xref: /openbmc/linux/kernel/sched/topology.c (revision 91eaed0d61319f58a9f8e43d41a8cbb069b4f73d)
1f2cb1360SIngo Molnar /*
2f2cb1360SIngo Molnar  * Scheduler topology setup/handling methods
3f2cb1360SIngo Molnar  */
4f2cb1360SIngo Molnar #include <linux/sched.h>
5f2cb1360SIngo Molnar #include <linux/mutex.h>
6f2cb1360SIngo Molnar 
7f2cb1360SIngo Molnar #include "sched.h"
8f2cb1360SIngo Molnar 
9f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex);
10f2cb1360SIngo Molnar 
11f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */
12f2cb1360SIngo Molnar cpumask_var_t sched_domains_tmpmask;
13f2cb1360SIngo Molnar 
14f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
15f2cb1360SIngo Molnar 
16f2cb1360SIngo Molnar static __read_mostly int sched_debug_enabled;
17f2cb1360SIngo Molnar 
18f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str)
19f2cb1360SIngo Molnar {
20f2cb1360SIngo Molnar 	sched_debug_enabled = 1;
21f2cb1360SIngo Molnar 
22f2cb1360SIngo Molnar 	return 0;
23f2cb1360SIngo Molnar }
24f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup);
25f2cb1360SIngo Molnar 
26f2cb1360SIngo Molnar static inline bool sched_debug(void)
27f2cb1360SIngo Molnar {
28f2cb1360SIngo Molnar 	return sched_debug_enabled;
29f2cb1360SIngo Molnar }
30f2cb1360SIngo Molnar 
31f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
32f2cb1360SIngo Molnar 				  struct cpumask *groupmask)
33f2cb1360SIngo Molnar {
34f2cb1360SIngo Molnar 	struct sched_group *group = sd->groups;
35f2cb1360SIngo Molnar 
36f2cb1360SIngo Molnar 	cpumask_clear(groupmask);
37f2cb1360SIngo Molnar 
38f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
39f2cb1360SIngo Molnar 
40f2cb1360SIngo Molnar 	if (!(sd->flags & SD_LOAD_BALANCE)) {
41f2cb1360SIngo Molnar 		printk("does not load-balance\n");
42f2cb1360SIngo Molnar 		if (sd->parent)
43f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
44f2cb1360SIngo Molnar 					" has parent");
45f2cb1360SIngo Molnar 		return -1;
46f2cb1360SIngo Molnar 	}
47f2cb1360SIngo Molnar 
48f2cb1360SIngo Molnar 	printk(KERN_CONT "span %*pbl level %s\n",
49f2cb1360SIngo Molnar 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
50f2cb1360SIngo Molnar 
51f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
52f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: domain->span does not contain "
53f2cb1360SIngo Molnar 				"CPU%d\n", cpu);
54f2cb1360SIngo Molnar 	}
55f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
56f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: domain->groups does not contain"
57f2cb1360SIngo Molnar 				" CPU%d\n", cpu);
58f2cb1360SIngo Molnar 	}
59f2cb1360SIngo Molnar 
60f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
61f2cb1360SIngo Molnar 	do {
62f2cb1360SIngo Molnar 		if (!group) {
63f2cb1360SIngo Molnar 			printk("\n");
64f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: group is NULL\n");
65f2cb1360SIngo Molnar 			break;
66f2cb1360SIngo Molnar 		}
67f2cb1360SIngo Molnar 
68f2cb1360SIngo Molnar 		if (!cpumask_weight(sched_group_cpus(group))) {
69f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
70f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: empty group\n");
71f2cb1360SIngo Molnar 			break;
72f2cb1360SIngo Molnar 		}
73f2cb1360SIngo Molnar 
74f2cb1360SIngo Molnar 		if (!(sd->flags & SD_OVERLAP) &&
75f2cb1360SIngo Molnar 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
76f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
77f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: repeated CPUs\n");
78f2cb1360SIngo Molnar 			break;
79f2cb1360SIngo Molnar 		}
80f2cb1360SIngo Molnar 
81f2cb1360SIngo Molnar 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
82f2cb1360SIngo Molnar 
83f2cb1360SIngo Molnar 		printk(KERN_CONT " %*pbl",
84f2cb1360SIngo Molnar 		       cpumask_pr_args(sched_group_cpus(group)));
85f2cb1360SIngo Molnar 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
86f2cb1360SIngo Molnar 			printk(KERN_CONT " (cpu_capacity = %lu)",
87f2cb1360SIngo Molnar 				group->sgc->capacity);
88f2cb1360SIngo Molnar 		}
89f2cb1360SIngo Molnar 
90f2cb1360SIngo Molnar 		group = group->next;
91f2cb1360SIngo Molnar 	} while (group != sd->groups);
92f2cb1360SIngo Molnar 	printk(KERN_CONT "\n");
93f2cb1360SIngo Molnar 
94f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
95f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
96f2cb1360SIngo Molnar 
97f2cb1360SIngo Molnar 	if (sd->parent &&
98f2cb1360SIngo Molnar 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
99f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: parent span is not a superset "
100f2cb1360SIngo Molnar 			"of domain->span\n");
101f2cb1360SIngo Molnar 	return 0;
102f2cb1360SIngo Molnar }
103f2cb1360SIngo Molnar 
104f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu)
105f2cb1360SIngo Molnar {
106f2cb1360SIngo Molnar 	int level = 0;
107f2cb1360SIngo Molnar 
108f2cb1360SIngo Molnar 	if (!sched_debug_enabled)
109f2cb1360SIngo Molnar 		return;
110f2cb1360SIngo Molnar 
111f2cb1360SIngo Molnar 	if (!sd) {
112f2cb1360SIngo Molnar 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
113f2cb1360SIngo Molnar 		return;
114f2cb1360SIngo Molnar 	}
115f2cb1360SIngo Molnar 
116f2cb1360SIngo Molnar 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
117f2cb1360SIngo Molnar 
118f2cb1360SIngo Molnar 	for (;;) {
119f2cb1360SIngo Molnar 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
120f2cb1360SIngo Molnar 			break;
121f2cb1360SIngo Molnar 		level++;
122f2cb1360SIngo Molnar 		sd = sd->parent;
123f2cb1360SIngo Molnar 		if (!sd)
124f2cb1360SIngo Molnar 			break;
125f2cb1360SIngo Molnar 	}
126f2cb1360SIngo Molnar }
127f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */
128f2cb1360SIngo Molnar 
129f2cb1360SIngo Molnar # define sched_debug_enabled 0
130f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0)
131f2cb1360SIngo Molnar static inline bool sched_debug(void)
132f2cb1360SIngo Molnar {
133f2cb1360SIngo Molnar 	return false;
134f2cb1360SIngo Molnar }
135f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */
136f2cb1360SIngo Molnar 
137f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd)
138f2cb1360SIngo Molnar {
139f2cb1360SIngo Molnar 	if (cpumask_weight(sched_domain_span(sd)) == 1)
140f2cb1360SIngo Molnar 		return 1;
141f2cb1360SIngo Molnar 
142f2cb1360SIngo Molnar 	/* Following flags need at least 2 groups */
143f2cb1360SIngo Molnar 	if (sd->flags & (SD_LOAD_BALANCE |
144f2cb1360SIngo Molnar 			 SD_BALANCE_NEWIDLE |
145f2cb1360SIngo Molnar 			 SD_BALANCE_FORK |
146f2cb1360SIngo Molnar 			 SD_BALANCE_EXEC |
147f2cb1360SIngo Molnar 			 SD_SHARE_CPUCAPACITY |
148f2cb1360SIngo Molnar 			 SD_ASYM_CPUCAPACITY |
149f2cb1360SIngo Molnar 			 SD_SHARE_PKG_RESOURCES |
150f2cb1360SIngo Molnar 			 SD_SHARE_POWERDOMAIN)) {
151f2cb1360SIngo Molnar 		if (sd->groups != sd->groups->next)
152f2cb1360SIngo Molnar 			return 0;
153f2cb1360SIngo Molnar 	}
154f2cb1360SIngo Molnar 
155f2cb1360SIngo Molnar 	/* Following flags don't use groups */
156f2cb1360SIngo Molnar 	if (sd->flags & (SD_WAKE_AFFINE))
157f2cb1360SIngo Molnar 		return 0;
158f2cb1360SIngo Molnar 
159f2cb1360SIngo Molnar 	return 1;
160f2cb1360SIngo Molnar }
161f2cb1360SIngo Molnar 
162f2cb1360SIngo Molnar static int
163f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
164f2cb1360SIngo Molnar {
165f2cb1360SIngo Molnar 	unsigned long cflags = sd->flags, pflags = parent->flags;
166f2cb1360SIngo Molnar 
167f2cb1360SIngo Molnar 	if (sd_degenerate(parent))
168f2cb1360SIngo Molnar 		return 1;
169f2cb1360SIngo Molnar 
170f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
171f2cb1360SIngo Molnar 		return 0;
172f2cb1360SIngo Molnar 
173f2cb1360SIngo Molnar 	/* Flags needing groups don't count if only 1 group in parent */
174f2cb1360SIngo Molnar 	if (parent->groups == parent->groups->next) {
175f2cb1360SIngo Molnar 		pflags &= ~(SD_LOAD_BALANCE |
176f2cb1360SIngo Molnar 				SD_BALANCE_NEWIDLE |
177f2cb1360SIngo Molnar 				SD_BALANCE_FORK |
178f2cb1360SIngo Molnar 				SD_BALANCE_EXEC |
179f2cb1360SIngo Molnar 				SD_ASYM_CPUCAPACITY |
180f2cb1360SIngo Molnar 				SD_SHARE_CPUCAPACITY |
181f2cb1360SIngo Molnar 				SD_SHARE_PKG_RESOURCES |
182f2cb1360SIngo Molnar 				SD_PREFER_SIBLING |
183f2cb1360SIngo Molnar 				SD_SHARE_POWERDOMAIN);
184f2cb1360SIngo Molnar 		if (nr_node_ids == 1)
185f2cb1360SIngo Molnar 			pflags &= ~SD_SERIALIZE;
186f2cb1360SIngo Molnar 	}
187f2cb1360SIngo Molnar 	if (~cflags & pflags)
188f2cb1360SIngo Molnar 		return 0;
189f2cb1360SIngo Molnar 
190f2cb1360SIngo Molnar 	return 1;
191f2cb1360SIngo Molnar }
192f2cb1360SIngo Molnar 
193f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu)
194f2cb1360SIngo Molnar {
195f2cb1360SIngo Molnar 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
196f2cb1360SIngo Molnar 
197f2cb1360SIngo Molnar 	cpupri_cleanup(&rd->cpupri);
198f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
199f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
200f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
201f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
202f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
203f2cb1360SIngo Molnar 	kfree(rd);
204f2cb1360SIngo Molnar }
205f2cb1360SIngo Molnar 
206f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd)
207f2cb1360SIngo Molnar {
208f2cb1360SIngo Molnar 	struct root_domain *old_rd = NULL;
209f2cb1360SIngo Molnar 	unsigned long flags;
210f2cb1360SIngo Molnar 
211f2cb1360SIngo Molnar 	raw_spin_lock_irqsave(&rq->lock, flags);
212f2cb1360SIngo Molnar 
213f2cb1360SIngo Molnar 	if (rq->rd) {
214f2cb1360SIngo Molnar 		old_rd = rq->rd;
215f2cb1360SIngo Molnar 
216f2cb1360SIngo Molnar 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
217f2cb1360SIngo Molnar 			set_rq_offline(rq);
218f2cb1360SIngo Molnar 
219f2cb1360SIngo Molnar 		cpumask_clear_cpu(rq->cpu, old_rd->span);
220f2cb1360SIngo Molnar 
221f2cb1360SIngo Molnar 		/*
222f2cb1360SIngo Molnar 		 * If we dont want to free the old_rd yet then
223f2cb1360SIngo Molnar 		 * set old_rd to NULL to skip the freeing later
224f2cb1360SIngo Molnar 		 * in this function:
225f2cb1360SIngo Molnar 		 */
226f2cb1360SIngo Molnar 		if (!atomic_dec_and_test(&old_rd->refcount))
227f2cb1360SIngo Molnar 			old_rd = NULL;
228f2cb1360SIngo Molnar 	}
229f2cb1360SIngo Molnar 
230f2cb1360SIngo Molnar 	atomic_inc(&rd->refcount);
231f2cb1360SIngo Molnar 	rq->rd = rd;
232f2cb1360SIngo Molnar 
233f2cb1360SIngo Molnar 	cpumask_set_cpu(rq->cpu, rd->span);
234f2cb1360SIngo Molnar 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
235f2cb1360SIngo Molnar 		set_rq_online(rq);
236f2cb1360SIngo Molnar 
237f2cb1360SIngo Molnar 	raw_spin_unlock_irqrestore(&rq->lock, flags);
238f2cb1360SIngo Molnar 
239f2cb1360SIngo Molnar 	if (old_rd)
240f2cb1360SIngo Molnar 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
241f2cb1360SIngo Molnar }
242f2cb1360SIngo Molnar 
243f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd)
244f2cb1360SIngo Molnar {
245f2cb1360SIngo Molnar 	memset(rd, 0, sizeof(*rd));
246f2cb1360SIngo Molnar 
247f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
248f2cb1360SIngo Molnar 		goto out;
249f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
250f2cb1360SIngo Molnar 		goto free_span;
251f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
252f2cb1360SIngo Molnar 		goto free_online;
253f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
254f2cb1360SIngo Molnar 		goto free_dlo_mask;
255f2cb1360SIngo Molnar 
256f2cb1360SIngo Molnar 	init_dl_bw(&rd->dl_bw);
257f2cb1360SIngo Molnar 	if (cpudl_init(&rd->cpudl) != 0)
258f2cb1360SIngo Molnar 		goto free_rto_mask;
259f2cb1360SIngo Molnar 
260f2cb1360SIngo Molnar 	if (cpupri_init(&rd->cpupri) != 0)
261f2cb1360SIngo Molnar 		goto free_cpudl;
262f2cb1360SIngo Molnar 	return 0;
263f2cb1360SIngo Molnar 
264f2cb1360SIngo Molnar free_cpudl:
265f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
266f2cb1360SIngo Molnar free_rto_mask:
267f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
268f2cb1360SIngo Molnar free_dlo_mask:
269f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
270f2cb1360SIngo Molnar free_online:
271f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
272f2cb1360SIngo Molnar free_span:
273f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
274f2cb1360SIngo Molnar out:
275f2cb1360SIngo Molnar 	return -ENOMEM;
276f2cb1360SIngo Molnar }
277f2cb1360SIngo Molnar 
278f2cb1360SIngo Molnar /*
279f2cb1360SIngo Molnar  * By default the system creates a single root-domain with all CPUs as
280f2cb1360SIngo Molnar  * members (mimicking the global state we have today).
281f2cb1360SIngo Molnar  */
282f2cb1360SIngo Molnar struct root_domain def_root_domain;
283f2cb1360SIngo Molnar 
284f2cb1360SIngo Molnar void init_defrootdomain(void)
285f2cb1360SIngo Molnar {
286f2cb1360SIngo Molnar 	init_rootdomain(&def_root_domain);
287f2cb1360SIngo Molnar 
288f2cb1360SIngo Molnar 	atomic_set(&def_root_domain.refcount, 1);
289f2cb1360SIngo Molnar }
290f2cb1360SIngo Molnar 
291f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void)
292f2cb1360SIngo Molnar {
293f2cb1360SIngo Molnar 	struct root_domain *rd;
294f2cb1360SIngo Molnar 
295f2cb1360SIngo Molnar 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
296f2cb1360SIngo Molnar 	if (!rd)
297f2cb1360SIngo Molnar 		return NULL;
298f2cb1360SIngo Molnar 
299f2cb1360SIngo Molnar 	if (init_rootdomain(rd) != 0) {
300f2cb1360SIngo Molnar 		kfree(rd);
301f2cb1360SIngo Molnar 		return NULL;
302f2cb1360SIngo Molnar 	}
303f2cb1360SIngo Molnar 
304f2cb1360SIngo Molnar 	return rd;
305f2cb1360SIngo Molnar }
306f2cb1360SIngo Molnar 
307f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc)
308f2cb1360SIngo Molnar {
309f2cb1360SIngo Molnar 	struct sched_group *tmp, *first;
310f2cb1360SIngo Molnar 
311f2cb1360SIngo Molnar 	if (!sg)
312f2cb1360SIngo Molnar 		return;
313f2cb1360SIngo Molnar 
314f2cb1360SIngo Molnar 	first = sg;
315f2cb1360SIngo Molnar 	do {
316f2cb1360SIngo Molnar 		tmp = sg->next;
317f2cb1360SIngo Molnar 
318f2cb1360SIngo Molnar 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
319f2cb1360SIngo Molnar 			kfree(sg->sgc);
320f2cb1360SIngo Molnar 
321f2cb1360SIngo Molnar 		kfree(sg);
322f2cb1360SIngo Molnar 		sg = tmp;
323f2cb1360SIngo Molnar 	} while (sg != first);
324f2cb1360SIngo Molnar }
325f2cb1360SIngo Molnar 
326f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd)
327f2cb1360SIngo Molnar {
328f2cb1360SIngo Molnar 	/*
329f2cb1360SIngo Molnar 	 * If its an overlapping domain it has private groups, iterate and
330f2cb1360SIngo Molnar 	 * nuke them all.
331f2cb1360SIngo Molnar 	 */
332f2cb1360SIngo Molnar 	if (sd->flags & SD_OVERLAP) {
333f2cb1360SIngo Molnar 		free_sched_groups(sd->groups, 1);
334f2cb1360SIngo Molnar 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
335f2cb1360SIngo Molnar 		kfree(sd->groups->sgc);
336f2cb1360SIngo Molnar 		kfree(sd->groups);
337f2cb1360SIngo Molnar 	}
338f2cb1360SIngo Molnar 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
339f2cb1360SIngo Molnar 		kfree(sd->shared);
340f2cb1360SIngo Molnar 	kfree(sd);
341f2cb1360SIngo Molnar }
342f2cb1360SIngo Molnar 
343f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu)
344f2cb1360SIngo Molnar {
345f2cb1360SIngo Molnar 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
346f2cb1360SIngo Molnar 
347f2cb1360SIngo Molnar 	while (sd) {
348f2cb1360SIngo Molnar 		struct sched_domain *parent = sd->parent;
349f2cb1360SIngo Molnar 		destroy_sched_domain(sd);
350f2cb1360SIngo Molnar 		sd = parent;
351f2cb1360SIngo Molnar 	}
352f2cb1360SIngo Molnar }
353f2cb1360SIngo Molnar 
354f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd)
355f2cb1360SIngo Molnar {
356f2cb1360SIngo Molnar 	if (sd)
357f2cb1360SIngo Molnar 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
358f2cb1360SIngo Molnar }
359f2cb1360SIngo Molnar 
360f2cb1360SIngo Molnar /*
361f2cb1360SIngo Molnar  * Keep a special pointer to the highest sched_domain that has
362f2cb1360SIngo Molnar  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
363f2cb1360SIngo Molnar  * allows us to avoid some pointer chasing select_idle_sibling().
364f2cb1360SIngo Molnar  *
365f2cb1360SIngo Molnar  * Also keep a unique ID per domain (we use the first CPU number in
366f2cb1360SIngo Molnar  * the cpumask of the domain), this allows us to quickly tell if
367f2cb1360SIngo Molnar  * two CPUs are in the same cache domain, see cpus_share_cache().
368f2cb1360SIngo Molnar  */
369f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_llc);
370f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size);
371f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id);
372f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
373f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_numa);
374f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_asym);
375f2cb1360SIngo Molnar 
376f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu)
377f2cb1360SIngo Molnar {
378f2cb1360SIngo Molnar 	struct sched_domain_shared *sds = NULL;
379f2cb1360SIngo Molnar 	struct sched_domain *sd;
380f2cb1360SIngo Molnar 	int id = cpu;
381f2cb1360SIngo Molnar 	int size = 1;
382f2cb1360SIngo Molnar 
383f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
384f2cb1360SIngo Molnar 	if (sd) {
385f2cb1360SIngo Molnar 		id = cpumask_first(sched_domain_span(sd));
386f2cb1360SIngo Molnar 		size = cpumask_weight(sched_domain_span(sd));
387f2cb1360SIngo Molnar 		sds = sd->shared;
388f2cb1360SIngo Molnar 	}
389f2cb1360SIngo Molnar 
390f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
391f2cb1360SIngo Molnar 	per_cpu(sd_llc_size, cpu) = size;
392f2cb1360SIngo Molnar 	per_cpu(sd_llc_id, cpu) = id;
393f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
394f2cb1360SIngo Molnar 
395f2cb1360SIngo Molnar 	sd = lowest_flag_domain(cpu, SD_NUMA);
396f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
397f2cb1360SIngo Molnar 
398f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
399f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
400f2cb1360SIngo Molnar }
401f2cb1360SIngo Molnar 
402f2cb1360SIngo Molnar /*
403f2cb1360SIngo Molnar  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
404f2cb1360SIngo Molnar  * hold the hotplug lock.
405f2cb1360SIngo Molnar  */
406f2cb1360SIngo Molnar static void
407f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
408f2cb1360SIngo Molnar {
409f2cb1360SIngo Molnar 	struct rq *rq = cpu_rq(cpu);
410f2cb1360SIngo Molnar 	struct sched_domain *tmp;
411f2cb1360SIngo Molnar 
412f2cb1360SIngo Molnar 	/* Remove the sched domains which do not contribute to scheduling. */
413f2cb1360SIngo Molnar 	for (tmp = sd; tmp; ) {
414f2cb1360SIngo Molnar 		struct sched_domain *parent = tmp->parent;
415f2cb1360SIngo Molnar 		if (!parent)
416f2cb1360SIngo Molnar 			break;
417f2cb1360SIngo Molnar 
418f2cb1360SIngo Molnar 		if (sd_parent_degenerate(tmp, parent)) {
419f2cb1360SIngo Molnar 			tmp->parent = parent->parent;
420f2cb1360SIngo Molnar 			if (parent->parent)
421f2cb1360SIngo Molnar 				parent->parent->child = tmp;
422f2cb1360SIngo Molnar 			/*
423f2cb1360SIngo Molnar 			 * Transfer SD_PREFER_SIBLING down in case of a
424f2cb1360SIngo Molnar 			 * degenerate parent; the spans match for this
425f2cb1360SIngo Molnar 			 * so the property transfers.
426f2cb1360SIngo Molnar 			 */
427f2cb1360SIngo Molnar 			if (parent->flags & SD_PREFER_SIBLING)
428f2cb1360SIngo Molnar 				tmp->flags |= SD_PREFER_SIBLING;
429f2cb1360SIngo Molnar 			destroy_sched_domain(parent);
430f2cb1360SIngo Molnar 		} else
431f2cb1360SIngo Molnar 			tmp = tmp->parent;
432f2cb1360SIngo Molnar 	}
433f2cb1360SIngo Molnar 
434f2cb1360SIngo Molnar 	if (sd && sd_degenerate(sd)) {
435f2cb1360SIngo Molnar 		tmp = sd;
436f2cb1360SIngo Molnar 		sd = sd->parent;
437f2cb1360SIngo Molnar 		destroy_sched_domain(tmp);
438f2cb1360SIngo Molnar 		if (sd)
439f2cb1360SIngo Molnar 			sd->child = NULL;
440f2cb1360SIngo Molnar 	}
441f2cb1360SIngo Molnar 
442f2cb1360SIngo Molnar 	sched_domain_debug(sd, cpu);
443f2cb1360SIngo Molnar 
444f2cb1360SIngo Molnar 	rq_attach_root(rq, rd);
445f2cb1360SIngo Molnar 	tmp = rq->sd;
446f2cb1360SIngo Molnar 	rcu_assign_pointer(rq->sd, sd);
447f2cb1360SIngo Molnar 	destroy_sched_domains(tmp);
448f2cb1360SIngo Molnar 
449f2cb1360SIngo Molnar 	update_top_cache_domain(cpu);
450f2cb1360SIngo Molnar }
451f2cb1360SIngo Molnar 
452f2cb1360SIngo Molnar /* Setup the mask of CPUs configured for isolated domains */
453f2cb1360SIngo Molnar static int __init isolated_cpu_setup(char *str)
454f2cb1360SIngo Molnar {
455f2cb1360SIngo Molnar 	int ret;
456f2cb1360SIngo Molnar 
457f2cb1360SIngo Molnar 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
458f2cb1360SIngo Molnar 	ret = cpulist_parse(str, cpu_isolated_map);
459f2cb1360SIngo Molnar 	if (ret) {
460f2cb1360SIngo Molnar 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
461f2cb1360SIngo Molnar 		return 0;
462f2cb1360SIngo Molnar 	}
463f2cb1360SIngo Molnar 	return 1;
464f2cb1360SIngo Molnar }
465f2cb1360SIngo Molnar __setup("isolcpus=", isolated_cpu_setup);
466f2cb1360SIngo Molnar 
467f2cb1360SIngo Molnar struct s_data {
468f2cb1360SIngo Molnar 	struct sched_domain ** __percpu sd;
469f2cb1360SIngo Molnar 	struct root_domain	*rd;
470f2cb1360SIngo Molnar };
471f2cb1360SIngo Molnar 
472f2cb1360SIngo Molnar enum s_alloc {
473f2cb1360SIngo Molnar 	sa_rootdomain,
474f2cb1360SIngo Molnar 	sa_sd,
475f2cb1360SIngo Molnar 	sa_sd_storage,
476f2cb1360SIngo Molnar 	sa_none,
477f2cb1360SIngo Molnar };
478f2cb1360SIngo Molnar 
479f2cb1360SIngo Molnar /*
480f2cb1360SIngo Molnar  * Build an iteration mask that can exclude certain CPUs from the upwards
481f2cb1360SIngo Molnar  * domain traversal.
482f2cb1360SIngo Molnar  *
483f2cb1360SIngo Molnar  * Asymmetric node setups can result in situations where the domain tree is of
484f2cb1360SIngo Molnar  * unequal depth, make sure to skip domains that already cover the entire
485f2cb1360SIngo Molnar  * range.
486f2cb1360SIngo Molnar  *
487f2cb1360SIngo Molnar  * In that case build_sched_domains() will have terminated the iteration early
488f2cb1360SIngo Molnar  * and our sibling sd spans will be empty. Domains should always include the
489f2cb1360SIngo Molnar  * CPU they're built on, so check that.
490f2cb1360SIngo Molnar  */
491f2cb1360SIngo Molnar static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
492f2cb1360SIngo Molnar {
493f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
494f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
495f2cb1360SIngo Molnar 	struct sched_domain *sibling;
496f2cb1360SIngo Molnar 	int i;
497f2cb1360SIngo Molnar 
498f2cb1360SIngo Molnar 	for_each_cpu(i, span) {
499f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
500f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
501f2cb1360SIngo Molnar 			continue;
502f2cb1360SIngo Molnar 
503f2cb1360SIngo Molnar 		cpumask_set_cpu(i, sched_group_mask(sg));
504f2cb1360SIngo Molnar 	}
505f2cb1360SIngo Molnar }
506f2cb1360SIngo Molnar 
507f2cb1360SIngo Molnar /*
508f2cb1360SIngo Molnar  * Return the canonical balance CPU for this group, this is the first CPU
509f2cb1360SIngo Molnar  * of this group that's also in the iteration mask.
510f2cb1360SIngo Molnar  */
511f2cb1360SIngo Molnar int group_balance_cpu(struct sched_group *sg)
512f2cb1360SIngo Molnar {
513f2cb1360SIngo Molnar 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
514f2cb1360SIngo Molnar }
515f2cb1360SIngo Molnar 
5168c033469SLauro Ramos Venancio static struct sched_group *
5178c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
5188c033469SLauro Ramos Venancio {
5198c033469SLauro Ramos Venancio 	struct sched_group *sg;
5208c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
5218c033469SLauro Ramos Venancio 
5228c033469SLauro Ramos Venancio 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5238c033469SLauro Ramos Venancio 			GFP_KERNEL, cpu_to_node(cpu));
5248c033469SLauro Ramos Venancio 
5258c033469SLauro Ramos Venancio 	if (!sg)
5268c033469SLauro Ramos Venancio 		return NULL;
5278c033469SLauro Ramos Venancio 
5288c033469SLauro Ramos Venancio 	sg_span = sched_group_cpus(sg);
5298c033469SLauro Ramos Venancio 	if (sd->child)
5308c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd->child));
5318c033469SLauro Ramos Venancio 	else
5328c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd));
5338c033469SLauro Ramos Venancio 
5348c033469SLauro Ramos Venancio 	return sg;
5358c033469SLauro Ramos Venancio }
5368c033469SLauro Ramos Venancio 
5378c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd,
5388c033469SLauro Ramos Venancio 				     struct sched_group *sg, int cpu)
5398c033469SLauro Ramos Venancio {
5408c033469SLauro Ramos Venancio 	struct sd_data *sdd = sd->private;
5418c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
5428c033469SLauro Ramos Venancio 
5438c033469SLauro Ramos Venancio 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5448c033469SLauro Ramos Venancio 	if (atomic_inc_return(&sg->sgc->ref) == 1)
5458c033469SLauro Ramos Venancio 		build_group_mask(sd, sg);
5468c033469SLauro Ramos Venancio 
5478c033469SLauro Ramos Venancio 	/*
5488c033469SLauro Ramos Venancio 	 * Initialize sgc->capacity such that even if we mess up the
5498c033469SLauro Ramos Venancio 	 * domains and no possible iteration will get us here, we won't
5508c033469SLauro Ramos Venancio 	 * die on a /0 trap.
5518c033469SLauro Ramos Venancio 	 */
5528c033469SLauro Ramos Venancio 	sg_span = sched_group_cpus(sg);
5538c033469SLauro Ramos Venancio 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5548c033469SLauro Ramos Venancio 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
5558c033469SLauro Ramos Venancio }
5568c033469SLauro Ramos Venancio 
557f2cb1360SIngo Molnar static int
558f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu)
559f2cb1360SIngo Molnar {
560*91eaed0dSPeter Zijlstra 	struct sched_group *first = NULL, *last = NULL, *sg;
561f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
562f2cb1360SIngo Molnar 	struct cpumask *covered = sched_domains_tmpmask;
563f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
564f2cb1360SIngo Molnar 	struct sched_domain *sibling;
565f2cb1360SIngo Molnar 	int i;
566f2cb1360SIngo Molnar 
567f2cb1360SIngo Molnar 	cpumask_clear(covered);
568f2cb1360SIngo Molnar 
5690372dd27SPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
570f2cb1360SIngo Molnar 		struct cpumask *sg_span;
571f2cb1360SIngo Molnar 
572f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
573f2cb1360SIngo Molnar 			continue;
574f2cb1360SIngo Molnar 
575f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
576f2cb1360SIngo Molnar 
577f2cb1360SIngo Molnar 		/* See the comment near build_group_mask(). */
578f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
579f2cb1360SIngo Molnar 			continue;
580f2cb1360SIngo Molnar 
5818c033469SLauro Ramos Venancio 		sg = build_group_from_child_sched_domain(sibling, cpu);
582f2cb1360SIngo Molnar 		if (!sg)
583f2cb1360SIngo Molnar 			goto fail;
584f2cb1360SIngo Molnar 
585f2cb1360SIngo Molnar 		sg_span = sched_group_cpus(sg);
586f2cb1360SIngo Molnar 		cpumask_or(covered, covered, sg_span);
587f2cb1360SIngo Molnar 
5888c033469SLauro Ramos Venancio 		init_overlap_sched_group(sd, sg, i);
589f2cb1360SIngo Molnar 
590f2cb1360SIngo Molnar 		if (!first)
591f2cb1360SIngo Molnar 			first = sg;
592f2cb1360SIngo Molnar 		if (last)
593f2cb1360SIngo Molnar 			last->next = sg;
594f2cb1360SIngo Molnar 		last = sg;
595f2cb1360SIngo Molnar 		last->next = first;
596f2cb1360SIngo Molnar 	}
597*91eaed0dSPeter Zijlstra 	sd->groups = first;
598f2cb1360SIngo Molnar 
599f2cb1360SIngo Molnar 	return 0;
600f2cb1360SIngo Molnar 
601f2cb1360SIngo Molnar fail:
602f2cb1360SIngo Molnar 	free_sched_groups(first, 0);
603f2cb1360SIngo Molnar 
604f2cb1360SIngo Molnar 	return -ENOMEM;
605f2cb1360SIngo Molnar }
606f2cb1360SIngo Molnar 
607f2cb1360SIngo Molnar static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
608f2cb1360SIngo Molnar {
609f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
610f2cb1360SIngo Molnar 	struct sched_domain *child = sd->child;
611f2cb1360SIngo Molnar 
612f2cb1360SIngo Molnar 	if (child)
613f2cb1360SIngo Molnar 		cpu = cpumask_first(sched_domain_span(child));
614f2cb1360SIngo Molnar 
615f2cb1360SIngo Molnar 	if (sg) {
616f2cb1360SIngo Molnar 		*sg = *per_cpu_ptr(sdd->sg, cpu);
617f2cb1360SIngo Molnar 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
618f2cb1360SIngo Molnar 
619f2cb1360SIngo Molnar 		/* For claim_allocations: */
620f2cb1360SIngo Molnar 		atomic_set(&(*sg)->sgc->ref, 1);
621f2cb1360SIngo Molnar 	}
622f2cb1360SIngo Molnar 
623f2cb1360SIngo Molnar 	return cpu;
624f2cb1360SIngo Molnar }
625f2cb1360SIngo Molnar 
626f2cb1360SIngo Molnar /*
627f2cb1360SIngo Molnar  * build_sched_groups will build a circular linked list of the groups
628f2cb1360SIngo Molnar  * covered by the given span, and will set each group's ->cpumask correctly,
629f2cb1360SIngo Molnar  * and ->cpu_capacity to 0.
630f2cb1360SIngo Molnar  *
631f2cb1360SIngo Molnar  * Assumes the sched_domain tree is fully constructed
632f2cb1360SIngo Molnar  */
633f2cb1360SIngo Molnar static int
634f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu)
635f2cb1360SIngo Molnar {
636f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL;
637f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
638f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
639f2cb1360SIngo Molnar 	struct cpumask *covered;
640f2cb1360SIngo Molnar 	int i;
641f2cb1360SIngo Molnar 
642f2cb1360SIngo Molnar 	get_group(cpu, sdd, &sd->groups);
643f2cb1360SIngo Molnar 	atomic_inc(&sd->groups->ref);
644f2cb1360SIngo Molnar 
645f2cb1360SIngo Molnar 	if (cpu != cpumask_first(span))
646f2cb1360SIngo Molnar 		return 0;
647f2cb1360SIngo Molnar 
648f2cb1360SIngo Molnar 	lockdep_assert_held(&sched_domains_mutex);
649f2cb1360SIngo Molnar 	covered = sched_domains_tmpmask;
650f2cb1360SIngo Molnar 
651f2cb1360SIngo Molnar 	cpumask_clear(covered);
652f2cb1360SIngo Molnar 
653f2cb1360SIngo Molnar 	for_each_cpu(i, span) {
654f2cb1360SIngo Molnar 		struct sched_group *sg;
655f2cb1360SIngo Molnar 		int group, j;
656f2cb1360SIngo Molnar 
657f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
658f2cb1360SIngo Molnar 			continue;
659f2cb1360SIngo Molnar 
660f2cb1360SIngo Molnar 		group = get_group(i, sdd, &sg);
661f2cb1360SIngo Molnar 		cpumask_setall(sched_group_mask(sg));
662f2cb1360SIngo Molnar 
663f2cb1360SIngo Molnar 		for_each_cpu(j, span) {
664f2cb1360SIngo Molnar 			if (get_group(j, sdd, NULL) != group)
665f2cb1360SIngo Molnar 				continue;
666f2cb1360SIngo Molnar 
667f2cb1360SIngo Molnar 			cpumask_set_cpu(j, covered);
668f2cb1360SIngo Molnar 			cpumask_set_cpu(j, sched_group_cpus(sg));
669f2cb1360SIngo Molnar 		}
670f2cb1360SIngo Molnar 
671f2cb1360SIngo Molnar 		if (!first)
672f2cb1360SIngo Molnar 			first = sg;
673f2cb1360SIngo Molnar 		if (last)
674f2cb1360SIngo Molnar 			last->next = sg;
675f2cb1360SIngo Molnar 		last = sg;
676f2cb1360SIngo Molnar 	}
677f2cb1360SIngo Molnar 	last->next = first;
678f2cb1360SIngo Molnar 
679f2cb1360SIngo Molnar 	return 0;
680f2cb1360SIngo Molnar }
681f2cb1360SIngo Molnar 
682f2cb1360SIngo Molnar /*
683f2cb1360SIngo Molnar  * Initialize sched groups cpu_capacity.
684f2cb1360SIngo Molnar  *
685f2cb1360SIngo Molnar  * cpu_capacity indicates the capacity of sched group, which is used while
686f2cb1360SIngo Molnar  * distributing the load between different sched groups in a sched domain.
687f2cb1360SIngo Molnar  * Typically cpu_capacity for all the groups in a sched domain will be same
688f2cb1360SIngo Molnar  * unless there are asymmetries in the topology. If there are asymmetries,
689f2cb1360SIngo Molnar  * group having more cpu_capacity will pickup more load compared to the
690f2cb1360SIngo Molnar  * group having less cpu_capacity.
691f2cb1360SIngo Molnar  */
692f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
693f2cb1360SIngo Molnar {
694f2cb1360SIngo Molnar 	struct sched_group *sg = sd->groups;
695f2cb1360SIngo Molnar 
696f2cb1360SIngo Molnar 	WARN_ON(!sg);
697f2cb1360SIngo Molnar 
698f2cb1360SIngo Molnar 	do {
699f2cb1360SIngo Molnar 		int cpu, max_cpu = -1;
700f2cb1360SIngo Molnar 
701f2cb1360SIngo Molnar 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
702f2cb1360SIngo Molnar 
703f2cb1360SIngo Molnar 		if (!(sd->flags & SD_ASYM_PACKING))
704f2cb1360SIngo Molnar 			goto next;
705f2cb1360SIngo Molnar 
706f2cb1360SIngo Molnar 		for_each_cpu(cpu, sched_group_cpus(sg)) {
707f2cb1360SIngo Molnar 			if (max_cpu < 0)
708f2cb1360SIngo Molnar 				max_cpu = cpu;
709f2cb1360SIngo Molnar 			else if (sched_asym_prefer(cpu, max_cpu))
710f2cb1360SIngo Molnar 				max_cpu = cpu;
711f2cb1360SIngo Molnar 		}
712f2cb1360SIngo Molnar 		sg->asym_prefer_cpu = max_cpu;
713f2cb1360SIngo Molnar 
714f2cb1360SIngo Molnar next:
715f2cb1360SIngo Molnar 		sg = sg->next;
716f2cb1360SIngo Molnar 	} while (sg != sd->groups);
717f2cb1360SIngo Molnar 
718f2cb1360SIngo Molnar 	if (cpu != group_balance_cpu(sg))
719f2cb1360SIngo Molnar 		return;
720f2cb1360SIngo Molnar 
721f2cb1360SIngo Molnar 	update_group_capacity(sd, cpu);
722f2cb1360SIngo Molnar }
723f2cb1360SIngo Molnar 
724f2cb1360SIngo Molnar /*
725f2cb1360SIngo Molnar  * Initializers for schedule domains
726f2cb1360SIngo Molnar  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
727f2cb1360SIngo Molnar  */
728f2cb1360SIngo Molnar 
729f2cb1360SIngo Molnar static int default_relax_domain_level = -1;
730f2cb1360SIngo Molnar int sched_domain_level_max;
731f2cb1360SIngo Molnar 
732f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str)
733f2cb1360SIngo Molnar {
734f2cb1360SIngo Molnar 	if (kstrtoint(str, 0, &default_relax_domain_level))
735f2cb1360SIngo Molnar 		pr_warn("Unable to set relax_domain_level\n");
736f2cb1360SIngo Molnar 
737f2cb1360SIngo Molnar 	return 1;
738f2cb1360SIngo Molnar }
739f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level);
740f2cb1360SIngo Molnar 
741f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd,
742f2cb1360SIngo Molnar 				 struct sched_domain_attr *attr)
743f2cb1360SIngo Molnar {
744f2cb1360SIngo Molnar 	int request;
745f2cb1360SIngo Molnar 
746f2cb1360SIngo Molnar 	if (!attr || attr->relax_domain_level < 0) {
747f2cb1360SIngo Molnar 		if (default_relax_domain_level < 0)
748f2cb1360SIngo Molnar 			return;
749f2cb1360SIngo Molnar 		else
750f2cb1360SIngo Molnar 			request = default_relax_domain_level;
751f2cb1360SIngo Molnar 	} else
752f2cb1360SIngo Molnar 		request = attr->relax_domain_level;
753f2cb1360SIngo Molnar 	if (request < sd->level) {
754f2cb1360SIngo Molnar 		/* Turn off idle balance on this domain: */
755f2cb1360SIngo Molnar 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
756f2cb1360SIngo Molnar 	} else {
757f2cb1360SIngo Molnar 		/* Turn on idle balance on this domain: */
758f2cb1360SIngo Molnar 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
759f2cb1360SIngo Molnar 	}
760f2cb1360SIngo Molnar }
761f2cb1360SIngo Molnar 
762f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map);
763f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map);
764f2cb1360SIngo Molnar 
765f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
766f2cb1360SIngo Molnar 				 const struct cpumask *cpu_map)
767f2cb1360SIngo Molnar {
768f2cb1360SIngo Molnar 	switch (what) {
769f2cb1360SIngo Molnar 	case sa_rootdomain:
770f2cb1360SIngo Molnar 		if (!atomic_read(&d->rd->refcount))
771f2cb1360SIngo Molnar 			free_rootdomain(&d->rd->rcu);
772f2cb1360SIngo Molnar 		/* Fall through */
773f2cb1360SIngo Molnar 	case sa_sd:
774f2cb1360SIngo Molnar 		free_percpu(d->sd);
775f2cb1360SIngo Molnar 		/* Fall through */
776f2cb1360SIngo Molnar 	case sa_sd_storage:
777f2cb1360SIngo Molnar 		__sdt_free(cpu_map);
778f2cb1360SIngo Molnar 		/* Fall through */
779f2cb1360SIngo Molnar 	case sa_none:
780f2cb1360SIngo Molnar 		break;
781f2cb1360SIngo Molnar 	}
782f2cb1360SIngo Molnar }
783f2cb1360SIngo Molnar 
784f2cb1360SIngo Molnar static enum s_alloc
785f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
786f2cb1360SIngo Molnar {
787f2cb1360SIngo Molnar 	memset(d, 0, sizeof(*d));
788f2cb1360SIngo Molnar 
789f2cb1360SIngo Molnar 	if (__sdt_alloc(cpu_map))
790f2cb1360SIngo Molnar 		return sa_sd_storage;
791f2cb1360SIngo Molnar 	d->sd = alloc_percpu(struct sched_domain *);
792f2cb1360SIngo Molnar 	if (!d->sd)
793f2cb1360SIngo Molnar 		return sa_sd_storage;
794f2cb1360SIngo Molnar 	d->rd = alloc_rootdomain();
795f2cb1360SIngo Molnar 	if (!d->rd)
796f2cb1360SIngo Molnar 		return sa_sd;
797f2cb1360SIngo Molnar 	return sa_rootdomain;
798f2cb1360SIngo Molnar }
799f2cb1360SIngo Molnar 
800f2cb1360SIngo Molnar /*
801f2cb1360SIngo Molnar  * NULL the sd_data elements we've used to build the sched_domain and
802f2cb1360SIngo Molnar  * sched_group structure so that the subsequent __free_domain_allocs()
803f2cb1360SIngo Molnar  * will not free the data we're using.
804f2cb1360SIngo Molnar  */
805f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd)
806f2cb1360SIngo Molnar {
807f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
808f2cb1360SIngo Molnar 
809f2cb1360SIngo Molnar 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
810f2cb1360SIngo Molnar 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
811f2cb1360SIngo Molnar 
812f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
813f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
814f2cb1360SIngo Molnar 
815f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
816f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
817f2cb1360SIngo Molnar 
818f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
819f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
820f2cb1360SIngo Molnar }
821f2cb1360SIngo Molnar 
822f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
823f2cb1360SIngo Molnar static int sched_domains_numa_levels;
824f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type;
825f2cb1360SIngo Molnar static int *sched_domains_numa_distance;
826f2cb1360SIngo Molnar int sched_max_numa_distance;
827f2cb1360SIngo Molnar static struct cpumask ***sched_domains_numa_masks;
828f2cb1360SIngo Molnar static int sched_domains_curr_level;
829f2cb1360SIngo Molnar #endif
830f2cb1360SIngo Molnar 
831f2cb1360SIngo Molnar /*
832f2cb1360SIngo Molnar  * SD_flags allowed in topology descriptions.
833f2cb1360SIngo Molnar  *
834f2cb1360SIngo Molnar  * These flags are purely descriptive of the topology and do not prescribe
835f2cb1360SIngo Molnar  * behaviour. Behaviour is artificial and mapped in the below sd_init()
836f2cb1360SIngo Molnar  * function:
837f2cb1360SIngo Molnar  *
838f2cb1360SIngo Molnar  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
839f2cb1360SIngo Molnar  *   SD_SHARE_PKG_RESOURCES - describes shared caches
840f2cb1360SIngo Molnar  *   SD_NUMA                - describes NUMA topologies
841f2cb1360SIngo Molnar  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
842f2cb1360SIngo Molnar  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
843f2cb1360SIngo Molnar  *
844f2cb1360SIngo Molnar  * Odd one out, which beside describing the topology has a quirk also
845f2cb1360SIngo Molnar  * prescribes the desired behaviour that goes along with it:
846f2cb1360SIngo Molnar  *
847f2cb1360SIngo Molnar  *   SD_ASYM_PACKING        - describes SMT quirks
848f2cb1360SIngo Molnar  */
849f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS		\
850f2cb1360SIngo Molnar 	(SD_SHARE_CPUCAPACITY |		\
851f2cb1360SIngo Molnar 	 SD_SHARE_PKG_RESOURCES |	\
852f2cb1360SIngo Molnar 	 SD_NUMA |			\
853f2cb1360SIngo Molnar 	 SD_ASYM_PACKING |		\
854f2cb1360SIngo Molnar 	 SD_ASYM_CPUCAPACITY |		\
855f2cb1360SIngo Molnar 	 SD_SHARE_POWERDOMAIN)
856f2cb1360SIngo Molnar 
857f2cb1360SIngo Molnar static struct sched_domain *
858f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl,
859f2cb1360SIngo Molnar 	const struct cpumask *cpu_map,
860f2cb1360SIngo Molnar 	struct sched_domain *child, int cpu)
861f2cb1360SIngo Molnar {
862f2cb1360SIngo Molnar 	struct sd_data *sdd = &tl->data;
863f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
864f2cb1360SIngo Molnar 	int sd_id, sd_weight, sd_flags = 0;
865f2cb1360SIngo Molnar 
866f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
867f2cb1360SIngo Molnar 	/*
868f2cb1360SIngo Molnar 	 * Ugly hack to pass state to sd_numa_mask()...
869f2cb1360SIngo Molnar 	 */
870f2cb1360SIngo Molnar 	sched_domains_curr_level = tl->numa_level;
871f2cb1360SIngo Molnar #endif
872f2cb1360SIngo Molnar 
873f2cb1360SIngo Molnar 	sd_weight = cpumask_weight(tl->mask(cpu));
874f2cb1360SIngo Molnar 
875f2cb1360SIngo Molnar 	if (tl->sd_flags)
876f2cb1360SIngo Molnar 		sd_flags = (*tl->sd_flags)();
877f2cb1360SIngo Molnar 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
878f2cb1360SIngo Molnar 			"wrong sd_flags in topology description\n"))
879f2cb1360SIngo Molnar 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
880f2cb1360SIngo Molnar 
881f2cb1360SIngo Molnar 	*sd = (struct sched_domain){
882f2cb1360SIngo Molnar 		.min_interval		= sd_weight,
883f2cb1360SIngo Molnar 		.max_interval		= 2*sd_weight,
884f2cb1360SIngo Molnar 		.busy_factor		= 32,
885f2cb1360SIngo Molnar 		.imbalance_pct		= 125,
886f2cb1360SIngo Molnar 
887f2cb1360SIngo Molnar 		.cache_nice_tries	= 0,
888f2cb1360SIngo Molnar 		.busy_idx		= 0,
889f2cb1360SIngo Molnar 		.idle_idx		= 0,
890f2cb1360SIngo Molnar 		.newidle_idx		= 0,
891f2cb1360SIngo Molnar 		.wake_idx		= 0,
892f2cb1360SIngo Molnar 		.forkexec_idx		= 0,
893f2cb1360SIngo Molnar 
894f2cb1360SIngo Molnar 		.flags			= 1*SD_LOAD_BALANCE
895f2cb1360SIngo Molnar 					| 1*SD_BALANCE_NEWIDLE
896f2cb1360SIngo Molnar 					| 1*SD_BALANCE_EXEC
897f2cb1360SIngo Molnar 					| 1*SD_BALANCE_FORK
898f2cb1360SIngo Molnar 					| 0*SD_BALANCE_WAKE
899f2cb1360SIngo Molnar 					| 1*SD_WAKE_AFFINE
900f2cb1360SIngo Molnar 					| 0*SD_SHARE_CPUCAPACITY
901f2cb1360SIngo Molnar 					| 0*SD_SHARE_PKG_RESOURCES
902f2cb1360SIngo Molnar 					| 0*SD_SERIALIZE
903f2cb1360SIngo Molnar 					| 0*SD_PREFER_SIBLING
904f2cb1360SIngo Molnar 					| 0*SD_NUMA
905f2cb1360SIngo Molnar 					| sd_flags
906f2cb1360SIngo Molnar 					,
907f2cb1360SIngo Molnar 
908f2cb1360SIngo Molnar 		.last_balance		= jiffies,
909f2cb1360SIngo Molnar 		.balance_interval	= sd_weight,
910f2cb1360SIngo Molnar 		.smt_gain		= 0,
911f2cb1360SIngo Molnar 		.max_newidle_lb_cost	= 0,
912f2cb1360SIngo Molnar 		.next_decay_max_lb_cost	= jiffies,
913f2cb1360SIngo Molnar 		.child			= child,
914f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
915f2cb1360SIngo Molnar 		.name			= tl->name,
916f2cb1360SIngo Molnar #endif
917f2cb1360SIngo Molnar 	};
918f2cb1360SIngo Molnar 
919f2cb1360SIngo Molnar 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
920f2cb1360SIngo Molnar 	sd_id = cpumask_first(sched_domain_span(sd));
921f2cb1360SIngo Molnar 
922f2cb1360SIngo Molnar 	/*
923f2cb1360SIngo Molnar 	 * Convert topological properties into behaviour.
924f2cb1360SIngo Molnar 	 */
925f2cb1360SIngo Molnar 
926f2cb1360SIngo Molnar 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
927f2cb1360SIngo Molnar 		struct sched_domain *t = sd;
928f2cb1360SIngo Molnar 
929f2cb1360SIngo Molnar 		for_each_lower_domain(t)
930f2cb1360SIngo Molnar 			t->flags |= SD_BALANCE_WAKE;
931f2cb1360SIngo Molnar 	}
932f2cb1360SIngo Molnar 
933f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
934f2cb1360SIngo Molnar 		sd->flags |= SD_PREFER_SIBLING;
935f2cb1360SIngo Molnar 		sd->imbalance_pct = 110;
936f2cb1360SIngo Molnar 		sd->smt_gain = 1178; /* ~15% */
937f2cb1360SIngo Molnar 
938f2cb1360SIngo Molnar 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
939f2cb1360SIngo Molnar 		sd->imbalance_pct = 117;
940f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
941f2cb1360SIngo Molnar 		sd->busy_idx = 2;
942f2cb1360SIngo Molnar 
943f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
944f2cb1360SIngo Molnar 	} else if (sd->flags & SD_NUMA) {
945f2cb1360SIngo Molnar 		sd->cache_nice_tries = 2;
946f2cb1360SIngo Molnar 		sd->busy_idx = 3;
947f2cb1360SIngo Molnar 		sd->idle_idx = 2;
948f2cb1360SIngo Molnar 
949f2cb1360SIngo Molnar 		sd->flags |= SD_SERIALIZE;
950f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
951f2cb1360SIngo Molnar 			sd->flags &= ~(SD_BALANCE_EXEC |
952f2cb1360SIngo Molnar 				       SD_BALANCE_FORK |
953f2cb1360SIngo Molnar 				       SD_WAKE_AFFINE);
954f2cb1360SIngo Molnar 		}
955f2cb1360SIngo Molnar 
956f2cb1360SIngo Molnar #endif
957f2cb1360SIngo Molnar 	} else {
958f2cb1360SIngo Molnar 		sd->flags |= SD_PREFER_SIBLING;
959f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
960f2cb1360SIngo Molnar 		sd->busy_idx = 2;
961f2cb1360SIngo Molnar 		sd->idle_idx = 1;
962f2cb1360SIngo Molnar 	}
963f2cb1360SIngo Molnar 
964f2cb1360SIngo Molnar 	/*
965f2cb1360SIngo Molnar 	 * For all levels sharing cache; connect a sched_domain_shared
966f2cb1360SIngo Molnar 	 * instance.
967f2cb1360SIngo Molnar 	 */
968f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
969f2cb1360SIngo Molnar 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
970f2cb1360SIngo Molnar 		atomic_inc(&sd->shared->ref);
971f2cb1360SIngo Molnar 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
972f2cb1360SIngo Molnar 	}
973f2cb1360SIngo Molnar 
974f2cb1360SIngo Molnar 	sd->private = sdd;
975f2cb1360SIngo Molnar 
976f2cb1360SIngo Molnar 	return sd;
977f2cb1360SIngo Molnar }
978f2cb1360SIngo Molnar 
979f2cb1360SIngo Molnar /*
980f2cb1360SIngo Molnar  * Topology list, bottom-up.
981f2cb1360SIngo Molnar  */
982f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = {
983f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT
984f2cb1360SIngo Molnar 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
985f2cb1360SIngo Molnar #endif
986f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC
987f2cb1360SIngo Molnar 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
988f2cb1360SIngo Molnar #endif
989f2cb1360SIngo Molnar 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
990f2cb1360SIngo Molnar 	{ NULL, },
991f2cb1360SIngo Molnar };
992f2cb1360SIngo Molnar 
993f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology =
994f2cb1360SIngo Molnar 	default_topology;
995f2cb1360SIngo Molnar 
996f2cb1360SIngo Molnar #define for_each_sd_topology(tl)			\
997f2cb1360SIngo Molnar 	for (tl = sched_domain_topology; tl->mask; tl++)
998f2cb1360SIngo Molnar 
999f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl)
1000f2cb1360SIngo Molnar {
1001f2cb1360SIngo Molnar 	if (WARN_ON_ONCE(sched_smp_initialized))
1002f2cb1360SIngo Molnar 		return;
1003f2cb1360SIngo Molnar 
1004f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1005f2cb1360SIngo Molnar }
1006f2cb1360SIngo Molnar 
1007f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1008f2cb1360SIngo Molnar 
1009f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu)
1010f2cb1360SIngo Molnar {
1011f2cb1360SIngo Molnar 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1012f2cb1360SIngo Molnar }
1013f2cb1360SIngo Molnar 
1014f2cb1360SIngo Molnar static void sched_numa_warn(const char *str)
1015f2cb1360SIngo Molnar {
1016f2cb1360SIngo Molnar 	static int done = false;
1017f2cb1360SIngo Molnar 	int i,j;
1018f2cb1360SIngo Molnar 
1019f2cb1360SIngo Molnar 	if (done)
1020f2cb1360SIngo Molnar 		return;
1021f2cb1360SIngo Molnar 
1022f2cb1360SIngo Molnar 	done = true;
1023f2cb1360SIngo Molnar 
1024f2cb1360SIngo Molnar 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1025f2cb1360SIngo Molnar 
1026f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1027f2cb1360SIngo Molnar 		printk(KERN_WARNING "  ");
1028f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1029f2cb1360SIngo Molnar 			printk(KERN_CONT "%02d ", node_distance(i,j));
1030f2cb1360SIngo Molnar 		printk(KERN_CONT "\n");
1031f2cb1360SIngo Molnar 	}
1032f2cb1360SIngo Molnar 	printk(KERN_WARNING "\n");
1033f2cb1360SIngo Molnar }
1034f2cb1360SIngo Molnar 
1035f2cb1360SIngo Molnar bool find_numa_distance(int distance)
1036f2cb1360SIngo Molnar {
1037f2cb1360SIngo Molnar 	int i;
1038f2cb1360SIngo Molnar 
1039f2cb1360SIngo Molnar 	if (distance == node_distance(0, 0))
1040f2cb1360SIngo Molnar 		return true;
1041f2cb1360SIngo Molnar 
1042f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1043f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[i] == distance)
1044f2cb1360SIngo Molnar 			return true;
1045f2cb1360SIngo Molnar 	}
1046f2cb1360SIngo Molnar 
1047f2cb1360SIngo Molnar 	return false;
1048f2cb1360SIngo Molnar }
1049f2cb1360SIngo Molnar 
1050f2cb1360SIngo Molnar /*
1051f2cb1360SIngo Molnar  * A system can have three types of NUMA topology:
1052f2cb1360SIngo Molnar  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1053f2cb1360SIngo Molnar  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1054f2cb1360SIngo Molnar  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1055f2cb1360SIngo Molnar  *
1056f2cb1360SIngo Molnar  * The difference between a glueless mesh topology and a backplane
1057f2cb1360SIngo Molnar  * topology lies in whether communication between not directly
1058f2cb1360SIngo Molnar  * connected nodes goes through intermediary nodes (where programs
1059f2cb1360SIngo Molnar  * could run), or through backplane controllers. This affects
1060f2cb1360SIngo Molnar  * placement of programs.
1061f2cb1360SIngo Molnar  *
1062f2cb1360SIngo Molnar  * The type of topology can be discerned with the following tests:
1063f2cb1360SIngo Molnar  * - If the maximum distance between any nodes is 1 hop, the system
1064f2cb1360SIngo Molnar  *   is directly connected.
1065f2cb1360SIngo Molnar  * - If for two nodes A and B, located N > 1 hops away from each other,
1066f2cb1360SIngo Molnar  *   there is an intermediary node C, which is < N hops away from both
1067f2cb1360SIngo Molnar  *   nodes A and B, the system is a glueless mesh.
1068f2cb1360SIngo Molnar  */
1069f2cb1360SIngo Molnar static void init_numa_topology_type(void)
1070f2cb1360SIngo Molnar {
1071f2cb1360SIngo Molnar 	int a, b, c, n;
1072f2cb1360SIngo Molnar 
1073f2cb1360SIngo Molnar 	n = sched_max_numa_distance;
1074f2cb1360SIngo Molnar 
1075f2cb1360SIngo Molnar 	if (sched_domains_numa_levels <= 1) {
1076f2cb1360SIngo Molnar 		sched_numa_topology_type = NUMA_DIRECT;
1077f2cb1360SIngo Molnar 		return;
1078f2cb1360SIngo Molnar 	}
1079f2cb1360SIngo Molnar 
1080f2cb1360SIngo Molnar 	for_each_online_node(a) {
1081f2cb1360SIngo Molnar 		for_each_online_node(b) {
1082f2cb1360SIngo Molnar 			/* Find two nodes furthest removed from each other. */
1083f2cb1360SIngo Molnar 			if (node_distance(a, b) < n)
1084f2cb1360SIngo Molnar 				continue;
1085f2cb1360SIngo Molnar 
1086f2cb1360SIngo Molnar 			/* Is there an intermediary node between a and b? */
1087f2cb1360SIngo Molnar 			for_each_online_node(c) {
1088f2cb1360SIngo Molnar 				if (node_distance(a, c) < n &&
1089f2cb1360SIngo Molnar 				    node_distance(b, c) < n) {
1090f2cb1360SIngo Molnar 					sched_numa_topology_type =
1091f2cb1360SIngo Molnar 							NUMA_GLUELESS_MESH;
1092f2cb1360SIngo Molnar 					return;
1093f2cb1360SIngo Molnar 				}
1094f2cb1360SIngo Molnar 			}
1095f2cb1360SIngo Molnar 
1096f2cb1360SIngo Molnar 			sched_numa_topology_type = NUMA_BACKPLANE;
1097f2cb1360SIngo Molnar 			return;
1098f2cb1360SIngo Molnar 		}
1099f2cb1360SIngo Molnar 	}
1100f2cb1360SIngo Molnar }
1101f2cb1360SIngo Molnar 
1102f2cb1360SIngo Molnar void sched_init_numa(void)
1103f2cb1360SIngo Molnar {
1104f2cb1360SIngo Molnar 	int next_distance, curr_distance = node_distance(0, 0);
1105f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1106f2cb1360SIngo Molnar 	int level = 0;
1107f2cb1360SIngo Molnar 	int i, j, k;
1108f2cb1360SIngo Molnar 
1109f2cb1360SIngo Molnar 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1110f2cb1360SIngo Molnar 	if (!sched_domains_numa_distance)
1111f2cb1360SIngo Molnar 		return;
1112f2cb1360SIngo Molnar 
1113f2cb1360SIngo Molnar 	/*
1114f2cb1360SIngo Molnar 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1115f2cb1360SIngo Molnar 	 * unique distances in the node_distance() table.
1116f2cb1360SIngo Molnar 	 *
1117f2cb1360SIngo Molnar 	 * Assumes node_distance(0,j) includes all distances in
1118f2cb1360SIngo Molnar 	 * node_distance(i,j) in order to avoid cubic time.
1119f2cb1360SIngo Molnar 	 */
1120f2cb1360SIngo Molnar 	next_distance = curr_distance;
1121f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1122f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1123f2cb1360SIngo Molnar 			for (k = 0; k < nr_node_ids; k++) {
1124f2cb1360SIngo Molnar 				int distance = node_distance(i, k);
1125f2cb1360SIngo Molnar 
1126f2cb1360SIngo Molnar 				if (distance > curr_distance &&
1127f2cb1360SIngo Molnar 				    (distance < next_distance ||
1128f2cb1360SIngo Molnar 				     next_distance == curr_distance))
1129f2cb1360SIngo Molnar 					next_distance = distance;
1130f2cb1360SIngo Molnar 
1131f2cb1360SIngo Molnar 				/*
1132f2cb1360SIngo Molnar 				 * While not a strong assumption it would be nice to know
1133f2cb1360SIngo Molnar 				 * about cases where if node A is connected to B, B is not
1134f2cb1360SIngo Molnar 				 * equally connected to A.
1135f2cb1360SIngo Molnar 				 */
1136f2cb1360SIngo Molnar 				if (sched_debug() && node_distance(k, i) != distance)
1137f2cb1360SIngo Molnar 					sched_numa_warn("Node-distance not symmetric");
1138f2cb1360SIngo Molnar 
1139f2cb1360SIngo Molnar 				if (sched_debug() && i && !find_numa_distance(distance))
1140f2cb1360SIngo Molnar 					sched_numa_warn("Node-0 not representative");
1141f2cb1360SIngo Molnar 			}
1142f2cb1360SIngo Molnar 			if (next_distance != curr_distance) {
1143f2cb1360SIngo Molnar 				sched_domains_numa_distance[level++] = next_distance;
1144f2cb1360SIngo Molnar 				sched_domains_numa_levels = level;
1145f2cb1360SIngo Molnar 				curr_distance = next_distance;
1146f2cb1360SIngo Molnar 			} else break;
1147f2cb1360SIngo Molnar 		}
1148f2cb1360SIngo Molnar 
1149f2cb1360SIngo Molnar 		/*
1150f2cb1360SIngo Molnar 		 * In case of sched_debug() we verify the above assumption.
1151f2cb1360SIngo Molnar 		 */
1152f2cb1360SIngo Molnar 		if (!sched_debug())
1153f2cb1360SIngo Molnar 			break;
1154f2cb1360SIngo Molnar 	}
1155f2cb1360SIngo Molnar 
1156f2cb1360SIngo Molnar 	if (!level)
1157f2cb1360SIngo Molnar 		return;
1158f2cb1360SIngo Molnar 
1159f2cb1360SIngo Molnar 	/*
1160f2cb1360SIngo Molnar 	 * 'level' contains the number of unique distances, excluding the
1161f2cb1360SIngo Molnar 	 * identity distance node_distance(i,i).
1162f2cb1360SIngo Molnar 	 *
1163f2cb1360SIngo Molnar 	 * The sched_domains_numa_distance[] array includes the actual distance
1164f2cb1360SIngo Molnar 	 * numbers.
1165f2cb1360SIngo Molnar 	 */
1166f2cb1360SIngo Molnar 
1167f2cb1360SIngo Molnar 	/*
1168f2cb1360SIngo Molnar 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1169f2cb1360SIngo Molnar 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1170f2cb1360SIngo Molnar 	 * the array will contain less then 'level' members. This could be
1171f2cb1360SIngo Molnar 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1172f2cb1360SIngo Molnar 	 * in other functions.
1173f2cb1360SIngo Molnar 	 *
1174f2cb1360SIngo Molnar 	 * We reset it to 'level' at the end of this function.
1175f2cb1360SIngo Molnar 	 */
1176f2cb1360SIngo Molnar 	sched_domains_numa_levels = 0;
1177f2cb1360SIngo Molnar 
1178f2cb1360SIngo Molnar 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1179f2cb1360SIngo Molnar 	if (!sched_domains_numa_masks)
1180f2cb1360SIngo Molnar 		return;
1181f2cb1360SIngo Molnar 
1182f2cb1360SIngo Molnar 	/*
1183f2cb1360SIngo Molnar 	 * Now for each level, construct a mask per node which contains all
1184f2cb1360SIngo Molnar 	 * CPUs of nodes that are that many hops away from us.
1185f2cb1360SIngo Molnar 	 */
1186f2cb1360SIngo Molnar 	for (i = 0; i < level; i++) {
1187f2cb1360SIngo Molnar 		sched_domains_numa_masks[i] =
1188f2cb1360SIngo Molnar 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1189f2cb1360SIngo Molnar 		if (!sched_domains_numa_masks[i])
1190f2cb1360SIngo Molnar 			return;
1191f2cb1360SIngo Molnar 
1192f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1193f2cb1360SIngo Molnar 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1194f2cb1360SIngo Molnar 			if (!mask)
1195f2cb1360SIngo Molnar 				return;
1196f2cb1360SIngo Molnar 
1197f2cb1360SIngo Molnar 			sched_domains_numa_masks[i][j] = mask;
1198f2cb1360SIngo Molnar 
1199f2cb1360SIngo Molnar 			for_each_node(k) {
1200f2cb1360SIngo Molnar 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1201f2cb1360SIngo Molnar 					continue;
1202f2cb1360SIngo Molnar 
1203f2cb1360SIngo Molnar 				cpumask_or(mask, mask, cpumask_of_node(k));
1204f2cb1360SIngo Molnar 			}
1205f2cb1360SIngo Molnar 		}
1206f2cb1360SIngo Molnar 	}
1207f2cb1360SIngo Molnar 
1208f2cb1360SIngo Molnar 	/* Compute default topology size */
1209f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++);
1210f2cb1360SIngo Molnar 
1211f2cb1360SIngo Molnar 	tl = kzalloc((i + level + 1) *
1212f2cb1360SIngo Molnar 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1213f2cb1360SIngo Molnar 	if (!tl)
1214f2cb1360SIngo Molnar 		return;
1215f2cb1360SIngo Molnar 
1216f2cb1360SIngo Molnar 	/*
1217f2cb1360SIngo Molnar 	 * Copy the default topology bits..
1218f2cb1360SIngo Molnar 	 */
1219f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++)
1220f2cb1360SIngo Molnar 		tl[i] = sched_domain_topology[i];
1221f2cb1360SIngo Molnar 
1222f2cb1360SIngo Molnar 	/*
1223f2cb1360SIngo Molnar 	 * .. and append 'j' levels of NUMA goodness.
1224f2cb1360SIngo Molnar 	 */
1225f2cb1360SIngo Molnar 	for (j = 0; j < level; i++, j++) {
1226f2cb1360SIngo Molnar 		tl[i] = (struct sched_domain_topology_level){
1227f2cb1360SIngo Molnar 			.mask = sd_numa_mask,
1228f2cb1360SIngo Molnar 			.sd_flags = cpu_numa_flags,
1229f2cb1360SIngo Molnar 			.flags = SDTL_OVERLAP,
1230f2cb1360SIngo Molnar 			.numa_level = j,
1231f2cb1360SIngo Molnar 			SD_INIT_NAME(NUMA)
1232f2cb1360SIngo Molnar 		};
1233f2cb1360SIngo Molnar 	}
1234f2cb1360SIngo Molnar 
1235f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1236f2cb1360SIngo Molnar 
1237f2cb1360SIngo Molnar 	sched_domains_numa_levels = level;
1238f2cb1360SIngo Molnar 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1239f2cb1360SIngo Molnar 
1240f2cb1360SIngo Molnar 	init_numa_topology_type();
1241f2cb1360SIngo Molnar }
1242f2cb1360SIngo Molnar 
1243f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu)
1244f2cb1360SIngo Molnar {
1245f2cb1360SIngo Molnar 	int node = cpu_to_node(cpu);
1246f2cb1360SIngo Molnar 	int i, j;
1247f2cb1360SIngo Molnar 
1248f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1249f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1250f2cb1360SIngo Molnar 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1251f2cb1360SIngo Molnar 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1252f2cb1360SIngo Molnar 		}
1253f2cb1360SIngo Molnar 	}
1254f2cb1360SIngo Molnar }
1255f2cb1360SIngo Molnar 
1256f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu)
1257f2cb1360SIngo Molnar {
1258f2cb1360SIngo Molnar 	int i, j;
1259f2cb1360SIngo Molnar 
1260f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1261f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1262f2cb1360SIngo Molnar 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1263f2cb1360SIngo Molnar 	}
1264f2cb1360SIngo Molnar }
1265f2cb1360SIngo Molnar 
1266f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */
1267f2cb1360SIngo Molnar 
1268f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map)
1269f2cb1360SIngo Molnar {
1270f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1271f2cb1360SIngo Molnar 	int j;
1272f2cb1360SIngo Molnar 
1273f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1274f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1275f2cb1360SIngo Molnar 
1276f2cb1360SIngo Molnar 		sdd->sd = alloc_percpu(struct sched_domain *);
1277f2cb1360SIngo Molnar 		if (!sdd->sd)
1278f2cb1360SIngo Molnar 			return -ENOMEM;
1279f2cb1360SIngo Molnar 
1280f2cb1360SIngo Molnar 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1281f2cb1360SIngo Molnar 		if (!sdd->sds)
1282f2cb1360SIngo Molnar 			return -ENOMEM;
1283f2cb1360SIngo Molnar 
1284f2cb1360SIngo Molnar 		sdd->sg = alloc_percpu(struct sched_group *);
1285f2cb1360SIngo Molnar 		if (!sdd->sg)
1286f2cb1360SIngo Molnar 			return -ENOMEM;
1287f2cb1360SIngo Molnar 
1288f2cb1360SIngo Molnar 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1289f2cb1360SIngo Molnar 		if (!sdd->sgc)
1290f2cb1360SIngo Molnar 			return -ENOMEM;
1291f2cb1360SIngo Molnar 
1292f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1293f2cb1360SIngo Molnar 			struct sched_domain *sd;
1294f2cb1360SIngo Molnar 			struct sched_domain_shared *sds;
1295f2cb1360SIngo Molnar 			struct sched_group *sg;
1296f2cb1360SIngo Molnar 			struct sched_group_capacity *sgc;
1297f2cb1360SIngo Molnar 
1298f2cb1360SIngo Molnar 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1299f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1300f2cb1360SIngo Molnar 			if (!sd)
1301f2cb1360SIngo Molnar 				return -ENOMEM;
1302f2cb1360SIngo Molnar 
1303f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sd, j) = sd;
1304f2cb1360SIngo Molnar 
1305f2cb1360SIngo Molnar 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1306f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1307f2cb1360SIngo Molnar 			if (!sds)
1308f2cb1360SIngo Molnar 				return -ENOMEM;
1309f2cb1360SIngo Molnar 
1310f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sds, j) = sds;
1311f2cb1360SIngo Molnar 
1312f2cb1360SIngo Molnar 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1313f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1314f2cb1360SIngo Molnar 			if (!sg)
1315f2cb1360SIngo Molnar 				return -ENOMEM;
1316f2cb1360SIngo Molnar 
1317f2cb1360SIngo Molnar 			sg->next = sg;
1318f2cb1360SIngo Molnar 
1319f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sg, j) = sg;
1320f2cb1360SIngo Molnar 
1321f2cb1360SIngo Molnar 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1322f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1323f2cb1360SIngo Molnar 			if (!sgc)
1324f2cb1360SIngo Molnar 				return -ENOMEM;
1325f2cb1360SIngo Molnar 
1326f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1327f2cb1360SIngo Molnar 		}
1328f2cb1360SIngo Molnar 	}
1329f2cb1360SIngo Molnar 
1330f2cb1360SIngo Molnar 	return 0;
1331f2cb1360SIngo Molnar }
1332f2cb1360SIngo Molnar 
1333f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map)
1334f2cb1360SIngo Molnar {
1335f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1336f2cb1360SIngo Molnar 	int j;
1337f2cb1360SIngo Molnar 
1338f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1339f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1340f2cb1360SIngo Molnar 
1341f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1342f2cb1360SIngo Molnar 			struct sched_domain *sd;
1343f2cb1360SIngo Molnar 
1344f2cb1360SIngo Molnar 			if (sdd->sd) {
1345f2cb1360SIngo Molnar 				sd = *per_cpu_ptr(sdd->sd, j);
1346f2cb1360SIngo Molnar 				if (sd && (sd->flags & SD_OVERLAP))
1347f2cb1360SIngo Molnar 					free_sched_groups(sd->groups, 0);
1348f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sd, j));
1349f2cb1360SIngo Molnar 			}
1350f2cb1360SIngo Molnar 
1351f2cb1360SIngo Molnar 			if (sdd->sds)
1352f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sds, j));
1353f2cb1360SIngo Molnar 			if (sdd->sg)
1354f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sg, j));
1355f2cb1360SIngo Molnar 			if (sdd->sgc)
1356f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sgc, j));
1357f2cb1360SIngo Molnar 		}
1358f2cb1360SIngo Molnar 		free_percpu(sdd->sd);
1359f2cb1360SIngo Molnar 		sdd->sd = NULL;
1360f2cb1360SIngo Molnar 		free_percpu(sdd->sds);
1361f2cb1360SIngo Molnar 		sdd->sds = NULL;
1362f2cb1360SIngo Molnar 		free_percpu(sdd->sg);
1363f2cb1360SIngo Molnar 		sdd->sg = NULL;
1364f2cb1360SIngo Molnar 		free_percpu(sdd->sgc);
1365f2cb1360SIngo Molnar 		sdd->sgc = NULL;
1366f2cb1360SIngo Molnar 	}
1367f2cb1360SIngo Molnar }
1368f2cb1360SIngo Molnar 
1369f2cb1360SIngo Molnar struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1370f2cb1360SIngo Molnar 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1371f2cb1360SIngo Molnar 		struct sched_domain *child, int cpu)
1372f2cb1360SIngo Molnar {
1373f2cb1360SIngo Molnar 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1374f2cb1360SIngo Molnar 
1375f2cb1360SIngo Molnar 	if (child) {
1376f2cb1360SIngo Molnar 		sd->level = child->level + 1;
1377f2cb1360SIngo Molnar 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1378f2cb1360SIngo Molnar 		child->parent = sd;
1379f2cb1360SIngo Molnar 
1380f2cb1360SIngo Molnar 		if (!cpumask_subset(sched_domain_span(child),
1381f2cb1360SIngo Molnar 				    sched_domain_span(sd))) {
1382f2cb1360SIngo Molnar 			pr_err("BUG: arch topology borken\n");
1383f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1384f2cb1360SIngo Molnar 			pr_err("     the %s domain not a subset of the %s domain\n",
1385f2cb1360SIngo Molnar 					child->name, sd->name);
1386f2cb1360SIngo Molnar #endif
1387f2cb1360SIngo Molnar 			/* Fixup, ensure @sd has at least @child cpus. */
1388f2cb1360SIngo Molnar 			cpumask_or(sched_domain_span(sd),
1389f2cb1360SIngo Molnar 				   sched_domain_span(sd),
1390f2cb1360SIngo Molnar 				   sched_domain_span(child));
1391f2cb1360SIngo Molnar 		}
1392f2cb1360SIngo Molnar 
1393f2cb1360SIngo Molnar 	}
1394f2cb1360SIngo Molnar 	set_domain_attribute(sd, attr);
1395f2cb1360SIngo Molnar 
1396f2cb1360SIngo Molnar 	return sd;
1397f2cb1360SIngo Molnar }
1398f2cb1360SIngo Molnar 
1399f2cb1360SIngo Molnar /*
1400f2cb1360SIngo Molnar  * Build sched domains for a given set of CPUs and attach the sched domains
1401f2cb1360SIngo Molnar  * to the individual CPUs
1402f2cb1360SIngo Molnar  */
1403f2cb1360SIngo Molnar static int
1404f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1405f2cb1360SIngo Molnar {
1406f2cb1360SIngo Molnar 	enum s_alloc alloc_state;
1407f2cb1360SIngo Molnar 	struct sched_domain *sd;
1408f2cb1360SIngo Molnar 	struct s_data d;
1409f2cb1360SIngo Molnar 	struct rq *rq = NULL;
1410f2cb1360SIngo Molnar 	int i, ret = -ENOMEM;
1411f2cb1360SIngo Molnar 
1412f2cb1360SIngo Molnar 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1413f2cb1360SIngo Molnar 	if (alloc_state != sa_rootdomain)
1414f2cb1360SIngo Molnar 		goto error;
1415f2cb1360SIngo Molnar 
1416f2cb1360SIngo Molnar 	/* Set up domains for CPUs specified by the cpu_map: */
1417f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1418f2cb1360SIngo Molnar 		struct sched_domain_topology_level *tl;
1419f2cb1360SIngo Molnar 
1420f2cb1360SIngo Molnar 		sd = NULL;
1421f2cb1360SIngo Molnar 		for_each_sd_topology(tl) {
1422f2cb1360SIngo Molnar 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1423f2cb1360SIngo Molnar 			if (tl == sched_domain_topology)
1424f2cb1360SIngo Molnar 				*per_cpu_ptr(d.sd, i) = sd;
1425f2cb1360SIngo Molnar 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
1426f2cb1360SIngo Molnar 				sd->flags |= SD_OVERLAP;
1427f2cb1360SIngo Molnar 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1428f2cb1360SIngo Molnar 				break;
1429f2cb1360SIngo Molnar 		}
1430f2cb1360SIngo Molnar 	}
1431f2cb1360SIngo Molnar 
1432f2cb1360SIngo Molnar 	/* Build the groups for the domains */
1433f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1434f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1435f2cb1360SIngo Molnar 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1436f2cb1360SIngo Molnar 			if (sd->flags & SD_OVERLAP) {
1437f2cb1360SIngo Molnar 				if (build_overlap_sched_groups(sd, i))
1438f2cb1360SIngo Molnar 					goto error;
1439f2cb1360SIngo Molnar 			} else {
1440f2cb1360SIngo Molnar 				if (build_sched_groups(sd, i))
1441f2cb1360SIngo Molnar 					goto error;
1442f2cb1360SIngo Molnar 			}
1443f2cb1360SIngo Molnar 		}
1444f2cb1360SIngo Molnar 	}
1445f2cb1360SIngo Molnar 
1446f2cb1360SIngo Molnar 	/* Calculate CPU capacity for physical packages and nodes */
1447f2cb1360SIngo Molnar 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1448f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, cpu_map))
1449f2cb1360SIngo Molnar 			continue;
1450f2cb1360SIngo Molnar 
1451f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1452f2cb1360SIngo Molnar 			claim_allocations(i, sd);
1453f2cb1360SIngo Molnar 			init_sched_groups_capacity(i, sd);
1454f2cb1360SIngo Molnar 		}
1455f2cb1360SIngo Molnar 	}
1456f2cb1360SIngo Molnar 
1457f2cb1360SIngo Molnar 	/* Attach the domains */
1458f2cb1360SIngo Molnar 	rcu_read_lock();
1459f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1460f2cb1360SIngo Molnar 		rq = cpu_rq(i);
1461f2cb1360SIngo Molnar 		sd = *per_cpu_ptr(d.sd, i);
1462f2cb1360SIngo Molnar 
1463f2cb1360SIngo Molnar 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1464f2cb1360SIngo Molnar 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1465f2cb1360SIngo Molnar 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1466f2cb1360SIngo Molnar 
1467f2cb1360SIngo Molnar 		cpu_attach_domain(sd, d.rd, i);
1468f2cb1360SIngo Molnar 	}
1469f2cb1360SIngo Molnar 	rcu_read_unlock();
1470f2cb1360SIngo Molnar 
1471f2cb1360SIngo Molnar 	if (rq && sched_debug_enabled) {
1472f2cb1360SIngo Molnar 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1473f2cb1360SIngo Molnar 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1474f2cb1360SIngo Molnar 	}
1475f2cb1360SIngo Molnar 
1476f2cb1360SIngo Molnar 	ret = 0;
1477f2cb1360SIngo Molnar error:
1478f2cb1360SIngo Molnar 	__free_domain_allocs(&d, alloc_state, cpu_map);
1479f2cb1360SIngo Molnar 	return ret;
1480f2cb1360SIngo Molnar }
1481f2cb1360SIngo Molnar 
1482f2cb1360SIngo Molnar /* Current sched domains: */
1483f2cb1360SIngo Molnar static cpumask_var_t			*doms_cur;
1484f2cb1360SIngo Molnar 
1485f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */
1486f2cb1360SIngo Molnar static int				ndoms_cur;
1487f2cb1360SIngo Molnar 
1488f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */
1489f2cb1360SIngo Molnar static struct sched_domain_attr		*dattr_cur;
1490f2cb1360SIngo Molnar 
1491f2cb1360SIngo Molnar /*
1492f2cb1360SIngo Molnar  * Special case: If a kmalloc() of a doms_cur partition (array of
1493f2cb1360SIngo Molnar  * cpumask) fails, then fallback to a single sched domain,
1494f2cb1360SIngo Molnar  * as determined by the single cpumask fallback_doms.
1495f2cb1360SIngo Molnar  */
1496f2cb1360SIngo Molnar cpumask_var_t				fallback_doms;
1497f2cb1360SIngo Molnar 
1498f2cb1360SIngo Molnar /*
1499f2cb1360SIngo Molnar  * arch_update_cpu_topology lets virtualized architectures update the
1500f2cb1360SIngo Molnar  * CPU core maps. It is supposed to return 1 if the topology changed
1501f2cb1360SIngo Molnar  * or 0 if it stayed the same.
1502f2cb1360SIngo Molnar  */
1503f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void)
1504f2cb1360SIngo Molnar {
1505f2cb1360SIngo Molnar 	return 0;
1506f2cb1360SIngo Molnar }
1507f2cb1360SIngo Molnar 
1508f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1509f2cb1360SIngo Molnar {
1510f2cb1360SIngo Molnar 	int i;
1511f2cb1360SIngo Molnar 	cpumask_var_t *doms;
1512f2cb1360SIngo Molnar 
1513f2cb1360SIngo Molnar 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1514f2cb1360SIngo Molnar 	if (!doms)
1515f2cb1360SIngo Molnar 		return NULL;
1516f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++) {
1517f2cb1360SIngo Molnar 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1518f2cb1360SIngo Molnar 			free_sched_domains(doms, i);
1519f2cb1360SIngo Molnar 			return NULL;
1520f2cb1360SIngo Molnar 		}
1521f2cb1360SIngo Molnar 	}
1522f2cb1360SIngo Molnar 	return doms;
1523f2cb1360SIngo Molnar }
1524f2cb1360SIngo Molnar 
1525f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1526f2cb1360SIngo Molnar {
1527f2cb1360SIngo Molnar 	unsigned int i;
1528f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++)
1529f2cb1360SIngo Molnar 		free_cpumask_var(doms[i]);
1530f2cb1360SIngo Molnar 	kfree(doms);
1531f2cb1360SIngo Molnar }
1532f2cb1360SIngo Molnar 
1533f2cb1360SIngo Molnar /*
1534f2cb1360SIngo Molnar  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1535f2cb1360SIngo Molnar  * For now this just excludes isolated CPUs, but could be used to
1536f2cb1360SIngo Molnar  * exclude other special cases in the future.
1537f2cb1360SIngo Molnar  */
1538f2cb1360SIngo Molnar int init_sched_domains(const struct cpumask *cpu_map)
1539f2cb1360SIngo Molnar {
1540f2cb1360SIngo Molnar 	int err;
1541f2cb1360SIngo Molnar 
1542f2cb1360SIngo Molnar 	arch_update_cpu_topology();
1543f2cb1360SIngo Molnar 	ndoms_cur = 1;
1544f2cb1360SIngo Molnar 	doms_cur = alloc_sched_domains(ndoms_cur);
1545f2cb1360SIngo Molnar 	if (!doms_cur)
1546f2cb1360SIngo Molnar 		doms_cur = &fallback_doms;
1547f2cb1360SIngo Molnar 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1548f2cb1360SIngo Molnar 	err = build_sched_domains(doms_cur[0], NULL);
1549f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
1550f2cb1360SIngo Molnar 
1551f2cb1360SIngo Molnar 	return err;
1552f2cb1360SIngo Molnar }
1553f2cb1360SIngo Molnar 
1554f2cb1360SIngo Molnar /*
1555f2cb1360SIngo Molnar  * Detach sched domains from a group of CPUs specified in cpu_map
1556f2cb1360SIngo Molnar  * These CPUs will now be attached to the NULL domain
1557f2cb1360SIngo Molnar  */
1558f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map)
1559f2cb1360SIngo Molnar {
1560f2cb1360SIngo Molnar 	int i;
1561f2cb1360SIngo Molnar 
1562f2cb1360SIngo Molnar 	rcu_read_lock();
1563f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map)
1564f2cb1360SIngo Molnar 		cpu_attach_domain(NULL, &def_root_domain, i);
1565f2cb1360SIngo Molnar 	rcu_read_unlock();
1566f2cb1360SIngo Molnar }
1567f2cb1360SIngo Molnar 
1568f2cb1360SIngo Molnar /* handle null as "default" */
1569f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1570f2cb1360SIngo Molnar 			struct sched_domain_attr *new, int idx_new)
1571f2cb1360SIngo Molnar {
1572f2cb1360SIngo Molnar 	struct sched_domain_attr tmp;
1573f2cb1360SIngo Molnar 
1574f2cb1360SIngo Molnar 	/* Fast path: */
1575f2cb1360SIngo Molnar 	if (!new && !cur)
1576f2cb1360SIngo Molnar 		return 1;
1577f2cb1360SIngo Molnar 
1578f2cb1360SIngo Molnar 	tmp = SD_ATTR_INIT;
1579f2cb1360SIngo Molnar 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1580f2cb1360SIngo Molnar 			new ? (new + idx_new) : &tmp,
1581f2cb1360SIngo Molnar 			sizeof(struct sched_domain_attr));
1582f2cb1360SIngo Molnar }
1583f2cb1360SIngo Molnar 
1584f2cb1360SIngo Molnar /*
1585f2cb1360SIngo Molnar  * Partition sched domains as specified by the 'ndoms_new'
1586f2cb1360SIngo Molnar  * cpumasks in the array doms_new[] of cpumasks. This compares
1587f2cb1360SIngo Molnar  * doms_new[] to the current sched domain partitioning, doms_cur[].
1588f2cb1360SIngo Molnar  * It destroys each deleted domain and builds each new domain.
1589f2cb1360SIngo Molnar  *
1590f2cb1360SIngo Molnar  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1591f2cb1360SIngo Molnar  * The masks don't intersect (don't overlap.) We should setup one
1592f2cb1360SIngo Molnar  * sched domain for each mask. CPUs not in any of the cpumasks will
1593f2cb1360SIngo Molnar  * not be load balanced. If the same cpumask appears both in the
1594f2cb1360SIngo Molnar  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1595f2cb1360SIngo Molnar  * it as it is.
1596f2cb1360SIngo Molnar  *
1597f2cb1360SIngo Molnar  * The passed in 'doms_new' should be allocated using
1598f2cb1360SIngo Molnar  * alloc_sched_domains.  This routine takes ownership of it and will
1599f2cb1360SIngo Molnar  * free_sched_domains it when done with it. If the caller failed the
1600f2cb1360SIngo Molnar  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1601f2cb1360SIngo Molnar  * and partition_sched_domains() will fallback to the single partition
1602f2cb1360SIngo Molnar  * 'fallback_doms', it also forces the domains to be rebuilt.
1603f2cb1360SIngo Molnar  *
1604f2cb1360SIngo Molnar  * If doms_new == NULL it will be replaced with cpu_online_mask.
1605f2cb1360SIngo Molnar  * ndoms_new == 0 is a special case for destroying existing domains,
1606f2cb1360SIngo Molnar  * and it will not create the default domain.
1607f2cb1360SIngo Molnar  *
1608f2cb1360SIngo Molnar  * Call with hotplug lock held
1609f2cb1360SIngo Molnar  */
1610f2cb1360SIngo Molnar void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1611f2cb1360SIngo Molnar 			     struct sched_domain_attr *dattr_new)
1612f2cb1360SIngo Molnar {
1613f2cb1360SIngo Molnar 	int i, j, n;
1614f2cb1360SIngo Molnar 	int new_topology;
1615f2cb1360SIngo Molnar 
1616f2cb1360SIngo Molnar 	mutex_lock(&sched_domains_mutex);
1617f2cb1360SIngo Molnar 
1618f2cb1360SIngo Molnar 	/* Always unregister in case we don't destroy any domains: */
1619f2cb1360SIngo Molnar 	unregister_sched_domain_sysctl();
1620f2cb1360SIngo Molnar 
1621f2cb1360SIngo Molnar 	/* Let the architecture update CPU core mappings: */
1622f2cb1360SIngo Molnar 	new_topology = arch_update_cpu_topology();
1623f2cb1360SIngo Molnar 
1624f2cb1360SIngo Molnar 	n = doms_new ? ndoms_new : 0;
1625f2cb1360SIngo Molnar 
1626f2cb1360SIngo Molnar 	/* Destroy deleted domains: */
1627f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_cur; i++) {
1628f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
1629f2cb1360SIngo Molnar 			if (cpumask_equal(doms_cur[i], doms_new[j])
1630f2cb1360SIngo Molnar 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1631f2cb1360SIngo Molnar 				goto match1;
1632f2cb1360SIngo Molnar 		}
1633f2cb1360SIngo Molnar 		/* No match - a current sched domain not in new doms_new[] */
1634f2cb1360SIngo Molnar 		detach_destroy_domains(doms_cur[i]);
1635f2cb1360SIngo Molnar match1:
1636f2cb1360SIngo Molnar 		;
1637f2cb1360SIngo Molnar 	}
1638f2cb1360SIngo Molnar 
1639f2cb1360SIngo Molnar 	n = ndoms_cur;
1640f2cb1360SIngo Molnar 	if (doms_new == NULL) {
1641f2cb1360SIngo Molnar 		n = 0;
1642f2cb1360SIngo Molnar 		doms_new = &fallback_doms;
1643f2cb1360SIngo Molnar 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1644f2cb1360SIngo Molnar 		WARN_ON_ONCE(dattr_new);
1645f2cb1360SIngo Molnar 	}
1646f2cb1360SIngo Molnar 
1647f2cb1360SIngo Molnar 	/* Build new domains: */
1648f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_new; i++) {
1649f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
1650f2cb1360SIngo Molnar 			if (cpumask_equal(doms_new[i], doms_cur[j])
1651f2cb1360SIngo Molnar 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1652f2cb1360SIngo Molnar 				goto match2;
1653f2cb1360SIngo Molnar 		}
1654f2cb1360SIngo Molnar 		/* No match - add a new doms_new */
1655f2cb1360SIngo Molnar 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1656f2cb1360SIngo Molnar match2:
1657f2cb1360SIngo Molnar 		;
1658f2cb1360SIngo Molnar 	}
1659f2cb1360SIngo Molnar 
1660f2cb1360SIngo Molnar 	/* Remember the new sched domains: */
1661f2cb1360SIngo Molnar 	if (doms_cur != &fallback_doms)
1662f2cb1360SIngo Molnar 		free_sched_domains(doms_cur, ndoms_cur);
1663f2cb1360SIngo Molnar 
1664f2cb1360SIngo Molnar 	kfree(dattr_cur);
1665f2cb1360SIngo Molnar 	doms_cur = doms_new;
1666f2cb1360SIngo Molnar 	dattr_cur = dattr_new;
1667f2cb1360SIngo Molnar 	ndoms_cur = ndoms_new;
1668f2cb1360SIngo Molnar 
1669f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
1670f2cb1360SIngo Molnar 
1671f2cb1360SIngo Molnar 	mutex_unlock(&sched_domains_mutex);
1672f2cb1360SIngo Molnar }
1673f2cb1360SIngo Molnar 
1674