1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0 2f2cb1360SIngo Molnar /* 3f2cb1360SIngo Molnar * Scheduler topology setup/handling methods 4f2cb1360SIngo Molnar */ 5f2cb1360SIngo Molnar #include "sched.h" 6f2cb1360SIngo Molnar 7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex); 8f2cb1360SIngo Molnar 9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */ 10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask; 11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2; 12f2cb1360SIngo Molnar 13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 14f2cb1360SIngo Molnar 15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str) 16f2cb1360SIngo Molnar { 179469eb01SPeter Zijlstra sched_debug_enabled = true; 18f2cb1360SIngo Molnar 19f2cb1360SIngo Molnar return 0; 20f2cb1360SIngo Molnar } 21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup); 22f2cb1360SIngo Molnar 23f2cb1360SIngo Molnar static inline bool sched_debug(void) 24f2cb1360SIngo Molnar { 25f2cb1360SIngo Molnar return sched_debug_enabled; 26f2cb1360SIngo Molnar } 27f2cb1360SIngo Molnar 28f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 29f2cb1360SIngo Molnar struct cpumask *groupmask) 30f2cb1360SIngo Molnar { 31f2cb1360SIngo Molnar struct sched_group *group = sd->groups; 32f2cb1360SIngo Molnar 33f2cb1360SIngo Molnar cpumask_clear(groupmask); 34f2cb1360SIngo Molnar 35005f874dSPeter Zijlstra printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 36f2cb1360SIngo Molnar 37f2cb1360SIngo Molnar if (!(sd->flags & SD_LOAD_BALANCE)) { 38f2cb1360SIngo Molnar printk("does not load-balance\n"); 39f2cb1360SIngo Molnar if (sd->parent) 4097fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); 41f2cb1360SIngo Molnar return -1; 42f2cb1360SIngo Molnar } 43f2cb1360SIngo Molnar 44005f874dSPeter Zijlstra printk(KERN_CONT "span=%*pbl level=%s\n", 45f2cb1360SIngo Molnar cpumask_pr_args(sched_domain_span(sd)), sd->name); 46f2cb1360SIngo Molnar 47f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 4897fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49f2cb1360SIngo Molnar } 506cd0c583SYi Wang if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 5197fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52f2cb1360SIngo Molnar } 53f2cb1360SIngo Molnar 54f2cb1360SIngo Molnar printk(KERN_DEBUG "%*s groups:", level + 1, ""); 55f2cb1360SIngo Molnar do { 56f2cb1360SIngo Molnar if (!group) { 57f2cb1360SIngo Molnar printk("\n"); 58f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: group is NULL\n"); 59f2cb1360SIngo Molnar break; 60f2cb1360SIngo Molnar } 61f2cb1360SIngo Molnar 62ae4df9d6SPeter Zijlstra if (!cpumask_weight(sched_group_span(group))) { 63f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 64f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: empty group\n"); 65f2cb1360SIngo Molnar break; 66f2cb1360SIngo Molnar } 67f2cb1360SIngo Molnar 68f2cb1360SIngo Molnar if (!(sd->flags & SD_OVERLAP) && 69ae4df9d6SPeter Zijlstra cpumask_intersects(groupmask, sched_group_span(group))) { 70f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 71f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: repeated CPUs\n"); 72f2cb1360SIngo Molnar break; 73f2cb1360SIngo Molnar } 74f2cb1360SIngo Molnar 75ae4df9d6SPeter Zijlstra cpumask_or(groupmask, groupmask, sched_group_span(group)); 76f2cb1360SIngo Molnar 77005f874dSPeter Zijlstra printk(KERN_CONT " %d:{ span=%*pbl", 78005f874dSPeter Zijlstra group->sgc->id, 79ae4df9d6SPeter Zijlstra cpumask_pr_args(sched_group_span(group))); 80b0151c25SPeter Zijlstra 81af218122SPeter Zijlstra if ((sd->flags & SD_OVERLAP) && 82ae4df9d6SPeter Zijlstra !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 83005f874dSPeter Zijlstra printk(KERN_CONT " mask=%*pbl", 84e5c14b1fSPeter Zijlstra cpumask_pr_args(group_balance_mask(group))); 85b0151c25SPeter Zijlstra } 86b0151c25SPeter Zijlstra 87005f874dSPeter Zijlstra if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 88005f874dSPeter Zijlstra printk(KERN_CONT " cap=%lu", group->sgc->capacity); 89f2cb1360SIngo Molnar 90a420b063SPeter Zijlstra if (group == sd->groups && sd->child && 91a420b063SPeter Zijlstra !cpumask_equal(sched_domain_span(sd->child), 92ae4df9d6SPeter Zijlstra sched_group_span(group))) { 93a420b063SPeter Zijlstra printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 94a420b063SPeter Zijlstra } 95a420b063SPeter Zijlstra 96005f874dSPeter Zijlstra printk(KERN_CONT " }"); 97005f874dSPeter Zijlstra 98f2cb1360SIngo Molnar group = group->next; 99b0151c25SPeter Zijlstra 100b0151c25SPeter Zijlstra if (group != sd->groups) 101b0151c25SPeter Zijlstra printk(KERN_CONT ","); 102b0151c25SPeter Zijlstra 103f2cb1360SIngo Molnar } while (group != sd->groups); 104f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 105f2cb1360SIngo Molnar 106f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), groupmask)) 107f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 108f2cb1360SIngo Molnar 109f2cb1360SIngo Molnar if (sd->parent && 110f2cb1360SIngo Molnar !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 11197fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 112f2cb1360SIngo Molnar return 0; 113f2cb1360SIngo Molnar } 114f2cb1360SIngo Molnar 115f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu) 116f2cb1360SIngo Molnar { 117f2cb1360SIngo Molnar int level = 0; 118f2cb1360SIngo Molnar 119f2cb1360SIngo Molnar if (!sched_debug_enabled) 120f2cb1360SIngo Molnar return; 121f2cb1360SIngo Molnar 122f2cb1360SIngo Molnar if (!sd) { 123f2cb1360SIngo Molnar printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 124f2cb1360SIngo Molnar return; 125f2cb1360SIngo Molnar } 126f2cb1360SIngo Molnar 127005f874dSPeter Zijlstra printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 128f2cb1360SIngo Molnar 129f2cb1360SIngo Molnar for (;;) { 130f2cb1360SIngo Molnar if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 131f2cb1360SIngo Molnar break; 132f2cb1360SIngo Molnar level++; 133f2cb1360SIngo Molnar sd = sd->parent; 134f2cb1360SIngo Molnar if (!sd) 135f2cb1360SIngo Molnar break; 136f2cb1360SIngo Molnar } 137f2cb1360SIngo Molnar } 138f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */ 139f2cb1360SIngo Molnar 140f2cb1360SIngo Molnar # define sched_debug_enabled 0 141f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0) 142f2cb1360SIngo Molnar static inline bool sched_debug(void) 143f2cb1360SIngo Molnar { 144f2cb1360SIngo Molnar return false; 145f2cb1360SIngo Molnar } 146f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */ 147f2cb1360SIngo Molnar 148f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd) 149f2cb1360SIngo Molnar { 150f2cb1360SIngo Molnar if (cpumask_weight(sched_domain_span(sd)) == 1) 151f2cb1360SIngo Molnar return 1; 152f2cb1360SIngo Molnar 153f2cb1360SIngo Molnar /* Following flags need at least 2 groups */ 154f2cb1360SIngo Molnar if (sd->flags & (SD_LOAD_BALANCE | 155f2cb1360SIngo Molnar SD_BALANCE_NEWIDLE | 156f2cb1360SIngo Molnar SD_BALANCE_FORK | 157f2cb1360SIngo Molnar SD_BALANCE_EXEC | 158f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 159f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 160f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | 161f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN)) { 162f2cb1360SIngo Molnar if (sd->groups != sd->groups->next) 163f2cb1360SIngo Molnar return 0; 164f2cb1360SIngo Molnar } 165f2cb1360SIngo Molnar 166f2cb1360SIngo Molnar /* Following flags don't use groups */ 167f2cb1360SIngo Molnar if (sd->flags & (SD_WAKE_AFFINE)) 168f2cb1360SIngo Molnar return 0; 169f2cb1360SIngo Molnar 170f2cb1360SIngo Molnar return 1; 171f2cb1360SIngo Molnar } 172f2cb1360SIngo Molnar 173f2cb1360SIngo Molnar static int 174f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 175f2cb1360SIngo Molnar { 176f2cb1360SIngo Molnar unsigned long cflags = sd->flags, pflags = parent->flags; 177f2cb1360SIngo Molnar 178f2cb1360SIngo Molnar if (sd_degenerate(parent)) 179f2cb1360SIngo Molnar return 1; 180f2cb1360SIngo Molnar 181f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 182f2cb1360SIngo Molnar return 0; 183f2cb1360SIngo Molnar 184f2cb1360SIngo Molnar /* Flags needing groups don't count if only 1 group in parent */ 185f2cb1360SIngo Molnar if (parent->groups == parent->groups->next) { 186f2cb1360SIngo Molnar pflags &= ~(SD_LOAD_BALANCE | 187f2cb1360SIngo Molnar SD_BALANCE_NEWIDLE | 188f2cb1360SIngo Molnar SD_BALANCE_FORK | 189f2cb1360SIngo Molnar SD_BALANCE_EXEC | 190f2cb1360SIngo Molnar SD_ASYM_CPUCAPACITY | 191f2cb1360SIngo Molnar SD_SHARE_CPUCAPACITY | 192f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | 193f2cb1360SIngo Molnar SD_PREFER_SIBLING | 194f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN); 195f2cb1360SIngo Molnar if (nr_node_ids == 1) 196f2cb1360SIngo Molnar pflags &= ~SD_SERIALIZE; 197f2cb1360SIngo Molnar } 198f2cb1360SIngo Molnar if (~cflags & pflags) 199f2cb1360SIngo Molnar return 0; 200f2cb1360SIngo Molnar 201f2cb1360SIngo Molnar return 1; 202f2cb1360SIngo Molnar } 203f2cb1360SIngo Molnar 204531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 205f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present); 2068d5d0cfbSQuentin Perret unsigned int sysctl_sched_energy_aware = 1; 207531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex); 208531b5c9fSQuentin Perret bool sched_energy_update; 209531b5c9fSQuentin Perret 2108d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL 2118d5d0cfbSQuentin Perret int sched_energy_aware_handler(struct ctl_table *table, int write, 212*32927393SChristoph Hellwig void *buffer, size_t *lenp, loff_t *ppos) 2138d5d0cfbSQuentin Perret { 2148d5d0cfbSQuentin Perret int ret, state; 2158d5d0cfbSQuentin Perret 2168d5d0cfbSQuentin Perret if (write && !capable(CAP_SYS_ADMIN)) 2178d5d0cfbSQuentin Perret return -EPERM; 2188d5d0cfbSQuentin Perret 2198d5d0cfbSQuentin Perret ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2208d5d0cfbSQuentin Perret if (!ret && write) { 2218d5d0cfbSQuentin Perret state = static_branch_unlikely(&sched_energy_present); 2228d5d0cfbSQuentin Perret if (state != sysctl_sched_energy_aware) { 2238d5d0cfbSQuentin Perret mutex_lock(&sched_energy_mutex); 2248d5d0cfbSQuentin Perret sched_energy_update = 1; 2258d5d0cfbSQuentin Perret rebuild_sched_domains(); 2268d5d0cfbSQuentin Perret sched_energy_update = 0; 2278d5d0cfbSQuentin Perret mutex_unlock(&sched_energy_mutex); 2288d5d0cfbSQuentin Perret } 2298d5d0cfbSQuentin Perret } 2308d5d0cfbSQuentin Perret 2318d5d0cfbSQuentin Perret return ret; 2328d5d0cfbSQuentin Perret } 2338d5d0cfbSQuentin Perret #endif 2348d5d0cfbSQuentin Perret 2356aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) 2366aa140faSQuentin Perret { 2376aa140faSQuentin Perret struct perf_domain *tmp; 2386aa140faSQuentin Perret 2396aa140faSQuentin Perret while (pd) { 2406aa140faSQuentin Perret tmp = pd->next; 2416aa140faSQuentin Perret kfree(pd); 2426aa140faSQuentin Perret pd = tmp; 2436aa140faSQuentin Perret } 2446aa140faSQuentin Perret } 2456aa140faSQuentin Perret 2466aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 2476aa140faSQuentin Perret { 2486aa140faSQuentin Perret while (pd) { 2496aa140faSQuentin Perret if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 2506aa140faSQuentin Perret return pd; 2516aa140faSQuentin Perret pd = pd->next; 2526aa140faSQuentin Perret } 2536aa140faSQuentin Perret 2546aa140faSQuentin Perret return NULL; 2556aa140faSQuentin Perret } 2566aa140faSQuentin Perret 2576aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu) 2586aa140faSQuentin Perret { 2596aa140faSQuentin Perret struct em_perf_domain *obj = em_cpu_get(cpu); 2606aa140faSQuentin Perret struct perf_domain *pd; 2616aa140faSQuentin Perret 2626aa140faSQuentin Perret if (!obj) { 2636aa140faSQuentin Perret if (sched_debug()) 2646aa140faSQuentin Perret pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 2656aa140faSQuentin Perret return NULL; 2666aa140faSQuentin Perret } 2676aa140faSQuentin Perret 2686aa140faSQuentin Perret pd = kzalloc(sizeof(*pd), GFP_KERNEL); 2696aa140faSQuentin Perret if (!pd) 2706aa140faSQuentin Perret return NULL; 2716aa140faSQuentin Perret pd->em_pd = obj; 2726aa140faSQuentin Perret 2736aa140faSQuentin Perret return pd; 2746aa140faSQuentin Perret } 2756aa140faSQuentin Perret 2766aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map, 2776aa140faSQuentin Perret struct perf_domain *pd) 2786aa140faSQuentin Perret { 2796aa140faSQuentin Perret if (!sched_debug() || !pd) 2806aa140faSQuentin Perret return; 2816aa140faSQuentin Perret 2826aa140faSQuentin Perret printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 2836aa140faSQuentin Perret 2846aa140faSQuentin Perret while (pd) { 2856aa140faSQuentin Perret printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }", 2866aa140faSQuentin Perret cpumask_first(perf_domain_span(pd)), 2876aa140faSQuentin Perret cpumask_pr_args(perf_domain_span(pd)), 2886aa140faSQuentin Perret em_pd_nr_cap_states(pd->em_pd)); 2896aa140faSQuentin Perret pd = pd->next; 2906aa140faSQuentin Perret } 2916aa140faSQuentin Perret 2926aa140faSQuentin Perret printk(KERN_CONT "\n"); 2936aa140faSQuentin Perret } 2946aa140faSQuentin Perret 2956aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp) 2966aa140faSQuentin Perret { 2976aa140faSQuentin Perret struct perf_domain *pd; 2986aa140faSQuentin Perret 2996aa140faSQuentin Perret pd = container_of(rp, struct perf_domain, rcu); 3006aa140faSQuentin Perret free_pd(pd); 3016aa140faSQuentin Perret } 3026aa140faSQuentin Perret 3031f74de87SQuentin Perret static void sched_energy_set(bool has_eas) 3041f74de87SQuentin Perret { 3051f74de87SQuentin Perret if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 3061f74de87SQuentin Perret if (sched_debug()) 3071f74de87SQuentin Perret pr_info("%s: stopping EAS\n", __func__); 3081f74de87SQuentin Perret static_branch_disable_cpuslocked(&sched_energy_present); 3091f74de87SQuentin Perret } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 3101f74de87SQuentin Perret if (sched_debug()) 3111f74de87SQuentin Perret pr_info("%s: starting EAS\n", __func__); 3121f74de87SQuentin Perret static_branch_enable_cpuslocked(&sched_energy_present); 3131f74de87SQuentin Perret } 3141f74de87SQuentin Perret } 3151f74de87SQuentin Perret 316b68a4c0dSQuentin Perret /* 317b68a4c0dSQuentin Perret * EAS can be used on a root domain if it meets all the following conditions: 318b68a4c0dSQuentin Perret * 1. an Energy Model (EM) is available; 319b68a4c0dSQuentin Perret * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 32038502ab4SValentin Schneider * 3. no SMT is detected. 32138502ab4SValentin Schneider * 4. the EM complexity is low enough to keep scheduling overheads low; 32238502ab4SValentin Schneider * 5. schedutil is driving the frequency of all CPUs of the rd; 323b68a4c0dSQuentin Perret * 324b68a4c0dSQuentin Perret * The complexity of the Energy Model is defined as: 325b68a4c0dSQuentin Perret * 326b68a4c0dSQuentin Perret * C = nr_pd * (nr_cpus + nr_cs) 327b68a4c0dSQuentin Perret * 328b68a4c0dSQuentin Perret * with parameters defined as: 329b68a4c0dSQuentin Perret * - nr_pd: the number of performance domains 330b68a4c0dSQuentin Perret * - nr_cpus: the number of CPUs 331b68a4c0dSQuentin Perret * - nr_cs: the sum of the number of capacity states of all performance 332b68a4c0dSQuentin Perret * domains (for example, on a system with 2 performance domains, 333b68a4c0dSQuentin Perret * with 10 capacity states each, nr_cs = 2 * 10 = 20). 334b68a4c0dSQuentin Perret * 335b68a4c0dSQuentin Perret * It is generally not a good idea to use such a model in the wake-up path on 336b68a4c0dSQuentin Perret * very complex platforms because of the associated scheduling overheads. The 337b68a4c0dSQuentin Perret * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 338b68a4c0dSQuentin Perret * with per-CPU DVFS and less than 8 capacity states each, for example. 339b68a4c0dSQuentin Perret */ 340b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048 341b68a4c0dSQuentin Perret 342531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov; 3431f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map) 3446aa140faSQuentin Perret { 345b68a4c0dSQuentin Perret int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map); 3466aa140faSQuentin Perret struct perf_domain *pd = NULL, *tmp; 3476aa140faSQuentin Perret int cpu = cpumask_first(cpu_map); 3486aa140faSQuentin Perret struct root_domain *rd = cpu_rq(cpu)->rd; 349531b5c9fSQuentin Perret struct cpufreq_policy *policy; 350531b5c9fSQuentin Perret struct cpufreq_governor *gov; 351b68a4c0dSQuentin Perret 3528d5d0cfbSQuentin Perret if (!sysctl_sched_energy_aware) 3538d5d0cfbSQuentin Perret goto free; 3548d5d0cfbSQuentin Perret 355b68a4c0dSQuentin Perret /* EAS is enabled for asymmetric CPU capacity topologies. */ 356b68a4c0dSQuentin Perret if (!per_cpu(sd_asym_cpucapacity, cpu)) { 357b68a4c0dSQuentin Perret if (sched_debug()) { 358b68a4c0dSQuentin Perret pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 359b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 360b68a4c0dSQuentin Perret } 361b68a4c0dSQuentin Perret goto free; 362b68a4c0dSQuentin Perret } 3636aa140faSQuentin Perret 36438502ab4SValentin Schneider /* EAS definitely does *not* handle SMT */ 36538502ab4SValentin Schneider if (sched_smt_active()) { 36638502ab4SValentin Schneider pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 36738502ab4SValentin Schneider cpumask_pr_args(cpu_map)); 36838502ab4SValentin Schneider goto free; 36938502ab4SValentin Schneider } 37038502ab4SValentin Schneider 3716aa140faSQuentin Perret for_each_cpu(i, cpu_map) { 3726aa140faSQuentin Perret /* Skip already covered CPUs. */ 3736aa140faSQuentin Perret if (find_pd(pd, i)) 3746aa140faSQuentin Perret continue; 3756aa140faSQuentin Perret 376531b5c9fSQuentin Perret /* Do not attempt EAS if schedutil is not being used. */ 377531b5c9fSQuentin Perret policy = cpufreq_cpu_get(i); 378531b5c9fSQuentin Perret if (!policy) 379531b5c9fSQuentin Perret goto free; 380531b5c9fSQuentin Perret gov = policy->governor; 381531b5c9fSQuentin Perret cpufreq_cpu_put(policy); 382531b5c9fSQuentin Perret if (gov != &schedutil_gov) { 383531b5c9fSQuentin Perret if (rd->pd) 384531b5c9fSQuentin Perret pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 385531b5c9fSQuentin Perret cpumask_pr_args(cpu_map)); 386531b5c9fSQuentin Perret goto free; 387531b5c9fSQuentin Perret } 388531b5c9fSQuentin Perret 3896aa140faSQuentin Perret /* Create the new pd and add it to the local list. */ 3906aa140faSQuentin Perret tmp = pd_init(i); 3916aa140faSQuentin Perret if (!tmp) 3926aa140faSQuentin Perret goto free; 3936aa140faSQuentin Perret tmp->next = pd; 3946aa140faSQuentin Perret pd = tmp; 395b68a4c0dSQuentin Perret 396b68a4c0dSQuentin Perret /* 397b68a4c0dSQuentin Perret * Count performance domains and capacity states for the 398b68a4c0dSQuentin Perret * complexity check. 399b68a4c0dSQuentin Perret */ 400b68a4c0dSQuentin Perret nr_pd++; 401b68a4c0dSQuentin Perret nr_cs += em_pd_nr_cap_states(pd->em_pd); 402b68a4c0dSQuentin Perret } 403b68a4c0dSQuentin Perret 404b68a4c0dSQuentin Perret /* Bail out if the Energy Model complexity is too high. */ 405b68a4c0dSQuentin Perret if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) { 406b68a4c0dSQuentin Perret WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 407b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 408b68a4c0dSQuentin Perret goto free; 4096aa140faSQuentin Perret } 4106aa140faSQuentin Perret 4116aa140faSQuentin Perret perf_domain_debug(cpu_map, pd); 4126aa140faSQuentin Perret 4136aa140faSQuentin Perret /* Attach the new list of performance domains to the root domain. */ 4146aa140faSQuentin Perret tmp = rd->pd; 4156aa140faSQuentin Perret rcu_assign_pointer(rd->pd, pd); 4166aa140faSQuentin Perret if (tmp) 4176aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4186aa140faSQuentin Perret 4191f74de87SQuentin Perret return !!pd; 4206aa140faSQuentin Perret 4216aa140faSQuentin Perret free: 4226aa140faSQuentin Perret free_pd(pd); 4236aa140faSQuentin Perret tmp = rd->pd; 4246aa140faSQuentin Perret rcu_assign_pointer(rd->pd, NULL); 4256aa140faSQuentin Perret if (tmp) 4266aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4271f74de87SQuentin Perret 4281f74de87SQuentin Perret return false; 4296aa140faSQuentin Perret } 4306aa140faSQuentin Perret #else 4316aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { } 432531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 4336aa140faSQuentin Perret 434f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu) 435f2cb1360SIngo Molnar { 436f2cb1360SIngo Molnar struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 437f2cb1360SIngo Molnar 438f2cb1360SIngo Molnar cpupri_cleanup(&rd->cpupri); 439f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 440f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 441f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 442f2cb1360SIngo Molnar free_cpumask_var(rd->online); 443f2cb1360SIngo Molnar free_cpumask_var(rd->span); 4446aa140faSQuentin Perret free_pd(rd->pd); 445f2cb1360SIngo Molnar kfree(rd); 446f2cb1360SIngo Molnar } 447f2cb1360SIngo Molnar 448f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd) 449f2cb1360SIngo Molnar { 450f2cb1360SIngo Molnar struct root_domain *old_rd = NULL; 451f2cb1360SIngo Molnar unsigned long flags; 452f2cb1360SIngo Molnar 453f2cb1360SIngo Molnar raw_spin_lock_irqsave(&rq->lock, flags); 454f2cb1360SIngo Molnar 455f2cb1360SIngo Molnar if (rq->rd) { 456f2cb1360SIngo Molnar old_rd = rq->rd; 457f2cb1360SIngo Molnar 458f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, old_rd->online)) 459f2cb1360SIngo Molnar set_rq_offline(rq); 460f2cb1360SIngo Molnar 461f2cb1360SIngo Molnar cpumask_clear_cpu(rq->cpu, old_rd->span); 462f2cb1360SIngo Molnar 463f2cb1360SIngo Molnar /* 464f2cb1360SIngo Molnar * If we dont want to free the old_rd yet then 465f2cb1360SIngo Molnar * set old_rd to NULL to skip the freeing later 466f2cb1360SIngo Molnar * in this function: 467f2cb1360SIngo Molnar */ 468f2cb1360SIngo Molnar if (!atomic_dec_and_test(&old_rd->refcount)) 469f2cb1360SIngo Molnar old_rd = NULL; 470f2cb1360SIngo Molnar } 471f2cb1360SIngo Molnar 472f2cb1360SIngo Molnar atomic_inc(&rd->refcount); 473f2cb1360SIngo Molnar rq->rd = rd; 474f2cb1360SIngo Molnar 475f2cb1360SIngo Molnar cpumask_set_cpu(rq->cpu, rd->span); 476f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 477f2cb1360SIngo Molnar set_rq_online(rq); 478f2cb1360SIngo Molnar 479f2cb1360SIngo Molnar raw_spin_unlock_irqrestore(&rq->lock, flags); 480f2cb1360SIngo Molnar 481f2cb1360SIngo Molnar if (old_rd) 482337e9b07SPaul E. McKenney call_rcu(&old_rd->rcu, free_rootdomain); 483f2cb1360SIngo Molnar } 484f2cb1360SIngo Molnar 485364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd) 486364f5665SSteven Rostedt (VMware) { 487364f5665SSteven Rostedt (VMware) atomic_inc(&rd->refcount); 488364f5665SSteven Rostedt (VMware) } 489364f5665SSteven Rostedt (VMware) 490364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd) 491364f5665SSteven Rostedt (VMware) { 492364f5665SSteven Rostedt (VMware) if (!atomic_dec_and_test(&rd->refcount)) 493364f5665SSteven Rostedt (VMware) return; 494364f5665SSteven Rostedt (VMware) 495337e9b07SPaul E. McKenney call_rcu(&rd->rcu, free_rootdomain); 496364f5665SSteven Rostedt (VMware) } 497364f5665SSteven Rostedt (VMware) 498f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd) 499f2cb1360SIngo Molnar { 500f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 501f2cb1360SIngo Molnar goto out; 502f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 503f2cb1360SIngo Molnar goto free_span; 504f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 505f2cb1360SIngo Molnar goto free_online; 506f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 507f2cb1360SIngo Molnar goto free_dlo_mask; 508f2cb1360SIngo Molnar 5094bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI 5104bdced5cSSteven Rostedt (Red Hat) rd->rto_cpu = -1; 5114bdced5cSSteven Rostedt (Red Hat) raw_spin_lock_init(&rd->rto_lock); 5124bdced5cSSteven Rostedt (Red Hat) init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 5134bdced5cSSteven Rostedt (Red Hat) #endif 5144bdced5cSSteven Rostedt (Red Hat) 515f2cb1360SIngo Molnar init_dl_bw(&rd->dl_bw); 516f2cb1360SIngo Molnar if (cpudl_init(&rd->cpudl) != 0) 517f2cb1360SIngo Molnar goto free_rto_mask; 518f2cb1360SIngo Molnar 519f2cb1360SIngo Molnar if (cpupri_init(&rd->cpupri) != 0) 520f2cb1360SIngo Molnar goto free_cpudl; 521f2cb1360SIngo Molnar return 0; 522f2cb1360SIngo Molnar 523f2cb1360SIngo Molnar free_cpudl: 524f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 525f2cb1360SIngo Molnar free_rto_mask: 526f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 527f2cb1360SIngo Molnar free_dlo_mask: 528f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 529f2cb1360SIngo Molnar free_online: 530f2cb1360SIngo Molnar free_cpumask_var(rd->online); 531f2cb1360SIngo Molnar free_span: 532f2cb1360SIngo Molnar free_cpumask_var(rd->span); 533f2cb1360SIngo Molnar out: 534f2cb1360SIngo Molnar return -ENOMEM; 535f2cb1360SIngo Molnar } 536f2cb1360SIngo Molnar 537f2cb1360SIngo Molnar /* 538f2cb1360SIngo Molnar * By default the system creates a single root-domain with all CPUs as 539f2cb1360SIngo Molnar * members (mimicking the global state we have today). 540f2cb1360SIngo Molnar */ 541f2cb1360SIngo Molnar struct root_domain def_root_domain; 542f2cb1360SIngo Molnar 543f2cb1360SIngo Molnar void init_defrootdomain(void) 544f2cb1360SIngo Molnar { 545f2cb1360SIngo Molnar init_rootdomain(&def_root_domain); 546f2cb1360SIngo Molnar 547f2cb1360SIngo Molnar atomic_set(&def_root_domain.refcount, 1); 548f2cb1360SIngo Molnar } 549f2cb1360SIngo Molnar 550f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void) 551f2cb1360SIngo Molnar { 552f2cb1360SIngo Molnar struct root_domain *rd; 553f2cb1360SIngo Molnar 5544d13a06dSViresh Kumar rd = kzalloc(sizeof(*rd), GFP_KERNEL); 555f2cb1360SIngo Molnar if (!rd) 556f2cb1360SIngo Molnar return NULL; 557f2cb1360SIngo Molnar 558f2cb1360SIngo Molnar if (init_rootdomain(rd) != 0) { 559f2cb1360SIngo Molnar kfree(rd); 560f2cb1360SIngo Molnar return NULL; 561f2cb1360SIngo Molnar } 562f2cb1360SIngo Molnar 563f2cb1360SIngo Molnar return rd; 564f2cb1360SIngo Molnar } 565f2cb1360SIngo Molnar 566f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc) 567f2cb1360SIngo Molnar { 568f2cb1360SIngo Molnar struct sched_group *tmp, *first; 569f2cb1360SIngo Molnar 570f2cb1360SIngo Molnar if (!sg) 571f2cb1360SIngo Molnar return; 572f2cb1360SIngo Molnar 573f2cb1360SIngo Molnar first = sg; 574f2cb1360SIngo Molnar do { 575f2cb1360SIngo Molnar tmp = sg->next; 576f2cb1360SIngo Molnar 577f2cb1360SIngo Molnar if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 578f2cb1360SIngo Molnar kfree(sg->sgc); 579f2cb1360SIngo Molnar 580213c5a45SShu Wang if (atomic_dec_and_test(&sg->ref)) 581f2cb1360SIngo Molnar kfree(sg); 582f2cb1360SIngo Molnar sg = tmp; 583f2cb1360SIngo Molnar } while (sg != first); 584f2cb1360SIngo Molnar } 585f2cb1360SIngo Molnar 586f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd) 587f2cb1360SIngo Molnar { 588f2cb1360SIngo Molnar /* 589a090c4f2SPeter Zijlstra * A normal sched domain may have multiple group references, an 590a090c4f2SPeter Zijlstra * overlapping domain, having private groups, only one. Iterate, 591a090c4f2SPeter Zijlstra * dropping group/capacity references, freeing where none remain. 592f2cb1360SIngo Molnar */ 593f2cb1360SIngo Molnar free_sched_groups(sd->groups, 1); 594213c5a45SShu Wang 595f2cb1360SIngo Molnar if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 596f2cb1360SIngo Molnar kfree(sd->shared); 597f2cb1360SIngo Molnar kfree(sd); 598f2cb1360SIngo Molnar } 599f2cb1360SIngo Molnar 600f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu) 601f2cb1360SIngo Molnar { 602f2cb1360SIngo Molnar struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 603f2cb1360SIngo Molnar 604f2cb1360SIngo Molnar while (sd) { 605f2cb1360SIngo Molnar struct sched_domain *parent = sd->parent; 606f2cb1360SIngo Molnar destroy_sched_domain(sd); 607f2cb1360SIngo Molnar sd = parent; 608f2cb1360SIngo Molnar } 609f2cb1360SIngo Molnar } 610f2cb1360SIngo Molnar 611f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd) 612f2cb1360SIngo Molnar { 613f2cb1360SIngo Molnar if (sd) 614f2cb1360SIngo Molnar call_rcu(&sd->rcu, destroy_sched_domains_rcu); 615f2cb1360SIngo Molnar } 616f2cb1360SIngo Molnar 617f2cb1360SIngo Molnar /* 618f2cb1360SIngo Molnar * Keep a special pointer to the highest sched_domain that has 619f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 620f2cb1360SIngo Molnar * allows us to avoid some pointer chasing select_idle_sibling(). 621f2cb1360SIngo Molnar * 622f2cb1360SIngo Molnar * Also keep a unique ID per domain (we use the first CPU number in 623f2cb1360SIngo Molnar * the cpumask of the domain), this allows us to quickly tell if 624f2cb1360SIngo Molnar * two CPUs are in the same cache domain, see cpus_share_cache(). 625f2cb1360SIngo Molnar */ 626994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 627f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size); 628f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id); 629994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 630994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 631994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 632994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 633df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 634f2cb1360SIngo Molnar 635f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu) 636f2cb1360SIngo Molnar { 637f2cb1360SIngo Molnar struct sched_domain_shared *sds = NULL; 638f2cb1360SIngo Molnar struct sched_domain *sd; 639f2cb1360SIngo Molnar int id = cpu; 640f2cb1360SIngo Molnar int size = 1; 641f2cb1360SIngo Molnar 642f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 643f2cb1360SIngo Molnar if (sd) { 644f2cb1360SIngo Molnar id = cpumask_first(sched_domain_span(sd)); 645f2cb1360SIngo Molnar size = cpumask_weight(sched_domain_span(sd)); 646f2cb1360SIngo Molnar sds = sd->shared; 647f2cb1360SIngo Molnar } 648f2cb1360SIngo Molnar 649f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 650f2cb1360SIngo Molnar per_cpu(sd_llc_size, cpu) = size; 651f2cb1360SIngo Molnar per_cpu(sd_llc_id, cpu) = id; 652f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 653f2cb1360SIngo Molnar 654f2cb1360SIngo Molnar sd = lowest_flag_domain(cpu, SD_NUMA); 655f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 656f2cb1360SIngo Molnar 657f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 658011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 659011b27bbSQuentin Perret 660011b27bbSQuentin Perret sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 661011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 662f2cb1360SIngo Molnar } 663f2cb1360SIngo Molnar 664f2cb1360SIngo Molnar /* 665f2cb1360SIngo Molnar * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 666f2cb1360SIngo Molnar * hold the hotplug lock. 667f2cb1360SIngo Molnar */ 668f2cb1360SIngo Molnar static void 669f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 670f2cb1360SIngo Molnar { 671f2cb1360SIngo Molnar struct rq *rq = cpu_rq(cpu); 672f2cb1360SIngo Molnar struct sched_domain *tmp; 673f2cb1360SIngo Molnar 674f2cb1360SIngo Molnar /* Remove the sched domains which do not contribute to scheduling. */ 675f2cb1360SIngo Molnar for (tmp = sd; tmp; ) { 676f2cb1360SIngo Molnar struct sched_domain *parent = tmp->parent; 677f2cb1360SIngo Molnar if (!parent) 678f2cb1360SIngo Molnar break; 679f2cb1360SIngo Molnar 680f2cb1360SIngo Molnar if (sd_parent_degenerate(tmp, parent)) { 681f2cb1360SIngo Molnar tmp->parent = parent->parent; 682f2cb1360SIngo Molnar if (parent->parent) 683f2cb1360SIngo Molnar parent->parent->child = tmp; 684f2cb1360SIngo Molnar /* 685f2cb1360SIngo Molnar * Transfer SD_PREFER_SIBLING down in case of a 686f2cb1360SIngo Molnar * degenerate parent; the spans match for this 687f2cb1360SIngo Molnar * so the property transfers. 688f2cb1360SIngo Molnar */ 689f2cb1360SIngo Molnar if (parent->flags & SD_PREFER_SIBLING) 690f2cb1360SIngo Molnar tmp->flags |= SD_PREFER_SIBLING; 691f2cb1360SIngo Molnar destroy_sched_domain(parent); 692f2cb1360SIngo Molnar } else 693f2cb1360SIngo Molnar tmp = tmp->parent; 694f2cb1360SIngo Molnar } 695f2cb1360SIngo Molnar 696f2cb1360SIngo Molnar if (sd && sd_degenerate(sd)) { 697f2cb1360SIngo Molnar tmp = sd; 698f2cb1360SIngo Molnar sd = sd->parent; 699f2cb1360SIngo Molnar destroy_sched_domain(tmp); 700f2cb1360SIngo Molnar if (sd) 701f2cb1360SIngo Molnar sd->child = NULL; 702f2cb1360SIngo Molnar } 703f2cb1360SIngo Molnar 704f2cb1360SIngo Molnar sched_domain_debug(sd, cpu); 705f2cb1360SIngo Molnar 706f2cb1360SIngo Molnar rq_attach_root(rq, rd); 707f2cb1360SIngo Molnar tmp = rq->sd; 708f2cb1360SIngo Molnar rcu_assign_pointer(rq->sd, sd); 709bbdacdfeSPeter Zijlstra dirty_sched_domain_sysctl(cpu); 710f2cb1360SIngo Molnar destroy_sched_domains(tmp); 711f2cb1360SIngo Molnar 712f2cb1360SIngo Molnar update_top_cache_domain(cpu); 713f2cb1360SIngo Molnar } 714f2cb1360SIngo Molnar 715f2cb1360SIngo Molnar struct s_data { 71699687cdbSLuc Van Oostenryck struct sched_domain * __percpu *sd; 717f2cb1360SIngo Molnar struct root_domain *rd; 718f2cb1360SIngo Molnar }; 719f2cb1360SIngo Molnar 720f2cb1360SIngo Molnar enum s_alloc { 721f2cb1360SIngo Molnar sa_rootdomain, 722f2cb1360SIngo Molnar sa_sd, 723f2cb1360SIngo Molnar sa_sd_storage, 724f2cb1360SIngo Molnar sa_none, 725f2cb1360SIngo Molnar }; 726f2cb1360SIngo Molnar 727f2cb1360SIngo Molnar /* 72835a566e6SPeter Zijlstra * Return the canonical balance CPU for this group, this is the first CPU 729e5c14b1fSPeter Zijlstra * of this group that's also in the balance mask. 73035a566e6SPeter Zijlstra * 731e5c14b1fSPeter Zijlstra * The balance mask are all those CPUs that could actually end up at this 732e5c14b1fSPeter Zijlstra * group. See build_balance_mask(). 73335a566e6SPeter Zijlstra * 73435a566e6SPeter Zijlstra * Also see should_we_balance(). 73535a566e6SPeter Zijlstra */ 73635a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg) 73735a566e6SPeter Zijlstra { 738e5c14b1fSPeter Zijlstra return cpumask_first(group_balance_mask(sg)); 73935a566e6SPeter Zijlstra } 74035a566e6SPeter Zijlstra 74135a566e6SPeter Zijlstra 74235a566e6SPeter Zijlstra /* 74335a566e6SPeter Zijlstra * NUMA topology (first read the regular topology blurb below) 74435a566e6SPeter Zijlstra * 74535a566e6SPeter Zijlstra * Given a node-distance table, for example: 74635a566e6SPeter Zijlstra * 74735a566e6SPeter Zijlstra * node 0 1 2 3 74835a566e6SPeter Zijlstra * 0: 10 20 30 20 74935a566e6SPeter Zijlstra * 1: 20 10 20 30 75035a566e6SPeter Zijlstra * 2: 30 20 10 20 75135a566e6SPeter Zijlstra * 3: 20 30 20 10 75235a566e6SPeter Zijlstra * 75335a566e6SPeter Zijlstra * which represents a 4 node ring topology like: 75435a566e6SPeter Zijlstra * 75535a566e6SPeter Zijlstra * 0 ----- 1 75635a566e6SPeter Zijlstra * | | 75735a566e6SPeter Zijlstra * | | 75835a566e6SPeter Zijlstra * | | 75935a566e6SPeter Zijlstra * 3 ----- 2 76035a566e6SPeter Zijlstra * 76135a566e6SPeter Zijlstra * We want to construct domains and groups to represent this. The way we go 76235a566e6SPeter Zijlstra * about doing this is to build the domains on 'hops'. For each NUMA level we 76335a566e6SPeter Zijlstra * construct the mask of all nodes reachable in @level hops. 76435a566e6SPeter Zijlstra * 76535a566e6SPeter Zijlstra * For the above NUMA topology that gives 3 levels: 76635a566e6SPeter Zijlstra * 76735a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 0-3 0-3 76835a566e6SPeter Zijlstra * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 76935a566e6SPeter Zijlstra * 77035a566e6SPeter Zijlstra * NUMA-1 0-1,3 0-2 1-3 0,2-3 77135a566e6SPeter Zijlstra * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 77235a566e6SPeter Zijlstra * 77335a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 77435a566e6SPeter Zijlstra * 77535a566e6SPeter Zijlstra * 77635a566e6SPeter Zijlstra * As can be seen; things don't nicely line up as with the regular topology. 77735a566e6SPeter Zijlstra * When we iterate a domain in child domain chunks some nodes can be 77835a566e6SPeter Zijlstra * represented multiple times -- hence the "overlap" naming for this part of 77935a566e6SPeter Zijlstra * the topology. 78035a566e6SPeter Zijlstra * 78135a566e6SPeter Zijlstra * In order to minimize this overlap, we only build enough groups to cover the 78235a566e6SPeter Zijlstra * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 78335a566e6SPeter Zijlstra * 78435a566e6SPeter Zijlstra * Because: 78535a566e6SPeter Zijlstra * 78635a566e6SPeter Zijlstra * - the first group of each domain is its child domain; this 78735a566e6SPeter Zijlstra * gets us the first 0-1,3 78835a566e6SPeter Zijlstra * - the only uncovered node is 2, who's child domain is 1-3. 78935a566e6SPeter Zijlstra * 79035a566e6SPeter Zijlstra * However, because of the overlap, computing a unique CPU for each group is 79135a566e6SPeter Zijlstra * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 79235a566e6SPeter Zijlstra * groups include the CPUs of Node-0, while those CPUs would not in fact ever 79335a566e6SPeter Zijlstra * end up at those groups (they would end up in group: 0-1,3). 79435a566e6SPeter Zijlstra * 795e5c14b1fSPeter Zijlstra * To correct this we have to introduce the group balance mask. This mask 79635a566e6SPeter Zijlstra * will contain those CPUs in the group that can reach this group given the 79735a566e6SPeter Zijlstra * (child) domain tree. 79835a566e6SPeter Zijlstra * 79935a566e6SPeter Zijlstra * With this we can once again compute balance_cpu and sched_group_capacity 80035a566e6SPeter Zijlstra * relations. 80135a566e6SPeter Zijlstra * 80235a566e6SPeter Zijlstra * XXX include words on how balance_cpu is unique and therefore can be 80335a566e6SPeter Zijlstra * used for sched_group_capacity links. 80435a566e6SPeter Zijlstra * 80535a566e6SPeter Zijlstra * 80635a566e6SPeter Zijlstra * Another 'interesting' topology is: 80735a566e6SPeter Zijlstra * 80835a566e6SPeter Zijlstra * node 0 1 2 3 80935a566e6SPeter Zijlstra * 0: 10 20 20 30 81035a566e6SPeter Zijlstra * 1: 20 10 20 20 81135a566e6SPeter Zijlstra * 2: 20 20 10 20 81235a566e6SPeter Zijlstra * 3: 30 20 20 10 81335a566e6SPeter Zijlstra * 81435a566e6SPeter Zijlstra * Which looks a little like: 81535a566e6SPeter Zijlstra * 81635a566e6SPeter Zijlstra * 0 ----- 1 81735a566e6SPeter Zijlstra * | / | 81835a566e6SPeter Zijlstra * | / | 81935a566e6SPeter Zijlstra * | / | 82035a566e6SPeter Zijlstra * 2 ----- 3 82135a566e6SPeter Zijlstra * 82235a566e6SPeter Zijlstra * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 82335a566e6SPeter Zijlstra * are not. 82435a566e6SPeter Zijlstra * 82535a566e6SPeter Zijlstra * This leads to a few particularly weird cases where the sched_domain's are 82697fb7a0aSIngo Molnar * not of the same number for each CPU. Consider: 82735a566e6SPeter Zijlstra * 82835a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 82935a566e6SPeter Zijlstra * groups: {0-2},{1-3} {1-3},{0-2} 83035a566e6SPeter Zijlstra * 83135a566e6SPeter Zijlstra * NUMA-1 0-2 0-3 0-3 1-3 83235a566e6SPeter Zijlstra * 83335a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 83435a566e6SPeter Zijlstra * 83535a566e6SPeter Zijlstra */ 83635a566e6SPeter Zijlstra 83735a566e6SPeter Zijlstra 83835a566e6SPeter Zijlstra /* 839e5c14b1fSPeter Zijlstra * Build the balance mask; it contains only those CPUs that can arrive at this 840e5c14b1fSPeter Zijlstra * group and should be considered to continue balancing. 84135a566e6SPeter Zijlstra * 84235a566e6SPeter Zijlstra * We do this during the group creation pass, therefore the group information 84335a566e6SPeter Zijlstra * isn't complete yet, however since each group represents a (child) domain we 84435a566e6SPeter Zijlstra * can fully construct this using the sched_domain bits (which are already 84535a566e6SPeter Zijlstra * complete). 846f2cb1360SIngo Molnar */ 8471676330eSPeter Zijlstra static void 848e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 849f2cb1360SIngo Molnar { 850ae4df9d6SPeter Zijlstra const struct cpumask *sg_span = sched_group_span(sg); 851f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 852f2cb1360SIngo Molnar struct sched_domain *sibling; 853f2cb1360SIngo Molnar int i; 854f2cb1360SIngo Molnar 8551676330eSPeter Zijlstra cpumask_clear(mask); 8561676330eSPeter Zijlstra 857f32d782eSLauro Ramos Venancio for_each_cpu(i, sg_span) { 858f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 85973bb059fSPeter Zijlstra 86073bb059fSPeter Zijlstra /* 86173bb059fSPeter Zijlstra * Can happen in the asymmetric case, where these siblings are 86273bb059fSPeter Zijlstra * unused. The mask will not be empty because those CPUs that 86373bb059fSPeter Zijlstra * do have the top domain _should_ span the domain. 86473bb059fSPeter Zijlstra */ 86573bb059fSPeter Zijlstra if (!sibling->child) 86673bb059fSPeter Zijlstra continue; 86773bb059fSPeter Zijlstra 86873bb059fSPeter Zijlstra /* If we would not end up here, we can't continue from here */ 86973bb059fSPeter Zijlstra if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 870f2cb1360SIngo Molnar continue; 871f2cb1360SIngo Molnar 8721676330eSPeter Zijlstra cpumask_set_cpu(i, mask); 873f2cb1360SIngo Molnar } 87473bb059fSPeter Zijlstra 87573bb059fSPeter Zijlstra /* We must not have empty masks here */ 8761676330eSPeter Zijlstra WARN_ON_ONCE(cpumask_empty(mask)); 877f2cb1360SIngo Molnar } 878f2cb1360SIngo Molnar 879f2cb1360SIngo Molnar /* 88035a566e6SPeter Zijlstra * XXX: This creates per-node group entries; since the load-balancer will 88135a566e6SPeter Zijlstra * immediately access remote memory to construct this group's load-balance 88235a566e6SPeter Zijlstra * statistics having the groups node local is of dubious benefit. 883f2cb1360SIngo Molnar */ 8848c033469SLauro Ramos Venancio static struct sched_group * 8858c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 8868c033469SLauro Ramos Venancio { 8878c033469SLauro Ramos Venancio struct sched_group *sg; 8888c033469SLauro Ramos Venancio struct cpumask *sg_span; 8898c033469SLauro Ramos Venancio 8908c033469SLauro Ramos Venancio sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 8918c033469SLauro Ramos Venancio GFP_KERNEL, cpu_to_node(cpu)); 8928c033469SLauro Ramos Venancio 8938c033469SLauro Ramos Venancio if (!sg) 8948c033469SLauro Ramos Venancio return NULL; 8958c033469SLauro Ramos Venancio 896ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 8978c033469SLauro Ramos Venancio if (sd->child) 8988c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd->child)); 8998c033469SLauro Ramos Venancio else 9008c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd)); 9018c033469SLauro Ramos Venancio 902213c5a45SShu Wang atomic_inc(&sg->ref); 9038c033469SLauro Ramos Venancio return sg; 9048c033469SLauro Ramos Venancio } 9058c033469SLauro Ramos Venancio 9068c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd, 9071676330eSPeter Zijlstra struct sched_group *sg) 9088c033469SLauro Ramos Venancio { 9091676330eSPeter Zijlstra struct cpumask *mask = sched_domains_tmpmask2; 9108c033469SLauro Ramos Venancio struct sd_data *sdd = sd->private; 9118c033469SLauro Ramos Venancio struct cpumask *sg_span; 9121676330eSPeter Zijlstra int cpu; 9131676330eSPeter Zijlstra 914e5c14b1fSPeter Zijlstra build_balance_mask(sd, sg, mask); 915ae4df9d6SPeter Zijlstra cpu = cpumask_first_and(sched_group_span(sg), mask); 9168c033469SLauro Ramos Venancio 9178c033469SLauro Ramos Venancio sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 9188c033469SLauro Ramos Venancio if (atomic_inc_return(&sg->sgc->ref) == 1) 919e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), mask); 92035a566e6SPeter Zijlstra else 921e5c14b1fSPeter Zijlstra WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 9228c033469SLauro Ramos Venancio 9238c033469SLauro Ramos Venancio /* 9248c033469SLauro Ramos Venancio * Initialize sgc->capacity such that even if we mess up the 9258c033469SLauro Ramos Venancio * domains and no possible iteration will get us here, we won't 9268c033469SLauro Ramos Venancio * die on a /0 trap. 9278c033469SLauro Ramos Venancio */ 928ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9298c033469SLauro Ramos Venancio sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 9308c033469SLauro Ramos Venancio sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 931e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 9328c033469SLauro Ramos Venancio } 9338c033469SLauro Ramos Venancio 934f2cb1360SIngo Molnar static int 935f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu) 936f2cb1360SIngo Molnar { 93791eaed0dSPeter Zijlstra struct sched_group *first = NULL, *last = NULL, *sg; 938f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 939f2cb1360SIngo Molnar struct cpumask *covered = sched_domains_tmpmask; 940f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 941f2cb1360SIngo Molnar struct sched_domain *sibling; 942f2cb1360SIngo Molnar int i; 943f2cb1360SIngo Molnar 944f2cb1360SIngo Molnar cpumask_clear(covered); 945f2cb1360SIngo Molnar 9460372dd27SPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 947f2cb1360SIngo Molnar struct cpumask *sg_span; 948f2cb1360SIngo Molnar 949f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 950f2cb1360SIngo Molnar continue; 951f2cb1360SIngo Molnar 952f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 953f2cb1360SIngo Molnar 954c20e1ea4SLauro Ramos Venancio /* 955c20e1ea4SLauro Ramos Venancio * Asymmetric node setups can result in situations where the 956c20e1ea4SLauro Ramos Venancio * domain tree is of unequal depth, make sure to skip domains 957c20e1ea4SLauro Ramos Venancio * that already cover the entire range. 958c20e1ea4SLauro Ramos Venancio * 959c20e1ea4SLauro Ramos Venancio * In that case build_sched_domains() will have terminated the 960c20e1ea4SLauro Ramos Venancio * iteration early and our sibling sd spans will be empty. 961c20e1ea4SLauro Ramos Venancio * Domains should always include the CPU they're built on, so 962c20e1ea4SLauro Ramos Venancio * check that. 963c20e1ea4SLauro Ramos Venancio */ 964f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 965f2cb1360SIngo Molnar continue; 966f2cb1360SIngo Molnar 9678c033469SLauro Ramos Venancio sg = build_group_from_child_sched_domain(sibling, cpu); 968f2cb1360SIngo Molnar if (!sg) 969f2cb1360SIngo Molnar goto fail; 970f2cb1360SIngo Molnar 971ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 972f2cb1360SIngo Molnar cpumask_or(covered, covered, sg_span); 973f2cb1360SIngo Molnar 9741676330eSPeter Zijlstra init_overlap_sched_group(sd, sg); 975f2cb1360SIngo Molnar 976f2cb1360SIngo Molnar if (!first) 977f2cb1360SIngo Molnar first = sg; 978f2cb1360SIngo Molnar if (last) 979f2cb1360SIngo Molnar last->next = sg; 980f2cb1360SIngo Molnar last = sg; 981f2cb1360SIngo Molnar last->next = first; 982f2cb1360SIngo Molnar } 98391eaed0dSPeter Zijlstra sd->groups = first; 984f2cb1360SIngo Molnar 985f2cb1360SIngo Molnar return 0; 986f2cb1360SIngo Molnar 987f2cb1360SIngo Molnar fail: 988f2cb1360SIngo Molnar free_sched_groups(first, 0); 989f2cb1360SIngo Molnar 990f2cb1360SIngo Molnar return -ENOMEM; 991f2cb1360SIngo Molnar } 992f2cb1360SIngo Molnar 99335a566e6SPeter Zijlstra 99435a566e6SPeter Zijlstra /* 99535a566e6SPeter Zijlstra * Package topology (also see the load-balance blurb in fair.c) 99635a566e6SPeter Zijlstra * 99735a566e6SPeter Zijlstra * The scheduler builds a tree structure to represent a number of important 99835a566e6SPeter Zijlstra * topology features. By default (default_topology[]) these include: 99935a566e6SPeter Zijlstra * 100035a566e6SPeter Zijlstra * - Simultaneous multithreading (SMT) 100135a566e6SPeter Zijlstra * - Multi-Core Cache (MC) 100235a566e6SPeter Zijlstra * - Package (DIE) 100335a566e6SPeter Zijlstra * 100435a566e6SPeter Zijlstra * Where the last one more or less denotes everything up to a NUMA node. 100535a566e6SPeter Zijlstra * 100635a566e6SPeter Zijlstra * The tree consists of 3 primary data structures: 100735a566e6SPeter Zijlstra * 100835a566e6SPeter Zijlstra * sched_domain -> sched_group -> sched_group_capacity 100935a566e6SPeter Zijlstra * ^ ^ ^ ^ 101035a566e6SPeter Zijlstra * `-' `-' 101135a566e6SPeter Zijlstra * 101297fb7a0aSIngo Molnar * The sched_domains are per-CPU and have a two way link (parent & child) and 101335a566e6SPeter Zijlstra * denote the ever growing mask of CPUs belonging to that level of topology. 101435a566e6SPeter Zijlstra * 101535a566e6SPeter Zijlstra * Each sched_domain has a circular (double) linked list of sched_group's, each 101635a566e6SPeter Zijlstra * denoting the domains of the level below (or individual CPUs in case of the 101735a566e6SPeter Zijlstra * first domain level). The sched_group linked by a sched_domain includes the 101835a566e6SPeter Zijlstra * CPU of that sched_domain [*]. 101935a566e6SPeter Zijlstra * 102035a566e6SPeter Zijlstra * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 102135a566e6SPeter Zijlstra * 102235a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 102335a566e6SPeter Zijlstra * 102435a566e6SPeter Zijlstra * DIE [ ] 102535a566e6SPeter Zijlstra * MC [ ] [ ] 102635a566e6SPeter Zijlstra * SMT [ ] [ ] [ ] [ ] 102735a566e6SPeter Zijlstra * 102835a566e6SPeter Zijlstra * - or - 102935a566e6SPeter Zijlstra * 103035a566e6SPeter Zijlstra * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 103135a566e6SPeter Zijlstra * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 103235a566e6SPeter Zijlstra * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 103335a566e6SPeter Zijlstra * 103435a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 103535a566e6SPeter Zijlstra * 103635a566e6SPeter Zijlstra * One way to think about it is: sched_domain moves you up and down among these 103735a566e6SPeter Zijlstra * topology levels, while sched_group moves you sideways through it, at child 103835a566e6SPeter Zijlstra * domain granularity. 103935a566e6SPeter Zijlstra * 104035a566e6SPeter Zijlstra * sched_group_capacity ensures each unique sched_group has shared storage. 104135a566e6SPeter Zijlstra * 104235a566e6SPeter Zijlstra * There are two related construction problems, both require a CPU that 104335a566e6SPeter Zijlstra * uniquely identify each group (for a given domain): 104435a566e6SPeter Zijlstra * 104535a566e6SPeter Zijlstra * - The first is the balance_cpu (see should_we_balance() and the 104635a566e6SPeter Zijlstra * load-balance blub in fair.c); for each group we only want 1 CPU to 104735a566e6SPeter Zijlstra * continue balancing at a higher domain. 104835a566e6SPeter Zijlstra * 104935a566e6SPeter Zijlstra * - The second is the sched_group_capacity; we want all identical groups 105035a566e6SPeter Zijlstra * to share a single sched_group_capacity. 105135a566e6SPeter Zijlstra * 105235a566e6SPeter Zijlstra * Since these topologies are exclusive by construction. That is, its 105335a566e6SPeter Zijlstra * impossible for an SMT thread to belong to multiple cores, and cores to 105435a566e6SPeter Zijlstra * be part of multiple caches. There is a very clear and unique location 105535a566e6SPeter Zijlstra * for each CPU in the hierarchy. 105635a566e6SPeter Zijlstra * 105735a566e6SPeter Zijlstra * Therefore computing a unique CPU for each group is trivial (the iteration 105835a566e6SPeter Zijlstra * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 105935a566e6SPeter Zijlstra * group), we can simply pick the first CPU in each group. 106035a566e6SPeter Zijlstra * 106135a566e6SPeter Zijlstra * 106235a566e6SPeter Zijlstra * [*] in other words, the first group of each domain is its child domain. 106335a566e6SPeter Zijlstra */ 106435a566e6SPeter Zijlstra 10650c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1066f2cb1360SIngo Molnar { 1067f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1068f2cb1360SIngo Molnar struct sched_domain *child = sd->child; 10690c0e776aSPeter Zijlstra struct sched_group *sg; 107067d4f6ffSValentin Schneider bool already_visited; 1071f2cb1360SIngo Molnar 1072f2cb1360SIngo Molnar if (child) 1073f2cb1360SIngo Molnar cpu = cpumask_first(sched_domain_span(child)); 1074f2cb1360SIngo Molnar 10750c0e776aSPeter Zijlstra sg = *per_cpu_ptr(sdd->sg, cpu); 10760c0e776aSPeter Zijlstra sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1077f2cb1360SIngo Molnar 107867d4f6ffSValentin Schneider /* Increase refcounts for claim_allocations: */ 107967d4f6ffSValentin Schneider already_visited = atomic_inc_return(&sg->ref) > 1; 108067d4f6ffSValentin Schneider /* sgc visits should follow a similar trend as sg */ 108167d4f6ffSValentin Schneider WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 108267d4f6ffSValentin Schneider 108367d4f6ffSValentin Schneider /* If we have already visited that group, it's already initialized. */ 108467d4f6ffSValentin Schneider if (already_visited) 108567d4f6ffSValentin Schneider return sg; 10860c0e776aSPeter Zijlstra 10870c0e776aSPeter Zijlstra if (child) { 1088ae4df9d6SPeter Zijlstra cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1089ae4df9d6SPeter Zijlstra cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 10900c0e776aSPeter Zijlstra } else { 1091ae4df9d6SPeter Zijlstra cpumask_set_cpu(cpu, sched_group_span(sg)); 1092e5c14b1fSPeter Zijlstra cpumask_set_cpu(cpu, group_balance_mask(sg)); 1093f2cb1360SIngo Molnar } 1094f2cb1360SIngo Molnar 1095ae4df9d6SPeter Zijlstra sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 10960c0e776aSPeter Zijlstra sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1097e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 10980c0e776aSPeter Zijlstra 10990c0e776aSPeter Zijlstra return sg; 1100f2cb1360SIngo Molnar } 1101f2cb1360SIngo Molnar 1102f2cb1360SIngo Molnar /* 1103f2cb1360SIngo Molnar * build_sched_groups will build a circular linked list of the groups 1104d8743230SValentin Schneider * covered by the given span, will set each group's ->cpumask correctly, 1105d8743230SValentin Schneider * and will initialize their ->sgc. 1106f2cb1360SIngo Molnar * 1107f2cb1360SIngo Molnar * Assumes the sched_domain tree is fully constructed 1108f2cb1360SIngo Molnar */ 1109f2cb1360SIngo Molnar static int 1110f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu) 1111f2cb1360SIngo Molnar { 1112f2cb1360SIngo Molnar struct sched_group *first = NULL, *last = NULL; 1113f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1114f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 1115f2cb1360SIngo Molnar struct cpumask *covered; 1116f2cb1360SIngo Molnar int i; 1117f2cb1360SIngo Molnar 1118f2cb1360SIngo Molnar lockdep_assert_held(&sched_domains_mutex); 1119f2cb1360SIngo Molnar covered = sched_domains_tmpmask; 1120f2cb1360SIngo Molnar 1121f2cb1360SIngo Molnar cpumask_clear(covered); 1122f2cb1360SIngo Molnar 11230c0e776aSPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 1124f2cb1360SIngo Molnar struct sched_group *sg; 1125f2cb1360SIngo Molnar 1126f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 1127f2cb1360SIngo Molnar continue; 1128f2cb1360SIngo Molnar 11290c0e776aSPeter Zijlstra sg = get_group(i, sdd); 1130f2cb1360SIngo Molnar 1131ae4df9d6SPeter Zijlstra cpumask_or(covered, covered, sched_group_span(sg)); 1132f2cb1360SIngo Molnar 1133f2cb1360SIngo Molnar if (!first) 1134f2cb1360SIngo Molnar first = sg; 1135f2cb1360SIngo Molnar if (last) 1136f2cb1360SIngo Molnar last->next = sg; 1137f2cb1360SIngo Molnar last = sg; 1138f2cb1360SIngo Molnar } 1139f2cb1360SIngo Molnar last->next = first; 11400c0e776aSPeter Zijlstra sd->groups = first; 1141f2cb1360SIngo Molnar 1142f2cb1360SIngo Molnar return 0; 1143f2cb1360SIngo Molnar } 1144f2cb1360SIngo Molnar 1145f2cb1360SIngo Molnar /* 1146f2cb1360SIngo Molnar * Initialize sched groups cpu_capacity. 1147f2cb1360SIngo Molnar * 1148f2cb1360SIngo Molnar * cpu_capacity indicates the capacity of sched group, which is used while 1149f2cb1360SIngo Molnar * distributing the load between different sched groups in a sched domain. 1150f2cb1360SIngo Molnar * Typically cpu_capacity for all the groups in a sched domain will be same 1151f2cb1360SIngo Molnar * unless there are asymmetries in the topology. If there are asymmetries, 1152f2cb1360SIngo Molnar * group having more cpu_capacity will pickup more load compared to the 1153f2cb1360SIngo Molnar * group having less cpu_capacity. 1154f2cb1360SIngo Molnar */ 1155f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1156f2cb1360SIngo Molnar { 1157f2cb1360SIngo Molnar struct sched_group *sg = sd->groups; 1158f2cb1360SIngo Molnar 1159f2cb1360SIngo Molnar WARN_ON(!sg); 1160f2cb1360SIngo Molnar 1161f2cb1360SIngo Molnar do { 1162f2cb1360SIngo Molnar int cpu, max_cpu = -1; 1163f2cb1360SIngo Molnar 1164ae4df9d6SPeter Zijlstra sg->group_weight = cpumask_weight(sched_group_span(sg)); 1165f2cb1360SIngo Molnar 1166f2cb1360SIngo Molnar if (!(sd->flags & SD_ASYM_PACKING)) 1167f2cb1360SIngo Molnar goto next; 1168f2cb1360SIngo Molnar 1169ae4df9d6SPeter Zijlstra for_each_cpu(cpu, sched_group_span(sg)) { 1170f2cb1360SIngo Molnar if (max_cpu < 0) 1171f2cb1360SIngo Molnar max_cpu = cpu; 1172f2cb1360SIngo Molnar else if (sched_asym_prefer(cpu, max_cpu)) 1173f2cb1360SIngo Molnar max_cpu = cpu; 1174f2cb1360SIngo Molnar } 1175f2cb1360SIngo Molnar sg->asym_prefer_cpu = max_cpu; 1176f2cb1360SIngo Molnar 1177f2cb1360SIngo Molnar next: 1178f2cb1360SIngo Molnar sg = sg->next; 1179f2cb1360SIngo Molnar } while (sg != sd->groups); 1180f2cb1360SIngo Molnar 1181f2cb1360SIngo Molnar if (cpu != group_balance_cpu(sg)) 1182f2cb1360SIngo Molnar return; 1183f2cb1360SIngo Molnar 1184f2cb1360SIngo Molnar update_group_capacity(sd, cpu); 1185f2cb1360SIngo Molnar } 1186f2cb1360SIngo Molnar 1187f2cb1360SIngo Molnar /* 1188f2cb1360SIngo Molnar * Initializers for schedule domains 1189f2cb1360SIngo Molnar * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1190f2cb1360SIngo Molnar */ 1191f2cb1360SIngo Molnar 1192f2cb1360SIngo Molnar static int default_relax_domain_level = -1; 1193f2cb1360SIngo Molnar int sched_domain_level_max; 1194f2cb1360SIngo Molnar 1195f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str) 1196f2cb1360SIngo Molnar { 1197f2cb1360SIngo Molnar if (kstrtoint(str, 0, &default_relax_domain_level)) 1198f2cb1360SIngo Molnar pr_warn("Unable to set relax_domain_level\n"); 1199f2cb1360SIngo Molnar 1200f2cb1360SIngo Molnar return 1; 1201f2cb1360SIngo Molnar } 1202f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level); 1203f2cb1360SIngo Molnar 1204f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd, 1205f2cb1360SIngo Molnar struct sched_domain_attr *attr) 1206f2cb1360SIngo Molnar { 1207f2cb1360SIngo Molnar int request; 1208f2cb1360SIngo Molnar 1209f2cb1360SIngo Molnar if (!attr || attr->relax_domain_level < 0) { 1210f2cb1360SIngo Molnar if (default_relax_domain_level < 0) 1211f2cb1360SIngo Molnar return; 1212f2cb1360SIngo Molnar request = default_relax_domain_level; 1213f2cb1360SIngo Molnar } else 1214f2cb1360SIngo Molnar request = attr->relax_domain_level; 12159ae7ab20SValentin Schneider 12169ae7ab20SValentin Schneider if (sd->level > request) { 1217f2cb1360SIngo Molnar /* Turn off idle balance on this domain: */ 1218f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1219f2cb1360SIngo Molnar } 1220f2cb1360SIngo Molnar } 1221f2cb1360SIngo Molnar 1222f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map); 1223f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map); 1224f2cb1360SIngo Molnar 1225f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1226f2cb1360SIngo Molnar const struct cpumask *cpu_map) 1227f2cb1360SIngo Molnar { 1228f2cb1360SIngo Molnar switch (what) { 1229f2cb1360SIngo Molnar case sa_rootdomain: 1230f2cb1360SIngo Molnar if (!atomic_read(&d->rd->refcount)) 1231f2cb1360SIngo Molnar free_rootdomain(&d->rd->rcu); 1232f2cb1360SIngo Molnar /* Fall through */ 1233f2cb1360SIngo Molnar case sa_sd: 1234f2cb1360SIngo Molnar free_percpu(d->sd); 1235f2cb1360SIngo Molnar /* Fall through */ 1236f2cb1360SIngo Molnar case sa_sd_storage: 1237f2cb1360SIngo Molnar __sdt_free(cpu_map); 1238f2cb1360SIngo Molnar /* Fall through */ 1239f2cb1360SIngo Molnar case sa_none: 1240f2cb1360SIngo Molnar break; 1241f2cb1360SIngo Molnar } 1242f2cb1360SIngo Molnar } 1243f2cb1360SIngo Molnar 1244f2cb1360SIngo Molnar static enum s_alloc 1245f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1246f2cb1360SIngo Molnar { 1247f2cb1360SIngo Molnar memset(d, 0, sizeof(*d)); 1248f2cb1360SIngo Molnar 1249f2cb1360SIngo Molnar if (__sdt_alloc(cpu_map)) 1250f2cb1360SIngo Molnar return sa_sd_storage; 1251f2cb1360SIngo Molnar d->sd = alloc_percpu(struct sched_domain *); 1252f2cb1360SIngo Molnar if (!d->sd) 1253f2cb1360SIngo Molnar return sa_sd_storage; 1254f2cb1360SIngo Molnar d->rd = alloc_rootdomain(); 1255f2cb1360SIngo Molnar if (!d->rd) 1256f2cb1360SIngo Molnar return sa_sd; 125797fb7a0aSIngo Molnar 1258f2cb1360SIngo Molnar return sa_rootdomain; 1259f2cb1360SIngo Molnar } 1260f2cb1360SIngo Molnar 1261f2cb1360SIngo Molnar /* 1262f2cb1360SIngo Molnar * NULL the sd_data elements we've used to build the sched_domain and 1263f2cb1360SIngo Molnar * sched_group structure so that the subsequent __free_domain_allocs() 1264f2cb1360SIngo Molnar * will not free the data we're using. 1265f2cb1360SIngo Molnar */ 1266f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd) 1267f2cb1360SIngo Molnar { 1268f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1269f2cb1360SIngo Molnar 1270f2cb1360SIngo Molnar WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1271f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, cpu) = NULL; 1272f2cb1360SIngo Molnar 1273f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1274f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, cpu) = NULL; 1275f2cb1360SIngo Molnar 1276f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1277f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, cpu) = NULL; 1278f2cb1360SIngo Molnar 1279f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1280f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1281f2cb1360SIngo Molnar } 1282f2cb1360SIngo Molnar 1283f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1284f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type; 128597fb7a0aSIngo Molnar 128697fb7a0aSIngo Molnar static int sched_domains_numa_levels; 1287f2cb1360SIngo Molnar static int sched_domains_curr_level; 128897fb7a0aSIngo Molnar 128997fb7a0aSIngo Molnar int sched_max_numa_distance; 129097fb7a0aSIngo Molnar static int *sched_domains_numa_distance; 129197fb7a0aSIngo Molnar static struct cpumask ***sched_domains_numa_masks; 1292a55c7454SMatt Fleming int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1293f2cb1360SIngo Molnar #endif 1294f2cb1360SIngo Molnar 1295f2cb1360SIngo Molnar /* 1296f2cb1360SIngo Molnar * SD_flags allowed in topology descriptions. 1297f2cb1360SIngo Molnar * 1298f2cb1360SIngo Molnar * These flags are purely descriptive of the topology and do not prescribe 1299f2cb1360SIngo Molnar * behaviour. Behaviour is artificial and mapped in the below sd_init() 1300f2cb1360SIngo Molnar * function: 1301f2cb1360SIngo Molnar * 1302f2cb1360SIngo Molnar * SD_SHARE_CPUCAPACITY - describes SMT topologies 1303f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCES - describes shared caches 1304f2cb1360SIngo Molnar * SD_NUMA - describes NUMA topologies 1305f2cb1360SIngo Molnar * SD_SHARE_POWERDOMAIN - describes shared power domain 1306f2cb1360SIngo Molnar * 1307f2cb1360SIngo Molnar * Odd one out, which beside describing the topology has a quirk also 1308f2cb1360SIngo Molnar * prescribes the desired behaviour that goes along with it: 1309f2cb1360SIngo Molnar * 1310f2cb1360SIngo Molnar * SD_ASYM_PACKING - describes SMT quirks 1311f2cb1360SIngo Molnar */ 1312f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS \ 1313f2cb1360SIngo Molnar (SD_SHARE_CPUCAPACITY | \ 1314f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | \ 1315f2cb1360SIngo Molnar SD_NUMA | \ 1316f2cb1360SIngo Molnar SD_ASYM_PACKING | \ 1317f2cb1360SIngo Molnar SD_SHARE_POWERDOMAIN) 1318f2cb1360SIngo Molnar 1319f2cb1360SIngo Molnar static struct sched_domain * 1320f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl, 1321f2cb1360SIngo Molnar const struct cpumask *cpu_map, 132205484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1323f2cb1360SIngo Molnar { 1324f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1325f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1326f2cb1360SIngo Molnar int sd_id, sd_weight, sd_flags = 0; 1327f2cb1360SIngo Molnar 1328f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1329f2cb1360SIngo Molnar /* 1330f2cb1360SIngo Molnar * Ugly hack to pass state to sd_numa_mask()... 1331f2cb1360SIngo Molnar */ 1332f2cb1360SIngo Molnar sched_domains_curr_level = tl->numa_level; 1333f2cb1360SIngo Molnar #endif 1334f2cb1360SIngo Molnar 1335f2cb1360SIngo Molnar sd_weight = cpumask_weight(tl->mask(cpu)); 1336f2cb1360SIngo Molnar 1337f2cb1360SIngo Molnar if (tl->sd_flags) 1338f2cb1360SIngo Molnar sd_flags = (*tl->sd_flags)(); 1339f2cb1360SIngo Molnar if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1340f2cb1360SIngo Molnar "wrong sd_flags in topology description\n")) 1341f2cb1360SIngo Molnar sd_flags &= ~TOPOLOGY_SD_FLAGS; 1342f2cb1360SIngo Molnar 134305484e09SMorten Rasmussen /* Apply detected topology flags */ 134405484e09SMorten Rasmussen sd_flags |= dflags; 134505484e09SMorten Rasmussen 1346f2cb1360SIngo Molnar *sd = (struct sched_domain){ 1347f2cb1360SIngo Molnar .min_interval = sd_weight, 1348f2cb1360SIngo Molnar .max_interval = 2*sd_weight, 1349f2cb1360SIngo Molnar .busy_factor = 32, 1350f2cb1360SIngo Molnar .imbalance_pct = 125, 1351f2cb1360SIngo Molnar 1352f2cb1360SIngo Molnar .cache_nice_tries = 0, 1353f2cb1360SIngo Molnar 1354f2cb1360SIngo Molnar .flags = 1*SD_LOAD_BALANCE 1355f2cb1360SIngo Molnar | 1*SD_BALANCE_NEWIDLE 1356f2cb1360SIngo Molnar | 1*SD_BALANCE_EXEC 1357f2cb1360SIngo Molnar | 1*SD_BALANCE_FORK 1358f2cb1360SIngo Molnar | 0*SD_BALANCE_WAKE 1359f2cb1360SIngo Molnar | 1*SD_WAKE_AFFINE 1360f2cb1360SIngo Molnar | 0*SD_SHARE_CPUCAPACITY 1361f2cb1360SIngo Molnar | 0*SD_SHARE_PKG_RESOURCES 1362f2cb1360SIngo Molnar | 0*SD_SERIALIZE 13639c63e84dSMorten Rasmussen | 1*SD_PREFER_SIBLING 1364f2cb1360SIngo Molnar | 0*SD_NUMA 1365f2cb1360SIngo Molnar | sd_flags 1366f2cb1360SIngo Molnar , 1367f2cb1360SIngo Molnar 1368f2cb1360SIngo Molnar .last_balance = jiffies, 1369f2cb1360SIngo Molnar .balance_interval = sd_weight, 1370f2cb1360SIngo Molnar .max_newidle_lb_cost = 0, 1371f2cb1360SIngo Molnar .next_decay_max_lb_cost = jiffies, 1372f2cb1360SIngo Molnar .child = child, 1373f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1374f2cb1360SIngo Molnar .name = tl->name, 1375f2cb1360SIngo Molnar #endif 1376f2cb1360SIngo Molnar }; 1377f2cb1360SIngo Molnar 1378f2cb1360SIngo Molnar cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1379f2cb1360SIngo Molnar sd_id = cpumask_first(sched_domain_span(sd)); 1380f2cb1360SIngo Molnar 1381f2cb1360SIngo Molnar /* 1382f2cb1360SIngo Molnar * Convert topological properties into behaviour. 1383f2cb1360SIngo Molnar */ 1384f2cb1360SIngo Molnar 1385a526d466SMorten Rasmussen /* Don't attempt to spread across CPUs of different capacities. */ 1386a526d466SMorten Rasmussen if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 13879c63e84dSMorten Rasmussen sd->child->flags &= ~SD_PREFER_SIBLING; 13889c63e84dSMorten Rasmussen 1389f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_CPUCAPACITY) { 1390f2cb1360SIngo Molnar sd->imbalance_pct = 110; 1391f2cb1360SIngo Molnar 1392f2cb1360SIngo Molnar } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1393f2cb1360SIngo Molnar sd->imbalance_pct = 117; 1394f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1395f2cb1360SIngo Molnar 1396f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1397f2cb1360SIngo Molnar } else if (sd->flags & SD_NUMA) { 1398f2cb1360SIngo Molnar sd->cache_nice_tries = 2; 1399f2cb1360SIngo Molnar 14009c63e84dSMorten Rasmussen sd->flags &= ~SD_PREFER_SIBLING; 1401f2cb1360SIngo Molnar sd->flags |= SD_SERIALIZE; 1402a55c7454SMatt Fleming if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1403f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_EXEC | 1404f2cb1360SIngo Molnar SD_BALANCE_FORK | 1405f2cb1360SIngo Molnar SD_WAKE_AFFINE); 1406f2cb1360SIngo Molnar } 1407f2cb1360SIngo Molnar 1408f2cb1360SIngo Molnar #endif 1409f2cb1360SIngo Molnar } else { 1410f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1411f2cb1360SIngo Molnar } 1412f2cb1360SIngo Molnar 1413f2cb1360SIngo Molnar /* 1414f2cb1360SIngo Molnar * For all levels sharing cache; connect a sched_domain_shared 1415f2cb1360SIngo Molnar * instance. 1416f2cb1360SIngo Molnar */ 1417f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1418f2cb1360SIngo Molnar sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1419f2cb1360SIngo Molnar atomic_inc(&sd->shared->ref); 1420f2cb1360SIngo Molnar atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1421f2cb1360SIngo Molnar } 1422f2cb1360SIngo Molnar 1423f2cb1360SIngo Molnar sd->private = sdd; 1424f2cb1360SIngo Molnar 1425f2cb1360SIngo Molnar return sd; 1426f2cb1360SIngo Molnar } 1427f2cb1360SIngo Molnar 1428f2cb1360SIngo Molnar /* 1429f2cb1360SIngo Molnar * Topology list, bottom-up. 1430f2cb1360SIngo Molnar */ 1431f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = { 1432f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT 1433f2cb1360SIngo Molnar { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1434f2cb1360SIngo Molnar #endif 1435f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC 1436f2cb1360SIngo Molnar { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1437f2cb1360SIngo Molnar #endif 1438f2cb1360SIngo Molnar { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1439f2cb1360SIngo Molnar { NULL, }, 1440f2cb1360SIngo Molnar }; 1441f2cb1360SIngo Molnar 1442f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology = 1443f2cb1360SIngo Molnar default_topology; 1444f2cb1360SIngo Molnar 1445f2cb1360SIngo Molnar #define for_each_sd_topology(tl) \ 1446f2cb1360SIngo Molnar for (tl = sched_domain_topology; tl->mask; tl++) 1447f2cb1360SIngo Molnar 1448f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl) 1449f2cb1360SIngo Molnar { 1450f2cb1360SIngo Molnar if (WARN_ON_ONCE(sched_smp_initialized)) 1451f2cb1360SIngo Molnar return; 1452f2cb1360SIngo Molnar 1453f2cb1360SIngo Molnar sched_domain_topology = tl; 1454f2cb1360SIngo Molnar } 1455f2cb1360SIngo Molnar 1456f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1457f2cb1360SIngo Molnar 1458f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu) 1459f2cb1360SIngo Molnar { 1460f2cb1360SIngo Molnar return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1461f2cb1360SIngo Molnar } 1462f2cb1360SIngo Molnar 1463f2cb1360SIngo Molnar static void sched_numa_warn(const char *str) 1464f2cb1360SIngo Molnar { 1465f2cb1360SIngo Molnar static int done = false; 1466f2cb1360SIngo Molnar int i,j; 1467f2cb1360SIngo Molnar 1468f2cb1360SIngo Molnar if (done) 1469f2cb1360SIngo Molnar return; 1470f2cb1360SIngo Molnar 1471f2cb1360SIngo Molnar done = true; 1472f2cb1360SIngo Molnar 1473f2cb1360SIngo Molnar printk(KERN_WARNING "ERROR: %s\n\n", str); 1474f2cb1360SIngo Molnar 1475f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1476f2cb1360SIngo Molnar printk(KERN_WARNING " "); 1477f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1478f2cb1360SIngo Molnar printk(KERN_CONT "%02d ", node_distance(i,j)); 1479f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 1480f2cb1360SIngo Molnar } 1481f2cb1360SIngo Molnar printk(KERN_WARNING "\n"); 1482f2cb1360SIngo Molnar } 1483f2cb1360SIngo Molnar 1484f2cb1360SIngo Molnar bool find_numa_distance(int distance) 1485f2cb1360SIngo Molnar { 1486f2cb1360SIngo Molnar int i; 1487f2cb1360SIngo Molnar 1488f2cb1360SIngo Molnar if (distance == node_distance(0, 0)) 1489f2cb1360SIngo Molnar return true; 1490f2cb1360SIngo Molnar 1491f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1492f2cb1360SIngo Molnar if (sched_domains_numa_distance[i] == distance) 1493f2cb1360SIngo Molnar return true; 1494f2cb1360SIngo Molnar } 1495f2cb1360SIngo Molnar 1496f2cb1360SIngo Molnar return false; 1497f2cb1360SIngo Molnar } 1498f2cb1360SIngo Molnar 1499f2cb1360SIngo Molnar /* 1500f2cb1360SIngo Molnar * A system can have three types of NUMA topology: 1501f2cb1360SIngo Molnar * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1502f2cb1360SIngo Molnar * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1503f2cb1360SIngo Molnar * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1504f2cb1360SIngo Molnar * 1505f2cb1360SIngo Molnar * The difference between a glueless mesh topology and a backplane 1506f2cb1360SIngo Molnar * topology lies in whether communication between not directly 1507f2cb1360SIngo Molnar * connected nodes goes through intermediary nodes (where programs 1508f2cb1360SIngo Molnar * could run), or through backplane controllers. This affects 1509f2cb1360SIngo Molnar * placement of programs. 1510f2cb1360SIngo Molnar * 1511f2cb1360SIngo Molnar * The type of topology can be discerned with the following tests: 1512f2cb1360SIngo Molnar * - If the maximum distance between any nodes is 1 hop, the system 1513f2cb1360SIngo Molnar * is directly connected. 1514f2cb1360SIngo Molnar * - If for two nodes A and B, located N > 1 hops away from each other, 1515f2cb1360SIngo Molnar * there is an intermediary node C, which is < N hops away from both 1516f2cb1360SIngo Molnar * nodes A and B, the system is a glueless mesh. 1517f2cb1360SIngo Molnar */ 1518f2cb1360SIngo Molnar static void init_numa_topology_type(void) 1519f2cb1360SIngo Molnar { 1520f2cb1360SIngo Molnar int a, b, c, n; 1521f2cb1360SIngo Molnar 1522f2cb1360SIngo Molnar n = sched_max_numa_distance; 1523f2cb1360SIngo Molnar 1524e5e96fafSSrikar Dronamraju if (sched_domains_numa_levels <= 2) { 1525f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_DIRECT; 1526f2cb1360SIngo Molnar return; 1527f2cb1360SIngo Molnar } 1528f2cb1360SIngo Molnar 1529f2cb1360SIngo Molnar for_each_online_node(a) { 1530f2cb1360SIngo Molnar for_each_online_node(b) { 1531f2cb1360SIngo Molnar /* Find two nodes furthest removed from each other. */ 1532f2cb1360SIngo Molnar if (node_distance(a, b) < n) 1533f2cb1360SIngo Molnar continue; 1534f2cb1360SIngo Molnar 1535f2cb1360SIngo Molnar /* Is there an intermediary node between a and b? */ 1536f2cb1360SIngo Molnar for_each_online_node(c) { 1537f2cb1360SIngo Molnar if (node_distance(a, c) < n && 1538f2cb1360SIngo Molnar node_distance(b, c) < n) { 1539f2cb1360SIngo Molnar sched_numa_topology_type = 1540f2cb1360SIngo Molnar NUMA_GLUELESS_MESH; 1541f2cb1360SIngo Molnar return; 1542f2cb1360SIngo Molnar } 1543f2cb1360SIngo Molnar } 1544f2cb1360SIngo Molnar 1545f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_BACKPLANE; 1546f2cb1360SIngo Molnar return; 1547f2cb1360SIngo Molnar } 1548f2cb1360SIngo Molnar } 1549f2cb1360SIngo Molnar } 1550f2cb1360SIngo Molnar 1551f2cb1360SIngo Molnar void sched_init_numa(void) 1552f2cb1360SIngo Molnar { 1553f2cb1360SIngo Molnar int next_distance, curr_distance = node_distance(0, 0); 1554f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1555f2cb1360SIngo Molnar int level = 0; 1556f2cb1360SIngo Molnar int i, j, k; 1557f2cb1360SIngo Molnar 1558993f0b05SPeter Zijlstra sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1559f2cb1360SIngo Molnar if (!sched_domains_numa_distance) 1560f2cb1360SIngo Molnar return; 1561f2cb1360SIngo Molnar 1562051f3ca0SSuravee Suthikulpanit /* Includes NUMA identity node at level 0. */ 1563051f3ca0SSuravee Suthikulpanit sched_domains_numa_distance[level++] = curr_distance; 1564051f3ca0SSuravee Suthikulpanit sched_domains_numa_levels = level; 1565051f3ca0SSuravee Suthikulpanit 1566f2cb1360SIngo Molnar /* 1567f2cb1360SIngo Molnar * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1568f2cb1360SIngo Molnar * unique distances in the node_distance() table. 1569f2cb1360SIngo Molnar * 1570f2cb1360SIngo Molnar * Assumes node_distance(0,j) includes all distances in 1571f2cb1360SIngo Molnar * node_distance(i,j) in order to avoid cubic time. 1572f2cb1360SIngo Molnar */ 1573f2cb1360SIngo Molnar next_distance = curr_distance; 1574f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1575f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1576f2cb1360SIngo Molnar for (k = 0; k < nr_node_ids; k++) { 1577f2cb1360SIngo Molnar int distance = node_distance(i, k); 1578f2cb1360SIngo Molnar 1579f2cb1360SIngo Molnar if (distance > curr_distance && 1580f2cb1360SIngo Molnar (distance < next_distance || 1581f2cb1360SIngo Molnar next_distance == curr_distance)) 1582f2cb1360SIngo Molnar next_distance = distance; 1583f2cb1360SIngo Molnar 1584f2cb1360SIngo Molnar /* 1585f2cb1360SIngo Molnar * While not a strong assumption it would be nice to know 1586f2cb1360SIngo Molnar * about cases where if node A is connected to B, B is not 1587f2cb1360SIngo Molnar * equally connected to A. 1588f2cb1360SIngo Molnar */ 1589f2cb1360SIngo Molnar if (sched_debug() && node_distance(k, i) != distance) 1590f2cb1360SIngo Molnar sched_numa_warn("Node-distance not symmetric"); 1591f2cb1360SIngo Molnar 1592f2cb1360SIngo Molnar if (sched_debug() && i && !find_numa_distance(distance)) 1593f2cb1360SIngo Molnar sched_numa_warn("Node-0 not representative"); 1594f2cb1360SIngo Molnar } 1595f2cb1360SIngo Molnar if (next_distance != curr_distance) { 1596f2cb1360SIngo Molnar sched_domains_numa_distance[level++] = next_distance; 1597f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1598f2cb1360SIngo Molnar curr_distance = next_distance; 1599f2cb1360SIngo Molnar } else break; 1600f2cb1360SIngo Molnar } 1601f2cb1360SIngo Molnar 1602f2cb1360SIngo Molnar /* 1603f2cb1360SIngo Molnar * In case of sched_debug() we verify the above assumption. 1604f2cb1360SIngo Molnar */ 1605f2cb1360SIngo Molnar if (!sched_debug()) 1606f2cb1360SIngo Molnar break; 1607f2cb1360SIngo Molnar } 1608f2cb1360SIngo Molnar 1609f2cb1360SIngo Molnar /* 1610051f3ca0SSuravee Suthikulpanit * 'level' contains the number of unique distances 1611f2cb1360SIngo Molnar * 1612f2cb1360SIngo Molnar * The sched_domains_numa_distance[] array includes the actual distance 1613f2cb1360SIngo Molnar * numbers. 1614f2cb1360SIngo Molnar */ 1615f2cb1360SIngo Molnar 1616f2cb1360SIngo Molnar /* 1617f2cb1360SIngo Molnar * Here, we should temporarily reset sched_domains_numa_levels to 0. 1618f2cb1360SIngo Molnar * If it fails to allocate memory for array sched_domains_numa_masks[][], 1619f2cb1360SIngo Molnar * the array will contain less then 'level' members. This could be 1620f2cb1360SIngo Molnar * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1621f2cb1360SIngo Molnar * in other functions. 1622f2cb1360SIngo Molnar * 1623f2cb1360SIngo Molnar * We reset it to 'level' at the end of this function. 1624f2cb1360SIngo Molnar */ 1625f2cb1360SIngo Molnar sched_domains_numa_levels = 0; 1626f2cb1360SIngo Molnar 1627f2cb1360SIngo Molnar sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1628f2cb1360SIngo Molnar if (!sched_domains_numa_masks) 1629f2cb1360SIngo Molnar return; 1630f2cb1360SIngo Molnar 1631f2cb1360SIngo Molnar /* 1632f2cb1360SIngo Molnar * Now for each level, construct a mask per node which contains all 1633f2cb1360SIngo Molnar * CPUs of nodes that are that many hops away from us. 1634f2cb1360SIngo Molnar */ 1635f2cb1360SIngo Molnar for (i = 0; i < level; i++) { 1636f2cb1360SIngo Molnar sched_domains_numa_masks[i] = 1637f2cb1360SIngo Molnar kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1638f2cb1360SIngo Molnar if (!sched_domains_numa_masks[i]) 1639f2cb1360SIngo Molnar return; 1640f2cb1360SIngo Molnar 1641f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1642f2cb1360SIngo Molnar struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1643f2cb1360SIngo Molnar if (!mask) 1644f2cb1360SIngo Molnar return; 1645f2cb1360SIngo Molnar 1646f2cb1360SIngo Molnar sched_domains_numa_masks[i][j] = mask; 1647f2cb1360SIngo Molnar 1648f2cb1360SIngo Molnar for_each_node(k) { 1649f2cb1360SIngo Molnar if (node_distance(j, k) > sched_domains_numa_distance[i]) 1650f2cb1360SIngo Molnar continue; 1651f2cb1360SIngo Molnar 1652f2cb1360SIngo Molnar cpumask_or(mask, mask, cpumask_of_node(k)); 1653f2cb1360SIngo Molnar } 1654f2cb1360SIngo Molnar } 1655f2cb1360SIngo Molnar } 1656f2cb1360SIngo Molnar 1657f2cb1360SIngo Molnar /* Compute default topology size */ 1658f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++); 1659f2cb1360SIngo Molnar 1660f2cb1360SIngo Molnar tl = kzalloc((i + level + 1) * 1661f2cb1360SIngo Molnar sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1662f2cb1360SIngo Molnar if (!tl) 1663f2cb1360SIngo Molnar return; 1664f2cb1360SIngo Molnar 1665f2cb1360SIngo Molnar /* 1666f2cb1360SIngo Molnar * Copy the default topology bits.. 1667f2cb1360SIngo Molnar */ 1668f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++) 1669f2cb1360SIngo Molnar tl[i] = sched_domain_topology[i]; 1670f2cb1360SIngo Molnar 1671f2cb1360SIngo Molnar /* 1672051f3ca0SSuravee Suthikulpanit * Add the NUMA identity distance, aka single NODE. 1673051f3ca0SSuravee Suthikulpanit */ 1674051f3ca0SSuravee Suthikulpanit tl[i++] = (struct sched_domain_topology_level){ 1675051f3ca0SSuravee Suthikulpanit .mask = sd_numa_mask, 1676051f3ca0SSuravee Suthikulpanit .numa_level = 0, 1677051f3ca0SSuravee Suthikulpanit SD_INIT_NAME(NODE) 1678051f3ca0SSuravee Suthikulpanit }; 1679051f3ca0SSuravee Suthikulpanit 1680051f3ca0SSuravee Suthikulpanit /* 1681f2cb1360SIngo Molnar * .. and append 'j' levels of NUMA goodness. 1682f2cb1360SIngo Molnar */ 1683051f3ca0SSuravee Suthikulpanit for (j = 1; j < level; i++, j++) { 1684f2cb1360SIngo Molnar tl[i] = (struct sched_domain_topology_level){ 1685f2cb1360SIngo Molnar .mask = sd_numa_mask, 1686f2cb1360SIngo Molnar .sd_flags = cpu_numa_flags, 1687f2cb1360SIngo Molnar .flags = SDTL_OVERLAP, 1688f2cb1360SIngo Molnar .numa_level = j, 1689f2cb1360SIngo Molnar SD_INIT_NAME(NUMA) 1690f2cb1360SIngo Molnar }; 1691f2cb1360SIngo Molnar } 1692f2cb1360SIngo Molnar 1693f2cb1360SIngo Molnar sched_domain_topology = tl; 1694f2cb1360SIngo Molnar 1695f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1696f2cb1360SIngo Molnar sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1697f2cb1360SIngo Molnar 1698f2cb1360SIngo Molnar init_numa_topology_type(); 1699f2cb1360SIngo Molnar } 1700f2cb1360SIngo Molnar 1701f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu) 1702f2cb1360SIngo Molnar { 1703f2cb1360SIngo Molnar int node = cpu_to_node(cpu); 1704f2cb1360SIngo Molnar int i, j; 1705f2cb1360SIngo Molnar 1706f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1707f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1708f2cb1360SIngo Molnar if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1709f2cb1360SIngo Molnar cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1710f2cb1360SIngo Molnar } 1711f2cb1360SIngo Molnar } 1712f2cb1360SIngo Molnar } 1713f2cb1360SIngo Molnar 1714f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu) 1715f2cb1360SIngo Molnar { 1716f2cb1360SIngo Molnar int i, j; 1717f2cb1360SIngo Molnar 1718f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1719f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1720f2cb1360SIngo Molnar cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1721f2cb1360SIngo Molnar } 1722f2cb1360SIngo Molnar } 1723f2cb1360SIngo Molnar 1724e0e8d491SWanpeng Li /* 1725e0e8d491SWanpeng Li * sched_numa_find_closest() - given the NUMA topology, find the cpu 1726e0e8d491SWanpeng Li * closest to @cpu from @cpumask. 1727e0e8d491SWanpeng Li * cpumask: cpumask to find a cpu from 1728e0e8d491SWanpeng Li * cpu: cpu to be close to 1729e0e8d491SWanpeng Li * 1730e0e8d491SWanpeng Li * returns: cpu, or nr_cpu_ids when nothing found. 1731e0e8d491SWanpeng Li */ 1732e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1733e0e8d491SWanpeng Li { 1734e0e8d491SWanpeng Li int i, j = cpu_to_node(cpu); 1735e0e8d491SWanpeng Li 1736e0e8d491SWanpeng Li for (i = 0; i < sched_domains_numa_levels; i++) { 1737e0e8d491SWanpeng Li cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 1738e0e8d491SWanpeng Li if (cpu < nr_cpu_ids) 1739e0e8d491SWanpeng Li return cpu; 1740e0e8d491SWanpeng Li } 1741e0e8d491SWanpeng Li return nr_cpu_ids; 1742e0e8d491SWanpeng Li } 1743e0e8d491SWanpeng Li 1744f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */ 1745f2cb1360SIngo Molnar 1746f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map) 1747f2cb1360SIngo Molnar { 1748f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1749f2cb1360SIngo Molnar int j; 1750f2cb1360SIngo Molnar 1751f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1752f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1753f2cb1360SIngo Molnar 1754f2cb1360SIngo Molnar sdd->sd = alloc_percpu(struct sched_domain *); 1755f2cb1360SIngo Molnar if (!sdd->sd) 1756f2cb1360SIngo Molnar return -ENOMEM; 1757f2cb1360SIngo Molnar 1758f2cb1360SIngo Molnar sdd->sds = alloc_percpu(struct sched_domain_shared *); 1759f2cb1360SIngo Molnar if (!sdd->sds) 1760f2cb1360SIngo Molnar return -ENOMEM; 1761f2cb1360SIngo Molnar 1762f2cb1360SIngo Molnar sdd->sg = alloc_percpu(struct sched_group *); 1763f2cb1360SIngo Molnar if (!sdd->sg) 1764f2cb1360SIngo Molnar return -ENOMEM; 1765f2cb1360SIngo Molnar 1766f2cb1360SIngo Molnar sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1767f2cb1360SIngo Molnar if (!sdd->sgc) 1768f2cb1360SIngo Molnar return -ENOMEM; 1769f2cb1360SIngo Molnar 1770f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1771f2cb1360SIngo Molnar struct sched_domain *sd; 1772f2cb1360SIngo Molnar struct sched_domain_shared *sds; 1773f2cb1360SIngo Molnar struct sched_group *sg; 1774f2cb1360SIngo Molnar struct sched_group_capacity *sgc; 1775f2cb1360SIngo Molnar 1776f2cb1360SIngo Molnar sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1777f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1778f2cb1360SIngo Molnar if (!sd) 1779f2cb1360SIngo Molnar return -ENOMEM; 1780f2cb1360SIngo Molnar 1781f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, j) = sd; 1782f2cb1360SIngo Molnar 1783f2cb1360SIngo Molnar sds = kzalloc_node(sizeof(struct sched_domain_shared), 1784f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1785f2cb1360SIngo Molnar if (!sds) 1786f2cb1360SIngo Molnar return -ENOMEM; 1787f2cb1360SIngo Molnar 1788f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, j) = sds; 1789f2cb1360SIngo Molnar 1790f2cb1360SIngo Molnar sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1791f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1792f2cb1360SIngo Molnar if (!sg) 1793f2cb1360SIngo Molnar return -ENOMEM; 1794f2cb1360SIngo Molnar 1795f2cb1360SIngo Molnar sg->next = sg; 1796f2cb1360SIngo Molnar 1797f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, j) = sg; 1798f2cb1360SIngo Molnar 1799f2cb1360SIngo Molnar sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1800f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1801f2cb1360SIngo Molnar if (!sgc) 1802f2cb1360SIngo Molnar return -ENOMEM; 1803f2cb1360SIngo Molnar 1804005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG 1805005f874dSPeter Zijlstra sgc->id = j; 1806005f874dSPeter Zijlstra #endif 1807005f874dSPeter Zijlstra 1808f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, j) = sgc; 1809f2cb1360SIngo Molnar } 1810f2cb1360SIngo Molnar } 1811f2cb1360SIngo Molnar 1812f2cb1360SIngo Molnar return 0; 1813f2cb1360SIngo Molnar } 1814f2cb1360SIngo Molnar 1815f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map) 1816f2cb1360SIngo Molnar { 1817f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1818f2cb1360SIngo Molnar int j; 1819f2cb1360SIngo Molnar 1820f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1821f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1822f2cb1360SIngo Molnar 1823f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1824f2cb1360SIngo Molnar struct sched_domain *sd; 1825f2cb1360SIngo Molnar 1826f2cb1360SIngo Molnar if (sdd->sd) { 1827f2cb1360SIngo Molnar sd = *per_cpu_ptr(sdd->sd, j); 1828f2cb1360SIngo Molnar if (sd && (sd->flags & SD_OVERLAP)) 1829f2cb1360SIngo Molnar free_sched_groups(sd->groups, 0); 1830f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sd, j)); 1831f2cb1360SIngo Molnar } 1832f2cb1360SIngo Molnar 1833f2cb1360SIngo Molnar if (sdd->sds) 1834f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sds, j)); 1835f2cb1360SIngo Molnar if (sdd->sg) 1836f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sg, j)); 1837f2cb1360SIngo Molnar if (sdd->sgc) 1838f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sgc, j)); 1839f2cb1360SIngo Molnar } 1840f2cb1360SIngo Molnar free_percpu(sdd->sd); 1841f2cb1360SIngo Molnar sdd->sd = NULL; 1842f2cb1360SIngo Molnar free_percpu(sdd->sds); 1843f2cb1360SIngo Molnar sdd->sds = NULL; 1844f2cb1360SIngo Molnar free_percpu(sdd->sg); 1845f2cb1360SIngo Molnar sdd->sg = NULL; 1846f2cb1360SIngo Molnar free_percpu(sdd->sgc); 1847f2cb1360SIngo Molnar sdd->sgc = NULL; 1848f2cb1360SIngo Molnar } 1849f2cb1360SIngo Molnar } 1850f2cb1360SIngo Molnar 1851181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1852f2cb1360SIngo Molnar const struct cpumask *cpu_map, struct sched_domain_attr *attr, 185305484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1854f2cb1360SIngo Molnar { 185505484e09SMorten Rasmussen struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1856f2cb1360SIngo Molnar 1857f2cb1360SIngo Molnar if (child) { 1858f2cb1360SIngo Molnar sd->level = child->level + 1; 1859f2cb1360SIngo Molnar sched_domain_level_max = max(sched_domain_level_max, sd->level); 1860f2cb1360SIngo Molnar child->parent = sd; 1861f2cb1360SIngo Molnar 1862f2cb1360SIngo Molnar if (!cpumask_subset(sched_domain_span(child), 1863f2cb1360SIngo Molnar sched_domain_span(sd))) { 1864f2cb1360SIngo Molnar pr_err("BUG: arch topology borken\n"); 1865f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1866f2cb1360SIngo Molnar pr_err(" the %s domain not a subset of the %s domain\n", 1867f2cb1360SIngo Molnar child->name, sd->name); 1868f2cb1360SIngo Molnar #endif 186997fb7a0aSIngo Molnar /* Fixup, ensure @sd has at least @child CPUs. */ 1870f2cb1360SIngo Molnar cpumask_or(sched_domain_span(sd), 1871f2cb1360SIngo Molnar sched_domain_span(sd), 1872f2cb1360SIngo Molnar sched_domain_span(child)); 1873f2cb1360SIngo Molnar } 1874f2cb1360SIngo Molnar 1875f2cb1360SIngo Molnar } 1876f2cb1360SIngo Molnar set_domain_attribute(sd, attr); 1877f2cb1360SIngo Molnar 1878f2cb1360SIngo Molnar return sd; 1879f2cb1360SIngo Molnar } 1880f2cb1360SIngo Molnar 1881f2cb1360SIngo Molnar /* 1882ccf74128SValentin Schneider * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 1883ccf74128SValentin Schneider * any two given CPUs at this (non-NUMA) topology level. 1884ccf74128SValentin Schneider */ 1885ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl, 1886ccf74128SValentin Schneider const struct cpumask *cpu_map, int cpu) 1887ccf74128SValentin Schneider { 1888ccf74128SValentin Schneider int i; 1889ccf74128SValentin Schneider 1890ccf74128SValentin Schneider /* NUMA levels are allowed to overlap */ 1891ccf74128SValentin Schneider if (tl->flags & SDTL_OVERLAP) 1892ccf74128SValentin Schneider return true; 1893ccf74128SValentin Schneider 1894ccf74128SValentin Schneider /* 1895ccf74128SValentin Schneider * Non-NUMA levels cannot partially overlap - they must be either 1896ccf74128SValentin Schneider * completely equal or completely disjoint. Otherwise we can end up 1897ccf74128SValentin Schneider * breaking the sched_group lists - i.e. a later get_group() pass 1898ccf74128SValentin Schneider * breaks the linking done for an earlier span. 1899ccf74128SValentin Schneider */ 1900ccf74128SValentin Schneider for_each_cpu(i, cpu_map) { 1901ccf74128SValentin Schneider if (i == cpu) 1902ccf74128SValentin Schneider continue; 1903ccf74128SValentin Schneider /* 1904ccf74128SValentin Schneider * We should 'and' all those masks with 'cpu_map' to exactly 1905ccf74128SValentin Schneider * match the topology we're about to build, but that can only 1906ccf74128SValentin Schneider * remove CPUs, which only lessens our ability to detect 1907ccf74128SValentin Schneider * overlaps 1908ccf74128SValentin Schneider */ 1909ccf74128SValentin Schneider if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 1910ccf74128SValentin Schneider cpumask_intersects(tl->mask(cpu), tl->mask(i))) 1911ccf74128SValentin Schneider return false; 1912ccf74128SValentin Schneider } 1913ccf74128SValentin Schneider 1914ccf74128SValentin Schneider return true; 1915ccf74128SValentin Schneider } 1916ccf74128SValentin Schneider 1917ccf74128SValentin Schneider /* 191805484e09SMorten Rasmussen * Find the sched_domain_topology_level where all CPU capacities are visible 191905484e09SMorten Rasmussen * for all CPUs. 192005484e09SMorten Rasmussen */ 192105484e09SMorten Rasmussen static struct sched_domain_topology_level 192205484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map) 192305484e09SMorten Rasmussen { 192405484e09SMorten Rasmussen int i, j, asym_level = 0; 192505484e09SMorten Rasmussen bool asym = false; 192605484e09SMorten Rasmussen struct sched_domain_topology_level *tl, *asym_tl = NULL; 192705484e09SMorten Rasmussen unsigned long cap; 192805484e09SMorten Rasmussen 192905484e09SMorten Rasmussen /* Is there any asymmetry? */ 19308ec59c0fSVincent Guittot cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); 193105484e09SMorten Rasmussen 193205484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19338ec59c0fSVincent Guittot if (arch_scale_cpu_capacity(i) != cap) { 193405484e09SMorten Rasmussen asym = true; 193505484e09SMorten Rasmussen break; 193605484e09SMorten Rasmussen } 193705484e09SMorten Rasmussen } 193805484e09SMorten Rasmussen 193905484e09SMorten Rasmussen if (!asym) 194005484e09SMorten Rasmussen return NULL; 194105484e09SMorten Rasmussen 194205484e09SMorten Rasmussen /* 194305484e09SMorten Rasmussen * Examine topology from all CPU's point of views to detect the lowest 194405484e09SMorten Rasmussen * sched_domain_topology_level where a highest capacity CPU is visible 194505484e09SMorten Rasmussen * to everyone. 194605484e09SMorten Rasmussen */ 194705484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19488ec59c0fSVincent Guittot unsigned long max_capacity = arch_scale_cpu_capacity(i); 194905484e09SMorten Rasmussen int tl_id = 0; 195005484e09SMorten Rasmussen 195105484e09SMorten Rasmussen for_each_sd_topology(tl) { 195205484e09SMorten Rasmussen if (tl_id < asym_level) 195305484e09SMorten Rasmussen goto next_level; 195405484e09SMorten Rasmussen 195505484e09SMorten Rasmussen for_each_cpu_and(j, tl->mask(i), cpu_map) { 195605484e09SMorten Rasmussen unsigned long capacity; 195705484e09SMorten Rasmussen 19588ec59c0fSVincent Guittot capacity = arch_scale_cpu_capacity(j); 195905484e09SMorten Rasmussen 196005484e09SMorten Rasmussen if (capacity <= max_capacity) 196105484e09SMorten Rasmussen continue; 196205484e09SMorten Rasmussen 196305484e09SMorten Rasmussen max_capacity = capacity; 196405484e09SMorten Rasmussen asym_level = tl_id; 196505484e09SMorten Rasmussen asym_tl = tl; 196605484e09SMorten Rasmussen } 196705484e09SMorten Rasmussen next_level: 196805484e09SMorten Rasmussen tl_id++; 196905484e09SMorten Rasmussen } 197005484e09SMorten Rasmussen } 197105484e09SMorten Rasmussen 197205484e09SMorten Rasmussen return asym_tl; 197305484e09SMorten Rasmussen } 197405484e09SMorten Rasmussen 197505484e09SMorten Rasmussen 197605484e09SMorten Rasmussen /* 1977f2cb1360SIngo Molnar * Build sched domains for a given set of CPUs and attach the sched domains 1978f2cb1360SIngo Molnar * to the individual CPUs 1979f2cb1360SIngo Molnar */ 1980f2cb1360SIngo Molnar static int 1981f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1982f2cb1360SIngo Molnar { 1983cd1cb335SValentin Schneider enum s_alloc alloc_state = sa_none; 1984f2cb1360SIngo Molnar struct sched_domain *sd; 1985f2cb1360SIngo Molnar struct s_data d; 1986f2cb1360SIngo Molnar struct rq *rq = NULL; 1987f2cb1360SIngo Molnar int i, ret = -ENOMEM; 198805484e09SMorten Rasmussen struct sched_domain_topology_level *tl_asym; 1989df054e84SMorten Rasmussen bool has_asym = false; 1990f2cb1360SIngo Molnar 1991cd1cb335SValentin Schneider if (WARN_ON(cpumask_empty(cpu_map))) 1992cd1cb335SValentin Schneider goto error; 1993cd1cb335SValentin Schneider 1994f2cb1360SIngo Molnar alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1995f2cb1360SIngo Molnar if (alloc_state != sa_rootdomain) 1996f2cb1360SIngo Molnar goto error; 1997f2cb1360SIngo Molnar 199805484e09SMorten Rasmussen tl_asym = asym_cpu_capacity_level(cpu_map); 199905484e09SMorten Rasmussen 2000f2cb1360SIngo Molnar /* Set up domains for CPUs specified by the cpu_map: */ 2001f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2002f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 2003f2cb1360SIngo Molnar 2004f2cb1360SIngo Molnar sd = NULL; 2005f2cb1360SIngo Molnar for_each_sd_topology(tl) { 200605484e09SMorten Rasmussen int dflags = 0; 200705484e09SMorten Rasmussen 2008df054e84SMorten Rasmussen if (tl == tl_asym) { 200905484e09SMorten Rasmussen dflags |= SD_ASYM_CPUCAPACITY; 2010df054e84SMorten Rasmussen has_asym = true; 2011df054e84SMorten Rasmussen } 201205484e09SMorten Rasmussen 2013ccf74128SValentin Schneider if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2014ccf74128SValentin Schneider goto error; 2015ccf74128SValentin Schneider 201605484e09SMorten Rasmussen sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 201705484e09SMorten Rasmussen 2018f2cb1360SIngo Molnar if (tl == sched_domain_topology) 2019f2cb1360SIngo Molnar *per_cpu_ptr(d.sd, i) = sd; 2020af85596cSPeter Zijlstra if (tl->flags & SDTL_OVERLAP) 2021f2cb1360SIngo Molnar sd->flags |= SD_OVERLAP; 2022f2cb1360SIngo Molnar if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2023f2cb1360SIngo Molnar break; 2024f2cb1360SIngo Molnar } 2025f2cb1360SIngo Molnar } 2026f2cb1360SIngo Molnar 2027f2cb1360SIngo Molnar /* Build the groups for the domains */ 2028f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2029f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2030f2cb1360SIngo Molnar sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2031f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 2032f2cb1360SIngo Molnar if (build_overlap_sched_groups(sd, i)) 2033f2cb1360SIngo Molnar goto error; 2034f2cb1360SIngo Molnar } else { 2035f2cb1360SIngo Molnar if (build_sched_groups(sd, i)) 2036f2cb1360SIngo Molnar goto error; 2037f2cb1360SIngo Molnar } 2038f2cb1360SIngo Molnar } 2039f2cb1360SIngo Molnar } 2040f2cb1360SIngo Molnar 2041f2cb1360SIngo Molnar /* Calculate CPU capacity for physical packages and nodes */ 2042f2cb1360SIngo Molnar for (i = nr_cpumask_bits-1; i >= 0; i--) { 2043f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, cpu_map)) 2044f2cb1360SIngo Molnar continue; 2045f2cb1360SIngo Molnar 2046f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2047f2cb1360SIngo Molnar claim_allocations(i, sd); 2048f2cb1360SIngo Molnar init_sched_groups_capacity(i, sd); 2049f2cb1360SIngo Molnar } 2050f2cb1360SIngo Molnar } 2051f2cb1360SIngo Molnar 2052f2cb1360SIngo Molnar /* Attach the domains */ 2053f2cb1360SIngo Molnar rcu_read_lock(); 2054f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2055f2cb1360SIngo Molnar rq = cpu_rq(i); 2056f2cb1360SIngo Molnar sd = *per_cpu_ptr(d.sd, i); 2057f2cb1360SIngo Molnar 2058f2cb1360SIngo Molnar /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2059f2cb1360SIngo Molnar if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2060f2cb1360SIngo Molnar WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2061f2cb1360SIngo Molnar 2062f2cb1360SIngo Molnar cpu_attach_domain(sd, d.rd, i); 2063f2cb1360SIngo Molnar } 2064f2cb1360SIngo Molnar rcu_read_unlock(); 2065f2cb1360SIngo Molnar 2066df054e84SMorten Rasmussen if (has_asym) 2067e284df70SValentin Schneider static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2068df054e84SMorten Rasmussen 2069f2cb1360SIngo Molnar if (rq && sched_debug_enabled) { 2070bf5015a5SJuri Lelli pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2071f2cb1360SIngo Molnar cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2072f2cb1360SIngo Molnar } 2073f2cb1360SIngo Molnar 2074f2cb1360SIngo Molnar ret = 0; 2075f2cb1360SIngo Molnar error: 2076f2cb1360SIngo Molnar __free_domain_allocs(&d, alloc_state, cpu_map); 207797fb7a0aSIngo Molnar 2078f2cb1360SIngo Molnar return ret; 2079f2cb1360SIngo Molnar } 2080f2cb1360SIngo Molnar 2081f2cb1360SIngo Molnar /* Current sched domains: */ 2082f2cb1360SIngo Molnar static cpumask_var_t *doms_cur; 2083f2cb1360SIngo Molnar 2084f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */ 2085f2cb1360SIngo Molnar static int ndoms_cur; 2086f2cb1360SIngo Molnar 2087f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */ 2088f2cb1360SIngo Molnar static struct sched_domain_attr *dattr_cur; 2089f2cb1360SIngo Molnar 2090f2cb1360SIngo Molnar /* 2091f2cb1360SIngo Molnar * Special case: If a kmalloc() of a doms_cur partition (array of 2092f2cb1360SIngo Molnar * cpumask) fails, then fallback to a single sched domain, 2093f2cb1360SIngo Molnar * as determined by the single cpumask fallback_doms. 2094f2cb1360SIngo Molnar */ 20958d5dc512SPeter Zijlstra static cpumask_var_t fallback_doms; 2096f2cb1360SIngo Molnar 2097f2cb1360SIngo Molnar /* 2098f2cb1360SIngo Molnar * arch_update_cpu_topology lets virtualized architectures update the 2099f2cb1360SIngo Molnar * CPU core maps. It is supposed to return 1 if the topology changed 2100f2cb1360SIngo Molnar * or 0 if it stayed the same. 2101f2cb1360SIngo Molnar */ 2102f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void) 2103f2cb1360SIngo Molnar { 2104f2cb1360SIngo Molnar return 0; 2105f2cb1360SIngo Molnar } 2106f2cb1360SIngo Molnar 2107f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2108f2cb1360SIngo Molnar { 2109f2cb1360SIngo Molnar int i; 2110f2cb1360SIngo Molnar cpumask_var_t *doms; 2111f2cb1360SIngo Molnar 21126da2ec56SKees Cook doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2113f2cb1360SIngo Molnar if (!doms) 2114f2cb1360SIngo Molnar return NULL; 2115f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) { 2116f2cb1360SIngo Molnar if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2117f2cb1360SIngo Molnar free_sched_domains(doms, i); 2118f2cb1360SIngo Molnar return NULL; 2119f2cb1360SIngo Molnar } 2120f2cb1360SIngo Molnar } 2121f2cb1360SIngo Molnar return doms; 2122f2cb1360SIngo Molnar } 2123f2cb1360SIngo Molnar 2124f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2125f2cb1360SIngo Molnar { 2126f2cb1360SIngo Molnar unsigned int i; 2127f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) 2128f2cb1360SIngo Molnar free_cpumask_var(doms[i]); 2129f2cb1360SIngo Molnar kfree(doms); 2130f2cb1360SIngo Molnar } 2131f2cb1360SIngo Molnar 2132f2cb1360SIngo Molnar /* 2133cb0c0414SJuri Lelli * Set up scheduler domains and groups. For now this just excludes isolated 2134cb0c0414SJuri Lelli * CPUs, but could be used to exclude other special cases in the future. 2135f2cb1360SIngo Molnar */ 21368d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map) 2137f2cb1360SIngo Molnar { 2138f2cb1360SIngo Molnar int err; 2139f2cb1360SIngo Molnar 21408d5dc512SPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 21411676330eSPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 21428d5dc512SPeter Zijlstra zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 21438d5dc512SPeter Zijlstra 2144f2cb1360SIngo Molnar arch_update_cpu_topology(); 2145f2cb1360SIngo Molnar ndoms_cur = 1; 2146f2cb1360SIngo Molnar doms_cur = alloc_sched_domains(ndoms_cur); 2147f2cb1360SIngo Molnar if (!doms_cur) 2148f2cb1360SIngo Molnar doms_cur = &fallback_doms; 2149edb93821SFrederic Weisbecker cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2150f2cb1360SIngo Molnar err = build_sched_domains(doms_cur[0], NULL); 2151f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2152f2cb1360SIngo Molnar 2153f2cb1360SIngo Molnar return err; 2154f2cb1360SIngo Molnar } 2155f2cb1360SIngo Molnar 2156f2cb1360SIngo Molnar /* 2157f2cb1360SIngo Molnar * Detach sched domains from a group of CPUs specified in cpu_map 2158f2cb1360SIngo Molnar * These CPUs will now be attached to the NULL domain 2159f2cb1360SIngo Molnar */ 2160f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map) 2161f2cb1360SIngo Molnar { 2162e284df70SValentin Schneider unsigned int cpu = cpumask_any(cpu_map); 2163f2cb1360SIngo Molnar int i; 2164f2cb1360SIngo Molnar 2165e284df70SValentin Schneider if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2166e284df70SValentin Schneider static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2167e284df70SValentin Schneider 2168f2cb1360SIngo Molnar rcu_read_lock(); 2169f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) 2170f2cb1360SIngo Molnar cpu_attach_domain(NULL, &def_root_domain, i); 2171f2cb1360SIngo Molnar rcu_read_unlock(); 2172f2cb1360SIngo Molnar } 2173f2cb1360SIngo Molnar 2174f2cb1360SIngo Molnar /* handle null as "default" */ 2175f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2176f2cb1360SIngo Molnar struct sched_domain_attr *new, int idx_new) 2177f2cb1360SIngo Molnar { 2178f2cb1360SIngo Molnar struct sched_domain_attr tmp; 2179f2cb1360SIngo Molnar 2180f2cb1360SIngo Molnar /* Fast path: */ 2181f2cb1360SIngo Molnar if (!new && !cur) 2182f2cb1360SIngo Molnar return 1; 2183f2cb1360SIngo Molnar 2184f2cb1360SIngo Molnar tmp = SD_ATTR_INIT; 218597fb7a0aSIngo Molnar 2186f2cb1360SIngo Molnar return !memcmp(cur ? (cur + idx_cur) : &tmp, 2187f2cb1360SIngo Molnar new ? (new + idx_new) : &tmp, 2188f2cb1360SIngo Molnar sizeof(struct sched_domain_attr)); 2189f2cb1360SIngo Molnar } 2190f2cb1360SIngo Molnar 2191f2cb1360SIngo Molnar /* 2192f2cb1360SIngo Molnar * Partition sched domains as specified by the 'ndoms_new' 2193f2cb1360SIngo Molnar * cpumasks in the array doms_new[] of cpumasks. This compares 2194f2cb1360SIngo Molnar * doms_new[] to the current sched domain partitioning, doms_cur[]. 2195f2cb1360SIngo Molnar * It destroys each deleted domain and builds each new domain. 2196f2cb1360SIngo Molnar * 2197f2cb1360SIngo Molnar * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2198f2cb1360SIngo Molnar * The masks don't intersect (don't overlap.) We should setup one 2199f2cb1360SIngo Molnar * sched domain for each mask. CPUs not in any of the cpumasks will 2200f2cb1360SIngo Molnar * not be load balanced. If the same cpumask appears both in the 2201f2cb1360SIngo Molnar * current 'doms_cur' domains and in the new 'doms_new', we can leave 2202f2cb1360SIngo Molnar * it as it is. 2203f2cb1360SIngo Molnar * 2204f2cb1360SIngo Molnar * The passed in 'doms_new' should be allocated using 2205f2cb1360SIngo Molnar * alloc_sched_domains. This routine takes ownership of it and will 2206f2cb1360SIngo Molnar * free_sched_domains it when done with it. If the caller failed the 2207f2cb1360SIngo Molnar * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2208f2cb1360SIngo Molnar * and partition_sched_domains() will fallback to the single partition 2209f2cb1360SIngo Molnar * 'fallback_doms', it also forces the domains to be rebuilt. 2210f2cb1360SIngo Molnar * 2211f2cb1360SIngo Molnar * If doms_new == NULL it will be replaced with cpu_online_mask. 2212f2cb1360SIngo Molnar * ndoms_new == 0 is a special case for destroying existing domains, 2213f2cb1360SIngo Molnar * and it will not create the default domain. 2214f2cb1360SIngo Molnar * 2215c22645f4SMathieu Poirier * Call with hotplug lock and sched_domains_mutex held 2216f2cb1360SIngo Molnar */ 2217c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2218f2cb1360SIngo Molnar struct sched_domain_attr *dattr_new) 2219f2cb1360SIngo Molnar { 22201f74de87SQuentin Perret bool __maybe_unused has_eas = false; 2221f2cb1360SIngo Molnar int i, j, n; 2222f2cb1360SIngo Molnar int new_topology; 2223f2cb1360SIngo Molnar 2224c22645f4SMathieu Poirier lockdep_assert_held(&sched_domains_mutex); 2225f2cb1360SIngo Molnar 2226f2cb1360SIngo Molnar /* Always unregister in case we don't destroy any domains: */ 2227f2cb1360SIngo Molnar unregister_sched_domain_sysctl(); 2228f2cb1360SIngo Molnar 2229f2cb1360SIngo Molnar /* Let the architecture update CPU core mappings: */ 2230f2cb1360SIngo Molnar new_topology = arch_update_cpu_topology(); 2231f2cb1360SIngo Molnar 223209e0dd8eSPeter Zijlstra if (!doms_new) { 223309e0dd8eSPeter Zijlstra WARN_ON_ONCE(dattr_new); 223409e0dd8eSPeter Zijlstra n = 0; 223509e0dd8eSPeter Zijlstra doms_new = alloc_sched_domains(1); 223609e0dd8eSPeter Zijlstra if (doms_new) { 223709e0dd8eSPeter Zijlstra n = 1; 2238edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2239edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 224009e0dd8eSPeter Zijlstra } 224109e0dd8eSPeter Zijlstra } else { 224209e0dd8eSPeter Zijlstra n = ndoms_new; 224309e0dd8eSPeter Zijlstra } 2244f2cb1360SIngo Molnar 2245f2cb1360SIngo Molnar /* Destroy deleted domains: */ 2246f2cb1360SIngo Molnar for (i = 0; i < ndoms_cur; i++) { 2247f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22486aa140faSQuentin Perret if (cpumask_equal(doms_cur[i], doms_new[j]) && 2249f9a25f77SMathieu Poirier dattrs_equal(dattr_cur, i, dattr_new, j)) { 2250f9a25f77SMathieu Poirier struct root_domain *rd; 2251f9a25f77SMathieu Poirier 2252f9a25f77SMathieu Poirier /* 2253f9a25f77SMathieu Poirier * This domain won't be destroyed and as such 2254f9a25f77SMathieu Poirier * its dl_bw->total_bw needs to be cleared. It 2255f9a25f77SMathieu Poirier * will be recomputed in function 2256f9a25f77SMathieu Poirier * update_tasks_root_domain(). 2257f9a25f77SMathieu Poirier */ 2258f9a25f77SMathieu Poirier rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2259f9a25f77SMathieu Poirier dl_clear_root_domain(rd); 2260f2cb1360SIngo Molnar goto match1; 2261f2cb1360SIngo Molnar } 2262f9a25f77SMathieu Poirier } 2263f2cb1360SIngo Molnar /* No match - a current sched domain not in new doms_new[] */ 2264f2cb1360SIngo Molnar detach_destroy_domains(doms_cur[i]); 2265f2cb1360SIngo Molnar match1: 2266f2cb1360SIngo Molnar ; 2267f2cb1360SIngo Molnar } 2268f2cb1360SIngo Molnar 2269f2cb1360SIngo Molnar n = ndoms_cur; 227009e0dd8eSPeter Zijlstra if (!doms_new) { 2271f2cb1360SIngo Molnar n = 0; 2272f2cb1360SIngo Molnar doms_new = &fallback_doms; 2273edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2274edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 2275f2cb1360SIngo Molnar } 2276f2cb1360SIngo Molnar 2277f2cb1360SIngo Molnar /* Build new domains: */ 2278f2cb1360SIngo Molnar for (i = 0; i < ndoms_new; i++) { 2279f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22806aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 22816aa140faSQuentin Perret dattrs_equal(dattr_new, i, dattr_cur, j)) 2282f2cb1360SIngo Molnar goto match2; 2283f2cb1360SIngo Molnar } 2284f2cb1360SIngo Molnar /* No match - add a new doms_new */ 2285f2cb1360SIngo Molnar build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2286f2cb1360SIngo Molnar match2: 2287f2cb1360SIngo Molnar ; 2288f2cb1360SIngo Molnar } 2289f2cb1360SIngo Molnar 2290531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 22916aa140faSQuentin Perret /* Build perf. domains: */ 22926aa140faSQuentin Perret for (i = 0; i < ndoms_new; i++) { 2293531b5c9fSQuentin Perret for (j = 0; j < n && !sched_energy_update; j++) { 22946aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 22951f74de87SQuentin Perret cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 22961f74de87SQuentin Perret has_eas = true; 22976aa140faSQuentin Perret goto match3; 22986aa140faSQuentin Perret } 22991f74de87SQuentin Perret } 23006aa140faSQuentin Perret /* No match - add perf. domains for a new rd */ 23011f74de87SQuentin Perret has_eas |= build_perf_domains(doms_new[i]); 23026aa140faSQuentin Perret match3: 23036aa140faSQuentin Perret ; 23046aa140faSQuentin Perret } 23051f74de87SQuentin Perret sched_energy_set(has_eas); 23066aa140faSQuentin Perret #endif 23076aa140faSQuentin Perret 2308f2cb1360SIngo Molnar /* Remember the new sched domains: */ 2309f2cb1360SIngo Molnar if (doms_cur != &fallback_doms) 2310f2cb1360SIngo Molnar free_sched_domains(doms_cur, ndoms_cur); 2311f2cb1360SIngo Molnar 2312f2cb1360SIngo Molnar kfree(dattr_cur); 2313f2cb1360SIngo Molnar doms_cur = doms_new; 2314f2cb1360SIngo Molnar dattr_cur = dattr_new; 2315f2cb1360SIngo Molnar ndoms_cur = ndoms_new; 2316f2cb1360SIngo Molnar 2317f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2318c22645f4SMathieu Poirier } 2319f2cb1360SIngo Molnar 2320c22645f4SMathieu Poirier /* 2321c22645f4SMathieu Poirier * Call with hotplug lock held 2322c22645f4SMathieu Poirier */ 2323c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2324c22645f4SMathieu Poirier struct sched_domain_attr *dattr_new) 2325c22645f4SMathieu Poirier { 2326c22645f4SMathieu Poirier mutex_lock(&sched_domains_mutex); 2327c22645f4SMathieu Poirier partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2328f2cb1360SIngo Molnar mutex_unlock(&sched_domains_mutex); 2329f2cb1360SIngo Molnar } 2330