1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0 2f2cb1360SIngo Molnar /* 3f2cb1360SIngo Molnar * Scheduler topology setup/handling methods 4f2cb1360SIngo Molnar */ 5f2cb1360SIngo Molnar #include "sched.h" 6f2cb1360SIngo Molnar 7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex); 8f2cb1360SIngo Molnar 9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */ 10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask; 11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2; 12f2cb1360SIngo Molnar 13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 14f2cb1360SIngo Molnar 15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str) 16f2cb1360SIngo Molnar { 179469eb01SPeter Zijlstra sched_debug_enabled = true; 18f2cb1360SIngo Molnar 19f2cb1360SIngo Molnar return 0; 20f2cb1360SIngo Molnar } 21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup); 22f2cb1360SIngo Molnar 23f2cb1360SIngo Molnar static inline bool sched_debug(void) 24f2cb1360SIngo Molnar { 25f2cb1360SIngo Molnar return sched_debug_enabled; 26f2cb1360SIngo Molnar } 27f2cb1360SIngo Molnar 28f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 29f2cb1360SIngo Molnar struct cpumask *groupmask) 30f2cb1360SIngo Molnar { 31f2cb1360SIngo Molnar struct sched_group *group = sd->groups; 32*65c5e253SValentin Schneider unsigned long flags = sd->flags; 33*65c5e253SValentin Schneider unsigned int idx; 34f2cb1360SIngo Molnar 35f2cb1360SIngo Molnar cpumask_clear(groupmask); 36f2cb1360SIngo Molnar 37005f874dSPeter Zijlstra printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 38005f874dSPeter Zijlstra printk(KERN_CONT "span=%*pbl level=%s\n", 39f2cb1360SIngo Molnar cpumask_pr_args(sched_domain_span(sd)), sd->name); 40f2cb1360SIngo Molnar 41f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 4297fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 43f2cb1360SIngo Molnar } 446cd0c583SYi Wang if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 4597fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 46f2cb1360SIngo Molnar } 47f2cb1360SIngo Molnar 48*65c5e253SValentin Schneider for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 49*65c5e253SValentin Schneider unsigned int flag = BIT(idx); 50*65c5e253SValentin Schneider unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 51*65c5e253SValentin Schneider 52*65c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 53*65c5e253SValentin Schneider !(sd->child->flags & flag)) 54*65c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 55*65c5e253SValentin Schneider sd_flag_debug[idx].name); 56*65c5e253SValentin Schneider 57*65c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 58*65c5e253SValentin Schneider !(sd->parent->flags & flag)) 59*65c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 60*65c5e253SValentin Schneider sd_flag_debug[idx].name); 61*65c5e253SValentin Schneider } 62*65c5e253SValentin Schneider 63f2cb1360SIngo Molnar printk(KERN_DEBUG "%*s groups:", level + 1, ""); 64f2cb1360SIngo Molnar do { 65f2cb1360SIngo Molnar if (!group) { 66f2cb1360SIngo Molnar printk("\n"); 67f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: group is NULL\n"); 68f2cb1360SIngo Molnar break; 69f2cb1360SIngo Molnar } 70f2cb1360SIngo Molnar 71ae4df9d6SPeter Zijlstra if (!cpumask_weight(sched_group_span(group))) { 72f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 73f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: empty group\n"); 74f2cb1360SIngo Molnar break; 75f2cb1360SIngo Molnar } 76f2cb1360SIngo Molnar 77f2cb1360SIngo Molnar if (!(sd->flags & SD_OVERLAP) && 78ae4df9d6SPeter Zijlstra cpumask_intersects(groupmask, sched_group_span(group))) { 79f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 80f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: repeated CPUs\n"); 81f2cb1360SIngo Molnar break; 82f2cb1360SIngo Molnar } 83f2cb1360SIngo Molnar 84ae4df9d6SPeter Zijlstra cpumask_or(groupmask, groupmask, sched_group_span(group)); 85f2cb1360SIngo Molnar 86005f874dSPeter Zijlstra printk(KERN_CONT " %d:{ span=%*pbl", 87005f874dSPeter Zijlstra group->sgc->id, 88ae4df9d6SPeter Zijlstra cpumask_pr_args(sched_group_span(group))); 89b0151c25SPeter Zijlstra 90af218122SPeter Zijlstra if ((sd->flags & SD_OVERLAP) && 91ae4df9d6SPeter Zijlstra !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 92005f874dSPeter Zijlstra printk(KERN_CONT " mask=%*pbl", 93e5c14b1fSPeter Zijlstra cpumask_pr_args(group_balance_mask(group))); 94b0151c25SPeter Zijlstra } 95b0151c25SPeter Zijlstra 96005f874dSPeter Zijlstra if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 97005f874dSPeter Zijlstra printk(KERN_CONT " cap=%lu", group->sgc->capacity); 98f2cb1360SIngo Molnar 99a420b063SPeter Zijlstra if (group == sd->groups && sd->child && 100a420b063SPeter Zijlstra !cpumask_equal(sched_domain_span(sd->child), 101ae4df9d6SPeter Zijlstra sched_group_span(group))) { 102a420b063SPeter Zijlstra printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 103a420b063SPeter Zijlstra } 104a420b063SPeter Zijlstra 105005f874dSPeter Zijlstra printk(KERN_CONT " }"); 106005f874dSPeter Zijlstra 107f2cb1360SIngo Molnar group = group->next; 108b0151c25SPeter Zijlstra 109b0151c25SPeter Zijlstra if (group != sd->groups) 110b0151c25SPeter Zijlstra printk(KERN_CONT ","); 111b0151c25SPeter Zijlstra 112f2cb1360SIngo Molnar } while (group != sd->groups); 113f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 114f2cb1360SIngo Molnar 115f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), groupmask)) 116f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 117f2cb1360SIngo Molnar 118f2cb1360SIngo Molnar if (sd->parent && 119f2cb1360SIngo Molnar !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 12097fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 121f2cb1360SIngo Molnar return 0; 122f2cb1360SIngo Molnar } 123f2cb1360SIngo Molnar 124f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu) 125f2cb1360SIngo Molnar { 126f2cb1360SIngo Molnar int level = 0; 127f2cb1360SIngo Molnar 128f2cb1360SIngo Molnar if (!sched_debug_enabled) 129f2cb1360SIngo Molnar return; 130f2cb1360SIngo Molnar 131f2cb1360SIngo Molnar if (!sd) { 132f2cb1360SIngo Molnar printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 133f2cb1360SIngo Molnar return; 134f2cb1360SIngo Molnar } 135f2cb1360SIngo Molnar 136005f874dSPeter Zijlstra printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 137f2cb1360SIngo Molnar 138f2cb1360SIngo Molnar for (;;) { 139f2cb1360SIngo Molnar if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 140f2cb1360SIngo Molnar break; 141f2cb1360SIngo Molnar level++; 142f2cb1360SIngo Molnar sd = sd->parent; 143f2cb1360SIngo Molnar if (!sd) 144f2cb1360SIngo Molnar break; 145f2cb1360SIngo Molnar } 146f2cb1360SIngo Molnar } 147f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */ 148f2cb1360SIngo Molnar 149f2cb1360SIngo Molnar # define sched_debug_enabled 0 150f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0) 151f2cb1360SIngo Molnar static inline bool sched_debug(void) 152f2cb1360SIngo Molnar { 153f2cb1360SIngo Molnar return false; 154f2cb1360SIngo Molnar } 155f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */ 156f2cb1360SIngo Molnar 157f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd) 158f2cb1360SIngo Molnar { 159f2cb1360SIngo Molnar if (cpumask_weight(sched_domain_span(sd)) == 1) 160f2cb1360SIngo Molnar return 1; 161f2cb1360SIngo Molnar 162f2cb1360SIngo Molnar /* Following flags need at least 2 groups */ 163e669ac8aSValentin Schneider if (sd->flags & (SD_BALANCE_NEWIDLE | 164f2cb1360SIngo Molnar SD_BALANCE_FORK | 165f2cb1360SIngo Molnar SD_BALANCE_EXEC | 166f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 167f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 168cfe7ddcbSValentin Schneider SD_SHARE_PKG_RESOURCES)) { 169f2cb1360SIngo Molnar if (sd->groups != sd->groups->next) 170f2cb1360SIngo Molnar return 0; 171f2cb1360SIngo Molnar } 172f2cb1360SIngo Molnar 173f2cb1360SIngo Molnar /* Following flags don't use groups */ 174f2cb1360SIngo Molnar if (sd->flags & (SD_WAKE_AFFINE)) 175f2cb1360SIngo Molnar return 0; 176f2cb1360SIngo Molnar 177f2cb1360SIngo Molnar return 1; 178f2cb1360SIngo Molnar } 179f2cb1360SIngo Molnar 180f2cb1360SIngo Molnar static int 181f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 182f2cb1360SIngo Molnar { 183f2cb1360SIngo Molnar unsigned long cflags = sd->flags, pflags = parent->flags; 184f2cb1360SIngo Molnar 185f2cb1360SIngo Molnar if (sd_degenerate(parent)) 186f2cb1360SIngo Molnar return 1; 187f2cb1360SIngo Molnar 188f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 189f2cb1360SIngo Molnar return 0; 190f2cb1360SIngo Molnar 191f2cb1360SIngo Molnar /* Flags needing groups don't count if only 1 group in parent */ 192f2cb1360SIngo Molnar if (parent->groups == parent->groups->next) { 193e669ac8aSValentin Schneider pflags &= ~(SD_BALANCE_NEWIDLE | 194f2cb1360SIngo Molnar SD_BALANCE_FORK | 195f2cb1360SIngo Molnar SD_BALANCE_EXEC | 196f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 197f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 198f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | 199cfe7ddcbSValentin Schneider SD_PREFER_SIBLING); 200f2cb1360SIngo Molnar if (nr_node_ids == 1) 201f2cb1360SIngo Molnar pflags &= ~SD_SERIALIZE; 202f2cb1360SIngo Molnar } 203f2cb1360SIngo Molnar if (~cflags & pflags) 204f2cb1360SIngo Molnar return 0; 205f2cb1360SIngo Molnar 206f2cb1360SIngo Molnar return 1; 207f2cb1360SIngo Molnar } 208f2cb1360SIngo Molnar 209531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 210f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present); 2118d5d0cfbSQuentin Perret unsigned int sysctl_sched_energy_aware = 1; 212531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex); 213531b5c9fSQuentin Perret bool sched_energy_update; 214531b5c9fSQuentin Perret 2158d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL 2168d5d0cfbSQuentin Perret int sched_energy_aware_handler(struct ctl_table *table, int write, 21732927393SChristoph Hellwig void *buffer, size_t *lenp, loff_t *ppos) 2188d5d0cfbSQuentin Perret { 2198d5d0cfbSQuentin Perret int ret, state; 2208d5d0cfbSQuentin Perret 2218d5d0cfbSQuentin Perret if (write && !capable(CAP_SYS_ADMIN)) 2228d5d0cfbSQuentin Perret return -EPERM; 2238d5d0cfbSQuentin Perret 2248d5d0cfbSQuentin Perret ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2258d5d0cfbSQuentin Perret if (!ret && write) { 2268d5d0cfbSQuentin Perret state = static_branch_unlikely(&sched_energy_present); 2278d5d0cfbSQuentin Perret if (state != sysctl_sched_energy_aware) { 2288d5d0cfbSQuentin Perret mutex_lock(&sched_energy_mutex); 2298d5d0cfbSQuentin Perret sched_energy_update = 1; 2308d5d0cfbSQuentin Perret rebuild_sched_domains(); 2318d5d0cfbSQuentin Perret sched_energy_update = 0; 2328d5d0cfbSQuentin Perret mutex_unlock(&sched_energy_mutex); 2338d5d0cfbSQuentin Perret } 2348d5d0cfbSQuentin Perret } 2358d5d0cfbSQuentin Perret 2368d5d0cfbSQuentin Perret return ret; 2378d5d0cfbSQuentin Perret } 2388d5d0cfbSQuentin Perret #endif 2398d5d0cfbSQuentin Perret 2406aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) 2416aa140faSQuentin Perret { 2426aa140faSQuentin Perret struct perf_domain *tmp; 2436aa140faSQuentin Perret 2446aa140faSQuentin Perret while (pd) { 2456aa140faSQuentin Perret tmp = pd->next; 2466aa140faSQuentin Perret kfree(pd); 2476aa140faSQuentin Perret pd = tmp; 2486aa140faSQuentin Perret } 2496aa140faSQuentin Perret } 2506aa140faSQuentin Perret 2516aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 2526aa140faSQuentin Perret { 2536aa140faSQuentin Perret while (pd) { 2546aa140faSQuentin Perret if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 2556aa140faSQuentin Perret return pd; 2566aa140faSQuentin Perret pd = pd->next; 2576aa140faSQuentin Perret } 2586aa140faSQuentin Perret 2596aa140faSQuentin Perret return NULL; 2606aa140faSQuentin Perret } 2616aa140faSQuentin Perret 2626aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu) 2636aa140faSQuentin Perret { 2646aa140faSQuentin Perret struct em_perf_domain *obj = em_cpu_get(cpu); 2656aa140faSQuentin Perret struct perf_domain *pd; 2666aa140faSQuentin Perret 2676aa140faSQuentin Perret if (!obj) { 2686aa140faSQuentin Perret if (sched_debug()) 2696aa140faSQuentin Perret pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 2706aa140faSQuentin Perret return NULL; 2716aa140faSQuentin Perret } 2726aa140faSQuentin Perret 2736aa140faSQuentin Perret pd = kzalloc(sizeof(*pd), GFP_KERNEL); 2746aa140faSQuentin Perret if (!pd) 2756aa140faSQuentin Perret return NULL; 2766aa140faSQuentin Perret pd->em_pd = obj; 2776aa140faSQuentin Perret 2786aa140faSQuentin Perret return pd; 2796aa140faSQuentin Perret } 2806aa140faSQuentin Perret 2816aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map, 2826aa140faSQuentin Perret struct perf_domain *pd) 2836aa140faSQuentin Perret { 2846aa140faSQuentin Perret if (!sched_debug() || !pd) 2856aa140faSQuentin Perret return; 2866aa140faSQuentin Perret 2876aa140faSQuentin Perret printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 2886aa140faSQuentin Perret 2896aa140faSQuentin Perret while (pd) { 290521b512bSLukasz Luba printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 2916aa140faSQuentin Perret cpumask_first(perf_domain_span(pd)), 2926aa140faSQuentin Perret cpumask_pr_args(perf_domain_span(pd)), 293521b512bSLukasz Luba em_pd_nr_perf_states(pd->em_pd)); 2946aa140faSQuentin Perret pd = pd->next; 2956aa140faSQuentin Perret } 2966aa140faSQuentin Perret 2976aa140faSQuentin Perret printk(KERN_CONT "\n"); 2986aa140faSQuentin Perret } 2996aa140faSQuentin Perret 3006aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp) 3016aa140faSQuentin Perret { 3026aa140faSQuentin Perret struct perf_domain *pd; 3036aa140faSQuentin Perret 3046aa140faSQuentin Perret pd = container_of(rp, struct perf_domain, rcu); 3056aa140faSQuentin Perret free_pd(pd); 3066aa140faSQuentin Perret } 3076aa140faSQuentin Perret 3081f74de87SQuentin Perret static void sched_energy_set(bool has_eas) 3091f74de87SQuentin Perret { 3101f74de87SQuentin Perret if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 3111f74de87SQuentin Perret if (sched_debug()) 3121f74de87SQuentin Perret pr_info("%s: stopping EAS\n", __func__); 3131f74de87SQuentin Perret static_branch_disable_cpuslocked(&sched_energy_present); 3141f74de87SQuentin Perret } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 3151f74de87SQuentin Perret if (sched_debug()) 3161f74de87SQuentin Perret pr_info("%s: starting EAS\n", __func__); 3171f74de87SQuentin Perret static_branch_enable_cpuslocked(&sched_energy_present); 3181f74de87SQuentin Perret } 3191f74de87SQuentin Perret } 3201f74de87SQuentin Perret 321b68a4c0dSQuentin Perret /* 322b68a4c0dSQuentin Perret * EAS can be used on a root domain if it meets all the following conditions: 323b68a4c0dSQuentin Perret * 1. an Energy Model (EM) is available; 324b68a4c0dSQuentin Perret * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 32538502ab4SValentin Schneider * 3. no SMT is detected. 32638502ab4SValentin Schneider * 4. the EM complexity is low enough to keep scheduling overheads low; 32738502ab4SValentin Schneider * 5. schedutil is driving the frequency of all CPUs of the rd; 328b68a4c0dSQuentin Perret * 329b68a4c0dSQuentin Perret * The complexity of the Energy Model is defined as: 330b68a4c0dSQuentin Perret * 331521b512bSLukasz Luba * C = nr_pd * (nr_cpus + nr_ps) 332b68a4c0dSQuentin Perret * 333b68a4c0dSQuentin Perret * with parameters defined as: 334b68a4c0dSQuentin Perret * - nr_pd: the number of performance domains 335b68a4c0dSQuentin Perret * - nr_cpus: the number of CPUs 336521b512bSLukasz Luba * - nr_ps: the sum of the number of performance states of all performance 337b68a4c0dSQuentin Perret * domains (for example, on a system with 2 performance domains, 338521b512bSLukasz Luba * with 10 performance states each, nr_ps = 2 * 10 = 20). 339b68a4c0dSQuentin Perret * 340b68a4c0dSQuentin Perret * It is generally not a good idea to use such a model in the wake-up path on 341b68a4c0dSQuentin Perret * very complex platforms because of the associated scheduling overheads. The 342b68a4c0dSQuentin Perret * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 343521b512bSLukasz Luba * with per-CPU DVFS and less than 8 performance states each, for example. 344b68a4c0dSQuentin Perret */ 345b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048 346b68a4c0dSQuentin Perret 347531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov; 3481f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map) 3496aa140faSQuentin Perret { 350521b512bSLukasz Luba int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 3516aa140faSQuentin Perret struct perf_domain *pd = NULL, *tmp; 3526aa140faSQuentin Perret int cpu = cpumask_first(cpu_map); 3536aa140faSQuentin Perret struct root_domain *rd = cpu_rq(cpu)->rd; 354531b5c9fSQuentin Perret struct cpufreq_policy *policy; 355531b5c9fSQuentin Perret struct cpufreq_governor *gov; 356b68a4c0dSQuentin Perret 3578d5d0cfbSQuentin Perret if (!sysctl_sched_energy_aware) 3588d5d0cfbSQuentin Perret goto free; 3598d5d0cfbSQuentin Perret 360b68a4c0dSQuentin Perret /* EAS is enabled for asymmetric CPU capacity topologies. */ 361b68a4c0dSQuentin Perret if (!per_cpu(sd_asym_cpucapacity, cpu)) { 362b68a4c0dSQuentin Perret if (sched_debug()) { 363b68a4c0dSQuentin Perret pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 364b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 365b68a4c0dSQuentin Perret } 366b68a4c0dSQuentin Perret goto free; 367b68a4c0dSQuentin Perret } 3686aa140faSQuentin Perret 36938502ab4SValentin Schneider /* EAS definitely does *not* handle SMT */ 37038502ab4SValentin Schneider if (sched_smt_active()) { 37138502ab4SValentin Schneider pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 37238502ab4SValentin Schneider cpumask_pr_args(cpu_map)); 37338502ab4SValentin Schneider goto free; 37438502ab4SValentin Schneider } 37538502ab4SValentin Schneider 3766aa140faSQuentin Perret for_each_cpu(i, cpu_map) { 3776aa140faSQuentin Perret /* Skip already covered CPUs. */ 3786aa140faSQuentin Perret if (find_pd(pd, i)) 3796aa140faSQuentin Perret continue; 3806aa140faSQuentin Perret 381531b5c9fSQuentin Perret /* Do not attempt EAS if schedutil is not being used. */ 382531b5c9fSQuentin Perret policy = cpufreq_cpu_get(i); 383531b5c9fSQuentin Perret if (!policy) 384531b5c9fSQuentin Perret goto free; 385531b5c9fSQuentin Perret gov = policy->governor; 386531b5c9fSQuentin Perret cpufreq_cpu_put(policy); 387531b5c9fSQuentin Perret if (gov != &schedutil_gov) { 388531b5c9fSQuentin Perret if (rd->pd) 389531b5c9fSQuentin Perret pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 390531b5c9fSQuentin Perret cpumask_pr_args(cpu_map)); 391531b5c9fSQuentin Perret goto free; 392531b5c9fSQuentin Perret } 393531b5c9fSQuentin Perret 3946aa140faSQuentin Perret /* Create the new pd and add it to the local list. */ 3956aa140faSQuentin Perret tmp = pd_init(i); 3966aa140faSQuentin Perret if (!tmp) 3976aa140faSQuentin Perret goto free; 3986aa140faSQuentin Perret tmp->next = pd; 3996aa140faSQuentin Perret pd = tmp; 400b68a4c0dSQuentin Perret 401b68a4c0dSQuentin Perret /* 402521b512bSLukasz Luba * Count performance domains and performance states for the 403b68a4c0dSQuentin Perret * complexity check. 404b68a4c0dSQuentin Perret */ 405b68a4c0dSQuentin Perret nr_pd++; 406521b512bSLukasz Luba nr_ps += em_pd_nr_perf_states(pd->em_pd); 407b68a4c0dSQuentin Perret } 408b68a4c0dSQuentin Perret 409b68a4c0dSQuentin Perret /* Bail out if the Energy Model complexity is too high. */ 410521b512bSLukasz Luba if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 411b68a4c0dSQuentin Perret WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 412b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 413b68a4c0dSQuentin Perret goto free; 4146aa140faSQuentin Perret } 4156aa140faSQuentin Perret 4166aa140faSQuentin Perret perf_domain_debug(cpu_map, pd); 4176aa140faSQuentin Perret 4186aa140faSQuentin Perret /* Attach the new list of performance domains to the root domain. */ 4196aa140faSQuentin Perret tmp = rd->pd; 4206aa140faSQuentin Perret rcu_assign_pointer(rd->pd, pd); 4216aa140faSQuentin Perret if (tmp) 4226aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4236aa140faSQuentin Perret 4241f74de87SQuentin Perret return !!pd; 4256aa140faSQuentin Perret 4266aa140faSQuentin Perret free: 4276aa140faSQuentin Perret free_pd(pd); 4286aa140faSQuentin Perret tmp = rd->pd; 4296aa140faSQuentin Perret rcu_assign_pointer(rd->pd, NULL); 4306aa140faSQuentin Perret if (tmp) 4316aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4321f74de87SQuentin Perret 4331f74de87SQuentin Perret return false; 4346aa140faSQuentin Perret } 4356aa140faSQuentin Perret #else 4366aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { } 437531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 4386aa140faSQuentin Perret 439f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu) 440f2cb1360SIngo Molnar { 441f2cb1360SIngo Molnar struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 442f2cb1360SIngo Molnar 443f2cb1360SIngo Molnar cpupri_cleanup(&rd->cpupri); 444f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 445f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 446f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 447f2cb1360SIngo Molnar free_cpumask_var(rd->online); 448f2cb1360SIngo Molnar free_cpumask_var(rd->span); 4496aa140faSQuentin Perret free_pd(rd->pd); 450f2cb1360SIngo Molnar kfree(rd); 451f2cb1360SIngo Molnar } 452f2cb1360SIngo Molnar 453f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd) 454f2cb1360SIngo Molnar { 455f2cb1360SIngo Molnar struct root_domain *old_rd = NULL; 456f2cb1360SIngo Molnar unsigned long flags; 457f2cb1360SIngo Molnar 458f2cb1360SIngo Molnar raw_spin_lock_irqsave(&rq->lock, flags); 459f2cb1360SIngo Molnar 460f2cb1360SIngo Molnar if (rq->rd) { 461f2cb1360SIngo Molnar old_rd = rq->rd; 462f2cb1360SIngo Molnar 463f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, old_rd->online)) 464f2cb1360SIngo Molnar set_rq_offline(rq); 465f2cb1360SIngo Molnar 466f2cb1360SIngo Molnar cpumask_clear_cpu(rq->cpu, old_rd->span); 467f2cb1360SIngo Molnar 468f2cb1360SIngo Molnar /* 469f2cb1360SIngo Molnar * If we dont want to free the old_rd yet then 470f2cb1360SIngo Molnar * set old_rd to NULL to skip the freeing later 471f2cb1360SIngo Molnar * in this function: 472f2cb1360SIngo Molnar */ 473f2cb1360SIngo Molnar if (!atomic_dec_and_test(&old_rd->refcount)) 474f2cb1360SIngo Molnar old_rd = NULL; 475f2cb1360SIngo Molnar } 476f2cb1360SIngo Molnar 477f2cb1360SIngo Molnar atomic_inc(&rd->refcount); 478f2cb1360SIngo Molnar rq->rd = rd; 479f2cb1360SIngo Molnar 480f2cb1360SIngo Molnar cpumask_set_cpu(rq->cpu, rd->span); 481f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 482f2cb1360SIngo Molnar set_rq_online(rq); 483f2cb1360SIngo Molnar 484f2cb1360SIngo Molnar raw_spin_unlock_irqrestore(&rq->lock, flags); 485f2cb1360SIngo Molnar 486f2cb1360SIngo Molnar if (old_rd) 487337e9b07SPaul E. McKenney call_rcu(&old_rd->rcu, free_rootdomain); 488f2cb1360SIngo Molnar } 489f2cb1360SIngo Molnar 490364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd) 491364f5665SSteven Rostedt (VMware) { 492364f5665SSteven Rostedt (VMware) atomic_inc(&rd->refcount); 493364f5665SSteven Rostedt (VMware) } 494364f5665SSteven Rostedt (VMware) 495364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd) 496364f5665SSteven Rostedt (VMware) { 497364f5665SSteven Rostedt (VMware) if (!atomic_dec_and_test(&rd->refcount)) 498364f5665SSteven Rostedt (VMware) return; 499364f5665SSteven Rostedt (VMware) 500337e9b07SPaul E. McKenney call_rcu(&rd->rcu, free_rootdomain); 501364f5665SSteven Rostedt (VMware) } 502364f5665SSteven Rostedt (VMware) 503f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd) 504f2cb1360SIngo Molnar { 505f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 506f2cb1360SIngo Molnar goto out; 507f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 508f2cb1360SIngo Molnar goto free_span; 509f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 510f2cb1360SIngo Molnar goto free_online; 511f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 512f2cb1360SIngo Molnar goto free_dlo_mask; 513f2cb1360SIngo Molnar 5144bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI 5154bdced5cSSteven Rostedt (Red Hat) rd->rto_cpu = -1; 5164bdced5cSSteven Rostedt (Red Hat) raw_spin_lock_init(&rd->rto_lock); 5174bdced5cSSteven Rostedt (Red Hat) init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 5184bdced5cSSteven Rostedt (Red Hat) #endif 5194bdced5cSSteven Rostedt (Red Hat) 520f2cb1360SIngo Molnar init_dl_bw(&rd->dl_bw); 521f2cb1360SIngo Molnar if (cpudl_init(&rd->cpudl) != 0) 522f2cb1360SIngo Molnar goto free_rto_mask; 523f2cb1360SIngo Molnar 524f2cb1360SIngo Molnar if (cpupri_init(&rd->cpupri) != 0) 525f2cb1360SIngo Molnar goto free_cpudl; 526f2cb1360SIngo Molnar return 0; 527f2cb1360SIngo Molnar 528f2cb1360SIngo Molnar free_cpudl: 529f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 530f2cb1360SIngo Molnar free_rto_mask: 531f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 532f2cb1360SIngo Molnar free_dlo_mask: 533f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 534f2cb1360SIngo Molnar free_online: 535f2cb1360SIngo Molnar free_cpumask_var(rd->online); 536f2cb1360SIngo Molnar free_span: 537f2cb1360SIngo Molnar free_cpumask_var(rd->span); 538f2cb1360SIngo Molnar out: 539f2cb1360SIngo Molnar return -ENOMEM; 540f2cb1360SIngo Molnar } 541f2cb1360SIngo Molnar 542f2cb1360SIngo Molnar /* 543f2cb1360SIngo Molnar * By default the system creates a single root-domain with all CPUs as 544f2cb1360SIngo Molnar * members (mimicking the global state we have today). 545f2cb1360SIngo Molnar */ 546f2cb1360SIngo Molnar struct root_domain def_root_domain; 547f2cb1360SIngo Molnar 548f2cb1360SIngo Molnar void init_defrootdomain(void) 549f2cb1360SIngo Molnar { 550f2cb1360SIngo Molnar init_rootdomain(&def_root_domain); 551f2cb1360SIngo Molnar 552f2cb1360SIngo Molnar atomic_set(&def_root_domain.refcount, 1); 553f2cb1360SIngo Molnar } 554f2cb1360SIngo Molnar 555f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void) 556f2cb1360SIngo Molnar { 557f2cb1360SIngo Molnar struct root_domain *rd; 558f2cb1360SIngo Molnar 5594d13a06dSViresh Kumar rd = kzalloc(sizeof(*rd), GFP_KERNEL); 560f2cb1360SIngo Molnar if (!rd) 561f2cb1360SIngo Molnar return NULL; 562f2cb1360SIngo Molnar 563f2cb1360SIngo Molnar if (init_rootdomain(rd) != 0) { 564f2cb1360SIngo Molnar kfree(rd); 565f2cb1360SIngo Molnar return NULL; 566f2cb1360SIngo Molnar } 567f2cb1360SIngo Molnar 568f2cb1360SIngo Molnar return rd; 569f2cb1360SIngo Molnar } 570f2cb1360SIngo Molnar 571f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc) 572f2cb1360SIngo Molnar { 573f2cb1360SIngo Molnar struct sched_group *tmp, *first; 574f2cb1360SIngo Molnar 575f2cb1360SIngo Molnar if (!sg) 576f2cb1360SIngo Molnar return; 577f2cb1360SIngo Molnar 578f2cb1360SIngo Molnar first = sg; 579f2cb1360SIngo Molnar do { 580f2cb1360SIngo Molnar tmp = sg->next; 581f2cb1360SIngo Molnar 582f2cb1360SIngo Molnar if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 583f2cb1360SIngo Molnar kfree(sg->sgc); 584f2cb1360SIngo Molnar 585213c5a45SShu Wang if (atomic_dec_and_test(&sg->ref)) 586f2cb1360SIngo Molnar kfree(sg); 587f2cb1360SIngo Molnar sg = tmp; 588f2cb1360SIngo Molnar } while (sg != first); 589f2cb1360SIngo Molnar } 590f2cb1360SIngo Molnar 591f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd) 592f2cb1360SIngo Molnar { 593f2cb1360SIngo Molnar /* 594a090c4f2SPeter Zijlstra * A normal sched domain may have multiple group references, an 595a090c4f2SPeter Zijlstra * overlapping domain, having private groups, only one. Iterate, 596a090c4f2SPeter Zijlstra * dropping group/capacity references, freeing where none remain. 597f2cb1360SIngo Molnar */ 598f2cb1360SIngo Molnar free_sched_groups(sd->groups, 1); 599213c5a45SShu Wang 600f2cb1360SIngo Molnar if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 601f2cb1360SIngo Molnar kfree(sd->shared); 602f2cb1360SIngo Molnar kfree(sd); 603f2cb1360SIngo Molnar } 604f2cb1360SIngo Molnar 605f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu) 606f2cb1360SIngo Molnar { 607f2cb1360SIngo Molnar struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 608f2cb1360SIngo Molnar 609f2cb1360SIngo Molnar while (sd) { 610f2cb1360SIngo Molnar struct sched_domain *parent = sd->parent; 611f2cb1360SIngo Molnar destroy_sched_domain(sd); 612f2cb1360SIngo Molnar sd = parent; 613f2cb1360SIngo Molnar } 614f2cb1360SIngo Molnar } 615f2cb1360SIngo Molnar 616f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd) 617f2cb1360SIngo Molnar { 618f2cb1360SIngo Molnar if (sd) 619f2cb1360SIngo Molnar call_rcu(&sd->rcu, destroy_sched_domains_rcu); 620f2cb1360SIngo Molnar } 621f2cb1360SIngo Molnar 622f2cb1360SIngo Molnar /* 623f2cb1360SIngo Molnar * Keep a special pointer to the highest sched_domain that has 624f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 625f2cb1360SIngo Molnar * allows us to avoid some pointer chasing select_idle_sibling(). 626f2cb1360SIngo Molnar * 627f2cb1360SIngo Molnar * Also keep a unique ID per domain (we use the first CPU number in 628f2cb1360SIngo Molnar * the cpumask of the domain), this allows us to quickly tell if 629f2cb1360SIngo Molnar * two CPUs are in the same cache domain, see cpus_share_cache(). 630f2cb1360SIngo Molnar */ 631994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 632f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size); 633f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id); 634994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 635994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 636994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 637994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 638df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 639f2cb1360SIngo Molnar 640f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu) 641f2cb1360SIngo Molnar { 642f2cb1360SIngo Molnar struct sched_domain_shared *sds = NULL; 643f2cb1360SIngo Molnar struct sched_domain *sd; 644f2cb1360SIngo Molnar int id = cpu; 645f2cb1360SIngo Molnar int size = 1; 646f2cb1360SIngo Molnar 647f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 648f2cb1360SIngo Molnar if (sd) { 649f2cb1360SIngo Molnar id = cpumask_first(sched_domain_span(sd)); 650f2cb1360SIngo Molnar size = cpumask_weight(sched_domain_span(sd)); 651f2cb1360SIngo Molnar sds = sd->shared; 652f2cb1360SIngo Molnar } 653f2cb1360SIngo Molnar 654f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 655f2cb1360SIngo Molnar per_cpu(sd_llc_size, cpu) = size; 656f2cb1360SIngo Molnar per_cpu(sd_llc_id, cpu) = id; 657f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 658f2cb1360SIngo Molnar 659f2cb1360SIngo Molnar sd = lowest_flag_domain(cpu, SD_NUMA); 660f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 661f2cb1360SIngo Molnar 662f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 663011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 664011b27bbSQuentin Perret 665011b27bbSQuentin Perret sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 666011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 667f2cb1360SIngo Molnar } 668f2cb1360SIngo Molnar 669f2cb1360SIngo Molnar /* 670f2cb1360SIngo Molnar * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 671f2cb1360SIngo Molnar * hold the hotplug lock. 672f2cb1360SIngo Molnar */ 673f2cb1360SIngo Molnar static void 674f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 675f2cb1360SIngo Molnar { 676f2cb1360SIngo Molnar struct rq *rq = cpu_rq(cpu); 677f2cb1360SIngo Molnar struct sched_domain *tmp; 678f2cb1360SIngo Molnar 679f2cb1360SIngo Molnar /* Remove the sched domains which do not contribute to scheduling. */ 680f2cb1360SIngo Molnar for (tmp = sd; tmp; ) { 681f2cb1360SIngo Molnar struct sched_domain *parent = tmp->parent; 682f2cb1360SIngo Molnar if (!parent) 683f2cb1360SIngo Molnar break; 684f2cb1360SIngo Molnar 685f2cb1360SIngo Molnar if (sd_parent_degenerate(tmp, parent)) { 686f2cb1360SIngo Molnar tmp->parent = parent->parent; 687f2cb1360SIngo Molnar if (parent->parent) 688f2cb1360SIngo Molnar parent->parent->child = tmp; 689f2cb1360SIngo Molnar /* 690f2cb1360SIngo Molnar * Transfer SD_PREFER_SIBLING down in case of a 691f2cb1360SIngo Molnar * degenerate parent; the spans match for this 692f2cb1360SIngo Molnar * so the property transfers. 693f2cb1360SIngo Molnar */ 694f2cb1360SIngo Molnar if (parent->flags & SD_PREFER_SIBLING) 695f2cb1360SIngo Molnar tmp->flags |= SD_PREFER_SIBLING; 696f2cb1360SIngo Molnar destroy_sched_domain(parent); 697f2cb1360SIngo Molnar } else 698f2cb1360SIngo Molnar tmp = tmp->parent; 699f2cb1360SIngo Molnar } 700f2cb1360SIngo Molnar 701f2cb1360SIngo Molnar if (sd && sd_degenerate(sd)) { 702f2cb1360SIngo Molnar tmp = sd; 703f2cb1360SIngo Molnar sd = sd->parent; 704f2cb1360SIngo Molnar destroy_sched_domain(tmp); 705f2cb1360SIngo Molnar if (sd) 706f2cb1360SIngo Molnar sd->child = NULL; 707f2cb1360SIngo Molnar } 708f2cb1360SIngo Molnar 709f2cb1360SIngo Molnar sched_domain_debug(sd, cpu); 710f2cb1360SIngo Molnar 711f2cb1360SIngo Molnar rq_attach_root(rq, rd); 712f2cb1360SIngo Molnar tmp = rq->sd; 713f2cb1360SIngo Molnar rcu_assign_pointer(rq->sd, sd); 714bbdacdfeSPeter Zijlstra dirty_sched_domain_sysctl(cpu); 715f2cb1360SIngo Molnar destroy_sched_domains(tmp); 716f2cb1360SIngo Molnar 717f2cb1360SIngo Molnar update_top_cache_domain(cpu); 718f2cb1360SIngo Molnar } 719f2cb1360SIngo Molnar 720f2cb1360SIngo Molnar struct s_data { 72199687cdbSLuc Van Oostenryck struct sched_domain * __percpu *sd; 722f2cb1360SIngo Molnar struct root_domain *rd; 723f2cb1360SIngo Molnar }; 724f2cb1360SIngo Molnar 725f2cb1360SIngo Molnar enum s_alloc { 726f2cb1360SIngo Molnar sa_rootdomain, 727f2cb1360SIngo Molnar sa_sd, 728f2cb1360SIngo Molnar sa_sd_storage, 729f2cb1360SIngo Molnar sa_none, 730f2cb1360SIngo Molnar }; 731f2cb1360SIngo Molnar 732f2cb1360SIngo Molnar /* 73335a566e6SPeter Zijlstra * Return the canonical balance CPU for this group, this is the first CPU 734e5c14b1fSPeter Zijlstra * of this group that's also in the balance mask. 73535a566e6SPeter Zijlstra * 736e5c14b1fSPeter Zijlstra * The balance mask are all those CPUs that could actually end up at this 737e5c14b1fSPeter Zijlstra * group. See build_balance_mask(). 73835a566e6SPeter Zijlstra * 73935a566e6SPeter Zijlstra * Also see should_we_balance(). 74035a566e6SPeter Zijlstra */ 74135a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg) 74235a566e6SPeter Zijlstra { 743e5c14b1fSPeter Zijlstra return cpumask_first(group_balance_mask(sg)); 74435a566e6SPeter Zijlstra } 74535a566e6SPeter Zijlstra 74635a566e6SPeter Zijlstra 74735a566e6SPeter Zijlstra /* 74835a566e6SPeter Zijlstra * NUMA topology (first read the regular topology blurb below) 74935a566e6SPeter Zijlstra * 75035a566e6SPeter Zijlstra * Given a node-distance table, for example: 75135a566e6SPeter Zijlstra * 75235a566e6SPeter Zijlstra * node 0 1 2 3 75335a566e6SPeter Zijlstra * 0: 10 20 30 20 75435a566e6SPeter Zijlstra * 1: 20 10 20 30 75535a566e6SPeter Zijlstra * 2: 30 20 10 20 75635a566e6SPeter Zijlstra * 3: 20 30 20 10 75735a566e6SPeter Zijlstra * 75835a566e6SPeter Zijlstra * which represents a 4 node ring topology like: 75935a566e6SPeter Zijlstra * 76035a566e6SPeter Zijlstra * 0 ----- 1 76135a566e6SPeter Zijlstra * | | 76235a566e6SPeter Zijlstra * | | 76335a566e6SPeter Zijlstra * | | 76435a566e6SPeter Zijlstra * 3 ----- 2 76535a566e6SPeter Zijlstra * 76635a566e6SPeter Zijlstra * We want to construct domains and groups to represent this. The way we go 76735a566e6SPeter Zijlstra * about doing this is to build the domains on 'hops'. For each NUMA level we 76835a566e6SPeter Zijlstra * construct the mask of all nodes reachable in @level hops. 76935a566e6SPeter Zijlstra * 77035a566e6SPeter Zijlstra * For the above NUMA topology that gives 3 levels: 77135a566e6SPeter Zijlstra * 77235a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 0-3 0-3 77335a566e6SPeter Zijlstra * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 77435a566e6SPeter Zijlstra * 77535a566e6SPeter Zijlstra * NUMA-1 0-1,3 0-2 1-3 0,2-3 77635a566e6SPeter Zijlstra * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 77735a566e6SPeter Zijlstra * 77835a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 77935a566e6SPeter Zijlstra * 78035a566e6SPeter Zijlstra * 78135a566e6SPeter Zijlstra * As can be seen; things don't nicely line up as with the regular topology. 78235a566e6SPeter Zijlstra * When we iterate a domain in child domain chunks some nodes can be 78335a566e6SPeter Zijlstra * represented multiple times -- hence the "overlap" naming for this part of 78435a566e6SPeter Zijlstra * the topology. 78535a566e6SPeter Zijlstra * 78635a566e6SPeter Zijlstra * In order to minimize this overlap, we only build enough groups to cover the 78735a566e6SPeter Zijlstra * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 78835a566e6SPeter Zijlstra * 78935a566e6SPeter Zijlstra * Because: 79035a566e6SPeter Zijlstra * 79135a566e6SPeter Zijlstra * - the first group of each domain is its child domain; this 79235a566e6SPeter Zijlstra * gets us the first 0-1,3 79335a566e6SPeter Zijlstra * - the only uncovered node is 2, who's child domain is 1-3. 79435a566e6SPeter Zijlstra * 79535a566e6SPeter Zijlstra * However, because of the overlap, computing a unique CPU for each group is 79635a566e6SPeter Zijlstra * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 79735a566e6SPeter Zijlstra * groups include the CPUs of Node-0, while those CPUs would not in fact ever 79835a566e6SPeter Zijlstra * end up at those groups (they would end up in group: 0-1,3). 79935a566e6SPeter Zijlstra * 800e5c14b1fSPeter Zijlstra * To correct this we have to introduce the group balance mask. This mask 80135a566e6SPeter Zijlstra * will contain those CPUs in the group that can reach this group given the 80235a566e6SPeter Zijlstra * (child) domain tree. 80335a566e6SPeter Zijlstra * 80435a566e6SPeter Zijlstra * With this we can once again compute balance_cpu and sched_group_capacity 80535a566e6SPeter Zijlstra * relations. 80635a566e6SPeter Zijlstra * 80735a566e6SPeter Zijlstra * XXX include words on how balance_cpu is unique and therefore can be 80835a566e6SPeter Zijlstra * used for sched_group_capacity links. 80935a566e6SPeter Zijlstra * 81035a566e6SPeter Zijlstra * 81135a566e6SPeter Zijlstra * Another 'interesting' topology is: 81235a566e6SPeter Zijlstra * 81335a566e6SPeter Zijlstra * node 0 1 2 3 81435a566e6SPeter Zijlstra * 0: 10 20 20 30 81535a566e6SPeter Zijlstra * 1: 20 10 20 20 81635a566e6SPeter Zijlstra * 2: 20 20 10 20 81735a566e6SPeter Zijlstra * 3: 30 20 20 10 81835a566e6SPeter Zijlstra * 81935a566e6SPeter Zijlstra * Which looks a little like: 82035a566e6SPeter Zijlstra * 82135a566e6SPeter Zijlstra * 0 ----- 1 82235a566e6SPeter Zijlstra * | / | 82335a566e6SPeter Zijlstra * | / | 82435a566e6SPeter Zijlstra * | / | 82535a566e6SPeter Zijlstra * 2 ----- 3 82635a566e6SPeter Zijlstra * 82735a566e6SPeter Zijlstra * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 82835a566e6SPeter Zijlstra * are not. 82935a566e6SPeter Zijlstra * 83035a566e6SPeter Zijlstra * This leads to a few particularly weird cases where the sched_domain's are 83197fb7a0aSIngo Molnar * not of the same number for each CPU. Consider: 83235a566e6SPeter Zijlstra * 83335a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 83435a566e6SPeter Zijlstra * groups: {0-2},{1-3} {1-3},{0-2} 83535a566e6SPeter Zijlstra * 83635a566e6SPeter Zijlstra * NUMA-1 0-2 0-3 0-3 1-3 83735a566e6SPeter Zijlstra * 83835a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 83935a566e6SPeter Zijlstra * 84035a566e6SPeter Zijlstra */ 84135a566e6SPeter Zijlstra 84235a566e6SPeter Zijlstra 84335a566e6SPeter Zijlstra /* 844e5c14b1fSPeter Zijlstra * Build the balance mask; it contains only those CPUs that can arrive at this 845e5c14b1fSPeter Zijlstra * group and should be considered to continue balancing. 84635a566e6SPeter Zijlstra * 84735a566e6SPeter Zijlstra * We do this during the group creation pass, therefore the group information 84835a566e6SPeter Zijlstra * isn't complete yet, however since each group represents a (child) domain we 84935a566e6SPeter Zijlstra * can fully construct this using the sched_domain bits (which are already 85035a566e6SPeter Zijlstra * complete). 851f2cb1360SIngo Molnar */ 8521676330eSPeter Zijlstra static void 853e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 854f2cb1360SIngo Molnar { 855ae4df9d6SPeter Zijlstra const struct cpumask *sg_span = sched_group_span(sg); 856f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 857f2cb1360SIngo Molnar struct sched_domain *sibling; 858f2cb1360SIngo Molnar int i; 859f2cb1360SIngo Molnar 8601676330eSPeter Zijlstra cpumask_clear(mask); 8611676330eSPeter Zijlstra 862f32d782eSLauro Ramos Venancio for_each_cpu(i, sg_span) { 863f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 86473bb059fSPeter Zijlstra 86573bb059fSPeter Zijlstra /* 86673bb059fSPeter Zijlstra * Can happen in the asymmetric case, where these siblings are 86773bb059fSPeter Zijlstra * unused. The mask will not be empty because those CPUs that 86873bb059fSPeter Zijlstra * do have the top domain _should_ span the domain. 86973bb059fSPeter Zijlstra */ 87073bb059fSPeter Zijlstra if (!sibling->child) 87173bb059fSPeter Zijlstra continue; 87273bb059fSPeter Zijlstra 87373bb059fSPeter Zijlstra /* If we would not end up here, we can't continue from here */ 87473bb059fSPeter Zijlstra if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 875f2cb1360SIngo Molnar continue; 876f2cb1360SIngo Molnar 8771676330eSPeter Zijlstra cpumask_set_cpu(i, mask); 878f2cb1360SIngo Molnar } 87973bb059fSPeter Zijlstra 88073bb059fSPeter Zijlstra /* We must not have empty masks here */ 8811676330eSPeter Zijlstra WARN_ON_ONCE(cpumask_empty(mask)); 882f2cb1360SIngo Molnar } 883f2cb1360SIngo Molnar 884f2cb1360SIngo Molnar /* 88535a566e6SPeter Zijlstra * XXX: This creates per-node group entries; since the load-balancer will 88635a566e6SPeter Zijlstra * immediately access remote memory to construct this group's load-balance 88735a566e6SPeter Zijlstra * statistics having the groups node local is of dubious benefit. 888f2cb1360SIngo Molnar */ 8898c033469SLauro Ramos Venancio static struct sched_group * 8908c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 8918c033469SLauro Ramos Venancio { 8928c033469SLauro Ramos Venancio struct sched_group *sg; 8938c033469SLauro Ramos Venancio struct cpumask *sg_span; 8948c033469SLauro Ramos Venancio 8958c033469SLauro Ramos Venancio sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 8968c033469SLauro Ramos Venancio GFP_KERNEL, cpu_to_node(cpu)); 8978c033469SLauro Ramos Venancio 8988c033469SLauro Ramos Venancio if (!sg) 8998c033469SLauro Ramos Venancio return NULL; 9008c033469SLauro Ramos Venancio 901ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9028c033469SLauro Ramos Venancio if (sd->child) 9038c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd->child)); 9048c033469SLauro Ramos Venancio else 9058c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd)); 9068c033469SLauro Ramos Venancio 907213c5a45SShu Wang atomic_inc(&sg->ref); 9088c033469SLauro Ramos Venancio return sg; 9098c033469SLauro Ramos Venancio } 9108c033469SLauro Ramos Venancio 9118c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd, 9121676330eSPeter Zijlstra struct sched_group *sg) 9138c033469SLauro Ramos Venancio { 9141676330eSPeter Zijlstra struct cpumask *mask = sched_domains_tmpmask2; 9158c033469SLauro Ramos Venancio struct sd_data *sdd = sd->private; 9168c033469SLauro Ramos Venancio struct cpumask *sg_span; 9171676330eSPeter Zijlstra int cpu; 9181676330eSPeter Zijlstra 919e5c14b1fSPeter Zijlstra build_balance_mask(sd, sg, mask); 920ae4df9d6SPeter Zijlstra cpu = cpumask_first_and(sched_group_span(sg), mask); 9218c033469SLauro Ramos Venancio 9228c033469SLauro Ramos Venancio sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 9238c033469SLauro Ramos Venancio if (atomic_inc_return(&sg->sgc->ref) == 1) 924e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), mask); 92535a566e6SPeter Zijlstra else 926e5c14b1fSPeter Zijlstra WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 9278c033469SLauro Ramos Venancio 9288c033469SLauro Ramos Venancio /* 9298c033469SLauro Ramos Venancio * Initialize sgc->capacity such that even if we mess up the 9308c033469SLauro Ramos Venancio * domains and no possible iteration will get us here, we won't 9318c033469SLauro Ramos Venancio * die on a /0 trap. 9328c033469SLauro Ramos Venancio */ 933ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9348c033469SLauro Ramos Venancio sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 9358c033469SLauro Ramos Venancio sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 936e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 9378c033469SLauro Ramos Venancio } 9388c033469SLauro Ramos Venancio 939f2cb1360SIngo Molnar static int 940f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu) 941f2cb1360SIngo Molnar { 94291eaed0dSPeter Zijlstra struct sched_group *first = NULL, *last = NULL, *sg; 943f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 944f2cb1360SIngo Molnar struct cpumask *covered = sched_domains_tmpmask; 945f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 946f2cb1360SIngo Molnar struct sched_domain *sibling; 947f2cb1360SIngo Molnar int i; 948f2cb1360SIngo Molnar 949f2cb1360SIngo Molnar cpumask_clear(covered); 950f2cb1360SIngo Molnar 9510372dd27SPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 952f2cb1360SIngo Molnar struct cpumask *sg_span; 953f2cb1360SIngo Molnar 954f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 955f2cb1360SIngo Molnar continue; 956f2cb1360SIngo Molnar 957f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 958f2cb1360SIngo Molnar 959c20e1ea4SLauro Ramos Venancio /* 960c20e1ea4SLauro Ramos Venancio * Asymmetric node setups can result in situations where the 961c20e1ea4SLauro Ramos Venancio * domain tree is of unequal depth, make sure to skip domains 962c20e1ea4SLauro Ramos Venancio * that already cover the entire range. 963c20e1ea4SLauro Ramos Venancio * 964c20e1ea4SLauro Ramos Venancio * In that case build_sched_domains() will have terminated the 965c20e1ea4SLauro Ramos Venancio * iteration early and our sibling sd spans will be empty. 966c20e1ea4SLauro Ramos Venancio * Domains should always include the CPU they're built on, so 967c20e1ea4SLauro Ramos Venancio * check that. 968c20e1ea4SLauro Ramos Venancio */ 969f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 970f2cb1360SIngo Molnar continue; 971f2cb1360SIngo Molnar 9728c033469SLauro Ramos Venancio sg = build_group_from_child_sched_domain(sibling, cpu); 973f2cb1360SIngo Molnar if (!sg) 974f2cb1360SIngo Molnar goto fail; 975f2cb1360SIngo Molnar 976ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 977f2cb1360SIngo Molnar cpumask_or(covered, covered, sg_span); 978f2cb1360SIngo Molnar 9791676330eSPeter Zijlstra init_overlap_sched_group(sd, sg); 980f2cb1360SIngo Molnar 981f2cb1360SIngo Molnar if (!first) 982f2cb1360SIngo Molnar first = sg; 983f2cb1360SIngo Molnar if (last) 984f2cb1360SIngo Molnar last->next = sg; 985f2cb1360SIngo Molnar last = sg; 986f2cb1360SIngo Molnar last->next = first; 987f2cb1360SIngo Molnar } 98891eaed0dSPeter Zijlstra sd->groups = first; 989f2cb1360SIngo Molnar 990f2cb1360SIngo Molnar return 0; 991f2cb1360SIngo Molnar 992f2cb1360SIngo Molnar fail: 993f2cb1360SIngo Molnar free_sched_groups(first, 0); 994f2cb1360SIngo Molnar 995f2cb1360SIngo Molnar return -ENOMEM; 996f2cb1360SIngo Molnar } 997f2cb1360SIngo Molnar 99835a566e6SPeter Zijlstra 99935a566e6SPeter Zijlstra /* 100035a566e6SPeter Zijlstra * Package topology (also see the load-balance blurb in fair.c) 100135a566e6SPeter Zijlstra * 100235a566e6SPeter Zijlstra * The scheduler builds a tree structure to represent a number of important 100335a566e6SPeter Zijlstra * topology features. By default (default_topology[]) these include: 100435a566e6SPeter Zijlstra * 100535a566e6SPeter Zijlstra * - Simultaneous multithreading (SMT) 100635a566e6SPeter Zijlstra * - Multi-Core Cache (MC) 100735a566e6SPeter Zijlstra * - Package (DIE) 100835a566e6SPeter Zijlstra * 100935a566e6SPeter Zijlstra * Where the last one more or less denotes everything up to a NUMA node. 101035a566e6SPeter Zijlstra * 101135a566e6SPeter Zijlstra * The tree consists of 3 primary data structures: 101235a566e6SPeter Zijlstra * 101335a566e6SPeter Zijlstra * sched_domain -> sched_group -> sched_group_capacity 101435a566e6SPeter Zijlstra * ^ ^ ^ ^ 101535a566e6SPeter Zijlstra * `-' `-' 101635a566e6SPeter Zijlstra * 101797fb7a0aSIngo Molnar * The sched_domains are per-CPU and have a two way link (parent & child) and 101835a566e6SPeter Zijlstra * denote the ever growing mask of CPUs belonging to that level of topology. 101935a566e6SPeter Zijlstra * 102035a566e6SPeter Zijlstra * Each sched_domain has a circular (double) linked list of sched_group's, each 102135a566e6SPeter Zijlstra * denoting the domains of the level below (or individual CPUs in case of the 102235a566e6SPeter Zijlstra * first domain level). The sched_group linked by a sched_domain includes the 102335a566e6SPeter Zijlstra * CPU of that sched_domain [*]. 102435a566e6SPeter Zijlstra * 102535a566e6SPeter Zijlstra * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 102635a566e6SPeter Zijlstra * 102735a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 102835a566e6SPeter Zijlstra * 102935a566e6SPeter Zijlstra * DIE [ ] 103035a566e6SPeter Zijlstra * MC [ ] [ ] 103135a566e6SPeter Zijlstra * SMT [ ] [ ] [ ] [ ] 103235a566e6SPeter Zijlstra * 103335a566e6SPeter Zijlstra * - or - 103435a566e6SPeter Zijlstra * 103535a566e6SPeter Zijlstra * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 103635a566e6SPeter Zijlstra * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 103735a566e6SPeter Zijlstra * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 103835a566e6SPeter Zijlstra * 103935a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 104035a566e6SPeter Zijlstra * 104135a566e6SPeter Zijlstra * One way to think about it is: sched_domain moves you up and down among these 104235a566e6SPeter Zijlstra * topology levels, while sched_group moves you sideways through it, at child 104335a566e6SPeter Zijlstra * domain granularity. 104435a566e6SPeter Zijlstra * 104535a566e6SPeter Zijlstra * sched_group_capacity ensures each unique sched_group has shared storage. 104635a566e6SPeter Zijlstra * 104735a566e6SPeter Zijlstra * There are two related construction problems, both require a CPU that 104835a566e6SPeter Zijlstra * uniquely identify each group (for a given domain): 104935a566e6SPeter Zijlstra * 105035a566e6SPeter Zijlstra * - The first is the balance_cpu (see should_we_balance() and the 105135a566e6SPeter Zijlstra * load-balance blub in fair.c); for each group we only want 1 CPU to 105235a566e6SPeter Zijlstra * continue balancing at a higher domain. 105335a566e6SPeter Zijlstra * 105435a566e6SPeter Zijlstra * - The second is the sched_group_capacity; we want all identical groups 105535a566e6SPeter Zijlstra * to share a single sched_group_capacity. 105635a566e6SPeter Zijlstra * 105735a566e6SPeter Zijlstra * Since these topologies are exclusive by construction. That is, its 105835a566e6SPeter Zijlstra * impossible for an SMT thread to belong to multiple cores, and cores to 105935a566e6SPeter Zijlstra * be part of multiple caches. There is a very clear and unique location 106035a566e6SPeter Zijlstra * for each CPU in the hierarchy. 106135a566e6SPeter Zijlstra * 106235a566e6SPeter Zijlstra * Therefore computing a unique CPU for each group is trivial (the iteration 106335a566e6SPeter Zijlstra * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 106435a566e6SPeter Zijlstra * group), we can simply pick the first CPU in each group. 106535a566e6SPeter Zijlstra * 106635a566e6SPeter Zijlstra * 106735a566e6SPeter Zijlstra * [*] in other words, the first group of each domain is its child domain. 106835a566e6SPeter Zijlstra */ 106935a566e6SPeter Zijlstra 10700c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1071f2cb1360SIngo Molnar { 1072f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1073f2cb1360SIngo Molnar struct sched_domain *child = sd->child; 10740c0e776aSPeter Zijlstra struct sched_group *sg; 107567d4f6ffSValentin Schneider bool already_visited; 1076f2cb1360SIngo Molnar 1077f2cb1360SIngo Molnar if (child) 1078f2cb1360SIngo Molnar cpu = cpumask_first(sched_domain_span(child)); 1079f2cb1360SIngo Molnar 10800c0e776aSPeter Zijlstra sg = *per_cpu_ptr(sdd->sg, cpu); 10810c0e776aSPeter Zijlstra sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1082f2cb1360SIngo Molnar 108367d4f6ffSValentin Schneider /* Increase refcounts for claim_allocations: */ 108467d4f6ffSValentin Schneider already_visited = atomic_inc_return(&sg->ref) > 1; 108567d4f6ffSValentin Schneider /* sgc visits should follow a similar trend as sg */ 108667d4f6ffSValentin Schneider WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 108767d4f6ffSValentin Schneider 108867d4f6ffSValentin Schneider /* If we have already visited that group, it's already initialized. */ 108967d4f6ffSValentin Schneider if (already_visited) 109067d4f6ffSValentin Schneider return sg; 10910c0e776aSPeter Zijlstra 10920c0e776aSPeter Zijlstra if (child) { 1093ae4df9d6SPeter Zijlstra cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1094ae4df9d6SPeter Zijlstra cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 10950c0e776aSPeter Zijlstra } else { 1096ae4df9d6SPeter Zijlstra cpumask_set_cpu(cpu, sched_group_span(sg)); 1097e5c14b1fSPeter Zijlstra cpumask_set_cpu(cpu, group_balance_mask(sg)); 1098f2cb1360SIngo Molnar } 1099f2cb1360SIngo Molnar 1100ae4df9d6SPeter Zijlstra sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 11010c0e776aSPeter Zijlstra sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1102e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 11030c0e776aSPeter Zijlstra 11040c0e776aSPeter Zijlstra return sg; 1105f2cb1360SIngo Molnar } 1106f2cb1360SIngo Molnar 1107f2cb1360SIngo Molnar /* 1108f2cb1360SIngo Molnar * build_sched_groups will build a circular linked list of the groups 1109d8743230SValentin Schneider * covered by the given span, will set each group's ->cpumask correctly, 1110d8743230SValentin Schneider * and will initialize their ->sgc. 1111f2cb1360SIngo Molnar * 1112f2cb1360SIngo Molnar * Assumes the sched_domain tree is fully constructed 1113f2cb1360SIngo Molnar */ 1114f2cb1360SIngo Molnar static int 1115f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu) 1116f2cb1360SIngo Molnar { 1117f2cb1360SIngo Molnar struct sched_group *first = NULL, *last = NULL; 1118f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1119f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 1120f2cb1360SIngo Molnar struct cpumask *covered; 1121f2cb1360SIngo Molnar int i; 1122f2cb1360SIngo Molnar 1123f2cb1360SIngo Molnar lockdep_assert_held(&sched_domains_mutex); 1124f2cb1360SIngo Molnar covered = sched_domains_tmpmask; 1125f2cb1360SIngo Molnar 1126f2cb1360SIngo Molnar cpumask_clear(covered); 1127f2cb1360SIngo Molnar 11280c0e776aSPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 1129f2cb1360SIngo Molnar struct sched_group *sg; 1130f2cb1360SIngo Molnar 1131f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 1132f2cb1360SIngo Molnar continue; 1133f2cb1360SIngo Molnar 11340c0e776aSPeter Zijlstra sg = get_group(i, sdd); 1135f2cb1360SIngo Molnar 1136ae4df9d6SPeter Zijlstra cpumask_or(covered, covered, sched_group_span(sg)); 1137f2cb1360SIngo Molnar 1138f2cb1360SIngo Molnar if (!first) 1139f2cb1360SIngo Molnar first = sg; 1140f2cb1360SIngo Molnar if (last) 1141f2cb1360SIngo Molnar last->next = sg; 1142f2cb1360SIngo Molnar last = sg; 1143f2cb1360SIngo Molnar } 1144f2cb1360SIngo Molnar last->next = first; 11450c0e776aSPeter Zijlstra sd->groups = first; 1146f2cb1360SIngo Molnar 1147f2cb1360SIngo Molnar return 0; 1148f2cb1360SIngo Molnar } 1149f2cb1360SIngo Molnar 1150f2cb1360SIngo Molnar /* 1151f2cb1360SIngo Molnar * Initialize sched groups cpu_capacity. 1152f2cb1360SIngo Molnar * 1153f2cb1360SIngo Molnar * cpu_capacity indicates the capacity of sched group, which is used while 1154f2cb1360SIngo Molnar * distributing the load between different sched groups in a sched domain. 1155f2cb1360SIngo Molnar * Typically cpu_capacity for all the groups in a sched domain will be same 1156f2cb1360SIngo Molnar * unless there are asymmetries in the topology. If there are asymmetries, 1157f2cb1360SIngo Molnar * group having more cpu_capacity will pickup more load compared to the 1158f2cb1360SIngo Molnar * group having less cpu_capacity. 1159f2cb1360SIngo Molnar */ 1160f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1161f2cb1360SIngo Molnar { 1162f2cb1360SIngo Molnar struct sched_group *sg = sd->groups; 1163f2cb1360SIngo Molnar 1164f2cb1360SIngo Molnar WARN_ON(!sg); 1165f2cb1360SIngo Molnar 1166f2cb1360SIngo Molnar do { 1167f2cb1360SIngo Molnar int cpu, max_cpu = -1; 1168f2cb1360SIngo Molnar 1169ae4df9d6SPeter Zijlstra sg->group_weight = cpumask_weight(sched_group_span(sg)); 1170f2cb1360SIngo Molnar 1171f2cb1360SIngo Molnar if (!(sd->flags & SD_ASYM_PACKING)) 1172f2cb1360SIngo Molnar goto next; 1173f2cb1360SIngo Molnar 1174ae4df9d6SPeter Zijlstra for_each_cpu(cpu, sched_group_span(sg)) { 1175f2cb1360SIngo Molnar if (max_cpu < 0) 1176f2cb1360SIngo Molnar max_cpu = cpu; 1177f2cb1360SIngo Molnar else if (sched_asym_prefer(cpu, max_cpu)) 1178f2cb1360SIngo Molnar max_cpu = cpu; 1179f2cb1360SIngo Molnar } 1180f2cb1360SIngo Molnar sg->asym_prefer_cpu = max_cpu; 1181f2cb1360SIngo Molnar 1182f2cb1360SIngo Molnar next: 1183f2cb1360SIngo Molnar sg = sg->next; 1184f2cb1360SIngo Molnar } while (sg != sd->groups); 1185f2cb1360SIngo Molnar 1186f2cb1360SIngo Molnar if (cpu != group_balance_cpu(sg)) 1187f2cb1360SIngo Molnar return; 1188f2cb1360SIngo Molnar 1189f2cb1360SIngo Molnar update_group_capacity(sd, cpu); 1190f2cb1360SIngo Molnar } 1191f2cb1360SIngo Molnar 1192f2cb1360SIngo Molnar /* 1193f2cb1360SIngo Molnar * Initializers for schedule domains 1194f2cb1360SIngo Molnar * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1195f2cb1360SIngo Molnar */ 1196f2cb1360SIngo Molnar 1197f2cb1360SIngo Molnar static int default_relax_domain_level = -1; 1198f2cb1360SIngo Molnar int sched_domain_level_max; 1199f2cb1360SIngo Molnar 1200f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str) 1201f2cb1360SIngo Molnar { 1202f2cb1360SIngo Molnar if (kstrtoint(str, 0, &default_relax_domain_level)) 1203f2cb1360SIngo Molnar pr_warn("Unable to set relax_domain_level\n"); 1204f2cb1360SIngo Molnar 1205f2cb1360SIngo Molnar return 1; 1206f2cb1360SIngo Molnar } 1207f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level); 1208f2cb1360SIngo Molnar 1209f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd, 1210f2cb1360SIngo Molnar struct sched_domain_attr *attr) 1211f2cb1360SIngo Molnar { 1212f2cb1360SIngo Molnar int request; 1213f2cb1360SIngo Molnar 1214f2cb1360SIngo Molnar if (!attr || attr->relax_domain_level < 0) { 1215f2cb1360SIngo Molnar if (default_relax_domain_level < 0) 1216f2cb1360SIngo Molnar return; 1217f2cb1360SIngo Molnar request = default_relax_domain_level; 1218f2cb1360SIngo Molnar } else 1219f2cb1360SIngo Molnar request = attr->relax_domain_level; 12209ae7ab20SValentin Schneider 12219ae7ab20SValentin Schneider if (sd->level > request) { 1222f2cb1360SIngo Molnar /* Turn off idle balance on this domain: */ 1223f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1224f2cb1360SIngo Molnar } 1225f2cb1360SIngo Molnar } 1226f2cb1360SIngo Molnar 1227f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map); 1228f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map); 1229f2cb1360SIngo Molnar 1230f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1231f2cb1360SIngo Molnar const struct cpumask *cpu_map) 1232f2cb1360SIngo Molnar { 1233f2cb1360SIngo Molnar switch (what) { 1234f2cb1360SIngo Molnar case sa_rootdomain: 1235f2cb1360SIngo Molnar if (!atomic_read(&d->rd->refcount)) 1236f2cb1360SIngo Molnar free_rootdomain(&d->rd->rcu); 1237f2cb1360SIngo Molnar /* Fall through */ 1238f2cb1360SIngo Molnar case sa_sd: 1239f2cb1360SIngo Molnar free_percpu(d->sd); 1240f2cb1360SIngo Molnar /* Fall through */ 1241f2cb1360SIngo Molnar case sa_sd_storage: 1242f2cb1360SIngo Molnar __sdt_free(cpu_map); 1243f2cb1360SIngo Molnar /* Fall through */ 1244f2cb1360SIngo Molnar case sa_none: 1245f2cb1360SIngo Molnar break; 1246f2cb1360SIngo Molnar } 1247f2cb1360SIngo Molnar } 1248f2cb1360SIngo Molnar 1249f2cb1360SIngo Molnar static enum s_alloc 1250f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1251f2cb1360SIngo Molnar { 1252f2cb1360SIngo Molnar memset(d, 0, sizeof(*d)); 1253f2cb1360SIngo Molnar 1254f2cb1360SIngo Molnar if (__sdt_alloc(cpu_map)) 1255f2cb1360SIngo Molnar return sa_sd_storage; 1256f2cb1360SIngo Molnar d->sd = alloc_percpu(struct sched_domain *); 1257f2cb1360SIngo Molnar if (!d->sd) 1258f2cb1360SIngo Molnar return sa_sd_storage; 1259f2cb1360SIngo Molnar d->rd = alloc_rootdomain(); 1260f2cb1360SIngo Molnar if (!d->rd) 1261f2cb1360SIngo Molnar return sa_sd; 126297fb7a0aSIngo Molnar 1263f2cb1360SIngo Molnar return sa_rootdomain; 1264f2cb1360SIngo Molnar } 1265f2cb1360SIngo Molnar 1266f2cb1360SIngo Molnar /* 1267f2cb1360SIngo Molnar * NULL the sd_data elements we've used to build the sched_domain and 1268f2cb1360SIngo Molnar * sched_group structure so that the subsequent __free_domain_allocs() 1269f2cb1360SIngo Molnar * will not free the data we're using. 1270f2cb1360SIngo Molnar */ 1271f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd) 1272f2cb1360SIngo Molnar { 1273f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1274f2cb1360SIngo Molnar 1275f2cb1360SIngo Molnar WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1276f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, cpu) = NULL; 1277f2cb1360SIngo Molnar 1278f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1279f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, cpu) = NULL; 1280f2cb1360SIngo Molnar 1281f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1282f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, cpu) = NULL; 1283f2cb1360SIngo Molnar 1284f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1285f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1286f2cb1360SIngo Molnar } 1287f2cb1360SIngo Molnar 1288f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1289f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type; 129097fb7a0aSIngo Molnar 129197fb7a0aSIngo Molnar static int sched_domains_numa_levels; 1292f2cb1360SIngo Molnar static int sched_domains_curr_level; 129397fb7a0aSIngo Molnar 129497fb7a0aSIngo Molnar int sched_max_numa_distance; 129597fb7a0aSIngo Molnar static int *sched_domains_numa_distance; 129697fb7a0aSIngo Molnar static struct cpumask ***sched_domains_numa_masks; 1297a55c7454SMatt Fleming int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1298f2cb1360SIngo Molnar #endif 1299f2cb1360SIngo Molnar 1300f2cb1360SIngo Molnar /* 1301f2cb1360SIngo Molnar * SD_flags allowed in topology descriptions. 1302f2cb1360SIngo Molnar * 1303f2cb1360SIngo Molnar * These flags are purely descriptive of the topology and do not prescribe 1304f2cb1360SIngo Molnar * behaviour. Behaviour is artificial and mapped in the below sd_init() 1305f2cb1360SIngo Molnar * function: 1306f2cb1360SIngo Molnar * 1307f2cb1360SIngo Molnar * SD_SHARE_CPUCAPACITY - describes SMT topologies 1308f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCES - describes shared caches 1309f2cb1360SIngo Molnar * SD_NUMA - describes NUMA topologies 1310f2cb1360SIngo Molnar * 1311f2cb1360SIngo Molnar * Odd one out, which beside describing the topology has a quirk also 1312f2cb1360SIngo Molnar * prescribes the desired behaviour that goes along with it: 1313f2cb1360SIngo Molnar * 1314f2cb1360SIngo Molnar * SD_ASYM_PACKING - describes SMT quirks 1315f2cb1360SIngo Molnar */ 1316f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS \ 1317f2cb1360SIngo Molnar (SD_SHARE_CPUCAPACITY | \ 1318f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | \ 1319f2cb1360SIngo Molnar SD_NUMA | \ 1320cfe7ddcbSValentin Schneider SD_ASYM_PACKING) 1321f2cb1360SIngo Molnar 1322f2cb1360SIngo Molnar static struct sched_domain * 1323f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl, 1324f2cb1360SIngo Molnar const struct cpumask *cpu_map, 132505484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1326f2cb1360SIngo Molnar { 1327f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1328f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1329f2cb1360SIngo Molnar int sd_id, sd_weight, sd_flags = 0; 1330f2cb1360SIngo Molnar 1331f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1332f2cb1360SIngo Molnar /* 1333f2cb1360SIngo Molnar * Ugly hack to pass state to sd_numa_mask()... 1334f2cb1360SIngo Molnar */ 1335f2cb1360SIngo Molnar sched_domains_curr_level = tl->numa_level; 1336f2cb1360SIngo Molnar #endif 1337f2cb1360SIngo Molnar 1338f2cb1360SIngo Molnar sd_weight = cpumask_weight(tl->mask(cpu)); 1339f2cb1360SIngo Molnar 1340f2cb1360SIngo Molnar if (tl->sd_flags) 1341f2cb1360SIngo Molnar sd_flags = (*tl->sd_flags)(); 1342f2cb1360SIngo Molnar if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1343f2cb1360SIngo Molnar "wrong sd_flags in topology description\n")) 13449b1b234bSPeng Liu sd_flags &= TOPOLOGY_SD_FLAGS; 1345f2cb1360SIngo Molnar 134605484e09SMorten Rasmussen /* Apply detected topology flags */ 134705484e09SMorten Rasmussen sd_flags |= dflags; 134805484e09SMorten Rasmussen 1349f2cb1360SIngo Molnar *sd = (struct sched_domain){ 1350f2cb1360SIngo Molnar .min_interval = sd_weight, 1351f2cb1360SIngo Molnar .max_interval = 2*sd_weight, 1352f2cb1360SIngo Molnar .busy_factor = 32, 1353f2cb1360SIngo Molnar .imbalance_pct = 125, 1354f2cb1360SIngo Molnar 1355f2cb1360SIngo Molnar .cache_nice_tries = 0, 1356f2cb1360SIngo Molnar 135736c5bdc4SValentin Schneider .flags = 1*SD_BALANCE_NEWIDLE 1358f2cb1360SIngo Molnar | 1*SD_BALANCE_EXEC 1359f2cb1360SIngo Molnar | 1*SD_BALANCE_FORK 1360f2cb1360SIngo Molnar | 0*SD_BALANCE_WAKE 1361f2cb1360SIngo Molnar | 1*SD_WAKE_AFFINE 1362f2cb1360SIngo Molnar | 0*SD_SHARE_CPUCAPACITY 1363f2cb1360SIngo Molnar | 0*SD_SHARE_PKG_RESOURCES 1364f2cb1360SIngo Molnar | 0*SD_SERIALIZE 13659c63e84dSMorten Rasmussen | 1*SD_PREFER_SIBLING 1366f2cb1360SIngo Molnar | 0*SD_NUMA 1367f2cb1360SIngo Molnar | sd_flags 1368f2cb1360SIngo Molnar , 1369f2cb1360SIngo Molnar 1370f2cb1360SIngo Molnar .last_balance = jiffies, 1371f2cb1360SIngo Molnar .balance_interval = sd_weight, 1372f2cb1360SIngo Molnar .max_newidle_lb_cost = 0, 1373f2cb1360SIngo Molnar .next_decay_max_lb_cost = jiffies, 1374f2cb1360SIngo Molnar .child = child, 1375f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1376f2cb1360SIngo Molnar .name = tl->name, 1377f2cb1360SIngo Molnar #endif 1378f2cb1360SIngo Molnar }; 1379f2cb1360SIngo Molnar 1380f2cb1360SIngo Molnar cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1381f2cb1360SIngo Molnar sd_id = cpumask_first(sched_domain_span(sd)); 1382f2cb1360SIngo Molnar 1383f2cb1360SIngo Molnar /* 1384f2cb1360SIngo Molnar * Convert topological properties into behaviour. 1385f2cb1360SIngo Molnar */ 1386f2cb1360SIngo Molnar 1387a526d466SMorten Rasmussen /* Don't attempt to spread across CPUs of different capacities. */ 1388a526d466SMorten Rasmussen if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 13899c63e84dSMorten Rasmussen sd->child->flags &= ~SD_PREFER_SIBLING; 13909c63e84dSMorten Rasmussen 1391f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_CPUCAPACITY) { 1392f2cb1360SIngo Molnar sd->imbalance_pct = 110; 1393f2cb1360SIngo Molnar 1394f2cb1360SIngo Molnar } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1395f2cb1360SIngo Molnar sd->imbalance_pct = 117; 1396f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1397f2cb1360SIngo Molnar 1398f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1399f2cb1360SIngo Molnar } else if (sd->flags & SD_NUMA) { 1400f2cb1360SIngo Molnar sd->cache_nice_tries = 2; 1401f2cb1360SIngo Molnar 14029c63e84dSMorten Rasmussen sd->flags &= ~SD_PREFER_SIBLING; 1403f2cb1360SIngo Molnar sd->flags |= SD_SERIALIZE; 1404a55c7454SMatt Fleming if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1405f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_EXEC | 1406f2cb1360SIngo Molnar SD_BALANCE_FORK | 1407f2cb1360SIngo Molnar SD_WAKE_AFFINE); 1408f2cb1360SIngo Molnar } 1409f2cb1360SIngo Molnar 1410f2cb1360SIngo Molnar #endif 1411f2cb1360SIngo Molnar } else { 1412f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1413f2cb1360SIngo Molnar } 1414f2cb1360SIngo Molnar 1415f2cb1360SIngo Molnar /* 1416f2cb1360SIngo Molnar * For all levels sharing cache; connect a sched_domain_shared 1417f2cb1360SIngo Molnar * instance. 1418f2cb1360SIngo Molnar */ 1419f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1420f2cb1360SIngo Molnar sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1421f2cb1360SIngo Molnar atomic_inc(&sd->shared->ref); 1422f2cb1360SIngo Molnar atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1423f2cb1360SIngo Molnar } 1424f2cb1360SIngo Molnar 1425f2cb1360SIngo Molnar sd->private = sdd; 1426f2cb1360SIngo Molnar 1427f2cb1360SIngo Molnar return sd; 1428f2cb1360SIngo Molnar } 1429f2cb1360SIngo Molnar 1430f2cb1360SIngo Molnar /* 1431f2cb1360SIngo Molnar * Topology list, bottom-up. 1432f2cb1360SIngo Molnar */ 1433f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = { 1434f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT 1435f2cb1360SIngo Molnar { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1436f2cb1360SIngo Molnar #endif 1437f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC 1438f2cb1360SIngo Molnar { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1439f2cb1360SIngo Molnar #endif 1440f2cb1360SIngo Molnar { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1441f2cb1360SIngo Molnar { NULL, }, 1442f2cb1360SIngo Molnar }; 1443f2cb1360SIngo Molnar 1444f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology = 1445f2cb1360SIngo Molnar default_topology; 1446f2cb1360SIngo Molnar 1447f2cb1360SIngo Molnar #define for_each_sd_topology(tl) \ 1448f2cb1360SIngo Molnar for (tl = sched_domain_topology; tl->mask; tl++) 1449f2cb1360SIngo Molnar 1450f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl) 1451f2cb1360SIngo Molnar { 1452f2cb1360SIngo Molnar if (WARN_ON_ONCE(sched_smp_initialized)) 1453f2cb1360SIngo Molnar return; 1454f2cb1360SIngo Molnar 1455f2cb1360SIngo Molnar sched_domain_topology = tl; 1456f2cb1360SIngo Molnar } 1457f2cb1360SIngo Molnar 1458f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1459f2cb1360SIngo Molnar 1460f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu) 1461f2cb1360SIngo Molnar { 1462f2cb1360SIngo Molnar return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1463f2cb1360SIngo Molnar } 1464f2cb1360SIngo Molnar 1465f2cb1360SIngo Molnar static void sched_numa_warn(const char *str) 1466f2cb1360SIngo Molnar { 1467f2cb1360SIngo Molnar static int done = false; 1468f2cb1360SIngo Molnar int i,j; 1469f2cb1360SIngo Molnar 1470f2cb1360SIngo Molnar if (done) 1471f2cb1360SIngo Molnar return; 1472f2cb1360SIngo Molnar 1473f2cb1360SIngo Molnar done = true; 1474f2cb1360SIngo Molnar 1475f2cb1360SIngo Molnar printk(KERN_WARNING "ERROR: %s\n\n", str); 1476f2cb1360SIngo Molnar 1477f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1478f2cb1360SIngo Molnar printk(KERN_WARNING " "); 1479f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1480f2cb1360SIngo Molnar printk(KERN_CONT "%02d ", node_distance(i,j)); 1481f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 1482f2cb1360SIngo Molnar } 1483f2cb1360SIngo Molnar printk(KERN_WARNING "\n"); 1484f2cb1360SIngo Molnar } 1485f2cb1360SIngo Molnar 1486f2cb1360SIngo Molnar bool find_numa_distance(int distance) 1487f2cb1360SIngo Molnar { 1488f2cb1360SIngo Molnar int i; 1489f2cb1360SIngo Molnar 1490f2cb1360SIngo Molnar if (distance == node_distance(0, 0)) 1491f2cb1360SIngo Molnar return true; 1492f2cb1360SIngo Molnar 1493f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1494f2cb1360SIngo Molnar if (sched_domains_numa_distance[i] == distance) 1495f2cb1360SIngo Molnar return true; 1496f2cb1360SIngo Molnar } 1497f2cb1360SIngo Molnar 1498f2cb1360SIngo Molnar return false; 1499f2cb1360SIngo Molnar } 1500f2cb1360SIngo Molnar 1501f2cb1360SIngo Molnar /* 1502f2cb1360SIngo Molnar * A system can have three types of NUMA topology: 1503f2cb1360SIngo Molnar * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1504f2cb1360SIngo Molnar * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1505f2cb1360SIngo Molnar * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1506f2cb1360SIngo Molnar * 1507f2cb1360SIngo Molnar * The difference between a glueless mesh topology and a backplane 1508f2cb1360SIngo Molnar * topology lies in whether communication between not directly 1509f2cb1360SIngo Molnar * connected nodes goes through intermediary nodes (where programs 1510f2cb1360SIngo Molnar * could run), or through backplane controllers. This affects 1511f2cb1360SIngo Molnar * placement of programs. 1512f2cb1360SIngo Molnar * 1513f2cb1360SIngo Molnar * The type of topology can be discerned with the following tests: 1514f2cb1360SIngo Molnar * - If the maximum distance between any nodes is 1 hop, the system 1515f2cb1360SIngo Molnar * is directly connected. 1516f2cb1360SIngo Molnar * - If for two nodes A and B, located N > 1 hops away from each other, 1517f2cb1360SIngo Molnar * there is an intermediary node C, which is < N hops away from both 1518f2cb1360SIngo Molnar * nodes A and B, the system is a glueless mesh. 1519f2cb1360SIngo Molnar */ 1520f2cb1360SIngo Molnar static void init_numa_topology_type(void) 1521f2cb1360SIngo Molnar { 1522f2cb1360SIngo Molnar int a, b, c, n; 1523f2cb1360SIngo Molnar 1524f2cb1360SIngo Molnar n = sched_max_numa_distance; 1525f2cb1360SIngo Molnar 1526e5e96fafSSrikar Dronamraju if (sched_domains_numa_levels <= 2) { 1527f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_DIRECT; 1528f2cb1360SIngo Molnar return; 1529f2cb1360SIngo Molnar } 1530f2cb1360SIngo Molnar 1531f2cb1360SIngo Molnar for_each_online_node(a) { 1532f2cb1360SIngo Molnar for_each_online_node(b) { 1533f2cb1360SIngo Molnar /* Find two nodes furthest removed from each other. */ 1534f2cb1360SIngo Molnar if (node_distance(a, b) < n) 1535f2cb1360SIngo Molnar continue; 1536f2cb1360SIngo Molnar 1537f2cb1360SIngo Molnar /* Is there an intermediary node between a and b? */ 1538f2cb1360SIngo Molnar for_each_online_node(c) { 1539f2cb1360SIngo Molnar if (node_distance(a, c) < n && 1540f2cb1360SIngo Molnar node_distance(b, c) < n) { 1541f2cb1360SIngo Molnar sched_numa_topology_type = 1542f2cb1360SIngo Molnar NUMA_GLUELESS_MESH; 1543f2cb1360SIngo Molnar return; 1544f2cb1360SIngo Molnar } 1545f2cb1360SIngo Molnar } 1546f2cb1360SIngo Molnar 1547f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_BACKPLANE; 1548f2cb1360SIngo Molnar return; 1549f2cb1360SIngo Molnar } 1550f2cb1360SIngo Molnar } 1551f2cb1360SIngo Molnar } 1552f2cb1360SIngo Molnar 1553f2cb1360SIngo Molnar void sched_init_numa(void) 1554f2cb1360SIngo Molnar { 1555f2cb1360SIngo Molnar int next_distance, curr_distance = node_distance(0, 0); 1556f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1557f2cb1360SIngo Molnar int level = 0; 1558f2cb1360SIngo Molnar int i, j, k; 1559f2cb1360SIngo Molnar 1560993f0b05SPeter Zijlstra sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1561f2cb1360SIngo Molnar if (!sched_domains_numa_distance) 1562f2cb1360SIngo Molnar return; 1563f2cb1360SIngo Molnar 1564051f3ca0SSuravee Suthikulpanit /* Includes NUMA identity node at level 0. */ 1565051f3ca0SSuravee Suthikulpanit sched_domains_numa_distance[level++] = curr_distance; 1566051f3ca0SSuravee Suthikulpanit sched_domains_numa_levels = level; 1567051f3ca0SSuravee Suthikulpanit 1568f2cb1360SIngo Molnar /* 1569f2cb1360SIngo Molnar * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1570f2cb1360SIngo Molnar * unique distances in the node_distance() table. 1571f2cb1360SIngo Molnar * 1572f2cb1360SIngo Molnar * Assumes node_distance(0,j) includes all distances in 1573f2cb1360SIngo Molnar * node_distance(i,j) in order to avoid cubic time. 1574f2cb1360SIngo Molnar */ 1575f2cb1360SIngo Molnar next_distance = curr_distance; 1576f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1577f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1578f2cb1360SIngo Molnar for (k = 0; k < nr_node_ids; k++) { 1579f2cb1360SIngo Molnar int distance = node_distance(i, k); 1580f2cb1360SIngo Molnar 1581f2cb1360SIngo Molnar if (distance > curr_distance && 1582f2cb1360SIngo Molnar (distance < next_distance || 1583f2cb1360SIngo Molnar next_distance == curr_distance)) 1584f2cb1360SIngo Molnar next_distance = distance; 1585f2cb1360SIngo Molnar 1586f2cb1360SIngo Molnar /* 1587f2cb1360SIngo Molnar * While not a strong assumption it would be nice to know 1588f2cb1360SIngo Molnar * about cases where if node A is connected to B, B is not 1589f2cb1360SIngo Molnar * equally connected to A. 1590f2cb1360SIngo Molnar */ 1591f2cb1360SIngo Molnar if (sched_debug() && node_distance(k, i) != distance) 1592f2cb1360SIngo Molnar sched_numa_warn("Node-distance not symmetric"); 1593f2cb1360SIngo Molnar 1594f2cb1360SIngo Molnar if (sched_debug() && i && !find_numa_distance(distance)) 1595f2cb1360SIngo Molnar sched_numa_warn("Node-0 not representative"); 1596f2cb1360SIngo Molnar } 1597f2cb1360SIngo Molnar if (next_distance != curr_distance) { 1598f2cb1360SIngo Molnar sched_domains_numa_distance[level++] = next_distance; 1599f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1600f2cb1360SIngo Molnar curr_distance = next_distance; 1601f2cb1360SIngo Molnar } else break; 1602f2cb1360SIngo Molnar } 1603f2cb1360SIngo Molnar 1604f2cb1360SIngo Molnar /* 1605f2cb1360SIngo Molnar * In case of sched_debug() we verify the above assumption. 1606f2cb1360SIngo Molnar */ 1607f2cb1360SIngo Molnar if (!sched_debug()) 1608f2cb1360SIngo Molnar break; 1609f2cb1360SIngo Molnar } 1610f2cb1360SIngo Molnar 1611f2cb1360SIngo Molnar /* 1612051f3ca0SSuravee Suthikulpanit * 'level' contains the number of unique distances 1613f2cb1360SIngo Molnar * 1614f2cb1360SIngo Molnar * The sched_domains_numa_distance[] array includes the actual distance 1615f2cb1360SIngo Molnar * numbers. 1616f2cb1360SIngo Molnar */ 1617f2cb1360SIngo Molnar 1618f2cb1360SIngo Molnar /* 1619f2cb1360SIngo Molnar * Here, we should temporarily reset sched_domains_numa_levels to 0. 1620f2cb1360SIngo Molnar * If it fails to allocate memory for array sched_domains_numa_masks[][], 1621f2cb1360SIngo Molnar * the array will contain less then 'level' members. This could be 1622f2cb1360SIngo Molnar * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1623f2cb1360SIngo Molnar * in other functions. 1624f2cb1360SIngo Molnar * 1625f2cb1360SIngo Molnar * We reset it to 'level' at the end of this function. 1626f2cb1360SIngo Molnar */ 1627f2cb1360SIngo Molnar sched_domains_numa_levels = 0; 1628f2cb1360SIngo Molnar 1629f2cb1360SIngo Molnar sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1630f2cb1360SIngo Molnar if (!sched_domains_numa_masks) 1631f2cb1360SIngo Molnar return; 1632f2cb1360SIngo Molnar 1633f2cb1360SIngo Molnar /* 1634f2cb1360SIngo Molnar * Now for each level, construct a mask per node which contains all 1635f2cb1360SIngo Molnar * CPUs of nodes that are that many hops away from us. 1636f2cb1360SIngo Molnar */ 1637f2cb1360SIngo Molnar for (i = 0; i < level; i++) { 1638f2cb1360SIngo Molnar sched_domains_numa_masks[i] = 1639f2cb1360SIngo Molnar kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1640f2cb1360SIngo Molnar if (!sched_domains_numa_masks[i]) 1641f2cb1360SIngo Molnar return; 1642f2cb1360SIngo Molnar 1643f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1644f2cb1360SIngo Molnar struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1645f2cb1360SIngo Molnar if (!mask) 1646f2cb1360SIngo Molnar return; 1647f2cb1360SIngo Molnar 1648f2cb1360SIngo Molnar sched_domains_numa_masks[i][j] = mask; 1649f2cb1360SIngo Molnar 1650f2cb1360SIngo Molnar for_each_node(k) { 1651f2cb1360SIngo Molnar if (node_distance(j, k) > sched_domains_numa_distance[i]) 1652f2cb1360SIngo Molnar continue; 1653f2cb1360SIngo Molnar 1654f2cb1360SIngo Molnar cpumask_or(mask, mask, cpumask_of_node(k)); 1655f2cb1360SIngo Molnar } 1656f2cb1360SIngo Molnar } 1657f2cb1360SIngo Molnar } 1658f2cb1360SIngo Molnar 1659f2cb1360SIngo Molnar /* Compute default topology size */ 1660f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++); 1661f2cb1360SIngo Molnar 1662f2cb1360SIngo Molnar tl = kzalloc((i + level + 1) * 1663f2cb1360SIngo Molnar sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1664f2cb1360SIngo Molnar if (!tl) 1665f2cb1360SIngo Molnar return; 1666f2cb1360SIngo Molnar 1667f2cb1360SIngo Molnar /* 1668f2cb1360SIngo Molnar * Copy the default topology bits.. 1669f2cb1360SIngo Molnar */ 1670f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++) 1671f2cb1360SIngo Molnar tl[i] = sched_domain_topology[i]; 1672f2cb1360SIngo Molnar 1673f2cb1360SIngo Molnar /* 1674051f3ca0SSuravee Suthikulpanit * Add the NUMA identity distance, aka single NODE. 1675051f3ca0SSuravee Suthikulpanit */ 1676051f3ca0SSuravee Suthikulpanit tl[i++] = (struct sched_domain_topology_level){ 1677051f3ca0SSuravee Suthikulpanit .mask = sd_numa_mask, 1678051f3ca0SSuravee Suthikulpanit .numa_level = 0, 1679051f3ca0SSuravee Suthikulpanit SD_INIT_NAME(NODE) 1680051f3ca0SSuravee Suthikulpanit }; 1681051f3ca0SSuravee Suthikulpanit 1682051f3ca0SSuravee Suthikulpanit /* 1683f2cb1360SIngo Molnar * .. and append 'j' levels of NUMA goodness. 1684f2cb1360SIngo Molnar */ 1685051f3ca0SSuravee Suthikulpanit for (j = 1; j < level; i++, j++) { 1686f2cb1360SIngo Molnar tl[i] = (struct sched_domain_topology_level){ 1687f2cb1360SIngo Molnar .mask = sd_numa_mask, 1688f2cb1360SIngo Molnar .sd_flags = cpu_numa_flags, 1689f2cb1360SIngo Molnar .flags = SDTL_OVERLAP, 1690f2cb1360SIngo Molnar .numa_level = j, 1691f2cb1360SIngo Molnar SD_INIT_NAME(NUMA) 1692f2cb1360SIngo Molnar }; 1693f2cb1360SIngo Molnar } 1694f2cb1360SIngo Molnar 1695f2cb1360SIngo Molnar sched_domain_topology = tl; 1696f2cb1360SIngo Molnar 1697f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1698f2cb1360SIngo Molnar sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1699f2cb1360SIngo Molnar 1700f2cb1360SIngo Molnar init_numa_topology_type(); 1701f2cb1360SIngo Molnar } 1702f2cb1360SIngo Molnar 1703f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu) 1704f2cb1360SIngo Molnar { 1705f2cb1360SIngo Molnar int node = cpu_to_node(cpu); 1706f2cb1360SIngo Molnar int i, j; 1707f2cb1360SIngo Molnar 1708f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1709f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1710f2cb1360SIngo Molnar if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1711f2cb1360SIngo Molnar cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1712f2cb1360SIngo Molnar } 1713f2cb1360SIngo Molnar } 1714f2cb1360SIngo Molnar } 1715f2cb1360SIngo Molnar 1716f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu) 1717f2cb1360SIngo Molnar { 1718f2cb1360SIngo Molnar int i, j; 1719f2cb1360SIngo Molnar 1720f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1721f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1722f2cb1360SIngo Molnar cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1723f2cb1360SIngo Molnar } 1724f2cb1360SIngo Molnar } 1725f2cb1360SIngo Molnar 1726e0e8d491SWanpeng Li /* 1727e0e8d491SWanpeng Li * sched_numa_find_closest() - given the NUMA topology, find the cpu 1728e0e8d491SWanpeng Li * closest to @cpu from @cpumask. 1729e0e8d491SWanpeng Li * cpumask: cpumask to find a cpu from 1730e0e8d491SWanpeng Li * cpu: cpu to be close to 1731e0e8d491SWanpeng Li * 1732e0e8d491SWanpeng Li * returns: cpu, or nr_cpu_ids when nothing found. 1733e0e8d491SWanpeng Li */ 1734e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1735e0e8d491SWanpeng Li { 1736e0e8d491SWanpeng Li int i, j = cpu_to_node(cpu); 1737e0e8d491SWanpeng Li 1738e0e8d491SWanpeng Li for (i = 0; i < sched_domains_numa_levels; i++) { 1739e0e8d491SWanpeng Li cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 1740e0e8d491SWanpeng Li if (cpu < nr_cpu_ids) 1741e0e8d491SWanpeng Li return cpu; 1742e0e8d491SWanpeng Li } 1743e0e8d491SWanpeng Li return nr_cpu_ids; 1744e0e8d491SWanpeng Li } 1745e0e8d491SWanpeng Li 1746f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */ 1747f2cb1360SIngo Molnar 1748f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map) 1749f2cb1360SIngo Molnar { 1750f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1751f2cb1360SIngo Molnar int j; 1752f2cb1360SIngo Molnar 1753f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1754f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1755f2cb1360SIngo Molnar 1756f2cb1360SIngo Molnar sdd->sd = alloc_percpu(struct sched_domain *); 1757f2cb1360SIngo Molnar if (!sdd->sd) 1758f2cb1360SIngo Molnar return -ENOMEM; 1759f2cb1360SIngo Molnar 1760f2cb1360SIngo Molnar sdd->sds = alloc_percpu(struct sched_domain_shared *); 1761f2cb1360SIngo Molnar if (!sdd->sds) 1762f2cb1360SIngo Molnar return -ENOMEM; 1763f2cb1360SIngo Molnar 1764f2cb1360SIngo Molnar sdd->sg = alloc_percpu(struct sched_group *); 1765f2cb1360SIngo Molnar if (!sdd->sg) 1766f2cb1360SIngo Molnar return -ENOMEM; 1767f2cb1360SIngo Molnar 1768f2cb1360SIngo Molnar sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1769f2cb1360SIngo Molnar if (!sdd->sgc) 1770f2cb1360SIngo Molnar return -ENOMEM; 1771f2cb1360SIngo Molnar 1772f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1773f2cb1360SIngo Molnar struct sched_domain *sd; 1774f2cb1360SIngo Molnar struct sched_domain_shared *sds; 1775f2cb1360SIngo Molnar struct sched_group *sg; 1776f2cb1360SIngo Molnar struct sched_group_capacity *sgc; 1777f2cb1360SIngo Molnar 1778f2cb1360SIngo Molnar sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1779f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1780f2cb1360SIngo Molnar if (!sd) 1781f2cb1360SIngo Molnar return -ENOMEM; 1782f2cb1360SIngo Molnar 1783f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, j) = sd; 1784f2cb1360SIngo Molnar 1785f2cb1360SIngo Molnar sds = kzalloc_node(sizeof(struct sched_domain_shared), 1786f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1787f2cb1360SIngo Molnar if (!sds) 1788f2cb1360SIngo Molnar return -ENOMEM; 1789f2cb1360SIngo Molnar 1790f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, j) = sds; 1791f2cb1360SIngo Molnar 1792f2cb1360SIngo Molnar sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1793f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1794f2cb1360SIngo Molnar if (!sg) 1795f2cb1360SIngo Molnar return -ENOMEM; 1796f2cb1360SIngo Molnar 1797f2cb1360SIngo Molnar sg->next = sg; 1798f2cb1360SIngo Molnar 1799f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, j) = sg; 1800f2cb1360SIngo Molnar 1801f2cb1360SIngo Molnar sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1802f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1803f2cb1360SIngo Molnar if (!sgc) 1804f2cb1360SIngo Molnar return -ENOMEM; 1805f2cb1360SIngo Molnar 1806005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG 1807005f874dSPeter Zijlstra sgc->id = j; 1808005f874dSPeter Zijlstra #endif 1809005f874dSPeter Zijlstra 1810f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, j) = sgc; 1811f2cb1360SIngo Molnar } 1812f2cb1360SIngo Molnar } 1813f2cb1360SIngo Molnar 1814f2cb1360SIngo Molnar return 0; 1815f2cb1360SIngo Molnar } 1816f2cb1360SIngo Molnar 1817f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map) 1818f2cb1360SIngo Molnar { 1819f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1820f2cb1360SIngo Molnar int j; 1821f2cb1360SIngo Molnar 1822f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1823f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1824f2cb1360SIngo Molnar 1825f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1826f2cb1360SIngo Molnar struct sched_domain *sd; 1827f2cb1360SIngo Molnar 1828f2cb1360SIngo Molnar if (sdd->sd) { 1829f2cb1360SIngo Molnar sd = *per_cpu_ptr(sdd->sd, j); 1830f2cb1360SIngo Molnar if (sd && (sd->flags & SD_OVERLAP)) 1831f2cb1360SIngo Molnar free_sched_groups(sd->groups, 0); 1832f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sd, j)); 1833f2cb1360SIngo Molnar } 1834f2cb1360SIngo Molnar 1835f2cb1360SIngo Molnar if (sdd->sds) 1836f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sds, j)); 1837f2cb1360SIngo Molnar if (sdd->sg) 1838f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sg, j)); 1839f2cb1360SIngo Molnar if (sdd->sgc) 1840f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sgc, j)); 1841f2cb1360SIngo Molnar } 1842f2cb1360SIngo Molnar free_percpu(sdd->sd); 1843f2cb1360SIngo Molnar sdd->sd = NULL; 1844f2cb1360SIngo Molnar free_percpu(sdd->sds); 1845f2cb1360SIngo Molnar sdd->sds = NULL; 1846f2cb1360SIngo Molnar free_percpu(sdd->sg); 1847f2cb1360SIngo Molnar sdd->sg = NULL; 1848f2cb1360SIngo Molnar free_percpu(sdd->sgc); 1849f2cb1360SIngo Molnar sdd->sgc = NULL; 1850f2cb1360SIngo Molnar } 1851f2cb1360SIngo Molnar } 1852f2cb1360SIngo Molnar 1853181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1854f2cb1360SIngo Molnar const struct cpumask *cpu_map, struct sched_domain_attr *attr, 185505484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1856f2cb1360SIngo Molnar { 185705484e09SMorten Rasmussen struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1858f2cb1360SIngo Molnar 1859f2cb1360SIngo Molnar if (child) { 1860f2cb1360SIngo Molnar sd->level = child->level + 1; 1861f2cb1360SIngo Molnar sched_domain_level_max = max(sched_domain_level_max, sd->level); 1862f2cb1360SIngo Molnar child->parent = sd; 1863f2cb1360SIngo Molnar 1864f2cb1360SIngo Molnar if (!cpumask_subset(sched_domain_span(child), 1865f2cb1360SIngo Molnar sched_domain_span(sd))) { 1866f2cb1360SIngo Molnar pr_err("BUG: arch topology borken\n"); 1867f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1868f2cb1360SIngo Molnar pr_err(" the %s domain not a subset of the %s domain\n", 1869f2cb1360SIngo Molnar child->name, sd->name); 1870f2cb1360SIngo Molnar #endif 187197fb7a0aSIngo Molnar /* Fixup, ensure @sd has at least @child CPUs. */ 1872f2cb1360SIngo Molnar cpumask_or(sched_domain_span(sd), 1873f2cb1360SIngo Molnar sched_domain_span(sd), 1874f2cb1360SIngo Molnar sched_domain_span(child)); 1875f2cb1360SIngo Molnar } 1876f2cb1360SIngo Molnar 1877f2cb1360SIngo Molnar } 1878f2cb1360SIngo Molnar set_domain_attribute(sd, attr); 1879f2cb1360SIngo Molnar 1880f2cb1360SIngo Molnar return sd; 1881f2cb1360SIngo Molnar } 1882f2cb1360SIngo Molnar 1883f2cb1360SIngo Molnar /* 1884ccf74128SValentin Schneider * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 1885ccf74128SValentin Schneider * any two given CPUs at this (non-NUMA) topology level. 1886ccf74128SValentin Schneider */ 1887ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl, 1888ccf74128SValentin Schneider const struct cpumask *cpu_map, int cpu) 1889ccf74128SValentin Schneider { 1890ccf74128SValentin Schneider int i; 1891ccf74128SValentin Schneider 1892ccf74128SValentin Schneider /* NUMA levels are allowed to overlap */ 1893ccf74128SValentin Schneider if (tl->flags & SDTL_OVERLAP) 1894ccf74128SValentin Schneider return true; 1895ccf74128SValentin Schneider 1896ccf74128SValentin Schneider /* 1897ccf74128SValentin Schneider * Non-NUMA levels cannot partially overlap - they must be either 1898ccf74128SValentin Schneider * completely equal or completely disjoint. Otherwise we can end up 1899ccf74128SValentin Schneider * breaking the sched_group lists - i.e. a later get_group() pass 1900ccf74128SValentin Schneider * breaks the linking done for an earlier span. 1901ccf74128SValentin Schneider */ 1902ccf74128SValentin Schneider for_each_cpu(i, cpu_map) { 1903ccf74128SValentin Schneider if (i == cpu) 1904ccf74128SValentin Schneider continue; 1905ccf74128SValentin Schneider /* 1906ccf74128SValentin Schneider * We should 'and' all those masks with 'cpu_map' to exactly 1907ccf74128SValentin Schneider * match the topology we're about to build, but that can only 1908ccf74128SValentin Schneider * remove CPUs, which only lessens our ability to detect 1909ccf74128SValentin Schneider * overlaps 1910ccf74128SValentin Schneider */ 1911ccf74128SValentin Schneider if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 1912ccf74128SValentin Schneider cpumask_intersects(tl->mask(cpu), tl->mask(i))) 1913ccf74128SValentin Schneider return false; 1914ccf74128SValentin Schneider } 1915ccf74128SValentin Schneider 1916ccf74128SValentin Schneider return true; 1917ccf74128SValentin Schneider } 1918ccf74128SValentin Schneider 1919ccf74128SValentin Schneider /* 192005484e09SMorten Rasmussen * Find the sched_domain_topology_level where all CPU capacities are visible 192105484e09SMorten Rasmussen * for all CPUs. 192205484e09SMorten Rasmussen */ 192305484e09SMorten Rasmussen static struct sched_domain_topology_level 192405484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map) 192505484e09SMorten Rasmussen { 192605484e09SMorten Rasmussen int i, j, asym_level = 0; 192705484e09SMorten Rasmussen bool asym = false; 192805484e09SMorten Rasmussen struct sched_domain_topology_level *tl, *asym_tl = NULL; 192905484e09SMorten Rasmussen unsigned long cap; 193005484e09SMorten Rasmussen 193105484e09SMorten Rasmussen /* Is there any asymmetry? */ 19328ec59c0fSVincent Guittot cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); 193305484e09SMorten Rasmussen 193405484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19358ec59c0fSVincent Guittot if (arch_scale_cpu_capacity(i) != cap) { 193605484e09SMorten Rasmussen asym = true; 193705484e09SMorten Rasmussen break; 193805484e09SMorten Rasmussen } 193905484e09SMorten Rasmussen } 194005484e09SMorten Rasmussen 194105484e09SMorten Rasmussen if (!asym) 194205484e09SMorten Rasmussen return NULL; 194305484e09SMorten Rasmussen 194405484e09SMorten Rasmussen /* 194505484e09SMorten Rasmussen * Examine topology from all CPU's point of views to detect the lowest 194605484e09SMorten Rasmussen * sched_domain_topology_level where a highest capacity CPU is visible 194705484e09SMorten Rasmussen * to everyone. 194805484e09SMorten Rasmussen */ 194905484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19508ec59c0fSVincent Guittot unsigned long max_capacity = arch_scale_cpu_capacity(i); 195105484e09SMorten Rasmussen int tl_id = 0; 195205484e09SMorten Rasmussen 195305484e09SMorten Rasmussen for_each_sd_topology(tl) { 195405484e09SMorten Rasmussen if (tl_id < asym_level) 195505484e09SMorten Rasmussen goto next_level; 195605484e09SMorten Rasmussen 195705484e09SMorten Rasmussen for_each_cpu_and(j, tl->mask(i), cpu_map) { 195805484e09SMorten Rasmussen unsigned long capacity; 195905484e09SMorten Rasmussen 19608ec59c0fSVincent Guittot capacity = arch_scale_cpu_capacity(j); 196105484e09SMorten Rasmussen 196205484e09SMorten Rasmussen if (capacity <= max_capacity) 196305484e09SMorten Rasmussen continue; 196405484e09SMorten Rasmussen 196505484e09SMorten Rasmussen max_capacity = capacity; 196605484e09SMorten Rasmussen asym_level = tl_id; 196705484e09SMorten Rasmussen asym_tl = tl; 196805484e09SMorten Rasmussen } 196905484e09SMorten Rasmussen next_level: 197005484e09SMorten Rasmussen tl_id++; 197105484e09SMorten Rasmussen } 197205484e09SMorten Rasmussen } 197305484e09SMorten Rasmussen 197405484e09SMorten Rasmussen return asym_tl; 197505484e09SMorten Rasmussen } 197605484e09SMorten Rasmussen 197705484e09SMorten Rasmussen 197805484e09SMorten Rasmussen /* 1979f2cb1360SIngo Molnar * Build sched domains for a given set of CPUs and attach the sched domains 1980f2cb1360SIngo Molnar * to the individual CPUs 1981f2cb1360SIngo Molnar */ 1982f2cb1360SIngo Molnar static int 1983f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1984f2cb1360SIngo Molnar { 1985cd1cb335SValentin Schneider enum s_alloc alloc_state = sa_none; 1986f2cb1360SIngo Molnar struct sched_domain *sd; 1987f2cb1360SIngo Molnar struct s_data d; 1988f2cb1360SIngo Molnar struct rq *rq = NULL; 1989f2cb1360SIngo Molnar int i, ret = -ENOMEM; 199005484e09SMorten Rasmussen struct sched_domain_topology_level *tl_asym; 1991df054e84SMorten Rasmussen bool has_asym = false; 1992f2cb1360SIngo Molnar 1993cd1cb335SValentin Schneider if (WARN_ON(cpumask_empty(cpu_map))) 1994cd1cb335SValentin Schneider goto error; 1995cd1cb335SValentin Schneider 1996f2cb1360SIngo Molnar alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1997f2cb1360SIngo Molnar if (alloc_state != sa_rootdomain) 1998f2cb1360SIngo Molnar goto error; 1999f2cb1360SIngo Molnar 200005484e09SMorten Rasmussen tl_asym = asym_cpu_capacity_level(cpu_map); 200105484e09SMorten Rasmussen 2002f2cb1360SIngo Molnar /* Set up domains for CPUs specified by the cpu_map: */ 2003f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2004f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 2005f2cb1360SIngo Molnar 2006f2cb1360SIngo Molnar sd = NULL; 2007f2cb1360SIngo Molnar for_each_sd_topology(tl) { 200805484e09SMorten Rasmussen int dflags = 0; 200905484e09SMorten Rasmussen 2010df054e84SMorten Rasmussen if (tl == tl_asym) { 201105484e09SMorten Rasmussen dflags |= SD_ASYM_CPUCAPACITY; 2012df054e84SMorten Rasmussen has_asym = true; 2013df054e84SMorten Rasmussen } 201405484e09SMorten Rasmussen 2015ccf74128SValentin Schneider if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2016ccf74128SValentin Schneider goto error; 2017ccf74128SValentin Schneider 201805484e09SMorten Rasmussen sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 201905484e09SMorten Rasmussen 2020f2cb1360SIngo Molnar if (tl == sched_domain_topology) 2021f2cb1360SIngo Molnar *per_cpu_ptr(d.sd, i) = sd; 2022af85596cSPeter Zijlstra if (tl->flags & SDTL_OVERLAP) 2023f2cb1360SIngo Molnar sd->flags |= SD_OVERLAP; 2024f2cb1360SIngo Molnar if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2025f2cb1360SIngo Molnar break; 2026f2cb1360SIngo Molnar } 2027f2cb1360SIngo Molnar } 2028f2cb1360SIngo Molnar 2029f2cb1360SIngo Molnar /* Build the groups for the domains */ 2030f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2031f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2032f2cb1360SIngo Molnar sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2033f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 2034f2cb1360SIngo Molnar if (build_overlap_sched_groups(sd, i)) 2035f2cb1360SIngo Molnar goto error; 2036f2cb1360SIngo Molnar } else { 2037f2cb1360SIngo Molnar if (build_sched_groups(sd, i)) 2038f2cb1360SIngo Molnar goto error; 2039f2cb1360SIngo Molnar } 2040f2cb1360SIngo Molnar } 2041f2cb1360SIngo Molnar } 2042f2cb1360SIngo Molnar 2043f2cb1360SIngo Molnar /* Calculate CPU capacity for physical packages and nodes */ 2044f2cb1360SIngo Molnar for (i = nr_cpumask_bits-1; i >= 0; i--) { 2045f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, cpu_map)) 2046f2cb1360SIngo Molnar continue; 2047f2cb1360SIngo Molnar 2048f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2049f2cb1360SIngo Molnar claim_allocations(i, sd); 2050f2cb1360SIngo Molnar init_sched_groups_capacity(i, sd); 2051f2cb1360SIngo Molnar } 2052f2cb1360SIngo Molnar } 2053f2cb1360SIngo Molnar 2054f2cb1360SIngo Molnar /* Attach the domains */ 2055f2cb1360SIngo Molnar rcu_read_lock(); 2056f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2057f2cb1360SIngo Molnar rq = cpu_rq(i); 2058f2cb1360SIngo Molnar sd = *per_cpu_ptr(d.sd, i); 2059f2cb1360SIngo Molnar 2060f2cb1360SIngo Molnar /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2061f2cb1360SIngo Molnar if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2062f2cb1360SIngo Molnar WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2063f2cb1360SIngo Molnar 2064f2cb1360SIngo Molnar cpu_attach_domain(sd, d.rd, i); 2065f2cb1360SIngo Molnar } 2066f2cb1360SIngo Molnar rcu_read_unlock(); 2067f2cb1360SIngo Molnar 2068df054e84SMorten Rasmussen if (has_asym) 2069e284df70SValentin Schneider static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2070df054e84SMorten Rasmussen 2071f2cb1360SIngo Molnar if (rq && sched_debug_enabled) { 2072bf5015a5SJuri Lelli pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2073f2cb1360SIngo Molnar cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2074f2cb1360SIngo Molnar } 2075f2cb1360SIngo Molnar 2076f2cb1360SIngo Molnar ret = 0; 2077f2cb1360SIngo Molnar error: 2078f2cb1360SIngo Molnar __free_domain_allocs(&d, alloc_state, cpu_map); 207997fb7a0aSIngo Molnar 2080f2cb1360SIngo Molnar return ret; 2081f2cb1360SIngo Molnar } 2082f2cb1360SIngo Molnar 2083f2cb1360SIngo Molnar /* Current sched domains: */ 2084f2cb1360SIngo Molnar static cpumask_var_t *doms_cur; 2085f2cb1360SIngo Molnar 2086f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */ 2087f2cb1360SIngo Molnar static int ndoms_cur; 2088f2cb1360SIngo Molnar 2089f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */ 2090f2cb1360SIngo Molnar static struct sched_domain_attr *dattr_cur; 2091f2cb1360SIngo Molnar 2092f2cb1360SIngo Molnar /* 2093f2cb1360SIngo Molnar * Special case: If a kmalloc() of a doms_cur partition (array of 2094f2cb1360SIngo Molnar * cpumask) fails, then fallback to a single sched domain, 2095f2cb1360SIngo Molnar * as determined by the single cpumask fallback_doms. 2096f2cb1360SIngo Molnar */ 20978d5dc512SPeter Zijlstra static cpumask_var_t fallback_doms; 2098f2cb1360SIngo Molnar 2099f2cb1360SIngo Molnar /* 2100f2cb1360SIngo Molnar * arch_update_cpu_topology lets virtualized architectures update the 2101f2cb1360SIngo Molnar * CPU core maps. It is supposed to return 1 if the topology changed 2102f2cb1360SIngo Molnar * or 0 if it stayed the same. 2103f2cb1360SIngo Molnar */ 2104f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void) 2105f2cb1360SIngo Molnar { 2106f2cb1360SIngo Molnar return 0; 2107f2cb1360SIngo Molnar } 2108f2cb1360SIngo Molnar 2109f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2110f2cb1360SIngo Molnar { 2111f2cb1360SIngo Molnar int i; 2112f2cb1360SIngo Molnar cpumask_var_t *doms; 2113f2cb1360SIngo Molnar 21146da2ec56SKees Cook doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2115f2cb1360SIngo Molnar if (!doms) 2116f2cb1360SIngo Molnar return NULL; 2117f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) { 2118f2cb1360SIngo Molnar if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2119f2cb1360SIngo Molnar free_sched_domains(doms, i); 2120f2cb1360SIngo Molnar return NULL; 2121f2cb1360SIngo Molnar } 2122f2cb1360SIngo Molnar } 2123f2cb1360SIngo Molnar return doms; 2124f2cb1360SIngo Molnar } 2125f2cb1360SIngo Molnar 2126f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2127f2cb1360SIngo Molnar { 2128f2cb1360SIngo Molnar unsigned int i; 2129f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) 2130f2cb1360SIngo Molnar free_cpumask_var(doms[i]); 2131f2cb1360SIngo Molnar kfree(doms); 2132f2cb1360SIngo Molnar } 2133f2cb1360SIngo Molnar 2134f2cb1360SIngo Molnar /* 2135cb0c0414SJuri Lelli * Set up scheduler domains and groups. For now this just excludes isolated 2136cb0c0414SJuri Lelli * CPUs, but could be used to exclude other special cases in the future. 2137f2cb1360SIngo Molnar */ 21388d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map) 2139f2cb1360SIngo Molnar { 2140f2cb1360SIngo Molnar int err; 2141f2cb1360SIngo Molnar 21428d5dc512SPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 21431676330eSPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 21448d5dc512SPeter Zijlstra zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 21458d5dc512SPeter Zijlstra 2146f2cb1360SIngo Molnar arch_update_cpu_topology(); 2147f2cb1360SIngo Molnar ndoms_cur = 1; 2148f2cb1360SIngo Molnar doms_cur = alloc_sched_domains(ndoms_cur); 2149f2cb1360SIngo Molnar if (!doms_cur) 2150f2cb1360SIngo Molnar doms_cur = &fallback_doms; 2151edb93821SFrederic Weisbecker cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2152f2cb1360SIngo Molnar err = build_sched_domains(doms_cur[0], NULL); 2153f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2154f2cb1360SIngo Molnar 2155f2cb1360SIngo Molnar return err; 2156f2cb1360SIngo Molnar } 2157f2cb1360SIngo Molnar 2158f2cb1360SIngo Molnar /* 2159f2cb1360SIngo Molnar * Detach sched domains from a group of CPUs specified in cpu_map 2160f2cb1360SIngo Molnar * These CPUs will now be attached to the NULL domain 2161f2cb1360SIngo Molnar */ 2162f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map) 2163f2cb1360SIngo Molnar { 2164e284df70SValentin Schneider unsigned int cpu = cpumask_any(cpu_map); 2165f2cb1360SIngo Molnar int i; 2166f2cb1360SIngo Molnar 2167e284df70SValentin Schneider if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2168e284df70SValentin Schneider static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2169e284df70SValentin Schneider 2170f2cb1360SIngo Molnar rcu_read_lock(); 2171f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) 2172f2cb1360SIngo Molnar cpu_attach_domain(NULL, &def_root_domain, i); 2173f2cb1360SIngo Molnar rcu_read_unlock(); 2174f2cb1360SIngo Molnar } 2175f2cb1360SIngo Molnar 2176f2cb1360SIngo Molnar /* handle null as "default" */ 2177f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2178f2cb1360SIngo Molnar struct sched_domain_attr *new, int idx_new) 2179f2cb1360SIngo Molnar { 2180f2cb1360SIngo Molnar struct sched_domain_attr tmp; 2181f2cb1360SIngo Molnar 2182f2cb1360SIngo Molnar /* Fast path: */ 2183f2cb1360SIngo Molnar if (!new && !cur) 2184f2cb1360SIngo Molnar return 1; 2185f2cb1360SIngo Molnar 2186f2cb1360SIngo Molnar tmp = SD_ATTR_INIT; 218797fb7a0aSIngo Molnar 2188f2cb1360SIngo Molnar return !memcmp(cur ? (cur + idx_cur) : &tmp, 2189f2cb1360SIngo Molnar new ? (new + idx_new) : &tmp, 2190f2cb1360SIngo Molnar sizeof(struct sched_domain_attr)); 2191f2cb1360SIngo Molnar } 2192f2cb1360SIngo Molnar 2193f2cb1360SIngo Molnar /* 2194f2cb1360SIngo Molnar * Partition sched domains as specified by the 'ndoms_new' 2195f2cb1360SIngo Molnar * cpumasks in the array doms_new[] of cpumasks. This compares 2196f2cb1360SIngo Molnar * doms_new[] to the current sched domain partitioning, doms_cur[]. 2197f2cb1360SIngo Molnar * It destroys each deleted domain and builds each new domain. 2198f2cb1360SIngo Molnar * 2199f2cb1360SIngo Molnar * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2200f2cb1360SIngo Molnar * The masks don't intersect (don't overlap.) We should setup one 2201f2cb1360SIngo Molnar * sched domain for each mask. CPUs not in any of the cpumasks will 2202f2cb1360SIngo Molnar * not be load balanced. If the same cpumask appears both in the 2203f2cb1360SIngo Molnar * current 'doms_cur' domains and in the new 'doms_new', we can leave 2204f2cb1360SIngo Molnar * it as it is. 2205f2cb1360SIngo Molnar * 2206f2cb1360SIngo Molnar * The passed in 'doms_new' should be allocated using 2207f2cb1360SIngo Molnar * alloc_sched_domains. This routine takes ownership of it and will 2208f2cb1360SIngo Molnar * free_sched_domains it when done with it. If the caller failed the 2209f2cb1360SIngo Molnar * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2210f2cb1360SIngo Molnar * and partition_sched_domains() will fallback to the single partition 2211f2cb1360SIngo Molnar * 'fallback_doms', it also forces the domains to be rebuilt. 2212f2cb1360SIngo Molnar * 2213f2cb1360SIngo Molnar * If doms_new == NULL it will be replaced with cpu_online_mask. 2214f2cb1360SIngo Molnar * ndoms_new == 0 is a special case for destroying existing domains, 2215f2cb1360SIngo Molnar * and it will not create the default domain. 2216f2cb1360SIngo Molnar * 2217c22645f4SMathieu Poirier * Call with hotplug lock and sched_domains_mutex held 2218f2cb1360SIngo Molnar */ 2219c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2220f2cb1360SIngo Molnar struct sched_domain_attr *dattr_new) 2221f2cb1360SIngo Molnar { 22221f74de87SQuentin Perret bool __maybe_unused has_eas = false; 2223f2cb1360SIngo Molnar int i, j, n; 2224f2cb1360SIngo Molnar int new_topology; 2225f2cb1360SIngo Molnar 2226c22645f4SMathieu Poirier lockdep_assert_held(&sched_domains_mutex); 2227f2cb1360SIngo Molnar 2228f2cb1360SIngo Molnar /* Always unregister in case we don't destroy any domains: */ 2229f2cb1360SIngo Molnar unregister_sched_domain_sysctl(); 2230f2cb1360SIngo Molnar 2231f2cb1360SIngo Molnar /* Let the architecture update CPU core mappings: */ 2232f2cb1360SIngo Molnar new_topology = arch_update_cpu_topology(); 2233f2cb1360SIngo Molnar 223409e0dd8eSPeter Zijlstra if (!doms_new) { 223509e0dd8eSPeter Zijlstra WARN_ON_ONCE(dattr_new); 223609e0dd8eSPeter Zijlstra n = 0; 223709e0dd8eSPeter Zijlstra doms_new = alloc_sched_domains(1); 223809e0dd8eSPeter Zijlstra if (doms_new) { 223909e0dd8eSPeter Zijlstra n = 1; 2240edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2241edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 224209e0dd8eSPeter Zijlstra } 224309e0dd8eSPeter Zijlstra } else { 224409e0dd8eSPeter Zijlstra n = ndoms_new; 224509e0dd8eSPeter Zijlstra } 2246f2cb1360SIngo Molnar 2247f2cb1360SIngo Molnar /* Destroy deleted domains: */ 2248f2cb1360SIngo Molnar for (i = 0; i < ndoms_cur; i++) { 2249f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22506aa140faSQuentin Perret if (cpumask_equal(doms_cur[i], doms_new[j]) && 2251f9a25f77SMathieu Poirier dattrs_equal(dattr_cur, i, dattr_new, j)) { 2252f9a25f77SMathieu Poirier struct root_domain *rd; 2253f9a25f77SMathieu Poirier 2254f9a25f77SMathieu Poirier /* 2255f9a25f77SMathieu Poirier * This domain won't be destroyed and as such 2256f9a25f77SMathieu Poirier * its dl_bw->total_bw needs to be cleared. It 2257f9a25f77SMathieu Poirier * will be recomputed in function 2258f9a25f77SMathieu Poirier * update_tasks_root_domain(). 2259f9a25f77SMathieu Poirier */ 2260f9a25f77SMathieu Poirier rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2261f9a25f77SMathieu Poirier dl_clear_root_domain(rd); 2262f2cb1360SIngo Molnar goto match1; 2263f2cb1360SIngo Molnar } 2264f9a25f77SMathieu Poirier } 2265f2cb1360SIngo Molnar /* No match - a current sched domain not in new doms_new[] */ 2266f2cb1360SIngo Molnar detach_destroy_domains(doms_cur[i]); 2267f2cb1360SIngo Molnar match1: 2268f2cb1360SIngo Molnar ; 2269f2cb1360SIngo Molnar } 2270f2cb1360SIngo Molnar 2271f2cb1360SIngo Molnar n = ndoms_cur; 227209e0dd8eSPeter Zijlstra if (!doms_new) { 2273f2cb1360SIngo Molnar n = 0; 2274f2cb1360SIngo Molnar doms_new = &fallback_doms; 2275edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2276edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 2277f2cb1360SIngo Molnar } 2278f2cb1360SIngo Molnar 2279f2cb1360SIngo Molnar /* Build new domains: */ 2280f2cb1360SIngo Molnar for (i = 0; i < ndoms_new; i++) { 2281f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22826aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 22836aa140faSQuentin Perret dattrs_equal(dattr_new, i, dattr_cur, j)) 2284f2cb1360SIngo Molnar goto match2; 2285f2cb1360SIngo Molnar } 2286f2cb1360SIngo Molnar /* No match - add a new doms_new */ 2287f2cb1360SIngo Molnar build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2288f2cb1360SIngo Molnar match2: 2289f2cb1360SIngo Molnar ; 2290f2cb1360SIngo Molnar } 2291f2cb1360SIngo Molnar 2292531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 22936aa140faSQuentin Perret /* Build perf. domains: */ 22946aa140faSQuentin Perret for (i = 0; i < ndoms_new; i++) { 2295531b5c9fSQuentin Perret for (j = 0; j < n && !sched_energy_update; j++) { 22966aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 22971f74de87SQuentin Perret cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 22981f74de87SQuentin Perret has_eas = true; 22996aa140faSQuentin Perret goto match3; 23006aa140faSQuentin Perret } 23011f74de87SQuentin Perret } 23026aa140faSQuentin Perret /* No match - add perf. domains for a new rd */ 23031f74de87SQuentin Perret has_eas |= build_perf_domains(doms_new[i]); 23046aa140faSQuentin Perret match3: 23056aa140faSQuentin Perret ; 23066aa140faSQuentin Perret } 23071f74de87SQuentin Perret sched_energy_set(has_eas); 23086aa140faSQuentin Perret #endif 23096aa140faSQuentin Perret 2310f2cb1360SIngo Molnar /* Remember the new sched domains: */ 2311f2cb1360SIngo Molnar if (doms_cur != &fallback_doms) 2312f2cb1360SIngo Molnar free_sched_domains(doms_cur, ndoms_cur); 2313f2cb1360SIngo Molnar 2314f2cb1360SIngo Molnar kfree(dattr_cur); 2315f2cb1360SIngo Molnar doms_cur = doms_new; 2316f2cb1360SIngo Molnar dattr_cur = dattr_new; 2317f2cb1360SIngo Molnar ndoms_cur = ndoms_new; 2318f2cb1360SIngo Molnar 2319f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2320c22645f4SMathieu Poirier } 2321f2cb1360SIngo Molnar 2322c22645f4SMathieu Poirier /* 2323c22645f4SMathieu Poirier * Call with hotplug lock held 2324c22645f4SMathieu Poirier */ 2325c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2326c22645f4SMathieu Poirier struct sched_domain_attr *dattr_new) 2327c22645f4SMathieu Poirier { 2328c22645f4SMathieu Poirier mutex_lock(&sched_domains_mutex); 2329c22645f4SMathieu Poirier partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2330f2cb1360SIngo Molnar mutex_unlock(&sched_domains_mutex); 2331f2cb1360SIngo Molnar } 2332