xref: /openbmc/linux/kernel/sched/topology.c (revision 6aa140fa4508933a6ac6717d65a403eb904d6c02)
1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0
2f2cb1360SIngo Molnar /*
3f2cb1360SIngo Molnar  * Scheduler topology setup/handling methods
4f2cb1360SIngo Molnar  */
5f2cb1360SIngo Molnar #include "sched.h"
6f2cb1360SIngo Molnar 
7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex);
8f2cb1360SIngo Molnar 
9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */
10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask;
11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2;
12f2cb1360SIngo Molnar 
13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
14f2cb1360SIngo Molnar 
15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str)
16f2cb1360SIngo Molnar {
179469eb01SPeter Zijlstra 	sched_debug_enabled = true;
18f2cb1360SIngo Molnar 
19f2cb1360SIngo Molnar 	return 0;
20f2cb1360SIngo Molnar }
21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup);
22f2cb1360SIngo Molnar 
23f2cb1360SIngo Molnar static inline bool sched_debug(void)
24f2cb1360SIngo Molnar {
25f2cb1360SIngo Molnar 	return sched_debug_enabled;
26f2cb1360SIngo Molnar }
27f2cb1360SIngo Molnar 
28f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29f2cb1360SIngo Molnar 				  struct cpumask *groupmask)
30f2cb1360SIngo Molnar {
31f2cb1360SIngo Molnar 	struct sched_group *group = sd->groups;
32f2cb1360SIngo Molnar 
33f2cb1360SIngo Molnar 	cpumask_clear(groupmask);
34f2cb1360SIngo Molnar 
35005f874dSPeter Zijlstra 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36f2cb1360SIngo Molnar 
37f2cb1360SIngo Molnar 	if (!(sd->flags & SD_LOAD_BALANCE)) {
38f2cb1360SIngo Molnar 		printk("does not load-balance\n");
39f2cb1360SIngo Molnar 		if (sd->parent)
4097fb7a0aSIngo Molnar 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41f2cb1360SIngo Molnar 		return -1;
42f2cb1360SIngo Molnar 	}
43f2cb1360SIngo Molnar 
44005f874dSPeter Zijlstra 	printk(KERN_CONT "span=%*pbl level=%s\n",
45f2cb1360SIngo Molnar 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46f2cb1360SIngo Molnar 
47f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4897fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49f2cb1360SIngo Molnar 	}
506cd0c583SYi Wang 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
5197fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52f2cb1360SIngo Molnar 	}
53f2cb1360SIngo Molnar 
54f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
55f2cb1360SIngo Molnar 	do {
56f2cb1360SIngo Molnar 		if (!group) {
57f2cb1360SIngo Molnar 			printk("\n");
58f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: group is NULL\n");
59f2cb1360SIngo Molnar 			break;
60f2cb1360SIngo Molnar 		}
61f2cb1360SIngo Molnar 
62ae4df9d6SPeter Zijlstra 		if (!cpumask_weight(sched_group_span(group))) {
63f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
64f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: empty group\n");
65f2cb1360SIngo Molnar 			break;
66f2cb1360SIngo Molnar 		}
67f2cb1360SIngo Molnar 
68f2cb1360SIngo Molnar 		if (!(sd->flags & SD_OVERLAP) &&
69ae4df9d6SPeter Zijlstra 		    cpumask_intersects(groupmask, sched_group_span(group))) {
70f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
71f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: repeated CPUs\n");
72f2cb1360SIngo Molnar 			break;
73f2cb1360SIngo Molnar 		}
74f2cb1360SIngo Molnar 
75ae4df9d6SPeter Zijlstra 		cpumask_or(groupmask, groupmask, sched_group_span(group));
76f2cb1360SIngo Molnar 
77005f874dSPeter Zijlstra 		printk(KERN_CONT " %d:{ span=%*pbl",
78005f874dSPeter Zijlstra 				group->sgc->id,
79ae4df9d6SPeter Zijlstra 				cpumask_pr_args(sched_group_span(group)));
80b0151c25SPeter Zijlstra 
81af218122SPeter Zijlstra 		if ((sd->flags & SD_OVERLAP) &&
82ae4df9d6SPeter Zijlstra 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83005f874dSPeter Zijlstra 			printk(KERN_CONT " mask=%*pbl",
84e5c14b1fSPeter Zijlstra 				cpumask_pr_args(group_balance_mask(group)));
85b0151c25SPeter Zijlstra 		}
86b0151c25SPeter Zijlstra 
87005f874dSPeter Zijlstra 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88005f874dSPeter Zijlstra 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89f2cb1360SIngo Molnar 
90a420b063SPeter Zijlstra 		if (group == sd->groups && sd->child &&
91a420b063SPeter Zijlstra 		    !cpumask_equal(sched_domain_span(sd->child),
92ae4df9d6SPeter Zijlstra 				   sched_group_span(group))) {
93a420b063SPeter Zijlstra 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94a420b063SPeter Zijlstra 		}
95a420b063SPeter Zijlstra 
96005f874dSPeter Zijlstra 		printk(KERN_CONT " }");
97005f874dSPeter Zijlstra 
98f2cb1360SIngo Molnar 		group = group->next;
99b0151c25SPeter Zijlstra 
100b0151c25SPeter Zijlstra 		if (group != sd->groups)
101b0151c25SPeter Zijlstra 			printk(KERN_CONT ",");
102b0151c25SPeter Zijlstra 
103f2cb1360SIngo Molnar 	} while (group != sd->groups);
104f2cb1360SIngo Molnar 	printk(KERN_CONT "\n");
105f2cb1360SIngo Molnar 
106f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
107f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108f2cb1360SIngo Molnar 
109f2cb1360SIngo Molnar 	if (sd->parent &&
110f2cb1360SIngo Molnar 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
11197fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112f2cb1360SIngo Molnar 	return 0;
113f2cb1360SIngo Molnar }
114f2cb1360SIngo Molnar 
115f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu)
116f2cb1360SIngo Molnar {
117f2cb1360SIngo Molnar 	int level = 0;
118f2cb1360SIngo Molnar 
119f2cb1360SIngo Molnar 	if (!sched_debug_enabled)
120f2cb1360SIngo Molnar 		return;
121f2cb1360SIngo Molnar 
122f2cb1360SIngo Molnar 	if (!sd) {
123f2cb1360SIngo Molnar 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124f2cb1360SIngo Molnar 		return;
125f2cb1360SIngo Molnar 	}
126f2cb1360SIngo Molnar 
127005f874dSPeter Zijlstra 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128f2cb1360SIngo Molnar 
129f2cb1360SIngo Molnar 	for (;;) {
130f2cb1360SIngo Molnar 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131f2cb1360SIngo Molnar 			break;
132f2cb1360SIngo Molnar 		level++;
133f2cb1360SIngo Molnar 		sd = sd->parent;
134f2cb1360SIngo Molnar 		if (!sd)
135f2cb1360SIngo Molnar 			break;
136f2cb1360SIngo Molnar 	}
137f2cb1360SIngo Molnar }
138f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */
139f2cb1360SIngo Molnar 
140f2cb1360SIngo Molnar # define sched_debug_enabled 0
141f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0)
142f2cb1360SIngo Molnar static inline bool sched_debug(void)
143f2cb1360SIngo Molnar {
144f2cb1360SIngo Molnar 	return false;
145f2cb1360SIngo Molnar }
146f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */
147f2cb1360SIngo Molnar 
148f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd)
149f2cb1360SIngo Molnar {
150f2cb1360SIngo Molnar 	if (cpumask_weight(sched_domain_span(sd)) == 1)
151f2cb1360SIngo Molnar 		return 1;
152f2cb1360SIngo Molnar 
153f2cb1360SIngo Molnar 	/* Following flags need at least 2 groups */
154f2cb1360SIngo Molnar 	if (sd->flags & (SD_LOAD_BALANCE |
155f2cb1360SIngo Molnar 			 SD_BALANCE_NEWIDLE |
156f2cb1360SIngo Molnar 			 SD_BALANCE_FORK |
157f2cb1360SIngo Molnar 			 SD_BALANCE_EXEC |
158f2cb1360SIngo Molnar 			 SD_SHARE_CPUCAPACITY |
159f2cb1360SIngo Molnar 			 SD_ASYM_CPUCAPACITY |
160f2cb1360SIngo Molnar 			 SD_SHARE_PKG_RESOURCES |
161f2cb1360SIngo Molnar 			 SD_SHARE_POWERDOMAIN)) {
162f2cb1360SIngo Molnar 		if (sd->groups != sd->groups->next)
163f2cb1360SIngo Molnar 			return 0;
164f2cb1360SIngo Molnar 	}
165f2cb1360SIngo Molnar 
166f2cb1360SIngo Molnar 	/* Following flags don't use groups */
167f2cb1360SIngo Molnar 	if (sd->flags & (SD_WAKE_AFFINE))
168f2cb1360SIngo Molnar 		return 0;
169f2cb1360SIngo Molnar 
170f2cb1360SIngo Molnar 	return 1;
171f2cb1360SIngo Molnar }
172f2cb1360SIngo Molnar 
173f2cb1360SIngo Molnar static int
174f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175f2cb1360SIngo Molnar {
176f2cb1360SIngo Molnar 	unsigned long cflags = sd->flags, pflags = parent->flags;
177f2cb1360SIngo Molnar 
178f2cb1360SIngo Molnar 	if (sd_degenerate(parent))
179f2cb1360SIngo Molnar 		return 1;
180f2cb1360SIngo Molnar 
181f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182f2cb1360SIngo Molnar 		return 0;
183f2cb1360SIngo Molnar 
184f2cb1360SIngo Molnar 	/* Flags needing groups don't count if only 1 group in parent */
185f2cb1360SIngo Molnar 	if (parent->groups == parent->groups->next) {
186f2cb1360SIngo Molnar 		pflags &= ~(SD_LOAD_BALANCE |
187f2cb1360SIngo Molnar 				SD_BALANCE_NEWIDLE |
188f2cb1360SIngo Molnar 				SD_BALANCE_FORK |
189f2cb1360SIngo Molnar 				SD_BALANCE_EXEC |
190f2cb1360SIngo Molnar 				SD_ASYM_CPUCAPACITY |
191f2cb1360SIngo Molnar 				SD_SHARE_CPUCAPACITY |
192f2cb1360SIngo Molnar 				SD_SHARE_PKG_RESOURCES |
193f2cb1360SIngo Molnar 				SD_PREFER_SIBLING |
194f2cb1360SIngo Molnar 				SD_SHARE_POWERDOMAIN);
195f2cb1360SIngo Molnar 		if (nr_node_ids == 1)
196f2cb1360SIngo Molnar 			pflags &= ~SD_SERIALIZE;
197f2cb1360SIngo Molnar 	}
198f2cb1360SIngo Molnar 	if (~cflags & pflags)
199f2cb1360SIngo Molnar 		return 0;
200f2cb1360SIngo Molnar 
201f2cb1360SIngo Molnar 	return 1;
202f2cb1360SIngo Molnar }
203f2cb1360SIngo Molnar 
204*6aa140faSQuentin Perret #ifdef CONFIG_ENERGY_MODEL
205*6aa140faSQuentin Perret static void free_pd(struct perf_domain *pd)
206*6aa140faSQuentin Perret {
207*6aa140faSQuentin Perret 	struct perf_domain *tmp;
208*6aa140faSQuentin Perret 
209*6aa140faSQuentin Perret 	while (pd) {
210*6aa140faSQuentin Perret 		tmp = pd->next;
211*6aa140faSQuentin Perret 		kfree(pd);
212*6aa140faSQuentin Perret 		pd = tmp;
213*6aa140faSQuentin Perret 	}
214*6aa140faSQuentin Perret }
215*6aa140faSQuentin Perret 
216*6aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
217*6aa140faSQuentin Perret {
218*6aa140faSQuentin Perret 	while (pd) {
219*6aa140faSQuentin Perret 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
220*6aa140faSQuentin Perret 			return pd;
221*6aa140faSQuentin Perret 		pd = pd->next;
222*6aa140faSQuentin Perret 	}
223*6aa140faSQuentin Perret 
224*6aa140faSQuentin Perret 	return NULL;
225*6aa140faSQuentin Perret }
226*6aa140faSQuentin Perret 
227*6aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu)
228*6aa140faSQuentin Perret {
229*6aa140faSQuentin Perret 	struct em_perf_domain *obj = em_cpu_get(cpu);
230*6aa140faSQuentin Perret 	struct perf_domain *pd;
231*6aa140faSQuentin Perret 
232*6aa140faSQuentin Perret 	if (!obj) {
233*6aa140faSQuentin Perret 		if (sched_debug())
234*6aa140faSQuentin Perret 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
235*6aa140faSQuentin Perret 		return NULL;
236*6aa140faSQuentin Perret 	}
237*6aa140faSQuentin Perret 
238*6aa140faSQuentin Perret 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
239*6aa140faSQuentin Perret 	if (!pd)
240*6aa140faSQuentin Perret 		return NULL;
241*6aa140faSQuentin Perret 	pd->em_pd = obj;
242*6aa140faSQuentin Perret 
243*6aa140faSQuentin Perret 	return pd;
244*6aa140faSQuentin Perret }
245*6aa140faSQuentin Perret 
246*6aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map,
247*6aa140faSQuentin Perret 						struct perf_domain *pd)
248*6aa140faSQuentin Perret {
249*6aa140faSQuentin Perret 	if (!sched_debug() || !pd)
250*6aa140faSQuentin Perret 		return;
251*6aa140faSQuentin Perret 
252*6aa140faSQuentin Perret 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
253*6aa140faSQuentin Perret 
254*6aa140faSQuentin Perret 	while (pd) {
255*6aa140faSQuentin Perret 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
256*6aa140faSQuentin Perret 				cpumask_first(perf_domain_span(pd)),
257*6aa140faSQuentin Perret 				cpumask_pr_args(perf_domain_span(pd)),
258*6aa140faSQuentin Perret 				em_pd_nr_cap_states(pd->em_pd));
259*6aa140faSQuentin Perret 		pd = pd->next;
260*6aa140faSQuentin Perret 	}
261*6aa140faSQuentin Perret 
262*6aa140faSQuentin Perret 	printk(KERN_CONT "\n");
263*6aa140faSQuentin Perret }
264*6aa140faSQuentin Perret 
265*6aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp)
266*6aa140faSQuentin Perret {
267*6aa140faSQuentin Perret 	struct perf_domain *pd;
268*6aa140faSQuentin Perret 
269*6aa140faSQuentin Perret 	pd = container_of(rp, struct perf_domain, rcu);
270*6aa140faSQuentin Perret 	free_pd(pd);
271*6aa140faSQuentin Perret }
272*6aa140faSQuentin Perret 
273*6aa140faSQuentin Perret static void build_perf_domains(const struct cpumask *cpu_map)
274*6aa140faSQuentin Perret {
275*6aa140faSQuentin Perret 	struct perf_domain *pd = NULL, *tmp;
276*6aa140faSQuentin Perret 	int cpu = cpumask_first(cpu_map);
277*6aa140faSQuentin Perret 	struct root_domain *rd = cpu_rq(cpu)->rd;
278*6aa140faSQuentin Perret 	int i;
279*6aa140faSQuentin Perret 
280*6aa140faSQuentin Perret 	for_each_cpu(i, cpu_map) {
281*6aa140faSQuentin Perret 		/* Skip already covered CPUs. */
282*6aa140faSQuentin Perret 		if (find_pd(pd, i))
283*6aa140faSQuentin Perret 			continue;
284*6aa140faSQuentin Perret 
285*6aa140faSQuentin Perret 		/* Create the new pd and add it to the local list. */
286*6aa140faSQuentin Perret 		tmp = pd_init(i);
287*6aa140faSQuentin Perret 		if (!tmp)
288*6aa140faSQuentin Perret 			goto free;
289*6aa140faSQuentin Perret 		tmp->next = pd;
290*6aa140faSQuentin Perret 		pd = tmp;
291*6aa140faSQuentin Perret 	}
292*6aa140faSQuentin Perret 
293*6aa140faSQuentin Perret 	perf_domain_debug(cpu_map, pd);
294*6aa140faSQuentin Perret 
295*6aa140faSQuentin Perret 	/* Attach the new list of performance domains to the root domain. */
296*6aa140faSQuentin Perret 	tmp = rd->pd;
297*6aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, pd);
298*6aa140faSQuentin Perret 	if (tmp)
299*6aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
300*6aa140faSQuentin Perret 
301*6aa140faSQuentin Perret 	return;
302*6aa140faSQuentin Perret 
303*6aa140faSQuentin Perret free:
304*6aa140faSQuentin Perret 	free_pd(pd);
305*6aa140faSQuentin Perret 	tmp = rd->pd;
306*6aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, NULL);
307*6aa140faSQuentin Perret 	if (tmp)
308*6aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
309*6aa140faSQuentin Perret }
310*6aa140faSQuentin Perret #else
311*6aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { }
312*6aa140faSQuentin Perret #endif /* CONFIG_ENERGY_MODEL */
313*6aa140faSQuentin Perret 
314f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu)
315f2cb1360SIngo Molnar {
316f2cb1360SIngo Molnar 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
317f2cb1360SIngo Molnar 
318f2cb1360SIngo Molnar 	cpupri_cleanup(&rd->cpupri);
319f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
320f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
321f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
322f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
323f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
324*6aa140faSQuentin Perret 	free_pd(rd->pd);
325f2cb1360SIngo Molnar 	kfree(rd);
326f2cb1360SIngo Molnar }
327f2cb1360SIngo Molnar 
328f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd)
329f2cb1360SIngo Molnar {
330f2cb1360SIngo Molnar 	struct root_domain *old_rd = NULL;
331f2cb1360SIngo Molnar 	unsigned long flags;
332f2cb1360SIngo Molnar 
333f2cb1360SIngo Molnar 	raw_spin_lock_irqsave(&rq->lock, flags);
334f2cb1360SIngo Molnar 
335f2cb1360SIngo Molnar 	if (rq->rd) {
336f2cb1360SIngo Molnar 		old_rd = rq->rd;
337f2cb1360SIngo Molnar 
338f2cb1360SIngo Molnar 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
339f2cb1360SIngo Molnar 			set_rq_offline(rq);
340f2cb1360SIngo Molnar 
341f2cb1360SIngo Molnar 		cpumask_clear_cpu(rq->cpu, old_rd->span);
342f2cb1360SIngo Molnar 
343f2cb1360SIngo Molnar 		/*
344f2cb1360SIngo Molnar 		 * If we dont want to free the old_rd yet then
345f2cb1360SIngo Molnar 		 * set old_rd to NULL to skip the freeing later
346f2cb1360SIngo Molnar 		 * in this function:
347f2cb1360SIngo Molnar 		 */
348f2cb1360SIngo Molnar 		if (!atomic_dec_and_test(&old_rd->refcount))
349f2cb1360SIngo Molnar 			old_rd = NULL;
350f2cb1360SIngo Molnar 	}
351f2cb1360SIngo Molnar 
352f2cb1360SIngo Molnar 	atomic_inc(&rd->refcount);
353f2cb1360SIngo Molnar 	rq->rd = rd;
354f2cb1360SIngo Molnar 
355f2cb1360SIngo Molnar 	cpumask_set_cpu(rq->cpu, rd->span);
356f2cb1360SIngo Molnar 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
357f2cb1360SIngo Molnar 		set_rq_online(rq);
358f2cb1360SIngo Molnar 
359f2cb1360SIngo Molnar 	raw_spin_unlock_irqrestore(&rq->lock, flags);
360f2cb1360SIngo Molnar 
361f2cb1360SIngo Molnar 	if (old_rd)
362f2cb1360SIngo Molnar 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
363f2cb1360SIngo Molnar }
364f2cb1360SIngo Molnar 
365364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd)
366364f5665SSteven Rostedt (VMware) {
367364f5665SSteven Rostedt (VMware) 	atomic_inc(&rd->refcount);
368364f5665SSteven Rostedt (VMware) }
369364f5665SSteven Rostedt (VMware) 
370364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd)
371364f5665SSteven Rostedt (VMware) {
372364f5665SSteven Rostedt (VMware) 	if (!atomic_dec_and_test(&rd->refcount))
373364f5665SSteven Rostedt (VMware) 		return;
374364f5665SSteven Rostedt (VMware) 
375364f5665SSteven Rostedt (VMware) 	call_rcu_sched(&rd->rcu, free_rootdomain);
376364f5665SSteven Rostedt (VMware) }
377364f5665SSteven Rostedt (VMware) 
378f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd)
379f2cb1360SIngo Molnar {
380f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
381f2cb1360SIngo Molnar 		goto out;
382f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
383f2cb1360SIngo Molnar 		goto free_span;
384f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
385f2cb1360SIngo Molnar 		goto free_online;
386f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
387f2cb1360SIngo Molnar 		goto free_dlo_mask;
388f2cb1360SIngo Molnar 
3894bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI
3904bdced5cSSteven Rostedt (Red Hat) 	rd->rto_cpu = -1;
3914bdced5cSSteven Rostedt (Red Hat) 	raw_spin_lock_init(&rd->rto_lock);
3924bdced5cSSteven Rostedt (Red Hat) 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
3934bdced5cSSteven Rostedt (Red Hat) #endif
3944bdced5cSSteven Rostedt (Red Hat) 
395f2cb1360SIngo Molnar 	init_dl_bw(&rd->dl_bw);
396f2cb1360SIngo Molnar 	if (cpudl_init(&rd->cpudl) != 0)
397f2cb1360SIngo Molnar 		goto free_rto_mask;
398f2cb1360SIngo Molnar 
399f2cb1360SIngo Molnar 	if (cpupri_init(&rd->cpupri) != 0)
400f2cb1360SIngo Molnar 		goto free_cpudl;
401f2cb1360SIngo Molnar 	return 0;
402f2cb1360SIngo Molnar 
403f2cb1360SIngo Molnar free_cpudl:
404f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
405f2cb1360SIngo Molnar free_rto_mask:
406f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
407f2cb1360SIngo Molnar free_dlo_mask:
408f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
409f2cb1360SIngo Molnar free_online:
410f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
411f2cb1360SIngo Molnar free_span:
412f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
413f2cb1360SIngo Molnar out:
414f2cb1360SIngo Molnar 	return -ENOMEM;
415f2cb1360SIngo Molnar }
416f2cb1360SIngo Molnar 
417f2cb1360SIngo Molnar /*
418f2cb1360SIngo Molnar  * By default the system creates a single root-domain with all CPUs as
419f2cb1360SIngo Molnar  * members (mimicking the global state we have today).
420f2cb1360SIngo Molnar  */
421f2cb1360SIngo Molnar struct root_domain def_root_domain;
422f2cb1360SIngo Molnar 
423f2cb1360SIngo Molnar void init_defrootdomain(void)
424f2cb1360SIngo Molnar {
425f2cb1360SIngo Molnar 	init_rootdomain(&def_root_domain);
426f2cb1360SIngo Molnar 
427f2cb1360SIngo Molnar 	atomic_set(&def_root_domain.refcount, 1);
428f2cb1360SIngo Molnar }
429f2cb1360SIngo Molnar 
430f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void)
431f2cb1360SIngo Molnar {
432f2cb1360SIngo Molnar 	struct root_domain *rd;
433f2cb1360SIngo Molnar 
4344d13a06dSViresh Kumar 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
435f2cb1360SIngo Molnar 	if (!rd)
436f2cb1360SIngo Molnar 		return NULL;
437f2cb1360SIngo Molnar 
438f2cb1360SIngo Molnar 	if (init_rootdomain(rd) != 0) {
439f2cb1360SIngo Molnar 		kfree(rd);
440f2cb1360SIngo Molnar 		return NULL;
441f2cb1360SIngo Molnar 	}
442f2cb1360SIngo Molnar 
443f2cb1360SIngo Molnar 	return rd;
444f2cb1360SIngo Molnar }
445f2cb1360SIngo Molnar 
446f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc)
447f2cb1360SIngo Molnar {
448f2cb1360SIngo Molnar 	struct sched_group *tmp, *first;
449f2cb1360SIngo Molnar 
450f2cb1360SIngo Molnar 	if (!sg)
451f2cb1360SIngo Molnar 		return;
452f2cb1360SIngo Molnar 
453f2cb1360SIngo Molnar 	first = sg;
454f2cb1360SIngo Molnar 	do {
455f2cb1360SIngo Molnar 		tmp = sg->next;
456f2cb1360SIngo Molnar 
457f2cb1360SIngo Molnar 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
458f2cb1360SIngo Molnar 			kfree(sg->sgc);
459f2cb1360SIngo Molnar 
460213c5a45SShu Wang 		if (atomic_dec_and_test(&sg->ref))
461f2cb1360SIngo Molnar 			kfree(sg);
462f2cb1360SIngo Molnar 		sg = tmp;
463f2cb1360SIngo Molnar 	} while (sg != first);
464f2cb1360SIngo Molnar }
465f2cb1360SIngo Molnar 
466f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd)
467f2cb1360SIngo Molnar {
468f2cb1360SIngo Molnar 	/*
469a090c4f2SPeter Zijlstra 	 * A normal sched domain may have multiple group references, an
470a090c4f2SPeter Zijlstra 	 * overlapping domain, having private groups, only one.  Iterate,
471a090c4f2SPeter Zijlstra 	 * dropping group/capacity references, freeing where none remain.
472f2cb1360SIngo Molnar 	 */
473f2cb1360SIngo Molnar 	free_sched_groups(sd->groups, 1);
474213c5a45SShu Wang 
475f2cb1360SIngo Molnar 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
476f2cb1360SIngo Molnar 		kfree(sd->shared);
477f2cb1360SIngo Molnar 	kfree(sd);
478f2cb1360SIngo Molnar }
479f2cb1360SIngo Molnar 
480f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu)
481f2cb1360SIngo Molnar {
482f2cb1360SIngo Molnar 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
483f2cb1360SIngo Molnar 
484f2cb1360SIngo Molnar 	while (sd) {
485f2cb1360SIngo Molnar 		struct sched_domain *parent = sd->parent;
486f2cb1360SIngo Molnar 		destroy_sched_domain(sd);
487f2cb1360SIngo Molnar 		sd = parent;
488f2cb1360SIngo Molnar 	}
489f2cb1360SIngo Molnar }
490f2cb1360SIngo Molnar 
491f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd)
492f2cb1360SIngo Molnar {
493f2cb1360SIngo Molnar 	if (sd)
494f2cb1360SIngo Molnar 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
495f2cb1360SIngo Molnar }
496f2cb1360SIngo Molnar 
497f2cb1360SIngo Molnar /*
498f2cb1360SIngo Molnar  * Keep a special pointer to the highest sched_domain that has
499f2cb1360SIngo Molnar  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
500f2cb1360SIngo Molnar  * allows us to avoid some pointer chasing select_idle_sibling().
501f2cb1360SIngo Molnar  *
502f2cb1360SIngo Molnar  * Also keep a unique ID per domain (we use the first CPU number in
503f2cb1360SIngo Molnar  * the cpumask of the domain), this allows us to quickly tell if
504f2cb1360SIngo Molnar  * two CPUs are in the same cache domain, see cpus_share_cache().
505f2cb1360SIngo Molnar  */
506f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_llc);
507f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size);
508f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id);
509f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
510f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_numa);
511f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_asym);
512df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
513f2cb1360SIngo Molnar 
514f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu)
515f2cb1360SIngo Molnar {
516f2cb1360SIngo Molnar 	struct sched_domain_shared *sds = NULL;
517f2cb1360SIngo Molnar 	struct sched_domain *sd;
518f2cb1360SIngo Molnar 	int id = cpu;
519f2cb1360SIngo Molnar 	int size = 1;
520f2cb1360SIngo Molnar 
521f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
522f2cb1360SIngo Molnar 	if (sd) {
523f2cb1360SIngo Molnar 		id = cpumask_first(sched_domain_span(sd));
524f2cb1360SIngo Molnar 		size = cpumask_weight(sched_domain_span(sd));
525f2cb1360SIngo Molnar 		sds = sd->shared;
526f2cb1360SIngo Molnar 	}
527f2cb1360SIngo Molnar 
528f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
529f2cb1360SIngo Molnar 	per_cpu(sd_llc_size, cpu) = size;
530f2cb1360SIngo Molnar 	per_cpu(sd_llc_id, cpu) = id;
531f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
532f2cb1360SIngo Molnar 
533f2cb1360SIngo Molnar 	sd = lowest_flag_domain(cpu, SD_NUMA);
534f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
535f2cb1360SIngo Molnar 
536f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
537f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
538f2cb1360SIngo Molnar }
539f2cb1360SIngo Molnar 
540f2cb1360SIngo Molnar /*
541f2cb1360SIngo Molnar  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
542f2cb1360SIngo Molnar  * hold the hotplug lock.
543f2cb1360SIngo Molnar  */
544f2cb1360SIngo Molnar static void
545f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
546f2cb1360SIngo Molnar {
547f2cb1360SIngo Molnar 	struct rq *rq = cpu_rq(cpu);
548f2cb1360SIngo Molnar 	struct sched_domain *tmp;
549f2cb1360SIngo Molnar 
550f2cb1360SIngo Molnar 	/* Remove the sched domains which do not contribute to scheduling. */
551f2cb1360SIngo Molnar 	for (tmp = sd; tmp; ) {
552f2cb1360SIngo Molnar 		struct sched_domain *parent = tmp->parent;
553f2cb1360SIngo Molnar 		if (!parent)
554f2cb1360SIngo Molnar 			break;
555f2cb1360SIngo Molnar 
556f2cb1360SIngo Molnar 		if (sd_parent_degenerate(tmp, parent)) {
557f2cb1360SIngo Molnar 			tmp->parent = parent->parent;
558f2cb1360SIngo Molnar 			if (parent->parent)
559f2cb1360SIngo Molnar 				parent->parent->child = tmp;
560f2cb1360SIngo Molnar 			/*
561f2cb1360SIngo Molnar 			 * Transfer SD_PREFER_SIBLING down in case of a
562f2cb1360SIngo Molnar 			 * degenerate parent; the spans match for this
563f2cb1360SIngo Molnar 			 * so the property transfers.
564f2cb1360SIngo Molnar 			 */
565f2cb1360SIngo Molnar 			if (parent->flags & SD_PREFER_SIBLING)
566f2cb1360SIngo Molnar 				tmp->flags |= SD_PREFER_SIBLING;
567f2cb1360SIngo Molnar 			destroy_sched_domain(parent);
568f2cb1360SIngo Molnar 		} else
569f2cb1360SIngo Molnar 			tmp = tmp->parent;
570f2cb1360SIngo Molnar 	}
571f2cb1360SIngo Molnar 
572f2cb1360SIngo Molnar 	if (sd && sd_degenerate(sd)) {
573f2cb1360SIngo Molnar 		tmp = sd;
574f2cb1360SIngo Molnar 		sd = sd->parent;
575f2cb1360SIngo Molnar 		destroy_sched_domain(tmp);
576f2cb1360SIngo Molnar 		if (sd)
577f2cb1360SIngo Molnar 			sd->child = NULL;
578f2cb1360SIngo Molnar 	}
579f2cb1360SIngo Molnar 
580f2cb1360SIngo Molnar 	sched_domain_debug(sd, cpu);
581f2cb1360SIngo Molnar 
582f2cb1360SIngo Molnar 	rq_attach_root(rq, rd);
583f2cb1360SIngo Molnar 	tmp = rq->sd;
584f2cb1360SIngo Molnar 	rcu_assign_pointer(rq->sd, sd);
585bbdacdfeSPeter Zijlstra 	dirty_sched_domain_sysctl(cpu);
586f2cb1360SIngo Molnar 	destroy_sched_domains(tmp);
587f2cb1360SIngo Molnar 
588f2cb1360SIngo Molnar 	update_top_cache_domain(cpu);
589f2cb1360SIngo Molnar }
590f2cb1360SIngo Molnar 
591f2cb1360SIngo Molnar struct s_data {
592f2cb1360SIngo Molnar 	struct sched_domain ** __percpu sd;
593f2cb1360SIngo Molnar 	struct root_domain	*rd;
594f2cb1360SIngo Molnar };
595f2cb1360SIngo Molnar 
596f2cb1360SIngo Molnar enum s_alloc {
597f2cb1360SIngo Molnar 	sa_rootdomain,
598f2cb1360SIngo Molnar 	sa_sd,
599f2cb1360SIngo Molnar 	sa_sd_storage,
600f2cb1360SIngo Molnar 	sa_none,
601f2cb1360SIngo Molnar };
602f2cb1360SIngo Molnar 
603f2cb1360SIngo Molnar /*
60435a566e6SPeter Zijlstra  * Return the canonical balance CPU for this group, this is the first CPU
605e5c14b1fSPeter Zijlstra  * of this group that's also in the balance mask.
60635a566e6SPeter Zijlstra  *
607e5c14b1fSPeter Zijlstra  * The balance mask are all those CPUs that could actually end up at this
608e5c14b1fSPeter Zijlstra  * group. See build_balance_mask().
60935a566e6SPeter Zijlstra  *
61035a566e6SPeter Zijlstra  * Also see should_we_balance().
61135a566e6SPeter Zijlstra  */
61235a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg)
61335a566e6SPeter Zijlstra {
614e5c14b1fSPeter Zijlstra 	return cpumask_first(group_balance_mask(sg));
61535a566e6SPeter Zijlstra }
61635a566e6SPeter Zijlstra 
61735a566e6SPeter Zijlstra 
61835a566e6SPeter Zijlstra /*
61935a566e6SPeter Zijlstra  * NUMA topology (first read the regular topology blurb below)
62035a566e6SPeter Zijlstra  *
62135a566e6SPeter Zijlstra  * Given a node-distance table, for example:
62235a566e6SPeter Zijlstra  *
62335a566e6SPeter Zijlstra  *   node   0   1   2   3
62435a566e6SPeter Zijlstra  *     0:  10  20  30  20
62535a566e6SPeter Zijlstra  *     1:  20  10  20  30
62635a566e6SPeter Zijlstra  *     2:  30  20  10  20
62735a566e6SPeter Zijlstra  *     3:  20  30  20  10
62835a566e6SPeter Zijlstra  *
62935a566e6SPeter Zijlstra  * which represents a 4 node ring topology like:
63035a566e6SPeter Zijlstra  *
63135a566e6SPeter Zijlstra  *   0 ----- 1
63235a566e6SPeter Zijlstra  *   |       |
63335a566e6SPeter Zijlstra  *   |       |
63435a566e6SPeter Zijlstra  *   |       |
63535a566e6SPeter Zijlstra  *   3 ----- 2
63635a566e6SPeter Zijlstra  *
63735a566e6SPeter Zijlstra  * We want to construct domains and groups to represent this. The way we go
63835a566e6SPeter Zijlstra  * about doing this is to build the domains on 'hops'. For each NUMA level we
63935a566e6SPeter Zijlstra  * construct the mask of all nodes reachable in @level hops.
64035a566e6SPeter Zijlstra  *
64135a566e6SPeter Zijlstra  * For the above NUMA topology that gives 3 levels:
64235a566e6SPeter Zijlstra  *
64335a566e6SPeter Zijlstra  * NUMA-2	0-3		0-3		0-3		0-3
64435a566e6SPeter Zijlstra  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
64535a566e6SPeter Zijlstra  *
64635a566e6SPeter Zijlstra  * NUMA-1	0-1,3		0-2		1-3		0,2-3
64735a566e6SPeter Zijlstra  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
64835a566e6SPeter Zijlstra  *
64935a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
65035a566e6SPeter Zijlstra  *
65135a566e6SPeter Zijlstra  *
65235a566e6SPeter Zijlstra  * As can be seen; things don't nicely line up as with the regular topology.
65335a566e6SPeter Zijlstra  * When we iterate a domain in child domain chunks some nodes can be
65435a566e6SPeter Zijlstra  * represented multiple times -- hence the "overlap" naming for this part of
65535a566e6SPeter Zijlstra  * the topology.
65635a566e6SPeter Zijlstra  *
65735a566e6SPeter Zijlstra  * In order to minimize this overlap, we only build enough groups to cover the
65835a566e6SPeter Zijlstra  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
65935a566e6SPeter Zijlstra  *
66035a566e6SPeter Zijlstra  * Because:
66135a566e6SPeter Zijlstra  *
66235a566e6SPeter Zijlstra  *  - the first group of each domain is its child domain; this
66335a566e6SPeter Zijlstra  *    gets us the first 0-1,3
66435a566e6SPeter Zijlstra  *  - the only uncovered node is 2, who's child domain is 1-3.
66535a566e6SPeter Zijlstra  *
66635a566e6SPeter Zijlstra  * However, because of the overlap, computing a unique CPU for each group is
66735a566e6SPeter Zijlstra  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
66835a566e6SPeter Zijlstra  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
66935a566e6SPeter Zijlstra  * end up at those groups (they would end up in group: 0-1,3).
67035a566e6SPeter Zijlstra  *
671e5c14b1fSPeter Zijlstra  * To correct this we have to introduce the group balance mask. This mask
67235a566e6SPeter Zijlstra  * will contain those CPUs in the group that can reach this group given the
67335a566e6SPeter Zijlstra  * (child) domain tree.
67435a566e6SPeter Zijlstra  *
67535a566e6SPeter Zijlstra  * With this we can once again compute balance_cpu and sched_group_capacity
67635a566e6SPeter Zijlstra  * relations.
67735a566e6SPeter Zijlstra  *
67835a566e6SPeter Zijlstra  * XXX include words on how balance_cpu is unique and therefore can be
67935a566e6SPeter Zijlstra  * used for sched_group_capacity links.
68035a566e6SPeter Zijlstra  *
68135a566e6SPeter Zijlstra  *
68235a566e6SPeter Zijlstra  * Another 'interesting' topology is:
68335a566e6SPeter Zijlstra  *
68435a566e6SPeter Zijlstra  *   node   0   1   2   3
68535a566e6SPeter Zijlstra  *     0:  10  20  20  30
68635a566e6SPeter Zijlstra  *     1:  20  10  20  20
68735a566e6SPeter Zijlstra  *     2:  20  20  10  20
68835a566e6SPeter Zijlstra  *     3:  30  20  20  10
68935a566e6SPeter Zijlstra  *
69035a566e6SPeter Zijlstra  * Which looks a little like:
69135a566e6SPeter Zijlstra  *
69235a566e6SPeter Zijlstra  *   0 ----- 1
69335a566e6SPeter Zijlstra  *   |     / |
69435a566e6SPeter Zijlstra  *   |   /   |
69535a566e6SPeter Zijlstra  *   | /     |
69635a566e6SPeter Zijlstra  *   2 ----- 3
69735a566e6SPeter Zijlstra  *
69835a566e6SPeter Zijlstra  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
69935a566e6SPeter Zijlstra  * are not.
70035a566e6SPeter Zijlstra  *
70135a566e6SPeter Zijlstra  * This leads to a few particularly weird cases where the sched_domain's are
70297fb7a0aSIngo Molnar  * not of the same number for each CPU. Consider:
70335a566e6SPeter Zijlstra  *
70435a566e6SPeter Zijlstra  * NUMA-2	0-3						0-3
70535a566e6SPeter Zijlstra  *  groups:	{0-2},{1-3}					{1-3},{0-2}
70635a566e6SPeter Zijlstra  *
70735a566e6SPeter Zijlstra  * NUMA-1	0-2		0-3		0-3		1-3
70835a566e6SPeter Zijlstra  *
70935a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
71035a566e6SPeter Zijlstra  *
71135a566e6SPeter Zijlstra  */
71235a566e6SPeter Zijlstra 
71335a566e6SPeter Zijlstra 
71435a566e6SPeter Zijlstra /*
715e5c14b1fSPeter Zijlstra  * Build the balance mask; it contains only those CPUs that can arrive at this
716e5c14b1fSPeter Zijlstra  * group and should be considered to continue balancing.
71735a566e6SPeter Zijlstra  *
71835a566e6SPeter Zijlstra  * We do this during the group creation pass, therefore the group information
71935a566e6SPeter Zijlstra  * isn't complete yet, however since each group represents a (child) domain we
72035a566e6SPeter Zijlstra  * can fully construct this using the sched_domain bits (which are already
72135a566e6SPeter Zijlstra  * complete).
722f2cb1360SIngo Molnar  */
7231676330eSPeter Zijlstra static void
724e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
725f2cb1360SIngo Molnar {
726ae4df9d6SPeter Zijlstra 	const struct cpumask *sg_span = sched_group_span(sg);
727f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
728f2cb1360SIngo Molnar 	struct sched_domain *sibling;
729f2cb1360SIngo Molnar 	int i;
730f2cb1360SIngo Molnar 
7311676330eSPeter Zijlstra 	cpumask_clear(mask);
7321676330eSPeter Zijlstra 
733f32d782eSLauro Ramos Venancio 	for_each_cpu(i, sg_span) {
734f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
73573bb059fSPeter Zijlstra 
73673bb059fSPeter Zijlstra 		/*
73773bb059fSPeter Zijlstra 		 * Can happen in the asymmetric case, where these siblings are
73873bb059fSPeter Zijlstra 		 * unused. The mask will not be empty because those CPUs that
73973bb059fSPeter Zijlstra 		 * do have the top domain _should_ span the domain.
74073bb059fSPeter Zijlstra 		 */
74173bb059fSPeter Zijlstra 		if (!sibling->child)
74273bb059fSPeter Zijlstra 			continue;
74373bb059fSPeter Zijlstra 
74473bb059fSPeter Zijlstra 		/* If we would not end up here, we can't continue from here */
74573bb059fSPeter Zijlstra 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
746f2cb1360SIngo Molnar 			continue;
747f2cb1360SIngo Molnar 
7481676330eSPeter Zijlstra 		cpumask_set_cpu(i, mask);
749f2cb1360SIngo Molnar 	}
75073bb059fSPeter Zijlstra 
75173bb059fSPeter Zijlstra 	/* We must not have empty masks here */
7521676330eSPeter Zijlstra 	WARN_ON_ONCE(cpumask_empty(mask));
753f2cb1360SIngo Molnar }
754f2cb1360SIngo Molnar 
755f2cb1360SIngo Molnar /*
75635a566e6SPeter Zijlstra  * XXX: This creates per-node group entries; since the load-balancer will
75735a566e6SPeter Zijlstra  * immediately access remote memory to construct this group's load-balance
75835a566e6SPeter Zijlstra  * statistics having the groups node local is of dubious benefit.
759f2cb1360SIngo Molnar  */
7608c033469SLauro Ramos Venancio static struct sched_group *
7618c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
7628c033469SLauro Ramos Venancio {
7638c033469SLauro Ramos Venancio 	struct sched_group *sg;
7648c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
7658c033469SLauro Ramos Venancio 
7668c033469SLauro Ramos Venancio 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7678c033469SLauro Ramos Venancio 			GFP_KERNEL, cpu_to_node(cpu));
7688c033469SLauro Ramos Venancio 
7698c033469SLauro Ramos Venancio 	if (!sg)
7708c033469SLauro Ramos Venancio 		return NULL;
7718c033469SLauro Ramos Venancio 
772ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
7738c033469SLauro Ramos Venancio 	if (sd->child)
7748c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd->child));
7758c033469SLauro Ramos Venancio 	else
7768c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd));
7778c033469SLauro Ramos Venancio 
778213c5a45SShu Wang 	atomic_inc(&sg->ref);
7798c033469SLauro Ramos Venancio 	return sg;
7808c033469SLauro Ramos Venancio }
7818c033469SLauro Ramos Venancio 
7828c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd,
7831676330eSPeter Zijlstra 				     struct sched_group *sg)
7848c033469SLauro Ramos Venancio {
7851676330eSPeter Zijlstra 	struct cpumask *mask = sched_domains_tmpmask2;
7868c033469SLauro Ramos Venancio 	struct sd_data *sdd = sd->private;
7878c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
7881676330eSPeter Zijlstra 	int cpu;
7891676330eSPeter Zijlstra 
790e5c14b1fSPeter Zijlstra 	build_balance_mask(sd, sg, mask);
791ae4df9d6SPeter Zijlstra 	cpu = cpumask_first_and(sched_group_span(sg), mask);
7928c033469SLauro Ramos Venancio 
7938c033469SLauro Ramos Venancio 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
7948c033469SLauro Ramos Venancio 	if (atomic_inc_return(&sg->sgc->ref) == 1)
795e5c14b1fSPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), mask);
79635a566e6SPeter Zijlstra 	else
797e5c14b1fSPeter Zijlstra 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
7988c033469SLauro Ramos Venancio 
7998c033469SLauro Ramos Venancio 	/*
8008c033469SLauro Ramos Venancio 	 * Initialize sgc->capacity such that even if we mess up the
8018c033469SLauro Ramos Venancio 	 * domains and no possible iteration will get us here, we won't
8028c033469SLauro Ramos Venancio 	 * die on a /0 trap.
8038c033469SLauro Ramos Venancio 	 */
804ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
8058c033469SLauro Ramos Venancio 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
8068c033469SLauro Ramos Venancio 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
807e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
8088c033469SLauro Ramos Venancio }
8098c033469SLauro Ramos Venancio 
810f2cb1360SIngo Molnar static int
811f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu)
812f2cb1360SIngo Molnar {
81391eaed0dSPeter Zijlstra 	struct sched_group *first = NULL, *last = NULL, *sg;
814f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
815f2cb1360SIngo Molnar 	struct cpumask *covered = sched_domains_tmpmask;
816f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
817f2cb1360SIngo Molnar 	struct sched_domain *sibling;
818f2cb1360SIngo Molnar 	int i;
819f2cb1360SIngo Molnar 
820f2cb1360SIngo Molnar 	cpumask_clear(covered);
821f2cb1360SIngo Molnar 
8220372dd27SPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
823f2cb1360SIngo Molnar 		struct cpumask *sg_span;
824f2cb1360SIngo Molnar 
825f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
826f2cb1360SIngo Molnar 			continue;
827f2cb1360SIngo Molnar 
828f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
829f2cb1360SIngo Molnar 
830c20e1ea4SLauro Ramos Venancio 		/*
831c20e1ea4SLauro Ramos Venancio 		 * Asymmetric node setups can result in situations where the
832c20e1ea4SLauro Ramos Venancio 		 * domain tree is of unequal depth, make sure to skip domains
833c20e1ea4SLauro Ramos Venancio 		 * that already cover the entire range.
834c20e1ea4SLauro Ramos Venancio 		 *
835c20e1ea4SLauro Ramos Venancio 		 * In that case build_sched_domains() will have terminated the
836c20e1ea4SLauro Ramos Venancio 		 * iteration early and our sibling sd spans will be empty.
837c20e1ea4SLauro Ramos Venancio 		 * Domains should always include the CPU they're built on, so
838c20e1ea4SLauro Ramos Venancio 		 * check that.
839c20e1ea4SLauro Ramos Venancio 		 */
840f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
841f2cb1360SIngo Molnar 			continue;
842f2cb1360SIngo Molnar 
8438c033469SLauro Ramos Venancio 		sg = build_group_from_child_sched_domain(sibling, cpu);
844f2cb1360SIngo Molnar 		if (!sg)
845f2cb1360SIngo Molnar 			goto fail;
846f2cb1360SIngo Molnar 
847ae4df9d6SPeter Zijlstra 		sg_span = sched_group_span(sg);
848f2cb1360SIngo Molnar 		cpumask_or(covered, covered, sg_span);
849f2cb1360SIngo Molnar 
8501676330eSPeter Zijlstra 		init_overlap_sched_group(sd, sg);
851f2cb1360SIngo Molnar 
852f2cb1360SIngo Molnar 		if (!first)
853f2cb1360SIngo Molnar 			first = sg;
854f2cb1360SIngo Molnar 		if (last)
855f2cb1360SIngo Molnar 			last->next = sg;
856f2cb1360SIngo Molnar 		last = sg;
857f2cb1360SIngo Molnar 		last->next = first;
858f2cb1360SIngo Molnar 	}
85991eaed0dSPeter Zijlstra 	sd->groups = first;
860f2cb1360SIngo Molnar 
861f2cb1360SIngo Molnar 	return 0;
862f2cb1360SIngo Molnar 
863f2cb1360SIngo Molnar fail:
864f2cb1360SIngo Molnar 	free_sched_groups(first, 0);
865f2cb1360SIngo Molnar 
866f2cb1360SIngo Molnar 	return -ENOMEM;
867f2cb1360SIngo Molnar }
868f2cb1360SIngo Molnar 
86935a566e6SPeter Zijlstra 
87035a566e6SPeter Zijlstra /*
87135a566e6SPeter Zijlstra  * Package topology (also see the load-balance blurb in fair.c)
87235a566e6SPeter Zijlstra  *
87335a566e6SPeter Zijlstra  * The scheduler builds a tree structure to represent a number of important
87435a566e6SPeter Zijlstra  * topology features. By default (default_topology[]) these include:
87535a566e6SPeter Zijlstra  *
87635a566e6SPeter Zijlstra  *  - Simultaneous multithreading (SMT)
87735a566e6SPeter Zijlstra  *  - Multi-Core Cache (MC)
87835a566e6SPeter Zijlstra  *  - Package (DIE)
87935a566e6SPeter Zijlstra  *
88035a566e6SPeter Zijlstra  * Where the last one more or less denotes everything up to a NUMA node.
88135a566e6SPeter Zijlstra  *
88235a566e6SPeter Zijlstra  * The tree consists of 3 primary data structures:
88335a566e6SPeter Zijlstra  *
88435a566e6SPeter Zijlstra  *	sched_domain -> sched_group -> sched_group_capacity
88535a566e6SPeter Zijlstra  *	    ^ ^             ^ ^
88635a566e6SPeter Zijlstra  *          `-'             `-'
88735a566e6SPeter Zijlstra  *
88897fb7a0aSIngo Molnar  * The sched_domains are per-CPU and have a two way link (parent & child) and
88935a566e6SPeter Zijlstra  * denote the ever growing mask of CPUs belonging to that level of topology.
89035a566e6SPeter Zijlstra  *
89135a566e6SPeter Zijlstra  * Each sched_domain has a circular (double) linked list of sched_group's, each
89235a566e6SPeter Zijlstra  * denoting the domains of the level below (or individual CPUs in case of the
89335a566e6SPeter Zijlstra  * first domain level). The sched_group linked by a sched_domain includes the
89435a566e6SPeter Zijlstra  * CPU of that sched_domain [*].
89535a566e6SPeter Zijlstra  *
89635a566e6SPeter Zijlstra  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
89735a566e6SPeter Zijlstra  *
89835a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
89935a566e6SPeter Zijlstra  *
90035a566e6SPeter Zijlstra  * DIE  [                             ]
90135a566e6SPeter Zijlstra  * MC   [             ] [             ]
90235a566e6SPeter Zijlstra  * SMT  [     ] [     ] [     ] [     ]
90335a566e6SPeter Zijlstra  *
90435a566e6SPeter Zijlstra  *  - or -
90535a566e6SPeter Zijlstra  *
90635a566e6SPeter Zijlstra  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
90735a566e6SPeter Zijlstra  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
90835a566e6SPeter Zijlstra  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
90935a566e6SPeter Zijlstra  *
91035a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
91135a566e6SPeter Zijlstra  *
91235a566e6SPeter Zijlstra  * One way to think about it is: sched_domain moves you up and down among these
91335a566e6SPeter Zijlstra  * topology levels, while sched_group moves you sideways through it, at child
91435a566e6SPeter Zijlstra  * domain granularity.
91535a566e6SPeter Zijlstra  *
91635a566e6SPeter Zijlstra  * sched_group_capacity ensures each unique sched_group has shared storage.
91735a566e6SPeter Zijlstra  *
91835a566e6SPeter Zijlstra  * There are two related construction problems, both require a CPU that
91935a566e6SPeter Zijlstra  * uniquely identify each group (for a given domain):
92035a566e6SPeter Zijlstra  *
92135a566e6SPeter Zijlstra  *  - The first is the balance_cpu (see should_we_balance() and the
92235a566e6SPeter Zijlstra  *    load-balance blub in fair.c); for each group we only want 1 CPU to
92335a566e6SPeter Zijlstra  *    continue balancing at a higher domain.
92435a566e6SPeter Zijlstra  *
92535a566e6SPeter Zijlstra  *  - The second is the sched_group_capacity; we want all identical groups
92635a566e6SPeter Zijlstra  *    to share a single sched_group_capacity.
92735a566e6SPeter Zijlstra  *
92835a566e6SPeter Zijlstra  * Since these topologies are exclusive by construction. That is, its
92935a566e6SPeter Zijlstra  * impossible for an SMT thread to belong to multiple cores, and cores to
93035a566e6SPeter Zijlstra  * be part of multiple caches. There is a very clear and unique location
93135a566e6SPeter Zijlstra  * for each CPU in the hierarchy.
93235a566e6SPeter Zijlstra  *
93335a566e6SPeter Zijlstra  * Therefore computing a unique CPU for each group is trivial (the iteration
93435a566e6SPeter Zijlstra  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
93535a566e6SPeter Zijlstra  * group), we can simply pick the first CPU in each group.
93635a566e6SPeter Zijlstra  *
93735a566e6SPeter Zijlstra  *
93835a566e6SPeter Zijlstra  * [*] in other words, the first group of each domain is its child domain.
93935a566e6SPeter Zijlstra  */
94035a566e6SPeter Zijlstra 
9410c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd)
942f2cb1360SIngo Molnar {
943f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
944f2cb1360SIngo Molnar 	struct sched_domain *child = sd->child;
9450c0e776aSPeter Zijlstra 	struct sched_group *sg;
946f2cb1360SIngo Molnar 
947f2cb1360SIngo Molnar 	if (child)
948f2cb1360SIngo Molnar 		cpu = cpumask_first(sched_domain_span(child));
949f2cb1360SIngo Molnar 
9500c0e776aSPeter Zijlstra 	sg = *per_cpu_ptr(sdd->sg, cpu);
9510c0e776aSPeter Zijlstra 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
952f2cb1360SIngo Molnar 
953f2cb1360SIngo Molnar 	/* For claim_allocations: */
9540c0e776aSPeter Zijlstra 	atomic_inc(&sg->ref);
9550c0e776aSPeter Zijlstra 	atomic_inc(&sg->sgc->ref);
9560c0e776aSPeter Zijlstra 
9570c0e776aSPeter Zijlstra 	if (child) {
958ae4df9d6SPeter Zijlstra 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
959ae4df9d6SPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
9600c0e776aSPeter Zijlstra 	} else {
961ae4df9d6SPeter Zijlstra 		cpumask_set_cpu(cpu, sched_group_span(sg));
962e5c14b1fSPeter Zijlstra 		cpumask_set_cpu(cpu, group_balance_mask(sg));
963f2cb1360SIngo Molnar 	}
964f2cb1360SIngo Molnar 
965ae4df9d6SPeter Zijlstra 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
9660c0e776aSPeter Zijlstra 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
967e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
9680c0e776aSPeter Zijlstra 
9690c0e776aSPeter Zijlstra 	return sg;
970f2cb1360SIngo Molnar }
971f2cb1360SIngo Molnar 
972f2cb1360SIngo Molnar /*
973f2cb1360SIngo Molnar  * build_sched_groups will build a circular linked list of the groups
974f2cb1360SIngo Molnar  * covered by the given span, and will set each group's ->cpumask correctly,
975f2cb1360SIngo Molnar  * and ->cpu_capacity to 0.
976f2cb1360SIngo Molnar  *
977f2cb1360SIngo Molnar  * Assumes the sched_domain tree is fully constructed
978f2cb1360SIngo Molnar  */
979f2cb1360SIngo Molnar static int
980f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu)
981f2cb1360SIngo Molnar {
982f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL;
983f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
984f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
985f2cb1360SIngo Molnar 	struct cpumask *covered;
986f2cb1360SIngo Molnar 	int i;
987f2cb1360SIngo Molnar 
988f2cb1360SIngo Molnar 	lockdep_assert_held(&sched_domains_mutex);
989f2cb1360SIngo Molnar 	covered = sched_domains_tmpmask;
990f2cb1360SIngo Molnar 
991f2cb1360SIngo Molnar 	cpumask_clear(covered);
992f2cb1360SIngo Molnar 
9930c0e776aSPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
994f2cb1360SIngo Molnar 		struct sched_group *sg;
995f2cb1360SIngo Molnar 
996f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
997f2cb1360SIngo Molnar 			continue;
998f2cb1360SIngo Molnar 
9990c0e776aSPeter Zijlstra 		sg = get_group(i, sdd);
1000f2cb1360SIngo Molnar 
1001ae4df9d6SPeter Zijlstra 		cpumask_or(covered, covered, sched_group_span(sg));
1002f2cb1360SIngo Molnar 
1003f2cb1360SIngo Molnar 		if (!first)
1004f2cb1360SIngo Molnar 			first = sg;
1005f2cb1360SIngo Molnar 		if (last)
1006f2cb1360SIngo Molnar 			last->next = sg;
1007f2cb1360SIngo Molnar 		last = sg;
1008f2cb1360SIngo Molnar 	}
1009f2cb1360SIngo Molnar 	last->next = first;
10100c0e776aSPeter Zijlstra 	sd->groups = first;
1011f2cb1360SIngo Molnar 
1012f2cb1360SIngo Molnar 	return 0;
1013f2cb1360SIngo Molnar }
1014f2cb1360SIngo Molnar 
1015f2cb1360SIngo Molnar /*
1016f2cb1360SIngo Molnar  * Initialize sched groups cpu_capacity.
1017f2cb1360SIngo Molnar  *
1018f2cb1360SIngo Molnar  * cpu_capacity indicates the capacity of sched group, which is used while
1019f2cb1360SIngo Molnar  * distributing the load between different sched groups in a sched domain.
1020f2cb1360SIngo Molnar  * Typically cpu_capacity for all the groups in a sched domain will be same
1021f2cb1360SIngo Molnar  * unless there are asymmetries in the topology. If there are asymmetries,
1022f2cb1360SIngo Molnar  * group having more cpu_capacity will pickup more load compared to the
1023f2cb1360SIngo Molnar  * group having less cpu_capacity.
1024f2cb1360SIngo Molnar  */
1025f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1026f2cb1360SIngo Molnar {
1027f2cb1360SIngo Molnar 	struct sched_group *sg = sd->groups;
1028f2cb1360SIngo Molnar 
1029f2cb1360SIngo Molnar 	WARN_ON(!sg);
1030f2cb1360SIngo Molnar 
1031f2cb1360SIngo Molnar 	do {
1032f2cb1360SIngo Molnar 		int cpu, max_cpu = -1;
1033f2cb1360SIngo Molnar 
1034ae4df9d6SPeter Zijlstra 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1035f2cb1360SIngo Molnar 
1036f2cb1360SIngo Molnar 		if (!(sd->flags & SD_ASYM_PACKING))
1037f2cb1360SIngo Molnar 			goto next;
1038f2cb1360SIngo Molnar 
1039ae4df9d6SPeter Zijlstra 		for_each_cpu(cpu, sched_group_span(sg)) {
1040f2cb1360SIngo Molnar 			if (max_cpu < 0)
1041f2cb1360SIngo Molnar 				max_cpu = cpu;
1042f2cb1360SIngo Molnar 			else if (sched_asym_prefer(cpu, max_cpu))
1043f2cb1360SIngo Molnar 				max_cpu = cpu;
1044f2cb1360SIngo Molnar 		}
1045f2cb1360SIngo Molnar 		sg->asym_prefer_cpu = max_cpu;
1046f2cb1360SIngo Molnar 
1047f2cb1360SIngo Molnar next:
1048f2cb1360SIngo Molnar 		sg = sg->next;
1049f2cb1360SIngo Molnar 	} while (sg != sd->groups);
1050f2cb1360SIngo Molnar 
1051f2cb1360SIngo Molnar 	if (cpu != group_balance_cpu(sg))
1052f2cb1360SIngo Molnar 		return;
1053f2cb1360SIngo Molnar 
1054f2cb1360SIngo Molnar 	update_group_capacity(sd, cpu);
1055f2cb1360SIngo Molnar }
1056f2cb1360SIngo Molnar 
1057f2cb1360SIngo Molnar /*
1058f2cb1360SIngo Molnar  * Initializers for schedule domains
1059f2cb1360SIngo Molnar  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1060f2cb1360SIngo Molnar  */
1061f2cb1360SIngo Molnar 
1062f2cb1360SIngo Molnar static int default_relax_domain_level = -1;
1063f2cb1360SIngo Molnar int sched_domain_level_max;
1064f2cb1360SIngo Molnar 
1065f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str)
1066f2cb1360SIngo Molnar {
1067f2cb1360SIngo Molnar 	if (kstrtoint(str, 0, &default_relax_domain_level))
1068f2cb1360SIngo Molnar 		pr_warn("Unable to set relax_domain_level\n");
1069f2cb1360SIngo Molnar 
1070f2cb1360SIngo Molnar 	return 1;
1071f2cb1360SIngo Molnar }
1072f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level);
1073f2cb1360SIngo Molnar 
1074f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd,
1075f2cb1360SIngo Molnar 				 struct sched_domain_attr *attr)
1076f2cb1360SIngo Molnar {
1077f2cb1360SIngo Molnar 	int request;
1078f2cb1360SIngo Molnar 
1079f2cb1360SIngo Molnar 	if (!attr || attr->relax_domain_level < 0) {
1080f2cb1360SIngo Molnar 		if (default_relax_domain_level < 0)
1081f2cb1360SIngo Molnar 			return;
1082f2cb1360SIngo Molnar 		else
1083f2cb1360SIngo Molnar 			request = default_relax_domain_level;
1084f2cb1360SIngo Molnar 	} else
1085f2cb1360SIngo Molnar 		request = attr->relax_domain_level;
1086f2cb1360SIngo Molnar 	if (request < sd->level) {
1087f2cb1360SIngo Molnar 		/* Turn off idle balance on this domain: */
1088f2cb1360SIngo Molnar 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1089f2cb1360SIngo Molnar 	} else {
1090f2cb1360SIngo Molnar 		/* Turn on idle balance on this domain: */
1091f2cb1360SIngo Molnar 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1092f2cb1360SIngo Molnar 	}
1093f2cb1360SIngo Molnar }
1094f2cb1360SIngo Molnar 
1095f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map);
1096f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map);
1097f2cb1360SIngo Molnar 
1098f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1099f2cb1360SIngo Molnar 				 const struct cpumask *cpu_map)
1100f2cb1360SIngo Molnar {
1101f2cb1360SIngo Molnar 	switch (what) {
1102f2cb1360SIngo Molnar 	case sa_rootdomain:
1103f2cb1360SIngo Molnar 		if (!atomic_read(&d->rd->refcount))
1104f2cb1360SIngo Molnar 			free_rootdomain(&d->rd->rcu);
1105f2cb1360SIngo Molnar 		/* Fall through */
1106f2cb1360SIngo Molnar 	case sa_sd:
1107f2cb1360SIngo Molnar 		free_percpu(d->sd);
1108f2cb1360SIngo Molnar 		/* Fall through */
1109f2cb1360SIngo Molnar 	case sa_sd_storage:
1110f2cb1360SIngo Molnar 		__sdt_free(cpu_map);
1111f2cb1360SIngo Molnar 		/* Fall through */
1112f2cb1360SIngo Molnar 	case sa_none:
1113f2cb1360SIngo Molnar 		break;
1114f2cb1360SIngo Molnar 	}
1115f2cb1360SIngo Molnar }
1116f2cb1360SIngo Molnar 
1117f2cb1360SIngo Molnar static enum s_alloc
1118f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1119f2cb1360SIngo Molnar {
1120f2cb1360SIngo Molnar 	memset(d, 0, sizeof(*d));
1121f2cb1360SIngo Molnar 
1122f2cb1360SIngo Molnar 	if (__sdt_alloc(cpu_map))
1123f2cb1360SIngo Molnar 		return sa_sd_storage;
1124f2cb1360SIngo Molnar 	d->sd = alloc_percpu(struct sched_domain *);
1125f2cb1360SIngo Molnar 	if (!d->sd)
1126f2cb1360SIngo Molnar 		return sa_sd_storage;
1127f2cb1360SIngo Molnar 	d->rd = alloc_rootdomain();
1128f2cb1360SIngo Molnar 	if (!d->rd)
1129f2cb1360SIngo Molnar 		return sa_sd;
113097fb7a0aSIngo Molnar 
1131f2cb1360SIngo Molnar 	return sa_rootdomain;
1132f2cb1360SIngo Molnar }
1133f2cb1360SIngo Molnar 
1134f2cb1360SIngo Molnar /*
1135f2cb1360SIngo Molnar  * NULL the sd_data elements we've used to build the sched_domain and
1136f2cb1360SIngo Molnar  * sched_group structure so that the subsequent __free_domain_allocs()
1137f2cb1360SIngo Molnar  * will not free the data we're using.
1138f2cb1360SIngo Molnar  */
1139f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd)
1140f2cb1360SIngo Molnar {
1141f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1142f2cb1360SIngo Molnar 
1143f2cb1360SIngo Molnar 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1144f2cb1360SIngo Molnar 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1145f2cb1360SIngo Molnar 
1146f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1147f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1148f2cb1360SIngo Molnar 
1149f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1150f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1151f2cb1360SIngo Molnar 
1152f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1153f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1154f2cb1360SIngo Molnar }
1155f2cb1360SIngo Molnar 
1156f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1157f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type;
115897fb7a0aSIngo Molnar 
115997fb7a0aSIngo Molnar static int			sched_domains_numa_levels;
1160f2cb1360SIngo Molnar static int			sched_domains_curr_level;
116197fb7a0aSIngo Molnar 
116297fb7a0aSIngo Molnar int				sched_max_numa_distance;
116397fb7a0aSIngo Molnar static int			*sched_domains_numa_distance;
116497fb7a0aSIngo Molnar static struct cpumask		***sched_domains_numa_masks;
1165f2cb1360SIngo Molnar #endif
1166f2cb1360SIngo Molnar 
1167f2cb1360SIngo Molnar /*
1168f2cb1360SIngo Molnar  * SD_flags allowed in topology descriptions.
1169f2cb1360SIngo Molnar  *
1170f2cb1360SIngo Molnar  * These flags are purely descriptive of the topology and do not prescribe
1171f2cb1360SIngo Molnar  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1172f2cb1360SIngo Molnar  * function:
1173f2cb1360SIngo Molnar  *
1174f2cb1360SIngo Molnar  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1175f2cb1360SIngo Molnar  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1176f2cb1360SIngo Molnar  *   SD_NUMA                - describes NUMA topologies
1177f2cb1360SIngo Molnar  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1178f2cb1360SIngo Molnar  *
1179f2cb1360SIngo Molnar  * Odd one out, which beside describing the topology has a quirk also
1180f2cb1360SIngo Molnar  * prescribes the desired behaviour that goes along with it:
1181f2cb1360SIngo Molnar  *
1182f2cb1360SIngo Molnar  *   SD_ASYM_PACKING        - describes SMT quirks
1183f2cb1360SIngo Molnar  */
1184f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS		\
1185f2cb1360SIngo Molnar 	(SD_SHARE_CPUCAPACITY	|	\
1186f2cb1360SIngo Molnar 	 SD_SHARE_PKG_RESOURCES |	\
1187f2cb1360SIngo Molnar 	 SD_NUMA		|	\
1188f2cb1360SIngo Molnar 	 SD_ASYM_PACKING	|	\
1189f2cb1360SIngo Molnar 	 SD_SHARE_POWERDOMAIN)
1190f2cb1360SIngo Molnar 
1191f2cb1360SIngo Molnar static struct sched_domain *
1192f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl,
1193f2cb1360SIngo Molnar 	const struct cpumask *cpu_map,
119405484e09SMorten Rasmussen 	struct sched_domain *child, int dflags, int cpu)
1195f2cb1360SIngo Molnar {
1196f2cb1360SIngo Molnar 	struct sd_data *sdd = &tl->data;
1197f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1198f2cb1360SIngo Molnar 	int sd_id, sd_weight, sd_flags = 0;
1199f2cb1360SIngo Molnar 
1200f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1201f2cb1360SIngo Molnar 	/*
1202f2cb1360SIngo Molnar 	 * Ugly hack to pass state to sd_numa_mask()...
1203f2cb1360SIngo Molnar 	 */
1204f2cb1360SIngo Molnar 	sched_domains_curr_level = tl->numa_level;
1205f2cb1360SIngo Molnar #endif
1206f2cb1360SIngo Molnar 
1207f2cb1360SIngo Molnar 	sd_weight = cpumask_weight(tl->mask(cpu));
1208f2cb1360SIngo Molnar 
1209f2cb1360SIngo Molnar 	if (tl->sd_flags)
1210f2cb1360SIngo Molnar 		sd_flags = (*tl->sd_flags)();
1211f2cb1360SIngo Molnar 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1212f2cb1360SIngo Molnar 			"wrong sd_flags in topology description\n"))
1213f2cb1360SIngo Molnar 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1214f2cb1360SIngo Molnar 
121505484e09SMorten Rasmussen 	/* Apply detected topology flags */
121605484e09SMorten Rasmussen 	sd_flags |= dflags;
121705484e09SMorten Rasmussen 
1218f2cb1360SIngo Molnar 	*sd = (struct sched_domain){
1219f2cb1360SIngo Molnar 		.min_interval		= sd_weight,
1220f2cb1360SIngo Molnar 		.max_interval		= 2*sd_weight,
1221f2cb1360SIngo Molnar 		.busy_factor		= 32,
1222f2cb1360SIngo Molnar 		.imbalance_pct		= 125,
1223f2cb1360SIngo Molnar 
1224f2cb1360SIngo Molnar 		.cache_nice_tries	= 0,
1225f2cb1360SIngo Molnar 		.busy_idx		= 0,
1226f2cb1360SIngo Molnar 		.idle_idx		= 0,
1227f2cb1360SIngo Molnar 		.newidle_idx		= 0,
1228f2cb1360SIngo Molnar 		.wake_idx		= 0,
1229f2cb1360SIngo Molnar 		.forkexec_idx		= 0,
1230f2cb1360SIngo Molnar 
1231f2cb1360SIngo Molnar 		.flags			= 1*SD_LOAD_BALANCE
1232f2cb1360SIngo Molnar 					| 1*SD_BALANCE_NEWIDLE
1233f2cb1360SIngo Molnar 					| 1*SD_BALANCE_EXEC
1234f2cb1360SIngo Molnar 					| 1*SD_BALANCE_FORK
1235f2cb1360SIngo Molnar 					| 0*SD_BALANCE_WAKE
1236f2cb1360SIngo Molnar 					| 1*SD_WAKE_AFFINE
1237f2cb1360SIngo Molnar 					| 0*SD_SHARE_CPUCAPACITY
1238f2cb1360SIngo Molnar 					| 0*SD_SHARE_PKG_RESOURCES
1239f2cb1360SIngo Molnar 					| 0*SD_SERIALIZE
12409c63e84dSMorten Rasmussen 					| 1*SD_PREFER_SIBLING
1241f2cb1360SIngo Molnar 					| 0*SD_NUMA
1242f2cb1360SIngo Molnar 					| sd_flags
1243f2cb1360SIngo Molnar 					,
1244f2cb1360SIngo Molnar 
1245f2cb1360SIngo Molnar 		.last_balance		= jiffies,
1246f2cb1360SIngo Molnar 		.balance_interval	= sd_weight,
1247f2cb1360SIngo Molnar 		.max_newidle_lb_cost	= 0,
1248f2cb1360SIngo Molnar 		.next_decay_max_lb_cost	= jiffies,
1249f2cb1360SIngo Molnar 		.child			= child,
1250f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1251f2cb1360SIngo Molnar 		.name			= tl->name,
1252f2cb1360SIngo Molnar #endif
1253f2cb1360SIngo Molnar 	};
1254f2cb1360SIngo Molnar 
1255f2cb1360SIngo Molnar 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1256f2cb1360SIngo Molnar 	sd_id = cpumask_first(sched_domain_span(sd));
1257f2cb1360SIngo Molnar 
1258f2cb1360SIngo Molnar 	/*
1259f2cb1360SIngo Molnar 	 * Convert topological properties into behaviour.
1260f2cb1360SIngo Molnar 	 */
1261f2cb1360SIngo Molnar 
1262f2cb1360SIngo Molnar 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1263f2cb1360SIngo Molnar 		struct sched_domain *t = sd;
1264f2cb1360SIngo Molnar 
12659c63e84dSMorten Rasmussen 		/*
12669c63e84dSMorten Rasmussen 		 * Don't attempt to spread across CPUs of different capacities.
12679c63e84dSMorten Rasmussen 		 */
12689c63e84dSMorten Rasmussen 		if (sd->child)
12699c63e84dSMorten Rasmussen 			sd->child->flags &= ~SD_PREFER_SIBLING;
12709c63e84dSMorten Rasmussen 
1271f2cb1360SIngo Molnar 		for_each_lower_domain(t)
1272f2cb1360SIngo Molnar 			t->flags |= SD_BALANCE_WAKE;
1273f2cb1360SIngo Molnar 	}
1274f2cb1360SIngo Molnar 
1275f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1276f2cb1360SIngo Molnar 		sd->imbalance_pct = 110;
1277f2cb1360SIngo Molnar 
1278f2cb1360SIngo Molnar 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1279f2cb1360SIngo Molnar 		sd->imbalance_pct = 117;
1280f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1281f2cb1360SIngo Molnar 		sd->busy_idx = 2;
1282f2cb1360SIngo Molnar 
1283f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1284f2cb1360SIngo Molnar 	} else if (sd->flags & SD_NUMA) {
1285f2cb1360SIngo Molnar 		sd->cache_nice_tries = 2;
1286f2cb1360SIngo Molnar 		sd->busy_idx = 3;
1287f2cb1360SIngo Molnar 		sd->idle_idx = 2;
1288f2cb1360SIngo Molnar 
12899c63e84dSMorten Rasmussen 		sd->flags &= ~SD_PREFER_SIBLING;
1290f2cb1360SIngo Molnar 		sd->flags |= SD_SERIALIZE;
1291f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1292f2cb1360SIngo Molnar 			sd->flags &= ~(SD_BALANCE_EXEC |
1293f2cb1360SIngo Molnar 				       SD_BALANCE_FORK |
1294f2cb1360SIngo Molnar 				       SD_WAKE_AFFINE);
1295f2cb1360SIngo Molnar 		}
1296f2cb1360SIngo Molnar 
1297f2cb1360SIngo Molnar #endif
1298f2cb1360SIngo Molnar 	} else {
1299f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1300f2cb1360SIngo Molnar 		sd->busy_idx = 2;
1301f2cb1360SIngo Molnar 		sd->idle_idx = 1;
1302f2cb1360SIngo Molnar 	}
1303f2cb1360SIngo Molnar 
1304f2cb1360SIngo Molnar 	/*
1305f2cb1360SIngo Molnar 	 * For all levels sharing cache; connect a sched_domain_shared
1306f2cb1360SIngo Molnar 	 * instance.
1307f2cb1360SIngo Molnar 	 */
1308f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1309f2cb1360SIngo Molnar 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1310f2cb1360SIngo Molnar 		atomic_inc(&sd->shared->ref);
1311f2cb1360SIngo Molnar 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1312f2cb1360SIngo Molnar 	}
1313f2cb1360SIngo Molnar 
1314f2cb1360SIngo Molnar 	sd->private = sdd;
1315f2cb1360SIngo Molnar 
1316f2cb1360SIngo Molnar 	return sd;
1317f2cb1360SIngo Molnar }
1318f2cb1360SIngo Molnar 
1319f2cb1360SIngo Molnar /*
1320f2cb1360SIngo Molnar  * Topology list, bottom-up.
1321f2cb1360SIngo Molnar  */
1322f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = {
1323f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT
1324f2cb1360SIngo Molnar 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1325f2cb1360SIngo Molnar #endif
1326f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC
1327f2cb1360SIngo Molnar 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1328f2cb1360SIngo Molnar #endif
1329f2cb1360SIngo Molnar 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1330f2cb1360SIngo Molnar 	{ NULL, },
1331f2cb1360SIngo Molnar };
1332f2cb1360SIngo Molnar 
1333f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology =
1334f2cb1360SIngo Molnar 	default_topology;
1335f2cb1360SIngo Molnar 
1336f2cb1360SIngo Molnar #define for_each_sd_topology(tl)			\
1337f2cb1360SIngo Molnar 	for (tl = sched_domain_topology; tl->mask; tl++)
1338f2cb1360SIngo Molnar 
1339f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl)
1340f2cb1360SIngo Molnar {
1341f2cb1360SIngo Molnar 	if (WARN_ON_ONCE(sched_smp_initialized))
1342f2cb1360SIngo Molnar 		return;
1343f2cb1360SIngo Molnar 
1344f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1345f2cb1360SIngo Molnar }
1346f2cb1360SIngo Molnar 
1347f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1348f2cb1360SIngo Molnar 
1349f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu)
1350f2cb1360SIngo Molnar {
1351f2cb1360SIngo Molnar 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1352f2cb1360SIngo Molnar }
1353f2cb1360SIngo Molnar 
1354f2cb1360SIngo Molnar static void sched_numa_warn(const char *str)
1355f2cb1360SIngo Molnar {
1356f2cb1360SIngo Molnar 	static int done = false;
1357f2cb1360SIngo Molnar 	int i,j;
1358f2cb1360SIngo Molnar 
1359f2cb1360SIngo Molnar 	if (done)
1360f2cb1360SIngo Molnar 		return;
1361f2cb1360SIngo Molnar 
1362f2cb1360SIngo Molnar 	done = true;
1363f2cb1360SIngo Molnar 
1364f2cb1360SIngo Molnar 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1365f2cb1360SIngo Molnar 
1366f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1367f2cb1360SIngo Molnar 		printk(KERN_WARNING "  ");
1368f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1369f2cb1360SIngo Molnar 			printk(KERN_CONT "%02d ", node_distance(i,j));
1370f2cb1360SIngo Molnar 		printk(KERN_CONT "\n");
1371f2cb1360SIngo Molnar 	}
1372f2cb1360SIngo Molnar 	printk(KERN_WARNING "\n");
1373f2cb1360SIngo Molnar }
1374f2cb1360SIngo Molnar 
1375f2cb1360SIngo Molnar bool find_numa_distance(int distance)
1376f2cb1360SIngo Molnar {
1377f2cb1360SIngo Molnar 	int i;
1378f2cb1360SIngo Molnar 
1379f2cb1360SIngo Molnar 	if (distance == node_distance(0, 0))
1380f2cb1360SIngo Molnar 		return true;
1381f2cb1360SIngo Molnar 
1382f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1383f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[i] == distance)
1384f2cb1360SIngo Molnar 			return true;
1385f2cb1360SIngo Molnar 	}
1386f2cb1360SIngo Molnar 
1387f2cb1360SIngo Molnar 	return false;
1388f2cb1360SIngo Molnar }
1389f2cb1360SIngo Molnar 
1390f2cb1360SIngo Molnar /*
1391f2cb1360SIngo Molnar  * A system can have three types of NUMA topology:
1392f2cb1360SIngo Molnar  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1393f2cb1360SIngo Molnar  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1394f2cb1360SIngo Molnar  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1395f2cb1360SIngo Molnar  *
1396f2cb1360SIngo Molnar  * The difference between a glueless mesh topology and a backplane
1397f2cb1360SIngo Molnar  * topology lies in whether communication between not directly
1398f2cb1360SIngo Molnar  * connected nodes goes through intermediary nodes (where programs
1399f2cb1360SIngo Molnar  * could run), or through backplane controllers. This affects
1400f2cb1360SIngo Molnar  * placement of programs.
1401f2cb1360SIngo Molnar  *
1402f2cb1360SIngo Molnar  * The type of topology can be discerned with the following tests:
1403f2cb1360SIngo Molnar  * - If the maximum distance between any nodes is 1 hop, the system
1404f2cb1360SIngo Molnar  *   is directly connected.
1405f2cb1360SIngo Molnar  * - If for two nodes A and B, located N > 1 hops away from each other,
1406f2cb1360SIngo Molnar  *   there is an intermediary node C, which is < N hops away from both
1407f2cb1360SIngo Molnar  *   nodes A and B, the system is a glueless mesh.
1408f2cb1360SIngo Molnar  */
1409f2cb1360SIngo Molnar static void init_numa_topology_type(void)
1410f2cb1360SIngo Molnar {
1411f2cb1360SIngo Molnar 	int a, b, c, n;
1412f2cb1360SIngo Molnar 
1413f2cb1360SIngo Molnar 	n = sched_max_numa_distance;
1414f2cb1360SIngo Molnar 
1415e5e96fafSSrikar Dronamraju 	if (sched_domains_numa_levels <= 2) {
1416f2cb1360SIngo Molnar 		sched_numa_topology_type = NUMA_DIRECT;
1417f2cb1360SIngo Molnar 		return;
1418f2cb1360SIngo Molnar 	}
1419f2cb1360SIngo Molnar 
1420f2cb1360SIngo Molnar 	for_each_online_node(a) {
1421f2cb1360SIngo Molnar 		for_each_online_node(b) {
1422f2cb1360SIngo Molnar 			/* Find two nodes furthest removed from each other. */
1423f2cb1360SIngo Molnar 			if (node_distance(a, b) < n)
1424f2cb1360SIngo Molnar 				continue;
1425f2cb1360SIngo Molnar 
1426f2cb1360SIngo Molnar 			/* Is there an intermediary node between a and b? */
1427f2cb1360SIngo Molnar 			for_each_online_node(c) {
1428f2cb1360SIngo Molnar 				if (node_distance(a, c) < n &&
1429f2cb1360SIngo Molnar 				    node_distance(b, c) < n) {
1430f2cb1360SIngo Molnar 					sched_numa_topology_type =
1431f2cb1360SIngo Molnar 							NUMA_GLUELESS_MESH;
1432f2cb1360SIngo Molnar 					return;
1433f2cb1360SIngo Molnar 				}
1434f2cb1360SIngo Molnar 			}
1435f2cb1360SIngo Molnar 
1436f2cb1360SIngo Molnar 			sched_numa_topology_type = NUMA_BACKPLANE;
1437f2cb1360SIngo Molnar 			return;
1438f2cb1360SIngo Molnar 		}
1439f2cb1360SIngo Molnar 	}
1440f2cb1360SIngo Molnar }
1441f2cb1360SIngo Molnar 
1442f2cb1360SIngo Molnar void sched_init_numa(void)
1443f2cb1360SIngo Molnar {
1444f2cb1360SIngo Molnar 	int next_distance, curr_distance = node_distance(0, 0);
1445f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1446f2cb1360SIngo Molnar 	int level = 0;
1447f2cb1360SIngo Molnar 	int i, j, k;
1448f2cb1360SIngo Molnar 
1449993f0b05SPeter Zijlstra 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1450f2cb1360SIngo Molnar 	if (!sched_domains_numa_distance)
1451f2cb1360SIngo Molnar 		return;
1452f2cb1360SIngo Molnar 
1453051f3ca0SSuravee Suthikulpanit 	/* Includes NUMA identity node at level 0. */
1454051f3ca0SSuravee Suthikulpanit 	sched_domains_numa_distance[level++] = curr_distance;
1455051f3ca0SSuravee Suthikulpanit 	sched_domains_numa_levels = level;
1456051f3ca0SSuravee Suthikulpanit 
1457f2cb1360SIngo Molnar 	/*
1458f2cb1360SIngo Molnar 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1459f2cb1360SIngo Molnar 	 * unique distances in the node_distance() table.
1460f2cb1360SIngo Molnar 	 *
1461f2cb1360SIngo Molnar 	 * Assumes node_distance(0,j) includes all distances in
1462f2cb1360SIngo Molnar 	 * node_distance(i,j) in order to avoid cubic time.
1463f2cb1360SIngo Molnar 	 */
1464f2cb1360SIngo Molnar 	next_distance = curr_distance;
1465f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1466f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1467f2cb1360SIngo Molnar 			for (k = 0; k < nr_node_ids; k++) {
1468f2cb1360SIngo Molnar 				int distance = node_distance(i, k);
1469f2cb1360SIngo Molnar 
1470f2cb1360SIngo Molnar 				if (distance > curr_distance &&
1471f2cb1360SIngo Molnar 				    (distance < next_distance ||
1472f2cb1360SIngo Molnar 				     next_distance == curr_distance))
1473f2cb1360SIngo Molnar 					next_distance = distance;
1474f2cb1360SIngo Molnar 
1475f2cb1360SIngo Molnar 				/*
1476f2cb1360SIngo Molnar 				 * While not a strong assumption it would be nice to know
1477f2cb1360SIngo Molnar 				 * about cases where if node A is connected to B, B is not
1478f2cb1360SIngo Molnar 				 * equally connected to A.
1479f2cb1360SIngo Molnar 				 */
1480f2cb1360SIngo Molnar 				if (sched_debug() && node_distance(k, i) != distance)
1481f2cb1360SIngo Molnar 					sched_numa_warn("Node-distance not symmetric");
1482f2cb1360SIngo Molnar 
1483f2cb1360SIngo Molnar 				if (sched_debug() && i && !find_numa_distance(distance))
1484f2cb1360SIngo Molnar 					sched_numa_warn("Node-0 not representative");
1485f2cb1360SIngo Molnar 			}
1486f2cb1360SIngo Molnar 			if (next_distance != curr_distance) {
1487f2cb1360SIngo Molnar 				sched_domains_numa_distance[level++] = next_distance;
1488f2cb1360SIngo Molnar 				sched_domains_numa_levels = level;
1489f2cb1360SIngo Molnar 				curr_distance = next_distance;
1490f2cb1360SIngo Molnar 			} else break;
1491f2cb1360SIngo Molnar 		}
1492f2cb1360SIngo Molnar 
1493f2cb1360SIngo Molnar 		/*
1494f2cb1360SIngo Molnar 		 * In case of sched_debug() we verify the above assumption.
1495f2cb1360SIngo Molnar 		 */
1496f2cb1360SIngo Molnar 		if (!sched_debug())
1497f2cb1360SIngo Molnar 			break;
1498f2cb1360SIngo Molnar 	}
1499f2cb1360SIngo Molnar 
1500f2cb1360SIngo Molnar 	/*
1501051f3ca0SSuravee Suthikulpanit 	 * 'level' contains the number of unique distances
1502f2cb1360SIngo Molnar 	 *
1503f2cb1360SIngo Molnar 	 * The sched_domains_numa_distance[] array includes the actual distance
1504f2cb1360SIngo Molnar 	 * numbers.
1505f2cb1360SIngo Molnar 	 */
1506f2cb1360SIngo Molnar 
1507f2cb1360SIngo Molnar 	/*
1508f2cb1360SIngo Molnar 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1509f2cb1360SIngo Molnar 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1510f2cb1360SIngo Molnar 	 * the array will contain less then 'level' members. This could be
1511f2cb1360SIngo Molnar 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1512f2cb1360SIngo Molnar 	 * in other functions.
1513f2cb1360SIngo Molnar 	 *
1514f2cb1360SIngo Molnar 	 * We reset it to 'level' at the end of this function.
1515f2cb1360SIngo Molnar 	 */
1516f2cb1360SIngo Molnar 	sched_domains_numa_levels = 0;
1517f2cb1360SIngo Molnar 
1518f2cb1360SIngo Molnar 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1519f2cb1360SIngo Molnar 	if (!sched_domains_numa_masks)
1520f2cb1360SIngo Molnar 		return;
1521f2cb1360SIngo Molnar 
1522f2cb1360SIngo Molnar 	/*
1523f2cb1360SIngo Molnar 	 * Now for each level, construct a mask per node which contains all
1524f2cb1360SIngo Molnar 	 * CPUs of nodes that are that many hops away from us.
1525f2cb1360SIngo Molnar 	 */
1526f2cb1360SIngo Molnar 	for (i = 0; i < level; i++) {
1527f2cb1360SIngo Molnar 		sched_domains_numa_masks[i] =
1528f2cb1360SIngo Molnar 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1529f2cb1360SIngo Molnar 		if (!sched_domains_numa_masks[i])
1530f2cb1360SIngo Molnar 			return;
1531f2cb1360SIngo Molnar 
1532f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1533f2cb1360SIngo Molnar 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1534f2cb1360SIngo Molnar 			if (!mask)
1535f2cb1360SIngo Molnar 				return;
1536f2cb1360SIngo Molnar 
1537f2cb1360SIngo Molnar 			sched_domains_numa_masks[i][j] = mask;
1538f2cb1360SIngo Molnar 
1539f2cb1360SIngo Molnar 			for_each_node(k) {
1540f2cb1360SIngo Molnar 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1541f2cb1360SIngo Molnar 					continue;
1542f2cb1360SIngo Molnar 
1543f2cb1360SIngo Molnar 				cpumask_or(mask, mask, cpumask_of_node(k));
1544f2cb1360SIngo Molnar 			}
1545f2cb1360SIngo Molnar 		}
1546f2cb1360SIngo Molnar 	}
1547f2cb1360SIngo Molnar 
1548f2cb1360SIngo Molnar 	/* Compute default topology size */
1549f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++);
1550f2cb1360SIngo Molnar 
1551f2cb1360SIngo Molnar 	tl = kzalloc((i + level + 1) *
1552f2cb1360SIngo Molnar 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1553f2cb1360SIngo Molnar 	if (!tl)
1554f2cb1360SIngo Molnar 		return;
1555f2cb1360SIngo Molnar 
1556f2cb1360SIngo Molnar 	/*
1557f2cb1360SIngo Molnar 	 * Copy the default topology bits..
1558f2cb1360SIngo Molnar 	 */
1559f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++)
1560f2cb1360SIngo Molnar 		tl[i] = sched_domain_topology[i];
1561f2cb1360SIngo Molnar 
1562f2cb1360SIngo Molnar 	/*
1563051f3ca0SSuravee Suthikulpanit 	 * Add the NUMA identity distance, aka single NODE.
1564051f3ca0SSuravee Suthikulpanit 	 */
1565051f3ca0SSuravee Suthikulpanit 	tl[i++] = (struct sched_domain_topology_level){
1566051f3ca0SSuravee Suthikulpanit 		.mask = sd_numa_mask,
1567051f3ca0SSuravee Suthikulpanit 		.numa_level = 0,
1568051f3ca0SSuravee Suthikulpanit 		SD_INIT_NAME(NODE)
1569051f3ca0SSuravee Suthikulpanit 	};
1570051f3ca0SSuravee Suthikulpanit 
1571051f3ca0SSuravee Suthikulpanit 	/*
1572f2cb1360SIngo Molnar 	 * .. and append 'j' levels of NUMA goodness.
1573f2cb1360SIngo Molnar 	 */
1574051f3ca0SSuravee Suthikulpanit 	for (j = 1; j < level; i++, j++) {
1575f2cb1360SIngo Molnar 		tl[i] = (struct sched_domain_topology_level){
1576f2cb1360SIngo Molnar 			.mask = sd_numa_mask,
1577f2cb1360SIngo Molnar 			.sd_flags = cpu_numa_flags,
1578f2cb1360SIngo Molnar 			.flags = SDTL_OVERLAP,
1579f2cb1360SIngo Molnar 			.numa_level = j,
1580f2cb1360SIngo Molnar 			SD_INIT_NAME(NUMA)
1581f2cb1360SIngo Molnar 		};
1582f2cb1360SIngo Molnar 	}
1583f2cb1360SIngo Molnar 
1584f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1585f2cb1360SIngo Molnar 
1586f2cb1360SIngo Molnar 	sched_domains_numa_levels = level;
1587f2cb1360SIngo Molnar 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1588f2cb1360SIngo Molnar 
1589f2cb1360SIngo Molnar 	init_numa_topology_type();
1590f2cb1360SIngo Molnar }
1591f2cb1360SIngo Molnar 
1592f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu)
1593f2cb1360SIngo Molnar {
1594f2cb1360SIngo Molnar 	int node = cpu_to_node(cpu);
1595f2cb1360SIngo Molnar 	int i, j;
1596f2cb1360SIngo Molnar 
1597f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1598f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1599f2cb1360SIngo Molnar 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1600f2cb1360SIngo Molnar 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1601f2cb1360SIngo Molnar 		}
1602f2cb1360SIngo Molnar 	}
1603f2cb1360SIngo Molnar }
1604f2cb1360SIngo Molnar 
1605f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu)
1606f2cb1360SIngo Molnar {
1607f2cb1360SIngo Molnar 	int i, j;
1608f2cb1360SIngo Molnar 
1609f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1610f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1611f2cb1360SIngo Molnar 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1612f2cb1360SIngo Molnar 	}
1613f2cb1360SIngo Molnar }
1614f2cb1360SIngo Molnar 
1615f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */
1616f2cb1360SIngo Molnar 
1617f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map)
1618f2cb1360SIngo Molnar {
1619f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1620f2cb1360SIngo Molnar 	int j;
1621f2cb1360SIngo Molnar 
1622f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1623f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1624f2cb1360SIngo Molnar 
1625f2cb1360SIngo Molnar 		sdd->sd = alloc_percpu(struct sched_domain *);
1626f2cb1360SIngo Molnar 		if (!sdd->sd)
1627f2cb1360SIngo Molnar 			return -ENOMEM;
1628f2cb1360SIngo Molnar 
1629f2cb1360SIngo Molnar 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1630f2cb1360SIngo Molnar 		if (!sdd->sds)
1631f2cb1360SIngo Molnar 			return -ENOMEM;
1632f2cb1360SIngo Molnar 
1633f2cb1360SIngo Molnar 		sdd->sg = alloc_percpu(struct sched_group *);
1634f2cb1360SIngo Molnar 		if (!sdd->sg)
1635f2cb1360SIngo Molnar 			return -ENOMEM;
1636f2cb1360SIngo Molnar 
1637f2cb1360SIngo Molnar 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1638f2cb1360SIngo Molnar 		if (!sdd->sgc)
1639f2cb1360SIngo Molnar 			return -ENOMEM;
1640f2cb1360SIngo Molnar 
1641f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1642f2cb1360SIngo Molnar 			struct sched_domain *sd;
1643f2cb1360SIngo Molnar 			struct sched_domain_shared *sds;
1644f2cb1360SIngo Molnar 			struct sched_group *sg;
1645f2cb1360SIngo Molnar 			struct sched_group_capacity *sgc;
1646f2cb1360SIngo Molnar 
1647f2cb1360SIngo Molnar 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1648f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1649f2cb1360SIngo Molnar 			if (!sd)
1650f2cb1360SIngo Molnar 				return -ENOMEM;
1651f2cb1360SIngo Molnar 
1652f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sd, j) = sd;
1653f2cb1360SIngo Molnar 
1654f2cb1360SIngo Molnar 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1655f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1656f2cb1360SIngo Molnar 			if (!sds)
1657f2cb1360SIngo Molnar 				return -ENOMEM;
1658f2cb1360SIngo Molnar 
1659f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sds, j) = sds;
1660f2cb1360SIngo Molnar 
1661f2cb1360SIngo Molnar 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1662f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1663f2cb1360SIngo Molnar 			if (!sg)
1664f2cb1360SIngo Molnar 				return -ENOMEM;
1665f2cb1360SIngo Molnar 
1666f2cb1360SIngo Molnar 			sg->next = sg;
1667f2cb1360SIngo Molnar 
1668f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sg, j) = sg;
1669f2cb1360SIngo Molnar 
1670f2cb1360SIngo Molnar 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1671f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1672f2cb1360SIngo Molnar 			if (!sgc)
1673f2cb1360SIngo Molnar 				return -ENOMEM;
1674f2cb1360SIngo Molnar 
1675005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG
1676005f874dSPeter Zijlstra 			sgc->id = j;
1677005f874dSPeter Zijlstra #endif
1678005f874dSPeter Zijlstra 
1679f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1680f2cb1360SIngo Molnar 		}
1681f2cb1360SIngo Molnar 	}
1682f2cb1360SIngo Molnar 
1683f2cb1360SIngo Molnar 	return 0;
1684f2cb1360SIngo Molnar }
1685f2cb1360SIngo Molnar 
1686f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map)
1687f2cb1360SIngo Molnar {
1688f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1689f2cb1360SIngo Molnar 	int j;
1690f2cb1360SIngo Molnar 
1691f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1692f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1693f2cb1360SIngo Molnar 
1694f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1695f2cb1360SIngo Molnar 			struct sched_domain *sd;
1696f2cb1360SIngo Molnar 
1697f2cb1360SIngo Molnar 			if (sdd->sd) {
1698f2cb1360SIngo Molnar 				sd = *per_cpu_ptr(sdd->sd, j);
1699f2cb1360SIngo Molnar 				if (sd && (sd->flags & SD_OVERLAP))
1700f2cb1360SIngo Molnar 					free_sched_groups(sd->groups, 0);
1701f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sd, j));
1702f2cb1360SIngo Molnar 			}
1703f2cb1360SIngo Molnar 
1704f2cb1360SIngo Molnar 			if (sdd->sds)
1705f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sds, j));
1706f2cb1360SIngo Molnar 			if (sdd->sg)
1707f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sg, j));
1708f2cb1360SIngo Molnar 			if (sdd->sgc)
1709f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sgc, j));
1710f2cb1360SIngo Molnar 		}
1711f2cb1360SIngo Molnar 		free_percpu(sdd->sd);
1712f2cb1360SIngo Molnar 		sdd->sd = NULL;
1713f2cb1360SIngo Molnar 		free_percpu(sdd->sds);
1714f2cb1360SIngo Molnar 		sdd->sds = NULL;
1715f2cb1360SIngo Molnar 		free_percpu(sdd->sg);
1716f2cb1360SIngo Molnar 		sdd->sg = NULL;
1717f2cb1360SIngo Molnar 		free_percpu(sdd->sgc);
1718f2cb1360SIngo Molnar 		sdd->sgc = NULL;
1719f2cb1360SIngo Molnar 	}
1720f2cb1360SIngo Molnar }
1721f2cb1360SIngo Molnar 
1722181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1723f2cb1360SIngo Molnar 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
172405484e09SMorten Rasmussen 		struct sched_domain *child, int dflags, int cpu)
1725f2cb1360SIngo Molnar {
172605484e09SMorten Rasmussen 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1727f2cb1360SIngo Molnar 
1728f2cb1360SIngo Molnar 	if (child) {
1729f2cb1360SIngo Molnar 		sd->level = child->level + 1;
1730f2cb1360SIngo Molnar 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1731f2cb1360SIngo Molnar 		child->parent = sd;
1732f2cb1360SIngo Molnar 
1733f2cb1360SIngo Molnar 		if (!cpumask_subset(sched_domain_span(child),
1734f2cb1360SIngo Molnar 				    sched_domain_span(sd))) {
1735f2cb1360SIngo Molnar 			pr_err("BUG: arch topology borken\n");
1736f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1737f2cb1360SIngo Molnar 			pr_err("     the %s domain not a subset of the %s domain\n",
1738f2cb1360SIngo Molnar 					child->name, sd->name);
1739f2cb1360SIngo Molnar #endif
174097fb7a0aSIngo Molnar 			/* Fixup, ensure @sd has at least @child CPUs. */
1741f2cb1360SIngo Molnar 			cpumask_or(sched_domain_span(sd),
1742f2cb1360SIngo Molnar 				   sched_domain_span(sd),
1743f2cb1360SIngo Molnar 				   sched_domain_span(child));
1744f2cb1360SIngo Molnar 		}
1745f2cb1360SIngo Molnar 
1746f2cb1360SIngo Molnar 	}
1747f2cb1360SIngo Molnar 	set_domain_attribute(sd, attr);
1748f2cb1360SIngo Molnar 
1749f2cb1360SIngo Molnar 	return sd;
1750f2cb1360SIngo Molnar }
1751f2cb1360SIngo Molnar 
1752f2cb1360SIngo Molnar /*
175305484e09SMorten Rasmussen  * Find the sched_domain_topology_level where all CPU capacities are visible
175405484e09SMorten Rasmussen  * for all CPUs.
175505484e09SMorten Rasmussen  */
175605484e09SMorten Rasmussen static struct sched_domain_topology_level
175705484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map)
175805484e09SMorten Rasmussen {
175905484e09SMorten Rasmussen 	int i, j, asym_level = 0;
176005484e09SMorten Rasmussen 	bool asym = false;
176105484e09SMorten Rasmussen 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
176205484e09SMorten Rasmussen 	unsigned long cap;
176305484e09SMorten Rasmussen 
176405484e09SMorten Rasmussen 	/* Is there any asymmetry? */
176505484e09SMorten Rasmussen 	cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
176605484e09SMorten Rasmussen 
176705484e09SMorten Rasmussen 	for_each_cpu(i, cpu_map) {
176805484e09SMorten Rasmussen 		if (arch_scale_cpu_capacity(NULL, i) != cap) {
176905484e09SMorten Rasmussen 			asym = true;
177005484e09SMorten Rasmussen 			break;
177105484e09SMorten Rasmussen 		}
177205484e09SMorten Rasmussen 	}
177305484e09SMorten Rasmussen 
177405484e09SMorten Rasmussen 	if (!asym)
177505484e09SMorten Rasmussen 		return NULL;
177605484e09SMorten Rasmussen 
177705484e09SMorten Rasmussen 	/*
177805484e09SMorten Rasmussen 	 * Examine topology from all CPU's point of views to detect the lowest
177905484e09SMorten Rasmussen 	 * sched_domain_topology_level where a highest capacity CPU is visible
178005484e09SMorten Rasmussen 	 * to everyone.
178105484e09SMorten Rasmussen 	 */
178205484e09SMorten Rasmussen 	for_each_cpu(i, cpu_map) {
178305484e09SMorten Rasmussen 		unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
178405484e09SMorten Rasmussen 		int tl_id = 0;
178505484e09SMorten Rasmussen 
178605484e09SMorten Rasmussen 		for_each_sd_topology(tl) {
178705484e09SMorten Rasmussen 			if (tl_id < asym_level)
178805484e09SMorten Rasmussen 				goto next_level;
178905484e09SMorten Rasmussen 
179005484e09SMorten Rasmussen 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
179105484e09SMorten Rasmussen 				unsigned long capacity;
179205484e09SMorten Rasmussen 
179305484e09SMorten Rasmussen 				capacity = arch_scale_cpu_capacity(NULL, j);
179405484e09SMorten Rasmussen 
179505484e09SMorten Rasmussen 				if (capacity <= max_capacity)
179605484e09SMorten Rasmussen 					continue;
179705484e09SMorten Rasmussen 
179805484e09SMorten Rasmussen 				max_capacity = capacity;
179905484e09SMorten Rasmussen 				asym_level = tl_id;
180005484e09SMorten Rasmussen 				asym_tl = tl;
180105484e09SMorten Rasmussen 			}
180205484e09SMorten Rasmussen next_level:
180305484e09SMorten Rasmussen 			tl_id++;
180405484e09SMorten Rasmussen 		}
180505484e09SMorten Rasmussen 	}
180605484e09SMorten Rasmussen 
180705484e09SMorten Rasmussen 	return asym_tl;
180805484e09SMorten Rasmussen }
180905484e09SMorten Rasmussen 
181005484e09SMorten Rasmussen 
181105484e09SMorten Rasmussen /*
1812f2cb1360SIngo Molnar  * Build sched domains for a given set of CPUs and attach the sched domains
1813f2cb1360SIngo Molnar  * to the individual CPUs
1814f2cb1360SIngo Molnar  */
1815f2cb1360SIngo Molnar static int
1816f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1817f2cb1360SIngo Molnar {
1818f2cb1360SIngo Molnar 	enum s_alloc alloc_state;
1819f2cb1360SIngo Molnar 	struct sched_domain *sd;
1820f2cb1360SIngo Molnar 	struct s_data d;
1821f2cb1360SIngo Molnar 	struct rq *rq = NULL;
1822f2cb1360SIngo Molnar 	int i, ret = -ENOMEM;
182305484e09SMorten Rasmussen 	struct sched_domain_topology_level *tl_asym;
1824df054e84SMorten Rasmussen 	bool has_asym = false;
1825f2cb1360SIngo Molnar 
1826f2cb1360SIngo Molnar 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1827f2cb1360SIngo Molnar 	if (alloc_state != sa_rootdomain)
1828f2cb1360SIngo Molnar 		goto error;
1829f2cb1360SIngo Molnar 
183005484e09SMorten Rasmussen 	tl_asym = asym_cpu_capacity_level(cpu_map);
183105484e09SMorten Rasmussen 
1832f2cb1360SIngo Molnar 	/* Set up domains for CPUs specified by the cpu_map: */
1833f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1834f2cb1360SIngo Molnar 		struct sched_domain_topology_level *tl;
1835f2cb1360SIngo Molnar 
1836f2cb1360SIngo Molnar 		sd = NULL;
1837f2cb1360SIngo Molnar 		for_each_sd_topology(tl) {
183805484e09SMorten Rasmussen 			int dflags = 0;
183905484e09SMorten Rasmussen 
1840df054e84SMorten Rasmussen 			if (tl == tl_asym) {
184105484e09SMorten Rasmussen 				dflags |= SD_ASYM_CPUCAPACITY;
1842df054e84SMorten Rasmussen 				has_asym = true;
1843df054e84SMorten Rasmussen 			}
184405484e09SMorten Rasmussen 
184505484e09SMorten Rasmussen 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
184605484e09SMorten Rasmussen 
1847f2cb1360SIngo Molnar 			if (tl == sched_domain_topology)
1848f2cb1360SIngo Molnar 				*per_cpu_ptr(d.sd, i) = sd;
1849af85596cSPeter Zijlstra 			if (tl->flags & SDTL_OVERLAP)
1850f2cb1360SIngo Molnar 				sd->flags |= SD_OVERLAP;
1851f2cb1360SIngo Molnar 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1852f2cb1360SIngo Molnar 				break;
1853f2cb1360SIngo Molnar 		}
1854f2cb1360SIngo Molnar 	}
1855f2cb1360SIngo Molnar 
1856f2cb1360SIngo Molnar 	/* Build the groups for the domains */
1857f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1858f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1859f2cb1360SIngo Molnar 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1860f2cb1360SIngo Molnar 			if (sd->flags & SD_OVERLAP) {
1861f2cb1360SIngo Molnar 				if (build_overlap_sched_groups(sd, i))
1862f2cb1360SIngo Molnar 					goto error;
1863f2cb1360SIngo Molnar 			} else {
1864f2cb1360SIngo Molnar 				if (build_sched_groups(sd, i))
1865f2cb1360SIngo Molnar 					goto error;
1866f2cb1360SIngo Molnar 			}
1867f2cb1360SIngo Molnar 		}
1868f2cb1360SIngo Molnar 	}
1869f2cb1360SIngo Molnar 
1870f2cb1360SIngo Molnar 	/* Calculate CPU capacity for physical packages and nodes */
1871f2cb1360SIngo Molnar 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1872f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, cpu_map))
1873f2cb1360SIngo Molnar 			continue;
1874f2cb1360SIngo Molnar 
1875f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1876f2cb1360SIngo Molnar 			claim_allocations(i, sd);
1877f2cb1360SIngo Molnar 			init_sched_groups_capacity(i, sd);
1878f2cb1360SIngo Molnar 		}
1879f2cb1360SIngo Molnar 	}
1880f2cb1360SIngo Molnar 
1881f2cb1360SIngo Molnar 	/* Attach the domains */
1882f2cb1360SIngo Molnar 	rcu_read_lock();
1883f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1884f2cb1360SIngo Molnar 		rq = cpu_rq(i);
1885f2cb1360SIngo Molnar 		sd = *per_cpu_ptr(d.sd, i);
1886f2cb1360SIngo Molnar 
1887f2cb1360SIngo Molnar 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1888f2cb1360SIngo Molnar 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1889f2cb1360SIngo Molnar 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1890f2cb1360SIngo Molnar 
1891f2cb1360SIngo Molnar 		cpu_attach_domain(sd, d.rd, i);
1892f2cb1360SIngo Molnar 	}
1893f2cb1360SIngo Molnar 	rcu_read_unlock();
1894f2cb1360SIngo Molnar 
1895df054e84SMorten Rasmussen 	if (has_asym)
1896df054e84SMorten Rasmussen 		static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
1897df054e84SMorten Rasmussen 
1898f2cb1360SIngo Molnar 	if (rq && sched_debug_enabled) {
1899bf5015a5SJuri Lelli 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1900f2cb1360SIngo Molnar 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1901f2cb1360SIngo Molnar 	}
1902f2cb1360SIngo Molnar 
1903f2cb1360SIngo Molnar 	ret = 0;
1904f2cb1360SIngo Molnar error:
1905f2cb1360SIngo Molnar 	__free_domain_allocs(&d, alloc_state, cpu_map);
190697fb7a0aSIngo Molnar 
1907f2cb1360SIngo Molnar 	return ret;
1908f2cb1360SIngo Molnar }
1909f2cb1360SIngo Molnar 
1910f2cb1360SIngo Molnar /* Current sched domains: */
1911f2cb1360SIngo Molnar static cpumask_var_t			*doms_cur;
1912f2cb1360SIngo Molnar 
1913f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */
1914f2cb1360SIngo Molnar static int				ndoms_cur;
1915f2cb1360SIngo Molnar 
1916f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */
1917f2cb1360SIngo Molnar static struct sched_domain_attr		*dattr_cur;
1918f2cb1360SIngo Molnar 
1919f2cb1360SIngo Molnar /*
1920f2cb1360SIngo Molnar  * Special case: If a kmalloc() of a doms_cur partition (array of
1921f2cb1360SIngo Molnar  * cpumask) fails, then fallback to a single sched domain,
1922f2cb1360SIngo Molnar  * as determined by the single cpumask fallback_doms.
1923f2cb1360SIngo Molnar  */
19248d5dc512SPeter Zijlstra static cpumask_var_t			fallback_doms;
1925f2cb1360SIngo Molnar 
1926f2cb1360SIngo Molnar /*
1927f2cb1360SIngo Molnar  * arch_update_cpu_topology lets virtualized architectures update the
1928f2cb1360SIngo Molnar  * CPU core maps. It is supposed to return 1 if the topology changed
1929f2cb1360SIngo Molnar  * or 0 if it stayed the same.
1930f2cb1360SIngo Molnar  */
1931f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void)
1932f2cb1360SIngo Molnar {
1933f2cb1360SIngo Molnar 	return 0;
1934f2cb1360SIngo Molnar }
1935f2cb1360SIngo Molnar 
1936f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1937f2cb1360SIngo Molnar {
1938f2cb1360SIngo Molnar 	int i;
1939f2cb1360SIngo Molnar 	cpumask_var_t *doms;
1940f2cb1360SIngo Molnar 
19416da2ec56SKees Cook 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
1942f2cb1360SIngo Molnar 	if (!doms)
1943f2cb1360SIngo Molnar 		return NULL;
1944f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++) {
1945f2cb1360SIngo Molnar 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1946f2cb1360SIngo Molnar 			free_sched_domains(doms, i);
1947f2cb1360SIngo Molnar 			return NULL;
1948f2cb1360SIngo Molnar 		}
1949f2cb1360SIngo Molnar 	}
1950f2cb1360SIngo Molnar 	return doms;
1951f2cb1360SIngo Molnar }
1952f2cb1360SIngo Molnar 
1953f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1954f2cb1360SIngo Molnar {
1955f2cb1360SIngo Molnar 	unsigned int i;
1956f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++)
1957f2cb1360SIngo Molnar 		free_cpumask_var(doms[i]);
1958f2cb1360SIngo Molnar 	kfree(doms);
1959f2cb1360SIngo Molnar }
1960f2cb1360SIngo Molnar 
1961f2cb1360SIngo Molnar /*
1962f2cb1360SIngo Molnar  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1963f2cb1360SIngo Molnar  * For now this just excludes isolated CPUs, but could be used to
1964f2cb1360SIngo Molnar  * exclude other special cases in the future.
1965f2cb1360SIngo Molnar  */
19668d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map)
1967f2cb1360SIngo Molnar {
1968f2cb1360SIngo Molnar 	int err;
1969f2cb1360SIngo Molnar 
19708d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
19711676330eSPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
19728d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
19738d5dc512SPeter Zijlstra 
1974f2cb1360SIngo Molnar 	arch_update_cpu_topology();
1975f2cb1360SIngo Molnar 	ndoms_cur = 1;
1976f2cb1360SIngo Molnar 	doms_cur = alloc_sched_domains(ndoms_cur);
1977f2cb1360SIngo Molnar 	if (!doms_cur)
1978f2cb1360SIngo Molnar 		doms_cur = &fallback_doms;
1979edb93821SFrederic Weisbecker 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
1980f2cb1360SIngo Molnar 	err = build_sched_domains(doms_cur[0], NULL);
1981f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
1982f2cb1360SIngo Molnar 
1983f2cb1360SIngo Molnar 	return err;
1984f2cb1360SIngo Molnar }
1985f2cb1360SIngo Molnar 
1986f2cb1360SIngo Molnar /*
1987f2cb1360SIngo Molnar  * Detach sched domains from a group of CPUs specified in cpu_map
1988f2cb1360SIngo Molnar  * These CPUs will now be attached to the NULL domain
1989f2cb1360SIngo Molnar  */
1990f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map)
1991f2cb1360SIngo Molnar {
1992f2cb1360SIngo Molnar 	int i;
1993f2cb1360SIngo Molnar 
1994f2cb1360SIngo Molnar 	rcu_read_lock();
1995f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map)
1996f2cb1360SIngo Molnar 		cpu_attach_domain(NULL, &def_root_domain, i);
1997f2cb1360SIngo Molnar 	rcu_read_unlock();
1998f2cb1360SIngo Molnar }
1999f2cb1360SIngo Molnar 
2000f2cb1360SIngo Molnar /* handle null as "default" */
2001f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2002f2cb1360SIngo Molnar 			struct sched_domain_attr *new, int idx_new)
2003f2cb1360SIngo Molnar {
2004f2cb1360SIngo Molnar 	struct sched_domain_attr tmp;
2005f2cb1360SIngo Molnar 
2006f2cb1360SIngo Molnar 	/* Fast path: */
2007f2cb1360SIngo Molnar 	if (!new && !cur)
2008f2cb1360SIngo Molnar 		return 1;
2009f2cb1360SIngo Molnar 
2010f2cb1360SIngo Molnar 	tmp = SD_ATTR_INIT;
201197fb7a0aSIngo Molnar 
2012f2cb1360SIngo Molnar 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2013f2cb1360SIngo Molnar 			new ? (new + idx_new) : &tmp,
2014f2cb1360SIngo Molnar 			sizeof(struct sched_domain_attr));
2015f2cb1360SIngo Molnar }
2016f2cb1360SIngo Molnar 
2017f2cb1360SIngo Molnar /*
2018f2cb1360SIngo Molnar  * Partition sched domains as specified by the 'ndoms_new'
2019f2cb1360SIngo Molnar  * cpumasks in the array doms_new[] of cpumasks. This compares
2020f2cb1360SIngo Molnar  * doms_new[] to the current sched domain partitioning, doms_cur[].
2021f2cb1360SIngo Molnar  * It destroys each deleted domain and builds each new domain.
2022f2cb1360SIngo Molnar  *
2023f2cb1360SIngo Molnar  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2024f2cb1360SIngo Molnar  * The masks don't intersect (don't overlap.) We should setup one
2025f2cb1360SIngo Molnar  * sched domain for each mask. CPUs not in any of the cpumasks will
2026f2cb1360SIngo Molnar  * not be load balanced. If the same cpumask appears both in the
2027f2cb1360SIngo Molnar  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2028f2cb1360SIngo Molnar  * it as it is.
2029f2cb1360SIngo Molnar  *
2030f2cb1360SIngo Molnar  * The passed in 'doms_new' should be allocated using
2031f2cb1360SIngo Molnar  * alloc_sched_domains.  This routine takes ownership of it and will
2032f2cb1360SIngo Molnar  * free_sched_domains it when done with it. If the caller failed the
2033f2cb1360SIngo Molnar  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2034f2cb1360SIngo Molnar  * and partition_sched_domains() will fallback to the single partition
2035f2cb1360SIngo Molnar  * 'fallback_doms', it also forces the domains to be rebuilt.
2036f2cb1360SIngo Molnar  *
2037f2cb1360SIngo Molnar  * If doms_new == NULL it will be replaced with cpu_online_mask.
2038f2cb1360SIngo Molnar  * ndoms_new == 0 is a special case for destroying existing domains,
2039f2cb1360SIngo Molnar  * and it will not create the default domain.
2040f2cb1360SIngo Molnar  *
2041f2cb1360SIngo Molnar  * Call with hotplug lock held
2042f2cb1360SIngo Molnar  */
2043f2cb1360SIngo Molnar void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2044f2cb1360SIngo Molnar 			     struct sched_domain_attr *dattr_new)
2045f2cb1360SIngo Molnar {
2046f2cb1360SIngo Molnar 	int i, j, n;
2047f2cb1360SIngo Molnar 	int new_topology;
2048f2cb1360SIngo Molnar 
2049f2cb1360SIngo Molnar 	mutex_lock(&sched_domains_mutex);
2050f2cb1360SIngo Molnar 
2051f2cb1360SIngo Molnar 	/* Always unregister in case we don't destroy any domains: */
2052f2cb1360SIngo Molnar 	unregister_sched_domain_sysctl();
2053f2cb1360SIngo Molnar 
2054f2cb1360SIngo Molnar 	/* Let the architecture update CPU core mappings: */
2055f2cb1360SIngo Molnar 	new_topology = arch_update_cpu_topology();
2056f2cb1360SIngo Molnar 
205709e0dd8eSPeter Zijlstra 	if (!doms_new) {
205809e0dd8eSPeter Zijlstra 		WARN_ON_ONCE(dattr_new);
205909e0dd8eSPeter Zijlstra 		n = 0;
206009e0dd8eSPeter Zijlstra 		doms_new = alloc_sched_domains(1);
206109e0dd8eSPeter Zijlstra 		if (doms_new) {
206209e0dd8eSPeter Zijlstra 			n = 1;
2063edb93821SFrederic Weisbecker 			cpumask_and(doms_new[0], cpu_active_mask,
2064edb93821SFrederic Weisbecker 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
206509e0dd8eSPeter Zijlstra 		}
206609e0dd8eSPeter Zijlstra 	} else {
206709e0dd8eSPeter Zijlstra 		n = ndoms_new;
206809e0dd8eSPeter Zijlstra 	}
2069f2cb1360SIngo Molnar 
2070f2cb1360SIngo Molnar 	/* Destroy deleted domains: */
2071f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_cur; i++) {
2072f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
2073*6aa140faSQuentin Perret 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2074*6aa140faSQuentin Perret 			    dattrs_equal(dattr_cur, i, dattr_new, j))
2075f2cb1360SIngo Molnar 				goto match1;
2076f2cb1360SIngo Molnar 		}
2077f2cb1360SIngo Molnar 		/* No match - a current sched domain not in new doms_new[] */
2078f2cb1360SIngo Molnar 		detach_destroy_domains(doms_cur[i]);
2079f2cb1360SIngo Molnar match1:
2080f2cb1360SIngo Molnar 		;
2081f2cb1360SIngo Molnar 	}
2082f2cb1360SIngo Molnar 
2083f2cb1360SIngo Molnar 	n = ndoms_cur;
208409e0dd8eSPeter Zijlstra 	if (!doms_new) {
2085f2cb1360SIngo Molnar 		n = 0;
2086f2cb1360SIngo Molnar 		doms_new = &fallback_doms;
2087edb93821SFrederic Weisbecker 		cpumask_and(doms_new[0], cpu_active_mask,
2088edb93821SFrederic Weisbecker 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2089f2cb1360SIngo Molnar 	}
2090f2cb1360SIngo Molnar 
2091f2cb1360SIngo Molnar 	/* Build new domains: */
2092f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_new; i++) {
2093f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
2094*6aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2095*6aa140faSQuentin Perret 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2096f2cb1360SIngo Molnar 				goto match2;
2097f2cb1360SIngo Molnar 		}
2098f2cb1360SIngo Molnar 		/* No match - add a new doms_new */
2099f2cb1360SIngo Molnar 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2100f2cb1360SIngo Molnar match2:
2101f2cb1360SIngo Molnar 		;
2102f2cb1360SIngo Molnar 	}
2103f2cb1360SIngo Molnar 
2104*6aa140faSQuentin Perret #ifdef CONFIG_ENERGY_MODEL
2105*6aa140faSQuentin Perret 	/* Build perf. domains: */
2106*6aa140faSQuentin Perret 	for (i = 0; i < ndoms_new; i++) {
2107*6aa140faSQuentin Perret 		for (j = 0; j < n; j++) {
2108*6aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2109*6aa140faSQuentin Perret 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd)
2110*6aa140faSQuentin Perret 				goto match3;
2111*6aa140faSQuentin Perret 		}
2112*6aa140faSQuentin Perret 		/* No match - add perf. domains for a new rd */
2113*6aa140faSQuentin Perret 		build_perf_domains(doms_new[i]);
2114*6aa140faSQuentin Perret match3:
2115*6aa140faSQuentin Perret 		;
2116*6aa140faSQuentin Perret 	}
2117*6aa140faSQuentin Perret #endif
2118*6aa140faSQuentin Perret 
2119f2cb1360SIngo Molnar 	/* Remember the new sched domains: */
2120f2cb1360SIngo Molnar 	if (doms_cur != &fallback_doms)
2121f2cb1360SIngo Molnar 		free_sched_domains(doms_cur, ndoms_cur);
2122f2cb1360SIngo Molnar 
2123f2cb1360SIngo Molnar 	kfree(dattr_cur);
2124f2cb1360SIngo Molnar 	doms_cur = doms_new;
2125f2cb1360SIngo Molnar 	dattr_cur = dattr_new;
2126f2cb1360SIngo Molnar 	ndoms_cur = ndoms_new;
2127f2cb1360SIngo Molnar 
2128f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
2129f2cb1360SIngo Molnar 
2130f2cb1360SIngo Molnar 	mutex_unlock(&sched_domains_mutex);
2131f2cb1360SIngo Molnar }
2132