xref: /openbmc/linux/kernel/sched/topology.c (revision 337e9b07db3b8c7f7d68b849df32f434a1a3b831)
1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0
2f2cb1360SIngo Molnar /*
3f2cb1360SIngo Molnar  * Scheduler topology setup/handling methods
4f2cb1360SIngo Molnar  */
5f2cb1360SIngo Molnar #include "sched.h"
6f2cb1360SIngo Molnar 
7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex);
8f2cb1360SIngo Molnar 
9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */
10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask;
11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2;
12f2cb1360SIngo Molnar 
13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
14f2cb1360SIngo Molnar 
15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str)
16f2cb1360SIngo Molnar {
179469eb01SPeter Zijlstra 	sched_debug_enabled = true;
18f2cb1360SIngo Molnar 
19f2cb1360SIngo Molnar 	return 0;
20f2cb1360SIngo Molnar }
21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup);
22f2cb1360SIngo Molnar 
23f2cb1360SIngo Molnar static inline bool sched_debug(void)
24f2cb1360SIngo Molnar {
25f2cb1360SIngo Molnar 	return sched_debug_enabled;
26f2cb1360SIngo Molnar }
27f2cb1360SIngo Molnar 
28f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29f2cb1360SIngo Molnar 				  struct cpumask *groupmask)
30f2cb1360SIngo Molnar {
31f2cb1360SIngo Molnar 	struct sched_group *group = sd->groups;
32f2cb1360SIngo Molnar 
33f2cb1360SIngo Molnar 	cpumask_clear(groupmask);
34f2cb1360SIngo Molnar 
35005f874dSPeter Zijlstra 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36f2cb1360SIngo Molnar 
37f2cb1360SIngo Molnar 	if (!(sd->flags & SD_LOAD_BALANCE)) {
38f2cb1360SIngo Molnar 		printk("does not load-balance\n");
39f2cb1360SIngo Molnar 		if (sd->parent)
4097fb7a0aSIngo Molnar 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41f2cb1360SIngo Molnar 		return -1;
42f2cb1360SIngo Molnar 	}
43f2cb1360SIngo Molnar 
44005f874dSPeter Zijlstra 	printk(KERN_CONT "span=%*pbl level=%s\n",
45f2cb1360SIngo Molnar 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46f2cb1360SIngo Molnar 
47f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4897fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49f2cb1360SIngo Molnar 	}
506cd0c583SYi Wang 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
5197fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52f2cb1360SIngo Molnar 	}
53f2cb1360SIngo Molnar 
54f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
55f2cb1360SIngo Molnar 	do {
56f2cb1360SIngo Molnar 		if (!group) {
57f2cb1360SIngo Molnar 			printk("\n");
58f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: group is NULL\n");
59f2cb1360SIngo Molnar 			break;
60f2cb1360SIngo Molnar 		}
61f2cb1360SIngo Molnar 
62ae4df9d6SPeter Zijlstra 		if (!cpumask_weight(sched_group_span(group))) {
63f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
64f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: empty group\n");
65f2cb1360SIngo Molnar 			break;
66f2cb1360SIngo Molnar 		}
67f2cb1360SIngo Molnar 
68f2cb1360SIngo Molnar 		if (!(sd->flags & SD_OVERLAP) &&
69ae4df9d6SPeter Zijlstra 		    cpumask_intersects(groupmask, sched_group_span(group))) {
70f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
71f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: repeated CPUs\n");
72f2cb1360SIngo Molnar 			break;
73f2cb1360SIngo Molnar 		}
74f2cb1360SIngo Molnar 
75ae4df9d6SPeter Zijlstra 		cpumask_or(groupmask, groupmask, sched_group_span(group));
76f2cb1360SIngo Molnar 
77005f874dSPeter Zijlstra 		printk(KERN_CONT " %d:{ span=%*pbl",
78005f874dSPeter Zijlstra 				group->sgc->id,
79ae4df9d6SPeter Zijlstra 				cpumask_pr_args(sched_group_span(group)));
80b0151c25SPeter Zijlstra 
81af218122SPeter Zijlstra 		if ((sd->flags & SD_OVERLAP) &&
82ae4df9d6SPeter Zijlstra 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83005f874dSPeter Zijlstra 			printk(KERN_CONT " mask=%*pbl",
84e5c14b1fSPeter Zijlstra 				cpumask_pr_args(group_balance_mask(group)));
85b0151c25SPeter Zijlstra 		}
86b0151c25SPeter Zijlstra 
87005f874dSPeter Zijlstra 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88005f874dSPeter Zijlstra 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89f2cb1360SIngo Molnar 
90a420b063SPeter Zijlstra 		if (group == sd->groups && sd->child &&
91a420b063SPeter Zijlstra 		    !cpumask_equal(sched_domain_span(sd->child),
92ae4df9d6SPeter Zijlstra 				   sched_group_span(group))) {
93a420b063SPeter Zijlstra 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94a420b063SPeter Zijlstra 		}
95a420b063SPeter Zijlstra 
96005f874dSPeter Zijlstra 		printk(KERN_CONT " }");
97005f874dSPeter Zijlstra 
98f2cb1360SIngo Molnar 		group = group->next;
99b0151c25SPeter Zijlstra 
100b0151c25SPeter Zijlstra 		if (group != sd->groups)
101b0151c25SPeter Zijlstra 			printk(KERN_CONT ",");
102b0151c25SPeter Zijlstra 
103f2cb1360SIngo Molnar 	} while (group != sd->groups);
104f2cb1360SIngo Molnar 	printk(KERN_CONT "\n");
105f2cb1360SIngo Molnar 
106f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
107f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108f2cb1360SIngo Molnar 
109f2cb1360SIngo Molnar 	if (sd->parent &&
110f2cb1360SIngo Molnar 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
11197fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112f2cb1360SIngo Molnar 	return 0;
113f2cb1360SIngo Molnar }
114f2cb1360SIngo Molnar 
115f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu)
116f2cb1360SIngo Molnar {
117f2cb1360SIngo Molnar 	int level = 0;
118f2cb1360SIngo Molnar 
119f2cb1360SIngo Molnar 	if (!sched_debug_enabled)
120f2cb1360SIngo Molnar 		return;
121f2cb1360SIngo Molnar 
122f2cb1360SIngo Molnar 	if (!sd) {
123f2cb1360SIngo Molnar 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124f2cb1360SIngo Molnar 		return;
125f2cb1360SIngo Molnar 	}
126f2cb1360SIngo Molnar 
127005f874dSPeter Zijlstra 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128f2cb1360SIngo Molnar 
129f2cb1360SIngo Molnar 	for (;;) {
130f2cb1360SIngo Molnar 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131f2cb1360SIngo Molnar 			break;
132f2cb1360SIngo Molnar 		level++;
133f2cb1360SIngo Molnar 		sd = sd->parent;
134f2cb1360SIngo Molnar 		if (!sd)
135f2cb1360SIngo Molnar 			break;
136f2cb1360SIngo Molnar 	}
137f2cb1360SIngo Molnar }
138f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */
139f2cb1360SIngo Molnar 
140f2cb1360SIngo Molnar # define sched_debug_enabled 0
141f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0)
142f2cb1360SIngo Molnar static inline bool sched_debug(void)
143f2cb1360SIngo Molnar {
144f2cb1360SIngo Molnar 	return false;
145f2cb1360SIngo Molnar }
146f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */
147f2cb1360SIngo Molnar 
148f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd)
149f2cb1360SIngo Molnar {
150f2cb1360SIngo Molnar 	if (cpumask_weight(sched_domain_span(sd)) == 1)
151f2cb1360SIngo Molnar 		return 1;
152f2cb1360SIngo Molnar 
153f2cb1360SIngo Molnar 	/* Following flags need at least 2 groups */
154f2cb1360SIngo Molnar 	if (sd->flags & (SD_LOAD_BALANCE |
155f2cb1360SIngo Molnar 			 SD_BALANCE_NEWIDLE |
156f2cb1360SIngo Molnar 			 SD_BALANCE_FORK |
157f2cb1360SIngo Molnar 			 SD_BALANCE_EXEC |
158f2cb1360SIngo Molnar 			 SD_SHARE_CPUCAPACITY |
159f2cb1360SIngo Molnar 			 SD_ASYM_CPUCAPACITY |
160f2cb1360SIngo Molnar 			 SD_SHARE_PKG_RESOURCES |
161f2cb1360SIngo Molnar 			 SD_SHARE_POWERDOMAIN)) {
162f2cb1360SIngo Molnar 		if (sd->groups != sd->groups->next)
163f2cb1360SIngo Molnar 			return 0;
164f2cb1360SIngo Molnar 	}
165f2cb1360SIngo Molnar 
166f2cb1360SIngo Molnar 	/* Following flags don't use groups */
167f2cb1360SIngo Molnar 	if (sd->flags & (SD_WAKE_AFFINE))
168f2cb1360SIngo Molnar 		return 0;
169f2cb1360SIngo Molnar 
170f2cb1360SIngo Molnar 	return 1;
171f2cb1360SIngo Molnar }
172f2cb1360SIngo Molnar 
173f2cb1360SIngo Molnar static int
174f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175f2cb1360SIngo Molnar {
176f2cb1360SIngo Molnar 	unsigned long cflags = sd->flags, pflags = parent->flags;
177f2cb1360SIngo Molnar 
178f2cb1360SIngo Molnar 	if (sd_degenerate(parent))
179f2cb1360SIngo Molnar 		return 1;
180f2cb1360SIngo Molnar 
181f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182f2cb1360SIngo Molnar 		return 0;
183f2cb1360SIngo Molnar 
184f2cb1360SIngo Molnar 	/* Flags needing groups don't count if only 1 group in parent */
185f2cb1360SIngo Molnar 	if (parent->groups == parent->groups->next) {
186f2cb1360SIngo Molnar 		pflags &= ~(SD_LOAD_BALANCE |
187f2cb1360SIngo Molnar 				SD_BALANCE_NEWIDLE |
188f2cb1360SIngo Molnar 				SD_BALANCE_FORK |
189f2cb1360SIngo Molnar 				SD_BALANCE_EXEC |
190f2cb1360SIngo Molnar 				SD_ASYM_CPUCAPACITY |
191f2cb1360SIngo Molnar 				SD_SHARE_CPUCAPACITY |
192f2cb1360SIngo Molnar 				SD_SHARE_PKG_RESOURCES |
193f2cb1360SIngo Molnar 				SD_PREFER_SIBLING |
194f2cb1360SIngo Molnar 				SD_SHARE_POWERDOMAIN);
195f2cb1360SIngo Molnar 		if (nr_node_ids == 1)
196f2cb1360SIngo Molnar 			pflags &= ~SD_SERIALIZE;
197f2cb1360SIngo Molnar 	}
198f2cb1360SIngo Molnar 	if (~cflags & pflags)
199f2cb1360SIngo Molnar 		return 0;
200f2cb1360SIngo Molnar 
201f2cb1360SIngo Molnar 	return 1;
202f2cb1360SIngo Molnar }
203f2cb1360SIngo Molnar 
2041f74de87SQuentin Perret DEFINE_STATIC_KEY_FALSE(sched_energy_present);
205531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
206531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex);
207531b5c9fSQuentin Perret bool sched_energy_update;
208531b5c9fSQuentin Perret 
2096aa140faSQuentin Perret static void free_pd(struct perf_domain *pd)
2106aa140faSQuentin Perret {
2116aa140faSQuentin Perret 	struct perf_domain *tmp;
2126aa140faSQuentin Perret 
2136aa140faSQuentin Perret 	while (pd) {
2146aa140faSQuentin Perret 		tmp = pd->next;
2156aa140faSQuentin Perret 		kfree(pd);
2166aa140faSQuentin Perret 		pd = tmp;
2176aa140faSQuentin Perret 	}
2186aa140faSQuentin Perret }
2196aa140faSQuentin Perret 
2206aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
2216aa140faSQuentin Perret {
2226aa140faSQuentin Perret 	while (pd) {
2236aa140faSQuentin Perret 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
2246aa140faSQuentin Perret 			return pd;
2256aa140faSQuentin Perret 		pd = pd->next;
2266aa140faSQuentin Perret 	}
2276aa140faSQuentin Perret 
2286aa140faSQuentin Perret 	return NULL;
2296aa140faSQuentin Perret }
2306aa140faSQuentin Perret 
2316aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu)
2326aa140faSQuentin Perret {
2336aa140faSQuentin Perret 	struct em_perf_domain *obj = em_cpu_get(cpu);
2346aa140faSQuentin Perret 	struct perf_domain *pd;
2356aa140faSQuentin Perret 
2366aa140faSQuentin Perret 	if (!obj) {
2376aa140faSQuentin Perret 		if (sched_debug())
2386aa140faSQuentin Perret 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
2396aa140faSQuentin Perret 		return NULL;
2406aa140faSQuentin Perret 	}
2416aa140faSQuentin Perret 
2426aa140faSQuentin Perret 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
2436aa140faSQuentin Perret 	if (!pd)
2446aa140faSQuentin Perret 		return NULL;
2456aa140faSQuentin Perret 	pd->em_pd = obj;
2466aa140faSQuentin Perret 
2476aa140faSQuentin Perret 	return pd;
2486aa140faSQuentin Perret }
2496aa140faSQuentin Perret 
2506aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map,
2516aa140faSQuentin Perret 						struct perf_domain *pd)
2526aa140faSQuentin Perret {
2536aa140faSQuentin Perret 	if (!sched_debug() || !pd)
2546aa140faSQuentin Perret 		return;
2556aa140faSQuentin Perret 
2566aa140faSQuentin Perret 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
2576aa140faSQuentin Perret 
2586aa140faSQuentin Perret 	while (pd) {
2596aa140faSQuentin Perret 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
2606aa140faSQuentin Perret 				cpumask_first(perf_domain_span(pd)),
2616aa140faSQuentin Perret 				cpumask_pr_args(perf_domain_span(pd)),
2626aa140faSQuentin Perret 				em_pd_nr_cap_states(pd->em_pd));
2636aa140faSQuentin Perret 		pd = pd->next;
2646aa140faSQuentin Perret 	}
2656aa140faSQuentin Perret 
2666aa140faSQuentin Perret 	printk(KERN_CONT "\n");
2676aa140faSQuentin Perret }
2686aa140faSQuentin Perret 
2696aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp)
2706aa140faSQuentin Perret {
2716aa140faSQuentin Perret 	struct perf_domain *pd;
2726aa140faSQuentin Perret 
2736aa140faSQuentin Perret 	pd = container_of(rp, struct perf_domain, rcu);
2746aa140faSQuentin Perret 	free_pd(pd);
2756aa140faSQuentin Perret }
2766aa140faSQuentin Perret 
2771f74de87SQuentin Perret static void sched_energy_set(bool has_eas)
2781f74de87SQuentin Perret {
2791f74de87SQuentin Perret 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
2801f74de87SQuentin Perret 		if (sched_debug())
2811f74de87SQuentin Perret 			pr_info("%s: stopping EAS\n", __func__);
2821f74de87SQuentin Perret 		static_branch_disable_cpuslocked(&sched_energy_present);
2831f74de87SQuentin Perret 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
2841f74de87SQuentin Perret 		if (sched_debug())
2851f74de87SQuentin Perret 			pr_info("%s: starting EAS\n", __func__);
2861f74de87SQuentin Perret 		static_branch_enable_cpuslocked(&sched_energy_present);
2871f74de87SQuentin Perret 	}
2881f74de87SQuentin Perret }
2891f74de87SQuentin Perret 
290b68a4c0dSQuentin Perret /*
291b68a4c0dSQuentin Perret  * EAS can be used on a root domain if it meets all the following conditions:
292b68a4c0dSQuentin Perret  *    1. an Energy Model (EM) is available;
293b68a4c0dSQuentin Perret  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
294b68a4c0dSQuentin Perret  *    3. the EM complexity is low enough to keep scheduling overheads low;
295531b5c9fSQuentin Perret  *    4. schedutil is driving the frequency of all CPUs of the rd;
296b68a4c0dSQuentin Perret  *
297b68a4c0dSQuentin Perret  * The complexity of the Energy Model is defined as:
298b68a4c0dSQuentin Perret  *
299b68a4c0dSQuentin Perret  *              C = nr_pd * (nr_cpus + nr_cs)
300b68a4c0dSQuentin Perret  *
301b68a4c0dSQuentin Perret  * with parameters defined as:
302b68a4c0dSQuentin Perret  *  - nr_pd:    the number of performance domains
303b68a4c0dSQuentin Perret  *  - nr_cpus:  the number of CPUs
304b68a4c0dSQuentin Perret  *  - nr_cs:    the sum of the number of capacity states of all performance
305b68a4c0dSQuentin Perret  *              domains (for example, on a system with 2 performance domains,
306b68a4c0dSQuentin Perret  *              with 10 capacity states each, nr_cs = 2 * 10 = 20).
307b68a4c0dSQuentin Perret  *
308b68a4c0dSQuentin Perret  * It is generally not a good idea to use such a model in the wake-up path on
309b68a4c0dSQuentin Perret  * very complex platforms because of the associated scheduling overheads. The
310b68a4c0dSQuentin Perret  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
311b68a4c0dSQuentin Perret  * with per-CPU DVFS and less than 8 capacity states each, for example.
312b68a4c0dSQuentin Perret  */
313b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048
314b68a4c0dSQuentin Perret 
315531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov;
3161f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map)
3176aa140faSQuentin Perret {
318b68a4c0dSQuentin Perret 	int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
3196aa140faSQuentin Perret 	struct perf_domain *pd = NULL, *tmp;
3206aa140faSQuentin Perret 	int cpu = cpumask_first(cpu_map);
3216aa140faSQuentin Perret 	struct root_domain *rd = cpu_rq(cpu)->rd;
322531b5c9fSQuentin Perret 	struct cpufreq_policy *policy;
323531b5c9fSQuentin Perret 	struct cpufreq_governor *gov;
324b68a4c0dSQuentin Perret 
325b68a4c0dSQuentin Perret 	/* EAS is enabled for asymmetric CPU capacity topologies. */
326b68a4c0dSQuentin Perret 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
327b68a4c0dSQuentin Perret 		if (sched_debug()) {
328b68a4c0dSQuentin Perret 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
329b68a4c0dSQuentin Perret 					cpumask_pr_args(cpu_map));
330b68a4c0dSQuentin Perret 		}
331b68a4c0dSQuentin Perret 		goto free;
332b68a4c0dSQuentin Perret 	}
3336aa140faSQuentin Perret 
3346aa140faSQuentin Perret 	for_each_cpu(i, cpu_map) {
3356aa140faSQuentin Perret 		/* Skip already covered CPUs. */
3366aa140faSQuentin Perret 		if (find_pd(pd, i))
3376aa140faSQuentin Perret 			continue;
3386aa140faSQuentin Perret 
339531b5c9fSQuentin Perret 		/* Do not attempt EAS if schedutil is not being used. */
340531b5c9fSQuentin Perret 		policy = cpufreq_cpu_get(i);
341531b5c9fSQuentin Perret 		if (!policy)
342531b5c9fSQuentin Perret 			goto free;
343531b5c9fSQuentin Perret 		gov = policy->governor;
344531b5c9fSQuentin Perret 		cpufreq_cpu_put(policy);
345531b5c9fSQuentin Perret 		if (gov != &schedutil_gov) {
346531b5c9fSQuentin Perret 			if (rd->pd)
347531b5c9fSQuentin Perret 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
348531b5c9fSQuentin Perret 						cpumask_pr_args(cpu_map));
349531b5c9fSQuentin Perret 			goto free;
350531b5c9fSQuentin Perret 		}
351531b5c9fSQuentin Perret 
3526aa140faSQuentin Perret 		/* Create the new pd and add it to the local list. */
3536aa140faSQuentin Perret 		tmp = pd_init(i);
3546aa140faSQuentin Perret 		if (!tmp)
3556aa140faSQuentin Perret 			goto free;
3566aa140faSQuentin Perret 		tmp->next = pd;
3576aa140faSQuentin Perret 		pd = tmp;
358b68a4c0dSQuentin Perret 
359b68a4c0dSQuentin Perret 		/*
360b68a4c0dSQuentin Perret 		 * Count performance domains and capacity states for the
361b68a4c0dSQuentin Perret 		 * complexity check.
362b68a4c0dSQuentin Perret 		 */
363b68a4c0dSQuentin Perret 		nr_pd++;
364b68a4c0dSQuentin Perret 		nr_cs += em_pd_nr_cap_states(pd->em_pd);
365b68a4c0dSQuentin Perret 	}
366b68a4c0dSQuentin Perret 
367b68a4c0dSQuentin Perret 	/* Bail out if the Energy Model complexity is too high. */
368b68a4c0dSQuentin Perret 	if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
369b68a4c0dSQuentin Perret 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
370b68a4c0dSQuentin Perret 						cpumask_pr_args(cpu_map));
371b68a4c0dSQuentin Perret 		goto free;
3726aa140faSQuentin Perret 	}
3736aa140faSQuentin Perret 
3746aa140faSQuentin Perret 	perf_domain_debug(cpu_map, pd);
3756aa140faSQuentin Perret 
3766aa140faSQuentin Perret 	/* Attach the new list of performance domains to the root domain. */
3776aa140faSQuentin Perret 	tmp = rd->pd;
3786aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, pd);
3796aa140faSQuentin Perret 	if (tmp)
3806aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
3816aa140faSQuentin Perret 
3821f74de87SQuentin Perret 	return !!pd;
3836aa140faSQuentin Perret 
3846aa140faSQuentin Perret free:
3856aa140faSQuentin Perret 	free_pd(pd);
3866aa140faSQuentin Perret 	tmp = rd->pd;
3876aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, NULL);
3886aa140faSQuentin Perret 	if (tmp)
3896aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
3901f74de87SQuentin Perret 
3911f74de87SQuentin Perret 	return false;
3926aa140faSQuentin Perret }
3936aa140faSQuentin Perret #else
3946aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { }
395531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
3966aa140faSQuentin Perret 
397f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu)
398f2cb1360SIngo Molnar {
399f2cb1360SIngo Molnar 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
400f2cb1360SIngo Molnar 
401f2cb1360SIngo Molnar 	cpupri_cleanup(&rd->cpupri);
402f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
403f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
404f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
405f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
406f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
4076aa140faSQuentin Perret 	free_pd(rd->pd);
408f2cb1360SIngo Molnar 	kfree(rd);
409f2cb1360SIngo Molnar }
410f2cb1360SIngo Molnar 
411f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd)
412f2cb1360SIngo Molnar {
413f2cb1360SIngo Molnar 	struct root_domain *old_rd = NULL;
414f2cb1360SIngo Molnar 	unsigned long flags;
415f2cb1360SIngo Molnar 
416f2cb1360SIngo Molnar 	raw_spin_lock_irqsave(&rq->lock, flags);
417f2cb1360SIngo Molnar 
418f2cb1360SIngo Molnar 	if (rq->rd) {
419f2cb1360SIngo Molnar 		old_rd = rq->rd;
420f2cb1360SIngo Molnar 
421f2cb1360SIngo Molnar 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
422f2cb1360SIngo Molnar 			set_rq_offline(rq);
423f2cb1360SIngo Molnar 
424f2cb1360SIngo Molnar 		cpumask_clear_cpu(rq->cpu, old_rd->span);
425f2cb1360SIngo Molnar 
426f2cb1360SIngo Molnar 		/*
427f2cb1360SIngo Molnar 		 * If we dont want to free the old_rd yet then
428f2cb1360SIngo Molnar 		 * set old_rd to NULL to skip the freeing later
429f2cb1360SIngo Molnar 		 * in this function:
430f2cb1360SIngo Molnar 		 */
431f2cb1360SIngo Molnar 		if (!atomic_dec_and_test(&old_rd->refcount))
432f2cb1360SIngo Molnar 			old_rd = NULL;
433f2cb1360SIngo Molnar 	}
434f2cb1360SIngo Molnar 
435f2cb1360SIngo Molnar 	atomic_inc(&rd->refcount);
436f2cb1360SIngo Molnar 	rq->rd = rd;
437f2cb1360SIngo Molnar 
438f2cb1360SIngo Molnar 	cpumask_set_cpu(rq->cpu, rd->span);
439f2cb1360SIngo Molnar 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
440f2cb1360SIngo Molnar 		set_rq_online(rq);
441f2cb1360SIngo Molnar 
442f2cb1360SIngo Molnar 	raw_spin_unlock_irqrestore(&rq->lock, flags);
443f2cb1360SIngo Molnar 
444f2cb1360SIngo Molnar 	if (old_rd)
445*337e9b07SPaul E. McKenney 		call_rcu(&old_rd->rcu, free_rootdomain);
446f2cb1360SIngo Molnar }
447f2cb1360SIngo Molnar 
448364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd)
449364f5665SSteven Rostedt (VMware) {
450364f5665SSteven Rostedt (VMware) 	atomic_inc(&rd->refcount);
451364f5665SSteven Rostedt (VMware) }
452364f5665SSteven Rostedt (VMware) 
453364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd)
454364f5665SSteven Rostedt (VMware) {
455364f5665SSteven Rostedt (VMware) 	if (!atomic_dec_and_test(&rd->refcount))
456364f5665SSteven Rostedt (VMware) 		return;
457364f5665SSteven Rostedt (VMware) 
458*337e9b07SPaul E. McKenney 	call_rcu(&rd->rcu, free_rootdomain);
459364f5665SSteven Rostedt (VMware) }
460364f5665SSteven Rostedt (VMware) 
461f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd)
462f2cb1360SIngo Molnar {
463f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
464f2cb1360SIngo Molnar 		goto out;
465f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
466f2cb1360SIngo Molnar 		goto free_span;
467f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
468f2cb1360SIngo Molnar 		goto free_online;
469f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
470f2cb1360SIngo Molnar 		goto free_dlo_mask;
471f2cb1360SIngo Molnar 
4724bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI
4734bdced5cSSteven Rostedt (Red Hat) 	rd->rto_cpu = -1;
4744bdced5cSSteven Rostedt (Red Hat) 	raw_spin_lock_init(&rd->rto_lock);
4754bdced5cSSteven Rostedt (Red Hat) 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
4764bdced5cSSteven Rostedt (Red Hat) #endif
4774bdced5cSSteven Rostedt (Red Hat) 
478f2cb1360SIngo Molnar 	init_dl_bw(&rd->dl_bw);
479f2cb1360SIngo Molnar 	if (cpudl_init(&rd->cpudl) != 0)
480f2cb1360SIngo Molnar 		goto free_rto_mask;
481f2cb1360SIngo Molnar 
482f2cb1360SIngo Molnar 	if (cpupri_init(&rd->cpupri) != 0)
483f2cb1360SIngo Molnar 		goto free_cpudl;
484f2cb1360SIngo Molnar 	return 0;
485f2cb1360SIngo Molnar 
486f2cb1360SIngo Molnar free_cpudl:
487f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
488f2cb1360SIngo Molnar free_rto_mask:
489f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
490f2cb1360SIngo Molnar free_dlo_mask:
491f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
492f2cb1360SIngo Molnar free_online:
493f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
494f2cb1360SIngo Molnar free_span:
495f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
496f2cb1360SIngo Molnar out:
497f2cb1360SIngo Molnar 	return -ENOMEM;
498f2cb1360SIngo Molnar }
499f2cb1360SIngo Molnar 
500f2cb1360SIngo Molnar /*
501f2cb1360SIngo Molnar  * By default the system creates a single root-domain with all CPUs as
502f2cb1360SIngo Molnar  * members (mimicking the global state we have today).
503f2cb1360SIngo Molnar  */
504f2cb1360SIngo Molnar struct root_domain def_root_domain;
505f2cb1360SIngo Molnar 
506f2cb1360SIngo Molnar void init_defrootdomain(void)
507f2cb1360SIngo Molnar {
508f2cb1360SIngo Molnar 	init_rootdomain(&def_root_domain);
509f2cb1360SIngo Molnar 
510f2cb1360SIngo Molnar 	atomic_set(&def_root_domain.refcount, 1);
511f2cb1360SIngo Molnar }
512f2cb1360SIngo Molnar 
513f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void)
514f2cb1360SIngo Molnar {
515f2cb1360SIngo Molnar 	struct root_domain *rd;
516f2cb1360SIngo Molnar 
5174d13a06dSViresh Kumar 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
518f2cb1360SIngo Molnar 	if (!rd)
519f2cb1360SIngo Molnar 		return NULL;
520f2cb1360SIngo Molnar 
521f2cb1360SIngo Molnar 	if (init_rootdomain(rd) != 0) {
522f2cb1360SIngo Molnar 		kfree(rd);
523f2cb1360SIngo Molnar 		return NULL;
524f2cb1360SIngo Molnar 	}
525f2cb1360SIngo Molnar 
526f2cb1360SIngo Molnar 	return rd;
527f2cb1360SIngo Molnar }
528f2cb1360SIngo Molnar 
529f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc)
530f2cb1360SIngo Molnar {
531f2cb1360SIngo Molnar 	struct sched_group *tmp, *first;
532f2cb1360SIngo Molnar 
533f2cb1360SIngo Molnar 	if (!sg)
534f2cb1360SIngo Molnar 		return;
535f2cb1360SIngo Molnar 
536f2cb1360SIngo Molnar 	first = sg;
537f2cb1360SIngo Molnar 	do {
538f2cb1360SIngo Molnar 		tmp = sg->next;
539f2cb1360SIngo Molnar 
540f2cb1360SIngo Molnar 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
541f2cb1360SIngo Molnar 			kfree(sg->sgc);
542f2cb1360SIngo Molnar 
543213c5a45SShu Wang 		if (atomic_dec_and_test(&sg->ref))
544f2cb1360SIngo Molnar 			kfree(sg);
545f2cb1360SIngo Molnar 		sg = tmp;
546f2cb1360SIngo Molnar 	} while (sg != first);
547f2cb1360SIngo Molnar }
548f2cb1360SIngo Molnar 
549f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd)
550f2cb1360SIngo Molnar {
551f2cb1360SIngo Molnar 	/*
552a090c4f2SPeter Zijlstra 	 * A normal sched domain may have multiple group references, an
553a090c4f2SPeter Zijlstra 	 * overlapping domain, having private groups, only one.  Iterate,
554a090c4f2SPeter Zijlstra 	 * dropping group/capacity references, freeing where none remain.
555f2cb1360SIngo Molnar 	 */
556f2cb1360SIngo Molnar 	free_sched_groups(sd->groups, 1);
557213c5a45SShu Wang 
558f2cb1360SIngo Molnar 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
559f2cb1360SIngo Molnar 		kfree(sd->shared);
560f2cb1360SIngo Molnar 	kfree(sd);
561f2cb1360SIngo Molnar }
562f2cb1360SIngo Molnar 
563f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu)
564f2cb1360SIngo Molnar {
565f2cb1360SIngo Molnar 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
566f2cb1360SIngo Molnar 
567f2cb1360SIngo Molnar 	while (sd) {
568f2cb1360SIngo Molnar 		struct sched_domain *parent = sd->parent;
569f2cb1360SIngo Molnar 		destroy_sched_domain(sd);
570f2cb1360SIngo Molnar 		sd = parent;
571f2cb1360SIngo Molnar 	}
572f2cb1360SIngo Molnar }
573f2cb1360SIngo Molnar 
574f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd)
575f2cb1360SIngo Molnar {
576f2cb1360SIngo Molnar 	if (sd)
577f2cb1360SIngo Molnar 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
578f2cb1360SIngo Molnar }
579f2cb1360SIngo Molnar 
580f2cb1360SIngo Molnar /*
581f2cb1360SIngo Molnar  * Keep a special pointer to the highest sched_domain that has
582f2cb1360SIngo Molnar  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
583f2cb1360SIngo Molnar  * allows us to avoid some pointer chasing select_idle_sibling().
584f2cb1360SIngo Molnar  *
585f2cb1360SIngo Molnar  * Also keep a unique ID per domain (we use the first CPU number in
586f2cb1360SIngo Molnar  * the cpumask of the domain), this allows us to quickly tell if
587f2cb1360SIngo Molnar  * two CPUs are in the same cache domain, see cpus_share_cache().
588f2cb1360SIngo Molnar  */
589f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_llc);
590f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size);
591f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id);
592f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
593f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_numa);
594011b27bbSQuentin Perret DEFINE_PER_CPU(struct sched_domain *, sd_asym_packing);
595011b27bbSQuentin Perret DEFINE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
596df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
597f2cb1360SIngo Molnar 
598f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu)
599f2cb1360SIngo Molnar {
600f2cb1360SIngo Molnar 	struct sched_domain_shared *sds = NULL;
601f2cb1360SIngo Molnar 	struct sched_domain *sd;
602f2cb1360SIngo Molnar 	int id = cpu;
603f2cb1360SIngo Molnar 	int size = 1;
604f2cb1360SIngo Molnar 
605f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
606f2cb1360SIngo Molnar 	if (sd) {
607f2cb1360SIngo Molnar 		id = cpumask_first(sched_domain_span(sd));
608f2cb1360SIngo Molnar 		size = cpumask_weight(sched_domain_span(sd));
609f2cb1360SIngo Molnar 		sds = sd->shared;
610f2cb1360SIngo Molnar 	}
611f2cb1360SIngo Molnar 
612f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
613f2cb1360SIngo Molnar 	per_cpu(sd_llc_size, cpu) = size;
614f2cb1360SIngo Molnar 	per_cpu(sd_llc_id, cpu) = id;
615f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
616f2cb1360SIngo Molnar 
617f2cb1360SIngo Molnar 	sd = lowest_flag_domain(cpu, SD_NUMA);
618f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
619f2cb1360SIngo Molnar 
620f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
621011b27bbSQuentin Perret 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
622011b27bbSQuentin Perret 
623011b27bbSQuentin Perret 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
624011b27bbSQuentin Perret 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
625f2cb1360SIngo Molnar }
626f2cb1360SIngo Molnar 
627f2cb1360SIngo Molnar /*
628f2cb1360SIngo Molnar  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
629f2cb1360SIngo Molnar  * hold the hotplug lock.
630f2cb1360SIngo Molnar  */
631f2cb1360SIngo Molnar static void
632f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
633f2cb1360SIngo Molnar {
634f2cb1360SIngo Molnar 	struct rq *rq = cpu_rq(cpu);
635f2cb1360SIngo Molnar 	struct sched_domain *tmp;
636f2cb1360SIngo Molnar 
637f2cb1360SIngo Molnar 	/* Remove the sched domains which do not contribute to scheduling. */
638f2cb1360SIngo Molnar 	for (tmp = sd; tmp; ) {
639f2cb1360SIngo Molnar 		struct sched_domain *parent = tmp->parent;
640f2cb1360SIngo Molnar 		if (!parent)
641f2cb1360SIngo Molnar 			break;
642f2cb1360SIngo Molnar 
643f2cb1360SIngo Molnar 		if (sd_parent_degenerate(tmp, parent)) {
644f2cb1360SIngo Molnar 			tmp->parent = parent->parent;
645f2cb1360SIngo Molnar 			if (parent->parent)
646f2cb1360SIngo Molnar 				parent->parent->child = tmp;
647f2cb1360SIngo Molnar 			/*
648f2cb1360SIngo Molnar 			 * Transfer SD_PREFER_SIBLING down in case of a
649f2cb1360SIngo Molnar 			 * degenerate parent; the spans match for this
650f2cb1360SIngo Molnar 			 * so the property transfers.
651f2cb1360SIngo Molnar 			 */
652f2cb1360SIngo Molnar 			if (parent->flags & SD_PREFER_SIBLING)
653f2cb1360SIngo Molnar 				tmp->flags |= SD_PREFER_SIBLING;
654f2cb1360SIngo Molnar 			destroy_sched_domain(parent);
655f2cb1360SIngo Molnar 		} else
656f2cb1360SIngo Molnar 			tmp = tmp->parent;
657f2cb1360SIngo Molnar 	}
658f2cb1360SIngo Molnar 
659f2cb1360SIngo Molnar 	if (sd && sd_degenerate(sd)) {
660f2cb1360SIngo Molnar 		tmp = sd;
661f2cb1360SIngo Molnar 		sd = sd->parent;
662f2cb1360SIngo Molnar 		destroy_sched_domain(tmp);
663f2cb1360SIngo Molnar 		if (sd)
664f2cb1360SIngo Molnar 			sd->child = NULL;
665f2cb1360SIngo Molnar 	}
666f2cb1360SIngo Molnar 
667f2cb1360SIngo Molnar 	sched_domain_debug(sd, cpu);
668f2cb1360SIngo Molnar 
669f2cb1360SIngo Molnar 	rq_attach_root(rq, rd);
670f2cb1360SIngo Molnar 	tmp = rq->sd;
671f2cb1360SIngo Molnar 	rcu_assign_pointer(rq->sd, sd);
672bbdacdfeSPeter Zijlstra 	dirty_sched_domain_sysctl(cpu);
673f2cb1360SIngo Molnar 	destroy_sched_domains(tmp);
674f2cb1360SIngo Molnar 
675f2cb1360SIngo Molnar 	update_top_cache_domain(cpu);
676f2cb1360SIngo Molnar }
677f2cb1360SIngo Molnar 
678f2cb1360SIngo Molnar struct s_data {
679f2cb1360SIngo Molnar 	struct sched_domain ** __percpu sd;
680f2cb1360SIngo Molnar 	struct root_domain	*rd;
681f2cb1360SIngo Molnar };
682f2cb1360SIngo Molnar 
683f2cb1360SIngo Molnar enum s_alloc {
684f2cb1360SIngo Molnar 	sa_rootdomain,
685f2cb1360SIngo Molnar 	sa_sd,
686f2cb1360SIngo Molnar 	sa_sd_storage,
687f2cb1360SIngo Molnar 	sa_none,
688f2cb1360SIngo Molnar };
689f2cb1360SIngo Molnar 
690f2cb1360SIngo Molnar /*
69135a566e6SPeter Zijlstra  * Return the canonical balance CPU for this group, this is the first CPU
692e5c14b1fSPeter Zijlstra  * of this group that's also in the balance mask.
69335a566e6SPeter Zijlstra  *
694e5c14b1fSPeter Zijlstra  * The balance mask are all those CPUs that could actually end up at this
695e5c14b1fSPeter Zijlstra  * group. See build_balance_mask().
69635a566e6SPeter Zijlstra  *
69735a566e6SPeter Zijlstra  * Also see should_we_balance().
69835a566e6SPeter Zijlstra  */
69935a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg)
70035a566e6SPeter Zijlstra {
701e5c14b1fSPeter Zijlstra 	return cpumask_first(group_balance_mask(sg));
70235a566e6SPeter Zijlstra }
70335a566e6SPeter Zijlstra 
70435a566e6SPeter Zijlstra 
70535a566e6SPeter Zijlstra /*
70635a566e6SPeter Zijlstra  * NUMA topology (first read the regular topology blurb below)
70735a566e6SPeter Zijlstra  *
70835a566e6SPeter Zijlstra  * Given a node-distance table, for example:
70935a566e6SPeter Zijlstra  *
71035a566e6SPeter Zijlstra  *   node   0   1   2   3
71135a566e6SPeter Zijlstra  *     0:  10  20  30  20
71235a566e6SPeter Zijlstra  *     1:  20  10  20  30
71335a566e6SPeter Zijlstra  *     2:  30  20  10  20
71435a566e6SPeter Zijlstra  *     3:  20  30  20  10
71535a566e6SPeter Zijlstra  *
71635a566e6SPeter Zijlstra  * which represents a 4 node ring topology like:
71735a566e6SPeter Zijlstra  *
71835a566e6SPeter Zijlstra  *   0 ----- 1
71935a566e6SPeter Zijlstra  *   |       |
72035a566e6SPeter Zijlstra  *   |       |
72135a566e6SPeter Zijlstra  *   |       |
72235a566e6SPeter Zijlstra  *   3 ----- 2
72335a566e6SPeter Zijlstra  *
72435a566e6SPeter Zijlstra  * We want to construct domains and groups to represent this. The way we go
72535a566e6SPeter Zijlstra  * about doing this is to build the domains on 'hops'. For each NUMA level we
72635a566e6SPeter Zijlstra  * construct the mask of all nodes reachable in @level hops.
72735a566e6SPeter Zijlstra  *
72835a566e6SPeter Zijlstra  * For the above NUMA topology that gives 3 levels:
72935a566e6SPeter Zijlstra  *
73035a566e6SPeter Zijlstra  * NUMA-2	0-3		0-3		0-3		0-3
73135a566e6SPeter Zijlstra  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
73235a566e6SPeter Zijlstra  *
73335a566e6SPeter Zijlstra  * NUMA-1	0-1,3		0-2		1-3		0,2-3
73435a566e6SPeter Zijlstra  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
73535a566e6SPeter Zijlstra  *
73635a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
73735a566e6SPeter Zijlstra  *
73835a566e6SPeter Zijlstra  *
73935a566e6SPeter Zijlstra  * As can be seen; things don't nicely line up as with the regular topology.
74035a566e6SPeter Zijlstra  * When we iterate a domain in child domain chunks some nodes can be
74135a566e6SPeter Zijlstra  * represented multiple times -- hence the "overlap" naming for this part of
74235a566e6SPeter Zijlstra  * the topology.
74335a566e6SPeter Zijlstra  *
74435a566e6SPeter Zijlstra  * In order to minimize this overlap, we only build enough groups to cover the
74535a566e6SPeter Zijlstra  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
74635a566e6SPeter Zijlstra  *
74735a566e6SPeter Zijlstra  * Because:
74835a566e6SPeter Zijlstra  *
74935a566e6SPeter Zijlstra  *  - the first group of each domain is its child domain; this
75035a566e6SPeter Zijlstra  *    gets us the first 0-1,3
75135a566e6SPeter Zijlstra  *  - the only uncovered node is 2, who's child domain is 1-3.
75235a566e6SPeter Zijlstra  *
75335a566e6SPeter Zijlstra  * However, because of the overlap, computing a unique CPU for each group is
75435a566e6SPeter Zijlstra  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
75535a566e6SPeter Zijlstra  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
75635a566e6SPeter Zijlstra  * end up at those groups (they would end up in group: 0-1,3).
75735a566e6SPeter Zijlstra  *
758e5c14b1fSPeter Zijlstra  * To correct this we have to introduce the group balance mask. This mask
75935a566e6SPeter Zijlstra  * will contain those CPUs in the group that can reach this group given the
76035a566e6SPeter Zijlstra  * (child) domain tree.
76135a566e6SPeter Zijlstra  *
76235a566e6SPeter Zijlstra  * With this we can once again compute balance_cpu and sched_group_capacity
76335a566e6SPeter Zijlstra  * relations.
76435a566e6SPeter Zijlstra  *
76535a566e6SPeter Zijlstra  * XXX include words on how balance_cpu is unique and therefore can be
76635a566e6SPeter Zijlstra  * used for sched_group_capacity links.
76735a566e6SPeter Zijlstra  *
76835a566e6SPeter Zijlstra  *
76935a566e6SPeter Zijlstra  * Another 'interesting' topology is:
77035a566e6SPeter Zijlstra  *
77135a566e6SPeter Zijlstra  *   node   0   1   2   3
77235a566e6SPeter Zijlstra  *     0:  10  20  20  30
77335a566e6SPeter Zijlstra  *     1:  20  10  20  20
77435a566e6SPeter Zijlstra  *     2:  20  20  10  20
77535a566e6SPeter Zijlstra  *     3:  30  20  20  10
77635a566e6SPeter Zijlstra  *
77735a566e6SPeter Zijlstra  * Which looks a little like:
77835a566e6SPeter Zijlstra  *
77935a566e6SPeter Zijlstra  *   0 ----- 1
78035a566e6SPeter Zijlstra  *   |     / |
78135a566e6SPeter Zijlstra  *   |   /   |
78235a566e6SPeter Zijlstra  *   | /     |
78335a566e6SPeter Zijlstra  *   2 ----- 3
78435a566e6SPeter Zijlstra  *
78535a566e6SPeter Zijlstra  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
78635a566e6SPeter Zijlstra  * are not.
78735a566e6SPeter Zijlstra  *
78835a566e6SPeter Zijlstra  * This leads to a few particularly weird cases where the sched_domain's are
78997fb7a0aSIngo Molnar  * not of the same number for each CPU. Consider:
79035a566e6SPeter Zijlstra  *
79135a566e6SPeter Zijlstra  * NUMA-2	0-3						0-3
79235a566e6SPeter Zijlstra  *  groups:	{0-2},{1-3}					{1-3},{0-2}
79335a566e6SPeter Zijlstra  *
79435a566e6SPeter Zijlstra  * NUMA-1	0-2		0-3		0-3		1-3
79535a566e6SPeter Zijlstra  *
79635a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
79735a566e6SPeter Zijlstra  *
79835a566e6SPeter Zijlstra  */
79935a566e6SPeter Zijlstra 
80035a566e6SPeter Zijlstra 
80135a566e6SPeter Zijlstra /*
802e5c14b1fSPeter Zijlstra  * Build the balance mask; it contains only those CPUs that can arrive at this
803e5c14b1fSPeter Zijlstra  * group and should be considered to continue balancing.
80435a566e6SPeter Zijlstra  *
80535a566e6SPeter Zijlstra  * We do this during the group creation pass, therefore the group information
80635a566e6SPeter Zijlstra  * isn't complete yet, however since each group represents a (child) domain we
80735a566e6SPeter Zijlstra  * can fully construct this using the sched_domain bits (which are already
80835a566e6SPeter Zijlstra  * complete).
809f2cb1360SIngo Molnar  */
8101676330eSPeter Zijlstra static void
811e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
812f2cb1360SIngo Molnar {
813ae4df9d6SPeter Zijlstra 	const struct cpumask *sg_span = sched_group_span(sg);
814f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
815f2cb1360SIngo Molnar 	struct sched_domain *sibling;
816f2cb1360SIngo Molnar 	int i;
817f2cb1360SIngo Molnar 
8181676330eSPeter Zijlstra 	cpumask_clear(mask);
8191676330eSPeter Zijlstra 
820f32d782eSLauro Ramos Venancio 	for_each_cpu(i, sg_span) {
821f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
82273bb059fSPeter Zijlstra 
82373bb059fSPeter Zijlstra 		/*
82473bb059fSPeter Zijlstra 		 * Can happen in the asymmetric case, where these siblings are
82573bb059fSPeter Zijlstra 		 * unused. The mask will not be empty because those CPUs that
82673bb059fSPeter Zijlstra 		 * do have the top domain _should_ span the domain.
82773bb059fSPeter Zijlstra 		 */
82873bb059fSPeter Zijlstra 		if (!sibling->child)
82973bb059fSPeter Zijlstra 			continue;
83073bb059fSPeter Zijlstra 
83173bb059fSPeter Zijlstra 		/* If we would not end up here, we can't continue from here */
83273bb059fSPeter Zijlstra 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
833f2cb1360SIngo Molnar 			continue;
834f2cb1360SIngo Molnar 
8351676330eSPeter Zijlstra 		cpumask_set_cpu(i, mask);
836f2cb1360SIngo Molnar 	}
83773bb059fSPeter Zijlstra 
83873bb059fSPeter Zijlstra 	/* We must not have empty masks here */
8391676330eSPeter Zijlstra 	WARN_ON_ONCE(cpumask_empty(mask));
840f2cb1360SIngo Molnar }
841f2cb1360SIngo Molnar 
842f2cb1360SIngo Molnar /*
84335a566e6SPeter Zijlstra  * XXX: This creates per-node group entries; since the load-balancer will
84435a566e6SPeter Zijlstra  * immediately access remote memory to construct this group's load-balance
84535a566e6SPeter Zijlstra  * statistics having the groups node local is of dubious benefit.
846f2cb1360SIngo Molnar  */
8478c033469SLauro Ramos Venancio static struct sched_group *
8488c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
8498c033469SLauro Ramos Venancio {
8508c033469SLauro Ramos Venancio 	struct sched_group *sg;
8518c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
8528c033469SLauro Ramos Venancio 
8538c033469SLauro Ramos Venancio 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
8548c033469SLauro Ramos Venancio 			GFP_KERNEL, cpu_to_node(cpu));
8558c033469SLauro Ramos Venancio 
8568c033469SLauro Ramos Venancio 	if (!sg)
8578c033469SLauro Ramos Venancio 		return NULL;
8588c033469SLauro Ramos Venancio 
859ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
8608c033469SLauro Ramos Venancio 	if (sd->child)
8618c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd->child));
8628c033469SLauro Ramos Venancio 	else
8638c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd));
8648c033469SLauro Ramos Venancio 
865213c5a45SShu Wang 	atomic_inc(&sg->ref);
8668c033469SLauro Ramos Venancio 	return sg;
8678c033469SLauro Ramos Venancio }
8688c033469SLauro Ramos Venancio 
8698c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd,
8701676330eSPeter Zijlstra 				     struct sched_group *sg)
8718c033469SLauro Ramos Venancio {
8721676330eSPeter Zijlstra 	struct cpumask *mask = sched_domains_tmpmask2;
8738c033469SLauro Ramos Venancio 	struct sd_data *sdd = sd->private;
8748c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
8751676330eSPeter Zijlstra 	int cpu;
8761676330eSPeter Zijlstra 
877e5c14b1fSPeter Zijlstra 	build_balance_mask(sd, sg, mask);
878ae4df9d6SPeter Zijlstra 	cpu = cpumask_first_and(sched_group_span(sg), mask);
8798c033469SLauro Ramos Venancio 
8808c033469SLauro Ramos Venancio 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
8818c033469SLauro Ramos Venancio 	if (atomic_inc_return(&sg->sgc->ref) == 1)
882e5c14b1fSPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), mask);
88335a566e6SPeter Zijlstra 	else
884e5c14b1fSPeter Zijlstra 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
8858c033469SLauro Ramos Venancio 
8868c033469SLauro Ramos Venancio 	/*
8878c033469SLauro Ramos Venancio 	 * Initialize sgc->capacity such that even if we mess up the
8888c033469SLauro Ramos Venancio 	 * domains and no possible iteration will get us here, we won't
8898c033469SLauro Ramos Venancio 	 * die on a /0 trap.
8908c033469SLauro Ramos Venancio 	 */
891ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
8928c033469SLauro Ramos Venancio 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
8938c033469SLauro Ramos Venancio 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
894e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
8958c033469SLauro Ramos Venancio }
8968c033469SLauro Ramos Venancio 
897f2cb1360SIngo Molnar static int
898f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu)
899f2cb1360SIngo Molnar {
90091eaed0dSPeter Zijlstra 	struct sched_group *first = NULL, *last = NULL, *sg;
901f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
902f2cb1360SIngo Molnar 	struct cpumask *covered = sched_domains_tmpmask;
903f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
904f2cb1360SIngo Molnar 	struct sched_domain *sibling;
905f2cb1360SIngo Molnar 	int i;
906f2cb1360SIngo Molnar 
907f2cb1360SIngo Molnar 	cpumask_clear(covered);
908f2cb1360SIngo Molnar 
9090372dd27SPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
910f2cb1360SIngo Molnar 		struct cpumask *sg_span;
911f2cb1360SIngo Molnar 
912f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
913f2cb1360SIngo Molnar 			continue;
914f2cb1360SIngo Molnar 
915f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
916f2cb1360SIngo Molnar 
917c20e1ea4SLauro Ramos Venancio 		/*
918c20e1ea4SLauro Ramos Venancio 		 * Asymmetric node setups can result in situations where the
919c20e1ea4SLauro Ramos Venancio 		 * domain tree is of unequal depth, make sure to skip domains
920c20e1ea4SLauro Ramos Venancio 		 * that already cover the entire range.
921c20e1ea4SLauro Ramos Venancio 		 *
922c20e1ea4SLauro Ramos Venancio 		 * In that case build_sched_domains() will have terminated the
923c20e1ea4SLauro Ramos Venancio 		 * iteration early and our sibling sd spans will be empty.
924c20e1ea4SLauro Ramos Venancio 		 * Domains should always include the CPU they're built on, so
925c20e1ea4SLauro Ramos Venancio 		 * check that.
926c20e1ea4SLauro Ramos Venancio 		 */
927f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
928f2cb1360SIngo Molnar 			continue;
929f2cb1360SIngo Molnar 
9308c033469SLauro Ramos Venancio 		sg = build_group_from_child_sched_domain(sibling, cpu);
931f2cb1360SIngo Molnar 		if (!sg)
932f2cb1360SIngo Molnar 			goto fail;
933f2cb1360SIngo Molnar 
934ae4df9d6SPeter Zijlstra 		sg_span = sched_group_span(sg);
935f2cb1360SIngo Molnar 		cpumask_or(covered, covered, sg_span);
936f2cb1360SIngo Molnar 
9371676330eSPeter Zijlstra 		init_overlap_sched_group(sd, sg);
938f2cb1360SIngo Molnar 
939f2cb1360SIngo Molnar 		if (!first)
940f2cb1360SIngo Molnar 			first = sg;
941f2cb1360SIngo Molnar 		if (last)
942f2cb1360SIngo Molnar 			last->next = sg;
943f2cb1360SIngo Molnar 		last = sg;
944f2cb1360SIngo Molnar 		last->next = first;
945f2cb1360SIngo Molnar 	}
94691eaed0dSPeter Zijlstra 	sd->groups = first;
947f2cb1360SIngo Molnar 
948f2cb1360SIngo Molnar 	return 0;
949f2cb1360SIngo Molnar 
950f2cb1360SIngo Molnar fail:
951f2cb1360SIngo Molnar 	free_sched_groups(first, 0);
952f2cb1360SIngo Molnar 
953f2cb1360SIngo Molnar 	return -ENOMEM;
954f2cb1360SIngo Molnar }
955f2cb1360SIngo Molnar 
95635a566e6SPeter Zijlstra 
95735a566e6SPeter Zijlstra /*
95835a566e6SPeter Zijlstra  * Package topology (also see the load-balance blurb in fair.c)
95935a566e6SPeter Zijlstra  *
96035a566e6SPeter Zijlstra  * The scheduler builds a tree structure to represent a number of important
96135a566e6SPeter Zijlstra  * topology features. By default (default_topology[]) these include:
96235a566e6SPeter Zijlstra  *
96335a566e6SPeter Zijlstra  *  - Simultaneous multithreading (SMT)
96435a566e6SPeter Zijlstra  *  - Multi-Core Cache (MC)
96535a566e6SPeter Zijlstra  *  - Package (DIE)
96635a566e6SPeter Zijlstra  *
96735a566e6SPeter Zijlstra  * Where the last one more or less denotes everything up to a NUMA node.
96835a566e6SPeter Zijlstra  *
96935a566e6SPeter Zijlstra  * The tree consists of 3 primary data structures:
97035a566e6SPeter Zijlstra  *
97135a566e6SPeter Zijlstra  *	sched_domain -> sched_group -> sched_group_capacity
97235a566e6SPeter Zijlstra  *	    ^ ^             ^ ^
97335a566e6SPeter Zijlstra  *          `-'             `-'
97435a566e6SPeter Zijlstra  *
97597fb7a0aSIngo Molnar  * The sched_domains are per-CPU and have a two way link (parent & child) and
97635a566e6SPeter Zijlstra  * denote the ever growing mask of CPUs belonging to that level of topology.
97735a566e6SPeter Zijlstra  *
97835a566e6SPeter Zijlstra  * Each sched_domain has a circular (double) linked list of sched_group's, each
97935a566e6SPeter Zijlstra  * denoting the domains of the level below (or individual CPUs in case of the
98035a566e6SPeter Zijlstra  * first domain level). The sched_group linked by a sched_domain includes the
98135a566e6SPeter Zijlstra  * CPU of that sched_domain [*].
98235a566e6SPeter Zijlstra  *
98335a566e6SPeter Zijlstra  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
98435a566e6SPeter Zijlstra  *
98535a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
98635a566e6SPeter Zijlstra  *
98735a566e6SPeter Zijlstra  * DIE  [                             ]
98835a566e6SPeter Zijlstra  * MC   [             ] [             ]
98935a566e6SPeter Zijlstra  * SMT  [     ] [     ] [     ] [     ]
99035a566e6SPeter Zijlstra  *
99135a566e6SPeter Zijlstra  *  - or -
99235a566e6SPeter Zijlstra  *
99335a566e6SPeter Zijlstra  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
99435a566e6SPeter Zijlstra  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
99535a566e6SPeter Zijlstra  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
99635a566e6SPeter Zijlstra  *
99735a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
99835a566e6SPeter Zijlstra  *
99935a566e6SPeter Zijlstra  * One way to think about it is: sched_domain moves you up and down among these
100035a566e6SPeter Zijlstra  * topology levels, while sched_group moves you sideways through it, at child
100135a566e6SPeter Zijlstra  * domain granularity.
100235a566e6SPeter Zijlstra  *
100335a566e6SPeter Zijlstra  * sched_group_capacity ensures each unique sched_group has shared storage.
100435a566e6SPeter Zijlstra  *
100535a566e6SPeter Zijlstra  * There are two related construction problems, both require a CPU that
100635a566e6SPeter Zijlstra  * uniquely identify each group (for a given domain):
100735a566e6SPeter Zijlstra  *
100835a566e6SPeter Zijlstra  *  - The first is the balance_cpu (see should_we_balance() and the
100935a566e6SPeter Zijlstra  *    load-balance blub in fair.c); for each group we only want 1 CPU to
101035a566e6SPeter Zijlstra  *    continue balancing at a higher domain.
101135a566e6SPeter Zijlstra  *
101235a566e6SPeter Zijlstra  *  - The second is the sched_group_capacity; we want all identical groups
101335a566e6SPeter Zijlstra  *    to share a single sched_group_capacity.
101435a566e6SPeter Zijlstra  *
101535a566e6SPeter Zijlstra  * Since these topologies are exclusive by construction. That is, its
101635a566e6SPeter Zijlstra  * impossible for an SMT thread to belong to multiple cores, and cores to
101735a566e6SPeter Zijlstra  * be part of multiple caches. There is a very clear and unique location
101835a566e6SPeter Zijlstra  * for each CPU in the hierarchy.
101935a566e6SPeter Zijlstra  *
102035a566e6SPeter Zijlstra  * Therefore computing a unique CPU for each group is trivial (the iteration
102135a566e6SPeter Zijlstra  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
102235a566e6SPeter Zijlstra  * group), we can simply pick the first CPU in each group.
102335a566e6SPeter Zijlstra  *
102435a566e6SPeter Zijlstra  *
102535a566e6SPeter Zijlstra  * [*] in other words, the first group of each domain is its child domain.
102635a566e6SPeter Zijlstra  */
102735a566e6SPeter Zijlstra 
10280c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1029f2cb1360SIngo Molnar {
1030f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1031f2cb1360SIngo Molnar 	struct sched_domain *child = sd->child;
10320c0e776aSPeter Zijlstra 	struct sched_group *sg;
1033f2cb1360SIngo Molnar 
1034f2cb1360SIngo Molnar 	if (child)
1035f2cb1360SIngo Molnar 		cpu = cpumask_first(sched_domain_span(child));
1036f2cb1360SIngo Molnar 
10370c0e776aSPeter Zijlstra 	sg = *per_cpu_ptr(sdd->sg, cpu);
10380c0e776aSPeter Zijlstra 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1039f2cb1360SIngo Molnar 
1040f2cb1360SIngo Molnar 	/* For claim_allocations: */
10410c0e776aSPeter Zijlstra 	atomic_inc(&sg->ref);
10420c0e776aSPeter Zijlstra 	atomic_inc(&sg->sgc->ref);
10430c0e776aSPeter Zijlstra 
10440c0e776aSPeter Zijlstra 	if (child) {
1045ae4df9d6SPeter Zijlstra 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1046ae4df9d6SPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
10470c0e776aSPeter Zijlstra 	} else {
1048ae4df9d6SPeter Zijlstra 		cpumask_set_cpu(cpu, sched_group_span(sg));
1049e5c14b1fSPeter Zijlstra 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1050f2cb1360SIngo Molnar 	}
1051f2cb1360SIngo Molnar 
1052ae4df9d6SPeter Zijlstra 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
10530c0e776aSPeter Zijlstra 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1054e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
10550c0e776aSPeter Zijlstra 
10560c0e776aSPeter Zijlstra 	return sg;
1057f2cb1360SIngo Molnar }
1058f2cb1360SIngo Molnar 
1059f2cb1360SIngo Molnar /*
1060f2cb1360SIngo Molnar  * build_sched_groups will build a circular linked list of the groups
1061f2cb1360SIngo Molnar  * covered by the given span, and will set each group's ->cpumask correctly,
1062f2cb1360SIngo Molnar  * and ->cpu_capacity to 0.
1063f2cb1360SIngo Molnar  *
1064f2cb1360SIngo Molnar  * Assumes the sched_domain tree is fully constructed
1065f2cb1360SIngo Molnar  */
1066f2cb1360SIngo Molnar static int
1067f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu)
1068f2cb1360SIngo Molnar {
1069f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL;
1070f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1071f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
1072f2cb1360SIngo Molnar 	struct cpumask *covered;
1073f2cb1360SIngo Molnar 	int i;
1074f2cb1360SIngo Molnar 
1075f2cb1360SIngo Molnar 	lockdep_assert_held(&sched_domains_mutex);
1076f2cb1360SIngo Molnar 	covered = sched_domains_tmpmask;
1077f2cb1360SIngo Molnar 
1078f2cb1360SIngo Molnar 	cpumask_clear(covered);
1079f2cb1360SIngo Molnar 
10800c0e776aSPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
1081f2cb1360SIngo Molnar 		struct sched_group *sg;
1082f2cb1360SIngo Molnar 
1083f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
1084f2cb1360SIngo Molnar 			continue;
1085f2cb1360SIngo Molnar 
10860c0e776aSPeter Zijlstra 		sg = get_group(i, sdd);
1087f2cb1360SIngo Molnar 
1088ae4df9d6SPeter Zijlstra 		cpumask_or(covered, covered, sched_group_span(sg));
1089f2cb1360SIngo Molnar 
1090f2cb1360SIngo Molnar 		if (!first)
1091f2cb1360SIngo Molnar 			first = sg;
1092f2cb1360SIngo Molnar 		if (last)
1093f2cb1360SIngo Molnar 			last->next = sg;
1094f2cb1360SIngo Molnar 		last = sg;
1095f2cb1360SIngo Molnar 	}
1096f2cb1360SIngo Molnar 	last->next = first;
10970c0e776aSPeter Zijlstra 	sd->groups = first;
1098f2cb1360SIngo Molnar 
1099f2cb1360SIngo Molnar 	return 0;
1100f2cb1360SIngo Molnar }
1101f2cb1360SIngo Molnar 
1102f2cb1360SIngo Molnar /*
1103f2cb1360SIngo Molnar  * Initialize sched groups cpu_capacity.
1104f2cb1360SIngo Molnar  *
1105f2cb1360SIngo Molnar  * cpu_capacity indicates the capacity of sched group, which is used while
1106f2cb1360SIngo Molnar  * distributing the load between different sched groups in a sched domain.
1107f2cb1360SIngo Molnar  * Typically cpu_capacity for all the groups in a sched domain will be same
1108f2cb1360SIngo Molnar  * unless there are asymmetries in the topology. If there are asymmetries,
1109f2cb1360SIngo Molnar  * group having more cpu_capacity will pickup more load compared to the
1110f2cb1360SIngo Molnar  * group having less cpu_capacity.
1111f2cb1360SIngo Molnar  */
1112f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1113f2cb1360SIngo Molnar {
1114f2cb1360SIngo Molnar 	struct sched_group *sg = sd->groups;
1115f2cb1360SIngo Molnar 
1116f2cb1360SIngo Molnar 	WARN_ON(!sg);
1117f2cb1360SIngo Molnar 
1118f2cb1360SIngo Molnar 	do {
1119f2cb1360SIngo Molnar 		int cpu, max_cpu = -1;
1120f2cb1360SIngo Molnar 
1121ae4df9d6SPeter Zijlstra 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1122f2cb1360SIngo Molnar 
1123f2cb1360SIngo Molnar 		if (!(sd->flags & SD_ASYM_PACKING))
1124f2cb1360SIngo Molnar 			goto next;
1125f2cb1360SIngo Molnar 
1126ae4df9d6SPeter Zijlstra 		for_each_cpu(cpu, sched_group_span(sg)) {
1127f2cb1360SIngo Molnar 			if (max_cpu < 0)
1128f2cb1360SIngo Molnar 				max_cpu = cpu;
1129f2cb1360SIngo Molnar 			else if (sched_asym_prefer(cpu, max_cpu))
1130f2cb1360SIngo Molnar 				max_cpu = cpu;
1131f2cb1360SIngo Molnar 		}
1132f2cb1360SIngo Molnar 		sg->asym_prefer_cpu = max_cpu;
1133f2cb1360SIngo Molnar 
1134f2cb1360SIngo Molnar next:
1135f2cb1360SIngo Molnar 		sg = sg->next;
1136f2cb1360SIngo Molnar 	} while (sg != sd->groups);
1137f2cb1360SIngo Molnar 
1138f2cb1360SIngo Molnar 	if (cpu != group_balance_cpu(sg))
1139f2cb1360SIngo Molnar 		return;
1140f2cb1360SIngo Molnar 
1141f2cb1360SIngo Molnar 	update_group_capacity(sd, cpu);
1142f2cb1360SIngo Molnar }
1143f2cb1360SIngo Molnar 
1144f2cb1360SIngo Molnar /*
1145f2cb1360SIngo Molnar  * Initializers for schedule domains
1146f2cb1360SIngo Molnar  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1147f2cb1360SIngo Molnar  */
1148f2cb1360SIngo Molnar 
1149f2cb1360SIngo Molnar static int default_relax_domain_level = -1;
1150f2cb1360SIngo Molnar int sched_domain_level_max;
1151f2cb1360SIngo Molnar 
1152f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str)
1153f2cb1360SIngo Molnar {
1154f2cb1360SIngo Molnar 	if (kstrtoint(str, 0, &default_relax_domain_level))
1155f2cb1360SIngo Molnar 		pr_warn("Unable to set relax_domain_level\n");
1156f2cb1360SIngo Molnar 
1157f2cb1360SIngo Molnar 	return 1;
1158f2cb1360SIngo Molnar }
1159f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level);
1160f2cb1360SIngo Molnar 
1161f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd,
1162f2cb1360SIngo Molnar 				 struct sched_domain_attr *attr)
1163f2cb1360SIngo Molnar {
1164f2cb1360SIngo Molnar 	int request;
1165f2cb1360SIngo Molnar 
1166f2cb1360SIngo Molnar 	if (!attr || attr->relax_domain_level < 0) {
1167f2cb1360SIngo Molnar 		if (default_relax_domain_level < 0)
1168f2cb1360SIngo Molnar 			return;
1169f2cb1360SIngo Molnar 		else
1170f2cb1360SIngo Molnar 			request = default_relax_domain_level;
1171f2cb1360SIngo Molnar 	} else
1172f2cb1360SIngo Molnar 		request = attr->relax_domain_level;
1173f2cb1360SIngo Molnar 	if (request < sd->level) {
1174f2cb1360SIngo Molnar 		/* Turn off idle balance on this domain: */
1175f2cb1360SIngo Molnar 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1176f2cb1360SIngo Molnar 	} else {
1177f2cb1360SIngo Molnar 		/* Turn on idle balance on this domain: */
1178f2cb1360SIngo Molnar 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1179f2cb1360SIngo Molnar 	}
1180f2cb1360SIngo Molnar }
1181f2cb1360SIngo Molnar 
1182f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map);
1183f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map);
1184f2cb1360SIngo Molnar 
1185f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1186f2cb1360SIngo Molnar 				 const struct cpumask *cpu_map)
1187f2cb1360SIngo Molnar {
1188f2cb1360SIngo Molnar 	switch (what) {
1189f2cb1360SIngo Molnar 	case sa_rootdomain:
1190f2cb1360SIngo Molnar 		if (!atomic_read(&d->rd->refcount))
1191f2cb1360SIngo Molnar 			free_rootdomain(&d->rd->rcu);
1192f2cb1360SIngo Molnar 		/* Fall through */
1193f2cb1360SIngo Molnar 	case sa_sd:
1194f2cb1360SIngo Molnar 		free_percpu(d->sd);
1195f2cb1360SIngo Molnar 		/* Fall through */
1196f2cb1360SIngo Molnar 	case sa_sd_storage:
1197f2cb1360SIngo Molnar 		__sdt_free(cpu_map);
1198f2cb1360SIngo Molnar 		/* Fall through */
1199f2cb1360SIngo Molnar 	case sa_none:
1200f2cb1360SIngo Molnar 		break;
1201f2cb1360SIngo Molnar 	}
1202f2cb1360SIngo Molnar }
1203f2cb1360SIngo Molnar 
1204f2cb1360SIngo Molnar static enum s_alloc
1205f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1206f2cb1360SIngo Molnar {
1207f2cb1360SIngo Molnar 	memset(d, 0, sizeof(*d));
1208f2cb1360SIngo Molnar 
1209f2cb1360SIngo Molnar 	if (__sdt_alloc(cpu_map))
1210f2cb1360SIngo Molnar 		return sa_sd_storage;
1211f2cb1360SIngo Molnar 	d->sd = alloc_percpu(struct sched_domain *);
1212f2cb1360SIngo Molnar 	if (!d->sd)
1213f2cb1360SIngo Molnar 		return sa_sd_storage;
1214f2cb1360SIngo Molnar 	d->rd = alloc_rootdomain();
1215f2cb1360SIngo Molnar 	if (!d->rd)
1216f2cb1360SIngo Molnar 		return sa_sd;
121797fb7a0aSIngo Molnar 
1218f2cb1360SIngo Molnar 	return sa_rootdomain;
1219f2cb1360SIngo Molnar }
1220f2cb1360SIngo Molnar 
1221f2cb1360SIngo Molnar /*
1222f2cb1360SIngo Molnar  * NULL the sd_data elements we've used to build the sched_domain and
1223f2cb1360SIngo Molnar  * sched_group structure so that the subsequent __free_domain_allocs()
1224f2cb1360SIngo Molnar  * will not free the data we're using.
1225f2cb1360SIngo Molnar  */
1226f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd)
1227f2cb1360SIngo Molnar {
1228f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1229f2cb1360SIngo Molnar 
1230f2cb1360SIngo Molnar 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1231f2cb1360SIngo Molnar 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1232f2cb1360SIngo Molnar 
1233f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1234f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1235f2cb1360SIngo Molnar 
1236f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1237f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1238f2cb1360SIngo Molnar 
1239f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1240f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1241f2cb1360SIngo Molnar }
1242f2cb1360SIngo Molnar 
1243f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1244f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type;
124597fb7a0aSIngo Molnar 
124697fb7a0aSIngo Molnar static int			sched_domains_numa_levels;
1247f2cb1360SIngo Molnar static int			sched_domains_curr_level;
124897fb7a0aSIngo Molnar 
124997fb7a0aSIngo Molnar int				sched_max_numa_distance;
125097fb7a0aSIngo Molnar static int			*sched_domains_numa_distance;
125197fb7a0aSIngo Molnar static struct cpumask		***sched_domains_numa_masks;
1252f2cb1360SIngo Molnar #endif
1253f2cb1360SIngo Molnar 
1254f2cb1360SIngo Molnar /*
1255f2cb1360SIngo Molnar  * SD_flags allowed in topology descriptions.
1256f2cb1360SIngo Molnar  *
1257f2cb1360SIngo Molnar  * These flags are purely descriptive of the topology and do not prescribe
1258f2cb1360SIngo Molnar  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1259f2cb1360SIngo Molnar  * function:
1260f2cb1360SIngo Molnar  *
1261f2cb1360SIngo Molnar  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1262f2cb1360SIngo Molnar  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1263f2cb1360SIngo Molnar  *   SD_NUMA                - describes NUMA topologies
1264f2cb1360SIngo Molnar  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1265f2cb1360SIngo Molnar  *
1266f2cb1360SIngo Molnar  * Odd one out, which beside describing the topology has a quirk also
1267f2cb1360SIngo Molnar  * prescribes the desired behaviour that goes along with it:
1268f2cb1360SIngo Molnar  *
1269f2cb1360SIngo Molnar  *   SD_ASYM_PACKING        - describes SMT quirks
1270f2cb1360SIngo Molnar  */
1271f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS		\
1272f2cb1360SIngo Molnar 	(SD_SHARE_CPUCAPACITY	|	\
1273f2cb1360SIngo Molnar 	 SD_SHARE_PKG_RESOURCES |	\
1274f2cb1360SIngo Molnar 	 SD_NUMA		|	\
1275f2cb1360SIngo Molnar 	 SD_ASYM_PACKING	|	\
1276f2cb1360SIngo Molnar 	 SD_SHARE_POWERDOMAIN)
1277f2cb1360SIngo Molnar 
1278f2cb1360SIngo Molnar static struct sched_domain *
1279f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl,
1280f2cb1360SIngo Molnar 	const struct cpumask *cpu_map,
128105484e09SMorten Rasmussen 	struct sched_domain *child, int dflags, int cpu)
1282f2cb1360SIngo Molnar {
1283f2cb1360SIngo Molnar 	struct sd_data *sdd = &tl->data;
1284f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1285f2cb1360SIngo Molnar 	int sd_id, sd_weight, sd_flags = 0;
1286f2cb1360SIngo Molnar 
1287f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1288f2cb1360SIngo Molnar 	/*
1289f2cb1360SIngo Molnar 	 * Ugly hack to pass state to sd_numa_mask()...
1290f2cb1360SIngo Molnar 	 */
1291f2cb1360SIngo Molnar 	sched_domains_curr_level = tl->numa_level;
1292f2cb1360SIngo Molnar #endif
1293f2cb1360SIngo Molnar 
1294f2cb1360SIngo Molnar 	sd_weight = cpumask_weight(tl->mask(cpu));
1295f2cb1360SIngo Molnar 
1296f2cb1360SIngo Molnar 	if (tl->sd_flags)
1297f2cb1360SIngo Molnar 		sd_flags = (*tl->sd_flags)();
1298f2cb1360SIngo Molnar 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1299f2cb1360SIngo Molnar 			"wrong sd_flags in topology description\n"))
1300f2cb1360SIngo Molnar 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1301f2cb1360SIngo Molnar 
130205484e09SMorten Rasmussen 	/* Apply detected topology flags */
130305484e09SMorten Rasmussen 	sd_flags |= dflags;
130405484e09SMorten Rasmussen 
1305f2cb1360SIngo Molnar 	*sd = (struct sched_domain){
1306f2cb1360SIngo Molnar 		.min_interval		= sd_weight,
1307f2cb1360SIngo Molnar 		.max_interval		= 2*sd_weight,
1308f2cb1360SIngo Molnar 		.busy_factor		= 32,
1309f2cb1360SIngo Molnar 		.imbalance_pct		= 125,
1310f2cb1360SIngo Molnar 
1311f2cb1360SIngo Molnar 		.cache_nice_tries	= 0,
1312f2cb1360SIngo Molnar 		.busy_idx		= 0,
1313f2cb1360SIngo Molnar 		.idle_idx		= 0,
1314f2cb1360SIngo Molnar 		.newidle_idx		= 0,
1315f2cb1360SIngo Molnar 		.wake_idx		= 0,
1316f2cb1360SIngo Molnar 		.forkexec_idx		= 0,
1317f2cb1360SIngo Molnar 
1318f2cb1360SIngo Molnar 		.flags			= 1*SD_LOAD_BALANCE
1319f2cb1360SIngo Molnar 					| 1*SD_BALANCE_NEWIDLE
1320f2cb1360SIngo Molnar 					| 1*SD_BALANCE_EXEC
1321f2cb1360SIngo Molnar 					| 1*SD_BALANCE_FORK
1322f2cb1360SIngo Molnar 					| 0*SD_BALANCE_WAKE
1323f2cb1360SIngo Molnar 					| 1*SD_WAKE_AFFINE
1324f2cb1360SIngo Molnar 					| 0*SD_SHARE_CPUCAPACITY
1325f2cb1360SIngo Molnar 					| 0*SD_SHARE_PKG_RESOURCES
1326f2cb1360SIngo Molnar 					| 0*SD_SERIALIZE
13279c63e84dSMorten Rasmussen 					| 1*SD_PREFER_SIBLING
1328f2cb1360SIngo Molnar 					| 0*SD_NUMA
1329f2cb1360SIngo Molnar 					| sd_flags
1330f2cb1360SIngo Molnar 					,
1331f2cb1360SIngo Molnar 
1332f2cb1360SIngo Molnar 		.last_balance		= jiffies,
1333f2cb1360SIngo Molnar 		.balance_interval	= sd_weight,
1334f2cb1360SIngo Molnar 		.max_newidle_lb_cost	= 0,
1335f2cb1360SIngo Molnar 		.next_decay_max_lb_cost	= jiffies,
1336f2cb1360SIngo Molnar 		.child			= child,
1337f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1338f2cb1360SIngo Molnar 		.name			= tl->name,
1339f2cb1360SIngo Molnar #endif
1340f2cb1360SIngo Molnar 	};
1341f2cb1360SIngo Molnar 
1342f2cb1360SIngo Molnar 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1343f2cb1360SIngo Molnar 	sd_id = cpumask_first(sched_domain_span(sd));
1344f2cb1360SIngo Molnar 
1345f2cb1360SIngo Molnar 	/*
1346f2cb1360SIngo Molnar 	 * Convert topological properties into behaviour.
1347f2cb1360SIngo Molnar 	 */
1348f2cb1360SIngo Molnar 
1349f2cb1360SIngo Molnar 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1350f2cb1360SIngo Molnar 		struct sched_domain *t = sd;
1351f2cb1360SIngo Molnar 
13529c63e84dSMorten Rasmussen 		/*
13539c63e84dSMorten Rasmussen 		 * Don't attempt to spread across CPUs of different capacities.
13549c63e84dSMorten Rasmussen 		 */
13559c63e84dSMorten Rasmussen 		if (sd->child)
13569c63e84dSMorten Rasmussen 			sd->child->flags &= ~SD_PREFER_SIBLING;
13579c63e84dSMorten Rasmussen 
1358f2cb1360SIngo Molnar 		for_each_lower_domain(t)
1359f2cb1360SIngo Molnar 			t->flags |= SD_BALANCE_WAKE;
1360f2cb1360SIngo Molnar 	}
1361f2cb1360SIngo Molnar 
1362f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1363f2cb1360SIngo Molnar 		sd->imbalance_pct = 110;
1364f2cb1360SIngo Molnar 
1365f2cb1360SIngo Molnar 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1366f2cb1360SIngo Molnar 		sd->imbalance_pct = 117;
1367f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1368f2cb1360SIngo Molnar 		sd->busy_idx = 2;
1369f2cb1360SIngo Molnar 
1370f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1371f2cb1360SIngo Molnar 	} else if (sd->flags & SD_NUMA) {
1372f2cb1360SIngo Molnar 		sd->cache_nice_tries = 2;
1373f2cb1360SIngo Molnar 		sd->busy_idx = 3;
1374f2cb1360SIngo Molnar 		sd->idle_idx = 2;
1375f2cb1360SIngo Molnar 
13769c63e84dSMorten Rasmussen 		sd->flags &= ~SD_PREFER_SIBLING;
1377f2cb1360SIngo Molnar 		sd->flags |= SD_SERIALIZE;
1378f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1379f2cb1360SIngo Molnar 			sd->flags &= ~(SD_BALANCE_EXEC |
1380f2cb1360SIngo Molnar 				       SD_BALANCE_FORK |
1381f2cb1360SIngo Molnar 				       SD_WAKE_AFFINE);
1382f2cb1360SIngo Molnar 		}
1383f2cb1360SIngo Molnar 
1384f2cb1360SIngo Molnar #endif
1385f2cb1360SIngo Molnar 	} else {
1386f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1387f2cb1360SIngo Molnar 		sd->busy_idx = 2;
1388f2cb1360SIngo Molnar 		sd->idle_idx = 1;
1389f2cb1360SIngo Molnar 	}
1390f2cb1360SIngo Molnar 
1391f2cb1360SIngo Molnar 	/*
1392f2cb1360SIngo Molnar 	 * For all levels sharing cache; connect a sched_domain_shared
1393f2cb1360SIngo Molnar 	 * instance.
1394f2cb1360SIngo Molnar 	 */
1395f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1396f2cb1360SIngo Molnar 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1397f2cb1360SIngo Molnar 		atomic_inc(&sd->shared->ref);
1398f2cb1360SIngo Molnar 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1399f2cb1360SIngo Molnar 	}
1400f2cb1360SIngo Molnar 
1401f2cb1360SIngo Molnar 	sd->private = sdd;
1402f2cb1360SIngo Molnar 
1403f2cb1360SIngo Molnar 	return sd;
1404f2cb1360SIngo Molnar }
1405f2cb1360SIngo Molnar 
1406f2cb1360SIngo Molnar /*
1407f2cb1360SIngo Molnar  * Topology list, bottom-up.
1408f2cb1360SIngo Molnar  */
1409f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = {
1410f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT
1411f2cb1360SIngo Molnar 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1412f2cb1360SIngo Molnar #endif
1413f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC
1414f2cb1360SIngo Molnar 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1415f2cb1360SIngo Molnar #endif
1416f2cb1360SIngo Molnar 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1417f2cb1360SIngo Molnar 	{ NULL, },
1418f2cb1360SIngo Molnar };
1419f2cb1360SIngo Molnar 
1420f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology =
1421f2cb1360SIngo Molnar 	default_topology;
1422f2cb1360SIngo Molnar 
1423f2cb1360SIngo Molnar #define for_each_sd_topology(tl)			\
1424f2cb1360SIngo Molnar 	for (tl = sched_domain_topology; tl->mask; tl++)
1425f2cb1360SIngo Molnar 
1426f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl)
1427f2cb1360SIngo Molnar {
1428f2cb1360SIngo Molnar 	if (WARN_ON_ONCE(sched_smp_initialized))
1429f2cb1360SIngo Molnar 		return;
1430f2cb1360SIngo Molnar 
1431f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1432f2cb1360SIngo Molnar }
1433f2cb1360SIngo Molnar 
1434f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1435f2cb1360SIngo Molnar 
1436f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu)
1437f2cb1360SIngo Molnar {
1438f2cb1360SIngo Molnar 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1439f2cb1360SIngo Molnar }
1440f2cb1360SIngo Molnar 
1441f2cb1360SIngo Molnar static void sched_numa_warn(const char *str)
1442f2cb1360SIngo Molnar {
1443f2cb1360SIngo Molnar 	static int done = false;
1444f2cb1360SIngo Molnar 	int i,j;
1445f2cb1360SIngo Molnar 
1446f2cb1360SIngo Molnar 	if (done)
1447f2cb1360SIngo Molnar 		return;
1448f2cb1360SIngo Molnar 
1449f2cb1360SIngo Molnar 	done = true;
1450f2cb1360SIngo Molnar 
1451f2cb1360SIngo Molnar 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1452f2cb1360SIngo Molnar 
1453f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1454f2cb1360SIngo Molnar 		printk(KERN_WARNING "  ");
1455f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1456f2cb1360SIngo Molnar 			printk(KERN_CONT "%02d ", node_distance(i,j));
1457f2cb1360SIngo Molnar 		printk(KERN_CONT "\n");
1458f2cb1360SIngo Molnar 	}
1459f2cb1360SIngo Molnar 	printk(KERN_WARNING "\n");
1460f2cb1360SIngo Molnar }
1461f2cb1360SIngo Molnar 
1462f2cb1360SIngo Molnar bool find_numa_distance(int distance)
1463f2cb1360SIngo Molnar {
1464f2cb1360SIngo Molnar 	int i;
1465f2cb1360SIngo Molnar 
1466f2cb1360SIngo Molnar 	if (distance == node_distance(0, 0))
1467f2cb1360SIngo Molnar 		return true;
1468f2cb1360SIngo Molnar 
1469f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1470f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[i] == distance)
1471f2cb1360SIngo Molnar 			return true;
1472f2cb1360SIngo Molnar 	}
1473f2cb1360SIngo Molnar 
1474f2cb1360SIngo Molnar 	return false;
1475f2cb1360SIngo Molnar }
1476f2cb1360SIngo Molnar 
1477f2cb1360SIngo Molnar /*
1478f2cb1360SIngo Molnar  * A system can have three types of NUMA topology:
1479f2cb1360SIngo Molnar  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1480f2cb1360SIngo Molnar  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1481f2cb1360SIngo Molnar  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1482f2cb1360SIngo Molnar  *
1483f2cb1360SIngo Molnar  * The difference between a glueless mesh topology and a backplane
1484f2cb1360SIngo Molnar  * topology lies in whether communication between not directly
1485f2cb1360SIngo Molnar  * connected nodes goes through intermediary nodes (where programs
1486f2cb1360SIngo Molnar  * could run), or through backplane controllers. This affects
1487f2cb1360SIngo Molnar  * placement of programs.
1488f2cb1360SIngo Molnar  *
1489f2cb1360SIngo Molnar  * The type of topology can be discerned with the following tests:
1490f2cb1360SIngo Molnar  * - If the maximum distance between any nodes is 1 hop, the system
1491f2cb1360SIngo Molnar  *   is directly connected.
1492f2cb1360SIngo Molnar  * - If for two nodes A and B, located N > 1 hops away from each other,
1493f2cb1360SIngo Molnar  *   there is an intermediary node C, which is < N hops away from both
1494f2cb1360SIngo Molnar  *   nodes A and B, the system is a glueless mesh.
1495f2cb1360SIngo Molnar  */
1496f2cb1360SIngo Molnar static void init_numa_topology_type(void)
1497f2cb1360SIngo Molnar {
1498f2cb1360SIngo Molnar 	int a, b, c, n;
1499f2cb1360SIngo Molnar 
1500f2cb1360SIngo Molnar 	n = sched_max_numa_distance;
1501f2cb1360SIngo Molnar 
1502e5e96fafSSrikar Dronamraju 	if (sched_domains_numa_levels <= 2) {
1503f2cb1360SIngo Molnar 		sched_numa_topology_type = NUMA_DIRECT;
1504f2cb1360SIngo Molnar 		return;
1505f2cb1360SIngo Molnar 	}
1506f2cb1360SIngo Molnar 
1507f2cb1360SIngo Molnar 	for_each_online_node(a) {
1508f2cb1360SIngo Molnar 		for_each_online_node(b) {
1509f2cb1360SIngo Molnar 			/* Find two nodes furthest removed from each other. */
1510f2cb1360SIngo Molnar 			if (node_distance(a, b) < n)
1511f2cb1360SIngo Molnar 				continue;
1512f2cb1360SIngo Molnar 
1513f2cb1360SIngo Molnar 			/* Is there an intermediary node between a and b? */
1514f2cb1360SIngo Molnar 			for_each_online_node(c) {
1515f2cb1360SIngo Molnar 				if (node_distance(a, c) < n &&
1516f2cb1360SIngo Molnar 				    node_distance(b, c) < n) {
1517f2cb1360SIngo Molnar 					sched_numa_topology_type =
1518f2cb1360SIngo Molnar 							NUMA_GLUELESS_MESH;
1519f2cb1360SIngo Molnar 					return;
1520f2cb1360SIngo Molnar 				}
1521f2cb1360SIngo Molnar 			}
1522f2cb1360SIngo Molnar 
1523f2cb1360SIngo Molnar 			sched_numa_topology_type = NUMA_BACKPLANE;
1524f2cb1360SIngo Molnar 			return;
1525f2cb1360SIngo Molnar 		}
1526f2cb1360SIngo Molnar 	}
1527f2cb1360SIngo Molnar }
1528f2cb1360SIngo Molnar 
1529f2cb1360SIngo Molnar void sched_init_numa(void)
1530f2cb1360SIngo Molnar {
1531f2cb1360SIngo Molnar 	int next_distance, curr_distance = node_distance(0, 0);
1532f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1533f2cb1360SIngo Molnar 	int level = 0;
1534f2cb1360SIngo Molnar 	int i, j, k;
1535f2cb1360SIngo Molnar 
1536993f0b05SPeter Zijlstra 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1537f2cb1360SIngo Molnar 	if (!sched_domains_numa_distance)
1538f2cb1360SIngo Molnar 		return;
1539f2cb1360SIngo Molnar 
1540051f3ca0SSuravee Suthikulpanit 	/* Includes NUMA identity node at level 0. */
1541051f3ca0SSuravee Suthikulpanit 	sched_domains_numa_distance[level++] = curr_distance;
1542051f3ca0SSuravee Suthikulpanit 	sched_domains_numa_levels = level;
1543051f3ca0SSuravee Suthikulpanit 
1544f2cb1360SIngo Molnar 	/*
1545f2cb1360SIngo Molnar 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1546f2cb1360SIngo Molnar 	 * unique distances in the node_distance() table.
1547f2cb1360SIngo Molnar 	 *
1548f2cb1360SIngo Molnar 	 * Assumes node_distance(0,j) includes all distances in
1549f2cb1360SIngo Molnar 	 * node_distance(i,j) in order to avoid cubic time.
1550f2cb1360SIngo Molnar 	 */
1551f2cb1360SIngo Molnar 	next_distance = curr_distance;
1552f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1553f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1554f2cb1360SIngo Molnar 			for (k = 0; k < nr_node_ids; k++) {
1555f2cb1360SIngo Molnar 				int distance = node_distance(i, k);
1556f2cb1360SIngo Molnar 
1557f2cb1360SIngo Molnar 				if (distance > curr_distance &&
1558f2cb1360SIngo Molnar 				    (distance < next_distance ||
1559f2cb1360SIngo Molnar 				     next_distance == curr_distance))
1560f2cb1360SIngo Molnar 					next_distance = distance;
1561f2cb1360SIngo Molnar 
1562f2cb1360SIngo Molnar 				/*
1563f2cb1360SIngo Molnar 				 * While not a strong assumption it would be nice to know
1564f2cb1360SIngo Molnar 				 * about cases where if node A is connected to B, B is not
1565f2cb1360SIngo Molnar 				 * equally connected to A.
1566f2cb1360SIngo Molnar 				 */
1567f2cb1360SIngo Molnar 				if (sched_debug() && node_distance(k, i) != distance)
1568f2cb1360SIngo Molnar 					sched_numa_warn("Node-distance not symmetric");
1569f2cb1360SIngo Molnar 
1570f2cb1360SIngo Molnar 				if (sched_debug() && i && !find_numa_distance(distance))
1571f2cb1360SIngo Molnar 					sched_numa_warn("Node-0 not representative");
1572f2cb1360SIngo Molnar 			}
1573f2cb1360SIngo Molnar 			if (next_distance != curr_distance) {
1574f2cb1360SIngo Molnar 				sched_domains_numa_distance[level++] = next_distance;
1575f2cb1360SIngo Molnar 				sched_domains_numa_levels = level;
1576f2cb1360SIngo Molnar 				curr_distance = next_distance;
1577f2cb1360SIngo Molnar 			} else break;
1578f2cb1360SIngo Molnar 		}
1579f2cb1360SIngo Molnar 
1580f2cb1360SIngo Molnar 		/*
1581f2cb1360SIngo Molnar 		 * In case of sched_debug() we verify the above assumption.
1582f2cb1360SIngo Molnar 		 */
1583f2cb1360SIngo Molnar 		if (!sched_debug())
1584f2cb1360SIngo Molnar 			break;
1585f2cb1360SIngo Molnar 	}
1586f2cb1360SIngo Molnar 
1587f2cb1360SIngo Molnar 	/*
1588051f3ca0SSuravee Suthikulpanit 	 * 'level' contains the number of unique distances
1589f2cb1360SIngo Molnar 	 *
1590f2cb1360SIngo Molnar 	 * The sched_domains_numa_distance[] array includes the actual distance
1591f2cb1360SIngo Molnar 	 * numbers.
1592f2cb1360SIngo Molnar 	 */
1593f2cb1360SIngo Molnar 
1594f2cb1360SIngo Molnar 	/*
1595f2cb1360SIngo Molnar 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1596f2cb1360SIngo Molnar 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1597f2cb1360SIngo Molnar 	 * the array will contain less then 'level' members. This could be
1598f2cb1360SIngo Molnar 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1599f2cb1360SIngo Molnar 	 * in other functions.
1600f2cb1360SIngo Molnar 	 *
1601f2cb1360SIngo Molnar 	 * We reset it to 'level' at the end of this function.
1602f2cb1360SIngo Molnar 	 */
1603f2cb1360SIngo Molnar 	sched_domains_numa_levels = 0;
1604f2cb1360SIngo Molnar 
1605f2cb1360SIngo Molnar 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1606f2cb1360SIngo Molnar 	if (!sched_domains_numa_masks)
1607f2cb1360SIngo Molnar 		return;
1608f2cb1360SIngo Molnar 
1609f2cb1360SIngo Molnar 	/*
1610f2cb1360SIngo Molnar 	 * Now for each level, construct a mask per node which contains all
1611f2cb1360SIngo Molnar 	 * CPUs of nodes that are that many hops away from us.
1612f2cb1360SIngo Molnar 	 */
1613f2cb1360SIngo Molnar 	for (i = 0; i < level; i++) {
1614f2cb1360SIngo Molnar 		sched_domains_numa_masks[i] =
1615f2cb1360SIngo Molnar 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1616f2cb1360SIngo Molnar 		if (!sched_domains_numa_masks[i])
1617f2cb1360SIngo Molnar 			return;
1618f2cb1360SIngo Molnar 
1619f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1620f2cb1360SIngo Molnar 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1621f2cb1360SIngo Molnar 			if (!mask)
1622f2cb1360SIngo Molnar 				return;
1623f2cb1360SIngo Molnar 
1624f2cb1360SIngo Molnar 			sched_domains_numa_masks[i][j] = mask;
1625f2cb1360SIngo Molnar 
1626f2cb1360SIngo Molnar 			for_each_node(k) {
1627f2cb1360SIngo Molnar 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1628f2cb1360SIngo Molnar 					continue;
1629f2cb1360SIngo Molnar 
1630f2cb1360SIngo Molnar 				cpumask_or(mask, mask, cpumask_of_node(k));
1631f2cb1360SIngo Molnar 			}
1632f2cb1360SIngo Molnar 		}
1633f2cb1360SIngo Molnar 	}
1634f2cb1360SIngo Molnar 
1635f2cb1360SIngo Molnar 	/* Compute default topology size */
1636f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++);
1637f2cb1360SIngo Molnar 
1638f2cb1360SIngo Molnar 	tl = kzalloc((i + level + 1) *
1639f2cb1360SIngo Molnar 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1640f2cb1360SIngo Molnar 	if (!tl)
1641f2cb1360SIngo Molnar 		return;
1642f2cb1360SIngo Molnar 
1643f2cb1360SIngo Molnar 	/*
1644f2cb1360SIngo Molnar 	 * Copy the default topology bits..
1645f2cb1360SIngo Molnar 	 */
1646f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++)
1647f2cb1360SIngo Molnar 		tl[i] = sched_domain_topology[i];
1648f2cb1360SIngo Molnar 
1649f2cb1360SIngo Molnar 	/*
1650051f3ca0SSuravee Suthikulpanit 	 * Add the NUMA identity distance, aka single NODE.
1651051f3ca0SSuravee Suthikulpanit 	 */
1652051f3ca0SSuravee Suthikulpanit 	tl[i++] = (struct sched_domain_topology_level){
1653051f3ca0SSuravee Suthikulpanit 		.mask = sd_numa_mask,
1654051f3ca0SSuravee Suthikulpanit 		.numa_level = 0,
1655051f3ca0SSuravee Suthikulpanit 		SD_INIT_NAME(NODE)
1656051f3ca0SSuravee Suthikulpanit 	};
1657051f3ca0SSuravee Suthikulpanit 
1658051f3ca0SSuravee Suthikulpanit 	/*
1659f2cb1360SIngo Molnar 	 * .. and append 'j' levels of NUMA goodness.
1660f2cb1360SIngo Molnar 	 */
1661051f3ca0SSuravee Suthikulpanit 	for (j = 1; j < level; i++, j++) {
1662f2cb1360SIngo Molnar 		tl[i] = (struct sched_domain_topology_level){
1663f2cb1360SIngo Molnar 			.mask = sd_numa_mask,
1664f2cb1360SIngo Molnar 			.sd_flags = cpu_numa_flags,
1665f2cb1360SIngo Molnar 			.flags = SDTL_OVERLAP,
1666f2cb1360SIngo Molnar 			.numa_level = j,
1667f2cb1360SIngo Molnar 			SD_INIT_NAME(NUMA)
1668f2cb1360SIngo Molnar 		};
1669f2cb1360SIngo Molnar 	}
1670f2cb1360SIngo Molnar 
1671f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1672f2cb1360SIngo Molnar 
1673f2cb1360SIngo Molnar 	sched_domains_numa_levels = level;
1674f2cb1360SIngo Molnar 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1675f2cb1360SIngo Molnar 
1676f2cb1360SIngo Molnar 	init_numa_topology_type();
1677f2cb1360SIngo Molnar }
1678f2cb1360SIngo Molnar 
1679f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu)
1680f2cb1360SIngo Molnar {
1681f2cb1360SIngo Molnar 	int node = cpu_to_node(cpu);
1682f2cb1360SIngo Molnar 	int i, j;
1683f2cb1360SIngo Molnar 
1684f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1685f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1686f2cb1360SIngo Molnar 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1687f2cb1360SIngo Molnar 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1688f2cb1360SIngo Molnar 		}
1689f2cb1360SIngo Molnar 	}
1690f2cb1360SIngo Molnar }
1691f2cb1360SIngo Molnar 
1692f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu)
1693f2cb1360SIngo Molnar {
1694f2cb1360SIngo Molnar 	int i, j;
1695f2cb1360SIngo Molnar 
1696f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1697f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1698f2cb1360SIngo Molnar 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1699f2cb1360SIngo Molnar 	}
1700f2cb1360SIngo Molnar }
1701f2cb1360SIngo Molnar 
1702f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */
1703f2cb1360SIngo Molnar 
1704f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map)
1705f2cb1360SIngo Molnar {
1706f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1707f2cb1360SIngo Molnar 	int j;
1708f2cb1360SIngo Molnar 
1709f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1710f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1711f2cb1360SIngo Molnar 
1712f2cb1360SIngo Molnar 		sdd->sd = alloc_percpu(struct sched_domain *);
1713f2cb1360SIngo Molnar 		if (!sdd->sd)
1714f2cb1360SIngo Molnar 			return -ENOMEM;
1715f2cb1360SIngo Molnar 
1716f2cb1360SIngo Molnar 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1717f2cb1360SIngo Molnar 		if (!sdd->sds)
1718f2cb1360SIngo Molnar 			return -ENOMEM;
1719f2cb1360SIngo Molnar 
1720f2cb1360SIngo Molnar 		sdd->sg = alloc_percpu(struct sched_group *);
1721f2cb1360SIngo Molnar 		if (!sdd->sg)
1722f2cb1360SIngo Molnar 			return -ENOMEM;
1723f2cb1360SIngo Molnar 
1724f2cb1360SIngo Molnar 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1725f2cb1360SIngo Molnar 		if (!sdd->sgc)
1726f2cb1360SIngo Molnar 			return -ENOMEM;
1727f2cb1360SIngo Molnar 
1728f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1729f2cb1360SIngo Molnar 			struct sched_domain *sd;
1730f2cb1360SIngo Molnar 			struct sched_domain_shared *sds;
1731f2cb1360SIngo Molnar 			struct sched_group *sg;
1732f2cb1360SIngo Molnar 			struct sched_group_capacity *sgc;
1733f2cb1360SIngo Molnar 
1734f2cb1360SIngo Molnar 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1735f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1736f2cb1360SIngo Molnar 			if (!sd)
1737f2cb1360SIngo Molnar 				return -ENOMEM;
1738f2cb1360SIngo Molnar 
1739f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sd, j) = sd;
1740f2cb1360SIngo Molnar 
1741f2cb1360SIngo Molnar 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1742f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1743f2cb1360SIngo Molnar 			if (!sds)
1744f2cb1360SIngo Molnar 				return -ENOMEM;
1745f2cb1360SIngo Molnar 
1746f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sds, j) = sds;
1747f2cb1360SIngo Molnar 
1748f2cb1360SIngo Molnar 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1749f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1750f2cb1360SIngo Molnar 			if (!sg)
1751f2cb1360SIngo Molnar 				return -ENOMEM;
1752f2cb1360SIngo Molnar 
1753f2cb1360SIngo Molnar 			sg->next = sg;
1754f2cb1360SIngo Molnar 
1755f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sg, j) = sg;
1756f2cb1360SIngo Molnar 
1757f2cb1360SIngo Molnar 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1758f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1759f2cb1360SIngo Molnar 			if (!sgc)
1760f2cb1360SIngo Molnar 				return -ENOMEM;
1761f2cb1360SIngo Molnar 
1762005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG
1763005f874dSPeter Zijlstra 			sgc->id = j;
1764005f874dSPeter Zijlstra #endif
1765005f874dSPeter Zijlstra 
1766f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1767f2cb1360SIngo Molnar 		}
1768f2cb1360SIngo Molnar 	}
1769f2cb1360SIngo Molnar 
1770f2cb1360SIngo Molnar 	return 0;
1771f2cb1360SIngo Molnar }
1772f2cb1360SIngo Molnar 
1773f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map)
1774f2cb1360SIngo Molnar {
1775f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1776f2cb1360SIngo Molnar 	int j;
1777f2cb1360SIngo Molnar 
1778f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1779f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1780f2cb1360SIngo Molnar 
1781f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1782f2cb1360SIngo Molnar 			struct sched_domain *sd;
1783f2cb1360SIngo Molnar 
1784f2cb1360SIngo Molnar 			if (sdd->sd) {
1785f2cb1360SIngo Molnar 				sd = *per_cpu_ptr(sdd->sd, j);
1786f2cb1360SIngo Molnar 				if (sd && (sd->flags & SD_OVERLAP))
1787f2cb1360SIngo Molnar 					free_sched_groups(sd->groups, 0);
1788f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sd, j));
1789f2cb1360SIngo Molnar 			}
1790f2cb1360SIngo Molnar 
1791f2cb1360SIngo Molnar 			if (sdd->sds)
1792f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sds, j));
1793f2cb1360SIngo Molnar 			if (sdd->sg)
1794f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sg, j));
1795f2cb1360SIngo Molnar 			if (sdd->sgc)
1796f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sgc, j));
1797f2cb1360SIngo Molnar 		}
1798f2cb1360SIngo Molnar 		free_percpu(sdd->sd);
1799f2cb1360SIngo Molnar 		sdd->sd = NULL;
1800f2cb1360SIngo Molnar 		free_percpu(sdd->sds);
1801f2cb1360SIngo Molnar 		sdd->sds = NULL;
1802f2cb1360SIngo Molnar 		free_percpu(sdd->sg);
1803f2cb1360SIngo Molnar 		sdd->sg = NULL;
1804f2cb1360SIngo Molnar 		free_percpu(sdd->sgc);
1805f2cb1360SIngo Molnar 		sdd->sgc = NULL;
1806f2cb1360SIngo Molnar 	}
1807f2cb1360SIngo Molnar }
1808f2cb1360SIngo Molnar 
1809181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1810f2cb1360SIngo Molnar 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
181105484e09SMorten Rasmussen 		struct sched_domain *child, int dflags, int cpu)
1812f2cb1360SIngo Molnar {
181305484e09SMorten Rasmussen 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1814f2cb1360SIngo Molnar 
1815f2cb1360SIngo Molnar 	if (child) {
1816f2cb1360SIngo Molnar 		sd->level = child->level + 1;
1817f2cb1360SIngo Molnar 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1818f2cb1360SIngo Molnar 		child->parent = sd;
1819f2cb1360SIngo Molnar 
1820f2cb1360SIngo Molnar 		if (!cpumask_subset(sched_domain_span(child),
1821f2cb1360SIngo Molnar 				    sched_domain_span(sd))) {
1822f2cb1360SIngo Molnar 			pr_err("BUG: arch topology borken\n");
1823f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1824f2cb1360SIngo Molnar 			pr_err("     the %s domain not a subset of the %s domain\n",
1825f2cb1360SIngo Molnar 					child->name, sd->name);
1826f2cb1360SIngo Molnar #endif
182797fb7a0aSIngo Molnar 			/* Fixup, ensure @sd has at least @child CPUs. */
1828f2cb1360SIngo Molnar 			cpumask_or(sched_domain_span(sd),
1829f2cb1360SIngo Molnar 				   sched_domain_span(sd),
1830f2cb1360SIngo Molnar 				   sched_domain_span(child));
1831f2cb1360SIngo Molnar 		}
1832f2cb1360SIngo Molnar 
1833f2cb1360SIngo Molnar 	}
1834f2cb1360SIngo Molnar 	set_domain_attribute(sd, attr);
1835f2cb1360SIngo Molnar 
1836f2cb1360SIngo Molnar 	return sd;
1837f2cb1360SIngo Molnar }
1838f2cb1360SIngo Molnar 
1839f2cb1360SIngo Molnar /*
184005484e09SMorten Rasmussen  * Find the sched_domain_topology_level where all CPU capacities are visible
184105484e09SMorten Rasmussen  * for all CPUs.
184205484e09SMorten Rasmussen  */
184305484e09SMorten Rasmussen static struct sched_domain_topology_level
184405484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map)
184505484e09SMorten Rasmussen {
184605484e09SMorten Rasmussen 	int i, j, asym_level = 0;
184705484e09SMorten Rasmussen 	bool asym = false;
184805484e09SMorten Rasmussen 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
184905484e09SMorten Rasmussen 	unsigned long cap;
185005484e09SMorten Rasmussen 
185105484e09SMorten Rasmussen 	/* Is there any asymmetry? */
185205484e09SMorten Rasmussen 	cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
185305484e09SMorten Rasmussen 
185405484e09SMorten Rasmussen 	for_each_cpu(i, cpu_map) {
185505484e09SMorten Rasmussen 		if (arch_scale_cpu_capacity(NULL, i) != cap) {
185605484e09SMorten Rasmussen 			asym = true;
185705484e09SMorten Rasmussen 			break;
185805484e09SMorten Rasmussen 		}
185905484e09SMorten Rasmussen 	}
186005484e09SMorten Rasmussen 
186105484e09SMorten Rasmussen 	if (!asym)
186205484e09SMorten Rasmussen 		return NULL;
186305484e09SMorten Rasmussen 
186405484e09SMorten Rasmussen 	/*
186505484e09SMorten Rasmussen 	 * Examine topology from all CPU's point of views to detect the lowest
186605484e09SMorten Rasmussen 	 * sched_domain_topology_level where a highest capacity CPU is visible
186705484e09SMorten Rasmussen 	 * to everyone.
186805484e09SMorten Rasmussen 	 */
186905484e09SMorten Rasmussen 	for_each_cpu(i, cpu_map) {
187005484e09SMorten Rasmussen 		unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
187105484e09SMorten Rasmussen 		int tl_id = 0;
187205484e09SMorten Rasmussen 
187305484e09SMorten Rasmussen 		for_each_sd_topology(tl) {
187405484e09SMorten Rasmussen 			if (tl_id < asym_level)
187505484e09SMorten Rasmussen 				goto next_level;
187605484e09SMorten Rasmussen 
187705484e09SMorten Rasmussen 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
187805484e09SMorten Rasmussen 				unsigned long capacity;
187905484e09SMorten Rasmussen 
188005484e09SMorten Rasmussen 				capacity = arch_scale_cpu_capacity(NULL, j);
188105484e09SMorten Rasmussen 
188205484e09SMorten Rasmussen 				if (capacity <= max_capacity)
188305484e09SMorten Rasmussen 					continue;
188405484e09SMorten Rasmussen 
188505484e09SMorten Rasmussen 				max_capacity = capacity;
188605484e09SMorten Rasmussen 				asym_level = tl_id;
188705484e09SMorten Rasmussen 				asym_tl = tl;
188805484e09SMorten Rasmussen 			}
188905484e09SMorten Rasmussen next_level:
189005484e09SMorten Rasmussen 			tl_id++;
189105484e09SMorten Rasmussen 		}
189205484e09SMorten Rasmussen 	}
189305484e09SMorten Rasmussen 
189405484e09SMorten Rasmussen 	return asym_tl;
189505484e09SMorten Rasmussen }
189605484e09SMorten Rasmussen 
189705484e09SMorten Rasmussen 
189805484e09SMorten Rasmussen /*
1899f2cb1360SIngo Molnar  * Build sched domains for a given set of CPUs and attach the sched domains
1900f2cb1360SIngo Molnar  * to the individual CPUs
1901f2cb1360SIngo Molnar  */
1902f2cb1360SIngo Molnar static int
1903f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1904f2cb1360SIngo Molnar {
1905f2cb1360SIngo Molnar 	enum s_alloc alloc_state;
1906f2cb1360SIngo Molnar 	struct sched_domain *sd;
1907f2cb1360SIngo Molnar 	struct s_data d;
1908f2cb1360SIngo Molnar 	struct rq *rq = NULL;
1909f2cb1360SIngo Molnar 	int i, ret = -ENOMEM;
191005484e09SMorten Rasmussen 	struct sched_domain_topology_level *tl_asym;
1911df054e84SMorten Rasmussen 	bool has_asym = false;
1912f2cb1360SIngo Molnar 
1913f2cb1360SIngo Molnar 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1914f2cb1360SIngo Molnar 	if (alloc_state != sa_rootdomain)
1915f2cb1360SIngo Molnar 		goto error;
1916f2cb1360SIngo Molnar 
191705484e09SMorten Rasmussen 	tl_asym = asym_cpu_capacity_level(cpu_map);
191805484e09SMorten Rasmussen 
1919f2cb1360SIngo Molnar 	/* Set up domains for CPUs specified by the cpu_map: */
1920f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1921f2cb1360SIngo Molnar 		struct sched_domain_topology_level *tl;
1922f2cb1360SIngo Molnar 
1923f2cb1360SIngo Molnar 		sd = NULL;
1924f2cb1360SIngo Molnar 		for_each_sd_topology(tl) {
192505484e09SMorten Rasmussen 			int dflags = 0;
192605484e09SMorten Rasmussen 
1927df054e84SMorten Rasmussen 			if (tl == tl_asym) {
192805484e09SMorten Rasmussen 				dflags |= SD_ASYM_CPUCAPACITY;
1929df054e84SMorten Rasmussen 				has_asym = true;
1930df054e84SMorten Rasmussen 			}
193105484e09SMorten Rasmussen 
193205484e09SMorten Rasmussen 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
193305484e09SMorten Rasmussen 
1934f2cb1360SIngo Molnar 			if (tl == sched_domain_topology)
1935f2cb1360SIngo Molnar 				*per_cpu_ptr(d.sd, i) = sd;
1936af85596cSPeter Zijlstra 			if (tl->flags & SDTL_OVERLAP)
1937f2cb1360SIngo Molnar 				sd->flags |= SD_OVERLAP;
1938f2cb1360SIngo Molnar 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1939f2cb1360SIngo Molnar 				break;
1940f2cb1360SIngo Molnar 		}
1941f2cb1360SIngo Molnar 	}
1942f2cb1360SIngo Molnar 
1943f2cb1360SIngo Molnar 	/* Build the groups for the domains */
1944f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1945f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1946f2cb1360SIngo Molnar 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1947f2cb1360SIngo Molnar 			if (sd->flags & SD_OVERLAP) {
1948f2cb1360SIngo Molnar 				if (build_overlap_sched_groups(sd, i))
1949f2cb1360SIngo Molnar 					goto error;
1950f2cb1360SIngo Molnar 			} else {
1951f2cb1360SIngo Molnar 				if (build_sched_groups(sd, i))
1952f2cb1360SIngo Molnar 					goto error;
1953f2cb1360SIngo Molnar 			}
1954f2cb1360SIngo Molnar 		}
1955f2cb1360SIngo Molnar 	}
1956f2cb1360SIngo Molnar 
1957f2cb1360SIngo Molnar 	/* Calculate CPU capacity for physical packages and nodes */
1958f2cb1360SIngo Molnar 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1959f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, cpu_map))
1960f2cb1360SIngo Molnar 			continue;
1961f2cb1360SIngo Molnar 
1962f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1963f2cb1360SIngo Molnar 			claim_allocations(i, sd);
1964f2cb1360SIngo Molnar 			init_sched_groups_capacity(i, sd);
1965f2cb1360SIngo Molnar 		}
1966f2cb1360SIngo Molnar 	}
1967f2cb1360SIngo Molnar 
1968f2cb1360SIngo Molnar 	/* Attach the domains */
1969f2cb1360SIngo Molnar 	rcu_read_lock();
1970f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1971f2cb1360SIngo Molnar 		rq = cpu_rq(i);
1972f2cb1360SIngo Molnar 		sd = *per_cpu_ptr(d.sd, i);
1973f2cb1360SIngo Molnar 
1974f2cb1360SIngo Molnar 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1975f2cb1360SIngo Molnar 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1976f2cb1360SIngo Molnar 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1977f2cb1360SIngo Molnar 
1978f2cb1360SIngo Molnar 		cpu_attach_domain(sd, d.rd, i);
1979f2cb1360SIngo Molnar 	}
1980f2cb1360SIngo Molnar 	rcu_read_unlock();
1981f2cb1360SIngo Molnar 
1982df054e84SMorten Rasmussen 	if (has_asym)
1983df054e84SMorten Rasmussen 		static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
1984df054e84SMorten Rasmussen 
1985f2cb1360SIngo Molnar 	if (rq && sched_debug_enabled) {
1986bf5015a5SJuri Lelli 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1987f2cb1360SIngo Molnar 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1988f2cb1360SIngo Molnar 	}
1989f2cb1360SIngo Molnar 
1990f2cb1360SIngo Molnar 	ret = 0;
1991f2cb1360SIngo Molnar error:
1992f2cb1360SIngo Molnar 	__free_domain_allocs(&d, alloc_state, cpu_map);
199397fb7a0aSIngo Molnar 
1994f2cb1360SIngo Molnar 	return ret;
1995f2cb1360SIngo Molnar }
1996f2cb1360SIngo Molnar 
1997f2cb1360SIngo Molnar /* Current sched domains: */
1998f2cb1360SIngo Molnar static cpumask_var_t			*doms_cur;
1999f2cb1360SIngo Molnar 
2000f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */
2001f2cb1360SIngo Molnar static int				ndoms_cur;
2002f2cb1360SIngo Molnar 
2003f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */
2004f2cb1360SIngo Molnar static struct sched_domain_attr		*dattr_cur;
2005f2cb1360SIngo Molnar 
2006f2cb1360SIngo Molnar /*
2007f2cb1360SIngo Molnar  * Special case: If a kmalloc() of a doms_cur partition (array of
2008f2cb1360SIngo Molnar  * cpumask) fails, then fallback to a single sched domain,
2009f2cb1360SIngo Molnar  * as determined by the single cpumask fallback_doms.
2010f2cb1360SIngo Molnar  */
20118d5dc512SPeter Zijlstra static cpumask_var_t			fallback_doms;
2012f2cb1360SIngo Molnar 
2013f2cb1360SIngo Molnar /*
2014f2cb1360SIngo Molnar  * arch_update_cpu_topology lets virtualized architectures update the
2015f2cb1360SIngo Molnar  * CPU core maps. It is supposed to return 1 if the topology changed
2016f2cb1360SIngo Molnar  * or 0 if it stayed the same.
2017f2cb1360SIngo Molnar  */
2018f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void)
2019f2cb1360SIngo Molnar {
2020f2cb1360SIngo Molnar 	return 0;
2021f2cb1360SIngo Molnar }
2022f2cb1360SIngo Molnar 
2023f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2024f2cb1360SIngo Molnar {
2025f2cb1360SIngo Molnar 	int i;
2026f2cb1360SIngo Molnar 	cpumask_var_t *doms;
2027f2cb1360SIngo Molnar 
20286da2ec56SKees Cook 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2029f2cb1360SIngo Molnar 	if (!doms)
2030f2cb1360SIngo Molnar 		return NULL;
2031f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++) {
2032f2cb1360SIngo Molnar 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2033f2cb1360SIngo Molnar 			free_sched_domains(doms, i);
2034f2cb1360SIngo Molnar 			return NULL;
2035f2cb1360SIngo Molnar 		}
2036f2cb1360SIngo Molnar 	}
2037f2cb1360SIngo Molnar 	return doms;
2038f2cb1360SIngo Molnar }
2039f2cb1360SIngo Molnar 
2040f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2041f2cb1360SIngo Molnar {
2042f2cb1360SIngo Molnar 	unsigned int i;
2043f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++)
2044f2cb1360SIngo Molnar 		free_cpumask_var(doms[i]);
2045f2cb1360SIngo Molnar 	kfree(doms);
2046f2cb1360SIngo Molnar }
2047f2cb1360SIngo Molnar 
2048f2cb1360SIngo Molnar /*
2049f2cb1360SIngo Molnar  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
2050f2cb1360SIngo Molnar  * For now this just excludes isolated CPUs, but could be used to
2051f2cb1360SIngo Molnar  * exclude other special cases in the future.
2052f2cb1360SIngo Molnar  */
20538d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map)
2054f2cb1360SIngo Molnar {
2055f2cb1360SIngo Molnar 	int err;
2056f2cb1360SIngo Molnar 
20578d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
20581676330eSPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
20598d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
20608d5dc512SPeter Zijlstra 
2061f2cb1360SIngo Molnar 	arch_update_cpu_topology();
2062f2cb1360SIngo Molnar 	ndoms_cur = 1;
2063f2cb1360SIngo Molnar 	doms_cur = alloc_sched_domains(ndoms_cur);
2064f2cb1360SIngo Molnar 	if (!doms_cur)
2065f2cb1360SIngo Molnar 		doms_cur = &fallback_doms;
2066edb93821SFrederic Weisbecker 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2067f2cb1360SIngo Molnar 	err = build_sched_domains(doms_cur[0], NULL);
2068f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
2069f2cb1360SIngo Molnar 
2070f2cb1360SIngo Molnar 	return err;
2071f2cb1360SIngo Molnar }
2072f2cb1360SIngo Molnar 
2073f2cb1360SIngo Molnar /*
2074f2cb1360SIngo Molnar  * Detach sched domains from a group of CPUs specified in cpu_map
2075f2cb1360SIngo Molnar  * These CPUs will now be attached to the NULL domain
2076f2cb1360SIngo Molnar  */
2077f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map)
2078f2cb1360SIngo Molnar {
2079f2cb1360SIngo Molnar 	int i;
2080f2cb1360SIngo Molnar 
2081f2cb1360SIngo Molnar 	rcu_read_lock();
2082f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map)
2083f2cb1360SIngo Molnar 		cpu_attach_domain(NULL, &def_root_domain, i);
2084f2cb1360SIngo Molnar 	rcu_read_unlock();
2085f2cb1360SIngo Molnar }
2086f2cb1360SIngo Molnar 
2087f2cb1360SIngo Molnar /* handle null as "default" */
2088f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2089f2cb1360SIngo Molnar 			struct sched_domain_attr *new, int idx_new)
2090f2cb1360SIngo Molnar {
2091f2cb1360SIngo Molnar 	struct sched_domain_attr tmp;
2092f2cb1360SIngo Molnar 
2093f2cb1360SIngo Molnar 	/* Fast path: */
2094f2cb1360SIngo Molnar 	if (!new && !cur)
2095f2cb1360SIngo Molnar 		return 1;
2096f2cb1360SIngo Molnar 
2097f2cb1360SIngo Molnar 	tmp = SD_ATTR_INIT;
209897fb7a0aSIngo Molnar 
2099f2cb1360SIngo Molnar 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2100f2cb1360SIngo Molnar 			new ? (new + idx_new) : &tmp,
2101f2cb1360SIngo Molnar 			sizeof(struct sched_domain_attr));
2102f2cb1360SIngo Molnar }
2103f2cb1360SIngo Molnar 
2104f2cb1360SIngo Molnar /*
2105f2cb1360SIngo Molnar  * Partition sched domains as specified by the 'ndoms_new'
2106f2cb1360SIngo Molnar  * cpumasks in the array doms_new[] of cpumasks. This compares
2107f2cb1360SIngo Molnar  * doms_new[] to the current sched domain partitioning, doms_cur[].
2108f2cb1360SIngo Molnar  * It destroys each deleted domain and builds each new domain.
2109f2cb1360SIngo Molnar  *
2110f2cb1360SIngo Molnar  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2111f2cb1360SIngo Molnar  * The masks don't intersect (don't overlap.) We should setup one
2112f2cb1360SIngo Molnar  * sched domain for each mask. CPUs not in any of the cpumasks will
2113f2cb1360SIngo Molnar  * not be load balanced. If the same cpumask appears both in the
2114f2cb1360SIngo Molnar  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2115f2cb1360SIngo Molnar  * it as it is.
2116f2cb1360SIngo Molnar  *
2117f2cb1360SIngo Molnar  * The passed in 'doms_new' should be allocated using
2118f2cb1360SIngo Molnar  * alloc_sched_domains.  This routine takes ownership of it and will
2119f2cb1360SIngo Molnar  * free_sched_domains it when done with it. If the caller failed the
2120f2cb1360SIngo Molnar  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2121f2cb1360SIngo Molnar  * and partition_sched_domains() will fallback to the single partition
2122f2cb1360SIngo Molnar  * 'fallback_doms', it also forces the domains to be rebuilt.
2123f2cb1360SIngo Molnar  *
2124f2cb1360SIngo Molnar  * If doms_new == NULL it will be replaced with cpu_online_mask.
2125f2cb1360SIngo Molnar  * ndoms_new == 0 is a special case for destroying existing domains,
2126f2cb1360SIngo Molnar  * and it will not create the default domain.
2127f2cb1360SIngo Molnar  *
2128f2cb1360SIngo Molnar  * Call with hotplug lock held
2129f2cb1360SIngo Molnar  */
2130f2cb1360SIngo Molnar void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2131f2cb1360SIngo Molnar 			     struct sched_domain_attr *dattr_new)
2132f2cb1360SIngo Molnar {
21331f74de87SQuentin Perret 	bool __maybe_unused has_eas = false;
2134f2cb1360SIngo Molnar 	int i, j, n;
2135f2cb1360SIngo Molnar 	int new_topology;
2136f2cb1360SIngo Molnar 
2137f2cb1360SIngo Molnar 	mutex_lock(&sched_domains_mutex);
2138f2cb1360SIngo Molnar 
2139f2cb1360SIngo Molnar 	/* Always unregister in case we don't destroy any domains: */
2140f2cb1360SIngo Molnar 	unregister_sched_domain_sysctl();
2141f2cb1360SIngo Molnar 
2142f2cb1360SIngo Molnar 	/* Let the architecture update CPU core mappings: */
2143f2cb1360SIngo Molnar 	new_topology = arch_update_cpu_topology();
2144f2cb1360SIngo Molnar 
214509e0dd8eSPeter Zijlstra 	if (!doms_new) {
214609e0dd8eSPeter Zijlstra 		WARN_ON_ONCE(dattr_new);
214709e0dd8eSPeter Zijlstra 		n = 0;
214809e0dd8eSPeter Zijlstra 		doms_new = alloc_sched_domains(1);
214909e0dd8eSPeter Zijlstra 		if (doms_new) {
215009e0dd8eSPeter Zijlstra 			n = 1;
2151edb93821SFrederic Weisbecker 			cpumask_and(doms_new[0], cpu_active_mask,
2152edb93821SFrederic Weisbecker 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
215309e0dd8eSPeter Zijlstra 		}
215409e0dd8eSPeter Zijlstra 	} else {
215509e0dd8eSPeter Zijlstra 		n = ndoms_new;
215609e0dd8eSPeter Zijlstra 	}
2157f2cb1360SIngo Molnar 
2158f2cb1360SIngo Molnar 	/* Destroy deleted domains: */
2159f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_cur; i++) {
2160f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
21616aa140faSQuentin Perret 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
21626aa140faSQuentin Perret 			    dattrs_equal(dattr_cur, i, dattr_new, j))
2163f2cb1360SIngo Molnar 				goto match1;
2164f2cb1360SIngo Molnar 		}
2165f2cb1360SIngo Molnar 		/* No match - a current sched domain not in new doms_new[] */
2166f2cb1360SIngo Molnar 		detach_destroy_domains(doms_cur[i]);
2167f2cb1360SIngo Molnar match1:
2168f2cb1360SIngo Molnar 		;
2169f2cb1360SIngo Molnar 	}
2170f2cb1360SIngo Molnar 
2171f2cb1360SIngo Molnar 	n = ndoms_cur;
217209e0dd8eSPeter Zijlstra 	if (!doms_new) {
2173f2cb1360SIngo Molnar 		n = 0;
2174f2cb1360SIngo Molnar 		doms_new = &fallback_doms;
2175edb93821SFrederic Weisbecker 		cpumask_and(doms_new[0], cpu_active_mask,
2176edb93821SFrederic Weisbecker 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2177f2cb1360SIngo Molnar 	}
2178f2cb1360SIngo Molnar 
2179f2cb1360SIngo Molnar 	/* Build new domains: */
2180f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_new; i++) {
2181f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
21826aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
21836aa140faSQuentin Perret 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2184f2cb1360SIngo Molnar 				goto match2;
2185f2cb1360SIngo Molnar 		}
2186f2cb1360SIngo Molnar 		/* No match - add a new doms_new */
2187f2cb1360SIngo Molnar 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2188f2cb1360SIngo Molnar match2:
2189f2cb1360SIngo Molnar 		;
2190f2cb1360SIngo Molnar 	}
2191f2cb1360SIngo Molnar 
2192531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
21936aa140faSQuentin Perret 	/* Build perf. domains: */
21946aa140faSQuentin Perret 	for (i = 0; i < ndoms_new; i++) {
2195531b5c9fSQuentin Perret 		for (j = 0; j < n && !sched_energy_update; j++) {
21966aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
21971f74de87SQuentin Perret 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
21981f74de87SQuentin Perret 				has_eas = true;
21996aa140faSQuentin Perret 				goto match3;
22006aa140faSQuentin Perret 			}
22011f74de87SQuentin Perret 		}
22026aa140faSQuentin Perret 		/* No match - add perf. domains for a new rd */
22031f74de87SQuentin Perret 		has_eas |= build_perf_domains(doms_new[i]);
22046aa140faSQuentin Perret match3:
22056aa140faSQuentin Perret 		;
22066aa140faSQuentin Perret 	}
22071f74de87SQuentin Perret 	sched_energy_set(has_eas);
22086aa140faSQuentin Perret #endif
22096aa140faSQuentin Perret 
2210f2cb1360SIngo Molnar 	/* Remember the new sched domains: */
2211f2cb1360SIngo Molnar 	if (doms_cur != &fallback_doms)
2212f2cb1360SIngo Molnar 		free_sched_domains(doms_cur, ndoms_cur);
2213f2cb1360SIngo Molnar 
2214f2cb1360SIngo Molnar 	kfree(dattr_cur);
2215f2cb1360SIngo Molnar 	doms_cur = doms_new;
2216f2cb1360SIngo Molnar 	dattr_cur = dattr_new;
2217f2cb1360SIngo Molnar 	ndoms_cur = ndoms_new;
2218f2cb1360SIngo Molnar 
2219f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
2220f2cb1360SIngo Molnar 
2221f2cb1360SIngo Molnar 	mutex_unlock(&sched_domains_mutex);
2222f2cb1360SIngo Molnar }
2223