 * set old_rd to NULL to skip the freeing later
235f2cb1360SIngo Molnar 		 * in this function:
236f2cb1360SIngo Molnar 		 */
237f2cb1360SIngo Molnar 		if (!atomic_dec_and_test(&old_rd->refcount))
238f2cb1360SIngo Molnar 			old_rd = NULL;
239f2cb1360SIngo Molnar 	}
240f2cb1360SIngo Molnar 
241f2cb1360SIngo Molnar 	atomic_inc(&rd->refcount);
242f2cb1360SIngo Molnar 	rq->rd = rd;
243f2cb1360SIngo Molnar 
244f2cb1360SIngo Molnar 	cpumask_set_cpu(rq->cpu, rd->span);
245f2cb1360SIngo Molnar 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
246f2cb1360SIngo Molnar 		set_rq_online(rq);
247f2cb1360SIngo Molnar 
248f2cb1360SIngo Molnar 	raw_spin_unlock_irqrestore(&rq->lock, flags);
249f2cb1360SIngo Molnar 
250f2cb1360SIngo Molnar 	if (old_rd)
251f2cb1360SIngo Molnar 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
252f2cb1360SIngo Molnar }
253f2cb1360SIngo Molnar 
254364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd)
255364f5665SSteven Rostedt (VMware) {
256364f5665SSteven Rostedt (VMware) 	atomic_inc(&rd->refcount);
257364f5665SSteven Rostedt (VMware) }
258364f5665SSteven Rostedt (VMware) 
259364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd)
260364f5665SSteven Rostedt (VMware) {
261364f5665SSteven Rostedt (VMware) 	if (!atomic_dec_and_test(&rd->refcount))
262364f5665SSteven Rostedt (VMware) 		return;
263364f5665SSteven Rostedt (VMware) 
264364f5665SSteven Rostedt (VMware) 	call_rcu_sched(&rd->rcu, free_rootdomain);
265364f5665SSteven Rostedt (VMware) }
266364f5665SSteven Rostedt (VMware) 
267f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd)
268f2cb1360SIngo Molnar {
269f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
270f2cb1360SIngo Molnar 		goto out;
271f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
272f2cb1360SIngo Molnar 		goto free_span;
273f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
274f2cb1360SIngo Molnar 		goto free_online;
275f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
276f2cb1360SIngo Molnar 		goto free_dlo_mask;
277f2cb1360SIngo Molnar 
2784bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI
2794bdced5cSSteven Rostedt (Red Hat) 	rd->rto_cpu = -1;
2804bdced5cSSteven Rostedt (Red Hat) 	raw_spin_lock_init(&rd->rto_lock);
2814bdced5cSSteven Rostedt (Red Hat) 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
2824bdced5cSSteven Rostedt (Red Hat) #endif
2834bdced5cSSteven Rostedt (Red Hat) 
284f2cb1360SIngo Molnar 	init_dl_bw(&rd->dl_bw);
285f2cb1360SIngo Molnar 	if (cpudl_init(&rd->cpudl) != 0)
286f2cb1360SIngo Molnar 		goto free_rto_mask;
287f2cb1360SIngo Molnar 
288f2cb1360SIngo Molnar 	if (cpupri_init(&rd->cpupri) != 0)
289f2cb1360SIngo Molnar 		goto free_cpudl;
290f2cb1360SIngo Molnar 	return 0;
291f2cb1360SIngo Molnar 
292f2cb1360SIngo Molnar free_cpudl:
293f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
294f2cb1360SIngo Molnar free_rto_mask:
295f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
296f2cb1360SIngo Molnar free_dlo_mask:
297f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
298f2cb1360SIngo Molnar free_online:
299f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
300f2cb1360SIngo Molnar free_span:
301f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
302f2cb1360SIngo Molnar out:
303f2cb1360SIngo Molnar 	return -ENOMEM;
304f2cb1360SIngo Molnar }
305f2cb1360SIngo Molnar 
306f2cb1360SIngo Molnar /*
307f2cb1360SIngo Molnar  * By default the system creates a single root-domain with all CPUs as
308f2cb1360SIngo Molnar  * members (mimicking the global state we have today).
309f2cb1360SIngo Molnar  */
310f2cb1360SIngo Molnar struct root_domain def_root_domain;
311f2cb1360SIngo Molnar 
312f2cb1360SIngo Molnar void init_defrootdomain(void)
313f2cb1360SIngo Molnar {
314f2cb1360SIngo Molnar 	init_rootdomain(&def_root_domain);
315f2cb1360SIngo Molnar 
316f2cb1360SIngo Molnar 	atomic_set(&def_root_domain.refcount, 1);
317f2cb1360SIngo Molnar }
318f2cb1360SIngo Molnar 
319f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void)
320f2cb1360SIngo Molnar {
321f2cb1360SIngo Molnar 	struct root_domain *rd;
322f2cb1360SIngo Molnar 
3234d13a06dSViresh Kumar 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
324f2cb1360SIngo Molnar 	if (!rd)
325f2cb1360SIngo Molnar 		return NULL;
326f2cb1360SIngo Molnar 
327f2cb1360SIngo Molnar 	if (init_rootdomain(rd) != 0) {
328f2cb1360SIngo Molnar 		kfree(rd);
329f2cb1360SIngo Molnar 		return NULL;
330f2cb1360SIngo Molnar 	}
331f2cb1360SIngo Molnar 
332f2cb1360SIngo Molnar 	return rd;
333f2cb1360SIngo Molnar }
334f2cb1360SIngo Molnar 
335f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc)
336f2cb1360SIngo Molnar {
337f2cb1360SIngo Molnar 	struct sched_group *tmp, *first;
338f2cb1360SIngo Molnar 
339f2cb1360SIngo Molnar 	if (!sg)
340f2cb1360SIngo Molnar 		return;
341f2cb1360SIngo Molnar 
342f2cb1360SIngo Molnar 	first = sg;
343f2cb1360SIngo Molnar 	do {
344f2cb1360SIngo Molnar 		tmp = sg->next;
345f2cb1360SIngo Molnar 
346f2cb1360SIngo Molnar 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
347f2cb1360SIngo Molnar 			kfree(sg->sgc);
348f2cb1360SIngo Molnar 
349213c5a45SShu Wang 		if (atomic_dec_and_test(&sg->ref))
350f2cb1360SIngo Molnar 			kfree(sg);
351f2cb1360SIngo Molnar 		sg = tmp;
352f2cb1360SIngo Molnar 	} while (sg != first);
353f2cb1360SIngo Molnar }
354f2cb1360SIngo Molnar 
355f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd)
356f2cb1360SIngo Molnar {
357f2cb1360SIngo Molnar 	/*
358a090c4f2SPeter Zijlstra 	 * A normal sched domain may have multiple group references, an
359a090c4f2SPeter Zijlstra 	 * overlapping domain, having private groups, only one.  Iterate,
360a090c4f2SPeter Zijlstra 	 * dropping group/capacity references, freeing where none remain.
361f2cb1360SIngo Molnar 	 */
362f2cb1360SIngo Molnar 	free_sched_groups(sd->groups, 1);
363213c5a45SShu Wang 
364f2cb1360SIngo Molnar 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
365f2cb1360SIngo Molnar 		kfree(sd->shared);
366f2cb1360SIngo Molnar 	kfree(sd);
367f2cb1360SIngo Molnar }
368f2cb1360SIngo Molnar 
369f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu)
370f2cb1360SIngo Molnar {
371f2cb1360SIngo Molnar 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
372f2cb1360SIngo Molnar 
373f2cb1360SIngo Molnar 	while (sd) {
374f2cb1360SIngo Molnar 		struct sched_domain *parent = sd->parent;
375f2cb1360SIngo Molnar 		destroy_sched_domain(sd);
376f2cb1360SIngo Molnar 		sd = parent;
377f2cb1360SIngo Molnar 	}
378f2cb1360SIngo Molnar }
379f2cb1360SIngo Molnar 
380f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd)
381f2cb1360SIngo Molnar {
382f2cb1360SIngo Molnar 	if (sd)
383f2cb1360SIngo Molnar 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
384f2cb1360SIngo Molnar }
385f2cb1360SIngo Molnar 
386f2cb1360SIngo Molnar /*
387f2cb1360SIngo Molnar  * Keep a special pointer to the highest sched_domain that has
388f2cb1360SIngo Molnar  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
389f2cb1360SIngo Molnar  * allows us to avoid some pointer chasing select_idle_sibling().
390f2cb1360SIngo Molnar  *
391f2cb1360SIngo Molnar  * Also keep a unique ID per domain (we use the first CPU number in
392f2cb1360SIngo Molnar  * the cpumask of the domain), this allows us to quickly tell if
393f2cb1360SIngo Molnar  * two CPUs are in the same cache domain, see cpus_share_cache().
394f2cb1360SIngo Molnar  */
395f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_llc);
396f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size);
397f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id);
398f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
399f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_numa);
400f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_asym);
401df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
402f2cb1360SIngo Molnar 
403f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu)
404f2cb1360SIngo Molnar {
405f2cb1360SIngo Molnar 	struct sched_domain_shared *sds = NULL;
406f2cb1360SIngo Molnar 	struct sched_domain *sd;
407f2cb1360SIngo Molnar 	int id = cpu;
408f2cb1360SIngo Molnar 	int size = 1;
409f2cb1360SIngo Molnar 
410f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
411f2cb1360SIngo Molnar 	if (sd) {
412f2cb1360SIngo Molnar 		id = cpumask_first(sched_domain_span(sd));
413f2cb1360SIngo Molnar 		size = cpumask_weight(sched_domain_span(sd));
414f2cb1360SIngo Molnar 		sds = sd->shared;
415f2cb1360SIngo Molnar 	}
416f2cb1360SIngo Molnar 
417f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
418f2cb1360SIngo Molnar 	per_cpu(sd_llc_size, cpu) = size;
419f2cb1360SIngo Molnar 	per_cpu(sd_llc_id, cpu) = id;
420f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
421f2cb1360SIngo Molnar 
422f2cb1360SIngo Molnar 	sd = lowest_flag_domain(cpu, SD_NUMA);
423f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
424f2cb1360SIngo Molnar 
425f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
426f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
427f2cb1360SIngo Molnar }
428f2cb1360SIngo Molnar 
429f2cb1360SIngo Molnar /*
430f2cb1360SIngo Molnar  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
431f2cb1360SIngo Molnar  * hold the hotplug lock.
432f2cb1360SIngo Molnar  */
433f2cb1360SIngo Molnar static void
434f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
435f2cb1360SIngo Molnar {
436f2cb1360SIngo Molnar 	struct rq *rq = cpu_rq(cpu);
437f2cb1360SIngo Molnar 	struct sched_domain *tmp;
438f2cb1360SIngo Molnar 
439f2cb1360SIngo Molnar 	/* Remove the sched domains which do not contribute to scheduling. */
440f2cb1360SIngo Molnar 	for (tmp = sd; tmp; ) {
441f2cb1360SIngo Molnar 		struct sched_domain *parent = tmp->parent;
442f2cb1360SIngo Molnar 		if (!parent)
443f2cb1360SIngo Molnar 			break;
444f2cb1360SIngo Molnar 
445f2cb1360SIngo Molnar 		if (sd_parent_degenerate(tmp, parent)) {
446f2cb1360SIngo Molnar 			tmp->parent = parent->parent;
447f2cb1360SIngo Molnar 			if (parent->parent)
448f2cb1360SIngo Molnar 				parent->parent->child = tmp;
449f2cb1360SIngo Molnar 			/*
450f2cb1360SIngo Molnar 			 * Transfer SD_PREFER_SIBLING down in case of a
451f2cb1360SIngo Molnar 			 * degenerate parent; the spans match for this
452f2cb1360SIngo Molnar 			 * so the property transfers.
453f2cb1360SIngo Molnar 			 */
454f2cb1360SIngo Molnar 			if (parent->flags & SD_PREFER_SIBLING)
455f2cb1360SIngo Molnar 				tmp->flags |= SD_PREFER_SIBLING;
456f2cb1360SIngo Molnar 			destroy_sched_domain(parent);
457f2cb1360SIngo Molnar 		} else
458f2cb1360SIngo Molnar 			tmp = tmp->parent;
459f2cb1360SIngo Molnar 	}
460f2cb1360SIngo Molnar 
461f2cb1360SIngo Molnar 	if (sd && sd_degenerate(sd)) {
462f2cb1360SIngo Molnar 		tmp = sd;
463f2cb1360SIngo Molnar 		sd = sd->parent;
464f2cb1360SIngo Molnar 		destroy_sched_domain(tmp);
465f2cb1360SIngo Molnar 		if (sd)
466f2cb1360SIngo Molnar 			sd->child = NULL;
467f2cb1360SIngo Molnar 	}
468f2cb1360SIngo Molnar 
469f2cb1360SIngo Molnar 	sched_domain_debug(sd, cpu);
470f2cb1360SIngo Molnar 
471f2cb1360SIngo Molnar 	rq_attach_root(rq, rd);
472f2cb1360SIngo Molnar 	tmp = rq->sd;
473f2cb1360SIngo Molnar 	rcu_assign_pointer(rq->sd, sd);
474bbdacdfeSPeter Zijlstra 	dirty_sched_domain_sysctl(cpu);
475f2cb1360SIngo Molnar 	destroy_sched_domains(tmp);
476f2cb1360SIngo Molnar 
477f2cb1360SIngo Molnar 	update_top_cache_domain(cpu);
478f2cb1360SIngo Molnar }
479f2cb1360SIngo Molnar 
480f2cb1360SIngo Molnar struct s_data {
481f2cb1360SIngo Molnar 	struct sched_domain ** __percpu sd;
482f2cb1360SIngo Molnar 	struct root_domain	*rd;
483f2cb1360SIngo Molnar };
484f2cb1360SIngo Molnar 
485f2cb1360SIngo Molnar enum s_alloc {
486f2cb1360SIngo Molnar 	sa_rootdomain,
487f2cb1360SIngo Molnar 	sa_sd,
488f2cb1360SIngo Molnar 	sa_sd_storage,
489f2cb1360SIngo Molnar 	sa_none,
490f2cb1360SIngo Molnar };
491f2cb1360SIngo Molnar 
492f2cb1360SIngo Molnar /*
49335a566e6SPeter Zijlstra  * Return the canonical balance CPU for this group, this is the first CPU
494e5c14b1fSPeter Zijlstra  * of this group that's also in the balance mask.
49535a566e6SPeter Zijlstra  *
496e5c14b1fSPeter Zijlstra  * The balance mask are all those CPUs that could actually end up at this
497e5c14b1fSPeter Zijlstra  * group. See build_balance_mask().
49835a566e6SPeter Zijlstra  *
49935a566e6SPeter Zijlstra  * Also see should_we_balance().
50035a566e6SPeter Zijlstra  */
50135a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg)
50235a566e6SPeter Zijlstra {
503e5c14b1fSPeter Zijlstra 	return cpumask_first(group_balance_mask(sg));
50435a566e6SPeter Zijlstra }
50535a566e6SPeter Zijlstra 
50635a566e6SPeter Zijlstra 
50735a566e6SPeter Zijlstra /*
50835a566e6SPeter Zijlstra  * NUMA topology (first read the regular topology blurb below)
50935a566e6SPeter Zijlstra  *
51035a566e6SPeter Zijlstra  * Given a node-distance table, for example:
51135a566e6SPeter Zijlstra  *
51235a566e6SPeter Zijlstra  *   node   0   1   2   3
51335a566e6SPeter Zijlstra  *     0:  10  20  30  20
51435a566e6SPeter Zijlstra  *     1:  20  10  20  30
51535a566e6SPeter Zijlstra  *     2:  30  20  10  20
51635a566e6SPeter Zijlstra  *     3:  20  30  20  10
51735a566e6SPeter Zijlstra  *
51835a566e6SPeter Zijlstra  * which represents a 4 node ring topology like:
51935a566e6SPeter Zijlstra  *
52035a566e6SPeter Zijlstra  *   0 ----- 1
52135a566e6SPeter Zijlstra  *   |       |
52235a566e6SPeter Zijlstra  *   |       |
52335a566e6SPeter Zijlstra  *   |       |
52435a566e6SPeter Zijlstra  *   3 ----- 2
52535a566e6SPeter Zijlstra  *
52635a566e6SPeter Zijlstra  * We want to construct domains and groups to represent this. The way we go
52735a566e6SPeter Zijlstra  * about doing this is to build the domains on 'hops'. For each NUMA level we
52835a566e6SPeter Zijlstra  * construct the mask of all nodes reachable in @level hops.
52935a566e6SPeter Zijlstra  *
53035a566e6SPeter Zijlstra  * For the above NUMA topology that gives 3 levels:
53135a566e6SPeter Zijlstra  *
53235a566e6SPeter Zijlstra  * NUMA-2	0-3		0-3		0-3		0-3
53335a566e6SPeter Zijlstra  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
53435a566e6SPeter Zijlstra  *
53535a566e6SPeter Zijlstra  * NUMA-1	0-1,3		0-2		1-3		0,2-3
53635a566e6SPeter Zijlstra  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
53735a566e6SPeter Zijlstra  *
53835a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
53935a566e6SPeter Zijlstra  *
54035a566e6SPeter Zijlstra  *
54135a566e6SPeter Zijlstra  * As can be seen; things don't nicely line up as with the regular topology.
54235a566e6SPeter Zijlstra  * When we iterate a domain in child domain chunks some nodes can be
54335a566e6SPeter Zijlstra  * represented multiple times -- hence the "overlap" naming for this part of
54435a566e6SPeter Zijlstra  * the topology.
54535a566e6SPeter Zijlstra  *
54635a566e6SPeter Zijlstra  * In order to minimize this overlap, we only build enough groups to cover the
54735a566e6SPeter Zijlstra  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
54835a566e6SPeter Zijlstra  *
54935a566e6SPeter Zijlstra  * Because:
55035a566e6SPeter Zijlstra  *
55135a566e6SPeter Zijlstra  *  - the first group of each domain is its child domain; this
55235a566e6SPeter Zijlstra  *    gets us the first 0-1,3
55335a566e6SPeter Zijlstra  *  - the only uncovered node is 2, who's child domain is 1-3.
55435a566e6SPeter Zijlstra  *
55535a566e6SPeter Zijlstra  * However, because of the overlap, computing a unique CPU for each group is
55635a566e6SPeter Zijlstra  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
55735a566e6SPeter Zijlstra  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
55835a566e6SPeter Zijlstra  * end up at those groups (they would end up in group: 0-1,3).
55935a566e6SPeter Zijlstra  *
560e5c14b1fSPeter Zijlstra  * To correct this we have to introduce the group balance mask. This mask
56135a566e6SPeter Zijlstra  * will contain those CPUs in the group that can reach this group given the
56235a566e6SPeter Zijlstra  * (child) domain tree.
56335a566e6SPeter Zijlstra  *
56435a566e6SPeter Zijlstra  * With this we can once again compute balance_cpu and sched_group_capacity
56535a566e6SPeter Zijlstra  * relations.
56635a566e6SPeter Zijlstra  *
56735a566e6SPeter Zijlstra  * XXX include words on how balance_cpu is unique and therefore can be
56835a566e6SPeter Zijlstra  * used for sched_group_capacity links.
56935a566e6SPeter Zijlstra  *
57035a566e6SPeter Zijlstra  *
57135a566e6SPeter Zijlstra  * Another 'interesting' topology is:
57235a566e6SPeter Zijlstra  *
57335a566e6SPeter Zijlstra  *   node   0   1   2   3
57435a566e6SPeter Zijlstra  *     0:  10  20  20  30
57535a566e6SPeter Zijlstra  *     1:  20  10  20  20
57635a566e6SPeter Zijlstra  *     2:  20  20  10  20
57735a566e6SPeter Zijlstra  *     3:  30  20  20  10
57835a566e6SPeter Zijlstra  *
57935a566e6SPeter Zijlstra  * Which looks a little like:
58035a566e6SPeter Zijlstra  *
58135a566e6SPeter Zijlstra  *   0 ----- 1
58235a566e6SPeter Zijlstra  *   |     / |
58335a566e6SPeter Zijlstra  *   |   /   |
58435a566e6SPeter Zijlstra  *   | /     |
58535a566e6SPeter Zijlstra  *   2 ----- 3
58635a566e6SPeter Zijlstra  *
58735a566e6SPeter Zijlstra  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
58835a566e6SPeter Zijlstra  * are not.
58935a566e6SPeter Zijlstra  *
59035a566e6SPeter Zijlstra  * This leads to a few particularly weird cases where the sched_domain's are
59197fb7a0aSIngo Molnar  * not of the same number for each CPU. Consider:
59235a566e6SPeter Zijlstra  *
59335a566e6SPeter Zijlstra  * NUMA-2	0-3						0-3
59435a566e6SPeter Zijlstra  *  groups:	{0-2},{1-3}					{1-3},{0-2}
59535a566e6SPeter Zijlstra  *
59635a566e6SPeter Zijlstra  * NUMA-1	0-2		0-3		0-3		1-3
59735a566e6SPeter Zijlstra  *
59835a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
59935a566e6SPeter Zijlstra  *
60035a566e6SPeter Zijlstra  */
60135a566e6SPeter Zijlstra 
60235a566e6SPeter Zijlstra 
60335a566e6SPeter Zijlstra /*
604e5c14b1fSPeter Zijlstra  * Build the balance mask; it contains only those CPUs that can arrive at this
605e5c14b1fSPeter Zijlstra  * group and should be considered to continue balancing.
60635a566e6SPeter Zijlstra  *
60735a566e6SPeter Zijlstra  * We do this during the group creation pass, therefore the group information
60835a566e6SPeter Zijlstra  * isn't complete yet, however since each group represents a (child) domain we
60935a566e6SPeter Zijlstra  * can fully construct this using the sched_domain bits (which are already
61035a566e6SPeter Zijlstra  * complete).
611f2cb1360SIngo Molnar  */
6121676330eSPeter Zijlstra static void
613e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
614f2cb1360SIngo Molnar {
615ae4df9d6SPeter Zijlstra 	const struct cpumask *sg_span = sched_group_span(sg);
616f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
617f2cb1360SIngo Molnar 	struct sched_domain *sibling;
618f2cb1360SIngo Molnar 	int i;
619f2cb1360SIngo Molnar 
6201676330eSPeter Zijlstra 	cpumask_clear(mask);
6211676330eSPeter Zijlstra 
622f32d782eSLauro Ramos Venancio 	for_each_cpu(i, sg_span) {
623f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
62473bb059fSPeter Zijlstra 
62573bb059fSPeter Zijlstra 		/*
62673bb059fSPeter Zijlstra 		 * Can happen in the asymmetric case, where these siblings are
62773bb059fSPeter Zijlstra 		 * unused. The mask will not be empty because those CPUs that
62873bb059fSPeter Zijlstra 		 * do have the top domain _should_ span the domain.
62973bb059fSPeter Zijlstra 		 */
63073bb059fSPeter Zijlstra 		if (!sibling->child)
63173bb059fSPeter Zijlstra 			continue;
63273bb059fSPeter Zijlstra 
63373bb059fSPeter Zijlstra 		/* If we would not end up here, we can't continue from here */
63473bb059fSPeter Zijlstra 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
635f2cb1360SIngo Molnar 			continue;
636f2cb1360SIngo Molnar 
6371676330eSPeter Zijlstra 		cpumask_set_cpu(i, mask);
638f2cb1360SIngo Molnar 	}
63973bb059fSPeter Zijlstra 
64073bb059fSPeter Zijlstra 	/* We must not have empty masks here */
6411676330eSPeter Zijlstra 	WARN_ON_ONCE(cpumask_empty(mask));
642f2cb1360SIngo Molnar }
643f2cb1360SIngo Molnar 
644f2cb1360SIngo Molnar /*
64535a566e6SPeter Zijlstra  * XXX: This creates per-node group entries; since the load-balancer will
64635a566e6SPeter Zijlstra  * immediately access remote memory to construct this group's load-balance
64735a566e6SPeter Zijlstra  * statistics having the groups node local is of dubious benefit.
648f2cb1360SIngo Molnar  */
6498c033469SLauro Ramos Venancio static struct sched_group *
6508c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
6518c033469SLauro Ramos Venancio {
6528c033469SLauro Ramos Venancio 	struct sched_group *sg;
6538c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
6548c033469SLauro Ramos Venancio 
6558c033469SLauro Ramos Venancio 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6568c033469SLauro Ramos Venancio 			GFP_KERNEL, cpu_to_node(cpu));
6578c033469SLauro Ramos Venancio 
6588c033469SLauro Ramos Venancio 	if (!sg)
6598c033469SLauro Ramos Venancio 		return NULL;
6608c033469SLauro Ramos Venancio 
661ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
6628c033469SLauro Ramos Venancio 	if (sd->child)
6638c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd->child));
6648c033469SLauro Ramos Venancio 	else
6658c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd));
6668c033469SLauro Ramos Venancio 
667213c5a45SShu Wang 	atomic_inc(&sg->ref);
6688c033469SLauro Ramos Venancio 	return sg;
6698c033469SLauro Ramos Venancio }
6708c033469SLauro Ramos Venancio 
6718c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd,
6721676330eSPeter Zijlstra 				     struct sched_group *sg)
6738c033469SLauro Ramos Venancio {
6741676330eSPeter Zijlstra 	struct cpumask *mask = sched_domains_tmpmask2;
6758c033469SLauro Ramos Venancio 	struct sd_data *sdd = sd->private;
6768c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
6771676330eSPeter Zijlstra 	int cpu;
6781676330eSPeter Zijlstra 
679e5c14b1fSPeter Zijlstra 	build_balance_mask(sd, sg, mask);
680ae4df9d6SPeter Zijlstra 	cpu = cpumask_first_and(sched_group_span(sg), mask);
6818c033469SLauro Ramos Venancio 
6828c033469SLauro Ramos Venancio 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6838c033469SLauro Ramos Venancio 	if (atomic_inc_return(&sg->sgc->ref) == 1)
684e5c14b1fSPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), mask);
68535a566e6SPeter Zijlstra 	else
686e5c14b1fSPeter Zijlstra 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
6878c033469SLauro Ramos Venancio 
6888c033469SLauro Ramos Venancio 	/*
6898c033469SLauro Ramos Venancio 	 * Initialize sgc->capacity such that even if we mess up the
6908c033469SLauro Ramos Venancio 	 * domains and no possible iteration will get us here, we won't
6918c033469SLauro Ramos Venancio 	 * die on a /0 trap.
6928c033469SLauro Ramos Venancio 	 */
693ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
6948c033469SLauro Ramos Venancio 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6958c033469SLauro Ramos Venancio 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
696e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
6978c033469SLauro Ramos Venancio }
6988c033469SLauro Ramos Venancio 
699f2cb1360SIngo Molnar static int
700f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu)
701f2cb1360SIngo Molnar {
70291eaed0dSPeter Zijlstra 	struct sched_group *first = NULL, *last = NULL, *sg;
703f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
704f2cb1360SIngo Molnar 	struct cpumask *covered = sched_domains_tmpmask;
705f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
706f2cb1360SIngo Molnar 	struct sched_domain *sibling;
707f2cb1360SIngo Molnar 	int i;
708f2cb1360SIngo Molnar 
709f2cb1360SIngo Molnar 	cpumask_clear(covered);
710f2cb1360SIngo Molnar 
7110372dd27SPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
712f2cb1360SIngo Molnar 		struct cpumask *sg_span;
713f2cb1360SIngo Molnar 
714f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
715f2cb1360SIngo Molnar 			continue;
716f2cb1360SIngo Molnar 
717f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
718f2cb1360SIngo Molnar 
719c20e1ea4SLauro Ramos Venancio 		/*
720c20e1ea4SLauro Ramos Venancio 		 * Asymmetric node setups can result in situations where the
721c20e1ea4SLauro Ramos Venancio 		 * domain tree is of unequal depth, make sure to skip domains
722c20e1ea4SLauro Ramos Venancio 		 * that already cover the entire range.
723c20e1ea4SLauro Ramos Venancio 		 *
724c20e1ea4SLauro Ramos Venancio 		 * In that case build_sched_domains() will have terminated the
725c20e1ea4SLauro Ramos Venancio 		 * iteration early and our sibling sd spans will be empty.
726c20e1ea4SLauro Ramos Venancio 		 * Domains should always include the CPU they're built on, so
727c20e1ea4SLauro Ramos Venancio 		 * check that.
728c20e1ea4SLauro Ramos Venancio 		 */
729f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
730f2cb1360SIngo Molnar 			continue;
731f2cb1360SIngo Molnar 
7328c033469SLauro Ramos Venancio 		sg = build_group_from_child_sched_domain(sibling, cpu);
733f2cb1360SIngo Molnar 		if (!sg)
734f2cb1360SIngo Molnar 			goto fail;
735f2cb1360SIngo Molnar 
736ae4df9d6SPeter Zijlstra 		sg_span = sched_group_span(sg);
737f2cb1360SIngo Molnar 		cpumask_or(covered, covered, sg_span);
738f2cb1360SIngo Molnar 
7391676330eSPeter Zijlstra 		init_overlap_sched_group(sd, sg);
740f2cb1360SIngo Molnar 
741f2cb1360SIngo Molnar 		if (!first)
742f2cb1360SIngo Molnar 			first = sg;
743f2cb1360SIngo Molnar 		if (last)
744f2cb1360SIngo Molnar 			last->next = sg;
745f2cb1360SIngo Molnar 		last = sg;
746f2cb1360SIngo Molnar 		last->next = first;
747f2cb1360SIngo Molnar 	}
74891eaed0dSPeter Zijlstra 	sd->groups = first;
749f2cb1360SIngo Molnar 
750f2cb1360SIngo Molnar 	return 0;
751f2cb1360SIngo Molnar 
752f2cb1360SIngo Molnar fail:
753f2cb1360SIngo Molnar 	free_sched_groups(first, 0);
754f2cb1360SIngo Molnar 
755f2cb1360SIngo Molnar 	return -ENOMEM;
756f2cb1360SIngo Molnar }
757f2cb1360SIngo Molnar 
75835a566e6SPeter Zijlstra 
75935a566e6SPeter Zijlstra /*
76035a566e6SPeter Zijlstra  * Package topology (also see the load-balance blurb in fair.c)
76135a566e6SPeter Zijlstra  *
76235a566e6SPeter Zijlstra  * The scheduler builds a tree structure to represent a number of important
76335a566e6SPeter Zijlstra  * topology features. By default (default_topology[]) these include:
76435a566e6SPeter Zijlstra  *
76535a566e6SPeter Zijlstra  *  - Simultaneous multithreading (SMT)
76635a566e6SPeter Zijlstra  *  - Multi-Core Cache (MC)
76735a566e6SPeter Zijlstra  *  - Package (DIE)
76835a566e6SPeter Zijlstra  *
76935a566e6SPeter Zijlstra  * Where the last one more or less denotes everything up to a NUMA node.
77035a566e6SPeter Zijlstra  *
77135a566e6SPeter Zijlstra  * The tree consists of 3 primary data structures:
77235a566e6SPeter Zijlstra  *
77335a566e6SPeter Zijlstra  *	sched_domain -> sched_group -> sched_group_capacity
77435a566e6SPeter Zijlstra  *	    ^ ^             ^ ^
77535a566e6SPeter Zijlstra  *          `-'             `-'
77635a566e6SPeter Zijlstra  *
77797fb7a0aSIngo Molnar  * The sched_domains are per-CPU and have a two way link (parent & child) and
77835a566e6SPeter Zijlstra  * denote the ever growing mask of CPUs belonging to that level of topology.
77935a566e6SPeter Zijlstra  *
78035a566e6SPeter Zijlstra  * Each sched_domain has a circular (double) linked list of sched_group's, each
78135a566e6SPeter Zijlstra  * denoting the domains of the level below (or individual CPUs in case of the
78235a566e6SPeter Zijlstra  * first domain level). The sched_group linked by a sched_domain includes the
78335a566e6SPeter Zijlstra  * CPU of that sched_domain [*].
78435a566e6SPeter Zijlstra  *
78535a566e6SPeter Zijlstra  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
78635a566e6SPeter Zijlstra  *
78735a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
78835a566e6SPeter Zijlstra  *
78935a566e6SPeter Zijlstra  * DIE  [                             ]
79035a566e6SPeter Zijlstra  * MC   [             ] [             ]
79135a566e6SPeter Zijlstra  * SMT  [     ] [     ] [     ] [     ]
79235a566e6SPeter Zijlstra  *
79335a566e6SPeter Zijlstra  *  - or -
79435a566e6SPeter Zijlstra  *
79535a566e6SPeter Zijlstra  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
79635a566e6SPeter Zijlstra  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
79735a566e6SPeter Zijlstra  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
79835a566e6SPeter Zijlstra  *
79935a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
80035a566e6SPeter Zijlstra  *
80135a566e6SPeter Zijlstra  * One way to think about it is: sched_domain moves you up and down among these
80235a566e6SPeter Zijlstra  * topology levels, while sched_group moves you sideways through it, at child
80335a566e6SPeter Zijlstra  * domain granularity.
80435a566e6SPeter Zijlstra  *
80535a566e6SPeter Zijlstra  * sched_group_capacity ensures each unique sched_group has shared storage.
80635a566e6SPeter Zijlstra  *
80735a566e6SPeter Zijlstra  * There are two related construction problems, both require a CPU that
80835a566e6SPeter Zijlstra  * uniquely identify each group (for a given domain):
80935a566e6SPeter Zijlstra  *
81035a566e6SPeter Zijlstra  *  - The first is the balance_cpu (see should_we_balance() and the
81135a566e6SPeter Zijlstra  *    load-balance blub in fair.c); for each group we only want 1 CPU to
81235a566e6SPeter Zijlstra  *    continue balancing at a higher domain.
81335a566e6SPeter Zijlstra  *
81435a566e6SPeter Zijlstra  *  - The second is the sched_group_capacity; we want all identical groups
81535a566e6SPeter Zijlstra  *    to share a single sched_group_capacity.
81635a566e6SPeter Zijlstra  *
81735a566e6SPeter Zijlstra  * Since these topologies are exclusive by construction. That is, its
81835a566e6SPeter Zijlstra  * impossible for an SMT thread to belong to multiple cores, and cores to
81935a566e6SPeter Zijlstra  * be part of multiple caches. There is a very clear and unique location
82035a566e6SPeter Zijlstra  * for each CPU in the hierarchy.
82135a566e6SPeter Zijlstra  *
82235a566e6SPeter Zijlstra  * Therefore computing a unique CPU for each group is trivial (the iteration
82335a566e6SPeter Zijlstra  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
82435a566e6SPeter Zijlstra  * group), we can simply pick the first CPU in each group.
82535a566e6SPeter Zijlstra  *
82635a566e6SPeter Zijlstra  *
82735a566e6SPeter Zijlstra  * [*] in other words, the first group of each domain is its child domain.
82835a566e6SPeter Zijlstra  */
82935a566e6SPeter Zijlstra 
8300c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd)
831f2cb1360SIngo Molnar {
832f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
833f2cb1360SIngo Molnar 	struct sched_domain *child = sd->child;
8340c0e776aSPeter Zijlstra 	struct sched_group *sg;
835f2cb1360SIngo Molnar 
836f2cb1360SIngo Molnar 	if (child)
837f2cb1360SIngo Molnar 		cpu = cpumask_first(sched_domain_span(child));
838f2cb1360SIngo Molnar 
8390c0e776aSPeter Zijlstra 	sg = *per_cpu_ptr(sdd->sg, cpu);
8400c0e776aSPeter Zijlstra 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
841f2cb1360SIngo Molnar 
842f2cb1360SIngo Molnar 	/* For claim_allocations: */
8430c0e776aSPeter Zijlstra 	atomic_inc(&sg->ref);
8440c0e776aSPeter Zijlstra 	atomic_inc(&sg->sgc->ref);
8450c0e776aSPeter Zijlstra 
8460c0e776aSPeter Zijlstra 	if (child) {
847ae4df9d6SPeter Zijlstra 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
848ae4df9d6SPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
8490c0e776aSPeter Zijlstra 	} else {
850ae4df9d6SPeter Zijlstra 		cpumask_set_cpu(cpu, sched_group_span(sg));
851e5c14b1fSPeter Zijlstra 		cpumask_set_cpu(cpu, group_balance_mask(sg));
852f2cb1360SIngo Molnar 	}
853f2cb1360SIngo Molnar 
854ae4df9d6SPeter Zijlstra 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
8550c0e776aSPeter Zijlstra 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
856e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
8570c0e776aSPeter Zijlstra 
8580c0e776aSPeter Zijlstra 	return sg;
859f2cb1360SIngo Molnar }
860f2cb1360SIngo Molnar 
861f2cb1360SIngo Molnar /*
862f2cb1360SIngo Molnar  * build_sched_groups will build a circular linked list of the groups
863f2cb1360SIngo Molnar  * covered by the given span, and will set each group's ->cpumask correctly,
864f2cb1360SIngo Molnar  * and ->cpu_capacity to 0.
865f2cb1360SIngo Molnar  *
866f2cb1360SIngo Molnar  * Assumes the sched_domain tree is fully constructed
867f2cb1360SIngo Molnar  */
868f2cb1360SIngo Molnar static int
869f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu)
870f2cb1360SIngo Molnar {
871f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL;
872f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
873f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
874f2cb1360SIngo Molnar 	struct cpumask *covered;
875f2cb1360SIngo Molnar 	int i;
876f2cb1360SIngo Molnar 
877f2cb1360SIngo Molnar 	lockdep_assert_held(&sched_domains_mutex);
878f2cb1360SIngo Molnar 	covered = sched_domains_tmpmask;
879f2cb1360SIngo Molnar 
880f2cb1360SIngo Molnar 	cpumask_clear(covered);
881f2cb1360SIngo Molnar 
8820c0e776aSPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
883f2cb1360SIngo Molnar 		struct sched_group *sg;
884f2cb1360SIngo Molnar 
885f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
886f2cb1360SIngo Molnar 			continue;
887f2cb1360SIngo Molnar 
8880c0e776aSPeter Zijlstra 		sg = get_group(i, sdd);
889f2cb1360SIngo Molnar 
890ae4df9d6SPeter Zijlstra 		cpumask_or(covered, covered, sched_group_span(sg));
891f2cb1360SIngo Molnar 
892f2cb1360SIngo Molnar 		if (!first)
893f2cb1360SIngo Molnar 			first = sg;
894f2cb1360SIngo Molnar 		if (last)
895f2cb1360SIngo Molnar 			last->next = sg;
896f2cb1360SIngo Molnar 		last = sg;
897f2cb1360SIngo Molnar 	}
898f2cb1360SIngo Molnar 	last->next = first;
8990c0e776aSPeter Zijlstra 	sd->groups = first;
900f2cb1360SIngo Molnar 
901f2cb1360SIngo Molnar 	return 0;
902f2cb1360SIngo Molnar }
903f2cb1360SIngo Molnar 
904f2cb1360SIngo Molnar /*
905f2cb1360SIngo Molnar  * Initialize sched groups cpu_capacity.
906f2cb1360SIngo Molnar  *
907f2cb1360SIngo Molnar  * cpu_capacity indicates the capacity of sched group, which is used while
908f2cb1360SIngo Molnar  * distributing the load between different sched groups in a sched domain.
909f2cb1360SIngo Molnar  * Typically cpu_capacity for all the groups in a sched domain will be same
910f2cb1360SIngo Molnar  * unless there are asymmetries in the topology. If there are asymmetries,
911f2cb1360SIngo Molnar  * group having more cpu_capacity will pickup more load compared to the
912f2cb1360SIngo Molnar  * group having less cpu_capacity.
913f2cb1360SIngo Molnar  */
914f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
915f2cb1360SIngo Molnar {
916f2cb1360SIngo Molnar 	struct sched_group *sg = sd->groups;
917f2cb1360SIngo Molnar 
918f2cb1360SIngo Molnar 	WARN_ON(!sg);
919f2cb1360SIngo Molnar 
920f2cb1360SIngo Molnar 	do {
921f2cb1360SIngo Molnar 		int cpu, max_cpu = -1;
922f2cb1360SIngo Molnar 
923ae4df9d6SPeter Zijlstra 		sg->group_weight = cpumask_weight(sched_group_span(sg));
924f2cb1360SIngo Molnar 
925f2cb1360SIngo Molnar 		if (!(sd->flags & SD_ASYM_PACKING))
926f2cb1360SIngo Molnar 			goto next;
927f2cb1360SIngo Molnar 
928ae4df9d6SPeter Zijlstra 		for_each_cpu(cpu, sched_group_span(sg)) {
929f2cb1360SIngo Molnar 			if (max_cpu < 0)
930f2cb1360SIngo Molnar 				max_cpu = cpu;
931f2cb1360SIngo Molnar 			else if (sched_asym_prefer(cpu, max_cpu))
932f2cb1360SIngo Molnar 				max_cpu = cpu;
933f2cb1360SIngo Molnar 		}
934f2cb1360SIngo Molnar 		sg->asym_prefer_cpu = max_cpu;
935f2cb1360SIngo Molnar 
936f2cb1360SIngo Molnar next:
937f2cb1360SIngo Molnar 		sg = sg->next;
938f2cb1360SIngo Molnar 	} while (sg != sd->groups);
939f2cb1360SIngo Molnar 
940f2cb1360SIngo Molnar 	if (cpu != group_balance_cpu(sg))
941f2cb1360SIngo Molnar 		return;
942f2cb1360SIngo Molnar 
943f2cb1360SIngo Molnar 	update_group_capacity(sd, cpu);
944f2cb1360SIngo Molnar }
945f2cb1360SIngo Molnar 
946f2cb1360SIngo Molnar /*
947f2cb1360SIngo Molnar  * Initializers for schedule domains
948f2cb1360SIngo Molnar  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
949f2cb1360SIngo Molnar  */
950f2cb1360SIngo Molnar 
951f2cb1360SIngo Molnar static int default_relax_domain_level = -1;
952f2cb1360SIngo Molnar int sched_domain_level_max;
953f2cb1360SIngo Molnar 
954f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str)
955f2cb1360SIngo Molnar {
956f2cb1360SIngo Molnar 	if (kstrtoint(str, 0, &default_relax_domain_level))
957f2cb1360SIngo Molnar 		pr_warn("Unable to set relax_domain_level\n");
958f2cb1360SIngo Molnar 
959f2cb1360SIngo Molnar 	return 1;
960f2cb1360SIngo Molnar }
961f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level);
962f2cb1360SIngo Molnar 
963f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd,
964f2cb1360SIngo Molnar 				 struct sched_domain_attr *attr)
965f2cb1360SIngo Molnar {
966f2cb1360SIngo Molnar 	int request;
967f2cb1360SIngo Molnar 
968f2cb1360SIngo Molnar 	if (!attr || attr->relax_domain_level < 0) {
969f2cb1360SIngo Molnar 		if (default_relax_domain_level < 0)
970f2cb1360SIngo Molnar 			return;
971f2cb1360SIngo Molnar 		else
972f2cb1360SIngo Molnar 			request = default_relax_domain_level;
973f2cb1360SIngo Molnar 	} else
974f2cb1360SIngo Molnar 		request = attr->relax_domain_level;
975f2cb1360SIngo Molnar 	if (request < sd->level) {
976f2cb1360SIngo Molnar 		/* Turn off idle balance on this domain: */
977f2cb1360SIngo Molnar 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
978f2cb1360SIngo Molnar 	} else {
979f2cb1360SIngo Molnar 		/* Turn on idle balance on this domain: */
980f2cb1360SIngo Molnar 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
981f2cb1360SIngo Molnar 	}
982f2cb1360SIngo Molnar }
983f2cb1360SIngo Molnar 
984f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map);
985f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map);
986f2cb1360SIngo Molnar 
987f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
988f2cb1360SIngo Molnar 				 const struct cpumask *cpu_map)
989f2cb1360SIngo Molnar {
990f2cb1360SIngo Molnar 	switch (what) {
991f2cb1360SIngo Molnar 	case sa_rootdomain:
992f2cb1360SIngo Molnar 		if (!atomic_read(&d->rd->refcount))
993f2cb1360SIngo Molnar 			free_rootdomain(&d->rd->rcu);
994f2cb1360SIngo Molnar 		/* Fall through */
995f2cb1360SIngo Molnar 	case sa_sd:
996f2cb1360SIngo Molnar 		free_percpu(d->sd);
997f2cb1360SIngo Molnar 		/* Fall through */
998f2cb1360SIngo Molnar 	case sa_sd_storage:
999f2cb1360SIngo Molnar 		__sdt_free(cpu_map);
1000f2cb1360SIngo Molnar 		/* Fall through */
1001f2cb1360SIngo Molnar 	case sa_none:
1002f2cb1360SIngo Molnar 		break;
1003f2cb1360SIngo Molnar 	}
1004f2cb1360SIngo Molnar }
1005f2cb1360SIngo Molnar 
1006f2cb1360SIngo Molnar static enum s_alloc
1007f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1008f2cb1360SIngo Molnar {
1009f2cb1360SIngo Molnar 	memset(d, 0, sizeof(*d));
1010f2cb1360SIngo Molnar 
1011f2cb1360SIngo Molnar 	if (__sdt_alloc(cpu_map))
1012f2cb1360SIngo Molnar 		return sa_sd_storage;
1013f2cb1360SIngo Molnar 	d->sd = alloc_percpu(struct sched_domain *);
1014f2cb1360SIngo Molnar 	if (!d->sd)
1015f2cb1360SIngo Molnar 		return sa_sd_storage;
1016f2cb1360SIngo Molnar 	d->rd = alloc_rootdomain();
1017f2cb1360SIngo Molnar 	if (!d->rd)
1018f2cb1360SIngo Molnar 		return sa_sd;
101997fb7a0aSIngo Molnar 
1020f2cb1360SIngo Molnar 	return sa_rootdomain;
1021f2cb1360SIngo Molnar }
1022f2cb1360SIngo Molnar 
1023f2cb1360SIngo Molnar /*
1024f2cb1360SIngo Molnar  * NULL the sd_data elements we've used to build the sched_domain and
1025f2cb1360SIngo Molnar  * sched_group structure so that the subsequent __free_domain_allocs()
1026f2cb1360SIngo Molnar  * will not free the data we're using.
1027f2cb1360SIngo Molnar  */
1028f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd)
1029f2cb1360SIngo Molnar {
1030f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1031f2cb1360SIngo Molnar 
1032f2cb1360SIngo Molnar 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1033f2cb1360SIngo Molnar 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1034f2cb1360SIngo Molnar 
1035f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1036f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1037f2cb1360SIngo Molnar 
1038f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1039f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1040f2cb1360SIngo Molnar 
1041f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1042f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1043f2cb1360SIngo Molnar }
1044f2cb1360SIngo Molnar 
1045f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1046f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type;
104797fb7a0aSIngo Molnar 
104897fb7a0aSIngo Molnar static int			sched_domains_numa_levels;
1049f2cb1360SIngo Molnar static int			sched_domains_curr_level;
105097fb7a0aSIngo Molnar 
105197fb7a0aSIngo Molnar int				sched_max_numa_distance;
105297fb7a0aSIngo Molnar static int			*sched_domains_numa_distance;
105397fb7a0aSIngo Molnar static struct cpumask		***sched_domains_numa_masks;
1054f2cb1360SIngo Molnar #endif
1055f2cb1360SIngo Molnar 
1056f2cb1360SIngo Molnar /*
1057f2cb1360SIngo Molnar  * SD_flags allowed in topology descriptions.
1058f2cb1360SIngo Molnar  *
1059f2cb1360SIngo Molnar  * These flags are purely descriptive of the topology and do not prescribe
1060f2cb1360SIngo Molnar  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1061f2cb1360SIngo Molnar  * function:
1062f2cb1360SIngo Molnar  *
1063f2cb1360SIngo Molnar  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1064f2cb1360SIngo Molnar  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1065f2cb1360SIngo Molnar  *   SD_NUMA                - describes NUMA topologies
1066f2cb1360SIngo Molnar  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1067f2cb1360SIngo Molnar  *
1068f2cb1360SIngo Molnar  * Odd one out, which beside describing the topology has a quirk also
1069f2cb1360SIngo Molnar  * prescribes the desired behaviour that goes along with it:
1070f2cb1360SIngo Molnar  *
1071f2cb1360SIngo Molnar  *   SD_ASYM_PACKING        - describes SMT quirks
1072f2cb1360SIngo Molnar  */
1073f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS		\
1074f2cb1360SIngo Molnar 	(SD_SHARE_CPUCAPACITY	|	\
1075f2cb1360SIngo Molnar 	 SD_SHARE_PKG_RESOURCES |	\
1076f2cb1360SIngo Molnar 	 SD_NUMA		|	\
1077f2cb1360SIngo Molnar 	 SD_ASYM_PACKING	|	\
1078f2cb1360SIngo Molnar 	 SD_SHARE_POWERDOMAIN)
1079f2cb1360SIngo Molnar 
1080f2cb1360SIngo Molnar static struct sched_domain *
1081f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl,
1082f2cb1360SIngo Molnar 	const struct cpumask *cpu_map,
108305484e09SMorten Rasmussen 	struct sched_domain *child, int dflags, int cpu)
1084f2cb1360SIngo Molnar {
1085f2cb1360SIngo Molnar 	struct sd_data *sdd = &tl->data;
1086f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1087f2cb1360SIngo Molnar 	int sd_id, sd_weight, sd_flags = 0;
1088f2cb1360SIngo Molnar 
1089f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1090f2cb1360SIngo Molnar 	/*
1091f2cb1360SIngo Molnar 	 * Ugly hack to pass state to sd_numa_mask()...
1092f2cb1360SIngo Molnar 	 */
1093f2cb1360SIngo Molnar 	sched_domains_curr_level = tl->numa_level;
1094f2cb1360SIngo Molnar #endif
1095f2cb1360SIngo Molnar 
1096f2cb1360SIngo Molnar 	sd_weight = cpumask_weight(tl->mask(cpu));
1097f2cb1360SIngo Molnar 
1098f2cb1360SIngo Molnar 	if (tl->sd_flags)
1099f2cb1360SIngo Molnar 		sd_flags = (*tl->sd_flags)();
1100f2cb1360SIngo Molnar 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1101f2cb1360SIngo Molnar 			"wrong sd_flags in topology description\n"))
1102f2cb1360SIngo Molnar 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1103f2cb1360SIngo Molnar 
110405484e09SMorten Rasmussen 	/* Apply detected topology flags */
110505484e09SMorten Rasmussen 	sd_flags |= dflags;
110605484e09SMorten Rasmussen 
1107f2cb1360SIngo Molnar 	*sd = (struct sched_domain){
1108f2cb1360SIngo Molnar 		.min_interval		= sd_weight,
1109f2cb1360SIngo Molnar 		.max_interval		= 2*sd_weight,
1110f2cb1360SIngo Molnar 		.busy_factor		= 32,
1111f2cb1360SIngo Molnar 		.imbalance_pct		= 125,
1112f2cb1360SIngo Molnar 
1113f2cb1360SIngo Molnar 		.cache_nice_tries	= 0,
1114f2cb1360SIngo Molnar 		.busy_idx		= 0,
1115f2cb1360SIngo Molnar 		.idle_idx		= 0,
1116f2cb1360SIngo Molnar 		.newidle_idx		= 0,
1117f2cb1360SIngo Molnar 		.wake_idx		= 0,
1118f2cb1360SIngo Molnar 		.forkexec_idx		= 0,
1119f2cb1360SIngo Molnar 
1120f2cb1360SIngo Molnar 		.flags			= 1*SD_LOAD_BALANCE
1121f2cb1360SIngo Molnar 					| 1*SD_BALANCE_NEWIDLE
1122f2cb1360SIngo Molnar 					| 1*SD_BALANCE_EXEC
1123f2cb1360SIngo Molnar 					| 1*SD_BALANCE_FORK
1124f2cb1360SIngo Molnar 					| 0*SD_BALANCE_WAKE
1125f2cb1360SIngo Molnar 					| 1*SD_WAKE_AFFINE
1126f2cb1360SIngo Molnar 					| 0*SD_SHARE_CPUCAPACITY
1127f2cb1360SIngo Molnar 					| 0*SD_SHARE_PKG_RESOURCES
1128f2cb1360SIngo Molnar 					| 0*SD_SERIALIZE
11299c63e84dSMorten Rasmussen 					| 1*SD_PREFER_SIBLING
1130f2cb1360SIngo Molnar 					| 0*SD_NUMA
1131f2cb1360SIngo Molnar 					| sd_flags
1132f2cb1360SIngo Molnar 					,
1133f2cb1360SIngo Molnar 
1134f2cb1360SIngo Molnar 		.last_balance		= jiffies,
1135f2cb1360SIngo Molnar 		.balance_interval	= sd_weight,
1136f2cb1360SIngo Molnar 		.smt_gain		= 0,
1137f2cb1360SIngo Molnar 		.max_newidle_lb_cost	= 0,
1138f2cb1360SIngo Molnar 		.next_decay_max_lb_cost	= jiffies,
1139f2cb1360SIngo Molnar 		.child			= child,
1140f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1141f2cb1360SIngo Molnar 		.name			= tl->name,
1142f2cb1360SIngo Molnar #endif
1143f2cb1360SIngo Molnar 	};
1144f2cb1360SIngo Molnar 
1145f2cb1360SIngo Molnar 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1146f2cb1360SIngo Molnar 	sd_id = cpumask_first(sched_domain_span(sd));
1147f2cb1360SIngo Molnar 
1148f2cb1360SIngo Molnar 	/*
1149f2cb1360SIngo Molnar 	 * Convert topological properties into behaviour.
1150f2cb1360SIngo Molnar 	 */
1151f2cb1360SIngo Molnar 
1152f2cb1360SIngo Molnar 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1153f2cb1360SIngo Molnar 		struct sched_domain *t = sd;
1154f2cb1360SIngo Molnar 
11559c63e84dSMorten Rasmussen 		/*
11569c63e84dSMorten Rasmussen 		 * Don't attempt to spread across CPUs of different capacities.
11579c63e84dSMorten Rasmussen 		 */
11589c63e84dSMorten Rasmussen 		if (sd->child)
11599c63e84dSMorten Rasmussen 			sd->child->flags &= ~SD_PREFER_SIBLING;
11609c63e84dSMorten Rasmussen 
1161f2cb1360SIngo Molnar 		for_each_lower_domain(t)
1162f2cb1360SIngo Molnar 			t->flags |= SD_BALANCE_WAKE;
1163f2cb1360SIngo Molnar 	}
1164f2cb1360SIngo Molnar 
1165f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1166f2cb1360SIngo Molnar 		sd->imbalance_pct = 110;
1167f2cb1360SIngo Molnar 		sd->smt_gain = 1178; /* ~15% */
1168f2cb1360SIngo Molnar 
1169f2cb1360SIngo Molnar 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1170f2cb1360SIngo Molnar 		sd->imbalance_pct = 117;
1171f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1172f2cb1360SIngo Molnar 		sd->busy_idx = 2;
1173f2cb1360SIngo Molnar 
1174f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1175f2cb1360SIngo Molnar 	} else if (sd->flags & SD_NUMA) {
1176f2cb1360SIngo Molnar 		sd->cache_nice_tries = 2;
1177f2cb1360SIngo Molnar 		sd->busy_idx = 3;
1178f2cb1360SIngo Molnar 		sd->idle_idx = 2;
1179f2cb1360SIngo Molnar 
11809c63e84dSMorten Rasmussen 		sd->flags &= ~SD_PREFER_SIBLING;
1181f2cb1360SIngo Molnar 		sd->flags |= SD_SERIALIZE;
1182f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1183f2cb1360SIngo Molnar 			sd->flags &= ~(SD_BALANCE_EXEC |
1184f2cb1360SIngo Molnar 				       SD_BALANCE_FORK |
1185f2cb1360SIngo Molnar 				       SD_WAKE_AFFINE);
1186f2cb1360SIngo Molnar 		}
1187f2cb1360SIngo Molnar 
1188f2cb1360SIngo Molnar #endif
1189f2cb1360SIngo Molnar 	} else {
1190f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1191f2cb1360SIngo Molnar 		sd->busy_idx = 2;
1192f2cb1360SIngo Molnar 		sd->idle_idx = 1;
1193f2cb1360SIngo Molnar 	}
1194f2cb1360SIngo Molnar 
1195f2cb1360SIngo Molnar 	/*
1196f2cb1360SIngo Molnar 	 * For all levels sharing cache; connect a sched_domain_shared
1197f2cb1360SIngo Molnar 	 * instance.
1198f2cb1360SIngo Molnar 	 */
1199f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1200f2cb1360SIngo Molnar 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1201f2cb1360SIngo Molnar 		atomic_inc(&sd->shared->ref);
1202f2cb1360SIngo Molnar 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1203f2cb1360SIngo Molnar 	}
1204f2cb1360SIngo Molnar 
1205f2cb1360SIngo Molnar 	sd->private = sdd;
1206f2cb1360SIngo Molnar 
1207f2cb1360SIngo Molnar 	return sd;
1208f2cb1360SIngo Molnar }
1209f2cb1360SIngo Molnar 
1210f2cb1360SIngo Molnar /*
1211f2cb1360SIngo Molnar  * Topology list, bottom-up.
1212f2cb1360SIngo Molnar  */
1213f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = {
1214f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT
1215f2cb1360SIngo Molnar 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1216f2cb1360SIngo Molnar #endif
1217f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC
1218f2cb1360SIngo Molnar 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1219f2cb1360SIngo Molnar #endif
1220f2cb1360SIngo Molnar 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1221f2cb1360SIngo Molnar 	{ NULL, },
1222f2cb1360SIngo Molnar };
1223f2cb1360SIngo Molnar 
1224f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology =
1225f2cb1360SIngo Molnar 	default_topology;
1226f2cb1360SIngo Molnar 
1227f2cb1360SIngo Molnar #define for_each_sd_topology(tl)			\
1228f2cb1360SIngo Molnar 	for (tl = sched_domain_topology; tl->mask; tl++)
1229f2cb1360SIngo Molnar 
1230f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl)
1231f2cb1360SIngo Molnar {
1232f2cb1360SIngo Molnar 	if (WARN_ON_ONCE(sched_smp_initialized))
1233f2cb1360SIngo Molnar 		return;
1234f2cb1360SIngo Molnar 
1235f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1236f2cb1360SIngo Molnar }
1237f2cb1360SIngo Molnar 
1238f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1239f2cb1360SIngo Molnar 
1240f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu)
1241f2cb1360SIngo Molnar {
1242f2cb1360SIngo Molnar 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1243f2cb1360SIngo Molnar }
1244f2cb1360SIngo Molnar 
1245f2cb1360SIngo Molnar static void sched_numa_warn(const char *str)
1246f2cb1360SIngo Molnar {
1247f2cb1360SIngo Molnar 	static int done = false;
1248f2cb1360SIngo Molnar 	int i,j;
1249f2cb1360SIngo Molnar 
1250f2cb1360SIngo Molnar 	if (done)
1251f2cb1360SIngo Molnar 		return;
1252f2cb1360SIngo Molnar 
1253f2cb1360SIngo Molnar 	done = true;
1254f2cb1360SIngo Molnar 
1255f2cb1360SIngo Molnar 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1256f2cb1360SIngo Molnar 
1257f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1258f2cb1360SIngo Molnar 		printk(KERN_WARNING "  ");
1259f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1260f2cb1360SIngo Molnar 			printk(KERN_CONT "%02d ", node_distance(i,j));
1261f2cb1360SIngo Molnar 		printk(KERN_CONT "\n");
1262f2cb1360SIngo Molnar 	}
1263f2cb1360SIngo Molnar 	printk(KERN_WARNING "\n");
1264f2cb1360SIngo Molnar }
1265f2cb1360SIngo Molnar 
1266f2cb1360SIngo Molnar bool find_numa_distance(int distance)
1267f2cb1360SIngo Molnar {
1268f2cb1360SIngo Molnar 	int i;
1269f2cb1360SIngo Molnar 
1270f2cb1360SIngo Molnar 	if (distance == node_distance(0, 0))
1271f2cb1360SIngo Molnar 		return true;
1272f2cb1360SIngo Molnar 
1273f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1274f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[i] == distance)
1275f2cb1360SIngo Molnar 			return true;
1276f2cb1360SIngo Molnar 	}
1277f2cb1360SIngo Molnar 
1278f2cb1360SIngo Molnar 	return false;
1279f2cb1360SIngo Molnar }
1280f2cb1360SIngo Molnar 
1281f2cb1360SIngo Molnar /*
1282f2cb1360SIngo Molnar  * A system can have three types of NUMA topology:
1283f2cb1360SIngo Molnar  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1284f2cb1360SIngo Molnar  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1285f2cb1360SIngo Molnar  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1286f2cb1360SIngo Molnar  *
1287f2cb1360SIngo Molnar  * The difference between a glueless mesh topology and a backplane
1288f2cb1360SIngo Molnar  * topology lies in whether communication between not directly
1289f2cb1360SIngo Molnar  * connected nodes goes through intermediary nodes (where programs
1290f2cb1360SIngo Molnar  * could run), or through backplane controllers. This affects
1291f2cb1360SIngo Molnar  * placement of programs.
1292f2cb1360SIngo Molnar  *
1293f2cb1360SIngo Molnar  * The type of topology can be discerned with the following tests:
1294f2cb1360SIngo Molnar  * - If the maximum distance between any nodes is 1 hop, the system
1295f2cb1360SIngo Molnar  *   is directly connected.
1296f2cb1360SIngo Molnar  * - If for two nodes A and B, located N > 1 hops away from each other,
1297f2cb1360SIngo Molnar  *   there is an intermediary node C, which is < N hops away from both
1298f2cb1360SIngo Molnar  *   nodes A and B, the system is a glueless mesh.
1299f2cb1360SIngo Molnar  */
1300f2cb1360SIngo Molnar static void init_numa_topology_type(void)
1301f2cb1360SIngo Molnar {
1302f2cb1360SIngo Molnar 	int a, b, c, n;
1303f2cb1360SIngo Molnar 
1304f2cb1360SIngo Molnar 	n = sched_max_numa_distance;
1305f2cb1360SIngo Molnar 
1306e5e96fafSSrikar Dronamraju 	if (sched_domains_numa_levels <= 2) {
1307f2cb1360SIngo Molnar 		sched_numa_topology_type = NUMA_DIRECT;
1308f2cb1360SIngo Molnar 		return;
1309f2cb1360SIngo Molnar 	}
1310f2cb1360SIngo Molnar 
1311f2cb1360SIngo Molnar 	for_each_online_node(a) {
1312f2cb1360SIngo Molnar 		for_each_online_node(b) {
1313f2cb1360SIngo Molnar 			/* Find two nodes furthest removed from each other. */
1314f2cb1360SIngo Molnar 			if (node_distance(a, b) < n)
1315f2cb1360SIngo Molnar 				continue;
1316f2cb1360SIngo Molnar 
1317f2cb1360SIngo Molnar 			/* Is there an intermediary node between a and b? */
1318f2cb1360SIngo Molnar 			for_each_online_node(c) {
1319f2cb1360SIngo Molnar 				if (node_distance(a, c) < n &&
1320f2cb1360SIngo Molnar 				    node_distance(b, c) < n) {
1321f2cb1360SIngo Molnar 					sched_numa_topology_type =
1322f2cb1360SIngo Molnar 							NUMA_GLUELESS_MESH;
1323f2cb1360SIngo Molnar 					return;
1324f2cb1360SIngo Molnar 				}
1325f2cb1360SIngo Molnar 			}
1326f2cb1360SIngo Molnar 
1327f2cb1360SIngo Molnar 			sched_numa_topology_type = NUMA_BACKPLANE;
1328f2cb1360SIngo Molnar 			return;
1329f2cb1360SIngo Molnar 		}
1330f2cb1360SIngo Molnar 	}
1331f2cb1360SIngo Molnar }
1332f2cb1360SIngo Molnar 
1333f2cb1360SIngo Molnar void sched_init_numa(void)
1334f2cb1360SIngo Molnar {
1335f2cb1360SIngo Molnar 	int next_distance, curr_distance = node_distance(0, 0);
1336f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1337f2cb1360SIngo Molnar 	int level = 0;
1338f2cb1360SIngo Molnar 	int i, j, k;
1339f2cb1360SIngo Molnar 
1340*993f0b05SPeter Zijlstra 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1341f2cb1360SIngo Molnar 	if (!sched_domains_numa_distance)
1342f2cb1360SIngo Molnar 		return;
1343f2cb1360SIngo Molnar 
1344051f3ca0SSuravee Suthikulpanit 	/* Includes NUMA identity node at level 0. */
1345051f3ca0SSuravee Suthikulpanit 	sched_domains_numa_distance[level++] = curr_distance;
1346051f3ca0SSuravee Suthikulpanit 	sched_domains_numa_levels = level;
1347051f3ca0SSuravee Suthikulpanit 
1348f2cb1360SIngo Molnar 	/*
1349f2cb1360SIngo Molnar 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1350f2cb1360SIngo Molnar 	 * unique distances in the node_distance() table.
1351f2cb1360SIngo Molnar 	 *
1352f2cb1360SIngo Molnar 	 * Assumes node_distance(0,j) includes all distances in
1353f2cb1360SIngo Molnar 	 * node_distance(i,j) in order to avoid cubic time.
1354f2cb1360SIngo Molnar 	 */
1355f2cb1360SIngo Molnar 	next_distance = curr_distance;
1356f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1357f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1358f2cb1360SIngo Molnar 			for (k = 0; k < nr_node_ids; k++) {
1359f2cb1360SIngo Molnar 				int distance = node_distance(i, k);
1360f2cb1360SIngo Molnar 
1361f2cb1360SIngo Molnar 				if (distance > curr_distance &&
1362f2cb1360SIngo Molnar 				    (distance < next_distance ||
1363f2cb1360SIngo Molnar 				     next_distance == curr_distance))
1364f2cb1360SIngo Molnar 					next_distance = distance;
1365f2cb1360SIngo Molnar 
1366f2cb1360SIngo Molnar 				/*
1367f2cb1360SIngo Molnar 				 * While not a strong assumption it would be nice to know
1368f2cb1360SIngo Molnar 				 * about cases where if node A is connected to B, B is not
1369f2cb1360SIngo Molnar 				 * equally connected to A.
1370f2cb1360SIngo Molnar 				 */
1371f2cb1360SIngo Molnar 				if (sched_debug() && node_distance(k, i) != distance)
1372f2cb1360SIngo Molnar 					sched_numa_warn("Node-distance not symmetric");
1373f2cb1360SIngo Molnar 
1374f2cb1360SIngo Molnar 				if (sched_debug() && i && !find_numa_distance(distance))
1375f2cb1360SIngo Molnar 					sched_numa_warn("Node-0 not representative");
1376f2cb1360SIngo Molnar 			}
1377f2cb1360SIngo Molnar 			if (next_distance != curr_distance) {
1378f2cb1360SIngo Molnar 				sched_domains_numa_distance[level++] = next_distance;
1379f2cb1360SIngo Molnar 				sched_domains_numa_levels = level;
1380f2cb1360SIngo Molnar 				curr_distance = next_distance;
1381f2cb1360SIngo Molnar 			} else break;
1382f2cb1360SIngo Molnar 		}
1383f2cb1360SIngo Molnar 
1384f2cb1360SIngo Molnar 		/*
1385f2cb1360SIngo Molnar 		 * In case of sched_debug() we verify the above assumption.
1386f2cb1360SIngo Molnar 		 */
1387f2cb1360SIngo Molnar 		if (!sched_debug())
1388f2cb1360SIngo Molnar 			break;
1389f2cb1360SIngo Molnar 	}
1390f2cb1360SIngo Molnar 
1391f2cb1360SIngo Molnar 	/*
1392051f3ca0SSuravee Suthikulpanit 	 * 'level' contains the number of unique distances
1393f2cb1360SIngo Molnar 	 *
1394f2cb1360SIngo Molnar 	 * The sched_domains_numa_distance[] array includes the actual distance
1395f2cb1360SIngo Molnar 	 * numbers.
1396f2cb1360SIngo Molnar 	 */
1397f2cb1360SIngo Molnar 
1398f2cb1360SIngo Molnar 	/*
1399f2cb1360SIngo Molnar 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1400f2cb1360SIngo Molnar 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1401f2cb1360SIngo Molnar 	 * the array will contain less then 'level' members. This could be
1402f2cb1360SIngo Molnar 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1403f2cb1360SIngo Molnar 	 * in other functions.
1404f2cb1360SIngo Molnar 	 *
1405f2cb1360SIngo Molnar 	 * We reset it to 'level' at the end of this function.
1406f2cb1360SIngo Molnar 	 */
1407f2cb1360SIngo Molnar 	sched_domains_numa_levels = 0;
1408f2cb1360SIngo Molnar 
1409f2cb1360SIngo Molnar 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1410f2cb1360SIngo Molnar 	if (!sched_domains_numa_masks)
1411f2cb1360SIngo Molnar 		return;
1412f2cb1360SIngo Molnar 
1413f2cb1360SIngo Molnar 	/*
1414f2cb1360SIngo Molnar 	 * Now for each level, construct a mask per node which contains all
1415f2cb1360SIngo Molnar 	 * CPUs of nodes that are that many hops away from us.
1416f2cb1360SIngo Molnar 	 */
1417f2cb1360SIngo Molnar 	for (i = 0; i < level; i++) {
1418f2cb1360SIngo Molnar 		sched_domains_numa_masks[i] =
1419f2cb1360SIngo Molnar 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1420f2cb1360SIngo Molnar 		if (!sched_domains_numa_masks[i])
1421f2cb1360SIngo Molnar 			return;
1422f2cb1360SIngo Molnar 
1423f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1424f2cb1360SIngo Molnar 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1425f2cb1360SIngo Molnar 			if (!mask)
1426f2cb1360SIngo Molnar 				return;
1427f2cb1360SIngo Molnar 
1428f2cb1360SIngo Molnar 			sched_domains_numa_masks[i][j] = mask;
1429f2cb1360SIngo Molnar 
1430f2cb1360SIngo Molnar 			for_each_node(k) {
1431f2cb1360SIngo Molnar 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1432f2cb1360SIngo Molnar 					continue;
1433f2cb1360SIngo Molnar 
1434f2cb1360SIngo Molnar 				cpumask_or(mask, mask, cpumask_of_node(k));
1435f2cb1360SIngo Molnar 			}
1436f2cb1360SIngo Molnar 		}
1437f2cb1360SIngo Molnar 	}
1438f2cb1360SIngo Molnar 
1439f2cb1360SIngo Molnar 	/* Compute default topology size */
1440f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++);
1441f2cb1360SIngo Molnar 
1442f2cb1360SIngo Molnar 	tl = kzalloc((i + level + 1) *
1443f2cb1360SIngo Molnar 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1444f2cb1360SIngo Molnar 	if (!tl)
1445f2cb1360SIngo Molnar 		return;
1446f2cb1360SIngo Molnar 
1447f2cb1360SIngo Molnar 	/*
1448f2cb1360SIngo Molnar 	 * Copy the default topology bits..
1449f2cb1360SIngo Molnar 	 */
1450f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++)
1451f2cb1360SIngo Molnar 		tl[i] = sched_domain_topology[i];
1452f2cb1360SIngo Molnar 
1453f2cb1360SIngo Molnar 	/*
1454051f3ca0SSuravee Suthikulpanit 	 * Add the NUMA identity distance, aka single NODE.
1455051f3ca0SSuravee Suthikulpanit 	 */
1456051f3ca0SSuravee Suthikulpanit 	tl[i++] = (struct sched_domain_topology_level){
1457051f3ca0SSuravee Suthikulpanit 		.mask = sd_numa_mask,
1458051f3ca0SSuravee Suthikulpanit 		.numa_level = 0,
1459051f3ca0SSuravee Suthikulpanit 		SD_INIT_NAME(NODE)
1460051f3ca0SSuravee Suthikulpanit 	};
1461051f3ca0SSuravee Suthikulpanit 
1462051f3ca0SSuravee Suthikulpanit 	/*
1463f2cb1360SIngo Molnar 	 * .. and append 'j' levels of NUMA goodness.
1464f2cb1360SIngo Molnar 	 */
1465051f3ca0SSuravee Suthikulpanit 	for (j = 1; j < level; i++, j++) {
1466f2cb1360SIngo Molnar 		tl[i] = (struct sched_domain_topology_level){
1467f2cb1360SIngo Molnar 			.mask = sd_numa_mask,
1468f2cb1360SIngo Molnar 			.sd_flags = cpu_numa_flags,
1469f2cb1360SIngo Molnar 			.flags = SDTL_OVERLAP,
1470f2cb1360SIngo Molnar 			.numa_level = j,
1471f2cb1360SIngo Molnar 			SD_INIT_NAME(NUMA)
1472f2cb1360SIngo Molnar 		};
1473f2cb1360SIngo Molnar 	}
1474f2cb1360SIngo Molnar 
1475f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1476f2cb1360SIngo Molnar 
1477f2cb1360SIngo Molnar 	sched_domains_numa_levels = level;
1478f2cb1360SIngo Molnar 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1479f2cb1360SIngo Molnar 
1480f2cb1360SIngo Molnar 	init_numa_topology_type();
1481f2cb1360SIngo Molnar }
1482f2cb1360SIngo Molnar 
1483f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu)
1484f2cb1360SIngo Molnar {
1485f2cb1360SIngo Molnar 	int node = cpu_to_node(cpu);
1486f2cb1360SIngo Molnar 	int i, j;
1487f2cb1360SIngo Molnar 
1488f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1489f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1490f2cb1360SIngo Molnar 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1491f2cb1360SIngo Molnar 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1492f2cb1360SIngo Molnar 		}
1493f2cb1360SIngo Molnar 	}
1494f2cb1360SIngo Molnar }
1495f2cb1360SIngo Molnar 
1496f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu)
1497f2cb1360SIngo Molnar {
1498f2cb1360SIngo Molnar 	int i, j;
1499f2cb1360SIngo Molnar 
1500f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1501f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1502f2cb1360SIngo Molnar 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1503f2cb1360SIngo Molnar 	}
1504f2cb1360SIngo Molnar }
1505f2cb1360SIngo Molnar 
1506f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */
1507f2cb1360SIngo Molnar 
1508f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map)
1509f2cb1360SIngo Molnar {
1510f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1511f2cb1360SIngo Molnar 	int j;
1512f2cb1360SIngo Molnar 
1513f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1514f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1515f2cb1360SIngo Molnar 
1516f2cb1360SIngo Molnar 		sdd->sd = alloc_percpu(struct sched_domain *);
1517f2cb1360SIngo Molnar 		if (!sdd->sd)
1518f2cb1360SIngo Molnar 			return -ENOMEM;
1519f2cb1360SIngo Molnar 
1520f2cb1360SIngo Molnar 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1521f2cb1360SIngo Molnar 		if (!sdd->sds)
1522f2cb1360SIngo Molnar 			return -ENOMEM;
1523f2cb1360SIngo Molnar 
1524f2cb1360SIngo Molnar 		sdd->sg = alloc_percpu(struct sched_group *);
1525f2cb1360SIngo Molnar 		if (!sdd->sg)
1526f2cb1360SIngo Molnar 			return -ENOMEM;
1527f2cb1360SIngo Molnar 
1528f2cb1360SIngo Molnar 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1529f2cb1360SIngo Molnar 		if (!sdd->sgc)
1530f2cb1360SIngo Molnar 			return -ENOMEM;
1531f2cb1360SIngo Molnar 
1532f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1533f2cb1360SIngo Molnar 			struct sched_domain *sd;
1534f2cb1360SIngo Molnar 			struct sched_domain_shared *sds;
1535f2cb1360SIngo Molnar 			struct sched_group *sg;
1536f2cb1360SIngo Molnar 			struct sched_group_capacity *sgc;
1537f2cb1360SIngo Molnar 
1538f2cb1360SIngo Molnar 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1539f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1540f2cb1360SIngo Molnar 			if (!sd)
1541f2cb1360SIngo Molnar 				return -ENOMEM;
1542f2cb1360SIngo Molnar 
1543f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sd, j) = sd;
1544f2cb1360SIngo Molnar 
1545f2cb1360SIngo Molnar 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1546f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1547f2cb1360SIngo Molnar 			if (!sds)
1548f2cb1360SIngo Molnar 				return -ENOMEM;
1549f2cb1360SIngo Molnar 
1550f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sds, j) = sds;
1551f2cb1360SIngo Molnar 
1552f2cb1360SIngo Molnar 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1553f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1554f2cb1360SIngo Molnar 			if (!sg)
1555f2cb1360SIngo Molnar 				return -ENOMEM;
1556f2cb1360SIngo Molnar 
1557f2cb1360SIngo Molnar 			sg->next = sg;
1558f2cb1360SIngo Molnar 
1559f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sg, j) = sg;
1560f2cb1360SIngo Molnar 
1561f2cb1360SIngo Molnar 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1562f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1563f2cb1360SIngo Molnar 			if (!sgc)
1564f2cb1360SIngo Molnar 				return -ENOMEM;
1565f2cb1360SIngo Molnar 
1566005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG
1567005f874dSPeter Zijlstra 			sgc->id = j;
1568005f874dSPeter Zijlstra #endif
1569005f874dSPeter Zijlstra 
1570f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1571f2cb1360SIngo Molnar 		}
1572f2cb1360SIngo Molnar 	}
1573f2cb1360SIngo Molnar 
1574f2cb1360SIngo Molnar 	return 0;
1575f2cb1360SIngo Molnar }
1576f2cb1360SIngo Molnar 
1577f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map)
1578f2cb1360SIngo Molnar {
1579f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1580f2cb1360SIngo Molnar 	int j;
1581f2cb1360SIngo Molnar 
1582f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1583f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1584f2cb1360SIngo Molnar 
1585f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1586f2cb1360SIngo Molnar 			struct sched_domain *sd;
1587f2cb1360SIngo Molnar 
1588f2cb1360SIngo Molnar 			if (sdd->sd) {
1589f2cb1360SIngo Molnar 				sd = *per_cpu_ptr(sdd->sd, j);
1590f2cb1360SIngo Molnar 				if (sd && (sd->flags & SD_OVERLAP))
1591f2cb1360SIngo Molnar 					free_sched_groups(sd->groups, 0);
1592f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sd, j));
1593f2cb1360SIngo Molnar 			}
1594f2cb1360SIngo Molnar 
1595f2cb1360SIngo Molnar 			if (sdd->sds)
1596f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sds, j));
1597f2cb1360SIngo Molnar 			if (sdd->sg)
1598f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sg, j));
1599f2cb1360SIngo Molnar 			if (sdd->sgc)
1600f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sgc, j));
1601f2cb1360SIngo Molnar 		}
1602f2cb1360SIngo Molnar 		free_percpu(sdd->sd);
1603f2cb1360SIngo Molnar 		sdd->sd = NULL;
1604f2cb1360SIngo Molnar 		free_percpu(sdd->sds);
1605f2cb1360SIngo Molnar 		sdd->sds = NULL;
1606f2cb1360SIngo Molnar 		free_percpu(sdd->sg);
1607f2cb1360SIngo Molnar 		sdd->sg = NULL;
1608f2cb1360SIngo Molnar 		free_percpu(sdd->sgc);
1609f2cb1360SIngo Molnar 		sdd->sgc = NULL;
1610f2cb1360SIngo Molnar 	}
1611f2cb1360SIngo Molnar }
1612f2cb1360SIngo Molnar 
1613181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1614f2cb1360SIngo Molnar 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
161505484e09SMorten Rasmussen 		struct sched_domain *child, int dflags, int cpu)
1616f2cb1360SIngo Molnar {
161705484e09SMorten Rasmussen 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1618f2cb1360SIngo Molnar 
1619f2cb1360SIngo Molnar 	if (child) {
1620f2cb1360SIngo Molnar 		sd->level = child->level + 1;
1621f2cb1360SIngo Molnar 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1622f2cb1360SIngo Molnar 		child->parent = sd;
1623f2cb1360SIngo Molnar 
1624f2cb1360SIngo Molnar 		if (!cpumask_subset(sched_domain_span(child),
1625f2cb1360SIngo Molnar 				    sched_domain_span(sd))) {
1626f2cb1360SIngo Molnar 			pr_err("BUG: arch topology borken\n");
1627f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1628f2cb1360SIngo Molnar 			pr_err("     the %s domain not a subset of the %s domain\n",
1629f2cb1360SIngo Molnar 					child->name, sd->name);
1630f2cb1360SIngo Molnar #endif
163197fb7a0aSIngo Molnar 			/* Fixup, ensure @sd has at least @child CPUs. */
1632f2cb1360SIngo Molnar 			cpumask_or(sched_domain_span(sd),
1633f2cb1360SIngo Molnar 				   sched_domain_span(sd),
1634f2cb1360SIngo Molnar 				   sched_domain_span(child));
1635f2cb1360SIngo Molnar 		}
1636f2cb1360SIngo Molnar 
1637f2cb1360SIngo Molnar 	}
1638f2cb1360SIngo Molnar 	set_domain_attribute(sd, attr);
1639f2cb1360SIngo Molnar 
1640f2cb1360SIngo Molnar 	return sd;
1641f2cb1360SIngo Molnar }
1642f2cb1360SIngo Molnar 
1643f2cb1360SIngo Molnar /*
164405484e09SMorten Rasmussen  * Find the sched_domain_topology_level where all CPU capacities are visible
164505484e09SMorten Rasmussen  * for all CPUs.
164605484e09SMorten Rasmussen  */
164705484e09SMorten Rasmussen static struct sched_domain_topology_level
164805484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map)
164905484e09SMorten Rasmussen {
165005484e09SMorten Rasmussen 	int i, j, asym_level = 0;
165105484e09SMorten Rasmussen 	bool asym = false;
165205484e09SMorten Rasmussen 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
165305484e09SMorten Rasmussen 	unsigned long cap;
165405484e09SMorten Rasmussen 
165505484e09SMorten Rasmussen 	/* Is there any asymmetry? */
165605484e09SMorten Rasmussen 	cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
165705484e09SMorten Rasmussen 
165805484e09SMorten Rasmussen 	for_each_cpu(i, cpu_map) {
165905484e09SMorten Rasmussen 		if (arch_scale_cpu_capacity(NULL, i) != cap) {
166005484e09SMorten Rasmussen 			asym = true;
166105484e09SMorten Rasmussen 			break;
166205484e09SMorten Rasmussen 		}
166305484e09SMorten Rasmussen 	}
166405484e09SMorten Rasmussen 
166505484e09SMorten Rasmussen 	if (!asym)
166605484e09SMorten Rasmussen 		return NULL;
166705484e09SMorten Rasmussen 
166805484e09SMorten Rasmussen 	/*
166905484e09SMorten Rasmussen 	 * Examine topology from all CPU's point of views to detect the lowest
167005484e09SMorten Rasmussen 	 * sched_domain_topology_level where a highest capacity CPU is visible
167105484e09SMorten Rasmussen 	 * to everyone.
167205484e09SMorten Rasmussen 	 */
167305484e09SMorten Rasmussen 	for_each_cpu(i, cpu_map) {
167405484e09SMorten Rasmussen 		unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
167505484e09SMorten Rasmussen 		int tl_id = 0;
167605484e09SMorten Rasmussen 
167705484e09SMorten Rasmussen 		for_each_sd_topology(tl) {
167805484e09SMorten Rasmussen 			if (tl_id < asym_level)
167905484e09SMorten Rasmussen 				goto next_level;
168005484e09SMorten Rasmussen 
168105484e09SMorten Rasmussen 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
168205484e09SMorten Rasmussen 				unsigned long capacity;
168305484e09SMorten Rasmussen 
168405484e09SMorten Rasmussen 				capacity = arch_scale_cpu_capacity(NULL, j);
168505484e09SMorten Rasmussen 
168605484e09SMorten Rasmussen 				if (capacity <= max_capacity)
168705484e09SMorten Rasmussen 					continue;
168805484e09SMorten Rasmussen 
168905484e09SMorten Rasmussen 				max_capacity = capacity;
169005484e09SMorten Rasmussen 				asym_level = tl_id;
169105484e09SMorten Rasmussen 				asym_tl = tl;
169205484e09SMorten Rasmussen 			}
169305484e09SMorten Rasmussen next_level:
169405484e09SMorten Rasmussen 			tl_id++;
169505484e09SMorten Rasmussen 		}
169605484e09SMorten Rasmussen 	}
169705484e09SMorten Rasmussen 
169805484e09SMorten Rasmussen 	return asym_tl;
169905484e09SMorten Rasmussen }
170005484e09SMorten Rasmussen 
170105484e09SMorten Rasmussen 
170205484e09SMorten Rasmussen /*
1703f2cb1360SIngo Molnar  * Build sched domains for a given set of CPUs and attach the sched domains
1704f2cb1360SIngo Molnar  * to the individual CPUs
1705f2cb1360SIngo Molnar  */
1706f2cb1360SIngo Molnar static int
1707f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1708f2cb1360SIngo Molnar {
1709f2cb1360SIngo Molnar 	enum s_alloc alloc_state;
1710f2cb1360SIngo Molnar 	struct sched_domain *sd;
1711f2cb1360SIngo Molnar 	struct s_data d;
1712f2cb1360SIngo Molnar 	struct rq *rq = NULL;
1713f2cb1360SIngo Molnar 	int i, ret = -ENOMEM;
171405484e09SMorten Rasmussen 	struct sched_domain_topology_level *tl_asym;
1715df054e84SMorten Rasmussen 	bool has_asym = false;
1716f2cb1360SIngo Molnar 
1717f2cb1360SIngo Molnar 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1718f2cb1360SIngo Molnar 	if (alloc_state != sa_rootdomain)
1719f2cb1360SIngo Molnar 		goto error;
1720f2cb1360SIngo Molnar 
172105484e09SMorten Rasmussen 	tl_asym = asym_cpu_capacity_level(cpu_map);
172205484e09SMorten Rasmussen 
1723f2cb1360SIngo Molnar 	/* Set up domains for CPUs specified by the cpu_map: */
1724f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1725f2cb1360SIngo Molnar 		struct sched_domain_topology_level *tl;
1726f2cb1360SIngo Molnar 
1727f2cb1360SIngo Molnar 		sd = NULL;
1728f2cb1360SIngo Molnar 		for_each_sd_topology(tl) {
172905484e09SMorten Rasmussen 			int dflags = 0;
173005484e09SMorten Rasmussen 
1731df054e84SMorten Rasmussen 			if (tl == tl_asym) {
173205484e09SMorten Rasmussen 				dflags |= SD_ASYM_CPUCAPACITY;
1733df054e84SMorten Rasmussen 				has_asym = true;
1734df054e84SMorten Rasmussen 			}
173505484e09SMorten Rasmussen 
173605484e09SMorten Rasmussen 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
173705484e09SMorten Rasmussen 
1738f2cb1360SIngo Molnar 			if (tl == sched_domain_topology)
1739f2cb1360SIngo Molnar 				*per_cpu_ptr(d.sd, i) = sd;
1740af85596cSPeter Zijlstra 			if (tl->flags & SDTL_OVERLAP)
1741f2cb1360SIngo Molnar 				sd->flags |= SD_OVERLAP;
1742f2cb1360SIngo Molnar 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1743f2cb1360SIngo Molnar 				break;
1744f2cb1360SIngo Molnar 		}
1745f2cb1360SIngo Molnar 	}
1746f2cb1360SIngo Molnar 
1747f2cb1360SIngo Molnar 	/* Build the groups for the domains */
1748f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1749f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1750f2cb1360SIngo Molnar 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1751f2cb1360SIngo Molnar 			if (sd->flags & SD_OVERLAP) {
1752f2cb1360SIngo Molnar 				if (build_overlap_sched_groups(sd, i))
1753f2cb1360SIngo Molnar 					goto error;
1754f2cb1360SIngo Molnar 			} else {
1755f2cb1360SIngo Molnar 				if (build_sched_groups(sd, i))
1756f2cb1360SIngo Molnar 					goto error;
1757f2cb1360SIngo Molnar 			}
1758f2cb1360SIngo Molnar 		}
1759f2cb1360SIngo Molnar 	}
1760f2cb1360SIngo Molnar 
1761f2cb1360SIngo Molnar 	/* Calculate CPU capacity for physical packages and nodes */
1762f2cb1360SIngo Molnar 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1763f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, cpu_map))
1764f2cb1360SIngo Molnar 			continue;
1765f2cb1360SIngo Molnar 
1766f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1767f2cb1360SIngo Molnar 			claim_allocations(i, sd);
1768f2cb1360SIngo Molnar 			init_sched_groups_capacity(i, sd);
1769f2cb1360SIngo Molnar 		}
1770f2cb1360SIngo Molnar 	}
1771f2cb1360SIngo Molnar 
1772f2cb1360SIngo Molnar 	/* Attach the domains */
1773f2cb1360SIngo Molnar 	rcu_read_lock();
1774f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1775f2cb1360SIngo Molnar 		rq = cpu_rq(i);
1776f2cb1360SIngo Molnar 		sd = *per_cpu_ptr(d.sd, i);
1777f2cb1360SIngo Molnar 
1778f2cb1360SIngo Molnar 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1779f2cb1360SIngo Molnar 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1780f2cb1360SIngo Molnar 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1781f2cb1360SIngo Molnar 
1782f2cb1360SIngo Molnar 		cpu_attach_domain(sd, d.rd, i);
1783f2cb1360SIngo Molnar 	}
1784f2cb1360SIngo Molnar 	rcu_read_unlock();
1785f2cb1360SIngo Molnar 
1786df054e84SMorten Rasmussen 	if (has_asym)
1787df054e84SMorten Rasmussen 		static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
1788df054e84SMorten Rasmussen 
1789f2cb1360SIngo Molnar 	if (rq && sched_debug_enabled) {
1790bf5015a5SJuri Lelli 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1791f2cb1360SIngo Molnar 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1792f2cb1360SIngo Molnar 	}
1793f2cb1360SIngo Molnar 
1794f2cb1360SIngo Molnar 	ret = 0;
1795f2cb1360SIngo Molnar error:
1796f2cb1360SIngo Molnar 	__free_domain_allocs(&d, alloc_state, cpu_map);
179797fb7a0aSIngo Molnar 
1798f2cb1360SIngo Molnar 	return ret;
1799f2cb1360SIngo Molnar }
1800f2cb1360SIngo Molnar 
1801f2cb1360SIngo Molnar /* Current sched domains: */
1802f2cb1360SIngo Molnar static cpumask_var_t			*doms_cur;
1803f2cb1360SIngo Molnar 
1804f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */
1805f2cb1360SIngo Molnar static int				ndoms_cur;
1806f2cb1360SIngo Molnar 
1807f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */
1808f2cb1360SIngo Molnar static struct sched_domain_attr		*dattr_cur;
1809f2cb1360SIngo Molnar 
1810f2cb1360SIngo Molnar /*
1811f2cb1360SIngo Molnar  * Special case: If a kmalloc() of a doms_cur partition (array of
1812f2cb1360SIngo Molnar  * cpumask) fails, then fallback to a single sched domain,
1813f2cb1360SIngo Molnar  * as determined by the single cpumask fallback_doms.
1814f2cb1360SIngo Molnar  */
18158d5dc512SPeter Zijlstra static cpumask_var_t			fallback_doms;
1816f2cb1360SIngo Molnar 
1817f2cb1360SIngo Molnar /*
1818f2cb1360SIngo Molnar  * arch_update_cpu_topology lets virtualized architectures update the
1819f2cb1360SIngo Molnar  * CPU core maps. It is supposed to return 1 if the topology changed
1820f2cb1360SIngo Molnar  * or 0 if it stayed the same.
1821f2cb1360SIngo Molnar  */
1822f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void)
1823f2cb1360SIngo Molnar {
1824f2cb1360SIngo Molnar 	return 0;
1825f2cb1360SIngo Molnar }
1826f2cb1360SIngo Molnar 
1827f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1828f2cb1360SIngo Molnar {
1829f2cb1360SIngo Molnar 	int i;
1830f2cb1360SIngo Molnar 	cpumask_var_t *doms;
1831f2cb1360SIngo Molnar 
18326da2ec56SKees Cook 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
1833f2cb1360SIngo Molnar 	if (!doms)
1834f2cb1360SIngo Molnar 		return NULL;
1835f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++) {
1836f2cb1360SIngo Molnar 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1837f2cb1360SIngo Molnar 			free_sched_domains(doms, i);
1838f2cb1360SIngo Molnar 			return NULL;
1839f2cb1360SIngo Molnar 		}
1840f2cb1360SIngo Molnar 	}
1841f2cb1360SIngo Molnar 	return doms;
1842f2cb1360SIngo Molnar }
1843f2cb1360SIngo Molnar 
1844f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1845f2cb1360SIngo Molnar {
1846f2cb1360SIngo Molnar 	unsigned int i;
1847f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++)
1848f2cb1360SIngo Molnar 		free_cpumask_var(doms[i]);
1849f2cb1360SIngo Molnar 	kfree(doms);
1850f2cb1360SIngo Molnar }
1851f2cb1360SIngo Molnar 
1852f2cb1360SIngo Molnar /*
1853f2cb1360SIngo Molnar  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1854f2cb1360SIngo Molnar  * For now this just excludes isolated CPUs, but could be used to
1855f2cb1360SIngo Molnar  * exclude other special cases in the future.
1856f2cb1360SIngo Molnar  */
18578d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map)
1858f2cb1360SIngo Molnar {
1859f2cb1360SIngo Molnar 	int err;
1860f2cb1360SIngo Molnar 
18618d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
18621676330eSPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
18638d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
18648d5dc512SPeter Zijlstra 
1865f2cb1360SIngo Molnar 	arch_update_cpu_topology();
1866f2cb1360SIngo Molnar 	ndoms_cur = 1;
1867f2cb1360SIngo Molnar 	doms_cur = alloc_sched_domains(ndoms_cur);
1868f2cb1360SIngo Molnar 	if (!doms_cur)
1869f2cb1360SIngo Molnar 		doms_cur = &fallback_doms;
1870edb93821SFrederic Weisbecker 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
1871f2cb1360SIngo Molnar 	err = build_sched_domains(doms_cur[0], NULL);
1872f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
1873f2cb1360SIngo Molnar 
1874f2cb1360SIngo Molnar 	return err;
1875f2cb1360SIngo Molnar }
1876f2cb1360SIngo Molnar 
1877f2cb1360SIngo Molnar /*
1878f2cb1360SIngo Molnar  * Detach sched domains from a group of CPUs specified in cpu_map
1879f2cb1360SIngo Molnar  * These CPUs will now be attached to the NULL domain
1880f2cb1360SIngo Molnar  */
1881f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map)
1882f2cb1360SIngo Molnar {
1883f2cb1360SIngo Molnar 	int i;
1884f2cb1360SIngo Molnar 
1885f2cb1360SIngo Molnar 	rcu_read_lock();
1886f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map)
1887f2cb1360SIngo Molnar 		cpu_attach_domain(NULL, &def_root_domain, i);
1888f2cb1360SIngo Molnar 	rcu_read_unlock();
1889f2cb1360SIngo Molnar }
1890f2cb1360SIngo Molnar 
1891f2cb1360SIngo Molnar /* handle null as "default" */
1892f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1893f2cb1360SIngo Molnar 			struct sched_domain_attr *new, int idx_new)
1894f2cb1360SIngo Molnar {
1895f2cb1360SIngo Molnar 	struct sched_domain_attr tmp;
1896f2cb1360SIngo Molnar 
1897f2cb1360SIngo Molnar 	/* Fast path: */
1898f2cb1360SIngo Molnar 	if (!new && !cur)
1899f2cb1360SIngo Molnar 		return 1;
1900f2cb1360SIngo Molnar 
1901f2cb1360SIngo Molnar 	tmp = SD_ATTR_INIT;
190297fb7a0aSIngo Molnar 
1903f2cb1360SIngo Molnar 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1904f2cb1360SIngo Molnar 			new ? (new + idx_new) : &tmp,
1905f2cb1360SIngo Molnar 			sizeof(struct sched_domain_attr));
1906f2cb1360SIngo Molnar }
1907f2cb1360SIngo Molnar 
1908f2cb1360SIngo Molnar /*
1909f2cb1360SIngo Molnar  * Partition sched domains as specified by the 'ndoms_new'
1910f2cb1360SIngo Molnar  * cpumasks in the array doms_new[] of cpumasks. This compares
1911f2cb1360SIngo Molnar  * doms_new[] to the current sched domain partitioning, doms_cur[].
1912f2cb1360SIngo Molnar  * It destroys each deleted domain and builds each new domain.
1913f2cb1360SIngo Molnar  *
1914f2cb1360SIngo Molnar  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1915f2cb1360SIngo Molnar  * The masks don't intersect (don't overlap.) We should setup one
1916f2cb1360SIngo Molnar  * sched domain for each mask. CPUs not in any of the cpumasks will
1917f2cb1360SIngo Molnar  * not be load balanced. If the same cpumask appears both in the
1918f2cb1360SIngo Molnar  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1919f2cb1360SIngo Molnar  * it as it is.
1920f2cb1360SIngo Molnar  *
1921f2cb1360SIngo Molnar  * The passed in 'doms_new' should be allocated using
1922f2cb1360SIngo Molnar  * alloc_sched_domains.  This routine takes ownership of it and will
1923f2cb1360SIngo Molnar  * free_sched_domains it when done with it. If the caller failed the
1924f2cb1360SIngo Molnar  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1925f2cb1360SIngo Molnar  * and partition_sched_domains() will fallback to the single partition
1926f2cb1360SIngo Molnar  * 'fallback_doms', it also forces the domains to be rebuilt.
1927f2cb1360SIngo Molnar  *
1928f2cb1360SIngo Molnar  * If doms_new == NULL it will be replaced with cpu_online_mask.
1929f2cb1360SIngo Molnar  * ndoms_new == 0 is a special case for destroying existing domains,
1930f2cb1360SIngo Molnar  * and it will not create the default domain.
1931f2cb1360SIngo Molnar  *
1932f2cb1360SIngo Molnar  * Call with hotplug lock held
1933f2cb1360SIngo Molnar  */
1934f2cb1360SIngo Molnar void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1935f2cb1360SIngo Molnar 			     struct sched_domain_attr *dattr_new)
1936f2cb1360SIngo Molnar {
1937f2cb1360SIngo Molnar 	int i, j, n;
1938f2cb1360SIngo Molnar 	int new_topology;
1939f2cb1360SIngo Molnar 
1940f2cb1360SIngo Molnar 	mutex_lock(&sched_domains_mutex);
1941f2cb1360SIngo Molnar 
1942f2cb1360SIngo Molnar 	/* Always unregister in case we don't destroy any domains: */
1943f2cb1360SIngo Molnar 	unregister_sched_domain_sysctl();
1944f2cb1360SIngo Molnar 
1945f2cb1360SIngo Molnar 	/* Let the architecture update CPU core mappings: */
1946f2cb1360SIngo Molnar 	new_topology = arch_update_cpu_topology();
1947f2cb1360SIngo Molnar 
194809e0dd8eSPeter Zijlstra 	if (!doms_new) {
194909e0dd8eSPeter Zijlstra 		WARN_ON_ONCE(dattr_new);
195009e0dd8eSPeter Zijlstra 		n = 0;
195109e0dd8eSPeter Zijlstra 		doms_new = alloc_sched_domains(1);
195209e0dd8eSPeter Zijlstra 		if (doms_new) {
195309e0dd8eSPeter Zijlstra 			n = 1;
1954edb93821SFrederic Weisbecker 			cpumask_and(doms_new[0], cpu_active_mask,
1955edb93821SFrederic Weisbecker 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
195609e0dd8eSPeter Zijlstra 		}
195709e0dd8eSPeter Zijlstra 	} else {
195809e0dd8eSPeter Zijlstra 		n = ndoms_new;
195909e0dd8eSPeter Zijlstra 	}
1960f2cb1360SIngo Molnar 
1961f2cb1360SIngo Molnar 	/* Destroy deleted domains: */
1962f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_cur; i++) {
1963f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
1964f2cb1360SIngo Molnar 			if (cpumask_equal(doms_cur[i], doms_new[j])
1965f2cb1360SIngo Molnar 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1966f2cb1360SIngo Molnar 				goto match1;
1967f2cb1360SIngo Molnar 		}
1968f2cb1360SIngo Molnar 		/* No match - a current sched domain not in new doms_new[] */
1969f2cb1360SIngo Molnar 		detach_destroy_domains(doms_cur[i]);
1970f2cb1360SIngo Molnar match1:
1971f2cb1360SIngo Molnar 		;
1972f2cb1360SIngo Molnar 	}
1973f2cb1360SIngo Molnar 
1974f2cb1360SIngo Molnar 	n = ndoms_cur;
197509e0dd8eSPeter Zijlstra 	if (!doms_new) {
1976f2cb1360SIngo Molnar 		n = 0;
1977f2cb1360SIngo Molnar 		doms_new = &fallback_doms;
1978edb93821SFrederic Weisbecker 		cpumask_and(doms_new[0], cpu_active_mask,
1979edb93821SFrederic Weisbecker 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
1980f2cb1360SIngo Molnar 	}
1981f2cb1360SIngo Molnar 
1982f2cb1360SIngo Molnar 	/* Build new domains: */
1983f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_new; i++) {
1984f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
1985f2cb1360SIngo Molnar 			if (cpumask_equal(doms_new[i], doms_cur[j])
1986f2cb1360SIngo Molnar 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1987f2cb1360SIngo Molnar 				goto match2;
1988f2cb1360SIngo Molnar 		}
1989f2cb1360SIngo Molnar 		/* No match - add a new doms_new */
1990f2cb1360SIngo Molnar 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1991f2cb1360SIngo Molnar match2:
1992f2cb1360SIngo Molnar 		;
1993f2cb1360SIngo Molnar 	}
1994f2cb1360SIngo Molnar 
1995f2cb1360SIngo Molnar 	/* Remember the new sched domains: */
1996f2cb1360SIngo Molnar 	if (doms_cur != &fallback_doms)
1997f2cb1360SIngo Molnar 		free_sched_domains(doms_cur, ndoms_cur);
1998f2cb1360SIngo Molnar 
1999f2cb1360SIngo Molnar 	kfree(dattr_cur);
2000f2cb1360SIngo Molnar 	doms_cur = doms_new;
2001f2cb1360SIngo Molnar 	dattr_cur = dattr_new;
2002f2cb1360SIngo Molnar 	ndoms_cur = ndoms_new;
2003f2cb1360SIngo Molnar 
2004f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
2005f2cb1360SIngo Molnar 
2006f2cb1360SIngo Molnar 	mutex_unlock(&sched_domains_mutex);
2007f2cb1360SIngo Molnar }
2008