1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0 2f2cb1360SIngo Molnar /* 3f2cb1360SIngo Molnar * Scheduler topology setup/handling methods 4f2cb1360SIngo Molnar */ 5f2cb1360SIngo Molnar #include "sched.h" 6f2cb1360SIngo Molnar 7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex); 8f2cb1360SIngo Molnar 9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */ 10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask; 11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2; 12f2cb1360SIngo Molnar 13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 14f2cb1360SIngo Molnar 15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str) 16f2cb1360SIngo Molnar { 179469eb01SPeter Zijlstra sched_debug_enabled = true; 18f2cb1360SIngo Molnar 19f2cb1360SIngo Molnar return 0; 20f2cb1360SIngo Molnar } 21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup); 22f2cb1360SIngo Molnar 23f2cb1360SIngo Molnar static inline bool sched_debug(void) 24f2cb1360SIngo Molnar { 25f2cb1360SIngo Molnar return sched_debug_enabled; 26f2cb1360SIngo Molnar } 27f2cb1360SIngo Molnar 28f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 29f2cb1360SIngo Molnar struct cpumask *groupmask) 30f2cb1360SIngo Molnar { 31f2cb1360SIngo Molnar struct sched_group *group = sd->groups; 3265c5e253SValentin Schneider unsigned long flags = sd->flags; 3365c5e253SValentin Schneider unsigned int idx; 34f2cb1360SIngo Molnar 35f2cb1360SIngo Molnar cpumask_clear(groupmask); 36f2cb1360SIngo Molnar 37005f874dSPeter Zijlstra printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 38005f874dSPeter Zijlstra printk(KERN_CONT "span=%*pbl level=%s\n", 39f2cb1360SIngo Molnar cpumask_pr_args(sched_domain_span(sd)), sd->name); 40f2cb1360SIngo Molnar 41f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 4297fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 43f2cb1360SIngo Molnar } 446cd0c583SYi Wang if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 4597fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 46f2cb1360SIngo Molnar } 47f2cb1360SIngo Molnar 4865c5e253SValentin Schneider for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 4965c5e253SValentin Schneider unsigned int flag = BIT(idx); 5065c5e253SValentin Schneider unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 5165c5e253SValentin Schneider 5265c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 5365c5e253SValentin Schneider !(sd->child->flags & flag)) 5465c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 5565c5e253SValentin Schneider sd_flag_debug[idx].name); 5665c5e253SValentin Schneider 5765c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 5865c5e253SValentin Schneider !(sd->parent->flags & flag)) 5965c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 6065c5e253SValentin Schneider sd_flag_debug[idx].name); 6165c5e253SValentin Schneider } 6265c5e253SValentin Schneider 63f2cb1360SIngo Molnar printk(KERN_DEBUG "%*s groups:", level + 1, ""); 64f2cb1360SIngo Molnar do { 65f2cb1360SIngo Molnar if (!group) { 66f2cb1360SIngo Molnar printk("\n"); 67f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: group is NULL\n"); 68f2cb1360SIngo Molnar break; 69f2cb1360SIngo Molnar } 70f2cb1360SIngo Molnar 71ae4df9d6SPeter Zijlstra if (!cpumask_weight(sched_group_span(group))) { 72f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 73f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: empty group\n"); 74f2cb1360SIngo Molnar break; 75f2cb1360SIngo Molnar } 76f2cb1360SIngo Molnar 77f2cb1360SIngo Molnar if (!(sd->flags & SD_OVERLAP) && 78ae4df9d6SPeter Zijlstra cpumask_intersects(groupmask, sched_group_span(group))) { 79f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 80f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: repeated CPUs\n"); 81f2cb1360SIngo Molnar break; 82f2cb1360SIngo Molnar } 83f2cb1360SIngo Molnar 84ae4df9d6SPeter Zijlstra cpumask_or(groupmask, groupmask, sched_group_span(group)); 85f2cb1360SIngo Molnar 86005f874dSPeter Zijlstra printk(KERN_CONT " %d:{ span=%*pbl", 87005f874dSPeter Zijlstra group->sgc->id, 88ae4df9d6SPeter Zijlstra cpumask_pr_args(sched_group_span(group))); 89b0151c25SPeter Zijlstra 90af218122SPeter Zijlstra if ((sd->flags & SD_OVERLAP) && 91ae4df9d6SPeter Zijlstra !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 92005f874dSPeter Zijlstra printk(KERN_CONT " mask=%*pbl", 93e5c14b1fSPeter Zijlstra cpumask_pr_args(group_balance_mask(group))); 94b0151c25SPeter Zijlstra } 95b0151c25SPeter Zijlstra 96005f874dSPeter Zijlstra if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 97005f874dSPeter Zijlstra printk(KERN_CONT " cap=%lu", group->sgc->capacity); 98f2cb1360SIngo Molnar 99a420b063SPeter Zijlstra if (group == sd->groups && sd->child && 100a420b063SPeter Zijlstra !cpumask_equal(sched_domain_span(sd->child), 101ae4df9d6SPeter Zijlstra sched_group_span(group))) { 102a420b063SPeter Zijlstra printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 103a420b063SPeter Zijlstra } 104a420b063SPeter Zijlstra 105005f874dSPeter Zijlstra printk(KERN_CONT " }"); 106005f874dSPeter Zijlstra 107f2cb1360SIngo Molnar group = group->next; 108b0151c25SPeter Zijlstra 109b0151c25SPeter Zijlstra if (group != sd->groups) 110b0151c25SPeter Zijlstra printk(KERN_CONT ","); 111b0151c25SPeter Zijlstra 112f2cb1360SIngo Molnar } while (group != sd->groups); 113f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 114f2cb1360SIngo Molnar 115f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), groupmask)) 116f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 117f2cb1360SIngo Molnar 118f2cb1360SIngo Molnar if (sd->parent && 119f2cb1360SIngo Molnar !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 12097fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 121f2cb1360SIngo Molnar return 0; 122f2cb1360SIngo Molnar } 123f2cb1360SIngo Molnar 124f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu) 125f2cb1360SIngo Molnar { 126f2cb1360SIngo Molnar int level = 0; 127f2cb1360SIngo Molnar 128f2cb1360SIngo Molnar if (!sched_debug_enabled) 129f2cb1360SIngo Molnar return; 130f2cb1360SIngo Molnar 131f2cb1360SIngo Molnar if (!sd) { 132f2cb1360SIngo Molnar printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 133f2cb1360SIngo Molnar return; 134f2cb1360SIngo Molnar } 135f2cb1360SIngo Molnar 136005f874dSPeter Zijlstra printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 137f2cb1360SIngo Molnar 138f2cb1360SIngo Molnar for (;;) { 139f2cb1360SIngo Molnar if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 140f2cb1360SIngo Molnar break; 141f2cb1360SIngo Molnar level++; 142f2cb1360SIngo Molnar sd = sd->parent; 143f2cb1360SIngo Molnar if (!sd) 144f2cb1360SIngo Molnar break; 145f2cb1360SIngo Molnar } 146f2cb1360SIngo Molnar } 147f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */ 148f2cb1360SIngo Molnar 149f2cb1360SIngo Molnar # define sched_debug_enabled 0 150f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0) 151f2cb1360SIngo Molnar static inline bool sched_debug(void) 152f2cb1360SIngo Molnar { 153f2cb1360SIngo Molnar return false; 154f2cb1360SIngo Molnar } 155f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */ 156f2cb1360SIngo Molnar 157*4fc472f1SValentin Schneider /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 158*4fc472f1SValentin Schneider #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 159*4fc472f1SValentin Schneider static const unsigned int SD_DEGENERATE_GROUPS_MASK = 160*4fc472f1SValentin Schneider #include <linux/sched/sd_flags.h> 161*4fc472f1SValentin Schneider 0; 162*4fc472f1SValentin Schneider #undef SD_FLAG 163*4fc472f1SValentin Schneider 164f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd) 165f2cb1360SIngo Molnar { 166f2cb1360SIngo Molnar if (cpumask_weight(sched_domain_span(sd)) == 1) 167f2cb1360SIngo Molnar return 1; 168f2cb1360SIngo Molnar 169f2cb1360SIngo Molnar /* Following flags need at least 2 groups */ 1706f349818SValentin Schneider if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 1716f349818SValentin Schneider (sd->groups != sd->groups->next)) 172f2cb1360SIngo Molnar return 0; 173f2cb1360SIngo Molnar 174f2cb1360SIngo Molnar /* Following flags don't use groups */ 175f2cb1360SIngo Molnar if (sd->flags & (SD_WAKE_AFFINE)) 176f2cb1360SIngo Molnar return 0; 177f2cb1360SIngo Molnar 178f2cb1360SIngo Molnar return 1; 179f2cb1360SIngo Molnar } 180f2cb1360SIngo Molnar 181f2cb1360SIngo Molnar static int 182f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 183f2cb1360SIngo Molnar { 184f2cb1360SIngo Molnar unsigned long cflags = sd->flags, pflags = parent->flags; 185f2cb1360SIngo Molnar 186f2cb1360SIngo Molnar if (sd_degenerate(parent)) 187f2cb1360SIngo Molnar return 1; 188f2cb1360SIngo Molnar 189f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 190f2cb1360SIngo Molnar return 0; 191f2cb1360SIngo Molnar 192f2cb1360SIngo Molnar /* Flags needing groups don't count if only 1 group in parent */ 193ab65afb0SValentin Schneider if (parent->groups == parent->groups->next) 1943a6712c7SValentin Schneider pflags &= ~SD_DEGENERATE_GROUPS_MASK; 195ab65afb0SValentin Schneider 196f2cb1360SIngo Molnar if (~cflags & pflags) 197f2cb1360SIngo Molnar return 0; 198f2cb1360SIngo Molnar 199f2cb1360SIngo Molnar return 1; 200f2cb1360SIngo Molnar } 201f2cb1360SIngo Molnar 202531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 203f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present); 2048d5d0cfbSQuentin Perret unsigned int sysctl_sched_energy_aware = 1; 205531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex); 206531b5c9fSQuentin Perret bool sched_energy_update; 207531b5c9fSQuentin Perret 2088d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL 2098d5d0cfbSQuentin Perret int sched_energy_aware_handler(struct ctl_table *table, int write, 21032927393SChristoph Hellwig void *buffer, size_t *lenp, loff_t *ppos) 2118d5d0cfbSQuentin Perret { 2128d5d0cfbSQuentin Perret int ret, state; 2138d5d0cfbSQuentin Perret 2148d5d0cfbSQuentin Perret if (write && !capable(CAP_SYS_ADMIN)) 2158d5d0cfbSQuentin Perret return -EPERM; 2168d5d0cfbSQuentin Perret 2178d5d0cfbSQuentin Perret ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2188d5d0cfbSQuentin Perret if (!ret && write) { 2198d5d0cfbSQuentin Perret state = static_branch_unlikely(&sched_energy_present); 2208d5d0cfbSQuentin Perret if (state != sysctl_sched_energy_aware) { 2218d5d0cfbSQuentin Perret mutex_lock(&sched_energy_mutex); 2228d5d0cfbSQuentin Perret sched_energy_update = 1; 2238d5d0cfbSQuentin Perret rebuild_sched_domains(); 2248d5d0cfbSQuentin Perret sched_energy_update = 0; 2258d5d0cfbSQuentin Perret mutex_unlock(&sched_energy_mutex); 2268d5d0cfbSQuentin Perret } 2278d5d0cfbSQuentin Perret } 2288d5d0cfbSQuentin Perret 2298d5d0cfbSQuentin Perret return ret; 2308d5d0cfbSQuentin Perret } 2318d5d0cfbSQuentin Perret #endif 2328d5d0cfbSQuentin Perret 2336aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) 2346aa140faSQuentin Perret { 2356aa140faSQuentin Perret struct perf_domain *tmp; 2366aa140faSQuentin Perret 2376aa140faSQuentin Perret while (pd) { 2386aa140faSQuentin Perret tmp = pd->next; 2396aa140faSQuentin Perret kfree(pd); 2406aa140faSQuentin Perret pd = tmp; 2416aa140faSQuentin Perret } 2426aa140faSQuentin Perret } 2436aa140faSQuentin Perret 2446aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 2456aa140faSQuentin Perret { 2466aa140faSQuentin Perret while (pd) { 2476aa140faSQuentin Perret if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 2486aa140faSQuentin Perret return pd; 2496aa140faSQuentin Perret pd = pd->next; 2506aa140faSQuentin Perret } 2516aa140faSQuentin Perret 2526aa140faSQuentin Perret return NULL; 2536aa140faSQuentin Perret } 2546aa140faSQuentin Perret 2556aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu) 2566aa140faSQuentin Perret { 2576aa140faSQuentin Perret struct em_perf_domain *obj = em_cpu_get(cpu); 2586aa140faSQuentin Perret struct perf_domain *pd; 2596aa140faSQuentin Perret 2606aa140faSQuentin Perret if (!obj) { 2616aa140faSQuentin Perret if (sched_debug()) 2626aa140faSQuentin Perret pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 2636aa140faSQuentin Perret return NULL; 2646aa140faSQuentin Perret } 2656aa140faSQuentin Perret 2666aa140faSQuentin Perret pd = kzalloc(sizeof(*pd), GFP_KERNEL); 2676aa140faSQuentin Perret if (!pd) 2686aa140faSQuentin Perret return NULL; 2696aa140faSQuentin Perret pd->em_pd = obj; 2706aa140faSQuentin Perret 2716aa140faSQuentin Perret return pd; 2726aa140faSQuentin Perret } 2736aa140faSQuentin Perret 2746aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map, 2756aa140faSQuentin Perret struct perf_domain *pd) 2766aa140faSQuentin Perret { 2776aa140faSQuentin Perret if (!sched_debug() || !pd) 2786aa140faSQuentin Perret return; 2796aa140faSQuentin Perret 2806aa140faSQuentin Perret printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 2816aa140faSQuentin Perret 2826aa140faSQuentin Perret while (pd) { 283521b512bSLukasz Luba printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 2846aa140faSQuentin Perret cpumask_first(perf_domain_span(pd)), 2856aa140faSQuentin Perret cpumask_pr_args(perf_domain_span(pd)), 286521b512bSLukasz Luba em_pd_nr_perf_states(pd->em_pd)); 2876aa140faSQuentin Perret pd = pd->next; 2886aa140faSQuentin Perret } 2896aa140faSQuentin Perret 2906aa140faSQuentin Perret printk(KERN_CONT "\n"); 2916aa140faSQuentin Perret } 2926aa140faSQuentin Perret 2936aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp) 2946aa140faSQuentin Perret { 2956aa140faSQuentin Perret struct perf_domain *pd; 2966aa140faSQuentin Perret 2976aa140faSQuentin Perret pd = container_of(rp, struct perf_domain, rcu); 2986aa140faSQuentin Perret free_pd(pd); 2996aa140faSQuentin Perret } 3006aa140faSQuentin Perret 3011f74de87SQuentin Perret static void sched_energy_set(bool has_eas) 3021f74de87SQuentin Perret { 3031f74de87SQuentin Perret if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 3041f74de87SQuentin Perret if (sched_debug()) 3051f74de87SQuentin Perret pr_info("%s: stopping EAS\n", __func__); 3061f74de87SQuentin Perret static_branch_disable_cpuslocked(&sched_energy_present); 3071f74de87SQuentin Perret } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 3081f74de87SQuentin Perret if (sched_debug()) 3091f74de87SQuentin Perret pr_info("%s: starting EAS\n", __func__); 3101f74de87SQuentin Perret static_branch_enable_cpuslocked(&sched_energy_present); 3111f74de87SQuentin Perret } 3121f74de87SQuentin Perret } 3131f74de87SQuentin Perret 314b68a4c0dSQuentin Perret /* 315b68a4c0dSQuentin Perret * EAS can be used on a root domain if it meets all the following conditions: 316b68a4c0dSQuentin Perret * 1. an Energy Model (EM) is available; 317b68a4c0dSQuentin Perret * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 31838502ab4SValentin Schneider * 3. no SMT is detected. 31938502ab4SValentin Schneider * 4. the EM complexity is low enough to keep scheduling overheads low; 32038502ab4SValentin Schneider * 5. schedutil is driving the frequency of all CPUs of the rd; 321b68a4c0dSQuentin Perret * 322b68a4c0dSQuentin Perret * The complexity of the Energy Model is defined as: 323b68a4c0dSQuentin Perret * 324521b512bSLukasz Luba * C = nr_pd * (nr_cpus + nr_ps) 325b68a4c0dSQuentin Perret * 326b68a4c0dSQuentin Perret * with parameters defined as: 327b68a4c0dSQuentin Perret * - nr_pd: the number of performance domains 328b68a4c0dSQuentin Perret * - nr_cpus: the number of CPUs 329521b512bSLukasz Luba * - nr_ps: the sum of the number of performance states of all performance 330b68a4c0dSQuentin Perret * domains (for example, on a system with 2 performance domains, 331521b512bSLukasz Luba * with 10 performance states each, nr_ps = 2 * 10 = 20). 332b68a4c0dSQuentin Perret * 333b68a4c0dSQuentin Perret * It is generally not a good idea to use such a model in the wake-up path on 334b68a4c0dSQuentin Perret * very complex platforms because of the associated scheduling overheads. The 335b68a4c0dSQuentin Perret * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 336521b512bSLukasz Luba * with per-CPU DVFS and less than 8 performance states each, for example. 337b68a4c0dSQuentin Perret */ 338b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048 339b68a4c0dSQuentin Perret 340531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov; 3411f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map) 3426aa140faSQuentin Perret { 343521b512bSLukasz Luba int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 3446aa140faSQuentin Perret struct perf_domain *pd = NULL, *tmp; 3456aa140faSQuentin Perret int cpu = cpumask_first(cpu_map); 3466aa140faSQuentin Perret struct root_domain *rd = cpu_rq(cpu)->rd; 347531b5c9fSQuentin Perret struct cpufreq_policy *policy; 348531b5c9fSQuentin Perret struct cpufreq_governor *gov; 349b68a4c0dSQuentin Perret 3508d5d0cfbSQuentin Perret if (!sysctl_sched_energy_aware) 3518d5d0cfbSQuentin Perret goto free; 3528d5d0cfbSQuentin Perret 353b68a4c0dSQuentin Perret /* EAS is enabled for asymmetric CPU capacity topologies. */ 354b68a4c0dSQuentin Perret if (!per_cpu(sd_asym_cpucapacity, cpu)) { 355b68a4c0dSQuentin Perret if (sched_debug()) { 356b68a4c0dSQuentin Perret pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 357b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 358b68a4c0dSQuentin Perret } 359b68a4c0dSQuentin Perret goto free; 360b68a4c0dSQuentin Perret } 3616aa140faSQuentin Perret 36238502ab4SValentin Schneider /* EAS definitely does *not* handle SMT */ 36338502ab4SValentin Schneider if (sched_smt_active()) { 36438502ab4SValentin Schneider pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 36538502ab4SValentin Schneider cpumask_pr_args(cpu_map)); 36638502ab4SValentin Schneider goto free; 36738502ab4SValentin Schneider } 36838502ab4SValentin Schneider 3696aa140faSQuentin Perret for_each_cpu(i, cpu_map) { 3706aa140faSQuentin Perret /* Skip already covered CPUs. */ 3716aa140faSQuentin Perret if (find_pd(pd, i)) 3726aa140faSQuentin Perret continue; 3736aa140faSQuentin Perret 374531b5c9fSQuentin Perret /* Do not attempt EAS if schedutil is not being used. */ 375531b5c9fSQuentin Perret policy = cpufreq_cpu_get(i); 376531b5c9fSQuentin Perret if (!policy) 377531b5c9fSQuentin Perret goto free; 378531b5c9fSQuentin Perret gov = policy->governor; 379531b5c9fSQuentin Perret cpufreq_cpu_put(policy); 380531b5c9fSQuentin Perret if (gov != &schedutil_gov) { 381531b5c9fSQuentin Perret if (rd->pd) 382531b5c9fSQuentin Perret pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 383531b5c9fSQuentin Perret cpumask_pr_args(cpu_map)); 384531b5c9fSQuentin Perret goto free; 385531b5c9fSQuentin Perret } 386531b5c9fSQuentin Perret 3876aa140faSQuentin Perret /* Create the new pd and add it to the local list. */ 3886aa140faSQuentin Perret tmp = pd_init(i); 3896aa140faSQuentin Perret if (!tmp) 3906aa140faSQuentin Perret goto free; 3916aa140faSQuentin Perret tmp->next = pd; 3926aa140faSQuentin Perret pd = tmp; 393b68a4c0dSQuentin Perret 394b68a4c0dSQuentin Perret /* 395521b512bSLukasz Luba * Count performance domains and performance states for the 396b68a4c0dSQuentin Perret * complexity check. 397b68a4c0dSQuentin Perret */ 398b68a4c0dSQuentin Perret nr_pd++; 399521b512bSLukasz Luba nr_ps += em_pd_nr_perf_states(pd->em_pd); 400b68a4c0dSQuentin Perret } 401b68a4c0dSQuentin Perret 402b68a4c0dSQuentin Perret /* Bail out if the Energy Model complexity is too high. */ 403521b512bSLukasz Luba if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 404b68a4c0dSQuentin Perret WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 405b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 406b68a4c0dSQuentin Perret goto free; 4076aa140faSQuentin Perret } 4086aa140faSQuentin Perret 4096aa140faSQuentin Perret perf_domain_debug(cpu_map, pd); 4106aa140faSQuentin Perret 4116aa140faSQuentin Perret /* Attach the new list of performance domains to the root domain. */ 4126aa140faSQuentin Perret tmp = rd->pd; 4136aa140faSQuentin Perret rcu_assign_pointer(rd->pd, pd); 4146aa140faSQuentin Perret if (tmp) 4156aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4166aa140faSQuentin Perret 4171f74de87SQuentin Perret return !!pd; 4186aa140faSQuentin Perret 4196aa140faSQuentin Perret free: 4206aa140faSQuentin Perret free_pd(pd); 4216aa140faSQuentin Perret tmp = rd->pd; 4226aa140faSQuentin Perret rcu_assign_pointer(rd->pd, NULL); 4236aa140faSQuentin Perret if (tmp) 4246aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4251f74de87SQuentin Perret 4261f74de87SQuentin Perret return false; 4276aa140faSQuentin Perret } 4286aa140faSQuentin Perret #else 4296aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { } 430531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 4316aa140faSQuentin Perret 432f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu) 433f2cb1360SIngo Molnar { 434f2cb1360SIngo Molnar struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 435f2cb1360SIngo Molnar 436f2cb1360SIngo Molnar cpupri_cleanup(&rd->cpupri); 437f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 438f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 439f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 440f2cb1360SIngo Molnar free_cpumask_var(rd->online); 441f2cb1360SIngo Molnar free_cpumask_var(rd->span); 4426aa140faSQuentin Perret free_pd(rd->pd); 443f2cb1360SIngo Molnar kfree(rd); 444f2cb1360SIngo Molnar } 445f2cb1360SIngo Molnar 446f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd) 447f2cb1360SIngo Molnar { 448f2cb1360SIngo Molnar struct root_domain *old_rd = NULL; 449f2cb1360SIngo Molnar unsigned long flags; 450f2cb1360SIngo Molnar 451f2cb1360SIngo Molnar raw_spin_lock_irqsave(&rq->lock, flags); 452f2cb1360SIngo Molnar 453f2cb1360SIngo Molnar if (rq->rd) { 454f2cb1360SIngo Molnar old_rd = rq->rd; 455f2cb1360SIngo Molnar 456f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, old_rd->online)) 457f2cb1360SIngo Molnar set_rq_offline(rq); 458f2cb1360SIngo Molnar 459f2cb1360SIngo Molnar cpumask_clear_cpu(rq->cpu, old_rd->span); 460f2cb1360SIngo Molnar 461f2cb1360SIngo Molnar /* 462f2cb1360SIngo Molnar * If we dont want to free the old_rd yet then 463f2cb1360SIngo Molnar * set old_rd to NULL to skip the freeing later 464f2cb1360SIngo Molnar * in this function: 465f2cb1360SIngo Molnar */ 466f2cb1360SIngo Molnar if (!atomic_dec_and_test(&old_rd->refcount)) 467f2cb1360SIngo Molnar old_rd = NULL; 468f2cb1360SIngo Molnar } 469f2cb1360SIngo Molnar 470f2cb1360SIngo Molnar atomic_inc(&rd->refcount); 471f2cb1360SIngo Molnar rq->rd = rd; 472f2cb1360SIngo Molnar 473f2cb1360SIngo Molnar cpumask_set_cpu(rq->cpu, rd->span); 474f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 475f2cb1360SIngo Molnar set_rq_online(rq); 476f2cb1360SIngo Molnar 477f2cb1360SIngo Molnar raw_spin_unlock_irqrestore(&rq->lock, flags); 478f2cb1360SIngo Molnar 479f2cb1360SIngo Molnar if (old_rd) 480337e9b07SPaul E. McKenney call_rcu(&old_rd->rcu, free_rootdomain); 481f2cb1360SIngo Molnar } 482f2cb1360SIngo Molnar 483364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd) 484364f5665SSteven Rostedt (VMware) { 485364f5665SSteven Rostedt (VMware) atomic_inc(&rd->refcount); 486364f5665SSteven Rostedt (VMware) } 487364f5665SSteven Rostedt (VMware) 488364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd) 489364f5665SSteven Rostedt (VMware) { 490364f5665SSteven Rostedt (VMware) if (!atomic_dec_and_test(&rd->refcount)) 491364f5665SSteven Rostedt (VMware) return; 492364f5665SSteven Rostedt (VMware) 493337e9b07SPaul E. McKenney call_rcu(&rd->rcu, free_rootdomain); 494364f5665SSteven Rostedt (VMware) } 495364f5665SSteven Rostedt (VMware) 496f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd) 497f2cb1360SIngo Molnar { 498f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 499f2cb1360SIngo Molnar goto out; 500f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 501f2cb1360SIngo Molnar goto free_span; 502f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 503f2cb1360SIngo Molnar goto free_online; 504f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 505f2cb1360SIngo Molnar goto free_dlo_mask; 506f2cb1360SIngo Molnar 5074bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI 5084bdced5cSSteven Rostedt (Red Hat) rd->rto_cpu = -1; 5094bdced5cSSteven Rostedt (Red Hat) raw_spin_lock_init(&rd->rto_lock); 5104bdced5cSSteven Rostedt (Red Hat) init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 5114bdced5cSSteven Rostedt (Red Hat) #endif 5124bdced5cSSteven Rostedt (Red Hat) 513f2cb1360SIngo Molnar init_dl_bw(&rd->dl_bw); 514f2cb1360SIngo Molnar if (cpudl_init(&rd->cpudl) != 0) 515f2cb1360SIngo Molnar goto free_rto_mask; 516f2cb1360SIngo Molnar 517f2cb1360SIngo Molnar if (cpupri_init(&rd->cpupri) != 0) 518f2cb1360SIngo Molnar goto free_cpudl; 519f2cb1360SIngo Molnar return 0; 520f2cb1360SIngo Molnar 521f2cb1360SIngo Molnar free_cpudl: 522f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 523f2cb1360SIngo Molnar free_rto_mask: 524f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 525f2cb1360SIngo Molnar free_dlo_mask: 526f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 527f2cb1360SIngo Molnar free_online: 528f2cb1360SIngo Molnar free_cpumask_var(rd->online); 529f2cb1360SIngo Molnar free_span: 530f2cb1360SIngo Molnar free_cpumask_var(rd->span); 531f2cb1360SIngo Molnar out: 532f2cb1360SIngo Molnar return -ENOMEM; 533f2cb1360SIngo Molnar } 534f2cb1360SIngo Molnar 535f2cb1360SIngo Molnar /* 536f2cb1360SIngo Molnar * By default the system creates a single root-domain with all CPUs as 537f2cb1360SIngo Molnar * members (mimicking the global state we have today). 538f2cb1360SIngo Molnar */ 539f2cb1360SIngo Molnar struct root_domain def_root_domain; 540f2cb1360SIngo Molnar 541f2cb1360SIngo Molnar void init_defrootdomain(void) 542f2cb1360SIngo Molnar { 543f2cb1360SIngo Molnar init_rootdomain(&def_root_domain); 544f2cb1360SIngo Molnar 545f2cb1360SIngo Molnar atomic_set(&def_root_domain.refcount, 1); 546f2cb1360SIngo Molnar } 547f2cb1360SIngo Molnar 548f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void) 549f2cb1360SIngo Molnar { 550f2cb1360SIngo Molnar struct root_domain *rd; 551f2cb1360SIngo Molnar 5524d13a06dSViresh Kumar rd = kzalloc(sizeof(*rd), GFP_KERNEL); 553f2cb1360SIngo Molnar if (!rd) 554f2cb1360SIngo Molnar return NULL; 555f2cb1360SIngo Molnar 556f2cb1360SIngo Molnar if (init_rootdomain(rd) != 0) { 557f2cb1360SIngo Molnar kfree(rd); 558f2cb1360SIngo Molnar return NULL; 559f2cb1360SIngo Molnar } 560f2cb1360SIngo Molnar 561f2cb1360SIngo Molnar return rd; 562f2cb1360SIngo Molnar } 563f2cb1360SIngo Molnar 564f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc) 565f2cb1360SIngo Molnar { 566f2cb1360SIngo Molnar struct sched_group *tmp, *first; 567f2cb1360SIngo Molnar 568f2cb1360SIngo Molnar if (!sg) 569f2cb1360SIngo Molnar return; 570f2cb1360SIngo Molnar 571f2cb1360SIngo Molnar first = sg; 572f2cb1360SIngo Molnar do { 573f2cb1360SIngo Molnar tmp = sg->next; 574f2cb1360SIngo Molnar 575f2cb1360SIngo Molnar if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 576f2cb1360SIngo Molnar kfree(sg->sgc); 577f2cb1360SIngo Molnar 578213c5a45SShu Wang if (atomic_dec_and_test(&sg->ref)) 579f2cb1360SIngo Molnar kfree(sg); 580f2cb1360SIngo Molnar sg = tmp; 581f2cb1360SIngo Molnar } while (sg != first); 582f2cb1360SIngo Molnar } 583f2cb1360SIngo Molnar 584f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd) 585f2cb1360SIngo Molnar { 586f2cb1360SIngo Molnar /* 587a090c4f2SPeter Zijlstra * A normal sched domain may have multiple group references, an 588a090c4f2SPeter Zijlstra * overlapping domain, having private groups, only one. Iterate, 589a090c4f2SPeter Zijlstra * dropping group/capacity references, freeing where none remain. 590f2cb1360SIngo Molnar */ 591f2cb1360SIngo Molnar free_sched_groups(sd->groups, 1); 592213c5a45SShu Wang 593f2cb1360SIngo Molnar if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 594f2cb1360SIngo Molnar kfree(sd->shared); 595f2cb1360SIngo Molnar kfree(sd); 596f2cb1360SIngo Molnar } 597f2cb1360SIngo Molnar 598f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu) 599f2cb1360SIngo Molnar { 600f2cb1360SIngo Molnar struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 601f2cb1360SIngo Molnar 602f2cb1360SIngo Molnar while (sd) { 603f2cb1360SIngo Molnar struct sched_domain *parent = sd->parent; 604f2cb1360SIngo Molnar destroy_sched_domain(sd); 605f2cb1360SIngo Molnar sd = parent; 606f2cb1360SIngo Molnar } 607f2cb1360SIngo Molnar } 608f2cb1360SIngo Molnar 609f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd) 610f2cb1360SIngo Molnar { 611f2cb1360SIngo Molnar if (sd) 612f2cb1360SIngo Molnar call_rcu(&sd->rcu, destroy_sched_domains_rcu); 613f2cb1360SIngo Molnar } 614f2cb1360SIngo Molnar 615f2cb1360SIngo Molnar /* 616f2cb1360SIngo Molnar * Keep a special pointer to the highest sched_domain that has 617f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 618f2cb1360SIngo Molnar * allows us to avoid some pointer chasing select_idle_sibling(). 619f2cb1360SIngo Molnar * 620f2cb1360SIngo Molnar * Also keep a unique ID per domain (we use the first CPU number in 621f2cb1360SIngo Molnar * the cpumask of the domain), this allows us to quickly tell if 622f2cb1360SIngo Molnar * two CPUs are in the same cache domain, see cpus_share_cache(). 623f2cb1360SIngo Molnar */ 624994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 625f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size); 626f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id); 627994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 628994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 629994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 630994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 631df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 632f2cb1360SIngo Molnar 633f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu) 634f2cb1360SIngo Molnar { 635f2cb1360SIngo Molnar struct sched_domain_shared *sds = NULL; 636f2cb1360SIngo Molnar struct sched_domain *sd; 637f2cb1360SIngo Molnar int id = cpu; 638f2cb1360SIngo Molnar int size = 1; 639f2cb1360SIngo Molnar 640f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 641f2cb1360SIngo Molnar if (sd) { 642f2cb1360SIngo Molnar id = cpumask_first(sched_domain_span(sd)); 643f2cb1360SIngo Molnar size = cpumask_weight(sched_domain_span(sd)); 644f2cb1360SIngo Molnar sds = sd->shared; 645f2cb1360SIngo Molnar } 646f2cb1360SIngo Molnar 647f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 648f2cb1360SIngo Molnar per_cpu(sd_llc_size, cpu) = size; 649f2cb1360SIngo Molnar per_cpu(sd_llc_id, cpu) = id; 650f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 651f2cb1360SIngo Molnar 652f2cb1360SIngo Molnar sd = lowest_flag_domain(cpu, SD_NUMA); 653f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 654f2cb1360SIngo Molnar 655f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 656011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 657011b27bbSQuentin Perret 658011b27bbSQuentin Perret sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 659011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 660f2cb1360SIngo Molnar } 661f2cb1360SIngo Molnar 662f2cb1360SIngo Molnar /* 663f2cb1360SIngo Molnar * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 664f2cb1360SIngo Molnar * hold the hotplug lock. 665f2cb1360SIngo Molnar */ 666f2cb1360SIngo Molnar static void 667f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 668f2cb1360SIngo Molnar { 669f2cb1360SIngo Molnar struct rq *rq = cpu_rq(cpu); 670f2cb1360SIngo Molnar struct sched_domain *tmp; 671f2cb1360SIngo Molnar 672f2cb1360SIngo Molnar /* Remove the sched domains which do not contribute to scheduling. */ 673f2cb1360SIngo Molnar for (tmp = sd; tmp; ) { 674f2cb1360SIngo Molnar struct sched_domain *parent = tmp->parent; 675f2cb1360SIngo Molnar if (!parent) 676f2cb1360SIngo Molnar break; 677f2cb1360SIngo Molnar 678f2cb1360SIngo Molnar if (sd_parent_degenerate(tmp, parent)) { 679f2cb1360SIngo Molnar tmp->parent = parent->parent; 680f2cb1360SIngo Molnar if (parent->parent) 681f2cb1360SIngo Molnar parent->parent->child = tmp; 682f2cb1360SIngo Molnar /* 683f2cb1360SIngo Molnar * Transfer SD_PREFER_SIBLING down in case of a 684f2cb1360SIngo Molnar * degenerate parent; the spans match for this 685f2cb1360SIngo Molnar * so the property transfers. 686f2cb1360SIngo Molnar */ 687f2cb1360SIngo Molnar if (parent->flags & SD_PREFER_SIBLING) 688f2cb1360SIngo Molnar tmp->flags |= SD_PREFER_SIBLING; 689f2cb1360SIngo Molnar destroy_sched_domain(parent); 690f2cb1360SIngo Molnar } else 691f2cb1360SIngo Molnar tmp = tmp->parent; 692f2cb1360SIngo Molnar } 693f2cb1360SIngo Molnar 694f2cb1360SIngo Molnar if (sd && sd_degenerate(sd)) { 695f2cb1360SIngo Molnar tmp = sd; 696f2cb1360SIngo Molnar sd = sd->parent; 697f2cb1360SIngo Molnar destroy_sched_domain(tmp); 698f2cb1360SIngo Molnar if (sd) 699f2cb1360SIngo Molnar sd->child = NULL; 700f2cb1360SIngo Molnar } 701f2cb1360SIngo Molnar 702f2cb1360SIngo Molnar sched_domain_debug(sd, cpu); 703f2cb1360SIngo Molnar 704f2cb1360SIngo Molnar rq_attach_root(rq, rd); 705f2cb1360SIngo Molnar tmp = rq->sd; 706f2cb1360SIngo Molnar rcu_assign_pointer(rq->sd, sd); 707bbdacdfeSPeter Zijlstra dirty_sched_domain_sysctl(cpu); 708f2cb1360SIngo Molnar destroy_sched_domains(tmp); 709f2cb1360SIngo Molnar 710f2cb1360SIngo Molnar update_top_cache_domain(cpu); 711f2cb1360SIngo Molnar } 712f2cb1360SIngo Molnar 713f2cb1360SIngo Molnar struct s_data { 71499687cdbSLuc Van Oostenryck struct sched_domain * __percpu *sd; 715f2cb1360SIngo Molnar struct root_domain *rd; 716f2cb1360SIngo Molnar }; 717f2cb1360SIngo Molnar 718f2cb1360SIngo Molnar enum s_alloc { 719f2cb1360SIngo Molnar sa_rootdomain, 720f2cb1360SIngo Molnar sa_sd, 721f2cb1360SIngo Molnar sa_sd_storage, 722f2cb1360SIngo Molnar sa_none, 723f2cb1360SIngo Molnar }; 724f2cb1360SIngo Molnar 725f2cb1360SIngo Molnar /* 72635a566e6SPeter Zijlstra * Return the canonical balance CPU for this group, this is the first CPU 727e5c14b1fSPeter Zijlstra * of this group that's also in the balance mask. 72835a566e6SPeter Zijlstra * 729e5c14b1fSPeter Zijlstra * The balance mask are all those CPUs that could actually end up at this 730e5c14b1fSPeter Zijlstra * group. See build_balance_mask(). 73135a566e6SPeter Zijlstra * 73235a566e6SPeter Zijlstra * Also see should_we_balance(). 73335a566e6SPeter Zijlstra */ 73435a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg) 73535a566e6SPeter Zijlstra { 736e5c14b1fSPeter Zijlstra return cpumask_first(group_balance_mask(sg)); 73735a566e6SPeter Zijlstra } 73835a566e6SPeter Zijlstra 73935a566e6SPeter Zijlstra 74035a566e6SPeter Zijlstra /* 74135a566e6SPeter Zijlstra * NUMA topology (first read the regular topology blurb below) 74235a566e6SPeter Zijlstra * 74335a566e6SPeter Zijlstra * Given a node-distance table, for example: 74435a566e6SPeter Zijlstra * 74535a566e6SPeter Zijlstra * node 0 1 2 3 74635a566e6SPeter Zijlstra * 0: 10 20 30 20 74735a566e6SPeter Zijlstra * 1: 20 10 20 30 74835a566e6SPeter Zijlstra * 2: 30 20 10 20 74935a566e6SPeter Zijlstra * 3: 20 30 20 10 75035a566e6SPeter Zijlstra * 75135a566e6SPeter Zijlstra * which represents a 4 node ring topology like: 75235a566e6SPeter Zijlstra * 75335a566e6SPeter Zijlstra * 0 ----- 1 75435a566e6SPeter Zijlstra * | | 75535a566e6SPeter Zijlstra * | | 75635a566e6SPeter Zijlstra * | | 75735a566e6SPeter Zijlstra * 3 ----- 2 75835a566e6SPeter Zijlstra * 75935a566e6SPeter Zijlstra * We want to construct domains and groups to represent this. The way we go 76035a566e6SPeter Zijlstra * about doing this is to build the domains on 'hops'. For each NUMA level we 76135a566e6SPeter Zijlstra * construct the mask of all nodes reachable in @level hops. 76235a566e6SPeter Zijlstra * 76335a566e6SPeter Zijlstra * For the above NUMA topology that gives 3 levels: 76435a566e6SPeter Zijlstra * 76535a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 0-3 0-3 76635a566e6SPeter Zijlstra * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 76735a566e6SPeter Zijlstra * 76835a566e6SPeter Zijlstra * NUMA-1 0-1,3 0-2 1-3 0,2-3 76935a566e6SPeter Zijlstra * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 77035a566e6SPeter Zijlstra * 77135a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 77235a566e6SPeter Zijlstra * 77335a566e6SPeter Zijlstra * 77435a566e6SPeter Zijlstra * As can be seen; things don't nicely line up as with the regular topology. 77535a566e6SPeter Zijlstra * When we iterate a domain in child domain chunks some nodes can be 77635a566e6SPeter Zijlstra * represented multiple times -- hence the "overlap" naming for this part of 77735a566e6SPeter Zijlstra * the topology. 77835a566e6SPeter Zijlstra * 77935a566e6SPeter Zijlstra * In order to minimize this overlap, we only build enough groups to cover the 78035a566e6SPeter Zijlstra * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 78135a566e6SPeter Zijlstra * 78235a566e6SPeter Zijlstra * Because: 78335a566e6SPeter Zijlstra * 78435a566e6SPeter Zijlstra * - the first group of each domain is its child domain; this 78535a566e6SPeter Zijlstra * gets us the first 0-1,3 78635a566e6SPeter Zijlstra * - the only uncovered node is 2, who's child domain is 1-3. 78735a566e6SPeter Zijlstra * 78835a566e6SPeter Zijlstra * However, because of the overlap, computing a unique CPU for each group is 78935a566e6SPeter Zijlstra * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 79035a566e6SPeter Zijlstra * groups include the CPUs of Node-0, while those CPUs would not in fact ever 79135a566e6SPeter Zijlstra * end up at those groups (they would end up in group: 0-1,3). 79235a566e6SPeter Zijlstra * 793e5c14b1fSPeter Zijlstra * To correct this we have to introduce the group balance mask. This mask 79435a566e6SPeter Zijlstra * will contain those CPUs in the group that can reach this group given the 79535a566e6SPeter Zijlstra * (child) domain tree. 79635a566e6SPeter Zijlstra * 79735a566e6SPeter Zijlstra * With this we can once again compute balance_cpu and sched_group_capacity 79835a566e6SPeter Zijlstra * relations. 79935a566e6SPeter Zijlstra * 80035a566e6SPeter Zijlstra * XXX include words on how balance_cpu is unique and therefore can be 80135a566e6SPeter Zijlstra * used for sched_group_capacity links. 80235a566e6SPeter Zijlstra * 80335a566e6SPeter Zijlstra * 80435a566e6SPeter Zijlstra * Another 'interesting' topology is: 80535a566e6SPeter Zijlstra * 80635a566e6SPeter Zijlstra * node 0 1 2 3 80735a566e6SPeter Zijlstra * 0: 10 20 20 30 80835a566e6SPeter Zijlstra * 1: 20 10 20 20 80935a566e6SPeter Zijlstra * 2: 20 20 10 20 81035a566e6SPeter Zijlstra * 3: 30 20 20 10 81135a566e6SPeter Zijlstra * 81235a566e6SPeter Zijlstra * Which looks a little like: 81335a566e6SPeter Zijlstra * 81435a566e6SPeter Zijlstra * 0 ----- 1 81535a566e6SPeter Zijlstra * | / | 81635a566e6SPeter Zijlstra * | / | 81735a566e6SPeter Zijlstra * | / | 81835a566e6SPeter Zijlstra * 2 ----- 3 81935a566e6SPeter Zijlstra * 82035a566e6SPeter Zijlstra * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 82135a566e6SPeter Zijlstra * are not. 82235a566e6SPeter Zijlstra * 82335a566e6SPeter Zijlstra * This leads to a few particularly weird cases where the sched_domain's are 82497fb7a0aSIngo Molnar * not of the same number for each CPU. Consider: 82535a566e6SPeter Zijlstra * 82635a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 82735a566e6SPeter Zijlstra * groups: {0-2},{1-3} {1-3},{0-2} 82835a566e6SPeter Zijlstra * 82935a566e6SPeter Zijlstra * NUMA-1 0-2 0-3 0-3 1-3 83035a566e6SPeter Zijlstra * 83135a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 83235a566e6SPeter Zijlstra * 83335a566e6SPeter Zijlstra */ 83435a566e6SPeter Zijlstra 83535a566e6SPeter Zijlstra 83635a566e6SPeter Zijlstra /* 837e5c14b1fSPeter Zijlstra * Build the balance mask; it contains only those CPUs that can arrive at this 838e5c14b1fSPeter Zijlstra * group and should be considered to continue balancing. 83935a566e6SPeter Zijlstra * 84035a566e6SPeter Zijlstra * We do this during the group creation pass, therefore the group information 84135a566e6SPeter Zijlstra * isn't complete yet, however since each group represents a (child) domain we 84235a566e6SPeter Zijlstra * can fully construct this using the sched_domain bits (which are already 84335a566e6SPeter Zijlstra * complete). 844f2cb1360SIngo Molnar */ 8451676330eSPeter Zijlstra static void 846e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 847f2cb1360SIngo Molnar { 848ae4df9d6SPeter Zijlstra const struct cpumask *sg_span = sched_group_span(sg); 849f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 850f2cb1360SIngo Molnar struct sched_domain *sibling; 851f2cb1360SIngo Molnar int i; 852f2cb1360SIngo Molnar 8531676330eSPeter Zijlstra cpumask_clear(mask); 8541676330eSPeter Zijlstra 855f32d782eSLauro Ramos Venancio for_each_cpu(i, sg_span) { 856f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 85773bb059fSPeter Zijlstra 85873bb059fSPeter Zijlstra /* 85973bb059fSPeter Zijlstra * Can happen in the asymmetric case, where these siblings are 86073bb059fSPeter Zijlstra * unused. The mask will not be empty because those CPUs that 86173bb059fSPeter Zijlstra * do have the top domain _should_ span the domain. 86273bb059fSPeter Zijlstra */ 86373bb059fSPeter Zijlstra if (!sibling->child) 86473bb059fSPeter Zijlstra continue; 86573bb059fSPeter Zijlstra 86673bb059fSPeter Zijlstra /* If we would not end up here, we can't continue from here */ 86773bb059fSPeter Zijlstra if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 868f2cb1360SIngo Molnar continue; 869f2cb1360SIngo Molnar 8701676330eSPeter Zijlstra cpumask_set_cpu(i, mask); 871f2cb1360SIngo Molnar } 87273bb059fSPeter Zijlstra 87373bb059fSPeter Zijlstra /* We must not have empty masks here */ 8741676330eSPeter Zijlstra WARN_ON_ONCE(cpumask_empty(mask)); 875f2cb1360SIngo Molnar } 876f2cb1360SIngo Molnar 877f2cb1360SIngo Molnar /* 87835a566e6SPeter Zijlstra * XXX: This creates per-node group entries; since the load-balancer will 87935a566e6SPeter Zijlstra * immediately access remote memory to construct this group's load-balance 88035a566e6SPeter Zijlstra * statistics having the groups node local is of dubious benefit. 881f2cb1360SIngo Molnar */ 8828c033469SLauro Ramos Venancio static struct sched_group * 8838c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 8848c033469SLauro Ramos Venancio { 8858c033469SLauro Ramos Venancio struct sched_group *sg; 8868c033469SLauro Ramos Venancio struct cpumask *sg_span; 8878c033469SLauro Ramos Venancio 8888c033469SLauro Ramos Venancio sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 8898c033469SLauro Ramos Venancio GFP_KERNEL, cpu_to_node(cpu)); 8908c033469SLauro Ramos Venancio 8918c033469SLauro Ramos Venancio if (!sg) 8928c033469SLauro Ramos Venancio return NULL; 8938c033469SLauro Ramos Venancio 894ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 8958c033469SLauro Ramos Venancio if (sd->child) 8968c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd->child)); 8978c033469SLauro Ramos Venancio else 8988c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd)); 8998c033469SLauro Ramos Venancio 900213c5a45SShu Wang atomic_inc(&sg->ref); 9018c033469SLauro Ramos Venancio return sg; 9028c033469SLauro Ramos Venancio } 9038c033469SLauro Ramos Venancio 9048c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd, 9051676330eSPeter Zijlstra struct sched_group *sg) 9068c033469SLauro Ramos Venancio { 9071676330eSPeter Zijlstra struct cpumask *mask = sched_domains_tmpmask2; 9088c033469SLauro Ramos Venancio struct sd_data *sdd = sd->private; 9098c033469SLauro Ramos Venancio struct cpumask *sg_span; 9101676330eSPeter Zijlstra int cpu; 9111676330eSPeter Zijlstra 912e5c14b1fSPeter Zijlstra build_balance_mask(sd, sg, mask); 913ae4df9d6SPeter Zijlstra cpu = cpumask_first_and(sched_group_span(sg), mask); 9148c033469SLauro Ramos Venancio 9158c033469SLauro Ramos Venancio sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 9168c033469SLauro Ramos Venancio if (atomic_inc_return(&sg->sgc->ref) == 1) 917e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), mask); 91835a566e6SPeter Zijlstra else 919e5c14b1fSPeter Zijlstra WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 9208c033469SLauro Ramos Venancio 9218c033469SLauro Ramos Venancio /* 9228c033469SLauro Ramos Venancio * Initialize sgc->capacity such that even if we mess up the 9238c033469SLauro Ramos Venancio * domains and no possible iteration will get us here, we won't 9248c033469SLauro Ramos Venancio * die on a /0 trap. 9258c033469SLauro Ramos Venancio */ 926ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9278c033469SLauro Ramos Venancio sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 9288c033469SLauro Ramos Venancio sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 929e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 9308c033469SLauro Ramos Venancio } 9318c033469SLauro Ramos Venancio 932f2cb1360SIngo Molnar static int 933f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu) 934f2cb1360SIngo Molnar { 93591eaed0dSPeter Zijlstra struct sched_group *first = NULL, *last = NULL, *sg; 936f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 937f2cb1360SIngo Molnar struct cpumask *covered = sched_domains_tmpmask; 938f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 939f2cb1360SIngo Molnar struct sched_domain *sibling; 940f2cb1360SIngo Molnar int i; 941f2cb1360SIngo Molnar 942f2cb1360SIngo Molnar cpumask_clear(covered); 943f2cb1360SIngo Molnar 9440372dd27SPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 945f2cb1360SIngo Molnar struct cpumask *sg_span; 946f2cb1360SIngo Molnar 947f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 948f2cb1360SIngo Molnar continue; 949f2cb1360SIngo Molnar 950f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 951f2cb1360SIngo Molnar 952c20e1ea4SLauro Ramos Venancio /* 953c20e1ea4SLauro Ramos Venancio * Asymmetric node setups can result in situations where the 954c20e1ea4SLauro Ramos Venancio * domain tree is of unequal depth, make sure to skip domains 955c20e1ea4SLauro Ramos Venancio * that already cover the entire range. 956c20e1ea4SLauro Ramos Venancio * 957c20e1ea4SLauro Ramos Venancio * In that case build_sched_domains() will have terminated the 958c20e1ea4SLauro Ramos Venancio * iteration early and our sibling sd spans will be empty. 959c20e1ea4SLauro Ramos Venancio * Domains should always include the CPU they're built on, so 960c20e1ea4SLauro Ramos Venancio * check that. 961c20e1ea4SLauro Ramos Venancio */ 962f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 963f2cb1360SIngo Molnar continue; 964f2cb1360SIngo Molnar 9658c033469SLauro Ramos Venancio sg = build_group_from_child_sched_domain(sibling, cpu); 966f2cb1360SIngo Molnar if (!sg) 967f2cb1360SIngo Molnar goto fail; 968f2cb1360SIngo Molnar 969ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 970f2cb1360SIngo Molnar cpumask_or(covered, covered, sg_span); 971f2cb1360SIngo Molnar 9721676330eSPeter Zijlstra init_overlap_sched_group(sd, sg); 973f2cb1360SIngo Molnar 974f2cb1360SIngo Molnar if (!first) 975f2cb1360SIngo Molnar first = sg; 976f2cb1360SIngo Molnar if (last) 977f2cb1360SIngo Molnar last->next = sg; 978f2cb1360SIngo Molnar last = sg; 979f2cb1360SIngo Molnar last->next = first; 980f2cb1360SIngo Molnar } 98191eaed0dSPeter Zijlstra sd->groups = first; 982f2cb1360SIngo Molnar 983f2cb1360SIngo Molnar return 0; 984f2cb1360SIngo Molnar 985f2cb1360SIngo Molnar fail: 986f2cb1360SIngo Molnar free_sched_groups(first, 0); 987f2cb1360SIngo Molnar 988f2cb1360SIngo Molnar return -ENOMEM; 989f2cb1360SIngo Molnar } 990f2cb1360SIngo Molnar 99135a566e6SPeter Zijlstra 99235a566e6SPeter Zijlstra /* 99335a566e6SPeter Zijlstra * Package topology (also see the load-balance blurb in fair.c) 99435a566e6SPeter Zijlstra * 99535a566e6SPeter Zijlstra * The scheduler builds a tree structure to represent a number of important 99635a566e6SPeter Zijlstra * topology features. By default (default_topology[]) these include: 99735a566e6SPeter Zijlstra * 99835a566e6SPeter Zijlstra * - Simultaneous multithreading (SMT) 99935a566e6SPeter Zijlstra * - Multi-Core Cache (MC) 100035a566e6SPeter Zijlstra * - Package (DIE) 100135a566e6SPeter Zijlstra * 100235a566e6SPeter Zijlstra * Where the last one more or less denotes everything up to a NUMA node. 100335a566e6SPeter Zijlstra * 100435a566e6SPeter Zijlstra * The tree consists of 3 primary data structures: 100535a566e6SPeter Zijlstra * 100635a566e6SPeter Zijlstra * sched_domain -> sched_group -> sched_group_capacity 100735a566e6SPeter Zijlstra * ^ ^ ^ ^ 100835a566e6SPeter Zijlstra * `-' `-' 100935a566e6SPeter Zijlstra * 101097fb7a0aSIngo Molnar * The sched_domains are per-CPU and have a two way link (parent & child) and 101135a566e6SPeter Zijlstra * denote the ever growing mask of CPUs belonging to that level of topology. 101235a566e6SPeter Zijlstra * 101335a566e6SPeter Zijlstra * Each sched_domain has a circular (double) linked list of sched_group's, each 101435a566e6SPeter Zijlstra * denoting the domains of the level below (or individual CPUs in case of the 101535a566e6SPeter Zijlstra * first domain level). The sched_group linked by a sched_domain includes the 101635a566e6SPeter Zijlstra * CPU of that sched_domain [*]. 101735a566e6SPeter Zijlstra * 101835a566e6SPeter Zijlstra * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 101935a566e6SPeter Zijlstra * 102035a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 102135a566e6SPeter Zijlstra * 102235a566e6SPeter Zijlstra * DIE [ ] 102335a566e6SPeter Zijlstra * MC [ ] [ ] 102435a566e6SPeter Zijlstra * SMT [ ] [ ] [ ] [ ] 102535a566e6SPeter Zijlstra * 102635a566e6SPeter Zijlstra * - or - 102735a566e6SPeter Zijlstra * 102835a566e6SPeter Zijlstra * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 102935a566e6SPeter Zijlstra * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 103035a566e6SPeter Zijlstra * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 103135a566e6SPeter Zijlstra * 103235a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 103335a566e6SPeter Zijlstra * 103435a566e6SPeter Zijlstra * One way to think about it is: sched_domain moves you up and down among these 103535a566e6SPeter Zijlstra * topology levels, while sched_group moves you sideways through it, at child 103635a566e6SPeter Zijlstra * domain granularity. 103735a566e6SPeter Zijlstra * 103835a566e6SPeter Zijlstra * sched_group_capacity ensures each unique sched_group has shared storage. 103935a566e6SPeter Zijlstra * 104035a566e6SPeter Zijlstra * There are two related construction problems, both require a CPU that 104135a566e6SPeter Zijlstra * uniquely identify each group (for a given domain): 104235a566e6SPeter Zijlstra * 104335a566e6SPeter Zijlstra * - The first is the balance_cpu (see should_we_balance() and the 104435a566e6SPeter Zijlstra * load-balance blub in fair.c); for each group we only want 1 CPU to 104535a566e6SPeter Zijlstra * continue balancing at a higher domain. 104635a566e6SPeter Zijlstra * 104735a566e6SPeter Zijlstra * - The second is the sched_group_capacity; we want all identical groups 104835a566e6SPeter Zijlstra * to share a single sched_group_capacity. 104935a566e6SPeter Zijlstra * 105035a566e6SPeter Zijlstra * Since these topologies are exclusive by construction. That is, its 105135a566e6SPeter Zijlstra * impossible for an SMT thread to belong to multiple cores, and cores to 105235a566e6SPeter Zijlstra * be part of multiple caches. There is a very clear and unique location 105335a566e6SPeter Zijlstra * for each CPU in the hierarchy. 105435a566e6SPeter Zijlstra * 105535a566e6SPeter Zijlstra * Therefore computing a unique CPU for each group is trivial (the iteration 105635a566e6SPeter Zijlstra * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 105735a566e6SPeter Zijlstra * group), we can simply pick the first CPU in each group. 105835a566e6SPeter Zijlstra * 105935a566e6SPeter Zijlstra * 106035a566e6SPeter Zijlstra * [*] in other words, the first group of each domain is its child domain. 106135a566e6SPeter Zijlstra */ 106235a566e6SPeter Zijlstra 10630c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1064f2cb1360SIngo Molnar { 1065f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1066f2cb1360SIngo Molnar struct sched_domain *child = sd->child; 10670c0e776aSPeter Zijlstra struct sched_group *sg; 106867d4f6ffSValentin Schneider bool already_visited; 1069f2cb1360SIngo Molnar 1070f2cb1360SIngo Molnar if (child) 1071f2cb1360SIngo Molnar cpu = cpumask_first(sched_domain_span(child)); 1072f2cb1360SIngo Molnar 10730c0e776aSPeter Zijlstra sg = *per_cpu_ptr(sdd->sg, cpu); 10740c0e776aSPeter Zijlstra sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1075f2cb1360SIngo Molnar 107667d4f6ffSValentin Schneider /* Increase refcounts for claim_allocations: */ 107767d4f6ffSValentin Schneider already_visited = atomic_inc_return(&sg->ref) > 1; 107867d4f6ffSValentin Schneider /* sgc visits should follow a similar trend as sg */ 107967d4f6ffSValentin Schneider WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 108067d4f6ffSValentin Schneider 108167d4f6ffSValentin Schneider /* If we have already visited that group, it's already initialized. */ 108267d4f6ffSValentin Schneider if (already_visited) 108367d4f6ffSValentin Schneider return sg; 10840c0e776aSPeter Zijlstra 10850c0e776aSPeter Zijlstra if (child) { 1086ae4df9d6SPeter Zijlstra cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1087ae4df9d6SPeter Zijlstra cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 10880c0e776aSPeter Zijlstra } else { 1089ae4df9d6SPeter Zijlstra cpumask_set_cpu(cpu, sched_group_span(sg)); 1090e5c14b1fSPeter Zijlstra cpumask_set_cpu(cpu, group_balance_mask(sg)); 1091f2cb1360SIngo Molnar } 1092f2cb1360SIngo Molnar 1093ae4df9d6SPeter Zijlstra sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 10940c0e776aSPeter Zijlstra sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1095e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 10960c0e776aSPeter Zijlstra 10970c0e776aSPeter Zijlstra return sg; 1098f2cb1360SIngo Molnar } 1099f2cb1360SIngo Molnar 1100f2cb1360SIngo Molnar /* 1101f2cb1360SIngo Molnar * build_sched_groups will build a circular linked list of the groups 1102d8743230SValentin Schneider * covered by the given span, will set each group's ->cpumask correctly, 1103d8743230SValentin Schneider * and will initialize their ->sgc. 1104f2cb1360SIngo Molnar * 1105f2cb1360SIngo Molnar * Assumes the sched_domain tree is fully constructed 1106f2cb1360SIngo Molnar */ 1107f2cb1360SIngo Molnar static int 1108f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu) 1109f2cb1360SIngo Molnar { 1110f2cb1360SIngo Molnar struct sched_group *first = NULL, *last = NULL; 1111f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1112f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 1113f2cb1360SIngo Molnar struct cpumask *covered; 1114f2cb1360SIngo Molnar int i; 1115f2cb1360SIngo Molnar 1116f2cb1360SIngo Molnar lockdep_assert_held(&sched_domains_mutex); 1117f2cb1360SIngo Molnar covered = sched_domains_tmpmask; 1118f2cb1360SIngo Molnar 1119f2cb1360SIngo Molnar cpumask_clear(covered); 1120f2cb1360SIngo Molnar 11210c0e776aSPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 1122f2cb1360SIngo Molnar struct sched_group *sg; 1123f2cb1360SIngo Molnar 1124f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 1125f2cb1360SIngo Molnar continue; 1126f2cb1360SIngo Molnar 11270c0e776aSPeter Zijlstra sg = get_group(i, sdd); 1128f2cb1360SIngo Molnar 1129ae4df9d6SPeter Zijlstra cpumask_or(covered, covered, sched_group_span(sg)); 1130f2cb1360SIngo Molnar 1131f2cb1360SIngo Molnar if (!first) 1132f2cb1360SIngo Molnar first = sg; 1133f2cb1360SIngo Molnar if (last) 1134f2cb1360SIngo Molnar last->next = sg; 1135f2cb1360SIngo Molnar last = sg; 1136f2cb1360SIngo Molnar } 1137f2cb1360SIngo Molnar last->next = first; 11380c0e776aSPeter Zijlstra sd->groups = first; 1139f2cb1360SIngo Molnar 1140f2cb1360SIngo Molnar return 0; 1141f2cb1360SIngo Molnar } 1142f2cb1360SIngo Molnar 1143f2cb1360SIngo Molnar /* 1144f2cb1360SIngo Molnar * Initialize sched groups cpu_capacity. 1145f2cb1360SIngo Molnar * 1146f2cb1360SIngo Molnar * cpu_capacity indicates the capacity of sched group, which is used while 1147f2cb1360SIngo Molnar * distributing the load between different sched groups in a sched domain. 1148f2cb1360SIngo Molnar * Typically cpu_capacity for all the groups in a sched domain will be same 1149f2cb1360SIngo Molnar * unless there are asymmetries in the topology. If there are asymmetries, 1150f2cb1360SIngo Molnar * group having more cpu_capacity will pickup more load compared to the 1151f2cb1360SIngo Molnar * group having less cpu_capacity. 1152f2cb1360SIngo Molnar */ 1153f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1154f2cb1360SIngo Molnar { 1155f2cb1360SIngo Molnar struct sched_group *sg = sd->groups; 1156f2cb1360SIngo Molnar 1157f2cb1360SIngo Molnar WARN_ON(!sg); 1158f2cb1360SIngo Molnar 1159f2cb1360SIngo Molnar do { 1160f2cb1360SIngo Molnar int cpu, max_cpu = -1; 1161f2cb1360SIngo Molnar 1162ae4df9d6SPeter Zijlstra sg->group_weight = cpumask_weight(sched_group_span(sg)); 1163f2cb1360SIngo Molnar 1164f2cb1360SIngo Molnar if (!(sd->flags & SD_ASYM_PACKING)) 1165f2cb1360SIngo Molnar goto next; 1166f2cb1360SIngo Molnar 1167ae4df9d6SPeter Zijlstra for_each_cpu(cpu, sched_group_span(sg)) { 1168f2cb1360SIngo Molnar if (max_cpu < 0) 1169f2cb1360SIngo Molnar max_cpu = cpu; 1170f2cb1360SIngo Molnar else if (sched_asym_prefer(cpu, max_cpu)) 1171f2cb1360SIngo Molnar max_cpu = cpu; 1172f2cb1360SIngo Molnar } 1173f2cb1360SIngo Molnar sg->asym_prefer_cpu = max_cpu; 1174f2cb1360SIngo Molnar 1175f2cb1360SIngo Molnar next: 1176f2cb1360SIngo Molnar sg = sg->next; 1177f2cb1360SIngo Molnar } while (sg != sd->groups); 1178f2cb1360SIngo Molnar 1179f2cb1360SIngo Molnar if (cpu != group_balance_cpu(sg)) 1180f2cb1360SIngo Molnar return; 1181f2cb1360SIngo Molnar 1182f2cb1360SIngo Molnar update_group_capacity(sd, cpu); 1183f2cb1360SIngo Molnar } 1184f2cb1360SIngo Molnar 1185f2cb1360SIngo Molnar /* 1186f2cb1360SIngo Molnar * Initializers for schedule domains 1187f2cb1360SIngo Molnar * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1188f2cb1360SIngo Molnar */ 1189f2cb1360SIngo Molnar 1190f2cb1360SIngo Molnar static int default_relax_domain_level = -1; 1191f2cb1360SIngo Molnar int sched_domain_level_max; 1192f2cb1360SIngo Molnar 1193f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str) 1194f2cb1360SIngo Molnar { 1195f2cb1360SIngo Molnar if (kstrtoint(str, 0, &default_relax_domain_level)) 1196f2cb1360SIngo Molnar pr_warn("Unable to set relax_domain_level\n"); 1197f2cb1360SIngo Molnar 1198f2cb1360SIngo Molnar return 1; 1199f2cb1360SIngo Molnar } 1200f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level); 1201f2cb1360SIngo Molnar 1202f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd, 1203f2cb1360SIngo Molnar struct sched_domain_attr *attr) 1204f2cb1360SIngo Molnar { 1205f2cb1360SIngo Molnar int request; 1206f2cb1360SIngo Molnar 1207f2cb1360SIngo Molnar if (!attr || attr->relax_domain_level < 0) { 1208f2cb1360SIngo Molnar if (default_relax_domain_level < 0) 1209f2cb1360SIngo Molnar return; 1210f2cb1360SIngo Molnar request = default_relax_domain_level; 1211f2cb1360SIngo Molnar } else 1212f2cb1360SIngo Molnar request = attr->relax_domain_level; 12139ae7ab20SValentin Schneider 12149ae7ab20SValentin Schneider if (sd->level > request) { 1215f2cb1360SIngo Molnar /* Turn off idle balance on this domain: */ 1216f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1217f2cb1360SIngo Molnar } 1218f2cb1360SIngo Molnar } 1219f2cb1360SIngo Molnar 1220f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map); 1221f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map); 1222f2cb1360SIngo Molnar 1223f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1224f2cb1360SIngo Molnar const struct cpumask *cpu_map) 1225f2cb1360SIngo Molnar { 1226f2cb1360SIngo Molnar switch (what) { 1227f2cb1360SIngo Molnar case sa_rootdomain: 1228f2cb1360SIngo Molnar if (!atomic_read(&d->rd->refcount)) 1229f2cb1360SIngo Molnar free_rootdomain(&d->rd->rcu); 1230f2cb1360SIngo Molnar /* Fall through */ 1231f2cb1360SIngo Molnar case sa_sd: 1232f2cb1360SIngo Molnar free_percpu(d->sd); 1233f2cb1360SIngo Molnar /* Fall through */ 1234f2cb1360SIngo Molnar case sa_sd_storage: 1235f2cb1360SIngo Molnar __sdt_free(cpu_map); 1236f2cb1360SIngo Molnar /* Fall through */ 1237f2cb1360SIngo Molnar case sa_none: 1238f2cb1360SIngo Molnar break; 1239f2cb1360SIngo Molnar } 1240f2cb1360SIngo Molnar } 1241f2cb1360SIngo Molnar 1242f2cb1360SIngo Molnar static enum s_alloc 1243f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1244f2cb1360SIngo Molnar { 1245f2cb1360SIngo Molnar memset(d, 0, sizeof(*d)); 1246f2cb1360SIngo Molnar 1247f2cb1360SIngo Molnar if (__sdt_alloc(cpu_map)) 1248f2cb1360SIngo Molnar return sa_sd_storage; 1249f2cb1360SIngo Molnar d->sd = alloc_percpu(struct sched_domain *); 1250f2cb1360SIngo Molnar if (!d->sd) 1251f2cb1360SIngo Molnar return sa_sd_storage; 1252f2cb1360SIngo Molnar d->rd = alloc_rootdomain(); 1253f2cb1360SIngo Molnar if (!d->rd) 1254f2cb1360SIngo Molnar return sa_sd; 125597fb7a0aSIngo Molnar 1256f2cb1360SIngo Molnar return sa_rootdomain; 1257f2cb1360SIngo Molnar } 1258f2cb1360SIngo Molnar 1259f2cb1360SIngo Molnar /* 1260f2cb1360SIngo Molnar * NULL the sd_data elements we've used to build the sched_domain and 1261f2cb1360SIngo Molnar * sched_group structure so that the subsequent __free_domain_allocs() 1262f2cb1360SIngo Molnar * will not free the data we're using. 1263f2cb1360SIngo Molnar */ 1264f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd) 1265f2cb1360SIngo Molnar { 1266f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1267f2cb1360SIngo Molnar 1268f2cb1360SIngo Molnar WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1269f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, cpu) = NULL; 1270f2cb1360SIngo Molnar 1271f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1272f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, cpu) = NULL; 1273f2cb1360SIngo Molnar 1274f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1275f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, cpu) = NULL; 1276f2cb1360SIngo Molnar 1277f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1278f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1279f2cb1360SIngo Molnar } 1280f2cb1360SIngo Molnar 1281f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1282f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type; 128397fb7a0aSIngo Molnar 128497fb7a0aSIngo Molnar static int sched_domains_numa_levels; 1285f2cb1360SIngo Molnar static int sched_domains_curr_level; 128697fb7a0aSIngo Molnar 128797fb7a0aSIngo Molnar int sched_max_numa_distance; 128897fb7a0aSIngo Molnar static int *sched_domains_numa_distance; 128997fb7a0aSIngo Molnar static struct cpumask ***sched_domains_numa_masks; 1290a55c7454SMatt Fleming int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1291f2cb1360SIngo Molnar #endif 1292f2cb1360SIngo Molnar 1293f2cb1360SIngo Molnar /* 1294f2cb1360SIngo Molnar * SD_flags allowed in topology descriptions. 1295f2cb1360SIngo Molnar * 1296f2cb1360SIngo Molnar * These flags are purely descriptive of the topology and do not prescribe 1297f2cb1360SIngo Molnar * behaviour. Behaviour is artificial and mapped in the below sd_init() 1298f2cb1360SIngo Molnar * function: 1299f2cb1360SIngo Molnar * 1300f2cb1360SIngo Molnar * SD_SHARE_CPUCAPACITY - describes SMT topologies 1301f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCES - describes shared caches 1302f2cb1360SIngo Molnar * SD_NUMA - describes NUMA topologies 1303f2cb1360SIngo Molnar * 1304f2cb1360SIngo Molnar * Odd one out, which beside describing the topology has a quirk also 1305f2cb1360SIngo Molnar * prescribes the desired behaviour that goes along with it: 1306f2cb1360SIngo Molnar * 1307f2cb1360SIngo Molnar * SD_ASYM_PACKING - describes SMT quirks 1308f2cb1360SIngo Molnar */ 1309f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS \ 1310f2cb1360SIngo Molnar (SD_SHARE_CPUCAPACITY | \ 1311f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | \ 1312f2cb1360SIngo Molnar SD_NUMA | \ 1313cfe7ddcbSValentin Schneider SD_ASYM_PACKING) 1314f2cb1360SIngo Molnar 1315f2cb1360SIngo Molnar static struct sched_domain * 1316f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl, 1317f2cb1360SIngo Molnar const struct cpumask *cpu_map, 131805484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1319f2cb1360SIngo Molnar { 1320f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1321f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1322f2cb1360SIngo Molnar int sd_id, sd_weight, sd_flags = 0; 1323f2cb1360SIngo Molnar 1324f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1325f2cb1360SIngo Molnar /* 1326f2cb1360SIngo Molnar * Ugly hack to pass state to sd_numa_mask()... 1327f2cb1360SIngo Molnar */ 1328f2cb1360SIngo Molnar sched_domains_curr_level = tl->numa_level; 1329f2cb1360SIngo Molnar #endif 1330f2cb1360SIngo Molnar 1331f2cb1360SIngo Molnar sd_weight = cpumask_weight(tl->mask(cpu)); 1332f2cb1360SIngo Molnar 1333f2cb1360SIngo Molnar if (tl->sd_flags) 1334f2cb1360SIngo Molnar sd_flags = (*tl->sd_flags)(); 1335f2cb1360SIngo Molnar if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1336f2cb1360SIngo Molnar "wrong sd_flags in topology description\n")) 13379b1b234bSPeng Liu sd_flags &= TOPOLOGY_SD_FLAGS; 1338f2cb1360SIngo Molnar 133905484e09SMorten Rasmussen /* Apply detected topology flags */ 134005484e09SMorten Rasmussen sd_flags |= dflags; 134105484e09SMorten Rasmussen 1342f2cb1360SIngo Molnar *sd = (struct sched_domain){ 1343f2cb1360SIngo Molnar .min_interval = sd_weight, 1344f2cb1360SIngo Molnar .max_interval = 2*sd_weight, 1345f2cb1360SIngo Molnar .busy_factor = 32, 1346f2cb1360SIngo Molnar .imbalance_pct = 125, 1347f2cb1360SIngo Molnar 1348f2cb1360SIngo Molnar .cache_nice_tries = 0, 1349f2cb1360SIngo Molnar 135036c5bdc4SValentin Schneider .flags = 1*SD_BALANCE_NEWIDLE 1351f2cb1360SIngo Molnar | 1*SD_BALANCE_EXEC 1352f2cb1360SIngo Molnar | 1*SD_BALANCE_FORK 1353f2cb1360SIngo Molnar | 0*SD_BALANCE_WAKE 1354f2cb1360SIngo Molnar | 1*SD_WAKE_AFFINE 1355f2cb1360SIngo Molnar | 0*SD_SHARE_CPUCAPACITY 1356f2cb1360SIngo Molnar | 0*SD_SHARE_PKG_RESOURCES 1357f2cb1360SIngo Molnar | 0*SD_SERIALIZE 13589c63e84dSMorten Rasmussen | 1*SD_PREFER_SIBLING 1359f2cb1360SIngo Molnar | 0*SD_NUMA 1360f2cb1360SIngo Molnar | sd_flags 1361f2cb1360SIngo Molnar , 1362f2cb1360SIngo Molnar 1363f2cb1360SIngo Molnar .last_balance = jiffies, 1364f2cb1360SIngo Molnar .balance_interval = sd_weight, 1365f2cb1360SIngo Molnar .max_newidle_lb_cost = 0, 1366f2cb1360SIngo Molnar .next_decay_max_lb_cost = jiffies, 1367f2cb1360SIngo Molnar .child = child, 1368f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1369f2cb1360SIngo Molnar .name = tl->name, 1370f2cb1360SIngo Molnar #endif 1371f2cb1360SIngo Molnar }; 1372f2cb1360SIngo Molnar 1373f2cb1360SIngo Molnar cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1374f2cb1360SIngo Molnar sd_id = cpumask_first(sched_domain_span(sd)); 1375f2cb1360SIngo Molnar 1376f2cb1360SIngo Molnar /* 1377f2cb1360SIngo Molnar * Convert topological properties into behaviour. 1378f2cb1360SIngo Molnar */ 1379f2cb1360SIngo Molnar 1380a526d466SMorten Rasmussen /* Don't attempt to spread across CPUs of different capacities. */ 1381a526d466SMorten Rasmussen if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 13829c63e84dSMorten Rasmussen sd->child->flags &= ~SD_PREFER_SIBLING; 13839c63e84dSMorten Rasmussen 1384f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_CPUCAPACITY) { 1385f2cb1360SIngo Molnar sd->imbalance_pct = 110; 1386f2cb1360SIngo Molnar 1387f2cb1360SIngo Molnar } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1388f2cb1360SIngo Molnar sd->imbalance_pct = 117; 1389f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1390f2cb1360SIngo Molnar 1391f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1392f2cb1360SIngo Molnar } else if (sd->flags & SD_NUMA) { 1393f2cb1360SIngo Molnar sd->cache_nice_tries = 2; 1394f2cb1360SIngo Molnar 13959c63e84dSMorten Rasmussen sd->flags &= ~SD_PREFER_SIBLING; 1396f2cb1360SIngo Molnar sd->flags |= SD_SERIALIZE; 1397a55c7454SMatt Fleming if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1398f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_EXEC | 1399f2cb1360SIngo Molnar SD_BALANCE_FORK | 1400f2cb1360SIngo Molnar SD_WAKE_AFFINE); 1401f2cb1360SIngo Molnar } 1402f2cb1360SIngo Molnar 1403f2cb1360SIngo Molnar #endif 1404f2cb1360SIngo Molnar } else { 1405f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1406f2cb1360SIngo Molnar } 1407f2cb1360SIngo Molnar 1408f2cb1360SIngo Molnar /* 1409f2cb1360SIngo Molnar * For all levels sharing cache; connect a sched_domain_shared 1410f2cb1360SIngo Molnar * instance. 1411f2cb1360SIngo Molnar */ 1412f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1413f2cb1360SIngo Molnar sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1414f2cb1360SIngo Molnar atomic_inc(&sd->shared->ref); 1415f2cb1360SIngo Molnar atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1416f2cb1360SIngo Molnar } 1417f2cb1360SIngo Molnar 1418f2cb1360SIngo Molnar sd->private = sdd; 1419f2cb1360SIngo Molnar 1420f2cb1360SIngo Molnar return sd; 1421f2cb1360SIngo Molnar } 1422f2cb1360SIngo Molnar 1423f2cb1360SIngo Molnar /* 1424f2cb1360SIngo Molnar * Topology list, bottom-up. 1425f2cb1360SIngo Molnar */ 1426f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = { 1427f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT 1428f2cb1360SIngo Molnar { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1429f2cb1360SIngo Molnar #endif 1430f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC 1431f2cb1360SIngo Molnar { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1432f2cb1360SIngo Molnar #endif 1433f2cb1360SIngo Molnar { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1434f2cb1360SIngo Molnar { NULL, }, 1435f2cb1360SIngo Molnar }; 1436f2cb1360SIngo Molnar 1437f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology = 1438f2cb1360SIngo Molnar default_topology; 1439f2cb1360SIngo Molnar 1440f2cb1360SIngo Molnar #define for_each_sd_topology(tl) \ 1441f2cb1360SIngo Molnar for (tl = sched_domain_topology; tl->mask; tl++) 1442f2cb1360SIngo Molnar 1443f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl) 1444f2cb1360SIngo Molnar { 1445f2cb1360SIngo Molnar if (WARN_ON_ONCE(sched_smp_initialized)) 1446f2cb1360SIngo Molnar return; 1447f2cb1360SIngo Molnar 1448f2cb1360SIngo Molnar sched_domain_topology = tl; 1449f2cb1360SIngo Molnar } 1450f2cb1360SIngo Molnar 1451f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1452f2cb1360SIngo Molnar 1453f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu) 1454f2cb1360SIngo Molnar { 1455f2cb1360SIngo Molnar return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1456f2cb1360SIngo Molnar } 1457f2cb1360SIngo Molnar 1458f2cb1360SIngo Molnar static void sched_numa_warn(const char *str) 1459f2cb1360SIngo Molnar { 1460f2cb1360SIngo Molnar static int done = false; 1461f2cb1360SIngo Molnar int i,j; 1462f2cb1360SIngo Molnar 1463f2cb1360SIngo Molnar if (done) 1464f2cb1360SIngo Molnar return; 1465f2cb1360SIngo Molnar 1466f2cb1360SIngo Molnar done = true; 1467f2cb1360SIngo Molnar 1468f2cb1360SIngo Molnar printk(KERN_WARNING "ERROR: %s\n\n", str); 1469f2cb1360SIngo Molnar 1470f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1471f2cb1360SIngo Molnar printk(KERN_WARNING " "); 1472f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1473f2cb1360SIngo Molnar printk(KERN_CONT "%02d ", node_distance(i,j)); 1474f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 1475f2cb1360SIngo Molnar } 1476f2cb1360SIngo Molnar printk(KERN_WARNING "\n"); 1477f2cb1360SIngo Molnar } 1478f2cb1360SIngo Molnar 1479f2cb1360SIngo Molnar bool find_numa_distance(int distance) 1480f2cb1360SIngo Molnar { 1481f2cb1360SIngo Molnar int i; 1482f2cb1360SIngo Molnar 1483f2cb1360SIngo Molnar if (distance == node_distance(0, 0)) 1484f2cb1360SIngo Molnar return true; 1485f2cb1360SIngo Molnar 1486f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1487f2cb1360SIngo Molnar if (sched_domains_numa_distance[i] == distance) 1488f2cb1360SIngo Molnar return true; 1489f2cb1360SIngo Molnar } 1490f2cb1360SIngo Molnar 1491f2cb1360SIngo Molnar return false; 1492f2cb1360SIngo Molnar } 1493f2cb1360SIngo Molnar 1494f2cb1360SIngo Molnar /* 1495f2cb1360SIngo Molnar * A system can have three types of NUMA topology: 1496f2cb1360SIngo Molnar * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1497f2cb1360SIngo Molnar * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1498f2cb1360SIngo Molnar * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1499f2cb1360SIngo Molnar * 1500f2cb1360SIngo Molnar * The difference between a glueless mesh topology and a backplane 1501f2cb1360SIngo Molnar * topology lies in whether communication between not directly 1502f2cb1360SIngo Molnar * connected nodes goes through intermediary nodes (where programs 1503f2cb1360SIngo Molnar * could run), or through backplane controllers. This affects 1504f2cb1360SIngo Molnar * placement of programs. 1505f2cb1360SIngo Molnar * 1506f2cb1360SIngo Molnar * The type of topology can be discerned with the following tests: 1507f2cb1360SIngo Molnar * - If the maximum distance between any nodes is 1 hop, the system 1508f2cb1360SIngo Molnar * is directly connected. 1509f2cb1360SIngo Molnar * - If for two nodes A and B, located N > 1 hops away from each other, 1510f2cb1360SIngo Molnar * there is an intermediary node C, which is < N hops away from both 1511f2cb1360SIngo Molnar * nodes A and B, the system is a glueless mesh. 1512f2cb1360SIngo Molnar */ 1513f2cb1360SIngo Molnar static void init_numa_topology_type(void) 1514f2cb1360SIngo Molnar { 1515f2cb1360SIngo Molnar int a, b, c, n; 1516f2cb1360SIngo Molnar 1517f2cb1360SIngo Molnar n = sched_max_numa_distance; 1518f2cb1360SIngo Molnar 1519e5e96fafSSrikar Dronamraju if (sched_domains_numa_levels <= 2) { 1520f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_DIRECT; 1521f2cb1360SIngo Molnar return; 1522f2cb1360SIngo Molnar } 1523f2cb1360SIngo Molnar 1524f2cb1360SIngo Molnar for_each_online_node(a) { 1525f2cb1360SIngo Molnar for_each_online_node(b) { 1526f2cb1360SIngo Molnar /* Find two nodes furthest removed from each other. */ 1527f2cb1360SIngo Molnar if (node_distance(a, b) < n) 1528f2cb1360SIngo Molnar continue; 1529f2cb1360SIngo Molnar 1530f2cb1360SIngo Molnar /* Is there an intermediary node between a and b? */ 1531f2cb1360SIngo Molnar for_each_online_node(c) { 1532f2cb1360SIngo Molnar if (node_distance(a, c) < n && 1533f2cb1360SIngo Molnar node_distance(b, c) < n) { 1534f2cb1360SIngo Molnar sched_numa_topology_type = 1535f2cb1360SIngo Molnar NUMA_GLUELESS_MESH; 1536f2cb1360SIngo Molnar return; 1537f2cb1360SIngo Molnar } 1538f2cb1360SIngo Molnar } 1539f2cb1360SIngo Molnar 1540f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_BACKPLANE; 1541f2cb1360SIngo Molnar return; 1542f2cb1360SIngo Molnar } 1543f2cb1360SIngo Molnar } 1544f2cb1360SIngo Molnar } 1545f2cb1360SIngo Molnar 1546f2cb1360SIngo Molnar void sched_init_numa(void) 1547f2cb1360SIngo Molnar { 1548f2cb1360SIngo Molnar int next_distance, curr_distance = node_distance(0, 0); 1549f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1550f2cb1360SIngo Molnar int level = 0; 1551f2cb1360SIngo Molnar int i, j, k; 1552f2cb1360SIngo Molnar 1553993f0b05SPeter Zijlstra sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1554f2cb1360SIngo Molnar if (!sched_domains_numa_distance) 1555f2cb1360SIngo Molnar return; 1556f2cb1360SIngo Molnar 1557051f3ca0SSuravee Suthikulpanit /* Includes NUMA identity node at level 0. */ 1558051f3ca0SSuravee Suthikulpanit sched_domains_numa_distance[level++] = curr_distance; 1559051f3ca0SSuravee Suthikulpanit sched_domains_numa_levels = level; 1560051f3ca0SSuravee Suthikulpanit 1561f2cb1360SIngo Molnar /* 1562f2cb1360SIngo Molnar * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1563f2cb1360SIngo Molnar * unique distances in the node_distance() table. 1564f2cb1360SIngo Molnar * 1565f2cb1360SIngo Molnar * Assumes node_distance(0,j) includes all distances in 1566f2cb1360SIngo Molnar * node_distance(i,j) in order to avoid cubic time. 1567f2cb1360SIngo Molnar */ 1568f2cb1360SIngo Molnar next_distance = curr_distance; 1569f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1570f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1571f2cb1360SIngo Molnar for (k = 0; k < nr_node_ids; k++) { 1572f2cb1360SIngo Molnar int distance = node_distance(i, k); 1573f2cb1360SIngo Molnar 1574f2cb1360SIngo Molnar if (distance > curr_distance && 1575f2cb1360SIngo Molnar (distance < next_distance || 1576f2cb1360SIngo Molnar next_distance == curr_distance)) 1577f2cb1360SIngo Molnar next_distance = distance; 1578f2cb1360SIngo Molnar 1579f2cb1360SIngo Molnar /* 1580f2cb1360SIngo Molnar * While not a strong assumption it would be nice to know 1581f2cb1360SIngo Molnar * about cases where if node A is connected to B, B is not 1582f2cb1360SIngo Molnar * equally connected to A. 1583f2cb1360SIngo Molnar */ 1584f2cb1360SIngo Molnar if (sched_debug() && node_distance(k, i) != distance) 1585f2cb1360SIngo Molnar sched_numa_warn("Node-distance not symmetric"); 1586f2cb1360SIngo Molnar 1587f2cb1360SIngo Molnar if (sched_debug() && i && !find_numa_distance(distance)) 1588f2cb1360SIngo Molnar sched_numa_warn("Node-0 not representative"); 1589f2cb1360SIngo Molnar } 1590f2cb1360SIngo Molnar if (next_distance != curr_distance) { 1591f2cb1360SIngo Molnar sched_domains_numa_distance[level++] = next_distance; 1592f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1593f2cb1360SIngo Molnar curr_distance = next_distance; 1594f2cb1360SIngo Molnar } else break; 1595f2cb1360SIngo Molnar } 1596f2cb1360SIngo Molnar 1597f2cb1360SIngo Molnar /* 1598f2cb1360SIngo Molnar * In case of sched_debug() we verify the above assumption. 1599f2cb1360SIngo Molnar */ 1600f2cb1360SIngo Molnar if (!sched_debug()) 1601f2cb1360SIngo Molnar break; 1602f2cb1360SIngo Molnar } 1603f2cb1360SIngo Molnar 1604f2cb1360SIngo Molnar /* 1605051f3ca0SSuravee Suthikulpanit * 'level' contains the number of unique distances 1606f2cb1360SIngo Molnar * 1607f2cb1360SIngo Molnar * The sched_domains_numa_distance[] array includes the actual distance 1608f2cb1360SIngo Molnar * numbers. 1609f2cb1360SIngo Molnar */ 1610f2cb1360SIngo Molnar 1611f2cb1360SIngo Molnar /* 1612f2cb1360SIngo Molnar * Here, we should temporarily reset sched_domains_numa_levels to 0. 1613f2cb1360SIngo Molnar * If it fails to allocate memory for array sched_domains_numa_masks[][], 1614f2cb1360SIngo Molnar * the array will contain less then 'level' members. This could be 1615f2cb1360SIngo Molnar * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1616f2cb1360SIngo Molnar * in other functions. 1617f2cb1360SIngo Molnar * 1618f2cb1360SIngo Molnar * We reset it to 'level' at the end of this function. 1619f2cb1360SIngo Molnar */ 1620f2cb1360SIngo Molnar sched_domains_numa_levels = 0; 1621f2cb1360SIngo Molnar 1622f2cb1360SIngo Molnar sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1623f2cb1360SIngo Molnar if (!sched_domains_numa_masks) 1624f2cb1360SIngo Molnar return; 1625f2cb1360SIngo Molnar 1626f2cb1360SIngo Molnar /* 1627f2cb1360SIngo Molnar * Now for each level, construct a mask per node which contains all 1628f2cb1360SIngo Molnar * CPUs of nodes that are that many hops away from us. 1629f2cb1360SIngo Molnar */ 1630f2cb1360SIngo Molnar for (i = 0; i < level; i++) { 1631f2cb1360SIngo Molnar sched_domains_numa_masks[i] = 1632f2cb1360SIngo Molnar kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1633f2cb1360SIngo Molnar if (!sched_domains_numa_masks[i]) 1634f2cb1360SIngo Molnar return; 1635f2cb1360SIngo Molnar 1636f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1637f2cb1360SIngo Molnar struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1638f2cb1360SIngo Molnar if (!mask) 1639f2cb1360SIngo Molnar return; 1640f2cb1360SIngo Molnar 1641f2cb1360SIngo Molnar sched_domains_numa_masks[i][j] = mask; 1642f2cb1360SIngo Molnar 1643f2cb1360SIngo Molnar for_each_node(k) { 1644f2cb1360SIngo Molnar if (node_distance(j, k) > sched_domains_numa_distance[i]) 1645f2cb1360SIngo Molnar continue; 1646f2cb1360SIngo Molnar 1647f2cb1360SIngo Molnar cpumask_or(mask, mask, cpumask_of_node(k)); 1648f2cb1360SIngo Molnar } 1649f2cb1360SIngo Molnar } 1650f2cb1360SIngo Molnar } 1651f2cb1360SIngo Molnar 1652f2cb1360SIngo Molnar /* Compute default topology size */ 1653f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++); 1654f2cb1360SIngo Molnar 1655f2cb1360SIngo Molnar tl = kzalloc((i + level + 1) * 1656f2cb1360SIngo Molnar sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1657f2cb1360SIngo Molnar if (!tl) 1658f2cb1360SIngo Molnar return; 1659f2cb1360SIngo Molnar 1660f2cb1360SIngo Molnar /* 1661f2cb1360SIngo Molnar * Copy the default topology bits.. 1662f2cb1360SIngo Molnar */ 1663f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++) 1664f2cb1360SIngo Molnar tl[i] = sched_domain_topology[i]; 1665f2cb1360SIngo Molnar 1666f2cb1360SIngo Molnar /* 1667051f3ca0SSuravee Suthikulpanit * Add the NUMA identity distance, aka single NODE. 1668051f3ca0SSuravee Suthikulpanit */ 1669051f3ca0SSuravee Suthikulpanit tl[i++] = (struct sched_domain_topology_level){ 1670051f3ca0SSuravee Suthikulpanit .mask = sd_numa_mask, 1671051f3ca0SSuravee Suthikulpanit .numa_level = 0, 1672051f3ca0SSuravee Suthikulpanit SD_INIT_NAME(NODE) 1673051f3ca0SSuravee Suthikulpanit }; 1674051f3ca0SSuravee Suthikulpanit 1675051f3ca0SSuravee Suthikulpanit /* 1676f2cb1360SIngo Molnar * .. and append 'j' levels of NUMA goodness. 1677f2cb1360SIngo Molnar */ 1678051f3ca0SSuravee Suthikulpanit for (j = 1; j < level; i++, j++) { 1679f2cb1360SIngo Molnar tl[i] = (struct sched_domain_topology_level){ 1680f2cb1360SIngo Molnar .mask = sd_numa_mask, 1681f2cb1360SIngo Molnar .sd_flags = cpu_numa_flags, 1682f2cb1360SIngo Molnar .flags = SDTL_OVERLAP, 1683f2cb1360SIngo Molnar .numa_level = j, 1684f2cb1360SIngo Molnar SD_INIT_NAME(NUMA) 1685f2cb1360SIngo Molnar }; 1686f2cb1360SIngo Molnar } 1687f2cb1360SIngo Molnar 1688f2cb1360SIngo Molnar sched_domain_topology = tl; 1689f2cb1360SIngo Molnar 1690f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1691f2cb1360SIngo Molnar sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1692f2cb1360SIngo Molnar 1693f2cb1360SIngo Molnar init_numa_topology_type(); 1694f2cb1360SIngo Molnar } 1695f2cb1360SIngo Molnar 1696f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu) 1697f2cb1360SIngo Molnar { 1698f2cb1360SIngo Molnar int node = cpu_to_node(cpu); 1699f2cb1360SIngo Molnar int i, j; 1700f2cb1360SIngo Molnar 1701f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1702f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1703f2cb1360SIngo Molnar if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1704f2cb1360SIngo Molnar cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1705f2cb1360SIngo Molnar } 1706f2cb1360SIngo Molnar } 1707f2cb1360SIngo Molnar } 1708f2cb1360SIngo Molnar 1709f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu) 1710f2cb1360SIngo Molnar { 1711f2cb1360SIngo Molnar int i, j; 1712f2cb1360SIngo Molnar 1713f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1714f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1715f2cb1360SIngo Molnar cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1716f2cb1360SIngo Molnar } 1717f2cb1360SIngo Molnar } 1718f2cb1360SIngo Molnar 1719e0e8d491SWanpeng Li /* 1720e0e8d491SWanpeng Li * sched_numa_find_closest() - given the NUMA topology, find the cpu 1721e0e8d491SWanpeng Li * closest to @cpu from @cpumask. 1722e0e8d491SWanpeng Li * cpumask: cpumask to find a cpu from 1723e0e8d491SWanpeng Li * cpu: cpu to be close to 1724e0e8d491SWanpeng Li * 1725e0e8d491SWanpeng Li * returns: cpu, or nr_cpu_ids when nothing found. 1726e0e8d491SWanpeng Li */ 1727e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1728e0e8d491SWanpeng Li { 1729e0e8d491SWanpeng Li int i, j = cpu_to_node(cpu); 1730e0e8d491SWanpeng Li 1731e0e8d491SWanpeng Li for (i = 0; i < sched_domains_numa_levels; i++) { 1732e0e8d491SWanpeng Li cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 1733e0e8d491SWanpeng Li if (cpu < nr_cpu_ids) 1734e0e8d491SWanpeng Li return cpu; 1735e0e8d491SWanpeng Li } 1736e0e8d491SWanpeng Li return nr_cpu_ids; 1737e0e8d491SWanpeng Li } 1738e0e8d491SWanpeng Li 1739f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */ 1740f2cb1360SIngo Molnar 1741f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map) 1742f2cb1360SIngo Molnar { 1743f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1744f2cb1360SIngo Molnar int j; 1745f2cb1360SIngo Molnar 1746f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1747f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1748f2cb1360SIngo Molnar 1749f2cb1360SIngo Molnar sdd->sd = alloc_percpu(struct sched_domain *); 1750f2cb1360SIngo Molnar if (!sdd->sd) 1751f2cb1360SIngo Molnar return -ENOMEM; 1752f2cb1360SIngo Molnar 1753f2cb1360SIngo Molnar sdd->sds = alloc_percpu(struct sched_domain_shared *); 1754f2cb1360SIngo Molnar if (!sdd->sds) 1755f2cb1360SIngo Molnar return -ENOMEM; 1756f2cb1360SIngo Molnar 1757f2cb1360SIngo Molnar sdd->sg = alloc_percpu(struct sched_group *); 1758f2cb1360SIngo Molnar if (!sdd->sg) 1759f2cb1360SIngo Molnar return -ENOMEM; 1760f2cb1360SIngo Molnar 1761f2cb1360SIngo Molnar sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1762f2cb1360SIngo Molnar if (!sdd->sgc) 1763f2cb1360SIngo Molnar return -ENOMEM; 1764f2cb1360SIngo Molnar 1765f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1766f2cb1360SIngo Molnar struct sched_domain *sd; 1767f2cb1360SIngo Molnar struct sched_domain_shared *sds; 1768f2cb1360SIngo Molnar struct sched_group *sg; 1769f2cb1360SIngo Molnar struct sched_group_capacity *sgc; 1770f2cb1360SIngo Molnar 1771f2cb1360SIngo Molnar sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1772f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1773f2cb1360SIngo Molnar if (!sd) 1774f2cb1360SIngo Molnar return -ENOMEM; 1775f2cb1360SIngo Molnar 1776f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, j) = sd; 1777f2cb1360SIngo Molnar 1778f2cb1360SIngo Molnar sds = kzalloc_node(sizeof(struct sched_domain_shared), 1779f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1780f2cb1360SIngo Molnar if (!sds) 1781f2cb1360SIngo Molnar return -ENOMEM; 1782f2cb1360SIngo Molnar 1783f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, j) = sds; 1784f2cb1360SIngo Molnar 1785f2cb1360SIngo Molnar sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1786f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1787f2cb1360SIngo Molnar if (!sg) 1788f2cb1360SIngo Molnar return -ENOMEM; 1789f2cb1360SIngo Molnar 1790f2cb1360SIngo Molnar sg->next = sg; 1791f2cb1360SIngo Molnar 1792f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, j) = sg; 1793f2cb1360SIngo Molnar 1794f2cb1360SIngo Molnar sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1795f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1796f2cb1360SIngo Molnar if (!sgc) 1797f2cb1360SIngo Molnar return -ENOMEM; 1798f2cb1360SIngo Molnar 1799005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG 1800005f874dSPeter Zijlstra sgc->id = j; 1801005f874dSPeter Zijlstra #endif 1802005f874dSPeter Zijlstra 1803f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, j) = sgc; 1804f2cb1360SIngo Molnar } 1805f2cb1360SIngo Molnar } 1806f2cb1360SIngo Molnar 1807f2cb1360SIngo Molnar return 0; 1808f2cb1360SIngo Molnar } 1809f2cb1360SIngo Molnar 1810f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map) 1811f2cb1360SIngo Molnar { 1812f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1813f2cb1360SIngo Molnar int j; 1814f2cb1360SIngo Molnar 1815f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1816f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1817f2cb1360SIngo Molnar 1818f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1819f2cb1360SIngo Molnar struct sched_domain *sd; 1820f2cb1360SIngo Molnar 1821f2cb1360SIngo Molnar if (sdd->sd) { 1822f2cb1360SIngo Molnar sd = *per_cpu_ptr(sdd->sd, j); 1823f2cb1360SIngo Molnar if (sd && (sd->flags & SD_OVERLAP)) 1824f2cb1360SIngo Molnar free_sched_groups(sd->groups, 0); 1825f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sd, j)); 1826f2cb1360SIngo Molnar } 1827f2cb1360SIngo Molnar 1828f2cb1360SIngo Molnar if (sdd->sds) 1829f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sds, j)); 1830f2cb1360SIngo Molnar if (sdd->sg) 1831f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sg, j)); 1832f2cb1360SIngo Molnar if (sdd->sgc) 1833f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sgc, j)); 1834f2cb1360SIngo Molnar } 1835f2cb1360SIngo Molnar free_percpu(sdd->sd); 1836f2cb1360SIngo Molnar sdd->sd = NULL; 1837f2cb1360SIngo Molnar free_percpu(sdd->sds); 1838f2cb1360SIngo Molnar sdd->sds = NULL; 1839f2cb1360SIngo Molnar free_percpu(sdd->sg); 1840f2cb1360SIngo Molnar sdd->sg = NULL; 1841f2cb1360SIngo Molnar free_percpu(sdd->sgc); 1842f2cb1360SIngo Molnar sdd->sgc = NULL; 1843f2cb1360SIngo Molnar } 1844f2cb1360SIngo Molnar } 1845f2cb1360SIngo Molnar 1846181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1847f2cb1360SIngo Molnar const struct cpumask *cpu_map, struct sched_domain_attr *attr, 184805484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1849f2cb1360SIngo Molnar { 185005484e09SMorten Rasmussen struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1851f2cb1360SIngo Molnar 1852f2cb1360SIngo Molnar if (child) { 1853f2cb1360SIngo Molnar sd->level = child->level + 1; 1854f2cb1360SIngo Molnar sched_domain_level_max = max(sched_domain_level_max, sd->level); 1855f2cb1360SIngo Molnar child->parent = sd; 1856f2cb1360SIngo Molnar 1857f2cb1360SIngo Molnar if (!cpumask_subset(sched_domain_span(child), 1858f2cb1360SIngo Molnar sched_domain_span(sd))) { 1859f2cb1360SIngo Molnar pr_err("BUG: arch topology borken\n"); 1860f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1861f2cb1360SIngo Molnar pr_err(" the %s domain not a subset of the %s domain\n", 1862f2cb1360SIngo Molnar child->name, sd->name); 1863f2cb1360SIngo Molnar #endif 186497fb7a0aSIngo Molnar /* Fixup, ensure @sd has at least @child CPUs. */ 1865f2cb1360SIngo Molnar cpumask_or(sched_domain_span(sd), 1866f2cb1360SIngo Molnar sched_domain_span(sd), 1867f2cb1360SIngo Molnar sched_domain_span(child)); 1868f2cb1360SIngo Molnar } 1869f2cb1360SIngo Molnar 1870f2cb1360SIngo Molnar } 1871f2cb1360SIngo Molnar set_domain_attribute(sd, attr); 1872f2cb1360SIngo Molnar 1873f2cb1360SIngo Molnar return sd; 1874f2cb1360SIngo Molnar } 1875f2cb1360SIngo Molnar 1876f2cb1360SIngo Molnar /* 1877ccf74128SValentin Schneider * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 1878ccf74128SValentin Schneider * any two given CPUs at this (non-NUMA) topology level. 1879ccf74128SValentin Schneider */ 1880ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl, 1881ccf74128SValentin Schneider const struct cpumask *cpu_map, int cpu) 1882ccf74128SValentin Schneider { 1883ccf74128SValentin Schneider int i; 1884ccf74128SValentin Schneider 1885ccf74128SValentin Schneider /* NUMA levels are allowed to overlap */ 1886ccf74128SValentin Schneider if (tl->flags & SDTL_OVERLAP) 1887ccf74128SValentin Schneider return true; 1888ccf74128SValentin Schneider 1889ccf74128SValentin Schneider /* 1890ccf74128SValentin Schneider * Non-NUMA levels cannot partially overlap - they must be either 1891ccf74128SValentin Schneider * completely equal or completely disjoint. Otherwise we can end up 1892ccf74128SValentin Schneider * breaking the sched_group lists - i.e. a later get_group() pass 1893ccf74128SValentin Schneider * breaks the linking done for an earlier span. 1894ccf74128SValentin Schneider */ 1895ccf74128SValentin Schneider for_each_cpu(i, cpu_map) { 1896ccf74128SValentin Schneider if (i == cpu) 1897ccf74128SValentin Schneider continue; 1898ccf74128SValentin Schneider /* 1899ccf74128SValentin Schneider * We should 'and' all those masks with 'cpu_map' to exactly 1900ccf74128SValentin Schneider * match the topology we're about to build, but that can only 1901ccf74128SValentin Schneider * remove CPUs, which only lessens our ability to detect 1902ccf74128SValentin Schneider * overlaps 1903ccf74128SValentin Schneider */ 1904ccf74128SValentin Schneider if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 1905ccf74128SValentin Schneider cpumask_intersects(tl->mask(cpu), tl->mask(i))) 1906ccf74128SValentin Schneider return false; 1907ccf74128SValentin Schneider } 1908ccf74128SValentin Schneider 1909ccf74128SValentin Schneider return true; 1910ccf74128SValentin Schneider } 1911ccf74128SValentin Schneider 1912ccf74128SValentin Schneider /* 191305484e09SMorten Rasmussen * Find the sched_domain_topology_level where all CPU capacities are visible 191405484e09SMorten Rasmussen * for all CPUs. 191505484e09SMorten Rasmussen */ 191605484e09SMorten Rasmussen static struct sched_domain_topology_level 191705484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map) 191805484e09SMorten Rasmussen { 191905484e09SMorten Rasmussen int i, j, asym_level = 0; 192005484e09SMorten Rasmussen bool asym = false; 192105484e09SMorten Rasmussen struct sched_domain_topology_level *tl, *asym_tl = NULL; 192205484e09SMorten Rasmussen unsigned long cap; 192305484e09SMorten Rasmussen 192405484e09SMorten Rasmussen /* Is there any asymmetry? */ 19258ec59c0fSVincent Guittot cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); 192605484e09SMorten Rasmussen 192705484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19288ec59c0fSVincent Guittot if (arch_scale_cpu_capacity(i) != cap) { 192905484e09SMorten Rasmussen asym = true; 193005484e09SMorten Rasmussen break; 193105484e09SMorten Rasmussen } 193205484e09SMorten Rasmussen } 193305484e09SMorten Rasmussen 193405484e09SMorten Rasmussen if (!asym) 193505484e09SMorten Rasmussen return NULL; 193605484e09SMorten Rasmussen 193705484e09SMorten Rasmussen /* 193805484e09SMorten Rasmussen * Examine topology from all CPU's point of views to detect the lowest 193905484e09SMorten Rasmussen * sched_domain_topology_level where a highest capacity CPU is visible 194005484e09SMorten Rasmussen * to everyone. 194105484e09SMorten Rasmussen */ 194205484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19438ec59c0fSVincent Guittot unsigned long max_capacity = arch_scale_cpu_capacity(i); 194405484e09SMorten Rasmussen int tl_id = 0; 194505484e09SMorten Rasmussen 194605484e09SMorten Rasmussen for_each_sd_topology(tl) { 194705484e09SMorten Rasmussen if (tl_id < asym_level) 194805484e09SMorten Rasmussen goto next_level; 194905484e09SMorten Rasmussen 195005484e09SMorten Rasmussen for_each_cpu_and(j, tl->mask(i), cpu_map) { 195105484e09SMorten Rasmussen unsigned long capacity; 195205484e09SMorten Rasmussen 19538ec59c0fSVincent Guittot capacity = arch_scale_cpu_capacity(j); 195405484e09SMorten Rasmussen 195505484e09SMorten Rasmussen if (capacity <= max_capacity) 195605484e09SMorten Rasmussen continue; 195705484e09SMorten Rasmussen 195805484e09SMorten Rasmussen max_capacity = capacity; 195905484e09SMorten Rasmussen asym_level = tl_id; 196005484e09SMorten Rasmussen asym_tl = tl; 196105484e09SMorten Rasmussen } 196205484e09SMorten Rasmussen next_level: 196305484e09SMorten Rasmussen tl_id++; 196405484e09SMorten Rasmussen } 196505484e09SMorten Rasmussen } 196605484e09SMorten Rasmussen 196705484e09SMorten Rasmussen return asym_tl; 196805484e09SMorten Rasmussen } 196905484e09SMorten Rasmussen 197005484e09SMorten Rasmussen 197105484e09SMorten Rasmussen /* 1972f2cb1360SIngo Molnar * Build sched domains for a given set of CPUs and attach the sched domains 1973f2cb1360SIngo Molnar * to the individual CPUs 1974f2cb1360SIngo Molnar */ 1975f2cb1360SIngo Molnar static int 1976f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1977f2cb1360SIngo Molnar { 1978cd1cb335SValentin Schneider enum s_alloc alloc_state = sa_none; 1979f2cb1360SIngo Molnar struct sched_domain *sd; 1980f2cb1360SIngo Molnar struct s_data d; 1981f2cb1360SIngo Molnar struct rq *rq = NULL; 1982f2cb1360SIngo Molnar int i, ret = -ENOMEM; 198305484e09SMorten Rasmussen struct sched_domain_topology_level *tl_asym; 1984df054e84SMorten Rasmussen bool has_asym = false; 1985f2cb1360SIngo Molnar 1986cd1cb335SValentin Schneider if (WARN_ON(cpumask_empty(cpu_map))) 1987cd1cb335SValentin Schneider goto error; 1988cd1cb335SValentin Schneider 1989f2cb1360SIngo Molnar alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1990f2cb1360SIngo Molnar if (alloc_state != sa_rootdomain) 1991f2cb1360SIngo Molnar goto error; 1992f2cb1360SIngo Molnar 199305484e09SMorten Rasmussen tl_asym = asym_cpu_capacity_level(cpu_map); 199405484e09SMorten Rasmussen 1995f2cb1360SIngo Molnar /* Set up domains for CPUs specified by the cpu_map: */ 1996f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 1997f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1998c200191dSValentin Schneider int dflags = 0; 1999f2cb1360SIngo Molnar 2000f2cb1360SIngo Molnar sd = NULL; 2001f2cb1360SIngo Molnar for_each_sd_topology(tl) { 2002df054e84SMorten Rasmussen if (tl == tl_asym) { 200305484e09SMorten Rasmussen dflags |= SD_ASYM_CPUCAPACITY; 2004df054e84SMorten Rasmussen has_asym = true; 2005df054e84SMorten Rasmussen } 200605484e09SMorten Rasmussen 2007ccf74128SValentin Schneider if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2008ccf74128SValentin Schneider goto error; 2009ccf74128SValentin Schneider 201005484e09SMorten Rasmussen sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 201105484e09SMorten Rasmussen 2012f2cb1360SIngo Molnar if (tl == sched_domain_topology) 2013f2cb1360SIngo Molnar *per_cpu_ptr(d.sd, i) = sd; 2014af85596cSPeter Zijlstra if (tl->flags & SDTL_OVERLAP) 2015f2cb1360SIngo Molnar sd->flags |= SD_OVERLAP; 2016f2cb1360SIngo Molnar if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2017f2cb1360SIngo Molnar break; 2018f2cb1360SIngo Molnar } 2019f2cb1360SIngo Molnar } 2020f2cb1360SIngo Molnar 2021f2cb1360SIngo Molnar /* Build the groups for the domains */ 2022f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2023f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2024f2cb1360SIngo Molnar sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2025f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 2026f2cb1360SIngo Molnar if (build_overlap_sched_groups(sd, i)) 2027f2cb1360SIngo Molnar goto error; 2028f2cb1360SIngo Molnar } else { 2029f2cb1360SIngo Molnar if (build_sched_groups(sd, i)) 2030f2cb1360SIngo Molnar goto error; 2031f2cb1360SIngo Molnar } 2032f2cb1360SIngo Molnar } 2033f2cb1360SIngo Molnar } 2034f2cb1360SIngo Molnar 2035f2cb1360SIngo Molnar /* Calculate CPU capacity for physical packages and nodes */ 2036f2cb1360SIngo Molnar for (i = nr_cpumask_bits-1; i >= 0; i--) { 2037f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, cpu_map)) 2038f2cb1360SIngo Molnar continue; 2039f2cb1360SIngo Molnar 2040f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2041f2cb1360SIngo Molnar claim_allocations(i, sd); 2042f2cb1360SIngo Molnar init_sched_groups_capacity(i, sd); 2043f2cb1360SIngo Molnar } 2044f2cb1360SIngo Molnar } 2045f2cb1360SIngo Molnar 2046f2cb1360SIngo Molnar /* Attach the domains */ 2047f2cb1360SIngo Molnar rcu_read_lock(); 2048f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2049f2cb1360SIngo Molnar rq = cpu_rq(i); 2050f2cb1360SIngo Molnar sd = *per_cpu_ptr(d.sd, i); 2051f2cb1360SIngo Molnar 2052f2cb1360SIngo Molnar /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2053f2cb1360SIngo Molnar if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2054f2cb1360SIngo Molnar WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2055f2cb1360SIngo Molnar 2056f2cb1360SIngo Molnar cpu_attach_domain(sd, d.rd, i); 2057f2cb1360SIngo Molnar } 2058f2cb1360SIngo Molnar rcu_read_unlock(); 2059f2cb1360SIngo Molnar 2060df054e84SMorten Rasmussen if (has_asym) 2061e284df70SValentin Schneider static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2062df054e84SMorten Rasmussen 2063f2cb1360SIngo Molnar if (rq && sched_debug_enabled) { 2064bf5015a5SJuri Lelli pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2065f2cb1360SIngo Molnar cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2066f2cb1360SIngo Molnar } 2067f2cb1360SIngo Molnar 2068f2cb1360SIngo Molnar ret = 0; 2069f2cb1360SIngo Molnar error: 2070f2cb1360SIngo Molnar __free_domain_allocs(&d, alloc_state, cpu_map); 207197fb7a0aSIngo Molnar 2072f2cb1360SIngo Molnar return ret; 2073f2cb1360SIngo Molnar } 2074f2cb1360SIngo Molnar 2075f2cb1360SIngo Molnar /* Current sched domains: */ 2076f2cb1360SIngo Molnar static cpumask_var_t *doms_cur; 2077f2cb1360SIngo Molnar 2078f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */ 2079f2cb1360SIngo Molnar static int ndoms_cur; 2080f2cb1360SIngo Molnar 2081f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */ 2082f2cb1360SIngo Molnar static struct sched_domain_attr *dattr_cur; 2083f2cb1360SIngo Molnar 2084f2cb1360SIngo Molnar /* 2085f2cb1360SIngo Molnar * Special case: If a kmalloc() of a doms_cur partition (array of 2086f2cb1360SIngo Molnar * cpumask) fails, then fallback to a single sched domain, 2087f2cb1360SIngo Molnar * as determined by the single cpumask fallback_doms. 2088f2cb1360SIngo Molnar */ 20898d5dc512SPeter Zijlstra static cpumask_var_t fallback_doms; 2090f2cb1360SIngo Molnar 2091f2cb1360SIngo Molnar /* 2092f2cb1360SIngo Molnar * arch_update_cpu_topology lets virtualized architectures update the 2093f2cb1360SIngo Molnar * CPU core maps. It is supposed to return 1 if the topology changed 2094f2cb1360SIngo Molnar * or 0 if it stayed the same. 2095f2cb1360SIngo Molnar */ 2096f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void) 2097f2cb1360SIngo Molnar { 2098f2cb1360SIngo Molnar return 0; 2099f2cb1360SIngo Molnar } 2100f2cb1360SIngo Molnar 2101f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2102f2cb1360SIngo Molnar { 2103f2cb1360SIngo Molnar int i; 2104f2cb1360SIngo Molnar cpumask_var_t *doms; 2105f2cb1360SIngo Molnar 21066da2ec56SKees Cook doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2107f2cb1360SIngo Molnar if (!doms) 2108f2cb1360SIngo Molnar return NULL; 2109f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) { 2110f2cb1360SIngo Molnar if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2111f2cb1360SIngo Molnar free_sched_domains(doms, i); 2112f2cb1360SIngo Molnar return NULL; 2113f2cb1360SIngo Molnar } 2114f2cb1360SIngo Molnar } 2115f2cb1360SIngo Molnar return doms; 2116f2cb1360SIngo Molnar } 2117f2cb1360SIngo Molnar 2118f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2119f2cb1360SIngo Molnar { 2120f2cb1360SIngo Molnar unsigned int i; 2121f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) 2122f2cb1360SIngo Molnar free_cpumask_var(doms[i]); 2123f2cb1360SIngo Molnar kfree(doms); 2124f2cb1360SIngo Molnar } 2125f2cb1360SIngo Molnar 2126f2cb1360SIngo Molnar /* 2127cb0c0414SJuri Lelli * Set up scheduler domains and groups. For now this just excludes isolated 2128cb0c0414SJuri Lelli * CPUs, but could be used to exclude other special cases in the future. 2129f2cb1360SIngo Molnar */ 21308d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map) 2131f2cb1360SIngo Molnar { 2132f2cb1360SIngo Molnar int err; 2133f2cb1360SIngo Molnar 21348d5dc512SPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 21351676330eSPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 21368d5dc512SPeter Zijlstra zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 21378d5dc512SPeter Zijlstra 2138f2cb1360SIngo Molnar arch_update_cpu_topology(); 2139f2cb1360SIngo Molnar ndoms_cur = 1; 2140f2cb1360SIngo Molnar doms_cur = alloc_sched_domains(ndoms_cur); 2141f2cb1360SIngo Molnar if (!doms_cur) 2142f2cb1360SIngo Molnar doms_cur = &fallback_doms; 2143edb93821SFrederic Weisbecker cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2144f2cb1360SIngo Molnar err = build_sched_domains(doms_cur[0], NULL); 2145f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2146f2cb1360SIngo Molnar 2147f2cb1360SIngo Molnar return err; 2148f2cb1360SIngo Molnar } 2149f2cb1360SIngo Molnar 2150f2cb1360SIngo Molnar /* 2151f2cb1360SIngo Molnar * Detach sched domains from a group of CPUs specified in cpu_map 2152f2cb1360SIngo Molnar * These CPUs will now be attached to the NULL domain 2153f2cb1360SIngo Molnar */ 2154f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map) 2155f2cb1360SIngo Molnar { 2156e284df70SValentin Schneider unsigned int cpu = cpumask_any(cpu_map); 2157f2cb1360SIngo Molnar int i; 2158f2cb1360SIngo Molnar 2159e284df70SValentin Schneider if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2160e284df70SValentin Schneider static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2161e284df70SValentin Schneider 2162f2cb1360SIngo Molnar rcu_read_lock(); 2163f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) 2164f2cb1360SIngo Molnar cpu_attach_domain(NULL, &def_root_domain, i); 2165f2cb1360SIngo Molnar rcu_read_unlock(); 2166f2cb1360SIngo Molnar } 2167f2cb1360SIngo Molnar 2168f2cb1360SIngo Molnar /* handle null as "default" */ 2169f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2170f2cb1360SIngo Molnar struct sched_domain_attr *new, int idx_new) 2171f2cb1360SIngo Molnar { 2172f2cb1360SIngo Molnar struct sched_domain_attr tmp; 2173f2cb1360SIngo Molnar 2174f2cb1360SIngo Molnar /* Fast path: */ 2175f2cb1360SIngo Molnar if (!new && !cur) 2176f2cb1360SIngo Molnar return 1; 2177f2cb1360SIngo Molnar 2178f2cb1360SIngo Molnar tmp = SD_ATTR_INIT; 217997fb7a0aSIngo Molnar 2180f2cb1360SIngo Molnar return !memcmp(cur ? (cur + idx_cur) : &tmp, 2181f2cb1360SIngo Molnar new ? (new + idx_new) : &tmp, 2182f2cb1360SIngo Molnar sizeof(struct sched_domain_attr)); 2183f2cb1360SIngo Molnar } 2184f2cb1360SIngo Molnar 2185f2cb1360SIngo Molnar /* 2186f2cb1360SIngo Molnar * Partition sched domains as specified by the 'ndoms_new' 2187f2cb1360SIngo Molnar * cpumasks in the array doms_new[] of cpumasks. This compares 2188f2cb1360SIngo Molnar * doms_new[] to the current sched domain partitioning, doms_cur[]. 2189f2cb1360SIngo Molnar * It destroys each deleted domain and builds each new domain. 2190f2cb1360SIngo Molnar * 2191f2cb1360SIngo Molnar * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2192f2cb1360SIngo Molnar * The masks don't intersect (don't overlap.) We should setup one 2193f2cb1360SIngo Molnar * sched domain for each mask. CPUs not in any of the cpumasks will 2194f2cb1360SIngo Molnar * not be load balanced. If the same cpumask appears both in the 2195f2cb1360SIngo Molnar * current 'doms_cur' domains and in the new 'doms_new', we can leave 2196f2cb1360SIngo Molnar * it as it is. 2197f2cb1360SIngo Molnar * 2198f2cb1360SIngo Molnar * The passed in 'doms_new' should be allocated using 2199f2cb1360SIngo Molnar * alloc_sched_domains. This routine takes ownership of it and will 2200f2cb1360SIngo Molnar * free_sched_domains it when done with it. If the caller failed the 2201f2cb1360SIngo Molnar * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2202f2cb1360SIngo Molnar * and partition_sched_domains() will fallback to the single partition 2203f2cb1360SIngo Molnar * 'fallback_doms', it also forces the domains to be rebuilt. 2204f2cb1360SIngo Molnar * 2205f2cb1360SIngo Molnar * If doms_new == NULL it will be replaced with cpu_online_mask. 2206f2cb1360SIngo Molnar * ndoms_new == 0 is a special case for destroying existing domains, 2207f2cb1360SIngo Molnar * and it will not create the default domain. 2208f2cb1360SIngo Molnar * 2209c22645f4SMathieu Poirier * Call with hotplug lock and sched_domains_mutex held 2210f2cb1360SIngo Molnar */ 2211c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2212f2cb1360SIngo Molnar struct sched_domain_attr *dattr_new) 2213f2cb1360SIngo Molnar { 22141f74de87SQuentin Perret bool __maybe_unused has_eas = false; 2215f2cb1360SIngo Molnar int i, j, n; 2216f2cb1360SIngo Molnar int new_topology; 2217f2cb1360SIngo Molnar 2218c22645f4SMathieu Poirier lockdep_assert_held(&sched_domains_mutex); 2219f2cb1360SIngo Molnar 2220f2cb1360SIngo Molnar /* Always unregister in case we don't destroy any domains: */ 2221f2cb1360SIngo Molnar unregister_sched_domain_sysctl(); 2222f2cb1360SIngo Molnar 2223f2cb1360SIngo Molnar /* Let the architecture update CPU core mappings: */ 2224f2cb1360SIngo Molnar new_topology = arch_update_cpu_topology(); 2225f2cb1360SIngo Molnar 222609e0dd8eSPeter Zijlstra if (!doms_new) { 222709e0dd8eSPeter Zijlstra WARN_ON_ONCE(dattr_new); 222809e0dd8eSPeter Zijlstra n = 0; 222909e0dd8eSPeter Zijlstra doms_new = alloc_sched_domains(1); 223009e0dd8eSPeter Zijlstra if (doms_new) { 223109e0dd8eSPeter Zijlstra n = 1; 2232edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2233edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 223409e0dd8eSPeter Zijlstra } 223509e0dd8eSPeter Zijlstra } else { 223609e0dd8eSPeter Zijlstra n = ndoms_new; 223709e0dd8eSPeter Zijlstra } 2238f2cb1360SIngo Molnar 2239f2cb1360SIngo Molnar /* Destroy deleted domains: */ 2240f2cb1360SIngo Molnar for (i = 0; i < ndoms_cur; i++) { 2241f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22426aa140faSQuentin Perret if (cpumask_equal(doms_cur[i], doms_new[j]) && 2243f9a25f77SMathieu Poirier dattrs_equal(dattr_cur, i, dattr_new, j)) { 2244f9a25f77SMathieu Poirier struct root_domain *rd; 2245f9a25f77SMathieu Poirier 2246f9a25f77SMathieu Poirier /* 2247f9a25f77SMathieu Poirier * This domain won't be destroyed and as such 2248f9a25f77SMathieu Poirier * its dl_bw->total_bw needs to be cleared. It 2249f9a25f77SMathieu Poirier * will be recomputed in function 2250f9a25f77SMathieu Poirier * update_tasks_root_domain(). 2251f9a25f77SMathieu Poirier */ 2252f9a25f77SMathieu Poirier rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2253f9a25f77SMathieu Poirier dl_clear_root_domain(rd); 2254f2cb1360SIngo Molnar goto match1; 2255f2cb1360SIngo Molnar } 2256f9a25f77SMathieu Poirier } 2257f2cb1360SIngo Molnar /* No match - a current sched domain not in new doms_new[] */ 2258f2cb1360SIngo Molnar detach_destroy_domains(doms_cur[i]); 2259f2cb1360SIngo Molnar match1: 2260f2cb1360SIngo Molnar ; 2261f2cb1360SIngo Molnar } 2262f2cb1360SIngo Molnar 2263f2cb1360SIngo Molnar n = ndoms_cur; 226409e0dd8eSPeter Zijlstra if (!doms_new) { 2265f2cb1360SIngo Molnar n = 0; 2266f2cb1360SIngo Molnar doms_new = &fallback_doms; 2267edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2268edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 2269f2cb1360SIngo Molnar } 2270f2cb1360SIngo Molnar 2271f2cb1360SIngo Molnar /* Build new domains: */ 2272f2cb1360SIngo Molnar for (i = 0; i < ndoms_new; i++) { 2273f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22746aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 22756aa140faSQuentin Perret dattrs_equal(dattr_new, i, dattr_cur, j)) 2276f2cb1360SIngo Molnar goto match2; 2277f2cb1360SIngo Molnar } 2278f2cb1360SIngo Molnar /* No match - add a new doms_new */ 2279f2cb1360SIngo Molnar build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2280f2cb1360SIngo Molnar match2: 2281f2cb1360SIngo Molnar ; 2282f2cb1360SIngo Molnar } 2283f2cb1360SIngo Molnar 2284531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 22856aa140faSQuentin Perret /* Build perf. domains: */ 22866aa140faSQuentin Perret for (i = 0; i < ndoms_new; i++) { 2287531b5c9fSQuentin Perret for (j = 0; j < n && !sched_energy_update; j++) { 22886aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 22891f74de87SQuentin Perret cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 22901f74de87SQuentin Perret has_eas = true; 22916aa140faSQuentin Perret goto match3; 22926aa140faSQuentin Perret } 22931f74de87SQuentin Perret } 22946aa140faSQuentin Perret /* No match - add perf. domains for a new rd */ 22951f74de87SQuentin Perret has_eas |= build_perf_domains(doms_new[i]); 22966aa140faSQuentin Perret match3: 22976aa140faSQuentin Perret ; 22986aa140faSQuentin Perret } 22991f74de87SQuentin Perret sched_energy_set(has_eas); 23006aa140faSQuentin Perret #endif 23016aa140faSQuentin Perret 2302f2cb1360SIngo Molnar /* Remember the new sched domains: */ 2303f2cb1360SIngo Molnar if (doms_cur != &fallback_doms) 2304f2cb1360SIngo Molnar free_sched_domains(doms_cur, ndoms_cur); 2305f2cb1360SIngo Molnar 2306f2cb1360SIngo Molnar kfree(dattr_cur); 2307f2cb1360SIngo Molnar doms_cur = doms_new; 2308f2cb1360SIngo Molnar dattr_cur = dattr_new; 2309f2cb1360SIngo Molnar ndoms_cur = ndoms_new; 2310f2cb1360SIngo Molnar 2311f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2312c22645f4SMathieu Poirier } 2313f2cb1360SIngo Molnar 2314c22645f4SMathieu Poirier /* 2315c22645f4SMathieu Poirier * Call with hotplug lock held 2316c22645f4SMathieu Poirier */ 2317c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2318c22645f4SMathieu Poirier struct sched_domain_attr *dattr_new) 2319c22645f4SMathieu Poirier { 2320c22645f4SMathieu Poirier mutex_lock(&sched_domains_mutex); 2321c22645f4SMathieu Poirier partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2322f2cb1360SIngo Molnar mutex_unlock(&sched_domains_mutex); 2323f2cb1360SIngo Molnar } 2324