xref: /openbmc/linux/kernel/sched/topology.c (revision 8a0441415b3f9b9a920a6a5086580ea3daa7b884)
1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0
2f2cb1360SIngo Molnar /*
3f2cb1360SIngo Molnar  * Scheduler topology setup/handling methods
4f2cb1360SIngo Molnar  */
5f2cb1360SIngo Molnar 
6f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex);
7f2cb1360SIngo Molnar 
8f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */
9ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask;
10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2;
11f2cb1360SIngo Molnar 
12f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
13f2cb1360SIngo Molnar 
14f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str)
15f2cb1360SIngo Molnar {
169406415fSPeter Zijlstra 	sched_debug_verbose = true;
17f2cb1360SIngo Molnar 
18f2cb1360SIngo Molnar 	return 0;
19f2cb1360SIngo Molnar }
209406415fSPeter Zijlstra early_param("sched_verbose", sched_debug_setup);
21f2cb1360SIngo Molnar 
22f2cb1360SIngo Molnar static inline bool sched_debug(void)
23f2cb1360SIngo Molnar {
249406415fSPeter Zijlstra 	return sched_debug_verbose;
25f2cb1360SIngo Molnar }
26f2cb1360SIngo Molnar 
27848785dfSValentin Schneider #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
28848785dfSValentin Schneider const struct sd_flag_debug sd_flag_debug[] = {
29848785dfSValentin Schneider #include <linux/sched/sd_flags.h>
30848785dfSValentin Schneider };
31848785dfSValentin Schneider #undef SD_FLAG
32848785dfSValentin Schneider 
33f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
34f2cb1360SIngo Molnar 				  struct cpumask *groupmask)
35f2cb1360SIngo Molnar {
36f2cb1360SIngo Molnar 	struct sched_group *group = sd->groups;
3765c5e253SValentin Schneider 	unsigned long flags = sd->flags;
3865c5e253SValentin Schneider 	unsigned int idx;
39f2cb1360SIngo Molnar 
40f2cb1360SIngo Molnar 	cpumask_clear(groupmask);
41f2cb1360SIngo Molnar 
42005f874dSPeter Zijlstra 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
43005f874dSPeter Zijlstra 	printk(KERN_CONT "span=%*pbl level=%s\n",
44f2cb1360SIngo Molnar 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
45f2cb1360SIngo Molnar 
46f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4797fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
48f2cb1360SIngo Molnar 	}
496cd0c583SYi Wang 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
5097fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
51f2cb1360SIngo Molnar 	}
52f2cb1360SIngo Molnar 
5365c5e253SValentin Schneider 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
5465c5e253SValentin Schneider 		unsigned int flag = BIT(idx);
5565c5e253SValentin Schneider 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
5665c5e253SValentin Schneider 
5765c5e253SValentin Schneider 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
5865c5e253SValentin Schneider 		    !(sd->child->flags & flag))
5965c5e253SValentin Schneider 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
6065c5e253SValentin Schneider 			       sd_flag_debug[idx].name);
6165c5e253SValentin Schneider 
6265c5e253SValentin Schneider 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
6365c5e253SValentin Schneider 		    !(sd->parent->flags & flag))
6465c5e253SValentin Schneider 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
6565c5e253SValentin Schneider 			       sd_flag_debug[idx].name);
6665c5e253SValentin Schneider 	}
6765c5e253SValentin Schneider 
68f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
69f2cb1360SIngo Molnar 	do {
70f2cb1360SIngo Molnar 		if (!group) {
71f2cb1360SIngo Molnar 			printk("\n");
72f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: group is NULL\n");
73f2cb1360SIngo Molnar 			break;
74f2cb1360SIngo Molnar 		}
75f2cb1360SIngo Molnar 
761087ad4eSYury Norov 		if (cpumask_empty(sched_group_span(group))) {
77f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
78f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: empty group\n");
79f2cb1360SIngo Molnar 			break;
80f2cb1360SIngo Molnar 		}
81f2cb1360SIngo Molnar 
82f2cb1360SIngo Molnar 		if (!(sd->flags & SD_OVERLAP) &&
83ae4df9d6SPeter Zijlstra 		    cpumask_intersects(groupmask, sched_group_span(group))) {
84f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
85f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: repeated CPUs\n");
86f2cb1360SIngo Molnar 			break;
87f2cb1360SIngo Molnar 		}
88f2cb1360SIngo Molnar 
89ae4df9d6SPeter Zijlstra 		cpumask_or(groupmask, groupmask, sched_group_span(group));
90f2cb1360SIngo Molnar 
91005f874dSPeter Zijlstra 		printk(KERN_CONT " %d:{ span=%*pbl",
92005f874dSPeter Zijlstra 				group->sgc->id,
93ae4df9d6SPeter Zijlstra 				cpumask_pr_args(sched_group_span(group)));
94b0151c25SPeter Zijlstra 
95af218122SPeter Zijlstra 		if ((sd->flags & SD_OVERLAP) &&
96ae4df9d6SPeter Zijlstra 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
97005f874dSPeter Zijlstra 			printk(KERN_CONT " mask=%*pbl",
98e5c14b1fSPeter Zijlstra 				cpumask_pr_args(group_balance_mask(group)));
99b0151c25SPeter Zijlstra 		}
100b0151c25SPeter Zijlstra 
101005f874dSPeter Zijlstra 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
102005f874dSPeter Zijlstra 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
103f2cb1360SIngo Molnar 
104a420b063SPeter Zijlstra 		if (group == sd->groups && sd->child &&
105a420b063SPeter Zijlstra 		    !cpumask_equal(sched_domain_span(sd->child),
106ae4df9d6SPeter Zijlstra 				   sched_group_span(group))) {
107a420b063SPeter Zijlstra 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
108a420b063SPeter Zijlstra 		}
109a420b063SPeter Zijlstra 
110005f874dSPeter Zijlstra 		printk(KERN_CONT " }");
111005f874dSPeter Zijlstra 
112f2cb1360SIngo Molnar 		group = group->next;
113b0151c25SPeter Zijlstra 
114b0151c25SPeter Zijlstra 		if (group != sd->groups)
115b0151c25SPeter Zijlstra 			printk(KERN_CONT ",");
116b0151c25SPeter Zijlstra 
117f2cb1360SIngo Molnar 	} while (group != sd->groups);
118f2cb1360SIngo Molnar 	printk(KERN_CONT "\n");
119f2cb1360SIngo Molnar 
120f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
121f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
122f2cb1360SIngo Molnar 
123f2cb1360SIngo Molnar 	if (sd->parent &&
124f2cb1360SIngo Molnar 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
12597fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
126f2cb1360SIngo Molnar 	return 0;
127f2cb1360SIngo Molnar }
128f2cb1360SIngo Molnar 
129f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu)
130f2cb1360SIngo Molnar {
131f2cb1360SIngo Molnar 	int level = 0;
132f2cb1360SIngo Molnar 
1339406415fSPeter Zijlstra 	if (!sched_debug_verbose)
134f2cb1360SIngo Molnar 		return;
135f2cb1360SIngo Molnar 
136f2cb1360SIngo Molnar 	if (!sd) {
137f2cb1360SIngo Molnar 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
138f2cb1360SIngo Molnar 		return;
139f2cb1360SIngo Molnar 	}
140f2cb1360SIngo Molnar 
141005f874dSPeter Zijlstra 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
142f2cb1360SIngo Molnar 
143f2cb1360SIngo Molnar 	for (;;) {
144f2cb1360SIngo Molnar 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
145f2cb1360SIngo Molnar 			break;
146f2cb1360SIngo Molnar 		level++;
147f2cb1360SIngo Molnar 		sd = sd->parent;
148f2cb1360SIngo Molnar 		if (!sd)
149f2cb1360SIngo Molnar 			break;
150f2cb1360SIngo Molnar 	}
151f2cb1360SIngo Molnar }
152f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */
153f2cb1360SIngo Molnar 
1549406415fSPeter Zijlstra # define sched_debug_verbose 0
155f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0)
156f2cb1360SIngo Molnar static inline bool sched_debug(void)
157f2cb1360SIngo Molnar {
158f2cb1360SIngo Molnar 	return false;
159f2cb1360SIngo Molnar }
160f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */
161f2cb1360SIngo Molnar 
1624fc472f1SValentin Schneider /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
1634fc472f1SValentin Schneider #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
1644fc472f1SValentin Schneider static const unsigned int SD_DEGENERATE_GROUPS_MASK =
1654fc472f1SValentin Schneider #include <linux/sched/sd_flags.h>
1664fc472f1SValentin Schneider 0;
1674fc472f1SValentin Schneider #undef SD_FLAG
1684fc472f1SValentin Schneider 
169f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd)
170f2cb1360SIngo Molnar {
171f2cb1360SIngo Molnar 	if (cpumask_weight(sched_domain_span(sd)) == 1)
172f2cb1360SIngo Molnar 		return 1;
173f2cb1360SIngo Molnar 
174f2cb1360SIngo Molnar 	/* Following flags need at least 2 groups */
1756f349818SValentin Schneider 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
1766f349818SValentin Schneider 	    (sd->groups != sd->groups->next))
177f2cb1360SIngo Molnar 		return 0;
178f2cb1360SIngo Molnar 
179f2cb1360SIngo Molnar 	/* Following flags don't use groups */
180f2cb1360SIngo Molnar 	if (sd->flags & (SD_WAKE_AFFINE))
181f2cb1360SIngo Molnar 		return 0;
182f2cb1360SIngo Molnar 
183f2cb1360SIngo Molnar 	return 1;
184f2cb1360SIngo Molnar }
185f2cb1360SIngo Molnar 
186f2cb1360SIngo Molnar static int
187f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
188f2cb1360SIngo Molnar {
189f2cb1360SIngo Molnar 	unsigned long cflags = sd->flags, pflags = parent->flags;
190f2cb1360SIngo Molnar 
191f2cb1360SIngo Molnar 	if (sd_degenerate(parent))
192f2cb1360SIngo Molnar 		return 1;
193f2cb1360SIngo Molnar 
194f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
195f2cb1360SIngo Molnar 		return 0;
196f2cb1360SIngo Molnar 
197f2cb1360SIngo Molnar 	/* Flags needing groups don't count if only 1 group in parent */
198ab65afb0SValentin Schneider 	if (parent->groups == parent->groups->next)
1993a6712c7SValentin Schneider 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
200ab65afb0SValentin Schneider 
201f2cb1360SIngo Molnar 	if (~cflags & pflags)
202f2cb1360SIngo Molnar 		return 0;
203f2cb1360SIngo Molnar 
204f2cb1360SIngo Molnar 	return 1;
205f2cb1360SIngo Molnar }
206f2cb1360SIngo Molnar 
207531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
208f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present);
209*8a044141SZhen Ni static unsigned int sysctl_sched_energy_aware = 1;
210531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex);
211531b5c9fSQuentin Perret bool sched_energy_update;
212531b5c9fSQuentin Perret 
21331f6a8c0SIonela Voinescu void rebuild_sched_domains_energy(void)
21431f6a8c0SIonela Voinescu {
21531f6a8c0SIonela Voinescu 	mutex_lock(&sched_energy_mutex);
21631f6a8c0SIonela Voinescu 	sched_energy_update = true;
21731f6a8c0SIonela Voinescu 	rebuild_sched_domains();
21831f6a8c0SIonela Voinescu 	sched_energy_update = false;
21931f6a8c0SIonela Voinescu 	mutex_unlock(&sched_energy_mutex);
22031f6a8c0SIonela Voinescu }
22131f6a8c0SIonela Voinescu 
2228d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL
223*8a044141SZhen Ni static int sched_energy_aware_handler(struct ctl_table *table, int write,
22432927393SChristoph Hellwig 		void *buffer, size_t *lenp, loff_t *ppos)
2258d5d0cfbSQuentin Perret {
2268d5d0cfbSQuentin Perret 	int ret, state;
2278d5d0cfbSQuentin Perret 
2288d5d0cfbSQuentin Perret 	if (write && !capable(CAP_SYS_ADMIN))
2298d5d0cfbSQuentin Perret 		return -EPERM;
2308d5d0cfbSQuentin Perret 
2318d5d0cfbSQuentin Perret 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2328d5d0cfbSQuentin Perret 	if (!ret && write) {
2338d5d0cfbSQuentin Perret 		state = static_branch_unlikely(&sched_energy_present);
23431f6a8c0SIonela Voinescu 		if (state != sysctl_sched_energy_aware)
23531f6a8c0SIonela Voinescu 			rebuild_sched_domains_energy();
2368d5d0cfbSQuentin Perret 	}
2378d5d0cfbSQuentin Perret 
2388d5d0cfbSQuentin Perret 	return ret;
2398d5d0cfbSQuentin Perret }
240*8a044141SZhen Ni 
241*8a044141SZhen Ni static struct ctl_table sched_energy_aware_sysctls[] = {
242*8a044141SZhen Ni 	{
243*8a044141SZhen Ni 		.procname       = "sched_energy_aware",
244*8a044141SZhen Ni 		.data           = &sysctl_sched_energy_aware,
245*8a044141SZhen Ni 		.maxlen         = sizeof(unsigned int),
246*8a044141SZhen Ni 		.mode           = 0644,
247*8a044141SZhen Ni 		.proc_handler   = sched_energy_aware_handler,
248*8a044141SZhen Ni 		.extra1         = SYSCTL_ZERO,
249*8a044141SZhen Ni 		.extra2         = SYSCTL_ONE,
250*8a044141SZhen Ni 	},
251*8a044141SZhen Ni 	{}
252*8a044141SZhen Ni };
253*8a044141SZhen Ni 
254*8a044141SZhen Ni static int __init sched_energy_aware_sysctl_init(void)
255*8a044141SZhen Ni {
256*8a044141SZhen Ni 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
257*8a044141SZhen Ni 	return 0;
258*8a044141SZhen Ni }
259*8a044141SZhen Ni 
260*8a044141SZhen Ni late_initcall(sched_energy_aware_sysctl_init);
2618d5d0cfbSQuentin Perret #endif
2628d5d0cfbSQuentin Perret 
2636aa140faSQuentin Perret static void free_pd(struct perf_domain *pd)
2646aa140faSQuentin Perret {
2656aa140faSQuentin Perret 	struct perf_domain *tmp;
2666aa140faSQuentin Perret 
2676aa140faSQuentin Perret 	while (pd) {
2686aa140faSQuentin Perret 		tmp = pd->next;
2696aa140faSQuentin Perret 		kfree(pd);
2706aa140faSQuentin Perret 		pd = tmp;
2716aa140faSQuentin Perret 	}
2726aa140faSQuentin Perret }
2736aa140faSQuentin Perret 
2746aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
2756aa140faSQuentin Perret {
2766aa140faSQuentin Perret 	while (pd) {
2776aa140faSQuentin Perret 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
2786aa140faSQuentin Perret 			return pd;
2796aa140faSQuentin Perret 		pd = pd->next;
2806aa140faSQuentin Perret 	}
2816aa140faSQuentin Perret 
2826aa140faSQuentin Perret 	return NULL;
2836aa140faSQuentin Perret }
2846aa140faSQuentin Perret 
2856aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu)
2866aa140faSQuentin Perret {
2876aa140faSQuentin Perret 	struct em_perf_domain *obj = em_cpu_get(cpu);
2886aa140faSQuentin Perret 	struct perf_domain *pd;
2896aa140faSQuentin Perret 
2906aa140faSQuentin Perret 	if (!obj) {
2916aa140faSQuentin Perret 		if (sched_debug())
2926aa140faSQuentin Perret 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
2936aa140faSQuentin Perret 		return NULL;
2946aa140faSQuentin Perret 	}
2956aa140faSQuentin Perret 
2966aa140faSQuentin Perret 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
2976aa140faSQuentin Perret 	if (!pd)
2986aa140faSQuentin Perret 		return NULL;
2996aa140faSQuentin Perret 	pd->em_pd = obj;
3006aa140faSQuentin Perret 
3016aa140faSQuentin Perret 	return pd;
3026aa140faSQuentin Perret }
3036aa140faSQuentin Perret 
3046aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map,
3056aa140faSQuentin Perret 						struct perf_domain *pd)
3066aa140faSQuentin Perret {
3076aa140faSQuentin Perret 	if (!sched_debug() || !pd)
3086aa140faSQuentin Perret 		return;
3096aa140faSQuentin Perret 
3106aa140faSQuentin Perret 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
3116aa140faSQuentin Perret 
3126aa140faSQuentin Perret 	while (pd) {
313521b512bSLukasz Luba 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
3146aa140faSQuentin Perret 				cpumask_first(perf_domain_span(pd)),
3156aa140faSQuentin Perret 				cpumask_pr_args(perf_domain_span(pd)),
316521b512bSLukasz Luba 				em_pd_nr_perf_states(pd->em_pd));
3176aa140faSQuentin Perret 		pd = pd->next;
3186aa140faSQuentin Perret 	}
3196aa140faSQuentin Perret 
3206aa140faSQuentin Perret 	printk(KERN_CONT "\n");
3216aa140faSQuentin Perret }
3226aa140faSQuentin Perret 
3236aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp)
3246aa140faSQuentin Perret {
3256aa140faSQuentin Perret 	struct perf_domain *pd;
3266aa140faSQuentin Perret 
3276aa140faSQuentin Perret 	pd = container_of(rp, struct perf_domain, rcu);
3286aa140faSQuentin Perret 	free_pd(pd);
3296aa140faSQuentin Perret }
3306aa140faSQuentin Perret 
3311f74de87SQuentin Perret static void sched_energy_set(bool has_eas)
3321f74de87SQuentin Perret {
3331f74de87SQuentin Perret 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
3341f74de87SQuentin Perret 		if (sched_debug())
3351f74de87SQuentin Perret 			pr_info("%s: stopping EAS\n", __func__);
3361f74de87SQuentin Perret 		static_branch_disable_cpuslocked(&sched_energy_present);
3371f74de87SQuentin Perret 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
3381f74de87SQuentin Perret 		if (sched_debug())
3391f74de87SQuentin Perret 			pr_info("%s: starting EAS\n", __func__);
3401f74de87SQuentin Perret 		static_branch_enable_cpuslocked(&sched_energy_present);
3411f74de87SQuentin Perret 	}
3421f74de87SQuentin Perret }
3431f74de87SQuentin Perret 
344b68a4c0dSQuentin Perret /*
345b68a4c0dSQuentin Perret  * EAS can be used on a root domain if it meets all the following conditions:
346b68a4c0dSQuentin Perret  *    1. an Energy Model (EM) is available;
347b68a4c0dSQuentin Perret  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
34838502ab4SValentin Schneider  *    3. no SMT is detected.
34938502ab4SValentin Schneider  *    4. the EM complexity is low enough to keep scheduling overheads low;
35038502ab4SValentin Schneider  *    5. schedutil is driving the frequency of all CPUs of the rd;
351fa50e2b4SIonela Voinescu  *    6. frequency invariance support is present;
352b68a4c0dSQuentin Perret  *
353b68a4c0dSQuentin Perret  * The complexity of the Energy Model is defined as:
354b68a4c0dSQuentin Perret  *
355521b512bSLukasz Luba  *              C = nr_pd * (nr_cpus + nr_ps)
356b68a4c0dSQuentin Perret  *
357b68a4c0dSQuentin Perret  * with parameters defined as:
358b68a4c0dSQuentin Perret  *  - nr_pd:    the number of performance domains
359b68a4c0dSQuentin Perret  *  - nr_cpus:  the number of CPUs
360521b512bSLukasz Luba  *  - nr_ps:    the sum of the number of performance states of all performance
361b68a4c0dSQuentin Perret  *              domains (for example, on a system with 2 performance domains,
362521b512bSLukasz Luba  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
363b68a4c0dSQuentin Perret  *
364b68a4c0dSQuentin Perret  * It is generally not a good idea to use such a model in the wake-up path on
365b68a4c0dSQuentin Perret  * very complex platforms because of the associated scheduling overheads. The
366b68a4c0dSQuentin Perret  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
367521b512bSLukasz Luba  * with per-CPU DVFS and less than 8 performance states each, for example.
368b68a4c0dSQuentin Perret  */
369b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048
370b68a4c0dSQuentin Perret 
371531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov;
3721f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map)
3736aa140faSQuentin Perret {
374521b512bSLukasz Luba 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
3756aa140faSQuentin Perret 	struct perf_domain *pd = NULL, *tmp;
3766aa140faSQuentin Perret 	int cpu = cpumask_first(cpu_map);
3776aa140faSQuentin Perret 	struct root_domain *rd = cpu_rq(cpu)->rd;
378531b5c9fSQuentin Perret 	struct cpufreq_policy *policy;
379531b5c9fSQuentin Perret 	struct cpufreq_governor *gov;
380b68a4c0dSQuentin Perret 
3818d5d0cfbSQuentin Perret 	if (!sysctl_sched_energy_aware)
3828d5d0cfbSQuentin Perret 		goto free;
3838d5d0cfbSQuentin Perret 
384b68a4c0dSQuentin Perret 	/* EAS is enabled for asymmetric CPU capacity topologies. */
385b68a4c0dSQuentin Perret 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
386b68a4c0dSQuentin Perret 		if (sched_debug()) {
387b68a4c0dSQuentin Perret 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
388b68a4c0dSQuentin Perret 					cpumask_pr_args(cpu_map));
389b68a4c0dSQuentin Perret 		}
390b68a4c0dSQuentin Perret 		goto free;
391b68a4c0dSQuentin Perret 	}
3926aa140faSQuentin Perret 
39338502ab4SValentin Schneider 	/* EAS definitely does *not* handle SMT */
39438502ab4SValentin Schneider 	if (sched_smt_active()) {
39538502ab4SValentin Schneider 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
39638502ab4SValentin Schneider 			cpumask_pr_args(cpu_map));
39738502ab4SValentin Schneider 		goto free;
39838502ab4SValentin Schneider 	}
39938502ab4SValentin Schneider 
400fa50e2b4SIonela Voinescu 	if (!arch_scale_freq_invariant()) {
401fa50e2b4SIonela Voinescu 		if (sched_debug()) {
402fa50e2b4SIonela Voinescu 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
403fa50e2b4SIonela Voinescu 				cpumask_pr_args(cpu_map));
404fa50e2b4SIonela Voinescu 		}
405fa50e2b4SIonela Voinescu 		goto free;
406fa50e2b4SIonela Voinescu 	}
407fa50e2b4SIonela Voinescu 
4086aa140faSQuentin Perret 	for_each_cpu(i, cpu_map) {
4096aa140faSQuentin Perret 		/* Skip already covered CPUs. */
4106aa140faSQuentin Perret 		if (find_pd(pd, i))
4116aa140faSQuentin Perret 			continue;
4126aa140faSQuentin Perret 
413531b5c9fSQuentin Perret 		/* Do not attempt EAS if schedutil is not being used. */
414531b5c9fSQuentin Perret 		policy = cpufreq_cpu_get(i);
415531b5c9fSQuentin Perret 		if (!policy)
416531b5c9fSQuentin Perret 			goto free;
417531b5c9fSQuentin Perret 		gov = policy->governor;
418531b5c9fSQuentin Perret 		cpufreq_cpu_put(policy);
419531b5c9fSQuentin Perret 		if (gov != &schedutil_gov) {
420531b5c9fSQuentin Perret 			if (rd->pd)
421531b5c9fSQuentin Perret 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
422531b5c9fSQuentin Perret 						cpumask_pr_args(cpu_map));
423531b5c9fSQuentin Perret 			goto free;
424531b5c9fSQuentin Perret 		}
425531b5c9fSQuentin Perret 
4266aa140faSQuentin Perret 		/* Create the new pd and add it to the local list. */
4276aa140faSQuentin Perret 		tmp = pd_init(i);
4286aa140faSQuentin Perret 		if (!tmp)
4296aa140faSQuentin Perret 			goto free;
4306aa140faSQuentin Perret 		tmp->next = pd;
4316aa140faSQuentin Perret 		pd = tmp;
432b68a4c0dSQuentin Perret 
433b68a4c0dSQuentin Perret 		/*
434521b512bSLukasz Luba 		 * Count performance domains and performance states for the
435b68a4c0dSQuentin Perret 		 * complexity check.
436b68a4c0dSQuentin Perret 		 */
437b68a4c0dSQuentin Perret 		nr_pd++;
438521b512bSLukasz Luba 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
439b68a4c0dSQuentin Perret 	}
440b68a4c0dSQuentin Perret 
441b68a4c0dSQuentin Perret 	/* Bail out if the Energy Model complexity is too high. */
442521b512bSLukasz Luba 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
443b68a4c0dSQuentin Perret 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
444b68a4c0dSQuentin Perret 						cpumask_pr_args(cpu_map));
445b68a4c0dSQuentin Perret 		goto free;
4466aa140faSQuentin Perret 	}
4476aa140faSQuentin Perret 
4486aa140faSQuentin Perret 	perf_domain_debug(cpu_map, pd);
4496aa140faSQuentin Perret 
4506aa140faSQuentin Perret 	/* Attach the new list of performance domains to the root domain. */
4516aa140faSQuentin Perret 	tmp = rd->pd;
4526aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, pd);
4536aa140faSQuentin Perret 	if (tmp)
4546aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
4556aa140faSQuentin Perret 
4561f74de87SQuentin Perret 	return !!pd;
4576aa140faSQuentin Perret 
4586aa140faSQuentin Perret free:
4596aa140faSQuentin Perret 	free_pd(pd);
4606aa140faSQuentin Perret 	tmp = rd->pd;
4616aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, NULL);
4626aa140faSQuentin Perret 	if (tmp)
4636aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
4641f74de87SQuentin Perret 
4651f74de87SQuentin Perret 	return false;
4666aa140faSQuentin Perret }
4676aa140faSQuentin Perret #else
4686aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { }
469531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
4706aa140faSQuentin Perret 
471f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu)
472f2cb1360SIngo Molnar {
473f2cb1360SIngo Molnar 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
474f2cb1360SIngo Molnar 
475f2cb1360SIngo Molnar 	cpupri_cleanup(&rd->cpupri);
476f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
477f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
478f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
479f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
480f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
4816aa140faSQuentin Perret 	free_pd(rd->pd);
482f2cb1360SIngo Molnar 	kfree(rd);
483f2cb1360SIngo Molnar }
484f2cb1360SIngo Molnar 
485f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd)
486f2cb1360SIngo Molnar {
487f2cb1360SIngo Molnar 	struct root_domain *old_rd = NULL;
488f2cb1360SIngo Molnar 	unsigned long flags;
489f2cb1360SIngo Molnar 
4905cb9eaa3SPeter Zijlstra 	raw_spin_rq_lock_irqsave(rq, flags);
491f2cb1360SIngo Molnar 
492f2cb1360SIngo Molnar 	if (rq->rd) {
493f2cb1360SIngo Molnar 		old_rd = rq->rd;
494f2cb1360SIngo Molnar 
495f2cb1360SIngo Molnar 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
496f2cb1360SIngo Molnar 			set_rq_offline(rq);
497f2cb1360SIngo Molnar 
498f2cb1360SIngo Molnar 		cpumask_clear_cpu(rq->cpu, old_rd->span);
499f2cb1360SIngo Molnar 
500f2cb1360SIngo Molnar 		/*
501f2cb1360SIngo Molnar 		 * If we dont want to free the old_rd yet then
502f2cb1360SIngo Molnar 		 * set old_rd to NULL to skip the freeing later
503f2cb1360SIngo Molnar 		 * in this function:
504f2cb1360SIngo Molnar 		 */
505f2cb1360SIngo Molnar 		if (!atomic_dec_and_test(&old_rd->refcount))
506f2cb1360SIngo Molnar 			old_rd = NULL;
507f2cb1360SIngo Molnar 	}
508f2cb1360SIngo Molnar 
509f2cb1360SIngo Molnar 	atomic_inc(&rd->refcount);
510f2cb1360SIngo Molnar 	rq->rd = rd;
511f2cb1360SIngo Molnar 
512f2cb1360SIngo Molnar 	cpumask_set_cpu(rq->cpu, rd->span);
513f2cb1360SIngo Molnar 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
514f2cb1360SIngo Molnar 		set_rq_online(rq);
515f2cb1360SIngo Molnar 
5165cb9eaa3SPeter Zijlstra 	raw_spin_rq_unlock_irqrestore(rq, flags);
517f2cb1360SIngo Molnar 
518f2cb1360SIngo Molnar 	if (old_rd)
519337e9b07SPaul E. McKenney 		call_rcu(&old_rd->rcu, free_rootdomain);
520f2cb1360SIngo Molnar }
521f2cb1360SIngo Molnar 
522364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd)
523364f5665SSteven Rostedt (VMware) {
524364f5665SSteven Rostedt (VMware) 	atomic_inc(&rd->refcount);
525364f5665SSteven Rostedt (VMware) }
526364f5665SSteven Rostedt (VMware) 
527364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd)
528364f5665SSteven Rostedt (VMware) {
529364f5665SSteven Rostedt (VMware) 	if (!atomic_dec_and_test(&rd->refcount))
530364f5665SSteven Rostedt (VMware) 		return;
531364f5665SSteven Rostedt (VMware) 
532337e9b07SPaul E. McKenney 	call_rcu(&rd->rcu, free_rootdomain);
533364f5665SSteven Rostedt (VMware) }
534364f5665SSteven Rostedt (VMware) 
535f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd)
536f2cb1360SIngo Molnar {
537f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
538f2cb1360SIngo Molnar 		goto out;
539f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
540f2cb1360SIngo Molnar 		goto free_span;
541f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
542f2cb1360SIngo Molnar 		goto free_online;
543f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
544f2cb1360SIngo Molnar 		goto free_dlo_mask;
545f2cb1360SIngo Molnar 
5464bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI
5474bdced5cSSteven Rostedt (Red Hat) 	rd->rto_cpu = -1;
5484bdced5cSSteven Rostedt (Red Hat) 	raw_spin_lock_init(&rd->rto_lock);
549da6ff099SSebastian Andrzej Siewior 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
5504bdced5cSSteven Rostedt (Red Hat) #endif
5514bdced5cSSteven Rostedt (Red Hat) 
55226762423SPeng Liu 	rd->visit_gen = 0;
553f2cb1360SIngo Molnar 	init_dl_bw(&rd->dl_bw);
554f2cb1360SIngo Molnar 	if (cpudl_init(&rd->cpudl) != 0)
555f2cb1360SIngo Molnar 		goto free_rto_mask;
556f2cb1360SIngo Molnar 
557f2cb1360SIngo Molnar 	if (cpupri_init(&rd->cpupri) != 0)
558f2cb1360SIngo Molnar 		goto free_cpudl;
559f2cb1360SIngo Molnar 	return 0;
560f2cb1360SIngo Molnar 
561f2cb1360SIngo Molnar free_cpudl:
562f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
563f2cb1360SIngo Molnar free_rto_mask:
564f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
565f2cb1360SIngo Molnar free_dlo_mask:
566f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
567f2cb1360SIngo Molnar free_online:
568f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
569f2cb1360SIngo Molnar free_span:
570f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
571f2cb1360SIngo Molnar out:
572f2cb1360SIngo Molnar 	return -ENOMEM;
573f2cb1360SIngo Molnar }
574f2cb1360SIngo Molnar 
575f2cb1360SIngo Molnar /*
576f2cb1360SIngo Molnar  * By default the system creates a single root-domain with all CPUs as
577f2cb1360SIngo Molnar  * members (mimicking the global state we have today).
578f2cb1360SIngo Molnar  */
579f2cb1360SIngo Molnar struct root_domain def_root_domain;
580f2cb1360SIngo Molnar 
581f2cb1360SIngo Molnar void init_defrootdomain(void)
582f2cb1360SIngo Molnar {
583f2cb1360SIngo Molnar 	init_rootdomain(&def_root_domain);
584f2cb1360SIngo Molnar 
585f2cb1360SIngo Molnar 	atomic_set(&def_root_domain.refcount, 1);
586f2cb1360SIngo Molnar }
587f2cb1360SIngo Molnar 
588f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void)
589f2cb1360SIngo Molnar {
590f2cb1360SIngo Molnar 	struct root_domain *rd;
591f2cb1360SIngo Molnar 
5924d13a06dSViresh Kumar 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
593f2cb1360SIngo Molnar 	if (!rd)
594f2cb1360SIngo Molnar 		return NULL;
595f2cb1360SIngo Molnar 
596f2cb1360SIngo Molnar 	if (init_rootdomain(rd) != 0) {
597f2cb1360SIngo Molnar 		kfree(rd);
598f2cb1360SIngo Molnar 		return NULL;
599f2cb1360SIngo Molnar 	}
600f2cb1360SIngo Molnar 
601f2cb1360SIngo Molnar 	return rd;
602f2cb1360SIngo Molnar }
603f2cb1360SIngo Molnar 
604f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc)
605f2cb1360SIngo Molnar {
606f2cb1360SIngo Molnar 	struct sched_group *tmp, *first;
607f2cb1360SIngo Molnar 
608f2cb1360SIngo Molnar 	if (!sg)
609f2cb1360SIngo Molnar 		return;
610f2cb1360SIngo Molnar 
611f2cb1360SIngo Molnar 	first = sg;
612f2cb1360SIngo Molnar 	do {
613f2cb1360SIngo Molnar 		tmp = sg->next;
614f2cb1360SIngo Molnar 
615f2cb1360SIngo Molnar 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
616f2cb1360SIngo Molnar 			kfree(sg->sgc);
617f2cb1360SIngo Molnar 
618213c5a45SShu Wang 		if (atomic_dec_and_test(&sg->ref))
619f2cb1360SIngo Molnar 			kfree(sg);
620f2cb1360SIngo Molnar 		sg = tmp;
621f2cb1360SIngo Molnar 	} while (sg != first);
622f2cb1360SIngo Molnar }
623f2cb1360SIngo Molnar 
624f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd)
625f2cb1360SIngo Molnar {
626f2cb1360SIngo Molnar 	/*
627a090c4f2SPeter Zijlstra 	 * A normal sched domain may have multiple group references, an
628a090c4f2SPeter Zijlstra 	 * overlapping domain, having private groups, only one.  Iterate,
629a090c4f2SPeter Zijlstra 	 * dropping group/capacity references, freeing where none remain.
630f2cb1360SIngo Molnar 	 */
631f2cb1360SIngo Molnar 	free_sched_groups(sd->groups, 1);
632213c5a45SShu Wang 
633f2cb1360SIngo Molnar 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
634f2cb1360SIngo Molnar 		kfree(sd->shared);
635f2cb1360SIngo Molnar 	kfree(sd);
636f2cb1360SIngo Molnar }
637f2cb1360SIngo Molnar 
638f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu)
639f2cb1360SIngo Molnar {
640f2cb1360SIngo Molnar 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
641f2cb1360SIngo Molnar 
642f2cb1360SIngo Molnar 	while (sd) {
643f2cb1360SIngo Molnar 		struct sched_domain *parent = sd->parent;
644f2cb1360SIngo Molnar 		destroy_sched_domain(sd);
645f2cb1360SIngo Molnar 		sd = parent;
646f2cb1360SIngo Molnar 	}
647f2cb1360SIngo Molnar }
648f2cb1360SIngo Molnar 
649f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd)
650f2cb1360SIngo Molnar {
651f2cb1360SIngo Molnar 	if (sd)
652f2cb1360SIngo Molnar 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
653f2cb1360SIngo Molnar }
654f2cb1360SIngo Molnar 
655f2cb1360SIngo Molnar /*
656f2cb1360SIngo Molnar  * Keep a special pointer to the highest sched_domain that has
657f2cb1360SIngo Molnar  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
658f2cb1360SIngo Molnar  * allows us to avoid some pointer chasing select_idle_sibling().
659f2cb1360SIngo Molnar  *
660f2cb1360SIngo Molnar  * Also keep a unique ID per domain (we use the first CPU number in
661f2cb1360SIngo Molnar  * the cpumask of the domain), this allows us to quickly tell if
662f2cb1360SIngo Molnar  * two CPUs are in the same cache domain, see cpus_share_cache().
663f2cb1360SIngo Molnar  */
664994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
665f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size);
666f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id);
667994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
668994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
669994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
670994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
671df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
672f2cb1360SIngo Molnar 
673f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu)
674f2cb1360SIngo Molnar {
675f2cb1360SIngo Molnar 	struct sched_domain_shared *sds = NULL;
676f2cb1360SIngo Molnar 	struct sched_domain *sd;
677f2cb1360SIngo Molnar 	int id = cpu;
678f2cb1360SIngo Molnar 	int size = 1;
679f2cb1360SIngo Molnar 
680f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
681f2cb1360SIngo Molnar 	if (sd) {
682f2cb1360SIngo Molnar 		id = cpumask_first(sched_domain_span(sd));
683f2cb1360SIngo Molnar 		size = cpumask_weight(sched_domain_span(sd));
684f2cb1360SIngo Molnar 		sds = sd->shared;
685f2cb1360SIngo Molnar 	}
686f2cb1360SIngo Molnar 
687f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
688f2cb1360SIngo Molnar 	per_cpu(sd_llc_size, cpu) = size;
689f2cb1360SIngo Molnar 	per_cpu(sd_llc_id, cpu) = id;
690f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
691f2cb1360SIngo Molnar 
692f2cb1360SIngo Molnar 	sd = lowest_flag_domain(cpu, SD_NUMA);
693f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
694f2cb1360SIngo Molnar 
695f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
696011b27bbSQuentin Perret 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
697011b27bbSQuentin Perret 
698c744dc4aSBeata Michalska 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
699011b27bbSQuentin Perret 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
700f2cb1360SIngo Molnar }
701f2cb1360SIngo Molnar 
702f2cb1360SIngo Molnar /*
703f2cb1360SIngo Molnar  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
704f2cb1360SIngo Molnar  * hold the hotplug lock.
705f2cb1360SIngo Molnar  */
706f2cb1360SIngo Molnar static void
707f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
708f2cb1360SIngo Molnar {
709f2cb1360SIngo Molnar 	struct rq *rq = cpu_rq(cpu);
710f2cb1360SIngo Molnar 	struct sched_domain *tmp;
711f2cb1360SIngo Molnar 
712f2cb1360SIngo Molnar 	/* Remove the sched domains which do not contribute to scheduling. */
713f2cb1360SIngo Molnar 	for (tmp = sd; tmp; ) {
714f2cb1360SIngo Molnar 		struct sched_domain *parent = tmp->parent;
715f2cb1360SIngo Molnar 		if (!parent)
716f2cb1360SIngo Molnar 			break;
717f2cb1360SIngo Molnar 
718f2cb1360SIngo Molnar 		if (sd_parent_degenerate(tmp, parent)) {
719f2cb1360SIngo Molnar 			tmp->parent = parent->parent;
720f2cb1360SIngo Molnar 			if (parent->parent)
721f2cb1360SIngo Molnar 				parent->parent->child = tmp;
722f2cb1360SIngo Molnar 			/*
723f2cb1360SIngo Molnar 			 * Transfer SD_PREFER_SIBLING down in case of a
724f2cb1360SIngo Molnar 			 * degenerate parent; the spans match for this
725f2cb1360SIngo Molnar 			 * so the property transfers.
726f2cb1360SIngo Molnar 			 */
727f2cb1360SIngo Molnar 			if (parent->flags & SD_PREFER_SIBLING)
728f2cb1360SIngo Molnar 				tmp->flags |= SD_PREFER_SIBLING;
729f2cb1360SIngo Molnar 			destroy_sched_domain(parent);
730f2cb1360SIngo Molnar 		} else
731f2cb1360SIngo Molnar 			tmp = tmp->parent;
732f2cb1360SIngo Molnar 	}
733f2cb1360SIngo Molnar 
734f2cb1360SIngo Molnar 	if (sd && sd_degenerate(sd)) {
735f2cb1360SIngo Molnar 		tmp = sd;
736f2cb1360SIngo Molnar 		sd = sd->parent;
737f2cb1360SIngo Molnar 		destroy_sched_domain(tmp);
73816d364baSRicardo Neri 		if (sd) {
73916d364baSRicardo Neri 			struct sched_group *sg = sd->groups;
74016d364baSRicardo Neri 
74116d364baSRicardo Neri 			/*
74216d364baSRicardo Neri 			 * sched groups hold the flags of the child sched
74316d364baSRicardo Neri 			 * domain for convenience. Clear such flags since
74416d364baSRicardo Neri 			 * the child is being destroyed.
74516d364baSRicardo Neri 			 */
74616d364baSRicardo Neri 			do {
74716d364baSRicardo Neri 				sg->flags = 0;
74816d364baSRicardo Neri 			} while (sg != sd->groups);
74916d364baSRicardo Neri 
750f2cb1360SIngo Molnar 			sd->child = NULL;
751f2cb1360SIngo Molnar 		}
75216d364baSRicardo Neri 	}
753f2cb1360SIngo Molnar 
754f2cb1360SIngo Molnar 	sched_domain_debug(sd, cpu);
755f2cb1360SIngo Molnar 
756f2cb1360SIngo Molnar 	rq_attach_root(rq, rd);
757f2cb1360SIngo Molnar 	tmp = rq->sd;
758f2cb1360SIngo Molnar 	rcu_assign_pointer(rq->sd, sd);
759bbdacdfeSPeter Zijlstra 	dirty_sched_domain_sysctl(cpu);
760f2cb1360SIngo Molnar 	destroy_sched_domains(tmp);
761f2cb1360SIngo Molnar 
762f2cb1360SIngo Molnar 	update_top_cache_domain(cpu);
763f2cb1360SIngo Molnar }
764f2cb1360SIngo Molnar 
765f2cb1360SIngo Molnar struct s_data {
76699687cdbSLuc Van Oostenryck 	struct sched_domain * __percpu *sd;
767f2cb1360SIngo Molnar 	struct root_domain	*rd;
768f2cb1360SIngo Molnar };
769f2cb1360SIngo Molnar 
770f2cb1360SIngo Molnar enum s_alloc {
771f2cb1360SIngo Molnar 	sa_rootdomain,
772f2cb1360SIngo Molnar 	sa_sd,
773f2cb1360SIngo Molnar 	sa_sd_storage,
774f2cb1360SIngo Molnar 	sa_none,
775f2cb1360SIngo Molnar };
776f2cb1360SIngo Molnar 
777f2cb1360SIngo Molnar /*
77835a566e6SPeter Zijlstra  * Return the canonical balance CPU for this group, this is the first CPU
779e5c14b1fSPeter Zijlstra  * of this group that's also in the balance mask.
78035a566e6SPeter Zijlstra  *
781e5c14b1fSPeter Zijlstra  * The balance mask are all those CPUs that could actually end up at this
782e5c14b1fSPeter Zijlstra  * group. See build_balance_mask().
78335a566e6SPeter Zijlstra  *
78435a566e6SPeter Zijlstra  * Also see should_we_balance().
78535a566e6SPeter Zijlstra  */
78635a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg)
78735a566e6SPeter Zijlstra {
788e5c14b1fSPeter Zijlstra 	return cpumask_first(group_balance_mask(sg));
78935a566e6SPeter Zijlstra }
79035a566e6SPeter Zijlstra 
79135a566e6SPeter Zijlstra 
79235a566e6SPeter Zijlstra /*
79335a566e6SPeter Zijlstra  * NUMA topology (first read the regular topology blurb below)
79435a566e6SPeter Zijlstra  *
79535a566e6SPeter Zijlstra  * Given a node-distance table, for example:
79635a566e6SPeter Zijlstra  *
79735a566e6SPeter Zijlstra  *   node   0   1   2   3
79835a566e6SPeter Zijlstra  *     0:  10  20  30  20
79935a566e6SPeter Zijlstra  *     1:  20  10  20  30
80035a566e6SPeter Zijlstra  *     2:  30  20  10  20
80135a566e6SPeter Zijlstra  *     3:  20  30  20  10
80235a566e6SPeter Zijlstra  *
80335a566e6SPeter Zijlstra  * which represents a 4 node ring topology like:
80435a566e6SPeter Zijlstra  *
80535a566e6SPeter Zijlstra  *   0 ----- 1
80635a566e6SPeter Zijlstra  *   |       |
80735a566e6SPeter Zijlstra  *   |       |
80835a566e6SPeter Zijlstra  *   |       |
80935a566e6SPeter Zijlstra  *   3 ----- 2
81035a566e6SPeter Zijlstra  *
81135a566e6SPeter Zijlstra  * We want to construct domains and groups to represent this. The way we go
81235a566e6SPeter Zijlstra  * about doing this is to build the domains on 'hops'. For each NUMA level we
81335a566e6SPeter Zijlstra  * construct the mask of all nodes reachable in @level hops.
81435a566e6SPeter Zijlstra  *
81535a566e6SPeter Zijlstra  * For the above NUMA topology that gives 3 levels:
81635a566e6SPeter Zijlstra  *
81735a566e6SPeter Zijlstra  * NUMA-2	0-3		0-3		0-3		0-3
81835a566e6SPeter Zijlstra  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
81935a566e6SPeter Zijlstra  *
82035a566e6SPeter Zijlstra  * NUMA-1	0-1,3		0-2		1-3		0,2-3
82135a566e6SPeter Zijlstra  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
82235a566e6SPeter Zijlstra  *
82335a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
82435a566e6SPeter Zijlstra  *
82535a566e6SPeter Zijlstra  *
82635a566e6SPeter Zijlstra  * As can be seen; things don't nicely line up as with the regular topology.
82735a566e6SPeter Zijlstra  * When we iterate a domain in child domain chunks some nodes can be
82835a566e6SPeter Zijlstra  * represented multiple times -- hence the "overlap" naming for this part of
82935a566e6SPeter Zijlstra  * the topology.
83035a566e6SPeter Zijlstra  *
83135a566e6SPeter Zijlstra  * In order to minimize this overlap, we only build enough groups to cover the
83235a566e6SPeter Zijlstra  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
83335a566e6SPeter Zijlstra  *
83435a566e6SPeter Zijlstra  * Because:
83535a566e6SPeter Zijlstra  *
83635a566e6SPeter Zijlstra  *  - the first group of each domain is its child domain; this
83735a566e6SPeter Zijlstra  *    gets us the first 0-1,3
83835a566e6SPeter Zijlstra  *  - the only uncovered node is 2, who's child domain is 1-3.
83935a566e6SPeter Zijlstra  *
84035a566e6SPeter Zijlstra  * However, because of the overlap, computing a unique CPU for each group is
84135a566e6SPeter Zijlstra  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
84235a566e6SPeter Zijlstra  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
84335a566e6SPeter Zijlstra  * end up at those groups (they would end up in group: 0-1,3).
84435a566e6SPeter Zijlstra  *
845e5c14b1fSPeter Zijlstra  * To correct this we have to introduce the group balance mask. This mask
84635a566e6SPeter Zijlstra  * will contain those CPUs in the group that can reach this group given the
84735a566e6SPeter Zijlstra  * (child) domain tree.
84835a566e6SPeter Zijlstra  *
84935a566e6SPeter Zijlstra  * With this we can once again compute balance_cpu and sched_group_capacity
85035a566e6SPeter Zijlstra  * relations.
85135a566e6SPeter Zijlstra  *
85235a566e6SPeter Zijlstra  * XXX include words on how balance_cpu is unique and therefore can be
85335a566e6SPeter Zijlstra  * used for sched_group_capacity links.
85435a566e6SPeter Zijlstra  *
85535a566e6SPeter Zijlstra  *
85635a566e6SPeter Zijlstra  * Another 'interesting' topology is:
85735a566e6SPeter Zijlstra  *
85835a566e6SPeter Zijlstra  *   node   0   1   2   3
85935a566e6SPeter Zijlstra  *     0:  10  20  20  30
86035a566e6SPeter Zijlstra  *     1:  20  10  20  20
86135a566e6SPeter Zijlstra  *     2:  20  20  10  20
86235a566e6SPeter Zijlstra  *     3:  30  20  20  10
86335a566e6SPeter Zijlstra  *
86435a566e6SPeter Zijlstra  * Which looks a little like:
86535a566e6SPeter Zijlstra  *
86635a566e6SPeter Zijlstra  *   0 ----- 1
86735a566e6SPeter Zijlstra  *   |     / |
86835a566e6SPeter Zijlstra  *   |   /   |
86935a566e6SPeter Zijlstra  *   | /     |
87035a566e6SPeter Zijlstra  *   2 ----- 3
87135a566e6SPeter Zijlstra  *
87235a566e6SPeter Zijlstra  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
87335a566e6SPeter Zijlstra  * are not.
87435a566e6SPeter Zijlstra  *
87535a566e6SPeter Zijlstra  * This leads to a few particularly weird cases where the sched_domain's are
87697fb7a0aSIngo Molnar  * not of the same number for each CPU. Consider:
87735a566e6SPeter Zijlstra  *
87835a566e6SPeter Zijlstra  * NUMA-2	0-3						0-3
87935a566e6SPeter Zijlstra  *  groups:	{0-2},{1-3}					{1-3},{0-2}
88035a566e6SPeter Zijlstra  *
88135a566e6SPeter Zijlstra  * NUMA-1	0-2		0-3		0-3		1-3
88235a566e6SPeter Zijlstra  *
88335a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
88435a566e6SPeter Zijlstra  *
88535a566e6SPeter Zijlstra  */
88635a566e6SPeter Zijlstra 
88735a566e6SPeter Zijlstra 
88835a566e6SPeter Zijlstra /*
889e5c14b1fSPeter Zijlstra  * Build the balance mask; it contains only those CPUs that can arrive at this
890e5c14b1fSPeter Zijlstra  * group and should be considered to continue balancing.
89135a566e6SPeter Zijlstra  *
89235a566e6SPeter Zijlstra  * We do this during the group creation pass, therefore the group information
89335a566e6SPeter Zijlstra  * isn't complete yet, however since each group represents a (child) domain we
89435a566e6SPeter Zijlstra  * can fully construct this using the sched_domain bits (which are already
89535a566e6SPeter Zijlstra  * complete).
896f2cb1360SIngo Molnar  */
8971676330eSPeter Zijlstra static void
898e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
899f2cb1360SIngo Molnar {
900ae4df9d6SPeter Zijlstra 	const struct cpumask *sg_span = sched_group_span(sg);
901f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
902f2cb1360SIngo Molnar 	struct sched_domain *sibling;
903f2cb1360SIngo Molnar 	int i;
904f2cb1360SIngo Molnar 
9051676330eSPeter Zijlstra 	cpumask_clear(mask);
9061676330eSPeter Zijlstra 
907f32d782eSLauro Ramos Venancio 	for_each_cpu(i, sg_span) {
908f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
90973bb059fSPeter Zijlstra 
91073bb059fSPeter Zijlstra 		/*
91173bb059fSPeter Zijlstra 		 * Can happen in the asymmetric case, where these siblings are
91273bb059fSPeter Zijlstra 		 * unused. The mask will not be empty because those CPUs that
91373bb059fSPeter Zijlstra 		 * do have the top domain _should_ span the domain.
91473bb059fSPeter Zijlstra 		 */
91573bb059fSPeter Zijlstra 		if (!sibling->child)
91673bb059fSPeter Zijlstra 			continue;
91773bb059fSPeter Zijlstra 
91873bb059fSPeter Zijlstra 		/* If we would not end up here, we can't continue from here */
91973bb059fSPeter Zijlstra 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
920f2cb1360SIngo Molnar 			continue;
921f2cb1360SIngo Molnar 
9221676330eSPeter Zijlstra 		cpumask_set_cpu(i, mask);
923f2cb1360SIngo Molnar 	}
92473bb059fSPeter Zijlstra 
92573bb059fSPeter Zijlstra 	/* We must not have empty masks here */
9261676330eSPeter Zijlstra 	WARN_ON_ONCE(cpumask_empty(mask));
927f2cb1360SIngo Molnar }
928f2cb1360SIngo Molnar 
929f2cb1360SIngo Molnar /*
93035a566e6SPeter Zijlstra  * XXX: This creates per-node group entries; since the load-balancer will
93135a566e6SPeter Zijlstra  * immediately access remote memory to construct this group's load-balance
93235a566e6SPeter Zijlstra  * statistics having the groups node local is of dubious benefit.
933f2cb1360SIngo Molnar  */
9348c033469SLauro Ramos Venancio static struct sched_group *
9358c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
9368c033469SLauro Ramos Venancio {
9378c033469SLauro Ramos Venancio 	struct sched_group *sg;
9388c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
9398c033469SLauro Ramos Venancio 
9408c033469SLauro Ramos Venancio 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
9418c033469SLauro Ramos Venancio 			GFP_KERNEL, cpu_to_node(cpu));
9428c033469SLauro Ramos Venancio 
9438c033469SLauro Ramos Venancio 	if (!sg)
9448c033469SLauro Ramos Venancio 		return NULL;
9458c033469SLauro Ramos Venancio 
946ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
94716d364baSRicardo Neri 	if (sd->child) {
9488c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd->child));
94916d364baSRicardo Neri 		sg->flags = sd->child->flags;
95016d364baSRicardo Neri 	} else {
9518c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd));
95216d364baSRicardo Neri 	}
9538c033469SLauro Ramos Venancio 
954213c5a45SShu Wang 	atomic_inc(&sg->ref);
9558c033469SLauro Ramos Venancio 	return sg;
9568c033469SLauro Ramos Venancio }
9578c033469SLauro Ramos Venancio 
9588c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd,
9591676330eSPeter Zijlstra 				     struct sched_group *sg)
9608c033469SLauro Ramos Venancio {
9611676330eSPeter Zijlstra 	struct cpumask *mask = sched_domains_tmpmask2;
9628c033469SLauro Ramos Venancio 	struct sd_data *sdd = sd->private;
9638c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
9641676330eSPeter Zijlstra 	int cpu;
9651676330eSPeter Zijlstra 
966e5c14b1fSPeter Zijlstra 	build_balance_mask(sd, sg, mask);
9670a2b65c0SBarry Song 	cpu = cpumask_first(mask);
9688c033469SLauro Ramos Venancio 
9698c033469SLauro Ramos Venancio 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
9708c033469SLauro Ramos Venancio 	if (atomic_inc_return(&sg->sgc->ref) == 1)
971e5c14b1fSPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), mask);
97235a566e6SPeter Zijlstra 	else
973e5c14b1fSPeter Zijlstra 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
9748c033469SLauro Ramos Venancio 
9758c033469SLauro Ramos Venancio 	/*
9768c033469SLauro Ramos Venancio 	 * Initialize sgc->capacity such that even if we mess up the
9778c033469SLauro Ramos Venancio 	 * domains and no possible iteration will get us here, we won't
9788c033469SLauro Ramos Venancio 	 * die on a /0 trap.
9798c033469SLauro Ramos Venancio 	 */
980ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
9818c033469SLauro Ramos Venancio 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
9828c033469SLauro Ramos Venancio 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
983e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
9848c033469SLauro Ramos Venancio }
9858c033469SLauro Ramos Venancio 
986585b6d27SBarry Song static struct sched_domain *
987585b6d27SBarry Song find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
988585b6d27SBarry Song {
989585b6d27SBarry Song 	/*
990585b6d27SBarry Song 	 * The proper descendant would be the one whose child won't span out
991585b6d27SBarry Song 	 * of sd
992585b6d27SBarry Song 	 */
993585b6d27SBarry Song 	while (sibling->child &&
994585b6d27SBarry Song 	       !cpumask_subset(sched_domain_span(sibling->child),
995585b6d27SBarry Song 			       sched_domain_span(sd)))
996585b6d27SBarry Song 		sibling = sibling->child;
997585b6d27SBarry Song 
998585b6d27SBarry Song 	/*
999585b6d27SBarry Song 	 * As we are referencing sgc across different topology level, we need
1000585b6d27SBarry Song 	 * to go down to skip those sched_domains which don't contribute to
1001585b6d27SBarry Song 	 * scheduling because they will be degenerated in cpu_attach_domain
1002585b6d27SBarry Song 	 */
1003585b6d27SBarry Song 	while (sibling->child &&
1004585b6d27SBarry Song 	       cpumask_equal(sched_domain_span(sibling->child),
1005585b6d27SBarry Song 			     sched_domain_span(sibling)))
1006585b6d27SBarry Song 		sibling = sibling->child;
1007585b6d27SBarry Song 
1008585b6d27SBarry Song 	return sibling;
1009585b6d27SBarry Song }
1010585b6d27SBarry Song 
1011f2cb1360SIngo Molnar static int
1012f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1013f2cb1360SIngo Molnar {
101491eaed0dSPeter Zijlstra 	struct sched_group *first = NULL, *last = NULL, *sg;
1015f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
1016f2cb1360SIngo Molnar 	struct cpumask *covered = sched_domains_tmpmask;
1017f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1018f2cb1360SIngo Molnar 	struct sched_domain *sibling;
1019f2cb1360SIngo Molnar 	int i;
1020f2cb1360SIngo Molnar 
1021f2cb1360SIngo Molnar 	cpumask_clear(covered);
1022f2cb1360SIngo Molnar 
10230372dd27SPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
1024f2cb1360SIngo Molnar 		struct cpumask *sg_span;
1025f2cb1360SIngo Molnar 
1026f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
1027f2cb1360SIngo Molnar 			continue;
1028f2cb1360SIngo Molnar 
1029f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
1030f2cb1360SIngo Molnar 
1031c20e1ea4SLauro Ramos Venancio 		/*
1032c20e1ea4SLauro Ramos Venancio 		 * Asymmetric node setups can result in situations where the
1033c20e1ea4SLauro Ramos Venancio 		 * domain tree is of unequal depth, make sure to skip domains
1034c20e1ea4SLauro Ramos Venancio 		 * that already cover the entire range.
1035c20e1ea4SLauro Ramos Venancio 		 *
1036c20e1ea4SLauro Ramos Venancio 		 * In that case build_sched_domains() will have terminated the
1037c20e1ea4SLauro Ramos Venancio 		 * iteration early and our sibling sd spans will be empty.
1038c20e1ea4SLauro Ramos Venancio 		 * Domains should always include the CPU they're built on, so
1039c20e1ea4SLauro Ramos Venancio 		 * check that.
1040c20e1ea4SLauro Ramos Venancio 		 */
1041f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1042f2cb1360SIngo Molnar 			continue;
1043f2cb1360SIngo Molnar 
1044585b6d27SBarry Song 		/*
1045585b6d27SBarry Song 		 * Usually we build sched_group by sibling's child sched_domain
1046585b6d27SBarry Song 		 * But for machines whose NUMA diameter are 3 or above, we move
1047585b6d27SBarry Song 		 * to build sched_group by sibling's proper descendant's child
1048585b6d27SBarry Song 		 * domain because sibling's child sched_domain will span out of
1049585b6d27SBarry Song 		 * the sched_domain being built as below.
1050585b6d27SBarry Song 		 *
1051585b6d27SBarry Song 		 * Smallest diameter=3 topology is:
1052585b6d27SBarry Song 		 *
1053585b6d27SBarry Song 		 *   node   0   1   2   3
1054585b6d27SBarry Song 		 *     0:  10  20  30  40
1055585b6d27SBarry Song 		 *     1:  20  10  20  30
1056585b6d27SBarry Song 		 *     2:  30  20  10  20
1057585b6d27SBarry Song 		 *     3:  40  30  20  10
1058585b6d27SBarry Song 		 *
1059585b6d27SBarry Song 		 *   0 --- 1 --- 2 --- 3
1060585b6d27SBarry Song 		 *
1061585b6d27SBarry Song 		 * NUMA-3       0-3             N/A             N/A             0-3
1062585b6d27SBarry Song 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1063585b6d27SBarry Song 		 *
1064585b6d27SBarry Song 		 * NUMA-2       0-2             0-3             0-3             1-3
1065585b6d27SBarry Song 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1066585b6d27SBarry Song 		 *
1067585b6d27SBarry Song 		 * NUMA-1       0-1             0-2             1-3             2-3
1068585b6d27SBarry Song 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1069585b6d27SBarry Song 		 *
1070585b6d27SBarry Song 		 * NUMA-0       0               1               2               3
1071585b6d27SBarry Song 		 *
1072585b6d27SBarry Song 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1073585b6d27SBarry Song 		 * group span isn't a subset of the domain span.
1074585b6d27SBarry Song 		 */
1075585b6d27SBarry Song 		if (sibling->child &&
1076585b6d27SBarry Song 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1077585b6d27SBarry Song 			sibling = find_descended_sibling(sd, sibling);
1078585b6d27SBarry Song 
10798c033469SLauro Ramos Venancio 		sg = build_group_from_child_sched_domain(sibling, cpu);
1080f2cb1360SIngo Molnar 		if (!sg)
1081f2cb1360SIngo Molnar 			goto fail;
1082f2cb1360SIngo Molnar 
1083ae4df9d6SPeter Zijlstra 		sg_span = sched_group_span(sg);
1084f2cb1360SIngo Molnar 		cpumask_or(covered, covered, sg_span);
1085f2cb1360SIngo Molnar 
1086585b6d27SBarry Song 		init_overlap_sched_group(sibling, sg);
1087f2cb1360SIngo Molnar 
1088f2cb1360SIngo Molnar 		if (!first)
1089f2cb1360SIngo Molnar 			first = sg;
1090f2cb1360SIngo Molnar 		if (last)
1091f2cb1360SIngo Molnar 			last->next = sg;
1092f2cb1360SIngo Molnar 		last = sg;
1093f2cb1360SIngo Molnar 		last->next = first;
1094f2cb1360SIngo Molnar 	}
109591eaed0dSPeter Zijlstra 	sd->groups = first;
1096f2cb1360SIngo Molnar 
1097f2cb1360SIngo Molnar 	return 0;
1098f2cb1360SIngo Molnar 
1099f2cb1360SIngo Molnar fail:
1100f2cb1360SIngo Molnar 	free_sched_groups(first, 0);
1101f2cb1360SIngo Molnar 
1102f2cb1360SIngo Molnar 	return -ENOMEM;
1103f2cb1360SIngo Molnar }
1104f2cb1360SIngo Molnar 
110535a566e6SPeter Zijlstra 
110635a566e6SPeter Zijlstra /*
110735a566e6SPeter Zijlstra  * Package topology (also see the load-balance blurb in fair.c)
110835a566e6SPeter Zijlstra  *
110935a566e6SPeter Zijlstra  * The scheduler builds a tree structure to represent a number of important
111035a566e6SPeter Zijlstra  * topology features. By default (default_topology[]) these include:
111135a566e6SPeter Zijlstra  *
111235a566e6SPeter Zijlstra  *  - Simultaneous multithreading (SMT)
111335a566e6SPeter Zijlstra  *  - Multi-Core Cache (MC)
111435a566e6SPeter Zijlstra  *  - Package (DIE)
111535a566e6SPeter Zijlstra  *
111635a566e6SPeter Zijlstra  * Where the last one more or less denotes everything up to a NUMA node.
111735a566e6SPeter Zijlstra  *
111835a566e6SPeter Zijlstra  * The tree consists of 3 primary data structures:
111935a566e6SPeter Zijlstra  *
112035a566e6SPeter Zijlstra  *	sched_domain -> sched_group -> sched_group_capacity
112135a566e6SPeter Zijlstra  *	    ^ ^             ^ ^
112235a566e6SPeter Zijlstra  *          `-'             `-'
112335a566e6SPeter Zijlstra  *
112497fb7a0aSIngo Molnar  * The sched_domains are per-CPU and have a two way link (parent & child) and
112535a566e6SPeter Zijlstra  * denote the ever growing mask of CPUs belonging to that level of topology.
112635a566e6SPeter Zijlstra  *
112735a566e6SPeter Zijlstra  * Each sched_domain has a circular (double) linked list of sched_group's, each
112835a566e6SPeter Zijlstra  * denoting the domains of the level below (or individual CPUs in case of the
112935a566e6SPeter Zijlstra  * first domain level). The sched_group linked by a sched_domain includes the
113035a566e6SPeter Zijlstra  * CPU of that sched_domain [*].
113135a566e6SPeter Zijlstra  *
113235a566e6SPeter Zijlstra  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
113335a566e6SPeter Zijlstra  *
113435a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
113535a566e6SPeter Zijlstra  *
113635a566e6SPeter Zijlstra  * DIE  [                             ]
113735a566e6SPeter Zijlstra  * MC   [             ] [             ]
113835a566e6SPeter Zijlstra  * SMT  [     ] [     ] [     ] [     ]
113935a566e6SPeter Zijlstra  *
114035a566e6SPeter Zijlstra  *  - or -
114135a566e6SPeter Zijlstra  *
114235a566e6SPeter Zijlstra  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
114335a566e6SPeter Zijlstra  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
114435a566e6SPeter Zijlstra  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
114535a566e6SPeter Zijlstra  *
114635a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
114735a566e6SPeter Zijlstra  *
114835a566e6SPeter Zijlstra  * One way to think about it is: sched_domain moves you up and down among these
114935a566e6SPeter Zijlstra  * topology levels, while sched_group moves you sideways through it, at child
115035a566e6SPeter Zijlstra  * domain granularity.
115135a566e6SPeter Zijlstra  *
115235a566e6SPeter Zijlstra  * sched_group_capacity ensures each unique sched_group has shared storage.
115335a566e6SPeter Zijlstra  *
115435a566e6SPeter Zijlstra  * There are two related construction problems, both require a CPU that
115535a566e6SPeter Zijlstra  * uniquely identify each group (for a given domain):
115635a566e6SPeter Zijlstra  *
115735a566e6SPeter Zijlstra  *  - The first is the balance_cpu (see should_we_balance() and the
115835a566e6SPeter Zijlstra  *    load-balance blub in fair.c); for each group we only want 1 CPU to
115935a566e6SPeter Zijlstra  *    continue balancing at a higher domain.
116035a566e6SPeter Zijlstra  *
116135a566e6SPeter Zijlstra  *  - The second is the sched_group_capacity; we want all identical groups
116235a566e6SPeter Zijlstra  *    to share a single sched_group_capacity.
116335a566e6SPeter Zijlstra  *
116435a566e6SPeter Zijlstra  * Since these topologies are exclusive by construction. That is, its
116535a566e6SPeter Zijlstra  * impossible for an SMT thread to belong to multiple cores, and cores to
116635a566e6SPeter Zijlstra  * be part of multiple caches. There is a very clear and unique location
116735a566e6SPeter Zijlstra  * for each CPU in the hierarchy.
116835a566e6SPeter Zijlstra  *
116935a566e6SPeter Zijlstra  * Therefore computing a unique CPU for each group is trivial (the iteration
117035a566e6SPeter Zijlstra  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
117135a566e6SPeter Zijlstra  * group), we can simply pick the first CPU in each group.
117235a566e6SPeter Zijlstra  *
117335a566e6SPeter Zijlstra  *
117435a566e6SPeter Zijlstra  * [*] in other words, the first group of each domain is its child domain.
117535a566e6SPeter Zijlstra  */
117635a566e6SPeter Zijlstra 
11770c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1178f2cb1360SIngo Molnar {
1179f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1180f2cb1360SIngo Molnar 	struct sched_domain *child = sd->child;
11810c0e776aSPeter Zijlstra 	struct sched_group *sg;
118267d4f6ffSValentin Schneider 	bool already_visited;
1183f2cb1360SIngo Molnar 
1184f2cb1360SIngo Molnar 	if (child)
1185f2cb1360SIngo Molnar 		cpu = cpumask_first(sched_domain_span(child));
1186f2cb1360SIngo Molnar 
11870c0e776aSPeter Zijlstra 	sg = *per_cpu_ptr(sdd->sg, cpu);
11880c0e776aSPeter Zijlstra 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1189f2cb1360SIngo Molnar 
119067d4f6ffSValentin Schneider 	/* Increase refcounts for claim_allocations: */
119167d4f6ffSValentin Schneider 	already_visited = atomic_inc_return(&sg->ref) > 1;
119267d4f6ffSValentin Schneider 	/* sgc visits should follow a similar trend as sg */
119367d4f6ffSValentin Schneider 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
119467d4f6ffSValentin Schneider 
119567d4f6ffSValentin Schneider 	/* If we have already visited that group, it's already initialized. */
119667d4f6ffSValentin Schneider 	if (already_visited)
119767d4f6ffSValentin Schneider 		return sg;
11980c0e776aSPeter Zijlstra 
11990c0e776aSPeter Zijlstra 	if (child) {
1200ae4df9d6SPeter Zijlstra 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1201ae4df9d6SPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
120216d364baSRicardo Neri 		sg->flags = child->flags;
12030c0e776aSPeter Zijlstra 	} else {
1204ae4df9d6SPeter Zijlstra 		cpumask_set_cpu(cpu, sched_group_span(sg));
1205e5c14b1fSPeter Zijlstra 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1206f2cb1360SIngo Molnar 	}
1207f2cb1360SIngo Molnar 
1208ae4df9d6SPeter Zijlstra 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
12090c0e776aSPeter Zijlstra 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1210e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
12110c0e776aSPeter Zijlstra 
12120c0e776aSPeter Zijlstra 	return sg;
1213f2cb1360SIngo Molnar }
1214f2cb1360SIngo Molnar 
1215f2cb1360SIngo Molnar /*
1216f2cb1360SIngo Molnar  * build_sched_groups will build a circular linked list of the groups
1217d8743230SValentin Schneider  * covered by the given span, will set each group's ->cpumask correctly,
1218d8743230SValentin Schneider  * and will initialize their ->sgc.
1219f2cb1360SIngo Molnar  *
1220f2cb1360SIngo Molnar  * Assumes the sched_domain tree is fully constructed
1221f2cb1360SIngo Molnar  */
1222f2cb1360SIngo Molnar static int
1223f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu)
1224f2cb1360SIngo Molnar {
1225f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL;
1226f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1227f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
1228f2cb1360SIngo Molnar 	struct cpumask *covered;
1229f2cb1360SIngo Molnar 	int i;
1230f2cb1360SIngo Molnar 
1231f2cb1360SIngo Molnar 	lockdep_assert_held(&sched_domains_mutex);
1232f2cb1360SIngo Molnar 	covered = sched_domains_tmpmask;
1233f2cb1360SIngo Molnar 
1234f2cb1360SIngo Molnar 	cpumask_clear(covered);
1235f2cb1360SIngo Molnar 
12360c0e776aSPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
1237f2cb1360SIngo Molnar 		struct sched_group *sg;
1238f2cb1360SIngo Molnar 
1239f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
1240f2cb1360SIngo Molnar 			continue;
1241f2cb1360SIngo Molnar 
12420c0e776aSPeter Zijlstra 		sg = get_group(i, sdd);
1243f2cb1360SIngo Molnar 
1244ae4df9d6SPeter Zijlstra 		cpumask_or(covered, covered, sched_group_span(sg));
1245f2cb1360SIngo Molnar 
1246f2cb1360SIngo Molnar 		if (!first)
1247f2cb1360SIngo Molnar 			first = sg;
1248f2cb1360SIngo Molnar 		if (last)
1249f2cb1360SIngo Molnar 			last->next = sg;
1250f2cb1360SIngo Molnar 		last = sg;
1251f2cb1360SIngo Molnar 	}
1252f2cb1360SIngo Molnar 	last->next = first;
12530c0e776aSPeter Zijlstra 	sd->groups = first;
1254f2cb1360SIngo Molnar 
1255f2cb1360SIngo Molnar 	return 0;
1256f2cb1360SIngo Molnar }
1257f2cb1360SIngo Molnar 
1258f2cb1360SIngo Molnar /*
1259f2cb1360SIngo Molnar  * Initialize sched groups cpu_capacity.
1260f2cb1360SIngo Molnar  *
1261f2cb1360SIngo Molnar  * cpu_capacity indicates the capacity of sched group, which is used while
1262f2cb1360SIngo Molnar  * distributing the load between different sched groups in a sched domain.
1263f2cb1360SIngo Molnar  * Typically cpu_capacity for all the groups in a sched domain will be same
1264f2cb1360SIngo Molnar  * unless there are asymmetries in the topology. If there are asymmetries,
1265f2cb1360SIngo Molnar  * group having more cpu_capacity will pickup more load compared to the
1266f2cb1360SIngo Molnar  * group having less cpu_capacity.
1267f2cb1360SIngo Molnar  */
1268f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1269f2cb1360SIngo Molnar {
1270f2cb1360SIngo Molnar 	struct sched_group *sg = sd->groups;
1271f2cb1360SIngo Molnar 
1272f2cb1360SIngo Molnar 	WARN_ON(!sg);
1273f2cb1360SIngo Molnar 
1274f2cb1360SIngo Molnar 	do {
1275f2cb1360SIngo Molnar 		int cpu, max_cpu = -1;
1276f2cb1360SIngo Molnar 
1277ae4df9d6SPeter Zijlstra 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1278f2cb1360SIngo Molnar 
1279f2cb1360SIngo Molnar 		if (!(sd->flags & SD_ASYM_PACKING))
1280f2cb1360SIngo Molnar 			goto next;
1281f2cb1360SIngo Molnar 
1282ae4df9d6SPeter Zijlstra 		for_each_cpu(cpu, sched_group_span(sg)) {
1283f2cb1360SIngo Molnar 			if (max_cpu < 0)
1284f2cb1360SIngo Molnar 				max_cpu = cpu;
1285f2cb1360SIngo Molnar 			else if (sched_asym_prefer(cpu, max_cpu))
1286f2cb1360SIngo Molnar 				max_cpu = cpu;
1287f2cb1360SIngo Molnar 		}
1288f2cb1360SIngo Molnar 		sg->asym_prefer_cpu = max_cpu;
1289f2cb1360SIngo Molnar 
1290f2cb1360SIngo Molnar next:
1291f2cb1360SIngo Molnar 		sg = sg->next;
1292f2cb1360SIngo Molnar 	} while (sg != sd->groups);
1293f2cb1360SIngo Molnar 
1294f2cb1360SIngo Molnar 	if (cpu != group_balance_cpu(sg))
1295f2cb1360SIngo Molnar 		return;
1296f2cb1360SIngo Molnar 
1297f2cb1360SIngo Molnar 	update_group_capacity(sd, cpu);
1298f2cb1360SIngo Molnar }
1299f2cb1360SIngo Molnar 
1300f2cb1360SIngo Molnar /*
1301c744dc4aSBeata Michalska  * Asymmetric CPU capacity bits
1302c744dc4aSBeata Michalska  */
1303c744dc4aSBeata Michalska struct asym_cap_data {
1304c744dc4aSBeata Michalska 	struct list_head link;
1305c744dc4aSBeata Michalska 	unsigned long capacity;
1306c744dc4aSBeata Michalska 	unsigned long cpus[];
1307c744dc4aSBeata Michalska };
1308c744dc4aSBeata Michalska 
1309c744dc4aSBeata Michalska /*
1310c744dc4aSBeata Michalska  * Set of available CPUs grouped by their corresponding capacities
1311c744dc4aSBeata Michalska  * Each list entry contains a CPU mask reflecting CPUs that share the same
1312c744dc4aSBeata Michalska  * capacity.
1313c744dc4aSBeata Michalska  * The lifespan of data is unlimited.
1314c744dc4aSBeata Michalska  */
1315c744dc4aSBeata Michalska static LIST_HEAD(asym_cap_list);
1316c744dc4aSBeata Michalska 
1317c744dc4aSBeata Michalska #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1318c744dc4aSBeata Michalska 
1319c744dc4aSBeata Michalska /*
1320c744dc4aSBeata Michalska  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1321c744dc4aSBeata Michalska  * Provides sd_flags reflecting the asymmetry scope.
1322c744dc4aSBeata Michalska  */
1323c744dc4aSBeata Michalska static inline int
1324c744dc4aSBeata Michalska asym_cpu_capacity_classify(const struct cpumask *sd_span,
1325c744dc4aSBeata Michalska 			   const struct cpumask *cpu_map)
1326c744dc4aSBeata Michalska {
1327c744dc4aSBeata Michalska 	struct asym_cap_data *entry;
1328c744dc4aSBeata Michalska 	int count = 0, miss = 0;
1329c744dc4aSBeata Michalska 
1330c744dc4aSBeata Michalska 	/*
1331c744dc4aSBeata Michalska 	 * Count how many unique CPU capacities this domain spans across
1332c744dc4aSBeata Michalska 	 * (compare sched_domain CPUs mask with ones representing  available
1333c744dc4aSBeata Michalska 	 * CPUs capacities). Take into account CPUs that might be offline:
1334c744dc4aSBeata Michalska 	 * skip those.
1335c744dc4aSBeata Michalska 	 */
1336c744dc4aSBeata Michalska 	list_for_each_entry(entry, &asym_cap_list, link) {
1337c744dc4aSBeata Michalska 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1338c744dc4aSBeata Michalska 			++count;
1339c744dc4aSBeata Michalska 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1340c744dc4aSBeata Michalska 			++miss;
1341c744dc4aSBeata Michalska 	}
1342c744dc4aSBeata Michalska 
1343c744dc4aSBeata Michalska 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1344c744dc4aSBeata Michalska 
1345c744dc4aSBeata Michalska 	/* No asymmetry detected */
1346c744dc4aSBeata Michalska 	if (count < 2)
1347c744dc4aSBeata Michalska 		return 0;
1348c744dc4aSBeata Michalska 	/* Some of the available CPU capacity values have not been detected */
1349c744dc4aSBeata Michalska 	if (miss)
1350c744dc4aSBeata Michalska 		return SD_ASYM_CPUCAPACITY;
1351c744dc4aSBeata Michalska 
1352c744dc4aSBeata Michalska 	/* Full asymmetry */
1353c744dc4aSBeata Michalska 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1354c744dc4aSBeata Michalska 
1355c744dc4aSBeata Michalska }
1356c744dc4aSBeata Michalska 
1357c744dc4aSBeata Michalska static inline void asym_cpu_capacity_update_data(int cpu)
1358c744dc4aSBeata Michalska {
1359c744dc4aSBeata Michalska 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1360c744dc4aSBeata Michalska 	struct asym_cap_data *entry = NULL;
1361c744dc4aSBeata Michalska 
1362c744dc4aSBeata Michalska 	list_for_each_entry(entry, &asym_cap_list, link) {
1363c744dc4aSBeata Michalska 		if (capacity == entry->capacity)
1364c744dc4aSBeata Michalska 			goto done;
1365c744dc4aSBeata Michalska 	}
1366c744dc4aSBeata Michalska 
1367c744dc4aSBeata Michalska 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1368c744dc4aSBeata Michalska 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1369c744dc4aSBeata Michalska 		return;
1370c744dc4aSBeata Michalska 	entry->capacity = capacity;
1371c744dc4aSBeata Michalska 	list_add(&entry->link, &asym_cap_list);
1372c744dc4aSBeata Michalska done:
1373c744dc4aSBeata Michalska 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1374c744dc4aSBeata Michalska }
1375c744dc4aSBeata Michalska 
1376c744dc4aSBeata Michalska /*
1377c744dc4aSBeata Michalska  * Build-up/update list of CPUs grouped by their capacities
1378c744dc4aSBeata Michalska  * An update requires explicit request to rebuild sched domains
1379c744dc4aSBeata Michalska  * with state indicating CPU topology changes.
1380c744dc4aSBeata Michalska  */
1381c744dc4aSBeata Michalska static void asym_cpu_capacity_scan(void)
1382c744dc4aSBeata Michalska {
1383c744dc4aSBeata Michalska 	struct asym_cap_data *entry, *next;
1384c744dc4aSBeata Michalska 	int cpu;
1385c744dc4aSBeata Michalska 
1386c744dc4aSBeata Michalska 	list_for_each_entry(entry, &asym_cap_list, link)
1387c744dc4aSBeata Michalska 		cpumask_clear(cpu_capacity_span(entry));
1388c744dc4aSBeata Michalska 
138904d4e665SFrederic Weisbecker 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1390c744dc4aSBeata Michalska 		asym_cpu_capacity_update_data(cpu);
1391c744dc4aSBeata Michalska 
1392c744dc4aSBeata Michalska 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1393c744dc4aSBeata Michalska 		if (cpumask_empty(cpu_capacity_span(entry))) {
1394c744dc4aSBeata Michalska 			list_del(&entry->link);
1395c744dc4aSBeata Michalska 			kfree(entry);
1396c744dc4aSBeata Michalska 		}
1397c744dc4aSBeata Michalska 	}
1398c744dc4aSBeata Michalska 
1399c744dc4aSBeata Michalska 	/*
1400c744dc4aSBeata Michalska 	 * Only one capacity value has been detected i.e. this system is symmetric.
1401c744dc4aSBeata Michalska 	 * No need to keep this data around.
1402c744dc4aSBeata Michalska 	 */
1403c744dc4aSBeata Michalska 	if (list_is_singular(&asym_cap_list)) {
1404c744dc4aSBeata Michalska 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1405c744dc4aSBeata Michalska 		list_del(&entry->link);
1406c744dc4aSBeata Michalska 		kfree(entry);
1407c744dc4aSBeata Michalska 	}
1408c744dc4aSBeata Michalska }
1409c744dc4aSBeata Michalska 
1410c744dc4aSBeata Michalska /*
1411f2cb1360SIngo Molnar  * Initializers for schedule domains
1412f2cb1360SIngo Molnar  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1413f2cb1360SIngo Molnar  */
1414f2cb1360SIngo Molnar 
1415f2cb1360SIngo Molnar static int default_relax_domain_level = -1;
1416f2cb1360SIngo Molnar int sched_domain_level_max;
1417f2cb1360SIngo Molnar 
1418f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str)
1419f2cb1360SIngo Molnar {
1420f2cb1360SIngo Molnar 	if (kstrtoint(str, 0, &default_relax_domain_level))
1421f2cb1360SIngo Molnar 		pr_warn("Unable to set relax_domain_level\n");
1422f2cb1360SIngo Molnar 
1423f2cb1360SIngo Molnar 	return 1;
1424f2cb1360SIngo Molnar }
1425f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level);
1426f2cb1360SIngo Molnar 
1427f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd,
1428f2cb1360SIngo Molnar 				 struct sched_domain_attr *attr)
1429f2cb1360SIngo Molnar {
1430f2cb1360SIngo Molnar 	int request;
1431f2cb1360SIngo Molnar 
1432f2cb1360SIngo Molnar 	if (!attr || attr->relax_domain_level < 0) {
1433f2cb1360SIngo Molnar 		if (default_relax_domain_level < 0)
1434f2cb1360SIngo Molnar 			return;
1435f2cb1360SIngo Molnar 		request = default_relax_domain_level;
1436f2cb1360SIngo Molnar 	} else
1437f2cb1360SIngo Molnar 		request = attr->relax_domain_level;
14389ae7ab20SValentin Schneider 
14399ae7ab20SValentin Schneider 	if (sd->level > request) {
1440f2cb1360SIngo Molnar 		/* Turn off idle balance on this domain: */
1441f2cb1360SIngo Molnar 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1442f2cb1360SIngo Molnar 	}
1443f2cb1360SIngo Molnar }
1444f2cb1360SIngo Molnar 
1445f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map);
1446f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map);
1447f2cb1360SIngo Molnar 
1448f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1449f2cb1360SIngo Molnar 				 const struct cpumask *cpu_map)
1450f2cb1360SIngo Molnar {
1451f2cb1360SIngo Molnar 	switch (what) {
1452f2cb1360SIngo Molnar 	case sa_rootdomain:
1453f2cb1360SIngo Molnar 		if (!atomic_read(&d->rd->refcount))
1454f2cb1360SIngo Molnar 			free_rootdomain(&d->rd->rcu);
1455df561f66SGustavo A. R. Silva 		fallthrough;
1456f2cb1360SIngo Molnar 	case sa_sd:
1457f2cb1360SIngo Molnar 		free_percpu(d->sd);
1458df561f66SGustavo A. R. Silva 		fallthrough;
1459f2cb1360SIngo Molnar 	case sa_sd_storage:
1460f2cb1360SIngo Molnar 		__sdt_free(cpu_map);
1461df561f66SGustavo A. R. Silva 		fallthrough;
1462f2cb1360SIngo Molnar 	case sa_none:
1463f2cb1360SIngo Molnar 		break;
1464f2cb1360SIngo Molnar 	}
1465f2cb1360SIngo Molnar }
1466f2cb1360SIngo Molnar 
1467f2cb1360SIngo Molnar static enum s_alloc
1468f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1469f2cb1360SIngo Molnar {
1470f2cb1360SIngo Molnar 	memset(d, 0, sizeof(*d));
1471f2cb1360SIngo Molnar 
1472f2cb1360SIngo Molnar 	if (__sdt_alloc(cpu_map))
1473f2cb1360SIngo Molnar 		return sa_sd_storage;
1474f2cb1360SIngo Molnar 	d->sd = alloc_percpu(struct sched_domain *);
1475f2cb1360SIngo Molnar 	if (!d->sd)
1476f2cb1360SIngo Molnar 		return sa_sd_storage;
1477f2cb1360SIngo Molnar 	d->rd = alloc_rootdomain();
1478f2cb1360SIngo Molnar 	if (!d->rd)
1479f2cb1360SIngo Molnar 		return sa_sd;
148097fb7a0aSIngo Molnar 
1481f2cb1360SIngo Molnar 	return sa_rootdomain;
1482f2cb1360SIngo Molnar }
1483f2cb1360SIngo Molnar 
1484f2cb1360SIngo Molnar /*
1485f2cb1360SIngo Molnar  * NULL the sd_data elements we've used to build the sched_domain and
1486f2cb1360SIngo Molnar  * sched_group structure so that the subsequent __free_domain_allocs()
1487f2cb1360SIngo Molnar  * will not free the data we're using.
1488f2cb1360SIngo Molnar  */
1489f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd)
1490f2cb1360SIngo Molnar {
1491f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1492f2cb1360SIngo Molnar 
1493f2cb1360SIngo Molnar 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1494f2cb1360SIngo Molnar 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1495f2cb1360SIngo Molnar 
1496f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1497f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1498f2cb1360SIngo Molnar 
1499f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1500f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1501f2cb1360SIngo Molnar 
1502f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1503f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1504f2cb1360SIngo Molnar }
1505f2cb1360SIngo Molnar 
1506f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1507f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type;
150897fb7a0aSIngo Molnar 
150997fb7a0aSIngo Molnar static int			sched_domains_numa_levels;
1510f2cb1360SIngo Molnar static int			sched_domains_curr_level;
151197fb7a0aSIngo Molnar 
151297fb7a0aSIngo Molnar int				sched_max_numa_distance;
151397fb7a0aSIngo Molnar static int			*sched_domains_numa_distance;
151497fb7a0aSIngo Molnar static struct cpumask		***sched_domains_numa_masks;
1515f2cb1360SIngo Molnar #endif
1516f2cb1360SIngo Molnar 
1517f2cb1360SIngo Molnar /*
1518f2cb1360SIngo Molnar  * SD_flags allowed in topology descriptions.
1519f2cb1360SIngo Molnar  *
1520f2cb1360SIngo Molnar  * These flags are purely descriptive of the topology and do not prescribe
1521f2cb1360SIngo Molnar  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1522f2cb1360SIngo Molnar  * function:
1523f2cb1360SIngo Molnar  *
1524f2cb1360SIngo Molnar  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1525f2cb1360SIngo Molnar  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1526f2cb1360SIngo Molnar  *   SD_NUMA                - describes NUMA topologies
1527f2cb1360SIngo Molnar  *
1528f2cb1360SIngo Molnar  * Odd one out, which beside describing the topology has a quirk also
1529f2cb1360SIngo Molnar  * prescribes the desired behaviour that goes along with it:
1530f2cb1360SIngo Molnar  *
1531f2cb1360SIngo Molnar  *   SD_ASYM_PACKING        - describes SMT quirks
1532f2cb1360SIngo Molnar  */
1533f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS		\
1534f2cb1360SIngo Molnar 	(SD_SHARE_CPUCAPACITY	|	\
1535f2cb1360SIngo Molnar 	 SD_SHARE_PKG_RESOURCES |	\
1536f2cb1360SIngo Molnar 	 SD_NUMA		|	\
1537cfe7ddcbSValentin Schneider 	 SD_ASYM_PACKING)
1538f2cb1360SIngo Molnar 
1539f2cb1360SIngo Molnar static struct sched_domain *
1540f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl,
1541f2cb1360SIngo Molnar 	const struct cpumask *cpu_map,
1542c744dc4aSBeata Michalska 	struct sched_domain *child, int cpu)
1543f2cb1360SIngo Molnar {
1544f2cb1360SIngo Molnar 	struct sd_data *sdd = &tl->data;
1545f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1546f2cb1360SIngo Molnar 	int sd_id, sd_weight, sd_flags = 0;
1547c744dc4aSBeata Michalska 	struct cpumask *sd_span;
1548f2cb1360SIngo Molnar 
1549f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1550f2cb1360SIngo Molnar 	/*
1551f2cb1360SIngo Molnar 	 * Ugly hack to pass state to sd_numa_mask()...
1552f2cb1360SIngo Molnar 	 */
1553f2cb1360SIngo Molnar 	sched_domains_curr_level = tl->numa_level;
1554f2cb1360SIngo Molnar #endif
1555f2cb1360SIngo Molnar 
1556f2cb1360SIngo Molnar 	sd_weight = cpumask_weight(tl->mask(cpu));
1557f2cb1360SIngo Molnar 
1558f2cb1360SIngo Molnar 	if (tl->sd_flags)
1559f2cb1360SIngo Molnar 		sd_flags = (*tl->sd_flags)();
1560f2cb1360SIngo Molnar 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1561f2cb1360SIngo Molnar 			"wrong sd_flags in topology description\n"))
15629b1b234bSPeng Liu 		sd_flags &= TOPOLOGY_SD_FLAGS;
1563f2cb1360SIngo Molnar 
1564f2cb1360SIngo Molnar 	*sd = (struct sched_domain){
1565f2cb1360SIngo Molnar 		.min_interval		= sd_weight,
1566f2cb1360SIngo Molnar 		.max_interval		= 2*sd_weight,
15676e749913SVincent Guittot 		.busy_factor		= 16,
15682208cdaaSVincent Guittot 		.imbalance_pct		= 117,
1569f2cb1360SIngo Molnar 
1570f2cb1360SIngo Molnar 		.cache_nice_tries	= 0,
1571f2cb1360SIngo Molnar 
157236c5bdc4SValentin Schneider 		.flags			= 1*SD_BALANCE_NEWIDLE
1573f2cb1360SIngo Molnar 					| 1*SD_BALANCE_EXEC
1574f2cb1360SIngo Molnar 					| 1*SD_BALANCE_FORK
1575f2cb1360SIngo Molnar 					| 0*SD_BALANCE_WAKE
1576f2cb1360SIngo Molnar 					| 1*SD_WAKE_AFFINE
1577f2cb1360SIngo Molnar 					| 0*SD_SHARE_CPUCAPACITY
1578f2cb1360SIngo Molnar 					| 0*SD_SHARE_PKG_RESOURCES
1579f2cb1360SIngo Molnar 					| 0*SD_SERIALIZE
15809c63e84dSMorten Rasmussen 					| 1*SD_PREFER_SIBLING
1581f2cb1360SIngo Molnar 					| 0*SD_NUMA
1582f2cb1360SIngo Molnar 					| sd_flags
1583f2cb1360SIngo Molnar 					,
1584f2cb1360SIngo Molnar 
1585f2cb1360SIngo Molnar 		.last_balance		= jiffies,
1586f2cb1360SIngo Molnar 		.balance_interval	= sd_weight,
1587f2cb1360SIngo Molnar 		.max_newidle_lb_cost	= 0,
1588e60b56e4SVincent Guittot 		.last_decay_max_lb_cost	= jiffies,
1589f2cb1360SIngo Molnar 		.child			= child,
1590f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1591f2cb1360SIngo Molnar 		.name			= tl->name,
1592f2cb1360SIngo Molnar #endif
1593f2cb1360SIngo Molnar 	};
1594f2cb1360SIngo Molnar 
1595c744dc4aSBeata Michalska 	sd_span = sched_domain_span(sd);
1596c744dc4aSBeata Michalska 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1597c744dc4aSBeata Michalska 	sd_id = cpumask_first(sd_span);
1598c744dc4aSBeata Michalska 
1599c744dc4aSBeata Michalska 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1600c744dc4aSBeata Michalska 
1601c744dc4aSBeata Michalska 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1602c744dc4aSBeata Michalska 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1603c744dc4aSBeata Michalska 		  "CPU capacity asymmetry not supported on SMT\n");
1604f2cb1360SIngo Molnar 
1605f2cb1360SIngo Molnar 	/*
1606f2cb1360SIngo Molnar 	 * Convert topological properties into behaviour.
1607f2cb1360SIngo Molnar 	 */
1608a526d466SMorten Rasmussen 	/* Don't attempt to spread across CPUs of different capacities. */
1609a526d466SMorten Rasmussen 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
16109c63e84dSMorten Rasmussen 		sd->child->flags &= ~SD_PREFER_SIBLING;
16119c63e84dSMorten Rasmussen 
1612f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1613f2cb1360SIngo Molnar 		sd->imbalance_pct = 110;
1614f2cb1360SIngo Molnar 
1615f2cb1360SIngo Molnar 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1616f2cb1360SIngo Molnar 		sd->imbalance_pct = 117;
1617f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1618f2cb1360SIngo Molnar 
1619f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1620f2cb1360SIngo Molnar 	} else if (sd->flags & SD_NUMA) {
1621f2cb1360SIngo Molnar 		sd->cache_nice_tries = 2;
1622f2cb1360SIngo Molnar 
16239c63e84dSMorten Rasmussen 		sd->flags &= ~SD_PREFER_SIBLING;
1624f2cb1360SIngo Molnar 		sd->flags |= SD_SERIALIZE;
1625a55c7454SMatt Fleming 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1626f2cb1360SIngo Molnar 			sd->flags &= ~(SD_BALANCE_EXEC |
1627f2cb1360SIngo Molnar 				       SD_BALANCE_FORK |
1628f2cb1360SIngo Molnar 				       SD_WAKE_AFFINE);
1629f2cb1360SIngo Molnar 		}
1630f2cb1360SIngo Molnar 
1631f2cb1360SIngo Molnar #endif
1632f2cb1360SIngo Molnar 	} else {
1633f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1634f2cb1360SIngo Molnar 	}
1635f2cb1360SIngo Molnar 
1636f2cb1360SIngo Molnar 	/*
1637f2cb1360SIngo Molnar 	 * For all levels sharing cache; connect a sched_domain_shared
1638f2cb1360SIngo Molnar 	 * instance.
1639f2cb1360SIngo Molnar 	 */
1640f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1641f2cb1360SIngo Molnar 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1642f2cb1360SIngo Molnar 		atomic_inc(&sd->shared->ref);
1643f2cb1360SIngo Molnar 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1644f2cb1360SIngo Molnar 	}
1645f2cb1360SIngo Molnar 
1646f2cb1360SIngo Molnar 	sd->private = sdd;
1647f2cb1360SIngo Molnar 
1648f2cb1360SIngo Molnar 	return sd;
1649f2cb1360SIngo Molnar }
1650f2cb1360SIngo Molnar 
1651f2cb1360SIngo Molnar /*
1652f2cb1360SIngo Molnar  * Topology list, bottom-up.
1653f2cb1360SIngo Molnar  */
1654f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = {
1655f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT
1656f2cb1360SIngo Molnar 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1657f2cb1360SIngo Molnar #endif
1658778c558fSBarry Song 
1659778c558fSBarry Song #ifdef CONFIG_SCHED_CLUSTER
1660778c558fSBarry Song 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1661778c558fSBarry Song #endif
1662778c558fSBarry Song 
1663f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC
1664f2cb1360SIngo Molnar 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1665f2cb1360SIngo Molnar #endif
1666f2cb1360SIngo Molnar 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1667f2cb1360SIngo Molnar 	{ NULL, },
1668f2cb1360SIngo Molnar };
1669f2cb1360SIngo Molnar 
1670f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology =
1671f2cb1360SIngo Molnar 	default_topology;
16720fb3978bSHuang Ying static struct sched_domain_topology_level *sched_domain_topology_saved;
1673f2cb1360SIngo Molnar 
1674f2cb1360SIngo Molnar #define for_each_sd_topology(tl)			\
1675f2cb1360SIngo Molnar 	for (tl = sched_domain_topology; tl->mask; tl++)
1676f2cb1360SIngo Molnar 
1677f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl)
1678f2cb1360SIngo Molnar {
1679f2cb1360SIngo Molnar 	if (WARN_ON_ONCE(sched_smp_initialized))
1680f2cb1360SIngo Molnar 		return;
1681f2cb1360SIngo Molnar 
1682f2cb1360SIngo Molnar 	sched_domain_topology = tl;
16830fb3978bSHuang Ying 	sched_domain_topology_saved = NULL;
1684f2cb1360SIngo Molnar }
1685f2cb1360SIngo Molnar 
1686f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1687f2cb1360SIngo Molnar 
1688f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu)
1689f2cb1360SIngo Molnar {
1690f2cb1360SIngo Molnar 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1691f2cb1360SIngo Molnar }
1692f2cb1360SIngo Molnar 
1693f2cb1360SIngo Molnar static void sched_numa_warn(const char *str)
1694f2cb1360SIngo Molnar {
1695f2cb1360SIngo Molnar 	static int done = false;
1696f2cb1360SIngo Molnar 	int i,j;
1697f2cb1360SIngo Molnar 
1698f2cb1360SIngo Molnar 	if (done)
1699f2cb1360SIngo Molnar 		return;
1700f2cb1360SIngo Molnar 
1701f2cb1360SIngo Molnar 	done = true;
1702f2cb1360SIngo Molnar 
1703f2cb1360SIngo Molnar 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1704f2cb1360SIngo Molnar 
1705f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1706f2cb1360SIngo Molnar 		printk(KERN_WARNING "  ");
17070fb3978bSHuang Ying 		for (j = 0; j < nr_node_ids; j++) {
17080fb3978bSHuang Ying 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
17090fb3978bSHuang Ying 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
17100fb3978bSHuang Ying 			else
1711f2cb1360SIngo Molnar 				printk(KERN_CONT " %02d  ", node_distance(i,j));
17120fb3978bSHuang Ying 		}
1713f2cb1360SIngo Molnar 		printk(KERN_CONT "\n");
1714f2cb1360SIngo Molnar 	}
1715f2cb1360SIngo Molnar 	printk(KERN_WARNING "\n");
1716f2cb1360SIngo Molnar }
1717f2cb1360SIngo Molnar 
1718f2cb1360SIngo Molnar bool find_numa_distance(int distance)
1719f2cb1360SIngo Molnar {
17200fb3978bSHuang Ying 	bool found = false;
17210fb3978bSHuang Ying 	int i, *distances;
1722f2cb1360SIngo Molnar 
1723f2cb1360SIngo Molnar 	if (distance == node_distance(0, 0))
1724f2cb1360SIngo Molnar 		return true;
1725f2cb1360SIngo Molnar 
17260fb3978bSHuang Ying 	rcu_read_lock();
17270fb3978bSHuang Ying 	distances = rcu_dereference(sched_domains_numa_distance);
17280fb3978bSHuang Ying 	if (!distances)
17290fb3978bSHuang Ying 		goto unlock;
1730f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
17310fb3978bSHuang Ying 		if (distances[i] == distance) {
17320fb3978bSHuang Ying 			found = true;
17330fb3978bSHuang Ying 			break;
17340fb3978bSHuang Ying 		}
17350fb3978bSHuang Ying 	}
17360fb3978bSHuang Ying unlock:
17370fb3978bSHuang Ying 	rcu_read_unlock();
17380fb3978bSHuang Ying 
17390fb3978bSHuang Ying 	return found;
1740f2cb1360SIngo Molnar }
1741f2cb1360SIngo Molnar 
17420fb3978bSHuang Ying #define for_each_cpu_node_but(n, nbut)		\
17430fb3978bSHuang Ying 	for_each_node_state(n, N_CPU)		\
17440fb3978bSHuang Ying 		if (n == nbut)			\
17450fb3978bSHuang Ying 			continue;		\
17460fb3978bSHuang Ying 		else
1747f2cb1360SIngo Molnar 
1748f2cb1360SIngo Molnar /*
1749f2cb1360SIngo Molnar  * A system can have three types of NUMA topology:
1750f2cb1360SIngo Molnar  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1751f2cb1360SIngo Molnar  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1752f2cb1360SIngo Molnar  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1753f2cb1360SIngo Molnar  *
1754f2cb1360SIngo Molnar  * The difference between a glueless mesh topology and a backplane
1755f2cb1360SIngo Molnar  * topology lies in whether communication between not directly
1756f2cb1360SIngo Molnar  * connected nodes goes through intermediary nodes (where programs
1757f2cb1360SIngo Molnar  * could run), or through backplane controllers. This affects
1758f2cb1360SIngo Molnar  * placement of programs.
1759f2cb1360SIngo Molnar  *
1760f2cb1360SIngo Molnar  * The type of topology can be discerned with the following tests:
1761f2cb1360SIngo Molnar  * - If the maximum distance between any nodes is 1 hop, the system
1762f2cb1360SIngo Molnar  *   is directly connected.
1763f2cb1360SIngo Molnar  * - If for two nodes A and B, located N > 1 hops away from each other,
1764f2cb1360SIngo Molnar  *   there is an intermediary node C, which is < N hops away from both
1765f2cb1360SIngo Molnar  *   nodes A and B, the system is a glueless mesh.
1766f2cb1360SIngo Molnar  */
17670fb3978bSHuang Ying static void init_numa_topology_type(int offline_node)
1768f2cb1360SIngo Molnar {
1769f2cb1360SIngo Molnar 	int a, b, c, n;
1770f2cb1360SIngo Molnar 
1771f2cb1360SIngo Molnar 	n = sched_max_numa_distance;
1772f2cb1360SIngo Molnar 
1773e5e96fafSSrikar Dronamraju 	if (sched_domains_numa_levels <= 2) {
1774f2cb1360SIngo Molnar 		sched_numa_topology_type = NUMA_DIRECT;
1775f2cb1360SIngo Molnar 		return;
1776f2cb1360SIngo Molnar 	}
1777f2cb1360SIngo Molnar 
17780fb3978bSHuang Ying 	for_each_cpu_node_but(a, offline_node) {
17790fb3978bSHuang Ying 		for_each_cpu_node_but(b, offline_node) {
1780f2cb1360SIngo Molnar 			/* Find two nodes furthest removed from each other. */
1781f2cb1360SIngo Molnar 			if (node_distance(a, b) < n)
1782f2cb1360SIngo Molnar 				continue;
1783f2cb1360SIngo Molnar 
1784f2cb1360SIngo Molnar 			/* Is there an intermediary node between a and b? */
17850fb3978bSHuang Ying 			for_each_cpu_node_but(c, offline_node) {
1786f2cb1360SIngo Molnar 				if (node_distance(a, c) < n &&
1787f2cb1360SIngo Molnar 				    node_distance(b, c) < n) {
1788f2cb1360SIngo Molnar 					sched_numa_topology_type =
1789f2cb1360SIngo Molnar 							NUMA_GLUELESS_MESH;
1790f2cb1360SIngo Molnar 					return;
1791f2cb1360SIngo Molnar 				}
1792f2cb1360SIngo Molnar 			}
1793f2cb1360SIngo Molnar 
1794f2cb1360SIngo Molnar 			sched_numa_topology_type = NUMA_BACKPLANE;
1795f2cb1360SIngo Molnar 			return;
1796f2cb1360SIngo Molnar 		}
1797f2cb1360SIngo Molnar 	}
17980fb3978bSHuang Ying 
17990fb3978bSHuang Ying 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
18000fb3978bSHuang Ying 	sched_numa_topology_type = NUMA_DIRECT;
1801f2cb1360SIngo Molnar }
1802f2cb1360SIngo Molnar 
1803620a6dc4SValentin Schneider 
1804620a6dc4SValentin Schneider #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1805620a6dc4SValentin Schneider 
18060fb3978bSHuang Ying void sched_init_numa(int offline_node)
1807f2cb1360SIngo Molnar {
1808f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1809620a6dc4SValentin Schneider 	unsigned long *distance_map;
1810620a6dc4SValentin Schneider 	int nr_levels = 0;
1811620a6dc4SValentin Schneider 	int i, j;
18120fb3978bSHuang Ying 	int *distances;
18130fb3978bSHuang Ying 	struct cpumask ***masks;
1814051f3ca0SSuravee Suthikulpanit 
1815f2cb1360SIngo Molnar 	/*
1816f2cb1360SIngo Molnar 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1817f2cb1360SIngo Molnar 	 * unique distances in the node_distance() table.
1818f2cb1360SIngo Molnar 	 */
1819620a6dc4SValentin Schneider 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1820620a6dc4SValentin Schneider 	if (!distance_map)
1821620a6dc4SValentin Schneider 		return;
1822620a6dc4SValentin Schneider 
1823620a6dc4SValentin Schneider 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
18240fb3978bSHuang Ying 	for_each_cpu_node_but(i, offline_node) {
18250fb3978bSHuang Ying 		for_each_cpu_node_but(j, offline_node) {
1826620a6dc4SValentin Schneider 			int distance = node_distance(i, j);
1827f2cb1360SIngo Molnar 
1828620a6dc4SValentin Schneider 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1829620a6dc4SValentin Schneider 				sched_numa_warn("Invalid distance value range");
18300fb3978bSHuang Ying 				bitmap_free(distance_map);
1831620a6dc4SValentin Schneider 				return;
1832620a6dc4SValentin Schneider 			}
1833f2cb1360SIngo Molnar 
1834620a6dc4SValentin Schneider 			bitmap_set(distance_map, distance, 1);
1835620a6dc4SValentin Schneider 		}
1836620a6dc4SValentin Schneider 	}
1837f2cb1360SIngo Molnar 	/*
1838620a6dc4SValentin Schneider 	 * We can now figure out how many unique distance values there are and
1839620a6dc4SValentin Schneider 	 * allocate memory accordingly.
1840f2cb1360SIngo Molnar 	 */
1841620a6dc4SValentin Schneider 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1842f2cb1360SIngo Molnar 
18430fb3978bSHuang Ying 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
18440fb3978bSHuang Ying 	if (!distances) {
1845620a6dc4SValentin Schneider 		bitmap_free(distance_map);
1846620a6dc4SValentin Schneider 		return;
1847f2cb1360SIngo Molnar 	}
1848620a6dc4SValentin Schneider 
1849620a6dc4SValentin Schneider 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1850620a6dc4SValentin Schneider 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
18510fb3978bSHuang Ying 		distances[i] = j;
1852f2cb1360SIngo Molnar 	}
18530fb3978bSHuang Ying 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1854f2cb1360SIngo Molnar 
1855620a6dc4SValentin Schneider 	bitmap_free(distance_map);
1856620a6dc4SValentin Schneider 
1857f2cb1360SIngo Molnar 	/*
1858620a6dc4SValentin Schneider 	 * 'nr_levels' contains the number of unique distances
1859f2cb1360SIngo Molnar 	 *
1860f2cb1360SIngo Molnar 	 * The sched_domains_numa_distance[] array includes the actual distance
1861f2cb1360SIngo Molnar 	 * numbers.
1862f2cb1360SIngo Molnar 	 */
1863f2cb1360SIngo Molnar 
1864f2cb1360SIngo Molnar 	/*
1865f2cb1360SIngo Molnar 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1866f2cb1360SIngo Molnar 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1867620a6dc4SValentin Schneider 	 * the array will contain less then 'nr_levels' members. This could be
1868f2cb1360SIngo Molnar 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1869f2cb1360SIngo Molnar 	 * in other functions.
1870f2cb1360SIngo Molnar 	 *
1871620a6dc4SValentin Schneider 	 * We reset it to 'nr_levels' at the end of this function.
1872f2cb1360SIngo Molnar 	 */
1873f2cb1360SIngo Molnar 	sched_domains_numa_levels = 0;
1874f2cb1360SIngo Molnar 
18750fb3978bSHuang Ying 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
18760fb3978bSHuang Ying 	if (!masks)
1877f2cb1360SIngo Molnar 		return;
1878f2cb1360SIngo Molnar 
1879f2cb1360SIngo Molnar 	/*
1880f2cb1360SIngo Molnar 	 * Now for each level, construct a mask per node which contains all
1881f2cb1360SIngo Molnar 	 * CPUs of nodes that are that many hops away from us.
1882f2cb1360SIngo Molnar 	 */
1883620a6dc4SValentin Schneider 	for (i = 0; i < nr_levels; i++) {
18840fb3978bSHuang Ying 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
18850fb3978bSHuang Ying 		if (!masks[i])
1886f2cb1360SIngo Molnar 			return;
1887f2cb1360SIngo Molnar 
18880fb3978bSHuang Ying 		for_each_cpu_node_but(j, offline_node) {
1889f2cb1360SIngo Molnar 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1890620a6dc4SValentin Schneider 			int k;
1891620a6dc4SValentin Schneider 
1892f2cb1360SIngo Molnar 			if (!mask)
1893f2cb1360SIngo Molnar 				return;
1894f2cb1360SIngo Molnar 
18950fb3978bSHuang Ying 			masks[i][j] = mask;
1896f2cb1360SIngo Molnar 
18970fb3978bSHuang Ying 			for_each_cpu_node_but(k, offline_node) {
1898620a6dc4SValentin Schneider 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1899620a6dc4SValentin Schneider 					sched_numa_warn("Node-distance not symmetric");
1900620a6dc4SValentin Schneider 
1901f2cb1360SIngo Molnar 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1902f2cb1360SIngo Molnar 					continue;
1903f2cb1360SIngo Molnar 
1904f2cb1360SIngo Molnar 				cpumask_or(mask, mask, cpumask_of_node(k));
1905f2cb1360SIngo Molnar 			}
1906f2cb1360SIngo Molnar 		}
1907f2cb1360SIngo Molnar 	}
19080fb3978bSHuang Ying 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1909f2cb1360SIngo Molnar 
1910f2cb1360SIngo Molnar 	/* Compute default topology size */
1911f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++);
1912f2cb1360SIngo Molnar 
191371e5f664SDietmar Eggemann 	tl = kzalloc((i + nr_levels + 1) *
1914f2cb1360SIngo Molnar 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1915f2cb1360SIngo Molnar 	if (!tl)
1916f2cb1360SIngo Molnar 		return;
1917f2cb1360SIngo Molnar 
1918f2cb1360SIngo Molnar 	/*
1919f2cb1360SIngo Molnar 	 * Copy the default topology bits..
1920f2cb1360SIngo Molnar 	 */
1921f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++)
1922f2cb1360SIngo Molnar 		tl[i] = sched_domain_topology[i];
1923f2cb1360SIngo Molnar 
1924f2cb1360SIngo Molnar 	/*
1925051f3ca0SSuravee Suthikulpanit 	 * Add the NUMA identity distance, aka single NODE.
1926051f3ca0SSuravee Suthikulpanit 	 */
1927051f3ca0SSuravee Suthikulpanit 	tl[i++] = (struct sched_domain_topology_level){
1928051f3ca0SSuravee Suthikulpanit 		.mask = sd_numa_mask,
1929051f3ca0SSuravee Suthikulpanit 		.numa_level = 0,
1930051f3ca0SSuravee Suthikulpanit 		SD_INIT_NAME(NODE)
1931051f3ca0SSuravee Suthikulpanit 	};
1932051f3ca0SSuravee Suthikulpanit 
1933051f3ca0SSuravee Suthikulpanit 	/*
1934f2cb1360SIngo Molnar 	 * .. and append 'j' levels of NUMA goodness.
1935f2cb1360SIngo Molnar 	 */
1936620a6dc4SValentin Schneider 	for (j = 1; j < nr_levels; i++, j++) {
1937f2cb1360SIngo Molnar 		tl[i] = (struct sched_domain_topology_level){
1938f2cb1360SIngo Molnar 			.mask = sd_numa_mask,
1939f2cb1360SIngo Molnar 			.sd_flags = cpu_numa_flags,
1940f2cb1360SIngo Molnar 			.flags = SDTL_OVERLAP,
1941f2cb1360SIngo Molnar 			.numa_level = j,
1942f2cb1360SIngo Molnar 			SD_INIT_NAME(NUMA)
1943f2cb1360SIngo Molnar 		};
1944f2cb1360SIngo Molnar 	}
1945f2cb1360SIngo Molnar 
19460fb3978bSHuang Ying 	sched_domain_topology_saved = sched_domain_topology;
1947f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1948f2cb1360SIngo Molnar 
1949620a6dc4SValentin Schneider 	sched_domains_numa_levels = nr_levels;
19500fb3978bSHuang Ying 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1951f2cb1360SIngo Molnar 
19520fb3978bSHuang Ying 	init_numa_topology_type(offline_node);
19530083242cSValentin Schneider }
19540083242cSValentin Schneider 
19550fb3978bSHuang Ying 
19560fb3978bSHuang Ying static void sched_reset_numa(void)
19570083242cSValentin Schneider {
19580fb3978bSHuang Ying 	int nr_levels, *distances;
19590fb3978bSHuang Ying 	struct cpumask ***masks;
19600fb3978bSHuang Ying 
19610fb3978bSHuang Ying 	nr_levels = sched_domains_numa_levels;
19620fb3978bSHuang Ying 	sched_domains_numa_levels = 0;
19630fb3978bSHuang Ying 	sched_max_numa_distance = 0;
19640fb3978bSHuang Ying 	sched_numa_topology_type = NUMA_DIRECT;
19650fb3978bSHuang Ying 	distances = sched_domains_numa_distance;
19660fb3978bSHuang Ying 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
19670fb3978bSHuang Ying 	masks = sched_domains_numa_masks;
19680fb3978bSHuang Ying 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
19690fb3978bSHuang Ying 	if (distances || masks) {
19700083242cSValentin Schneider 		int i, j;
19710083242cSValentin Schneider 
19720fb3978bSHuang Ying 		synchronize_rcu();
19730fb3978bSHuang Ying 		kfree(distances);
19740fb3978bSHuang Ying 		for (i = 0; i < nr_levels && masks; i++) {
19750fb3978bSHuang Ying 			if (!masks[i])
19760fb3978bSHuang Ying 				continue;
19770fb3978bSHuang Ying 			for_each_node(j)
19780fb3978bSHuang Ying 				kfree(masks[i][j]);
19790fb3978bSHuang Ying 			kfree(masks[i]);
19800fb3978bSHuang Ying 		}
19810fb3978bSHuang Ying 		kfree(masks);
19820fb3978bSHuang Ying 	}
19830fb3978bSHuang Ying 	if (sched_domain_topology_saved) {
19840fb3978bSHuang Ying 		kfree(sched_domain_topology);
19850fb3978bSHuang Ying 		sched_domain_topology = sched_domain_topology_saved;
19860fb3978bSHuang Ying 		sched_domain_topology_saved = NULL;
19870fb3978bSHuang Ying 	}
19880fb3978bSHuang Ying }
19890fb3978bSHuang Ying 
19900083242cSValentin Schneider /*
19910fb3978bSHuang Ying  * Call with hotplug lock held
19920083242cSValentin Schneider  */
19930fb3978bSHuang Ying void sched_update_numa(int cpu, bool online)
19940fb3978bSHuang Ying {
19950fb3978bSHuang Ying 	int node;
19960fb3978bSHuang Ying 
19970fb3978bSHuang Ying 	node = cpu_to_node(cpu);
19980fb3978bSHuang Ying 	/*
19990fb3978bSHuang Ying 	 * Scheduler NUMA topology is updated when the first CPU of a
20000fb3978bSHuang Ying 	 * node is onlined or the last CPU of a node is offlined.
20010fb3978bSHuang Ying 	 */
20020fb3978bSHuang Ying 	if (cpumask_weight(cpumask_of_node(node)) != 1)
20030083242cSValentin Schneider 		return;
20040083242cSValentin Schneider 
20050fb3978bSHuang Ying 	sched_reset_numa();
20060fb3978bSHuang Ying 	sched_init_numa(online ? NUMA_NO_NODE : node);
2007f2cb1360SIngo Molnar }
2008f2cb1360SIngo Molnar 
2009f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu)
2010f2cb1360SIngo Molnar {
2011f2cb1360SIngo Molnar 	int node = cpu_to_node(cpu);
2012f2cb1360SIngo Molnar 	int i, j;
2013f2cb1360SIngo Molnar 
2014f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
2015f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
20160fb3978bSHuang Ying 			if (!node_state(j, N_CPU))
20170083242cSValentin Schneider 				continue;
20180083242cSValentin Schneider 
20190083242cSValentin Schneider 			/* Set ourselves in the remote node's masks */
2020f2cb1360SIngo Molnar 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2021f2cb1360SIngo Molnar 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2022f2cb1360SIngo Molnar 		}
2023f2cb1360SIngo Molnar 	}
2024f2cb1360SIngo Molnar }
2025f2cb1360SIngo Molnar 
2026f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu)
2027f2cb1360SIngo Molnar {
2028f2cb1360SIngo Molnar 	int i, j;
2029f2cb1360SIngo Molnar 
2030f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
20310fb3978bSHuang Ying 		for (j = 0; j < nr_node_ids; j++) {
20320fb3978bSHuang Ying 			if (sched_domains_numa_masks[i][j])
2033f2cb1360SIngo Molnar 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2034f2cb1360SIngo Molnar 		}
2035f2cb1360SIngo Molnar 	}
20360fb3978bSHuang Ying }
2037f2cb1360SIngo Molnar 
2038e0e8d491SWanpeng Li /*
2039e0e8d491SWanpeng Li  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2040e0e8d491SWanpeng Li  *                             closest to @cpu from @cpumask.
2041e0e8d491SWanpeng Li  * cpumask: cpumask to find a cpu from
2042e0e8d491SWanpeng Li  * cpu: cpu to be close to
2043e0e8d491SWanpeng Li  *
2044e0e8d491SWanpeng Li  * returns: cpu, or nr_cpu_ids when nothing found.
2045e0e8d491SWanpeng Li  */
2046e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2047e0e8d491SWanpeng Li {
20480fb3978bSHuang Ying 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
20490fb3978bSHuang Ying 	struct cpumask ***masks;
2050e0e8d491SWanpeng Li 
20510fb3978bSHuang Ying 	rcu_read_lock();
20520fb3978bSHuang Ying 	masks = rcu_dereference(sched_domains_numa_masks);
20530fb3978bSHuang Ying 	if (!masks)
20540fb3978bSHuang Ying 		goto unlock;
2055e0e8d491SWanpeng Li 	for (i = 0; i < sched_domains_numa_levels; i++) {
20560fb3978bSHuang Ying 		if (!masks[i][j])
20570fb3978bSHuang Ying 			break;
20580fb3978bSHuang Ying 		cpu = cpumask_any_and(cpus, masks[i][j]);
20590fb3978bSHuang Ying 		if (cpu < nr_cpu_ids) {
20600fb3978bSHuang Ying 			found = cpu;
20610fb3978bSHuang Ying 			break;
2062e0e8d491SWanpeng Li 		}
20630fb3978bSHuang Ying 	}
20640fb3978bSHuang Ying unlock:
20650fb3978bSHuang Ying 	rcu_read_unlock();
20660fb3978bSHuang Ying 
20670fb3978bSHuang Ying 	return found;
2068e0e8d491SWanpeng Li }
2069e0e8d491SWanpeng Li 
2070f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */
2071f2cb1360SIngo Molnar 
2072f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map)
2073f2cb1360SIngo Molnar {
2074f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
2075f2cb1360SIngo Molnar 	int j;
2076f2cb1360SIngo Molnar 
2077f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
2078f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
2079f2cb1360SIngo Molnar 
2080f2cb1360SIngo Molnar 		sdd->sd = alloc_percpu(struct sched_domain *);
2081f2cb1360SIngo Molnar 		if (!sdd->sd)
2082f2cb1360SIngo Molnar 			return -ENOMEM;
2083f2cb1360SIngo Molnar 
2084f2cb1360SIngo Molnar 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2085f2cb1360SIngo Molnar 		if (!sdd->sds)
2086f2cb1360SIngo Molnar 			return -ENOMEM;
2087f2cb1360SIngo Molnar 
2088f2cb1360SIngo Molnar 		sdd->sg = alloc_percpu(struct sched_group *);
2089f2cb1360SIngo Molnar 		if (!sdd->sg)
2090f2cb1360SIngo Molnar 			return -ENOMEM;
2091f2cb1360SIngo Molnar 
2092f2cb1360SIngo Molnar 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2093f2cb1360SIngo Molnar 		if (!sdd->sgc)
2094f2cb1360SIngo Molnar 			return -ENOMEM;
2095f2cb1360SIngo Molnar 
2096f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
2097f2cb1360SIngo Molnar 			struct sched_domain *sd;
2098f2cb1360SIngo Molnar 			struct sched_domain_shared *sds;
2099f2cb1360SIngo Molnar 			struct sched_group *sg;
2100f2cb1360SIngo Molnar 			struct sched_group_capacity *sgc;
2101f2cb1360SIngo Molnar 
2102f2cb1360SIngo Molnar 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2103f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
2104f2cb1360SIngo Molnar 			if (!sd)
2105f2cb1360SIngo Molnar 				return -ENOMEM;
2106f2cb1360SIngo Molnar 
2107f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sd, j) = sd;
2108f2cb1360SIngo Molnar 
2109f2cb1360SIngo Molnar 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2110f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
2111f2cb1360SIngo Molnar 			if (!sds)
2112f2cb1360SIngo Molnar 				return -ENOMEM;
2113f2cb1360SIngo Molnar 
2114f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sds, j) = sds;
2115f2cb1360SIngo Molnar 
2116f2cb1360SIngo Molnar 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2117f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
2118f2cb1360SIngo Molnar 			if (!sg)
2119f2cb1360SIngo Molnar 				return -ENOMEM;
2120f2cb1360SIngo Molnar 
2121f2cb1360SIngo Molnar 			sg->next = sg;
2122f2cb1360SIngo Molnar 
2123f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sg, j) = sg;
2124f2cb1360SIngo Molnar 
2125f2cb1360SIngo Molnar 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2126f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
2127f2cb1360SIngo Molnar 			if (!sgc)
2128f2cb1360SIngo Molnar 				return -ENOMEM;
2129f2cb1360SIngo Molnar 
2130005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG
2131005f874dSPeter Zijlstra 			sgc->id = j;
2132005f874dSPeter Zijlstra #endif
2133005f874dSPeter Zijlstra 
2134f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2135f2cb1360SIngo Molnar 		}
2136f2cb1360SIngo Molnar 	}
2137f2cb1360SIngo Molnar 
2138f2cb1360SIngo Molnar 	return 0;
2139f2cb1360SIngo Molnar }
2140f2cb1360SIngo Molnar 
2141f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map)
2142f2cb1360SIngo Molnar {
2143f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
2144f2cb1360SIngo Molnar 	int j;
2145f2cb1360SIngo Molnar 
2146f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
2147f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
2148f2cb1360SIngo Molnar 
2149f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
2150f2cb1360SIngo Molnar 			struct sched_domain *sd;
2151f2cb1360SIngo Molnar 
2152f2cb1360SIngo Molnar 			if (sdd->sd) {
2153f2cb1360SIngo Molnar 				sd = *per_cpu_ptr(sdd->sd, j);
2154f2cb1360SIngo Molnar 				if (sd && (sd->flags & SD_OVERLAP))
2155f2cb1360SIngo Molnar 					free_sched_groups(sd->groups, 0);
2156f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sd, j));
2157f2cb1360SIngo Molnar 			}
2158f2cb1360SIngo Molnar 
2159f2cb1360SIngo Molnar 			if (sdd->sds)
2160f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sds, j));
2161f2cb1360SIngo Molnar 			if (sdd->sg)
2162f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sg, j));
2163f2cb1360SIngo Molnar 			if (sdd->sgc)
2164f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sgc, j));
2165f2cb1360SIngo Molnar 		}
2166f2cb1360SIngo Molnar 		free_percpu(sdd->sd);
2167f2cb1360SIngo Molnar 		sdd->sd = NULL;
2168f2cb1360SIngo Molnar 		free_percpu(sdd->sds);
2169f2cb1360SIngo Molnar 		sdd->sds = NULL;
2170f2cb1360SIngo Molnar 		free_percpu(sdd->sg);
2171f2cb1360SIngo Molnar 		sdd->sg = NULL;
2172f2cb1360SIngo Molnar 		free_percpu(sdd->sgc);
2173f2cb1360SIngo Molnar 		sdd->sgc = NULL;
2174f2cb1360SIngo Molnar 	}
2175f2cb1360SIngo Molnar }
2176f2cb1360SIngo Molnar 
2177181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2178f2cb1360SIngo Molnar 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2179c744dc4aSBeata Michalska 		struct sched_domain *child, int cpu)
2180f2cb1360SIngo Molnar {
2181c744dc4aSBeata Michalska 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2182f2cb1360SIngo Molnar 
2183f2cb1360SIngo Molnar 	if (child) {
2184f2cb1360SIngo Molnar 		sd->level = child->level + 1;
2185f2cb1360SIngo Molnar 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2186f2cb1360SIngo Molnar 		child->parent = sd;
2187f2cb1360SIngo Molnar 
2188f2cb1360SIngo Molnar 		if (!cpumask_subset(sched_domain_span(child),
2189f2cb1360SIngo Molnar 				    sched_domain_span(sd))) {
2190f2cb1360SIngo Molnar 			pr_err("BUG: arch topology borken\n");
2191f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
2192f2cb1360SIngo Molnar 			pr_err("     the %s domain not a subset of the %s domain\n",
2193f2cb1360SIngo Molnar 					child->name, sd->name);
2194f2cb1360SIngo Molnar #endif
219597fb7a0aSIngo Molnar 			/* Fixup, ensure @sd has at least @child CPUs. */
2196f2cb1360SIngo Molnar 			cpumask_or(sched_domain_span(sd),
2197f2cb1360SIngo Molnar 				   sched_domain_span(sd),
2198f2cb1360SIngo Molnar 				   sched_domain_span(child));
2199f2cb1360SIngo Molnar 		}
2200f2cb1360SIngo Molnar 
2201f2cb1360SIngo Molnar 	}
2202f2cb1360SIngo Molnar 	set_domain_attribute(sd, attr);
2203f2cb1360SIngo Molnar 
2204f2cb1360SIngo Molnar 	return sd;
2205f2cb1360SIngo Molnar }
2206f2cb1360SIngo Molnar 
2207f2cb1360SIngo Molnar /*
2208ccf74128SValentin Schneider  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2209ccf74128SValentin Schneider  * any two given CPUs at this (non-NUMA) topology level.
2210ccf74128SValentin Schneider  */
2211ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl,
2212ccf74128SValentin Schneider 			      const struct cpumask *cpu_map, int cpu)
2213ccf74128SValentin Schneider {
2214ccf74128SValentin Schneider 	int i;
2215ccf74128SValentin Schneider 
2216ccf74128SValentin Schneider 	/* NUMA levels are allowed to overlap */
2217ccf74128SValentin Schneider 	if (tl->flags & SDTL_OVERLAP)
2218ccf74128SValentin Schneider 		return true;
2219ccf74128SValentin Schneider 
2220ccf74128SValentin Schneider 	/*
2221ccf74128SValentin Schneider 	 * Non-NUMA levels cannot partially overlap - they must be either
2222ccf74128SValentin Schneider 	 * completely equal or completely disjoint. Otherwise we can end up
2223ccf74128SValentin Schneider 	 * breaking the sched_group lists - i.e. a later get_group() pass
2224ccf74128SValentin Schneider 	 * breaks the linking done for an earlier span.
2225ccf74128SValentin Schneider 	 */
2226ccf74128SValentin Schneider 	for_each_cpu(i, cpu_map) {
2227ccf74128SValentin Schneider 		if (i == cpu)
2228ccf74128SValentin Schneider 			continue;
2229ccf74128SValentin Schneider 		/*
2230ccf74128SValentin Schneider 		 * We should 'and' all those masks with 'cpu_map' to exactly
2231ccf74128SValentin Schneider 		 * match the topology we're about to build, but that can only
2232ccf74128SValentin Schneider 		 * remove CPUs, which only lessens our ability to detect
2233ccf74128SValentin Schneider 		 * overlaps
2234ccf74128SValentin Schneider 		 */
2235ccf74128SValentin Schneider 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2236ccf74128SValentin Schneider 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2237ccf74128SValentin Schneider 			return false;
2238ccf74128SValentin Schneider 	}
2239ccf74128SValentin Schneider 
2240ccf74128SValentin Schneider 	return true;
2241ccf74128SValentin Schneider }
2242ccf74128SValentin Schneider 
2243ccf74128SValentin Schneider /*
2244f2cb1360SIngo Molnar  * Build sched domains for a given set of CPUs and attach the sched domains
2245f2cb1360SIngo Molnar  * to the individual CPUs
2246f2cb1360SIngo Molnar  */
2247f2cb1360SIngo Molnar static int
2248f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2249f2cb1360SIngo Molnar {
2250cd1cb335SValentin Schneider 	enum s_alloc alloc_state = sa_none;
2251f2cb1360SIngo Molnar 	struct sched_domain *sd;
2252f2cb1360SIngo Molnar 	struct s_data d;
2253f2cb1360SIngo Molnar 	struct rq *rq = NULL;
2254f2cb1360SIngo Molnar 	int i, ret = -ENOMEM;
2255df054e84SMorten Rasmussen 	bool has_asym = false;
2256f2cb1360SIngo Molnar 
2257cd1cb335SValentin Schneider 	if (WARN_ON(cpumask_empty(cpu_map)))
2258cd1cb335SValentin Schneider 		goto error;
2259cd1cb335SValentin Schneider 
2260f2cb1360SIngo Molnar 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2261f2cb1360SIngo Molnar 	if (alloc_state != sa_rootdomain)
2262f2cb1360SIngo Molnar 		goto error;
2263f2cb1360SIngo Molnar 
2264f2cb1360SIngo Molnar 	/* Set up domains for CPUs specified by the cpu_map: */
2265f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
2266f2cb1360SIngo Molnar 		struct sched_domain_topology_level *tl;
2267f2cb1360SIngo Molnar 
2268f2cb1360SIngo Molnar 		sd = NULL;
2269f2cb1360SIngo Molnar 		for_each_sd_topology(tl) {
227005484e09SMorten Rasmussen 
2271ccf74128SValentin Schneider 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2272ccf74128SValentin Schneider 				goto error;
2273ccf74128SValentin Schneider 
2274c744dc4aSBeata Michalska 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2275c744dc4aSBeata Michalska 
2276c744dc4aSBeata Michalska 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
227705484e09SMorten Rasmussen 
2278f2cb1360SIngo Molnar 			if (tl == sched_domain_topology)
2279f2cb1360SIngo Molnar 				*per_cpu_ptr(d.sd, i) = sd;
2280af85596cSPeter Zijlstra 			if (tl->flags & SDTL_OVERLAP)
2281f2cb1360SIngo Molnar 				sd->flags |= SD_OVERLAP;
2282f2cb1360SIngo Molnar 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2283f2cb1360SIngo Molnar 				break;
2284f2cb1360SIngo Molnar 		}
2285f2cb1360SIngo Molnar 	}
2286f2cb1360SIngo Molnar 
2287f2cb1360SIngo Molnar 	/* Build the groups for the domains */
2288f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
2289f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2290f2cb1360SIngo Molnar 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2291f2cb1360SIngo Molnar 			if (sd->flags & SD_OVERLAP) {
2292f2cb1360SIngo Molnar 				if (build_overlap_sched_groups(sd, i))
2293f2cb1360SIngo Molnar 					goto error;
2294f2cb1360SIngo Molnar 			} else {
2295f2cb1360SIngo Molnar 				if (build_sched_groups(sd, i))
2296f2cb1360SIngo Molnar 					goto error;
2297f2cb1360SIngo Molnar 			}
2298f2cb1360SIngo Molnar 		}
2299f2cb1360SIngo Molnar 	}
2300f2cb1360SIngo Molnar 
2301e496132eSMel Gorman 	/*
2302e496132eSMel Gorman 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2303e496132eSMel Gorman 	 * imbalanced.
2304e496132eSMel Gorman 	 */
2305e496132eSMel Gorman 	for_each_cpu(i, cpu_map) {
2306e496132eSMel Gorman 		unsigned int imb = 0;
2307e496132eSMel Gorman 		unsigned int imb_span = 1;
2308e496132eSMel Gorman 
2309e496132eSMel Gorman 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2310e496132eSMel Gorman 			struct sched_domain *child = sd->child;
2311e496132eSMel Gorman 
2312e496132eSMel Gorman 			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2313e496132eSMel Gorman 			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
23147f434dffSK Prateek Nayak 				struct sched_domain __rcu *top_p;
2315e496132eSMel Gorman 				unsigned int nr_llcs;
2316e496132eSMel Gorman 
2317e496132eSMel Gorman 				/*
2318e496132eSMel Gorman 				 * For a single LLC per node, allow an
2319e496132eSMel Gorman 				 * imbalance up to 25% of the node. This is an
2320e496132eSMel Gorman 				 * arbitrary cutoff based on SMT-2 to balance
2321e496132eSMel Gorman 				 * between memory bandwidth and avoiding
2322e496132eSMel Gorman 				 * premature sharing of HT resources and SMT-4
2323e496132eSMel Gorman 				 * or SMT-8 *may* benefit from a different
2324e496132eSMel Gorman 				 * cutoff.
2325e496132eSMel Gorman 				 *
2326e496132eSMel Gorman 				 * For multiple LLCs, allow an imbalance
2327e496132eSMel Gorman 				 * until multiple tasks would share an LLC
2328e496132eSMel Gorman 				 * on one node while LLCs on another node
2329e496132eSMel Gorman 				 * remain idle.
2330e496132eSMel Gorman 				 */
2331e496132eSMel Gorman 				nr_llcs = sd->span_weight / child->span_weight;
2332e496132eSMel Gorman 				if (nr_llcs == 1)
2333e496132eSMel Gorman 					imb = sd->span_weight >> 2;
2334e496132eSMel Gorman 				else
2335e496132eSMel Gorman 					imb = nr_llcs;
2336e496132eSMel Gorman 				sd->imb_numa_nr = imb;
2337e496132eSMel Gorman 
2338e496132eSMel Gorman 				/* Set span based on the first NUMA domain. */
23397f434dffSK Prateek Nayak 				top_p = sd->parent;
2340e496132eSMel Gorman 				while (top_p && !(top_p->flags & SD_NUMA)) {
23417f434dffSK Prateek Nayak 					top_p = top_p->parent;
2342e496132eSMel Gorman 				}
2343e496132eSMel Gorman 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2344e496132eSMel Gorman 			} else {
2345e496132eSMel Gorman 				int factor = max(1U, (sd->span_weight / imb_span));
2346e496132eSMel Gorman 
2347e496132eSMel Gorman 				sd->imb_numa_nr = imb * factor;
2348e496132eSMel Gorman 			}
2349e496132eSMel Gorman 		}
2350e496132eSMel Gorman 	}
2351e496132eSMel Gorman 
2352f2cb1360SIngo Molnar 	/* Calculate CPU capacity for physical packages and nodes */
2353f2cb1360SIngo Molnar 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2354f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, cpu_map))
2355f2cb1360SIngo Molnar 			continue;
2356f2cb1360SIngo Molnar 
2357f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2358f2cb1360SIngo Molnar 			claim_allocations(i, sd);
2359f2cb1360SIngo Molnar 			init_sched_groups_capacity(i, sd);
2360f2cb1360SIngo Molnar 		}
2361f2cb1360SIngo Molnar 	}
2362f2cb1360SIngo Molnar 
2363f2cb1360SIngo Molnar 	/* Attach the domains */
2364f2cb1360SIngo Molnar 	rcu_read_lock();
2365f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
2366f2cb1360SIngo Molnar 		rq = cpu_rq(i);
2367f2cb1360SIngo Molnar 		sd = *per_cpu_ptr(d.sd, i);
2368f2cb1360SIngo Molnar 
2369f2cb1360SIngo Molnar 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2370f2cb1360SIngo Molnar 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2371f2cb1360SIngo Molnar 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2372f2cb1360SIngo Molnar 
2373f2cb1360SIngo Molnar 		cpu_attach_domain(sd, d.rd, i);
2374f2cb1360SIngo Molnar 	}
2375f2cb1360SIngo Molnar 	rcu_read_unlock();
2376f2cb1360SIngo Molnar 
2377df054e84SMorten Rasmussen 	if (has_asym)
2378e284df70SValentin Schneider 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2379df054e84SMorten Rasmussen 
23809406415fSPeter Zijlstra 	if (rq && sched_debug_verbose) {
2381bf5015a5SJuri Lelli 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2382f2cb1360SIngo Molnar 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2383f2cb1360SIngo Molnar 	}
2384f2cb1360SIngo Molnar 
2385f2cb1360SIngo Molnar 	ret = 0;
2386f2cb1360SIngo Molnar error:
2387f2cb1360SIngo Molnar 	__free_domain_allocs(&d, alloc_state, cpu_map);
238897fb7a0aSIngo Molnar 
2389f2cb1360SIngo Molnar 	return ret;
2390f2cb1360SIngo Molnar }
2391f2cb1360SIngo Molnar 
2392f2cb1360SIngo Molnar /* Current sched domains: */
2393f2cb1360SIngo Molnar static cpumask_var_t			*doms_cur;
2394f2cb1360SIngo Molnar 
2395f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */
2396f2cb1360SIngo Molnar static int				ndoms_cur;
2397f2cb1360SIngo Molnar 
23983b03706fSIngo Molnar /* Attributes of custom domains in 'doms_cur' */
2399f2cb1360SIngo Molnar static struct sched_domain_attr		*dattr_cur;
2400f2cb1360SIngo Molnar 
2401f2cb1360SIngo Molnar /*
2402f2cb1360SIngo Molnar  * Special case: If a kmalloc() of a doms_cur partition (array of
2403f2cb1360SIngo Molnar  * cpumask) fails, then fallback to a single sched domain,
2404f2cb1360SIngo Molnar  * as determined by the single cpumask fallback_doms.
2405f2cb1360SIngo Molnar  */
24068d5dc512SPeter Zijlstra static cpumask_var_t			fallback_doms;
2407f2cb1360SIngo Molnar 
2408f2cb1360SIngo Molnar /*
2409f2cb1360SIngo Molnar  * arch_update_cpu_topology lets virtualized architectures update the
2410f2cb1360SIngo Molnar  * CPU core maps. It is supposed to return 1 if the topology changed
2411f2cb1360SIngo Molnar  * or 0 if it stayed the same.
2412f2cb1360SIngo Molnar  */
2413f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void)
2414f2cb1360SIngo Molnar {
2415f2cb1360SIngo Molnar 	return 0;
2416f2cb1360SIngo Molnar }
2417f2cb1360SIngo Molnar 
2418f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2419f2cb1360SIngo Molnar {
2420f2cb1360SIngo Molnar 	int i;
2421f2cb1360SIngo Molnar 	cpumask_var_t *doms;
2422f2cb1360SIngo Molnar 
24236da2ec56SKees Cook 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2424f2cb1360SIngo Molnar 	if (!doms)
2425f2cb1360SIngo Molnar 		return NULL;
2426f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++) {
2427f2cb1360SIngo Molnar 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2428f2cb1360SIngo Molnar 			free_sched_domains(doms, i);
2429f2cb1360SIngo Molnar 			return NULL;
2430f2cb1360SIngo Molnar 		}
2431f2cb1360SIngo Molnar 	}
2432f2cb1360SIngo Molnar 	return doms;
2433f2cb1360SIngo Molnar }
2434f2cb1360SIngo Molnar 
2435f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2436f2cb1360SIngo Molnar {
2437f2cb1360SIngo Molnar 	unsigned int i;
2438f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++)
2439f2cb1360SIngo Molnar 		free_cpumask_var(doms[i]);
2440f2cb1360SIngo Molnar 	kfree(doms);
2441f2cb1360SIngo Molnar }
2442f2cb1360SIngo Molnar 
2443f2cb1360SIngo Molnar /*
2444cb0c0414SJuri Lelli  * Set up scheduler domains and groups.  For now this just excludes isolated
2445cb0c0414SJuri Lelli  * CPUs, but could be used to exclude other special cases in the future.
2446f2cb1360SIngo Molnar  */
24478d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map)
2448f2cb1360SIngo Molnar {
2449f2cb1360SIngo Molnar 	int err;
2450f2cb1360SIngo Molnar 
24518d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
24521676330eSPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
24538d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
24548d5dc512SPeter Zijlstra 
2455f2cb1360SIngo Molnar 	arch_update_cpu_topology();
2456c744dc4aSBeata Michalska 	asym_cpu_capacity_scan();
2457f2cb1360SIngo Molnar 	ndoms_cur = 1;
2458f2cb1360SIngo Molnar 	doms_cur = alloc_sched_domains(ndoms_cur);
2459f2cb1360SIngo Molnar 	if (!doms_cur)
2460f2cb1360SIngo Molnar 		doms_cur = &fallback_doms;
246104d4e665SFrederic Weisbecker 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2462f2cb1360SIngo Molnar 	err = build_sched_domains(doms_cur[0], NULL);
2463f2cb1360SIngo Molnar 
2464f2cb1360SIngo Molnar 	return err;
2465f2cb1360SIngo Molnar }
2466f2cb1360SIngo Molnar 
2467f2cb1360SIngo Molnar /*
2468f2cb1360SIngo Molnar  * Detach sched domains from a group of CPUs specified in cpu_map
2469f2cb1360SIngo Molnar  * These CPUs will now be attached to the NULL domain
2470f2cb1360SIngo Molnar  */
2471f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map)
2472f2cb1360SIngo Molnar {
2473e284df70SValentin Schneider 	unsigned int cpu = cpumask_any(cpu_map);
2474f2cb1360SIngo Molnar 	int i;
2475f2cb1360SIngo Molnar 
2476e284df70SValentin Schneider 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2477e284df70SValentin Schneider 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2478e284df70SValentin Schneider 
2479f2cb1360SIngo Molnar 	rcu_read_lock();
2480f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map)
2481f2cb1360SIngo Molnar 		cpu_attach_domain(NULL, &def_root_domain, i);
2482f2cb1360SIngo Molnar 	rcu_read_unlock();
2483f2cb1360SIngo Molnar }
2484f2cb1360SIngo Molnar 
2485f2cb1360SIngo Molnar /* handle null as "default" */
2486f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2487f2cb1360SIngo Molnar 			struct sched_domain_attr *new, int idx_new)
2488f2cb1360SIngo Molnar {
2489f2cb1360SIngo Molnar 	struct sched_domain_attr tmp;
2490f2cb1360SIngo Molnar 
2491f2cb1360SIngo Molnar 	/* Fast path: */
2492f2cb1360SIngo Molnar 	if (!new && !cur)
2493f2cb1360SIngo Molnar 		return 1;
2494f2cb1360SIngo Molnar 
2495f2cb1360SIngo Molnar 	tmp = SD_ATTR_INIT;
249697fb7a0aSIngo Molnar 
2497f2cb1360SIngo Molnar 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2498f2cb1360SIngo Molnar 			new ? (new + idx_new) : &tmp,
2499f2cb1360SIngo Molnar 			sizeof(struct sched_domain_attr));
2500f2cb1360SIngo Molnar }
2501f2cb1360SIngo Molnar 
2502f2cb1360SIngo Molnar /*
2503f2cb1360SIngo Molnar  * Partition sched domains as specified by the 'ndoms_new'
2504f2cb1360SIngo Molnar  * cpumasks in the array doms_new[] of cpumasks. This compares
2505f2cb1360SIngo Molnar  * doms_new[] to the current sched domain partitioning, doms_cur[].
2506f2cb1360SIngo Molnar  * It destroys each deleted domain and builds each new domain.
2507f2cb1360SIngo Molnar  *
2508f2cb1360SIngo Molnar  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2509f2cb1360SIngo Molnar  * The masks don't intersect (don't overlap.) We should setup one
2510f2cb1360SIngo Molnar  * sched domain for each mask. CPUs not in any of the cpumasks will
2511f2cb1360SIngo Molnar  * not be load balanced. If the same cpumask appears both in the
2512f2cb1360SIngo Molnar  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2513f2cb1360SIngo Molnar  * it as it is.
2514f2cb1360SIngo Molnar  *
2515f2cb1360SIngo Molnar  * The passed in 'doms_new' should be allocated using
2516f2cb1360SIngo Molnar  * alloc_sched_domains.  This routine takes ownership of it and will
2517f2cb1360SIngo Molnar  * free_sched_domains it when done with it. If the caller failed the
2518f2cb1360SIngo Molnar  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2519f2cb1360SIngo Molnar  * and partition_sched_domains() will fallback to the single partition
2520f2cb1360SIngo Molnar  * 'fallback_doms', it also forces the domains to be rebuilt.
2521f2cb1360SIngo Molnar  *
2522f2cb1360SIngo Molnar  * If doms_new == NULL it will be replaced with cpu_online_mask.
2523f2cb1360SIngo Molnar  * ndoms_new == 0 is a special case for destroying existing domains,
2524f2cb1360SIngo Molnar  * and it will not create the default domain.
2525f2cb1360SIngo Molnar  *
2526c22645f4SMathieu Poirier  * Call with hotplug lock and sched_domains_mutex held
2527f2cb1360SIngo Molnar  */
2528c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2529f2cb1360SIngo Molnar 				    struct sched_domain_attr *dattr_new)
2530f2cb1360SIngo Molnar {
25311f74de87SQuentin Perret 	bool __maybe_unused has_eas = false;
2532f2cb1360SIngo Molnar 	int i, j, n;
2533f2cb1360SIngo Molnar 	int new_topology;
2534f2cb1360SIngo Molnar 
2535c22645f4SMathieu Poirier 	lockdep_assert_held(&sched_domains_mutex);
2536f2cb1360SIngo Molnar 
2537f2cb1360SIngo Molnar 	/* Let the architecture update CPU core mappings: */
2538f2cb1360SIngo Molnar 	new_topology = arch_update_cpu_topology();
2539c744dc4aSBeata Michalska 	/* Trigger rebuilding CPU capacity asymmetry data */
2540c744dc4aSBeata Michalska 	if (new_topology)
2541c744dc4aSBeata Michalska 		asym_cpu_capacity_scan();
2542f2cb1360SIngo Molnar 
254309e0dd8eSPeter Zijlstra 	if (!doms_new) {
254409e0dd8eSPeter Zijlstra 		WARN_ON_ONCE(dattr_new);
254509e0dd8eSPeter Zijlstra 		n = 0;
254609e0dd8eSPeter Zijlstra 		doms_new = alloc_sched_domains(1);
254709e0dd8eSPeter Zijlstra 		if (doms_new) {
254809e0dd8eSPeter Zijlstra 			n = 1;
2549edb93821SFrederic Weisbecker 			cpumask_and(doms_new[0], cpu_active_mask,
255004d4e665SFrederic Weisbecker 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
255109e0dd8eSPeter Zijlstra 		}
255209e0dd8eSPeter Zijlstra 	} else {
255309e0dd8eSPeter Zijlstra 		n = ndoms_new;
255409e0dd8eSPeter Zijlstra 	}
2555f2cb1360SIngo Molnar 
2556f2cb1360SIngo Molnar 	/* Destroy deleted domains: */
2557f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_cur; i++) {
2558f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
25596aa140faSQuentin Perret 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2560f9a25f77SMathieu Poirier 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2561f9a25f77SMathieu Poirier 				struct root_domain *rd;
2562f9a25f77SMathieu Poirier 
2563f9a25f77SMathieu Poirier 				/*
2564f9a25f77SMathieu Poirier 				 * This domain won't be destroyed and as such
2565f9a25f77SMathieu Poirier 				 * its dl_bw->total_bw needs to be cleared.  It
2566f9a25f77SMathieu Poirier 				 * will be recomputed in function
2567f9a25f77SMathieu Poirier 				 * update_tasks_root_domain().
2568f9a25f77SMathieu Poirier 				 */
2569f9a25f77SMathieu Poirier 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2570f9a25f77SMathieu Poirier 				dl_clear_root_domain(rd);
2571f2cb1360SIngo Molnar 				goto match1;
2572f2cb1360SIngo Molnar 			}
2573f9a25f77SMathieu Poirier 		}
2574f2cb1360SIngo Molnar 		/* No match - a current sched domain not in new doms_new[] */
2575f2cb1360SIngo Molnar 		detach_destroy_domains(doms_cur[i]);
2576f2cb1360SIngo Molnar match1:
2577f2cb1360SIngo Molnar 		;
2578f2cb1360SIngo Molnar 	}
2579f2cb1360SIngo Molnar 
2580f2cb1360SIngo Molnar 	n = ndoms_cur;
258109e0dd8eSPeter Zijlstra 	if (!doms_new) {
2582f2cb1360SIngo Molnar 		n = 0;
2583f2cb1360SIngo Molnar 		doms_new = &fallback_doms;
2584edb93821SFrederic Weisbecker 		cpumask_and(doms_new[0], cpu_active_mask,
258504d4e665SFrederic Weisbecker 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2586f2cb1360SIngo Molnar 	}
2587f2cb1360SIngo Molnar 
2588f2cb1360SIngo Molnar 	/* Build new domains: */
2589f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_new; i++) {
2590f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
25916aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
25926aa140faSQuentin Perret 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2593f2cb1360SIngo Molnar 				goto match2;
2594f2cb1360SIngo Molnar 		}
2595f2cb1360SIngo Molnar 		/* No match - add a new doms_new */
2596f2cb1360SIngo Molnar 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2597f2cb1360SIngo Molnar match2:
2598f2cb1360SIngo Molnar 		;
2599f2cb1360SIngo Molnar 	}
2600f2cb1360SIngo Molnar 
2601531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
26026aa140faSQuentin Perret 	/* Build perf. domains: */
26036aa140faSQuentin Perret 	for (i = 0; i < ndoms_new; i++) {
2604531b5c9fSQuentin Perret 		for (j = 0; j < n && !sched_energy_update; j++) {
26056aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
26061f74de87SQuentin Perret 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
26071f74de87SQuentin Perret 				has_eas = true;
26086aa140faSQuentin Perret 				goto match3;
26096aa140faSQuentin Perret 			}
26101f74de87SQuentin Perret 		}
26116aa140faSQuentin Perret 		/* No match - add perf. domains for a new rd */
26121f74de87SQuentin Perret 		has_eas |= build_perf_domains(doms_new[i]);
26136aa140faSQuentin Perret match3:
26146aa140faSQuentin Perret 		;
26156aa140faSQuentin Perret 	}
26161f74de87SQuentin Perret 	sched_energy_set(has_eas);
26176aa140faSQuentin Perret #endif
26186aa140faSQuentin Perret 
2619f2cb1360SIngo Molnar 	/* Remember the new sched domains: */
2620f2cb1360SIngo Molnar 	if (doms_cur != &fallback_doms)
2621f2cb1360SIngo Molnar 		free_sched_domains(doms_cur, ndoms_cur);
2622f2cb1360SIngo Molnar 
2623f2cb1360SIngo Molnar 	kfree(dattr_cur);
2624f2cb1360SIngo Molnar 	doms_cur = doms_new;
2625f2cb1360SIngo Molnar 	dattr_cur = dattr_new;
2626f2cb1360SIngo Molnar 	ndoms_cur = ndoms_new;
2627f2cb1360SIngo Molnar 
26283b87f136SPeter Zijlstra 	update_sched_domain_debugfs();
2629c22645f4SMathieu Poirier }
2630f2cb1360SIngo Molnar 
2631c22645f4SMathieu Poirier /*
2632c22645f4SMathieu Poirier  * Call with hotplug lock held
2633c22645f4SMathieu Poirier  */
2634c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2635c22645f4SMathieu Poirier 			     struct sched_domain_attr *dattr_new)
2636c22645f4SMathieu Poirier {
2637c22645f4SMathieu Poirier 	mutex_lock(&sched_domains_mutex);
2638c22645f4SMathieu Poirier 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2639f2cb1360SIngo Molnar 	mutex_unlock(&sched_domains_mutex);
2640f2cb1360SIngo Molnar }
2641