xref: /openbmc/linux/kernel/sched/topology.c (revision 32927393dc1ccd60fb2bdc05b9e8e88753761469)
1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0
2f2cb1360SIngo Molnar /*
3f2cb1360SIngo Molnar  * Scheduler topology setup/handling methods
4f2cb1360SIngo Molnar  */
5f2cb1360SIngo Molnar #include "sched.h"
6f2cb1360SIngo Molnar 
7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex);
8f2cb1360SIngo Molnar 
9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */
10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask;
11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2;
12f2cb1360SIngo Molnar 
13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
14f2cb1360SIngo Molnar 
15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str)
16f2cb1360SIngo Molnar {
179469eb01SPeter Zijlstra 	sched_debug_enabled = true;
18f2cb1360SIngo Molnar 
19f2cb1360SIngo Molnar 	return 0;
20f2cb1360SIngo Molnar }
21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup);
22f2cb1360SIngo Molnar 
23f2cb1360SIngo Molnar static inline bool sched_debug(void)
24f2cb1360SIngo Molnar {
25f2cb1360SIngo Molnar 	return sched_debug_enabled;
26f2cb1360SIngo Molnar }
27f2cb1360SIngo Molnar 
28f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29f2cb1360SIngo Molnar 				  struct cpumask *groupmask)
30f2cb1360SIngo Molnar {
31f2cb1360SIngo Molnar 	struct sched_group *group = sd->groups;
32f2cb1360SIngo Molnar 
33f2cb1360SIngo Molnar 	cpumask_clear(groupmask);
34f2cb1360SIngo Molnar 
35005f874dSPeter Zijlstra 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36f2cb1360SIngo Molnar 
37f2cb1360SIngo Molnar 	if (!(sd->flags & SD_LOAD_BALANCE)) {
38f2cb1360SIngo Molnar 		printk("does not load-balance\n");
39f2cb1360SIngo Molnar 		if (sd->parent)
4097fb7a0aSIngo Molnar 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41f2cb1360SIngo Molnar 		return -1;
42f2cb1360SIngo Molnar 	}
43f2cb1360SIngo Molnar 
44005f874dSPeter Zijlstra 	printk(KERN_CONT "span=%*pbl level=%s\n",
45f2cb1360SIngo Molnar 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46f2cb1360SIngo Molnar 
47f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4897fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49f2cb1360SIngo Molnar 	}
506cd0c583SYi Wang 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
5197fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52f2cb1360SIngo Molnar 	}
53f2cb1360SIngo Molnar 
54f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
55f2cb1360SIngo Molnar 	do {
56f2cb1360SIngo Molnar 		if (!group) {
57f2cb1360SIngo Molnar 			printk("\n");
58f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: group is NULL\n");
59f2cb1360SIngo Molnar 			break;
60f2cb1360SIngo Molnar 		}
61f2cb1360SIngo Molnar 
62ae4df9d6SPeter Zijlstra 		if (!cpumask_weight(sched_group_span(group))) {
63f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
64f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: empty group\n");
65f2cb1360SIngo Molnar 			break;
66f2cb1360SIngo Molnar 		}
67f2cb1360SIngo Molnar 
68f2cb1360SIngo Molnar 		if (!(sd->flags & SD_OVERLAP) &&
69ae4df9d6SPeter Zijlstra 		    cpumask_intersects(groupmask, sched_group_span(group))) {
70f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
71f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: repeated CPUs\n");
72f2cb1360SIngo Molnar 			break;
73f2cb1360SIngo Molnar 		}
74f2cb1360SIngo Molnar 
75ae4df9d6SPeter Zijlstra 		cpumask_or(groupmask, groupmask, sched_group_span(group));
76f2cb1360SIngo Molnar 
77005f874dSPeter Zijlstra 		printk(KERN_CONT " %d:{ span=%*pbl",
78005f874dSPeter Zijlstra 				group->sgc->id,
79ae4df9d6SPeter Zijlstra 				cpumask_pr_args(sched_group_span(group)));
80b0151c25SPeter Zijlstra 
81af218122SPeter Zijlstra 		if ((sd->flags & SD_OVERLAP) &&
82ae4df9d6SPeter Zijlstra 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83005f874dSPeter Zijlstra 			printk(KERN_CONT " mask=%*pbl",
84e5c14b1fSPeter Zijlstra 				cpumask_pr_args(group_balance_mask(group)));
85b0151c25SPeter Zijlstra 		}
86b0151c25SPeter Zijlstra 
87005f874dSPeter Zijlstra 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88005f874dSPeter Zijlstra 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89f2cb1360SIngo Molnar 
90a420b063SPeter Zijlstra 		if (group == sd->groups && sd->child &&
91a420b063SPeter Zijlstra 		    !cpumask_equal(sched_domain_span(sd->child),
92ae4df9d6SPeter Zijlstra 				   sched_group_span(group))) {
93a420b063SPeter Zijlstra 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94a420b063SPeter Zijlstra 		}
95a420b063SPeter Zijlstra 
96005f874dSPeter Zijlstra 		printk(KERN_CONT " }");
97005f874dSPeter Zijlstra 
98f2cb1360SIngo Molnar 		group = group->next;
99b0151c25SPeter Zijlstra 
100b0151c25SPeter Zijlstra 		if (group != sd->groups)
101b0151c25SPeter Zijlstra 			printk(KERN_CONT ",");
102b0151c25SPeter Zijlstra 
103f2cb1360SIngo Molnar 	} while (group != sd->groups);
104f2cb1360SIngo Molnar 	printk(KERN_CONT "\n");
105f2cb1360SIngo Molnar 
106f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
107f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108f2cb1360SIngo Molnar 
109f2cb1360SIngo Molnar 	if (sd->parent &&
110f2cb1360SIngo Molnar 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
11197fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112f2cb1360SIngo Molnar 	return 0;
113f2cb1360SIngo Molnar }
114f2cb1360SIngo Molnar 
115f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu)
116f2cb1360SIngo Molnar {
117f2cb1360SIngo Molnar 	int level = 0;
118f2cb1360SIngo Molnar 
119f2cb1360SIngo Molnar 	if (!sched_debug_enabled)
120f2cb1360SIngo Molnar 		return;
121f2cb1360SIngo Molnar 
122f2cb1360SIngo Molnar 	if (!sd) {
123f2cb1360SIngo Molnar 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124f2cb1360SIngo Molnar 		return;
125f2cb1360SIngo Molnar 	}
126f2cb1360SIngo Molnar 
127005f874dSPeter Zijlstra 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128f2cb1360SIngo Molnar 
129f2cb1360SIngo Molnar 	for (;;) {
130f2cb1360SIngo Molnar 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131f2cb1360SIngo Molnar 			break;
132f2cb1360SIngo Molnar 		level++;
133f2cb1360SIngo Molnar 		sd = sd->parent;
134f2cb1360SIngo Molnar 		if (!sd)
135f2cb1360SIngo Molnar 			break;
136f2cb1360SIngo Molnar 	}
137f2cb1360SIngo Molnar }
138f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */
139f2cb1360SIngo Molnar 
140f2cb1360SIngo Molnar # define sched_debug_enabled 0
141f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0)
142f2cb1360SIngo Molnar static inline bool sched_debug(void)
143f2cb1360SIngo Molnar {
144f2cb1360SIngo Molnar 	return false;
145f2cb1360SIngo Molnar }
146f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */
147f2cb1360SIngo Molnar 
148f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd)
149f2cb1360SIngo Molnar {
150f2cb1360SIngo Molnar 	if (cpumask_weight(sched_domain_span(sd)) == 1)
151f2cb1360SIngo Molnar 		return 1;
152f2cb1360SIngo Molnar 
153f2cb1360SIngo Molnar 	/* Following flags need at least 2 groups */
154f2cb1360SIngo Molnar 	if (sd->flags & (SD_LOAD_BALANCE |
155f2cb1360SIngo Molnar 			 SD_BALANCE_NEWIDLE |
156f2cb1360SIngo Molnar 			 SD_BALANCE_FORK |
157f2cb1360SIngo Molnar 			 SD_BALANCE_EXEC |
158f2cb1360SIngo Molnar 			 SD_SHARE_CPUCAPACITY |
159f2cb1360SIngo Molnar 			 SD_ASYM_CPUCAPACITY |
160f2cb1360SIngo Molnar 			 SD_SHARE_PKG_RESOURCES |
161f2cb1360SIngo Molnar 			 SD_SHARE_POWERDOMAIN)) {
162f2cb1360SIngo Molnar 		if (sd->groups != sd->groups->next)
163f2cb1360SIngo Molnar 			return 0;
164f2cb1360SIngo Molnar 	}
165f2cb1360SIngo Molnar 
166f2cb1360SIngo Molnar 	/* Following flags don't use groups */
167f2cb1360SIngo Molnar 	if (sd->flags & (SD_WAKE_AFFINE))
168f2cb1360SIngo Molnar 		return 0;
169f2cb1360SIngo Molnar 
170f2cb1360SIngo Molnar 	return 1;
171f2cb1360SIngo Molnar }
172f2cb1360SIngo Molnar 
173f2cb1360SIngo Molnar static int
174f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175f2cb1360SIngo Molnar {
176f2cb1360SIngo Molnar 	unsigned long cflags = sd->flags, pflags = parent->flags;
177f2cb1360SIngo Molnar 
178f2cb1360SIngo Molnar 	if (sd_degenerate(parent))
179f2cb1360SIngo Molnar 		return 1;
180f2cb1360SIngo Molnar 
181f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182f2cb1360SIngo Molnar 		return 0;
183f2cb1360SIngo Molnar 
184f2cb1360SIngo Molnar 	/* Flags needing groups don't count if only 1 group in parent */
185f2cb1360SIngo Molnar 	if (parent->groups == parent->groups->next) {
186f2cb1360SIngo Molnar 		pflags &= ~(SD_LOAD_BALANCE |
187f2cb1360SIngo Molnar 				SD_BALANCE_NEWIDLE |
188f2cb1360SIngo Molnar 				SD_BALANCE_FORK |
189f2cb1360SIngo Molnar 				SD_BALANCE_EXEC |
190f2cb1360SIngo Molnar 				SD_ASYM_CPUCAPACITY |
191f2cb1360SIngo Molnar 				SD_SHARE_CPUCAPACITY |
192f2cb1360SIngo Molnar 				SD_SHARE_PKG_RESOURCES |
193f2cb1360SIngo Molnar 				SD_PREFER_SIBLING |
194f2cb1360SIngo Molnar 				SD_SHARE_POWERDOMAIN);
195f2cb1360SIngo Molnar 		if (nr_node_ids == 1)
196f2cb1360SIngo Molnar 			pflags &= ~SD_SERIALIZE;
197f2cb1360SIngo Molnar 	}
198f2cb1360SIngo Molnar 	if (~cflags & pflags)
199f2cb1360SIngo Molnar 		return 0;
200f2cb1360SIngo Molnar 
201f2cb1360SIngo Molnar 	return 1;
202f2cb1360SIngo Molnar }
203f2cb1360SIngo Molnar 
204531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
205f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present);
2068d5d0cfbSQuentin Perret unsigned int sysctl_sched_energy_aware = 1;
207531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex);
208531b5c9fSQuentin Perret bool sched_energy_update;
209531b5c9fSQuentin Perret 
2108d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL
2118d5d0cfbSQuentin Perret int sched_energy_aware_handler(struct ctl_table *table, int write,
212*32927393SChristoph Hellwig 		void *buffer, size_t *lenp, loff_t *ppos)
2138d5d0cfbSQuentin Perret {
2148d5d0cfbSQuentin Perret 	int ret, state;
2158d5d0cfbSQuentin Perret 
2168d5d0cfbSQuentin Perret 	if (write && !capable(CAP_SYS_ADMIN))
2178d5d0cfbSQuentin Perret 		return -EPERM;
2188d5d0cfbSQuentin Perret 
2198d5d0cfbSQuentin Perret 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2208d5d0cfbSQuentin Perret 	if (!ret && write) {
2218d5d0cfbSQuentin Perret 		state = static_branch_unlikely(&sched_energy_present);
2228d5d0cfbSQuentin Perret 		if (state != sysctl_sched_energy_aware) {
2238d5d0cfbSQuentin Perret 			mutex_lock(&sched_energy_mutex);
2248d5d0cfbSQuentin Perret 			sched_energy_update = 1;
2258d5d0cfbSQuentin Perret 			rebuild_sched_domains();
2268d5d0cfbSQuentin Perret 			sched_energy_update = 0;
2278d5d0cfbSQuentin Perret 			mutex_unlock(&sched_energy_mutex);
2288d5d0cfbSQuentin Perret 		}
2298d5d0cfbSQuentin Perret 	}
2308d5d0cfbSQuentin Perret 
2318d5d0cfbSQuentin Perret 	return ret;
2328d5d0cfbSQuentin Perret }
2338d5d0cfbSQuentin Perret #endif
2348d5d0cfbSQuentin Perret 
2356aa140faSQuentin Perret static void free_pd(struct perf_domain *pd)
2366aa140faSQuentin Perret {
2376aa140faSQuentin Perret 	struct perf_domain *tmp;
2386aa140faSQuentin Perret 
2396aa140faSQuentin Perret 	while (pd) {
2406aa140faSQuentin Perret 		tmp = pd->next;
2416aa140faSQuentin Perret 		kfree(pd);
2426aa140faSQuentin Perret 		pd = tmp;
2436aa140faSQuentin Perret 	}
2446aa140faSQuentin Perret }
2456aa140faSQuentin Perret 
2466aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
2476aa140faSQuentin Perret {
2486aa140faSQuentin Perret 	while (pd) {
2496aa140faSQuentin Perret 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
2506aa140faSQuentin Perret 			return pd;
2516aa140faSQuentin Perret 		pd = pd->next;
2526aa140faSQuentin Perret 	}
2536aa140faSQuentin Perret 
2546aa140faSQuentin Perret 	return NULL;
2556aa140faSQuentin Perret }
2566aa140faSQuentin Perret 
2576aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu)
2586aa140faSQuentin Perret {
2596aa140faSQuentin Perret 	struct em_perf_domain *obj = em_cpu_get(cpu);
2606aa140faSQuentin Perret 	struct perf_domain *pd;
2616aa140faSQuentin Perret 
2626aa140faSQuentin Perret 	if (!obj) {
2636aa140faSQuentin Perret 		if (sched_debug())
2646aa140faSQuentin Perret 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
2656aa140faSQuentin Perret 		return NULL;
2666aa140faSQuentin Perret 	}
2676aa140faSQuentin Perret 
2686aa140faSQuentin Perret 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
2696aa140faSQuentin Perret 	if (!pd)
2706aa140faSQuentin Perret 		return NULL;
2716aa140faSQuentin Perret 	pd->em_pd = obj;
2726aa140faSQuentin Perret 
2736aa140faSQuentin Perret 	return pd;
2746aa140faSQuentin Perret }
2756aa140faSQuentin Perret 
2766aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map,
2776aa140faSQuentin Perret 						struct perf_domain *pd)
2786aa140faSQuentin Perret {
2796aa140faSQuentin Perret 	if (!sched_debug() || !pd)
2806aa140faSQuentin Perret 		return;
2816aa140faSQuentin Perret 
2826aa140faSQuentin Perret 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
2836aa140faSQuentin Perret 
2846aa140faSQuentin Perret 	while (pd) {
2856aa140faSQuentin Perret 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
2866aa140faSQuentin Perret 				cpumask_first(perf_domain_span(pd)),
2876aa140faSQuentin Perret 				cpumask_pr_args(perf_domain_span(pd)),
2886aa140faSQuentin Perret 				em_pd_nr_cap_states(pd->em_pd));
2896aa140faSQuentin Perret 		pd = pd->next;
2906aa140faSQuentin Perret 	}
2916aa140faSQuentin Perret 
2926aa140faSQuentin Perret 	printk(KERN_CONT "\n");
2936aa140faSQuentin Perret }
2946aa140faSQuentin Perret 
2956aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp)
2966aa140faSQuentin Perret {
2976aa140faSQuentin Perret 	struct perf_domain *pd;
2986aa140faSQuentin Perret 
2996aa140faSQuentin Perret 	pd = container_of(rp, struct perf_domain, rcu);
3006aa140faSQuentin Perret 	free_pd(pd);
3016aa140faSQuentin Perret }
3026aa140faSQuentin Perret 
3031f74de87SQuentin Perret static void sched_energy_set(bool has_eas)
3041f74de87SQuentin Perret {
3051f74de87SQuentin Perret 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
3061f74de87SQuentin Perret 		if (sched_debug())
3071f74de87SQuentin Perret 			pr_info("%s: stopping EAS\n", __func__);
3081f74de87SQuentin Perret 		static_branch_disable_cpuslocked(&sched_energy_present);
3091f74de87SQuentin Perret 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
3101f74de87SQuentin Perret 		if (sched_debug())
3111f74de87SQuentin Perret 			pr_info("%s: starting EAS\n", __func__);
3121f74de87SQuentin Perret 		static_branch_enable_cpuslocked(&sched_energy_present);
3131f74de87SQuentin Perret 	}
3141f74de87SQuentin Perret }
3151f74de87SQuentin Perret 
316b68a4c0dSQuentin Perret /*
317b68a4c0dSQuentin Perret  * EAS can be used on a root domain if it meets all the following conditions:
318b68a4c0dSQuentin Perret  *    1. an Energy Model (EM) is available;
319b68a4c0dSQuentin Perret  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
32038502ab4SValentin Schneider  *    3. no SMT is detected.
32138502ab4SValentin Schneider  *    4. the EM complexity is low enough to keep scheduling overheads low;
32238502ab4SValentin Schneider  *    5. schedutil is driving the frequency of all CPUs of the rd;
323b68a4c0dSQuentin Perret  *
324b68a4c0dSQuentin Perret  * The complexity of the Energy Model is defined as:
325b68a4c0dSQuentin Perret  *
326b68a4c0dSQuentin Perret  *              C = nr_pd * (nr_cpus + nr_cs)
327b68a4c0dSQuentin Perret  *
328b68a4c0dSQuentin Perret  * with parameters defined as:
329b68a4c0dSQuentin Perret  *  - nr_pd:    the number of performance domains
330b68a4c0dSQuentin Perret  *  - nr_cpus:  the number of CPUs
331b68a4c0dSQuentin Perret  *  - nr_cs:    the sum of the number of capacity states of all performance
332b68a4c0dSQuentin Perret  *              domains (for example, on a system with 2 performance domains,
333b68a4c0dSQuentin Perret  *              with 10 capacity states each, nr_cs = 2 * 10 = 20).
334b68a4c0dSQuentin Perret  *
335b68a4c0dSQuentin Perret  * It is generally not a good idea to use such a model in the wake-up path on
336b68a4c0dSQuentin Perret  * very complex platforms because of the associated scheduling overheads. The
337b68a4c0dSQuentin Perret  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
338b68a4c0dSQuentin Perret  * with per-CPU DVFS and less than 8 capacity states each, for example.
339b68a4c0dSQuentin Perret  */
340b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048
341b68a4c0dSQuentin Perret 
342531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov;
3431f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map)
3446aa140faSQuentin Perret {
345b68a4c0dSQuentin Perret 	int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
3466aa140faSQuentin Perret 	struct perf_domain *pd = NULL, *tmp;
3476aa140faSQuentin Perret 	int cpu = cpumask_first(cpu_map);
3486aa140faSQuentin Perret 	struct root_domain *rd = cpu_rq(cpu)->rd;
349531b5c9fSQuentin Perret 	struct cpufreq_policy *policy;
350531b5c9fSQuentin Perret 	struct cpufreq_governor *gov;
351b68a4c0dSQuentin Perret 
3528d5d0cfbSQuentin Perret 	if (!sysctl_sched_energy_aware)
3538d5d0cfbSQuentin Perret 		goto free;
3548d5d0cfbSQuentin Perret 
355b68a4c0dSQuentin Perret 	/* EAS is enabled for asymmetric CPU capacity topologies. */
356b68a4c0dSQuentin Perret 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
357b68a4c0dSQuentin Perret 		if (sched_debug()) {
358b68a4c0dSQuentin Perret 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
359b68a4c0dSQuentin Perret 					cpumask_pr_args(cpu_map));
360b68a4c0dSQuentin Perret 		}
361b68a4c0dSQuentin Perret 		goto free;
362b68a4c0dSQuentin Perret 	}
3636aa140faSQuentin Perret 
36438502ab4SValentin Schneider 	/* EAS definitely does *not* handle SMT */
36538502ab4SValentin Schneider 	if (sched_smt_active()) {
36638502ab4SValentin Schneider 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
36738502ab4SValentin Schneider 			cpumask_pr_args(cpu_map));
36838502ab4SValentin Schneider 		goto free;
36938502ab4SValentin Schneider 	}
37038502ab4SValentin Schneider 
3716aa140faSQuentin Perret 	for_each_cpu(i, cpu_map) {
3726aa140faSQuentin Perret 		/* Skip already covered CPUs. */
3736aa140faSQuentin Perret 		if (find_pd(pd, i))
3746aa140faSQuentin Perret 			continue;
3756aa140faSQuentin Perret 
376531b5c9fSQuentin Perret 		/* Do not attempt EAS if schedutil is not being used. */
377531b5c9fSQuentin Perret 		policy = cpufreq_cpu_get(i);
378531b5c9fSQuentin Perret 		if (!policy)
379531b5c9fSQuentin Perret 			goto free;
380531b5c9fSQuentin Perret 		gov = policy->governor;
381531b5c9fSQuentin Perret 		cpufreq_cpu_put(policy);
382531b5c9fSQuentin Perret 		if (gov != &schedutil_gov) {
383531b5c9fSQuentin Perret 			if (rd->pd)
384531b5c9fSQuentin Perret 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
385531b5c9fSQuentin Perret 						cpumask_pr_args(cpu_map));
386531b5c9fSQuentin Perret 			goto free;
387531b5c9fSQuentin Perret 		}
388531b5c9fSQuentin Perret 
3896aa140faSQuentin Perret 		/* Create the new pd and add it to the local list. */
3906aa140faSQuentin Perret 		tmp = pd_init(i);
3916aa140faSQuentin Perret 		if (!tmp)
3926aa140faSQuentin Perret 			goto free;
3936aa140faSQuentin Perret 		tmp->next = pd;
3946aa140faSQuentin Perret 		pd = tmp;
395b68a4c0dSQuentin Perret 
396b68a4c0dSQuentin Perret 		/*
397b68a4c0dSQuentin Perret 		 * Count performance domains and capacity states for the
398b68a4c0dSQuentin Perret 		 * complexity check.
399b68a4c0dSQuentin Perret 		 */
400b68a4c0dSQuentin Perret 		nr_pd++;
401b68a4c0dSQuentin Perret 		nr_cs += em_pd_nr_cap_states(pd->em_pd);
402b68a4c0dSQuentin Perret 	}
403b68a4c0dSQuentin Perret 
404b68a4c0dSQuentin Perret 	/* Bail out if the Energy Model complexity is too high. */
405b68a4c0dSQuentin Perret 	if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
406b68a4c0dSQuentin Perret 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
407b68a4c0dSQuentin Perret 						cpumask_pr_args(cpu_map));
408b68a4c0dSQuentin Perret 		goto free;
4096aa140faSQuentin Perret 	}
4106aa140faSQuentin Perret 
4116aa140faSQuentin Perret 	perf_domain_debug(cpu_map, pd);
4126aa140faSQuentin Perret 
4136aa140faSQuentin Perret 	/* Attach the new list of performance domains to the root domain. */
4146aa140faSQuentin Perret 	tmp = rd->pd;
4156aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, pd);
4166aa140faSQuentin Perret 	if (tmp)
4176aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
4186aa140faSQuentin Perret 
4191f74de87SQuentin Perret 	return !!pd;
4206aa140faSQuentin Perret 
4216aa140faSQuentin Perret free:
4226aa140faSQuentin Perret 	free_pd(pd);
4236aa140faSQuentin Perret 	tmp = rd->pd;
4246aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, NULL);
4256aa140faSQuentin Perret 	if (tmp)
4266aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
4271f74de87SQuentin Perret 
4281f74de87SQuentin Perret 	return false;
4296aa140faSQuentin Perret }
4306aa140faSQuentin Perret #else
4316aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { }
432531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
4336aa140faSQuentin Perret 
434f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu)
435f2cb1360SIngo Molnar {
436f2cb1360SIngo Molnar 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
437f2cb1360SIngo Molnar 
438f2cb1360SIngo Molnar 	cpupri_cleanup(&rd->cpupri);
439f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
440f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
441f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
442f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
443f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
4446aa140faSQuentin Perret 	free_pd(rd->pd);
445f2cb1360SIngo Molnar 	kfree(rd);
446f2cb1360SIngo Molnar }
447f2cb1360SIngo Molnar 
448f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd)
449f2cb1360SIngo Molnar {
450f2cb1360SIngo Molnar 	struct root_domain *old_rd = NULL;
451f2cb1360SIngo Molnar 	unsigned long flags;
452f2cb1360SIngo Molnar 
453f2cb1360SIngo Molnar 	raw_spin_lock_irqsave(&rq->lock, flags);
454f2cb1360SIngo Molnar 
455f2cb1360SIngo Molnar 	if (rq->rd) {
456f2cb1360SIngo Molnar 		old_rd = rq->rd;
457f2cb1360SIngo Molnar 
458f2cb1360SIngo Molnar 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
459f2cb1360SIngo Molnar 			set_rq_offline(rq);
460f2cb1360SIngo Molnar 
461f2cb1360SIngo Molnar 		cpumask_clear_cpu(rq->cpu, old_rd->span);
462f2cb1360SIngo Molnar 
463f2cb1360SIngo Molnar 		/*
464f2cb1360SIngo Molnar 		 * If we dont want to free the old_rd yet then
465f2cb1360SIngo Molnar 		 * set old_rd to NULL to skip the freeing later
466f2cb1360SIngo Molnar 		 * in this function:
467f2cb1360SIngo Molnar 		 */
468f2cb1360SIngo Molnar 		if (!atomic_dec_and_test(&old_rd->refcount))
469f2cb1360SIngo Molnar 			old_rd = NULL;
470f2cb1360SIngo Molnar 	}
471f2cb1360SIngo Molnar 
472f2cb1360SIngo Molnar 	atomic_inc(&rd->refcount);
473f2cb1360SIngo Molnar 	rq->rd = rd;
474f2cb1360SIngo Molnar 
475f2cb1360SIngo Molnar 	cpumask_set_cpu(rq->cpu, rd->span);
476f2cb1360SIngo Molnar 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
477f2cb1360SIngo Molnar 		set_rq_online(rq);
478f2cb1360SIngo Molnar 
479f2cb1360SIngo Molnar 	raw_spin_unlock_irqrestore(&rq->lock, flags);
480f2cb1360SIngo Molnar 
481f2cb1360SIngo Molnar 	if (old_rd)
482337e9b07SPaul E. McKenney 		call_rcu(&old_rd->rcu, free_rootdomain);
483f2cb1360SIngo Molnar }
484f2cb1360SIngo Molnar 
485364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd)
486364f5665SSteven Rostedt (VMware) {
487364f5665SSteven Rostedt (VMware) 	atomic_inc(&rd->refcount);
488364f5665SSteven Rostedt (VMware) }
489364f5665SSteven Rostedt (VMware) 
490364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd)
491364f5665SSteven Rostedt (VMware) {
492364f5665SSteven Rostedt (VMware) 	if (!atomic_dec_and_test(&rd->refcount))
493364f5665SSteven Rostedt (VMware) 		return;
494364f5665SSteven Rostedt (VMware) 
495337e9b07SPaul E. McKenney 	call_rcu(&rd->rcu, free_rootdomain);
496364f5665SSteven Rostedt (VMware) }
497364f5665SSteven Rostedt (VMware) 
498f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd)
499f2cb1360SIngo Molnar {
500f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
501f2cb1360SIngo Molnar 		goto out;
502f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
503f2cb1360SIngo Molnar 		goto free_span;
504f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
505f2cb1360SIngo Molnar 		goto free_online;
506f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
507f2cb1360SIngo Molnar 		goto free_dlo_mask;
508f2cb1360SIngo Molnar 
5094bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI
5104bdced5cSSteven Rostedt (Red Hat) 	rd->rto_cpu = -1;
5114bdced5cSSteven Rostedt (Red Hat) 	raw_spin_lock_init(&rd->rto_lock);
5124bdced5cSSteven Rostedt (Red Hat) 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
5134bdced5cSSteven Rostedt (Red Hat) #endif
5144bdced5cSSteven Rostedt (Red Hat) 
515f2cb1360SIngo Molnar 	init_dl_bw(&rd->dl_bw);
516f2cb1360SIngo Molnar 	if (cpudl_init(&rd->cpudl) != 0)
517f2cb1360SIngo Molnar 		goto free_rto_mask;
518f2cb1360SIngo Molnar 
519f2cb1360SIngo Molnar 	if (cpupri_init(&rd->cpupri) != 0)
520f2cb1360SIngo Molnar 		goto free_cpudl;
521f2cb1360SIngo Molnar 	return 0;
522f2cb1360SIngo Molnar 
523f2cb1360SIngo Molnar free_cpudl:
524f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
525f2cb1360SIngo Molnar free_rto_mask:
526f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
527f2cb1360SIngo Molnar free_dlo_mask:
528f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
529f2cb1360SIngo Molnar free_online:
530f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
531f2cb1360SIngo Molnar free_span:
532f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
533f2cb1360SIngo Molnar out:
534f2cb1360SIngo Molnar 	return -ENOMEM;
535f2cb1360SIngo Molnar }
536f2cb1360SIngo Molnar 
537f2cb1360SIngo Molnar /*
538f2cb1360SIngo Molnar  * By default the system creates a single root-domain with all CPUs as
539f2cb1360SIngo Molnar  * members (mimicking the global state we have today).
540f2cb1360SIngo Molnar  */
541f2cb1360SIngo Molnar struct root_domain def_root_domain;
542f2cb1360SIngo Molnar 
543f2cb1360SIngo Molnar void init_defrootdomain(void)
544f2cb1360SIngo Molnar {
545f2cb1360SIngo Molnar 	init_rootdomain(&def_root_domain);
546f2cb1360SIngo Molnar 
547f2cb1360SIngo Molnar 	atomic_set(&def_root_domain.refcount, 1);
548f2cb1360SIngo Molnar }
549f2cb1360SIngo Molnar 
550f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void)
551f2cb1360SIngo Molnar {
552f2cb1360SIngo Molnar 	struct root_domain *rd;
553f2cb1360SIngo Molnar 
5544d13a06dSViresh Kumar 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
555f2cb1360SIngo Molnar 	if (!rd)
556f2cb1360SIngo Molnar 		return NULL;
557f2cb1360SIngo Molnar 
558f2cb1360SIngo Molnar 	if (init_rootdomain(rd) != 0) {
559f2cb1360SIngo Molnar 		kfree(rd);
560f2cb1360SIngo Molnar 		return NULL;
561f2cb1360SIngo Molnar 	}
562f2cb1360SIngo Molnar 
563f2cb1360SIngo Molnar 	return rd;
564f2cb1360SIngo Molnar }
565f2cb1360SIngo Molnar 
566f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc)
567f2cb1360SIngo Molnar {
568f2cb1360SIngo Molnar 	struct sched_group *tmp, *first;
569f2cb1360SIngo Molnar 
570f2cb1360SIngo Molnar 	if (!sg)
571f2cb1360SIngo Molnar 		return;
572f2cb1360SIngo Molnar 
573f2cb1360SIngo Molnar 	first = sg;
574f2cb1360SIngo Molnar 	do {
575f2cb1360SIngo Molnar 		tmp = sg->next;
576f2cb1360SIngo Molnar 
577f2cb1360SIngo Molnar 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
578f2cb1360SIngo Molnar 			kfree(sg->sgc);
579f2cb1360SIngo Molnar 
580213c5a45SShu Wang 		if (atomic_dec_and_test(&sg->ref))
581f2cb1360SIngo Molnar 			kfree(sg);
582f2cb1360SIngo Molnar 		sg = tmp;
583f2cb1360SIngo Molnar 	} while (sg != first);
584f2cb1360SIngo Molnar }
585f2cb1360SIngo Molnar 
586f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd)
587f2cb1360SIngo Molnar {
588f2cb1360SIngo Molnar 	/*
589a090c4f2SPeter Zijlstra 	 * A normal sched domain may have multiple group references, an
590a090c4f2SPeter Zijlstra 	 * overlapping domain, having private groups, only one.  Iterate,
591a090c4f2SPeter Zijlstra 	 * dropping group/capacity references, freeing where none remain.
592f2cb1360SIngo Molnar 	 */
593f2cb1360SIngo Molnar 	free_sched_groups(sd->groups, 1);
594213c5a45SShu Wang 
595f2cb1360SIngo Molnar 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
596f2cb1360SIngo Molnar 		kfree(sd->shared);
597f2cb1360SIngo Molnar 	kfree(sd);
598f2cb1360SIngo Molnar }
599f2cb1360SIngo Molnar 
600f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu)
601f2cb1360SIngo Molnar {
602f2cb1360SIngo Molnar 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
603f2cb1360SIngo Molnar 
604f2cb1360SIngo Molnar 	while (sd) {
605f2cb1360SIngo Molnar 		struct sched_domain *parent = sd->parent;
606f2cb1360SIngo Molnar 		destroy_sched_domain(sd);
607f2cb1360SIngo Molnar 		sd = parent;
608f2cb1360SIngo Molnar 	}
609f2cb1360SIngo Molnar }
610f2cb1360SIngo Molnar 
611f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd)
612f2cb1360SIngo Molnar {
613f2cb1360SIngo Molnar 	if (sd)
614f2cb1360SIngo Molnar 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
615f2cb1360SIngo Molnar }
616f2cb1360SIngo Molnar 
617f2cb1360SIngo Molnar /*
618f2cb1360SIngo Molnar  * Keep a special pointer to the highest sched_domain that has
619f2cb1360SIngo Molnar  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
620f2cb1360SIngo Molnar  * allows us to avoid some pointer chasing select_idle_sibling().
621f2cb1360SIngo Molnar  *
622f2cb1360SIngo Molnar  * Also keep a unique ID per domain (we use the first CPU number in
623f2cb1360SIngo Molnar  * the cpumask of the domain), this allows us to quickly tell if
624f2cb1360SIngo Molnar  * two CPUs are in the same cache domain, see cpus_share_cache().
625f2cb1360SIngo Molnar  */
626994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
627f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size);
628f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id);
629994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
630994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
631994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
632994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
633df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
634f2cb1360SIngo Molnar 
635f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu)
636f2cb1360SIngo Molnar {
637f2cb1360SIngo Molnar 	struct sched_domain_shared *sds = NULL;
638f2cb1360SIngo Molnar 	struct sched_domain *sd;
639f2cb1360SIngo Molnar 	int id = cpu;
640f2cb1360SIngo Molnar 	int size = 1;
641f2cb1360SIngo Molnar 
642f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
643f2cb1360SIngo Molnar 	if (sd) {
644f2cb1360SIngo Molnar 		id = cpumask_first(sched_domain_span(sd));
645f2cb1360SIngo Molnar 		size = cpumask_weight(sched_domain_span(sd));
646f2cb1360SIngo Molnar 		sds = sd->shared;
647f2cb1360SIngo Molnar 	}
648f2cb1360SIngo Molnar 
649f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
650f2cb1360SIngo Molnar 	per_cpu(sd_llc_size, cpu) = size;
651f2cb1360SIngo Molnar 	per_cpu(sd_llc_id, cpu) = id;
652f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
653f2cb1360SIngo Molnar 
654f2cb1360SIngo Molnar 	sd = lowest_flag_domain(cpu, SD_NUMA);
655f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
656f2cb1360SIngo Molnar 
657f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
658011b27bbSQuentin Perret 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
659011b27bbSQuentin Perret 
660011b27bbSQuentin Perret 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
661011b27bbSQuentin Perret 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
662f2cb1360SIngo Molnar }
663f2cb1360SIngo Molnar 
664f2cb1360SIngo Molnar /*
665f2cb1360SIngo Molnar  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
666f2cb1360SIngo Molnar  * hold the hotplug lock.
667f2cb1360SIngo Molnar  */
668f2cb1360SIngo Molnar static void
669f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
670f2cb1360SIngo Molnar {
671f2cb1360SIngo Molnar 	struct rq *rq = cpu_rq(cpu);
672f2cb1360SIngo Molnar 	struct sched_domain *tmp;
673f2cb1360SIngo Molnar 
674f2cb1360SIngo Molnar 	/* Remove the sched domains which do not contribute to scheduling. */
675f2cb1360SIngo Molnar 	for (tmp = sd; tmp; ) {
676f2cb1360SIngo Molnar 		struct sched_domain *parent = tmp->parent;
677f2cb1360SIngo Molnar 		if (!parent)
678f2cb1360SIngo Molnar 			break;
679f2cb1360SIngo Molnar 
680f2cb1360SIngo Molnar 		if (sd_parent_degenerate(tmp, parent)) {
681f2cb1360SIngo Molnar 			tmp->parent = parent->parent;
682f2cb1360SIngo Molnar 			if (parent->parent)
683f2cb1360SIngo Molnar 				parent->parent->child = tmp;
684f2cb1360SIngo Molnar 			/*
685f2cb1360SIngo Molnar 			 * Transfer SD_PREFER_SIBLING down in case of a
686f2cb1360SIngo Molnar 			 * degenerate parent; the spans match for this
687f2cb1360SIngo Molnar 			 * so the property transfers.
688f2cb1360SIngo Molnar 			 */
689f2cb1360SIngo Molnar 			if (parent->flags & SD_PREFER_SIBLING)
690f2cb1360SIngo Molnar 				tmp->flags |= SD_PREFER_SIBLING;
691f2cb1360SIngo Molnar 			destroy_sched_domain(parent);
692f2cb1360SIngo Molnar 		} else
693f2cb1360SIngo Molnar 			tmp = tmp->parent;
694f2cb1360SIngo Molnar 	}
695f2cb1360SIngo Molnar 
696f2cb1360SIngo Molnar 	if (sd && sd_degenerate(sd)) {
697f2cb1360SIngo Molnar 		tmp = sd;
698f2cb1360SIngo Molnar 		sd = sd->parent;
699f2cb1360SIngo Molnar 		destroy_sched_domain(tmp);
700f2cb1360SIngo Molnar 		if (sd)
701f2cb1360SIngo Molnar 			sd->child = NULL;
702f2cb1360SIngo Molnar 	}
703f2cb1360SIngo Molnar 
704f2cb1360SIngo Molnar 	sched_domain_debug(sd, cpu);
705f2cb1360SIngo Molnar 
706f2cb1360SIngo Molnar 	rq_attach_root(rq, rd);
707f2cb1360SIngo Molnar 	tmp = rq->sd;
708f2cb1360SIngo Molnar 	rcu_assign_pointer(rq->sd, sd);
709bbdacdfeSPeter Zijlstra 	dirty_sched_domain_sysctl(cpu);
710f2cb1360SIngo Molnar 	destroy_sched_domains(tmp);
711f2cb1360SIngo Molnar 
712f2cb1360SIngo Molnar 	update_top_cache_domain(cpu);
713f2cb1360SIngo Molnar }
714f2cb1360SIngo Molnar 
715f2cb1360SIngo Molnar struct s_data {
71699687cdbSLuc Van Oostenryck 	struct sched_domain * __percpu *sd;
717f2cb1360SIngo Molnar 	struct root_domain	*rd;
718f2cb1360SIngo Molnar };
719f2cb1360SIngo Molnar 
720f2cb1360SIngo Molnar enum s_alloc {
721f2cb1360SIngo Molnar 	sa_rootdomain,
722f2cb1360SIngo Molnar 	sa_sd,
723f2cb1360SIngo Molnar 	sa_sd_storage,
724f2cb1360SIngo Molnar 	sa_none,
725f2cb1360SIngo Molnar };
726f2cb1360SIngo Molnar 
727f2cb1360SIngo Molnar /*
72835a566e6SPeter Zijlstra  * Return the canonical balance CPU for this group, this is the first CPU
729e5c14b1fSPeter Zijlstra  * of this group that's also in the balance mask.
73035a566e6SPeter Zijlstra  *
731e5c14b1fSPeter Zijlstra  * The balance mask are all those CPUs that could actually end up at this
732e5c14b1fSPeter Zijlstra  * group. See build_balance_mask().
73335a566e6SPeter Zijlstra  *
73435a566e6SPeter Zijlstra  * Also see should_we_balance().
73535a566e6SPeter Zijlstra  */
73635a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg)
73735a566e6SPeter Zijlstra {
738e5c14b1fSPeter Zijlstra 	return cpumask_first(group_balance_mask(sg));
73935a566e6SPeter Zijlstra }
74035a566e6SPeter Zijlstra 
74135a566e6SPeter Zijlstra 
74235a566e6SPeter Zijlstra /*
74335a566e6SPeter Zijlstra  * NUMA topology (first read the regular topology blurb below)
74435a566e6SPeter Zijlstra  *
74535a566e6SPeter Zijlstra  * Given a node-distance table, for example:
74635a566e6SPeter Zijlstra  *
74735a566e6SPeter Zijlstra  *   node   0   1   2   3
74835a566e6SPeter Zijlstra  *     0:  10  20  30  20
74935a566e6SPeter Zijlstra  *     1:  20  10  20  30
75035a566e6SPeter Zijlstra  *     2:  30  20  10  20
75135a566e6SPeter Zijlstra  *     3:  20  30  20  10
75235a566e6SPeter Zijlstra  *
75335a566e6SPeter Zijlstra  * which represents a 4 node ring topology like:
75435a566e6SPeter Zijlstra  *
75535a566e6SPeter Zijlstra  *   0 ----- 1
75635a566e6SPeter Zijlstra  *   |       |
75735a566e6SPeter Zijlstra  *   |       |
75835a566e6SPeter Zijlstra  *   |       |
75935a566e6SPeter Zijlstra  *   3 ----- 2
76035a566e6SPeter Zijlstra  *
76135a566e6SPeter Zijlstra  * We want to construct domains and groups to represent this. The way we go
76235a566e6SPeter Zijlstra  * about doing this is to build the domains on 'hops'. For each NUMA level we
76335a566e6SPeter Zijlstra  * construct the mask of all nodes reachable in @level hops.
76435a566e6SPeter Zijlstra  *
76535a566e6SPeter Zijlstra  * For the above NUMA topology that gives 3 levels:
76635a566e6SPeter Zijlstra  *
76735a566e6SPeter Zijlstra  * NUMA-2	0-3		0-3		0-3		0-3
76835a566e6SPeter Zijlstra  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
76935a566e6SPeter Zijlstra  *
77035a566e6SPeter Zijlstra  * NUMA-1	0-1,3		0-2		1-3		0,2-3
77135a566e6SPeter Zijlstra  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
77235a566e6SPeter Zijlstra  *
77335a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
77435a566e6SPeter Zijlstra  *
77535a566e6SPeter Zijlstra  *
77635a566e6SPeter Zijlstra  * As can be seen; things don't nicely line up as with the regular topology.
77735a566e6SPeter Zijlstra  * When we iterate a domain in child domain chunks some nodes can be
77835a566e6SPeter Zijlstra  * represented multiple times -- hence the "overlap" naming for this part of
77935a566e6SPeter Zijlstra  * the topology.
78035a566e6SPeter Zijlstra  *
78135a566e6SPeter Zijlstra  * In order to minimize this overlap, we only build enough groups to cover the
78235a566e6SPeter Zijlstra  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
78335a566e6SPeter Zijlstra  *
78435a566e6SPeter Zijlstra  * Because:
78535a566e6SPeter Zijlstra  *
78635a566e6SPeter Zijlstra  *  - the first group of each domain is its child domain; this
78735a566e6SPeter Zijlstra  *    gets us the first 0-1,3
78835a566e6SPeter Zijlstra  *  - the only uncovered node is 2, who's child domain is 1-3.
78935a566e6SPeter Zijlstra  *
79035a566e6SPeter Zijlstra  * However, because of the overlap, computing a unique CPU for each group is
79135a566e6SPeter Zijlstra  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
79235a566e6SPeter Zijlstra  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
79335a566e6SPeter Zijlstra  * end up at those groups (they would end up in group: 0-1,3).
79435a566e6SPeter Zijlstra  *
795e5c14b1fSPeter Zijlstra  * To correct this we have to introduce the group balance mask. This mask
79635a566e6SPeter Zijlstra  * will contain those CPUs in the group that can reach this group given the
79735a566e6SPeter Zijlstra  * (child) domain tree.
79835a566e6SPeter Zijlstra  *
79935a566e6SPeter Zijlstra  * With this we can once again compute balance_cpu and sched_group_capacity
80035a566e6SPeter Zijlstra  * relations.
80135a566e6SPeter Zijlstra  *
80235a566e6SPeter Zijlstra  * XXX include words on how balance_cpu is unique and therefore can be
80335a566e6SPeter Zijlstra  * used for sched_group_capacity links.
80435a566e6SPeter Zijlstra  *
80535a566e6SPeter Zijlstra  *
80635a566e6SPeter Zijlstra  * Another 'interesting' topology is:
80735a566e6SPeter Zijlstra  *
80835a566e6SPeter Zijlstra  *   node   0   1   2   3
80935a566e6SPeter Zijlstra  *     0:  10  20  20  30
81035a566e6SPeter Zijlstra  *     1:  20  10  20  20
81135a566e6SPeter Zijlstra  *     2:  20  20  10  20
81235a566e6SPeter Zijlstra  *     3:  30  20  20  10
81335a566e6SPeter Zijlstra  *
81435a566e6SPeter Zijlstra  * Which looks a little like:
81535a566e6SPeter Zijlstra  *
81635a566e6SPeter Zijlstra  *   0 ----- 1
81735a566e6SPeter Zijlstra  *   |     / |
81835a566e6SPeter Zijlstra  *   |   /   |
81935a566e6SPeter Zijlstra  *   | /     |
82035a566e6SPeter Zijlstra  *   2 ----- 3
82135a566e6SPeter Zijlstra  *
82235a566e6SPeter Zijlstra  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
82335a566e6SPeter Zijlstra  * are not.
82435a566e6SPeter Zijlstra  *
82535a566e6SPeter Zijlstra  * This leads to a few particularly weird cases where the sched_domain's are
82697fb7a0aSIngo Molnar  * not of the same number for each CPU. Consider:
82735a566e6SPeter Zijlstra  *
82835a566e6SPeter Zijlstra  * NUMA-2	0-3						0-3
82935a566e6SPeter Zijlstra  *  groups:	{0-2},{1-3}					{1-3},{0-2}
83035a566e6SPeter Zijlstra  *
83135a566e6SPeter Zijlstra  * NUMA-1	0-2		0-3		0-3		1-3
83235a566e6SPeter Zijlstra  *
83335a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
83435a566e6SPeter Zijlstra  *
83535a566e6SPeter Zijlstra  */
83635a566e6SPeter Zijlstra 
83735a566e6SPeter Zijlstra 
83835a566e6SPeter Zijlstra /*
839e5c14b1fSPeter Zijlstra  * Build the balance mask; it contains only those CPUs that can arrive at this
840e5c14b1fSPeter Zijlstra  * group and should be considered to continue balancing.
84135a566e6SPeter Zijlstra  *
84235a566e6SPeter Zijlstra  * We do this during the group creation pass, therefore the group information
84335a566e6SPeter Zijlstra  * isn't complete yet, however since each group represents a (child) domain we
84435a566e6SPeter Zijlstra  * can fully construct this using the sched_domain bits (which are already
84535a566e6SPeter Zijlstra  * complete).
846f2cb1360SIngo Molnar  */
8471676330eSPeter Zijlstra static void
848e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
849f2cb1360SIngo Molnar {
850ae4df9d6SPeter Zijlstra 	const struct cpumask *sg_span = sched_group_span(sg);
851f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
852f2cb1360SIngo Molnar 	struct sched_domain *sibling;
853f2cb1360SIngo Molnar 	int i;
854f2cb1360SIngo Molnar 
8551676330eSPeter Zijlstra 	cpumask_clear(mask);
8561676330eSPeter Zijlstra 
857f32d782eSLauro Ramos Venancio 	for_each_cpu(i, sg_span) {
858f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
85973bb059fSPeter Zijlstra 
86073bb059fSPeter Zijlstra 		/*
86173bb059fSPeter Zijlstra 		 * Can happen in the asymmetric case, where these siblings are
86273bb059fSPeter Zijlstra 		 * unused. The mask will not be empty because those CPUs that
86373bb059fSPeter Zijlstra 		 * do have the top domain _should_ span the domain.
86473bb059fSPeter Zijlstra 		 */
86573bb059fSPeter Zijlstra 		if (!sibling->child)
86673bb059fSPeter Zijlstra 			continue;
86773bb059fSPeter Zijlstra 
86873bb059fSPeter Zijlstra 		/* If we would not end up here, we can't continue from here */
86973bb059fSPeter Zijlstra 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
870f2cb1360SIngo Molnar 			continue;
871f2cb1360SIngo Molnar 
8721676330eSPeter Zijlstra 		cpumask_set_cpu(i, mask);
873f2cb1360SIngo Molnar 	}
87473bb059fSPeter Zijlstra 
87573bb059fSPeter Zijlstra 	/* We must not have empty masks here */
8761676330eSPeter Zijlstra 	WARN_ON_ONCE(cpumask_empty(mask));
877f2cb1360SIngo Molnar }
878f2cb1360SIngo Molnar 
879f2cb1360SIngo Molnar /*
88035a566e6SPeter Zijlstra  * XXX: This creates per-node group entries; since the load-balancer will
88135a566e6SPeter Zijlstra  * immediately access remote memory to construct this group's load-balance
88235a566e6SPeter Zijlstra  * statistics having the groups node local is of dubious benefit.
883f2cb1360SIngo Molnar  */
8848c033469SLauro Ramos Venancio static struct sched_group *
8858c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
8868c033469SLauro Ramos Venancio {
8878c033469SLauro Ramos Venancio 	struct sched_group *sg;
8888c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
8898c033469SLauro Ramos Venancio 
8908c033469SLauro Ramos Venancio 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
8918c033469SLauro Ramos Venancio 			GFP_KERNEL, cpu_to_node(cpu));
8928c033469SLauro Ramos Venancio 
8938c033469SLauro Ramos Venancio 	if (!sg)
8948c033469SLauro Ramos Venancio 		return NULL;
8958c033469SLauro Ramos Venancio 
896ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
8978c033469SLauro Ramos Venancio 	if (sd->child)
8988c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd->child));
8998c033469SLauro Ramos Venancio 	else
9008c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd));
9018c033469SLauro Ramos Venancio 
902213c5a45SShu Wang 	atomic_inc(&sg->ref);
9038c033469SLauro Ramos Venancio 	return sg;
9048c033469SLauro Ramos Venancio }
9058c033469SLauro Ramos Venancio 
9068c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd,
9071676330eSPeter Zijlstra 				     struct sched_group *sg)
9088c033469SLauro Ramos Venancio {
9091676330eSPeter Zijlstra 	struct cpumask *mask = sched_domains_tmpmask2;
9108c033469SLauro Ramos Venancio 	struct sd_data *sdd = sd->private;
9118c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
9121676330eSPeter Zijlstra 	int cpu;
9131676330eSPeter Zijlstra 
914e5c14b1fSPeter Zijlstra 	build_balance_mask(sd, sg, mask);
915ae4df9d6SPeter Zijlstra 	cpu = cpumask_first_and(sched_group_span(sg), mask);
9168c033469SLauro Ramos Venancio 
9178c033469SLauro Ramos Venancio 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
9188c033469SLauro Ramos Venancio 	if (atomic_inc_return(&sg->sgc->ref) == 1)
919e5c14b1fSPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), mask);
92035a566e6SPeter Zijlstra 	else
921e5c14b1fSPeter Zijlstra 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
9228c033469SLauro Ramos Venancio 
9238c033469SLauro Ramos Venancio 	/*
9248c033469SLauro Ramos Venancio 	 * Initialize sgc->capacity such that even if we mess up the
9258c033469SLauro Ramos Venancio 	 * domains and no possible iteration will get us here, we won't
9268c033469SLauro Ramos Venancio 	 * die on a /0 trap.
9278c033469SLauro Ramos Venancio 	 */
928ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
9298c033469SLauro Ramos Venancio 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
9308c033469SLauro Ramos Venancio 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
931e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
9328c033469SLauro Ramos Venancio }
9338c033469SLauro Ramos Venancio 
934f2cb1360SIngo Molnar static int
935f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu)
936f2cb1360SIngo Molnar {
93791eaed0dSPeter Zijlstra 	struct sched_group *first = NULL, *last = NULL, *sg;
938f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
939f2cb1360SIngo Molnar 	struct cpumask *covered = sched_domains_tmpmask;
940f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
941f2cb1360SIngo Molnar 	struct sched_domain *sibling;
942f2cb1360SIngo Molnar 	int i;
943f2cb1360SIngo Molnar 
944f2cb1360SIngo Molnar 	cpumask_clear(covered);
945f2cb1360SIngo Molnar 
9460372dd27SPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
947f2cb1360SIngo Molnar 		struct cpumask *sg_span;
948f2cb1360SIngo Molnar 
949f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
950f2cb1360SIngo Molnar 			continue;
951f2cb1360SIngo Molnar 
952f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
953f2cb1360SIngo Molnar 
954c20e1ea4SLauro Ramos Venancio 		/*
955c20e1ea4SLauro Ramos Venancio 		 * Asymmetric node setups can result in situations where the
956c20e1ea4SLauro Ramos Venancio 		 * domain tree is of unequal depth, make sure to skip domains
957c20e1ea4SLauro Ramos Venancio 		 * that already cover the entire range.
958c20e1ea4SLauro Ramos Venancio 		 *
959c20e1ea4SLauro Ramos Venancio 		 * In that case build_sched_domains() will have terminated the
960c20e1ea4SLauro Ramos Venancio 		 * iteration early and our sibling sd spans will be empty.
961c20e1ea4SLauro Ramos Venancio 		 * Domains should always include the CPU they're built on, so
962c20e1ea4SLauro Ramos Venancio 		 * check that.
963c20e1ea4SLauro Ramos Venancio 		 */
964f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
965f2cb1360SIngo Molnar 			continue;
966f2cb1360SIngo Molnar 
9678c033469SLauro Ramos Venancio 		sg = build_group_from_child_sched_domain(sibling, cpu);
968f2cb1360SIngo Molnar 		if (!sg)
969f2cb1360SIngo Molnar 			goto fail;
970f2cb1360SIngo Molnar 
971ae4df9d6SPeter Zijlstra 		sg_span = sched_group_span(sg);
972f2cb1360SIngo Molnar 		cpumask_or(covered, covered, sg_span);
973f2cb1360SIngo Molnar 
9741676330eSPeter Zijlstra 		init_overlap_sched_group(sd, sg);
975f2cb1360SIngo Molnar 
976f2cb1360SIngo Molnar 		if (!first)
977f2cb1360SIngo Molnar 			first = sg;
978f2cb1360SIngo Molnar 		if (last)
979f2cb1360SIngo Molnar 			last->next = sg;
980f2cb1360SIngo Molnar 		last = sg;
981f2cb1360SIngo Molnar 		last->next = first;
982f2cb1360SIngo Molnar 	}
98391eaed0dSPeter Zijlstra 	sd->groups = first;
984f2cb1360SIngo Molnar 
985f2cb1360SIngo Molnar 	return 0;
986f2cb1360SIngo Molnar 
987f2cb1360SIngo Molnar fail:
988f2cb1360SIngo Molnar 	free_sched_groups(first, 0);
989f2cb1360SIngo Molnar 
990f2cb1360SIngo Molnar 	return -ENOMEM;
991f2cb1360SIngo Molnar }
992f2cb1360SIngo Molnar 
99335a566e6SPeter Zijlstra 
99435a566e6SPeter Zijlstra /*
99535a566e6SPeter Zijlstra  * Package topology (also see the load-balance blurb in fair.c)
99635a566e6SPeter Zijlstra  *
99735a566e6SPeter Zijlstra  * The scheduler builds a tree structure to represent a number of important
99835a566e6SPeter Zijlstra  * topology features. By default (default_topology[]) these include:
99935a566e6SPeter Zijlstra  *
100035a566e6SPeter Zijlstra  *  - Simultaneous multithreading (SMT)
100135a566e6SPeter Zijlstra  *  - Multi-Core Cache (MC)
100235a566e6SPeter Zijlstra  *  - Package (DIE)
100335a566e6SPeter Zijlstra  *
100435a566e6SPeter Zijlstra  * Where the last one more or less denotes everything up to a NUMA node.
100535a566e6SPeter Zijlstra  *
100635a566e6SPeter Zijlstra  * The tree consists of 3 primary data structures:
100735a566e6SPeter Zijlstra  *
100835a566e6SPeter Zijlstra  *	sched_domain -> sched_group -> sched_group_capacity
100935a566e6SPeter Zijlstra  *	    ^ ^             ^ ^
101035a566e6SPeter Zijlstra  *          `-'             `-'
101135a566e6SPeter Zijlstra  *
101297fb7a0aSIngo Molnar  * The sched_domains are per-CPU and have a two way link (parent & child) and
101335a566e6SPeter Zijlstra  * denote the ever growing mask of CPUs belonging to that level of topology.
101435a566e6SPeter Zijlstra  *
101535a566e6SPeter Zijlstra  * Each sched_domain has a circular (double) linked list of sched_group's, each
101635a566e6SPeter Zijlstra  * denoting the domains of the level below (or individual CPUs in case of the
101735a566e6SPeter Zijlstra  * first domain level). The sched_group linked by a sched_domain includes the
101835a566e6SPeter Zijlstra  * CPU of that sched_domain [*].
101935a566e6SPeter Zijlstra  *
102035a566e6SPeter Zijlstra  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
102135a566e6SPeter Zijlstra  *
102235a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
102335a566e6SPeter Zijlstra  *
102435a566e6SPeter Zijlstra  * DIE  [                             ]
102535a566e6SPeter Zijlstra  * MC   [             ] [             ]
102635a566e6SPeter Zijlstra  * SMT  [     ] [     ] [     ] [     ]
102735a566e6SPeter Zijlstra  *
102835a566e6SPeter Zijlstra  *  - or -
102935a566e6SPeter Zijlstra  *
103035a566e6SPeter Zijlstra  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
103135a566e6SPeter Zijlstra  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
103235a566e6SPeter Zijlstra  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
103335a566e6SPeter Zijlstra  *
103435a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
103535a566e6SPeter Zijlstra  *
103635a566e6SPeter Zijlstra  * One way to think about it is: sched_domain moves you up and down among these
103735a566e6SPeter Zijlstra  * topology levels, while sched_group moves you sideways through it, at child
103835a566e6SPeter Zijlstra  * domain granularity.
103935a566e6SPeter Zijlstra  *
104035a566e6SPeter Zijlstra  * sched_group_capacity ensures each unique sched_group has shared storage.
104135a566e6SPeter Zijlstra  *
104235a566e6SPeter Zijlstra  * There are two related construction problems, both require a CPU that
104335a566e6SPeter Zijlstra  * uniquely identify each group (for a given domain):
104435a566e6SPeter Zijlstra  *
104535a566e6SPeter Zijlstra  *  - The first is the balance_cpu (see should_we_balance() and the
104635a566e6SPeter Zijlstra  *    load-balance blub in fair.c); for each group we only want 1 CPU to
104735a566e6SPeter Zijlstra  *    continue balancing at a higher domain.
104835a566e6SPeter Zijlstra  *
104935a566e6SPeter Zijlstra  *  - The second is the sched_group_capacity; we want all identical groups
105035a566e6SPeter Zijlstra  *    to share a single sched_group_capacity.
105135a566e6SPeter Zijlstra  *
105235a566e6SPeter Zijlstra  * Since these topologies are exclusive by construction. That is, its
105335a566e6SPeter Zijlstra  * impossible for an SMT thread to belong to multiple cores, and cores to
105435a566e6SPeter Zijlstra  * be part of multiple caches. There is a very clear and unique location
105535a566e6SPeter Zijlstra  * for each CPU in the hierarchy.
105635a566e6SPeter Zijlstra  *
105735a566e6SPeter Zijlstra  * Therefore computing a unique CPU for each group is trivial (the iteration
105835a566e6SPeter Zijlstra  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
105935a566e6SPeter Zijlstra  * group), we can simply pick the first CPU in each group.
106035a566e6SPeter Zijlstra  *
106135a566e6SPeter Zijlstra  *
106235a566e6SPeter Zijlstra  * [*] in other words, the first group of each domain is its child domain.
106335a566e6SPeter Zijlstra  */
106435a566e6SPeter Zijlstra 
10650c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1066f2cb1360SIngo Molnar {
1067f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1068f2cb1360SIngo Molnar 	struct sched_domain *child = sd->child;
10690c0e776aSPeter Zijlstra 	struct sched_group *sg;
107067d4f6ffSValentin Schneider 	bool already_visited;
1071f2cb1360SIngo Molnar 
1072f2cb1360SIngo Molnar 	if (child)
1073f2cb1360SIngo Molnar 		cpu = cpumask_first(sched_domain_span(child));
1074f2cb1360SIngo Molnar 
10750c0e776aSPeter Zijlstra 	sg = *per_cpu_ptr(sdd->sg, cpu);
10760c0e776aSPeter Zijlstra 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1077f2cb1360SIngo Molnar 
107867d4f6ffSValentin Schneider 	/* Increase refcounts for claim_allocations: */
107967d4f6ffSValentin Schneider 	already_visited = atomic_inc_return(&sg->ref) > 1;
108067d4f6ffSValentin Schneider 	/* sgc visits should follow a similar trend as sg */
108167d4f6ffSValentin Schneider 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
108267d4f6ffSValentin Schneider 
108367d4f6ffSValentin Schneider 	/* If we have already visited that group, it's already initialized. */
108467d4f6ffSValentin Schneider 	if (already_visited)
108567d4f6ffSValentin Schneider 		return sg;
10860c0e776aSPeter Zijlstra 
10870c0e776aSPeter Zijlstra 	if (child) {
1088ae4df9d6SPeter Zijlstra 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1089ae4df9d6SPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
10900c0e776aSPeter Zijlstra 	} else {
1091ae4df9d6SPeter Zijlstra 		cpumask_set_cpu(cpu, sched_group_span(sg));
1092e5c14b1fSPeter Zijlstra 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1093f2cb1360SIngo Molnar 	}
1094f2cb1360SIngo Molnar 
1095ae4df9d6SPeter Zijlstra 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
10960c0e776aSPeter Zijlstra 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1097e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
10980c0e776aSPeter Zijlstra 
10990c0e776aSPeter Zijlstra 	return sg;
1100f2cb1360SIngo Molnar }
1101f2cb1360SIngo Molnar 
1102f2cb1360SIngo Molnar /*
1103f2cb1360SIngo Molnar  * build_sched_groups will build a circular linked list of the groups
1104d8743230SValentin Schneider  * covered by the given span, will set each group's ->cpumask correctly,
1105d8743230SValentin Schneider  * and will initialize their ->sgc.
1106f2cb1360SIngo Molnar  *
1107f2cb1360SIngo Molnar  * Assumes the sched_domain tree is fully constructed
1108f2cb1360SIngo Molnar  */
1109f2cb1360SIngo Molnar static int
1110f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu)
1111f2cb1360SIngo Molnar {
1112f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL;
1113f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1114f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
1115f2cb1360SIngo Molnar 	struct cpumask *covered;
1116f2cb1360SIngo Molnar 	int i;
1117f2cb1360SIngo Molnar 
1118f2cb1360SIngo Molnar 	lockdep_assert_held(&sched_domains_mutex);
1119f2cb1360SIngo Molnar 	covered = sched_domains_tmpmask;
1120f2cb1360SIngo Molnar 
1121f2cb1360SIngo Molnar 	cpumask_clear(covered);
1122f2cb1360SIngo Molnar 
11230c0e776aSPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
1124f2cb1360SIngo Molnar 		struct sched_group *sg;
1125f2cb1360SIngo Molnar 
1126f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
1127f2cb1360SIngo Molnar 			continue;
1128f2cb1360SIngo Molnar 
11290c0e776aSPeter Zijlstra 		sg = get_group(i, sdd);
1130f2cb1360SIngo Molnar 
1131ae4df9d6SPeter Zijlstra 		cpumask_or(covered, covered, sched_group_span(sg));
1132f2cb1360SIngo Molnar 
1133f2cb1360SIngo Molnar 		if (!first)
1134f2cb1360SIngo Molnar 			first = sg;
1135f2cb1360SIngo Molnar 		if (last)
1136f2cb1360SIngo Molnar 			last->next = sg;
1137f2cb1360SIngo Molnar 		last = sg;
1138f2cb1360SIngo Molnar 	}
1139f2cb1360SIngo Molnar 	last->next = first;
11400c0e776aSPeter Zijlstra 	sd->groups = first;
1141f2cb1360SIngo Molnar 
1142f2cb1360SIngo Molnar 	return 0;
1143f2cb1360SIngo Molnar }
1144f2cb1360SIngo Molnar 
1145f2cb1360SIngo Molnar /*
1146f2cb1360SIngo Molnar  * Initialize sched groups cpu_capacity.
1147f2cb1360SIngo Molnar  *
1148f2cb1360SIngo Molnar  * cpu_capacity indicates the capacity of sched group, which is used while
1149f2cb1360SIngo Molnar  * distributing the load between different sched groups in a sched domain.
1150f2cb1360SIngo Molnar  * Typically cpu_capacity for all the groups in a sched domain will be same
1151f2cb1360SIngo Molnar  * unless there are asymmetries in the topology. If there are asymmetries,
1152f2cb1360SIngo Molnar  * group having more cpu_capacity will pickup more load compared to the
1153f2cb1360SIngo Molnar  * group having less cpu_capacity.
1154f2cb1360SIngo Molnar  */
1155f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1156f2cb1360SIngo Molnar {
1157f2cb1360SIngo Molnar 	struct sched_group *sg = sd->groups;
1158f2cb1360SIngo Molnar 
1159f2cb1360SIngo Molnar 	WARN_ON(!sg);
1160f2cb1360SIngo Molnar 
1161f2cb1360SIngo Molnar 	do {
1162f2cb1360SIngo Molnar 		int cpu, max_cpu = -1;
1163f2cb1360SIngo Molnar 
1164ae4df9d6SPeter Zijlstra 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1165f2cb1360SIngo Molnar 
1166f2cb1360SIngo Molnar 		if (!(sd->flags & SD_ASYM_PACKING))
1167f2cb1360SIngo Molnar 			goto next;
1168f2cb1360SIngo Molnar 
1169ae4df9d6SPeter Zijlstra 		for_each_cpu(cpu, sched_group_span(sg)) {
1170f2cb1360SIngo Molnar 			if (max_cpu < 0)
1171f2cb1360SIngo Molnar 				max_cpu = cpu;
1172f2cb1360SIngo Molnar 			else if (sched_asym_prefer(cpu, max_cpu))
1173f2cb1360SIngo Molnar 				max_cpu = cpu;
1174f2cb1360SIngo Molnar 		}
1175f2cb1360SIngo Molnar 		sg->asym_prefer_cpu = max_cpu;
1176f2cb1360SIngo Molnar 
1177f2cb1360SIngo Molnar next:
1178f2cb1360SIngo Molnar 		sg = sg->next;
1179f2cb1360SIngo Molnar 	} while (sg != sd->groups);
1180f2cb1360SIngo Molnar 
1181f2cb1360SIngo Molnar 	if (cpu != group_balance_cpu(sg))
1182f2cb1360SIngo Molnar 		return;
1183f2cb1360SIngo Molnar 
1184f2cb1360SIngo Molnar 	update_group_capacity(sd, cpu);
1185f2cb1360SIngo Molnar }
1186f2cb1360SIngo Molnar 
1187f2cb1360SIngo Molnar /*
1188f2cb1360SIngo Molnar  * Initializers for schedule domains
1189f2cb1360SIngo Molnar  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1190f2cb1360SIngo Molnar  */
1191f2cb1360SIngo Molnar 
1192f2cb1360SIngo Molnar static int default_relax_domain_level = -1;
1193f2cb1360SIngo Molnar int sched_domain_level_max;
1194f2cb1360SIngo Molnar 
1195f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str)
1196f2cb1360SIngo Molnar {
1197f2cb1360SIngo Molnar 	if (kstrtoint(str, 0, &default_relax_domain_level))
1198f2cb1360SIngo Molnar 		pr_warn("Unable to set relax_domain_level\n");
1199f2cb1360SIngo Molnar 
1200f2cb1360SIngo Molnar 	return 1;
1201f2cb1360SIngo Molnar }
1202f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level);
1203f2cb1360SIngo Molnar 
1204f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd,
1205f2cb1360SIngo Molnar 				 struct sched_domain_attr *attr)
1206f2cb1360SIngo Molnar {
1207f2cb1360SIngo Molnar 	int request;
1208f2cb1360SIngo Molnar 
1209f2cb1360SIngo Molnar 	if (!attr || attr->relax_domain_level < 0) {
1210f2cb1360SIngo Molnar 		if (default_relax_domain_level < 0)
1211f2cb1360SIngo Molnar 			return;
1212f2cb1360SIngo Molnar 		request = default_relax_domain_level;
1213f2cb1360SIngo Molnar 	} else
1214f2cb1360SIngo Molnar 		request = attr->relax_domain_level;
12159ae7ab20SValentin Schneider 
12169ae7ab20SValentin Schneider 	if (sd->level > request) {
1217f2cb1360SIngo Molnar 		/* Turn off idle balance on this domain: */
1218f2cb1360SIngo Molnar 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1219f2cb1360SIngo Molnar 	}
1220f2cb1360SIngo Molnar }
1221f2cb1360SIngo Molnar 
1222f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map);
1223f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map);
1224f2cb1360SIngo Molnar 
1225f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1226f2cb1360SIngo Molnar 				 const struct cpumask *cpu_map)
1227f2cb1360SIngo Molnar {
1228f2cb1360SIngo Molnar 	switch (what) {
1229f2cb1360SIngo Molnar 	case sa_rootdomain:
1230f2cb1360SIngo Molnar 		if (!atomic_read(&d->rd->refcount))
1231f2cb1360SIngo Molnar 			free_rootdomain(&d->rd->rcu);
1232f2cb1360SIngo Molnar 		/* Fall through */
1233f2cb1360SIngo Molnar 	case sa_sd:
1234f2cb1360SIngo Molnar 		free_percpu(d->sd);
1235f2cb1360SIngo Molnar 		/* Fall through */
1236f2cb1360SIngo Molnar 	case sa_sd_storage:
1237f2cb1360SIngo Molnar 		__sdt_free(cpu_map);
1238f2cb1360SIngo Molnar 		/* Fall through */
1239f2cb1360SIngo Molnar 	case sa_none:
1240f2cb1360SIngo Molnar 		break;
1241f2cb1360SIngo Molnar 	}
1242f2cb1360SIngo Molnar }
1243f2cb1360SIngo Molnar 
1244f2cb1360SIngo Molnar static enum s_alloc
1245f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1246f2cb1360SIngo Molnar {
1247f2cb1360SIngo Molnar 	memset(d, 0, sizeof(*d));
1248f2cb1360SIngo Molnar 
1249f2cb1360SIngo Molnar 	if (__sdt_alloc(cpu_map))
1250f2cb1360SIngo Molnar 		return sa_sd_storage;
1251f2cb1360SIngo Molnar 	d->sd = alloc_percpu(struct sched_domain *);
1252f2cb1360SIngo Molnar 	if (!d->sd)
1253f2cb1360SIngo Molnar 		return sa_sd_storage;
1254f2cb1360SIngo Molnar 	d->rd = alloc_rootdomain();
1255f2cb1360SIngo Molnar 	if (!d->rd)
1256f2cb1360SIngo Molnar 		return sa_sd;
125797fb7a0aSIngo Molnar 
1258f2cb1360SIngo Molnar 	return sa_rootdomain;
1259f2cb1360SIngo Molnar }
1260f2cb1360SIngo Molnar 
1261f2cb1360SIngo Molnar /*
1262f2cb1360SIngo Molnar  * NULL the sd_data elements we've used to build the sched_domain and
1263f2cb1360SIngo Molnar  * sched_group structure so that the subsequent __free_domain_allocs()
1264f2cb1360SIngo Molnar  * will not free the data we're using.
1265f2cb1360SIngo Molnar  */
1266f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd)
1267f2cb1360SIngo Molnar {
1268f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1269f2cb1360SIngo Molnar 
1270f2cb1360SIngo Molnar 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1271f2cb1360SIngo Molnar 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1272f2cb1360SIngo Molnar 
1273f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1274f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1275f2cb1360SIngo Molnar 
1276f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1277f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1278f2cb1360SIngo Molnar 
1279f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1280f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1281f2cb1360SIngo Molnar }
1282f2cb1360SIngo Molnar 
1283f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1284f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type;
128597fb7a0aSIngo Molnar 
128697fb7a0aSIngo Molnar static int			sched_domains_numa_levels;
1287f2cb1360SIngo Molnar static int			sched_domains_curr_level;
128897fb7a0aSIngo Molnar 
128997fb7a0aSIngo Molnar int				sched_max_numa_distance;
129097fb7a0aSIngo Molnar static int			*sched_domains_numa_distance;
129197fb7a0aSIngo Molnar static struct cpumask		***sched_domains_numa_masks;
1292a55c7454SMatt Fleming int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1293f2cb1360SIngo Molnar #endif
1294f2cb1360SIngo Molnar 
1295f2cb1360SIngo Molnar /*
1296f2cb1360SIngo Molnar  * SD_flags allowed in topology descriptions.
1297f2cb1360SIngo Molnar  *
1298f2cb1360SIngo Molnar  * These flags are purely descriptive of the topology and do not prescribe
1299f2cb1360SIngo Molnar  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1300f2cb1360SIngo Molnar  * function:
1301f2cb1360SIngo Molnar  *
1302f2cb1360SIngo Molnar  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1303f2cb1360SIngo Molnar  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1304f2cb1360SIngo Molnar  *   SD_NUMA                - describes NUMA topologies
1305f2cb1360SIngo Molnar  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1306f2cb1360SIngo Molnar  *
1307f2cb1360SIngo Molnar  * Odd one out, which beside describing the topology has a quirk also
1308f2cb1360SIngo Molnar  * prescribes the desired behaviour that goes along with it:
1309f2cb1360SIngo Molnar  *
1310f2cb1360SIngo Molnar  *   SD_ASYM_PACKING        - describes SMT quirks
1311f2cb1360SIngo Molnar  */
1312f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS		\
1313f2cb1360SIngo Molnar 	(SD_SHARE_CPUCAPACITY	|	\
1314f2cb1360SIngo Molnar 	 SD_SHARE_PKG_RESOURCES |	\
1315f2cb1360SIngo Molnar 	 SD_NUMA		|	\
1316f2cb1360SIngo Molnar 	 SD_ASYM_PACKING	|	\
1317f2cb1360SIngo Molnar 	 SD_SHARE_POWERDOMAIN)
1318f2cb1360SIngo Molnar 
1319f2cb1360SIngo Molnar static struct sched_domain *
1320f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl,
1321f2cb1360SIngo Molnar 	const struct cpumask *cpu_map,
132205484e09SMorten Rasmussen 	struct sched_domain *child, int dflags, int cpu)
1323f2cb1360SIngo Molnar {
1324f2cb1360SIngo Molnar 	struct sd_data *sdd = &tl->data;
1325f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1326f2cb1360SIngo Molnar 	int sd_id, sd_weight, sd_flags = 0;
1327f2cb1360SIngo Molnar 
1328f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1329f2cb1360SIngo Molnar 	/*
1330f2cb1360SIngo Molnar 	 * Ugly hack to pass state to sd_numa_mask()...
1331f2cb1360SIngo Molnar 	 */
1332f2cb1360SIngo Molnar 	sched_domains_curr_level = tl->numa_level;
1333f2cb1360SIngo Molnar #endif
1334f2cb1360SIngo Molnar 
1335f2cb1360SIngo Molnar 	sd_weight = cpumask_weight(tl->mask(cpu));
1336f2cb1360SIngo Molnar 
1337f2cb1360SIngo Molnar 	if (tl->sd_flags)
1338f2cb1360SIngo Molnar 		sd_flags = (*tl->sd_flags)();
1339f2cb1360SIngo Molnar 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1340f2cb1360SIngo Molnar 			"wrong sd_flags in topology description\n"))
1341f2cb1360SIngo Molnar 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1342f2cb1360SIngo Molnar 
134305484e09SMorten Rasmussen 	/* Apply detected topology flags */
134405484e09SMorten Rasmussen 	sd_flags |= dflags;
134505484e09SMorten Rasmussen 
1346f2cb1360SIngo Molnar 	*sd = (struct sched_domain){
1347f2cb1360SIngo Molnar 		.min_interval		= sd_weight,
1348f2cb1360SIngo Molnar 		.max_interval		= 2*sd_weight,
1349f2cb1360SIngo Molnar 		.busy_factor		= 32,
1350f2cb1360SIngo Molnar 		.imbalance_pct		= 125,
1351f2cb1360SIngo Molnar 
1352f2cb1360SIngo Molnar 		.cache_nice_tries	= 0,
1353f2cb1360SIngo Molnar 
1354f2cb1360SIngo Molnar 		.flags			= 1*SD_LOAD_BALANCE
1355f2cb1360SIngo Molnar 					| 1*SD_BALANCE_NEWIDLE
1356f2cb1360SIngo Molnar 					| 1*SD_BALANCE_EXEC
1357f2cb1360SIngo Molnar 					| 1*SD_BALANCE_FORK
1358f2cb1360SIngo Molnar 					| 0*SD_BALANCE_WAKE
1359f2cb1360SIngo Molnar 					| 1*SD_WAKE_AFFINE
1360f2cb1360SIngo Molnar 					| 0*SD_SHARE_CPUCAPACITY
1361f2cb1360SIngo Molnar 					| 0*SD_SHARE_PKG_RESOURCES
1362f2cb1360SIngo Molnar 					| 0*SD_SERIALIZE
13639c63e84dSMorten Rasmussen 					| 1*SD_PREFER_SIBLING
1364f2cb1360SIngo Molnar 					| 0*SD_NUMA
1365f2cb1360SIngo Molnar 					| sd_flags
1366f2cb1360SIngo Molnar 					,
1367f2cb1360SIngo Molnar 
1368f2cb1360SIngo Molnar 		.last_balance		= jiffies,
1369f2cb1360SIngo Molnar 		.balance_interval	= sd_weight,
1370f2cb1360SIngo Molnar 		.max_newidle_lb_cost	= 0,
1371f2cb1360SIngo Molnar 		.next_decay_max_lb_cost	= jiffies,
1372f2cb1360SIngo Molnar 		.child			= child,
1373f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1374f2cb1360SIngo Molnar 		.name			= tl->name,
1375f2cb1360SIngo Molnar #endif
1376f2cb1360SIngo Molnar 	};
1377f2cb1360SIngo Molnar 
1378f2cb1360SIngo Molnar 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1379f2cb1360SIngo Molnar 	sd_id = cpumask_first(sched_domain_span(sd));
1380f2cb1360SIngo Molnar 
1381f2cb1360SIngo Molnar 	/*
1382f2cb1360SIngo Molnar 	 * Convert topological properties into behaviour.
1383f2cb1360SIngo Molnar 	 */
1384f2cb1360SIngo Molnar 
1385a526d466SMorten Rasmussen 	/* Don't attempt to spread across CPUs of different capacities. */
1386a526d466SMorten Rasmussen 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
13879c63e84dSMorten Rasmussen 		sd->child->flags &= ~SD_PREFER_SIBLING;
13889c63e84dSMorten Rasmussen 
1389f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1390f2cb1360SIngo Molnar 		sd->imbalance_pct = 110;
1391f2cb1360SIngo Molnar 
1392f2cb1360SIngo Molnar 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1393f2cb1360SIngo Molnar 		sd->imbalance_pct = 117;
1394f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1395f2cb1360SIngo Molnar 
1396f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1397f2cb1360SIngo Molnar 	} else if (sd->flags & SD_NUMA) {
1398f2cb1360SIngo Molnar 		sd->cache_nice_tries = 2;
1399f2cb1360SIngo Molnar 
14009c63e84dSMorten Rasmussen 		sd->flags &= ~SD_PREFER_SIBLING;
1401f2cb1360SIngo Molnar 		sd->flags |= SD_SERIALIZE;
1402a55c7454SMatt Fleming 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1403f2cb1360SIngo Molnar 			sd->flags &= ~(SD_BALANCE_EXEC |
1404f2cb1360SIngo Molnar 				       SD_BALANCE_FORK |
1405f2cb1360SIngo Molnar 				       SD_WAKE_AFFINE);
1406f2cb1360SIngo Molnar 		}
1407f2cb1360SIngo Molnar 
1408f2cb1360SIngo Molnar #endif
1409f2cb1360SIngo Molnar 	} else {
1410f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1411f2cb1360SIngo Molnar 	}
1412f2cb1360SIngo Molnar 
1413f2cb1360SIngo Molnar 	/*
1414f2cb1360SIngo Molnar 	 * For all levels sharing cache; connect a sched_domain_shared
1415f2cb1360SIngo Molnar 	 * instance.
1416f2cb1360SIngo Molnar 	 */
1417f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1418f2cb1360SIngo Molnar 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1419f2cb1360SIngo Molnar 		atomic_inc(&sd->shared->ref);
1420f2cb1360SIngo Molnar 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1421f2cb1360SIngo Molnar 	}
1422f2cb1360SIngo Molnar 
1423f2cb1360SIngo Molnar 	sd->private = sdd;
1424f2cb1360SIngo Molnar 
1425f2cb1360SIngo Molnar 	return sd;
1426f2cb1360SIngo Molnar }
1427f2cb1360SIngo Molnar 
1428f2cb1360SIngo Molnar /*
1429f2cb1360SIngo Molnar  * Topology list, bottom-up.
1430f2cb1360SIngo Molnar  */
1431f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = {
1432f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT
1433f2cb1360SIngo Molnar 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1434f2cb1360SIngo Molnar #endif
1435f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC
1436f2cb1360SIngo Molnar 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1437f2cb1360SIngo Molnar #endif
1438f2cb1360SIngo Molnar 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1439f2cb1360SIngo Molnar 	{ NULL, },
1440f2cb1360SIngo Molnar };
1441f2cb1360SIngo Molnar 
1442f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology =
1443f2cb1360SIngo Molnar 	default_topology;
1444f2cb1360SIngo Molnar 
1445f2cb1360SIngo Molnar #define for_each_sd_topology(tl)			\
1446f2cb1360SIngo Molnar 	for (tl = sched_domain_topology; tl->mask; tl++)
1447f2cb1360SIngo Molnar 
1448f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl)
1449f2cb1360SIngo Molnar {
1450f2cb1360SIngo Molnar 	if (WARN_ON_ONCE(sched_smp_initialized))
1451f2cb1360SIngo Molnar 		return;
1452f2cb1360SIngo Molnar 
1453f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1454f2cb1360SIngo Molnar }
1455f2cb1360SIngo Molnar 
1456f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1457f2cb1360SIngo Molnar 
1458f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu)
1459f2cb1360SIngo Molnar {
1460f2cb1360SIngo Molnar 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1461f2cb1360SIngo Molnar }
1462f2cb1360SIngo Molnar 
1463f2cb1360SIngo Molnar static void sched_numa_warn(const char *str)
1464f2cb1360SIngo Molnar {
1465f2cb1360SIngo Molnar 	static int done = false;
1466f2cb1360SIngo Molnar 	int i,j;
1467f2cb1360SIngo Molnar 
1468f2cb1360SIngo Molnar 	if (done)
1469f2cb1360SIngo Molnar 		return;
1470f2cb1360SIngo Molnar 
1471f2cb1360SIngo Molnar 	done = true;
1472f2cb1360SIngo Molnar 
1473f2cb1360SIngo Molnar 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1474f2cb1360SIngo Molnar 
1475f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1476f2cb1360SIngo Molnar 		printk(KERN_WARNING "  ");
1477f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1478f2cb1360SIngo Molnar 			printk(KERN_CONT "%02d ", node_distance(i,j));
1479f2cb1360SIngo Molnar 		printk(KERN_CONT "\n");
1480f2cb1360SIngo Molnar 	}
1481f2cb1360SIngo Molnar 	printk(KERN_WARNING "\n");
1482f2cb1360SIngo Molnar }
1483f2cb1360SIngo Molnar 
1484f2cb1360SIngo Molnar bool find_numa_distance(int distance)
1485f2cb1360SIngo Molnar {
1486f2cb1360SIngo Molnar 	int i;
1487f2cb1360SIngo Molnar 
1488f2cb1360SIngo Molnar 	if (distance == node_distance(0, 0))
1489f2cb1360SIngo Molnar 		return true;
1490f2cb1360SIngo Molnar 
1491f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1492f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[i] == distance)
1493f2cb1360SIngo Molnar 			return true;
1494f2cb1360SIngo Molnar 	}
1495f2cb1360SIngo Molnar 
1496f2cb1360SIngo Molnar 	return false;
1497f2cb1360SIngo Molnar }
1498f2cb1360SIngo Molnar 
1499f2cb1360SIngo Molnar /*
1500f2cb1360SIngo Molnar  * A system can have three types of NUMA topology:
1501f2cb1360SIngo Molnar  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1502f2cb1360SIngo Molnar  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1503f2cb1360SIngo Molnar  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1504f2cb1360SIngo Molnar  *
1505f2cb1360SIngo Molnar  * The difference between a glueless mesh topology and a backplane
1506f2cb1360SIngo Molnar  * topology lies in whether communication between not directly
1507f2cb1360SIngo Molnar  * connected nodes goes through intermediary nodes (where programs
1508f2cb1360SIngo Molnar  * could run), or through backplane controllers. This affects
1509f2cb1360SIngo Molnar  * placement of programs.
1510f2cb1360SIngo Molnar  *
1511f2cb1360SIngo Molnar  * The type of topology can be discerned with the following tests:
1512f2cb1360SIngo Molnar  * - If the maximum distance between any nodes is 1 hop, the system
1513f2cb1360SIngo Molnar  *   is directly connected.
1514f2cb1360SIngo Molnar  * - If for two nodes A and B, located N > 1 hops away from each other,
1515f2cb1360SIngo Molnar  *   there is an intermediary node C, which is < N hops away from both
1516f2cb1360SIngo Molnar  *   nodes A and B, the system is a glueless mesh.
1517f2cb1360SIngo Molnar  */
1518f2cb1360SIngo Molnar static void init_numa_topology_type(void)
1519f2cb1360SIngo Molnar {
1520f2cb1360SIngo Molnar 	int a, b, c, n;
1521f2cb1360SIngo Molnar 
1522f2cb1360SIngo Molnar 	n = sched_max_numa_distance;
1523f2cb1360SIngo Molnar 
1524e5e96fafSSrikar Dronamraju 	if (sched_domains_numa_levels <= 2) {
1525f2cb1360SIngo Molnar 		sched_numa_topology_type = NUMA_DIRECT;
1526f2cb1360SIngo Molnar 		return;
1527f2cb1360SIngo Molnar 	}
1528f2cb1360SIngo Molnar 
1529f2cb1360SIngo Molnar 	for_each_online_node(a) {
1530f2cb1360SIngo Molnar 		for_each_online_node(b) {
1531f2cb1360SIngo Molnar 			/* Find two nodes furthest removed from each other. */
1532f2cb1360SIngo Molnar 			if (node_distance(a, b) < n)
1533f2cb1360SIngo Molnar 				continue;
1534f2cb1360SIngo Molnar 
1535f2cb1360SIngo Molnar 			/* Is there an intermediary node between a and b? */
1536f2cb1360SIngo Molnar 			for_each_online_node(c) {
1537f2cb1360SIngo Molnar 				if (node_distance(a, c) < n &&
1538f2cb1360SIngo Molnar 				    node_distance(b, c) < n) {
1539f2cb1360SIngo Molnar 					sched_numa_topology_type =
1540f2cb1360SIngo Molnar 							NUMA_GLUELESS_MESH;
1541f2cb1360SIngo Molnar 					return;
1542f2cb1360SIngo Molnar 				}
1543f2cb1360SIngo Molnar 			}
1544f2cb1360SIngo Molnar 
1545f2cb1360SIngo Molnar 			sched_numa_topology_type = NUMA_BACKPLANE;
1546f2cb1360SIngo Molnar 			return;
1547f2cb1360SIngo Molnar 		}
1548f2cb1360SIngo Molnar 	}
1549f2cb1360SIngo Molnar }
1550f2cb1360SIngo Molnar 
1551f2cb1360SIngo Molnar void sched_init_numa(void)
1552f2cb1360SIngo Molnar {
1553f2cb1360SIngo Molnar 	int next_distance, curr_distance = node_distance(0, 0);
1554f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1555f2cb1360SIngo Molnar 	int level = 0;
1556f2cb1360SIngo Molnar 	int i, j, k;
1557f2cb1360SIngo Molnar 
1558993f0b05SPeter Zijlstra 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1559f2cb1360SIngo Molnar 	if (!sched_domains_numa_distance)
1560f2cb1360SIngo Molnar 		return;
1561f2cb1360SIngo Molnar 
1562051f3ca0SSuravee Suthikulpanit 	/* Includes NUMA identity node at level 0. */
1563051f3ca0SSuravee Suthikulpanit 	sched_domains_numa_distance[level++] = curr_distance;
1564051f3ca0SSuravee Suthikulpanit 	sched_domains_numa_levels = level;
1565051f3ca0SSuravee Suthikulpanit 
1566f2cb1360SIngo Molnar 	/*
1567f2cb1360SIngo Molnar 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1568f2cb1360SIngo Molnar 	 * unique distances in the node_distance() table.
1569f2cb1360SIngo Molnar 	 *
1570f2cb1360SIngo Molnar 	 * Assumes node_distance(0,j) includes all distances in
1571f2cb1360SIngo Molnar 	 * node_distance(i,j) in order to avoid cubic time.
1572f2cb1360SIngo Molnar 	 */
1573f2cb1360SIngo Molnar 	next_distance = curr_distance;
1574f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1575f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1576f2cb1360SIngo Molnar 			for (k = 0; k < nr_node_ids; k++) {
1577f2cb1360SIngo Molnar 				int distance = node_distance(i, k);
1578f2cb1360SIngo Molnar 
1579f2cb1360SIngo Molnar 				if (distance > curr_distance &&
1580f2cb1360SIngo Molnar 				    (distance < next_distance ||
1581f2cb1360SIngo Molnar 				     next_distance == curr_distance))
1582f2cb1360SIngo Molnar 					next_distance = distance;
1583f2cb1360SIngo Molnar 
1584f2cb1360SIngo Molnar 				/*
1585f2cb1360SIngo Molnar 				 * While not a strong assumption it would be nice to know
1586f2cb1360SIngo Molnar 				 * about cases where if node A is connected to B, B is not
1587f2cb1360SIngo Molnar 				 * equally connected to A.
1588f2cb1360SIngo Molnar 				 */
1589f2cb1360SIngo Molnar 				if (sched_debug() && node_distance(k, i) != distance)
1590f2cb1360SIngo Molnar 					sched_numa_warn("Node-distance not symmetric");
1591f2cb1360SIngo Molnar 
1592f2cb1360SIngo Molnar 				if (sched_debug() && i && !find_numa_distance(distance))
1593f2cb1360SIngo Molnar 					sched_numa_warn("Node-0 not representative");
1594f2cb1360SIngo Molnar 			}
1595f2cb1360SIngo Molnar 			if (next_distance != curr_distance) {
1596f2cb1360SIngo Molnar 				sched_domains_numa_distance[level++] = next_distance;
1597f2cb1360SIngo Molnar 				sched_domains_numa_levels = level;
1598f2cb1360SIngo Molnar 				curr_distance = next_distance;
1599f2cb1360SIngo Molnar 			} else break;
1600f2cb1360SIngo Molnar 		}
1601f2cb1360SIngo Molnar 
1602f2cb1360SIngo Molnar 		/*
1603f2cb1360SIngo Molnar 		 * In case of sched_debug() we verify the above assumption.
1604f2cb1360SIngo Molnar 		 */
1605f2cb1360SIngo Molnar 		if (!sched_debug())
1606f2cb1360SIngo Molnar 			break;
1607f2cb1360SIngo Molnar 	}
1608f2cb1360SIngo Molnar 
1609f2cb1360SIngo Molnar 	/*
1610051f3ca0SSuravee Suthikulpanit 	 * 'level' contains the number of unique distances
1611f2cb1360SIngo Molnar 	 *
1612f2cb1360SIngo Molnar 	 * The sched_domains_numa_distance[] array includes the actual distance
1613f2cb1360SIngo Molnar 	 * numbers.
1614f2cb1360SIngo Molnar 	 */
1615f2cb1360SIngo Molnar 
1616f2cb1360SIngo Molnar 	/*
1617f2cb1360SIngo Molnar 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1618f2cb1360SIngo Molnar 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1619f2cb1360SIngo Molnar 	 * the array will contain less then 'level' members. This could be
1620f2cb1360SIngo Molnar 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1621f2cb1360SIngo Molnar 	 * in other functions.
1622f2cb1360SIngo Molnar 	 *
1623f2cb1360SIngo Molnar 	 * We reset it to 'level' at the end of this function.
1624f2cb1360SIngo Molnar 	 */
1625f2cb1360SIngo Molnar 	sched_domains_numa_levels = 0;
1626f2cb1360SIngo Molnar 
1627f2cb1360SIngo Molnar 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1628f2cb1360SIngo Molnar 	if (!sched_domains_numa_masks)
1629f2cb1360SIngo Molnar 		return;
1630f2cb1360SIngo Molnar 
1631f2cb1360SIngo Molnar 	/*
1632f2cb1360SIngo Molnar 	 * Now for each level, construct a mask per node which contains all
1633f2cb1360SIngo Molnar 	 * CPUs of nodes that are that many hops away from us.
1634f2cb1360SIngo Molnar 	 */
1635f2cb1360SIngo Molnar 	for (i = 0; i < level; i++) {
1636f2cb1360SIngo Molnar 		sched_domains_numa_masks[i] =
1637f2cb1360SIngo Molnar 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1638f2cb1360SIngo Molnar 		if (!sched_domains_numa_masks[i])
1639f2cb1360SIngo Molnar 			return;
1640f2cb1360SIngo Molnar 
1641f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1642f2cb1360SIngo Molnar 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1643f2cb1360SIngo Molnar 			if (!mask)
1644f2cb1360SIngo Molnar 				return;
1645f2cb1360SIngo Molnar 
1646f2cb1360SIngo Molnar 			sched_domains_numa_masks[i][j] = mask;
1647f2cb1360SIngo Molnar 
1648f2cb1360SIngo Molnar 			for_each_node(k) {
1649f2cb1360SIngo Molnar 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1650f2cb1360SIngo Molnar 					continue;
1651f2cb1360SIngo Molnar 
1652f2cb1360SIngo Molnar 				cpumask_or(mask, mask, cpumask_of_node(k));
1653f2cb1360SIngo Molnar 			}
1654f2cb1360SIngo Molnar 		}
1655f2cb1360SIngo Molnar 	}
1656f2cb1360SIngo Molnar 
1657f2cb1360SIngo Molnar 	/* Compute default topology size */
1658f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++);
1659f2cb1360SIngo Molnar 
1660f2cb1360SIngo Molnar 	tl = kzalloc((i + level + 1) *
1661f2cb1360SIngo Molnar 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1662f2cb1360SIngo Molnar 	if (!tl)
1663f2cb1360SIngo Molnar 		return;
1664f2cb1360SIngo Molnar 
1665f2cb1360SIngo Molnar 	/*
1666f2cb1360SIngo Molnar 	 * Copy the default topology bits..
1667f2cb1360SIngo Molnar 	 */
1668f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++)
1669f2cb1360SIngo Molnar 		tl[i] = sched_domain_topology[i];
1670f2cb1360SIngo Molnar 
1671f2cb1360SIngo Molnar 	/*
1672051f3ca0SSuravee Suthikulpanit 	 * Add the NUMA identity distance, aka single NODE.
1673051f3ca0SSuravee Suthikulpanit 	 */
1674051f3ca0SSuravee Suthikulpanit 	tl[i++] = (struct sched_domain_topology_level){
1675051f3ca0SSuravee Suthikulpanit 		.mask = sd_numa_mask,
1676051f3ca0SSuravee Suthikulpanit 		.numa_level = 0,
1677051f3ca0SSuravee Suthikulpanit 		SD_INIT_NAME(NODE)
1678051f3ca0SSuravee Suthikulpanit 	};
1679051f3ca0SSuravee Suthikulpanit 
1680051f3ca0SSuravee Suthikulpanit 	/*
1681f2cb1360SIngo Molnar 	 * .. and append 'j' levels of NUMA goodness.
1682f2cb1360SIngo Molnar 	 */
1683051f3ca0SSuravee Suthikulpanit 	for (j = 1; j < level; i++, j++) {
1684f2cb1360SIngo Molnar 		tl[i] = (struct sched_domain_topology_level){
1685f2cb1360SIngo Molnar 			.mask = sd_numa_mask,
1686f2cb1360SIngo Molnar 			.sd_flags = cpu_numa_flags,
1687f2cb1360SIngo Molnar 			.flags = SDTL_OVERLAP,
1688f2cb1360SIngo Molnar 			.numa_level = j,
1689f2cb1360SIngo Molnar 			SD_INIT_NAME(NUMA)
1690f2cb1360SIngo Molnar 		};
1691f2cb1360SIngo Molnar 	}
1692f2cb1360SIngo Molnar 
1693f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1694f2cb1360SIngo Molnar 
1695f2cb1360SIngo Molnar 	sched_domains_numa_levels = level;
1696f2cb1360SIngo Molnar 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1697f2cb1360SIngo Molnar 
1698f2cb1360SIngo Molnar 	init_numa_topology_type();
1699f2cb1360SIngo Molnar }
1700f2cb1360SIngo Molnar 
1701f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu)
1702f2cb1360SIngo Molnar {
1703f2cb1360SIngo Molnar 	int node = cpu_to_node(cpu);
1704f2cb1360SIngo Molnar 	int i, j;
1705f2cb1360SIngo Molnar 
1706f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1707f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1708f2cb1360SIngo Molnar 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1709f2cb1360SIngo Molnar 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1710f2cb1360SIngo Molnar 		}
1711f2cb1360SIngo Molnar 	}
1712f2cb1360SIngo Molnar }
1713f2cb1360SIngo Molnar 
1714f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu)
1715f2cb1360SIngo Molnar {
1716f2cb1360SIngo Molnar 	int i, j;
1717f2cb1360SIngo Molnar 
1718f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1719f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1720f2cb1360SIngo Molnar 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1721f2cb1360SIngo Molnar 	}
1722f2cb1360SIngo Molnar }
1723f2cb1360SIngo Molnar 
1724e0e8d491SWanpeng Li /*
1725e0e8d491SWanpeng Li  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1726e0e8d491SWanpeng Li  *                             closest to @cpu from @cpumask.
1727e0e8d491SWanpeng Li  * cpumask: cpumask to find a cpu from
1728e0e8d491SWanpeng Li  * cpu: cpu to be close to
1729e0e8d491SWanpeng Li  *
1730e0e8d491SWanpeng Li  * returns: cpu, or nr_cpu_ids when nothing found.
1731e0e8d491SWanpeng Li  */
1732e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1733e0e8d491SWanpeng Li {
1734e0e8d491SWanpeng Li 	int i, j = cpu_to_node(cpu);
1735e0e8d491SWanpeng Li 
1736e0e8d491SWanpeng Li 	for (i = 0; i < sched_domains_numa_levels; i++) {
1737e0e8d491SWanpeng Li 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1738e0e8d491SWanpeng Li 		if (cpu < nr_cpu_ids)
1739e0e8d491SWanpeng Li 			return cpu;
1740e0e8d491SWanpeng Li 	}
1741e0e8d491SWanpeng Li 	return nr_cpu_ids;
1742e0e8d491SWanpeng Li }
1743e0e8d491SWanpeng Li 
1744f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */
1745f2cb1360SIngo Molnar 
1746f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map)
1747f2cb1360SIngo Molnar {
1748f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1749f2cb1360SIngo Molnar 	int j;
1750f2cb1360SIngo Molnar 
1751f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1752f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1753f2cb1360SIngo Molnar 
1754f2cb1360SIngo Molnar 		sdd->sd = alloc_percpu(struct sched_domain *);
1755f2cb1360SIngo Molnar 		if (!sdd->sd)
1756f2cb1360SIngo Molnar 			return -ENOMEM;
1757f2cb1360SIngo Molnar 
1758f2cb1360SIngo Molnar 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1759f2cb1360SIngo Molnar 		if (!sdd->sds)
1760f2cb1360SIngo Molnar 			return -ENOMEM;
1761f2cb1360SIngo Molnar 
1762f2cb1360SIngo Molnar 		sdd->sg = alloc_percpu(struct sched_group *);
1763f2cb1360SIngo Molnar 		if (!sdd->sg)
1764f2cb1360SIngo Molnar 			return -ENOMEM;
1765f2cb1360SIngo Molnar 
1766f2cb1360SIngo Molnar 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1767f2cb1360SIngo Molnar 		if (!sdd->sgc)
1768f2cb1360SIngo Molnar 			return -ENOMEM;
1769f2cb1360SIngo Molnar 
1770f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1771f2cb1360SIngo Molnar 			struct sched_domain *sd;
1772f2cb1360SIngo Molnar 			struct sched_domain_shared *sds;
1773f2cb1360SIngo Molnar 			struct sched_group *sg;
1774f2cb1360SIngo Molnar 			struct sched_group_capacity *sgc;
1775f2cb1360SIngo Molnar 
1776f2cb1360SIngo Molnar 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1777f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1778f2cb1360SIngo Molnar 			if (!sd)
1779f2cb1360SIngo Molnar 				return -ENOMEM;
1780f2cb1360SIngo Molnar 
1781f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sd, j) = sd;
1782f2cb1360SIngo Molnar 
1783f2cb1360SIngo Molnar 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1784f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1785f2cb1360SIngo Molnar 			if (!sds)
1786f2cb1360SIngo Molnar 				return -ENOMEM;
1787f2cb1360SIngo Molnar 
1788f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sds, j) = sds;
1789f2cb1360SIngo Molnar 
1790f2cb1360SIngo Molnar 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1791f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1792f2cb1360SIngo Molnar 			if (!sg)
1793f2cb1360SIngo Molnar 				return -ENOMEM;
1794f2cb1360SIngo Molnar 
1795f2cb1360SIngo Molnar 			sg->next = sg;
1796f2cb1360SIngo Molnar 
1797f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sg, j) = sg;
1798f2cb1360SIngo Molnar 
1799f2cb1360SIngo Molnar 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1800f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1801f2cb1360SIngo Molnar 			if (!sgc)
1802f2cb1360SIngo Molnar 				return -ENOMEM;
1803f2cb1360SIngo Molnar 
1804005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG
1805005f874dSPeter Zijlstra 			sgc->id = j;
1806005f874dSPeter Zijlstra #endif
1807005f874dSPeter Zijlstra 
1808f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1809f2cb1360SIngo Molnar 		}
1810f2cb1360SIngo Molnar 	}
1811f2cb1360SIngo Molnar 
1812f2cb1360SIngo Molnar 	return 0;
1813f2cb1360SIngo Molnar }
1814f2cb1360SIngo Molnar 
1815f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map)
1816f2cb1360SIngo Molnar {
1817f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1818f2cb1360SIngo Molnar 	int j;
1819f2cb1360SIngo Molnar 
1820f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1821f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1822f2cb1360SIngo Molnar 
1823f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1824f2cb1360SIngo Molnar 			struct sched_domain *sd;
1825f2cb1360SIngo Molnar 
1826f2cb1360SIngo Molnar 			if (sdd->sd) {
1827f2cb1360SIngo Molnar 				sd = *per_cpu_ptr(sdd->sd, j);
1828f2cb1360SIngo Molnar 				if (sd && (sd->flags & SD_OVERLAP))
1829f2cb1360SIngo Molnar 					free_sched_groups(sd->groups, 0);
1830f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sd, j));
1831f2cb1360SIngo Molnar 			}
1832f2cb1360SIngo Molnar 
1833f2cb1360SIngo Molnar 			if (sdd->sds)
1834f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sds, j));
1835f2cb1360SIngo Molnar 			if (sdd->sg)
1836f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sg, j));
1837f2cb1360SIngo Molnar 			if (sdd->sgc)
1838f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sgc, j));
1839f2cb1360SIngo Molnar 		}
1840f2cb1360SIngo Molnar 		free_percpu(sdd->sd);
1841f2cb1360SIngo Molnar 		sdd->sd = NULL;
1842f2cb1360SIngo Molnar 		free_percpu(sdd->sds);
1843f2cb1360SIngo Molnar 		sdd->sds = NULL;
1844f2cb1360SIngo Molnar 		free_percpu(sdd->sg);
1845f2cb1360SIngo Molnar 		sdd->sg = NULL;
1846f2cb1360SIngo Molnar 		free_percpu(sdd->sgc);
1847f2cb1360SIngo Molnar 		sdd->sgc = NULL;
1848f2cb1360SIngo Molnar 	}
1849f2cb1360SIngo Molnar }
1850f2cb1360SIngo Molnar 
1851181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1852f2cb1360SIngo Molnar 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
185305484e09SMorten Rasmussen 		struct sched_domain *child, int dflags, int cpu)
1854f2cb1360SIngo Molnar {
185505484e09SMorten Rasmussen 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1856f2cb1360SIngo Molnar 
1857f2cb1360SIngo Molnar 	if (child) {
1858f2cb1360SIngo Molnar 		sd->level = child->level + 1;
1859f2cb1360SIngo Molnar 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1860f2cb1360SIngo Molnar 		child->parent = sd;
1861f2cb1360SIngo Molnar 
1862f2cb1360SIngo Molnar 		if (!cpumask_subset(sched_domain_span(child),
1863f2cb1360SIngo Molnar 				    sched_domain_span(sd))) {
1864f2cb1360SIngo Molnar 			pr_err("BUG: arch topology borken\n");
1865f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1866f2cb1360SIngo Molnar 			pr_err("     the %s domain not a subset of the %s domain\n",
1867f2cb1360SIngo Molnar 					child->name, sd->name);
1868f2cb1360SIngo Molnar #endif
186997fb7a0aSIngo Molnar 			/* Fixup, ensure @sd has at least @child CPUs. */
1870f2cb1360SIngo Molnar 			cpumask_or(sched_domain_span(sd),
1871f2cb1360SIngo Molnar 				   sched_domain_span(sd),
1872f2cb1360SIngo Molnar 				   sched_domain_span(child));
1873f2cb1360SIngo Molnar 		}
1874f2cb1360SIngo Molnar 
1875f2cb1360SIngo Molnar 	}
1876f2cb1360SIngo Molnar 	set_domain_attribute(sd, attr);
1877f2cb1360SIngo Molnar 
1878f2cb1360SIngo Molnar 	return sd;
1879f2cb1360SIngo Molnar }
1880f2cb1360SIngo Molnar 
1881f2cb1360SIngo Molnar /*
1882ccf74128SValentin Schneider  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1883ccf74128SValentin Schneider  * any two given CPUs at this (non-NUMA) topology level.
1884ccf74128SValentin Schneider  */
1885ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl,
1886ccf74128SValentin Schneider 			      const struct cpumask *cpu_map, int cpu)
1887ccf74128SValentin Schneider {
1888ccf74128SValentin Schneider 	int i;
1889ccf74128SValentin Schneider 
1890ccf74128SValentin Schneider 	/* NUMA levels are allowed to overlap */
1891ccf74128SValentin Schneider 	if (tl->flags & SDTL_OVERLAP)
1892ccf74128SValentin Schneider 		return true;
1893ccf74128SValentin Schneider 
1894ccf74128SValentin Schneider 	/*
1895ccf74128SValentin Schneider 	 * Non-NUMA levels cannot partially overlap - they must be either
1896ccf74128SValentin Schneider 	 * completely equal or completely disjoint. Otherwise we can end up
1897ccf74128SValentin Schneider 	 * breaking the sched_group lists - i.e. a later get_group() pass
1898ccf74128SValentin Schneider 	 * breaks the linking done for an earlier span.
1899ccf74128SValentin Schneider 	 */
1900ccf74128SValentin Schneider 	for_each_cpu(i, cpu_map) {
1901ccf74128SValentin Schneider 		if (i == cpu)
1902ccf74128SValentin Schneider 			continue;
1903ccf74128SValentin Schneider 		/*
1904ccf74128SValentin Schneider 		 * We should 'and' all those masks with 'cpu_map' to exactly
1905ccf74128SValentin Schneider 		 * match the topology we're about to build, but that can only
1906ccf74128SValentin Schneider 		 * remove CPUs, which only lessens our ability to detect
1907ccf74128SValentin Schneider 		 * overlaps
1908ccf74128SValentin Schneider 		 */
1909ccf74128SValentin Schneider 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1910ccf74128SValentin Schneider 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1911ccf74128SValentin Schneider 			return false;
1912ccf74128SValentin Schneider 	}
1913ccf74128SValentin Schneider 
1914ccf74128SValentin Schneider 	return true;
1915ccf74128SValentin Schneider }
1916ccf74128SValentin Schneider 
1917ccf74128SValentin Schneider /*
191805484e09SMorten Rasmussen  * Find the sched_domain_topology_level where all CPU capacities are visible
191905484e09SMorten Rasmussen  * for all CPUs.
192005484e09SMorten Rasmussen  */
192105484e09SMorten Rasmussen static struct sched_domain_topology_level
192205484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map)
192305484e09SMorten Rasmussen {
192405484e09SMorten Rasmussen 	int i, j, asym_level = 0;
192505484e09SMorten Rasmussen 	bool asym = false;
192605484e09SMorten Rasmussen 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
192705484e09SMorten Rasmussen 	unsigned long cap;
192805484e09SMorten Rasmussen 
192905484e09SMorten Rasmussen 	/* Is there any asymmetry? */
19308ec59c0fSVincent Guittot 	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
193105484e09SMorten Rasmussen 
193205484e09SMorten Rasmussen 	for_each_cpu(i, cpu_map) {
19338ec59c0fSVincent Guittot 		if (arch_scale_cpu_capacity(i) != cap) {
193405484e09SMorten Rasmussen 			asym = true;
193505484e09SMorten Rasmussen 			break;
193605484e09SMorten Rasmussen 		}
193705484e09SMorten Rasmussen 	}
193805484e09SMorten Rasmussen 
193905484e09SMorten Rasmussen 	if (!asym)
194005484e09SMorten Rasmussen 		return NULL;
194105484e09SMorten Rasmussen 
194205484e09SMorten Rasmussen 	/*
194305484e09SMorten Rasmussen 	 * Examine topology from all CPU's point of views to detect the lowest
194405484e09SMorten Rasmussen 	 * sched_domain_topology_level where a highest capacity CPU is visible
194505484e09SMorten Rasmussen 	 * to everyone.
194605484e09SMorten Rasmussen 	 */
194705484e09SMorten Rasmussen 	for_each_cpu(i, cpu_map) {
19488ec59c0fSVincent Guittot 		unsigned long max_capacity = arch_scale_cpu_capacity(i);
194905484e09SMorten Rasmussen 		int tl_id = 0;
195005484e09SMorten Rasmussen 
195105484e09SMorten Rasmussen 		for_each_sd_topology(tl) {
195205484e09SMorten Rasmussen 			if (tl_id < asym_level)
195305484e09SMorten Rasmussen 				goto next_level;
195405484e09SMorten Rasmussen 
195505484e09SMorten Rasmussen 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
195605484e09SMorten Rasmussen 				unsigned long capacity;
195705484e09SMorten Rasmussen 
19588ec59c0fSVincent Guittot 				capacity = arch_scale_cpu_capacity(j);
195905484e09SMorten Rasmussen 
196005484e09SMorten Rasmussen 				if (capacity <= max_capacity)
196105484e09SMorten Rasmussen 					continue;
196205484e09SMorten Rasmussen 
196305484e09SMorten Rasmussen 				max_capacity = capacity;
196405484e09SMorten Rasmussen 				asym_level = tl_id;
196505484e09SMorten Rasmussen 				asym_tl = tl;
196605484e09SMorten Rasmussen 			}
196705484e09SMorten Rasmussen next_level:
196805484e09SMorten Rasmussen 			tl_id++;
196905484e09SMorten Rasmussen 		}
197005484e09SMorten Rasmussen 	}
197105484e09SMorten Rasmussen 
197205484e09SMorten Rasmussen 	return asym_tl;
197305484e09SMorten Rasmussen }
197405484e09SMorten Rasmussen 
197505484e09SMorten Rasmussen 
197605484e09SMorten Rasmussen /*
1977f2cb1360SIngo Molnar  * Build sched domains for a given set of CPUs and attach the sched domains
1978f2cb1360SIngo Molnar  * to the individual CPUs
1979f2cb1360SIngo Molnar  */
1980f2cb1360SIngo Molnar static int
1981f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1982f2cb1360SIngo Molnar {
1983cd1cb335SValentin Schneider 	enum s_alloc alloc_state = sa_none;
1984f2cb1360SIngo Molnar 	struct sched_domain *sd;
1985f2cb1360SIngo Molnar 	struct s_data d;
1986f2cb1360SIngo Molnar 	struct rq *rq = NULL;
1987f2cb1360SIngo Molnar 	int i, ret = -ENOMEM;
198805484e09SMorten Rasmussen 	struct sched_domain_topology_level *tl_asym;
1989df054e84SMorten Rasmussen 	bool has_asym = false;
1990f2cb1360SIngo Molnar 
1991cd1cb335SValentin Schneider 	if (WARN_ON(cpumask_empty(cpu_map)))
1992cd1cb335SValentin Schneider 		goto error;
1993cd1cb335SValentin Schneider 
1994f2cb1360SIngo Molnar 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1995f2cb1360SIngo Molnar 	if (alloc_state != sa_rootdomain)
1996f2cb1360SIngo Molnar 		goto error;
1997f2cb1360SIngo Molnar 
199805484e09SMorten Rasmussen 	tl_asym = asym_cpu_capacity_level(cpu_map);
199905484e09SMorten Rasmussen 
2000f2cb1360SIngo Molnar 	/* Set up domains for CPUs specified by the cpu_map: */
2001f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
2002f2cb1360SIngo Molnar 		struct sched_domain_topology_level *tl;
2003f2cb1360SIngo Molnar 
2004f2cb1360SIngo Molnar 		sd = NULL;
2005f2cb1360SIngo Molnar 		for_each_sd_topology(tl) {
200605484e09SMorten Rasmussen 			int dflags = 0;
200705484e09SMorten Rasmussen 
2008df054e84SMorten Rasmussen 			if (tl == tl_asym) {
200905484e09SMorten Rasmussen 				dflags |= SD_ASYM_CPUCAPACITY;
2010df054e84SMorten Rasmussen 				has_asym = true;
2011df054e84SMorten Rasmussen 			}
201205484e09SMorten Rasmussen 
2013ccf74128SValentin Schneider 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2014ccf74128SValentin Schneider 				goto error;
2015ccf74128SValentin Schneider 
201605484e09SMorten Rasmussen 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
201705484e09SMorten Rasmussen 
2018f2cb1360SIngo Molnar 			if (tl == sched_domain_topology)
2019f2cb1360SIngo Molnar 				*per_cpu_ptr(d.sd, i) = sd;
2020af85596cSPeter Zijlstra 			if (tl->flags & SDTL_OVERLAP)
2021f2cb1360SIngo Molnar 				sd->flags |= SD_OVERLAP;
2022f2cb1360SIngo Molnar 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2023f2cb1360SIngo Molnar 				break;
2024f2cb1360SIngo Molnar 		}
2025f2cb1360SIngo Molnar 	}
2026f2cb1360SIngo Molnar 
2027f2cb1360SIngo Molnar 	/* Build the groups for the domains */
2028f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
2029f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2030f2cb1360SIngo Molnar 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2031f2cb1360SIngo Molnar 			if (sd->flags & SD_OVERLAP) {
2032f2cb1360SIngo Molnar 				if (build_overlap_sched_groups(sd, i))
2033f2cb1360SIngo Molnar 					goto error;
2034f2cb1360SIngo Molnar 			} else {
2035f2cb1360SIngo Molnar 				if (build_sched_groups(sd, i))
2036f2cb1360SIngo Molnar 					goto error;
2037f2cb1360SIngo Molnar 			}
2038f2cb1360SIngo Molnar 		}
2039f2cb1360SIngo Molnar 	}
2040f2cb1360SIngo Molnar 
2041f2cb1360SIngo Molnar 	/* Calculate CPU capacity for physical packages and nodes */
2042f2cb1360SIngo Molnar 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2043f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, cpu_map))
2044f2cb1360SIngo Molnar 			continue;
2045f2cb1360SIngo Molnar 
2046f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2047f2cb1360SIngo Molnar 			claim_allocations(i, sd);
2048f2cb1360SIngo Molnar 			init_sched_groups_capacity(i, sd);
2049f2cb1360SIngo Molnar 		}
2050f2cb1360SIngo Molnar 	}
2051f2cb1360SIngo Molnar 
2052f2cb1360SIngo Molnar 	/* Attach the domains */
2053f2cb1360SIngo Molnar 	rcu_read_lock();
2054f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
2055f2cb1360SIngo Molnar 		rq = cpu_rq(i);
2056f2cb1360SIngo Molnar 		sd = *per_cpu_ptr(d.sd, i);
2057f2cb1360SIngo Molnar 
2058f2cb1360SIngo Molnar 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2059f2cb1360SIngo Molnar 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2060f2cb1360SIngo Molnar 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2061f2cb1360SIngo Molnar 
2062f2cb1360SIngo Molnar 		cpu_attach_domain(sd, d.rd, i);
2063f2cb1360SIngo Molnar 	}
2064f2cb1360SIngo Molnar 	rcu_read_unlock();
2065f2cb1360SIngo Molnar 
2066df054e84SMorten Rasmussen 	if (has_asym)
2067e284df70SValentin Schneider 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2068df054e84SMorten Rasmussen 
2069f2cb1360SIngo Molnar 	if (rq && sched_debug_enabled) {
2070bf5015a5SJuri Lelli 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2071f2cb1360SIngo Molnar 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2072f2cb1360SIngo Molnar 	}
2073f2cb1360SIngo Molnar 
2074f2cb1360SIngo Molnar 	ret = 0;
2075f2cb1360SIngo Molnar error:
2076f2cb1360SIngo Molnar 	__free_domain_allocs(&d, alloc_state, cpu_map);
207797fb7a0aSIngo Molnar 
2078f2cb1360SIngo Molnar 	return ret;
2079f2cb1360SIngo Molnar }
2080f2cb1360SIngo Molnar 
2081f2cb1360SIngo Molnar /* Current sched domains: */
2082f2cb1360SIngo Molnar static cpumask_var_t			*doms_cur;
2083f2cb1360SIngo Molnar 
2084f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */
2085f2cb1360SIngo Molnar static int				ndoms_cur;
2086f2cb1360SIngo Molnar 
2087f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */
2088f2cb1360SIngo Molnar static struct sched_domain_attr		*dattr_cur;
2089f2cb1360SIngo Molnar 
2090f2cb1360SIngo Molnar /*
2091f2cb1360SIngo Molnar  * Special case: If a kmalloc() of a doms_cur partition (array of
2092f2cb1360SIngo Molnar  * cpumask) fails, then fallback to a single sched domain,
2093f2cb1360SIngo Molnar  * as determined by the single cpumask fallback_doms.
2094f2cb1360SIngo Molnar  */
20958d5dc512SPeter Zijlstra static cpumask_var_t			fallback_doms;
2096f2cb1360SIngo Molnar 
2097f2cb1360SIngo Molnar /*
2098f2cb1360SIngo Molnar  * arch_update_cpu_topology lets virtualized architectures update the
2099f2cb1360SIngo Molnar  * CPU core maps. It is supposed to return 1 if the topology changed
2100f2cb1360SIngo Molnar  * or 0 if it stayed the same.
2101f2cb1360SIngo Molnar  */
2102f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void)
2103f2cb1360SIngo Molnar {
2104f2cb1360SIngo Molnar 	return 0;
2105f2cb1360SIngo Molnar }
2106f2cb1360SIngo Molnar 
2107f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2108f2cb1360SIngo Molnar {
2109f2cb1360SIngo Molnar 	int i;
2110f2cb1360SIngo Molnar 	cpumask_var_t *doms;
2111f2cb1360SIngo Molnar 
21126da2ec56SKees Cook 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2113f2cb1360SIngo Molnar 	if (!doms)
2114f2cb1360SIngo Molnar 		return NULL;
2115f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++) {
2116f2cb1360SIngo Molnar 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2117f2cb1360SIngo Molnar 			free_sched_domains(doms, i);
2118f2cb1360SIngo Molnar 			return NULL;
2119f2cb1360SIngo Molnar 		}
2120f2cb1360SIngo Molnar 	}
2121f2cb1360SIngo Molnar 	return doms;
2122f2cb1360SIngo Molnar }
2123f2cb1360SIngo Molnar 
2124f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2125f2cb1360SIngo Molnar {
2126f2cb1360SIngo Molnar 	unsigned int i;
2127f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++)
2128f2cb1360SIngo Molnar 		free_cpumask_var(doms[i]);
2129f2cb1360SIngo Molnar 	kfree(doms);
2130f2cb1360SIngo Molnar }
2131f2cb1360SIngo Molnar 
2132f2cb1360SIngo Molnar /*
2133cb0c0414SJuri Lelli  * Set up scheduler domains and groups.  For now this just excludes isolated
2134cb0c0414SJuri Lelli  * CPUs, but could be used to exclude other special cases in the future.
2135f2cb1360SIngo Molnar  */
21368d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map)
2137f2cb1360SIngo Molnar {
2138f2cb1360SIngo Molnar 	int err;
2139f2cb1360SIngo Molnar 
21408d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
21411676330eSPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
21428d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
21438d5dc512SPeter Zijlstra 
2144f2cb1360SIngo Molnar 	arch_update_cpu_topology();
2145f2cb1360SIngo Molnar 	ndoms_cur = 1;
2146f2cb1360SIngo Molnar 	doms_cur = alloc_sched_domains(ndoms_cur);
2147f2cb1360SIngo Molnar 	if (!doms_cur)
2148f2cb1360SIngo Molnar 		doms_cur = &fallback_doms;
2149edb93821SFrederic Weisbecker 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2150f2cb1360SIngo Molnar 	err = build_sched_domains(doms_cur[0], NULL);
2151f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
2152f2cb1360SIngo Molnar 
2153f2cb1360SIngo Molnar 	return err;
2154f2cb1360SIngo Molnar }
2155f2cb1360SIngo Molnar 
2156f2cb1360SIngo Molnar /*
2157f2cb1360SIngo Molnar  * Detach sched domains from a group of CPUs specified in cpu_map
2158f2cb1360SIngo Molnar  * These CPUs will now be attached to the NULL domain
2159f2cb1360SIngo Molnar  */
2160f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map)
2161f2cb1360SIngo Molnar {
2162e284df70SValentin Schneider 	unsigned int cpu = cpumask_any(cpu_map);
2163f2cb1360SIngo Molnar 	int i;
2164f2cb1360SIngo Molnar 
2165e284df70SValentin Schneider 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2166e284df70SValentin Schneider 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2167e284df70SValentin Schneider 
2168f2cb1360SIngo Molnar 	rcu_read_lock();
2169f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map)
2170f2cb1360SIngo Molnar 		cpu_attach_domain(NULL, &def_root_domain, i);
2171f2cb1360SIngo Molnar 	rcu_read_unlock();
2172f2cb1360SIngo Molnar }
2173f2cb1360SIngo Molnar 
2174f2cb1360SIngo Molnar /* handle null as "default" */
2175f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2176f2cb1360SIngo Molnar 			struct sched_domain_attr *new, int idx_new)
2177f2cb1360SIngo Molnar {
2178f2cb1360SIngo Molnar 	struct sched_domain_attr tmp;
2179f2cb1360SIngo Molnar 
2180f2cb1360SIngo Molnar 	/* Fast path: */
2181f2cb1360SIngo Molnar 	if (!new && !cur)
2182f2cb1360SIngo Molnar 		return 1;
2183f2cb1360SIngo Molnar 
2184f2cb1360SIngo Molnar 	tmp = SD_ATTR_INIT;
218597fb7a0aSIngo Molnar 
2186f2cb1360SIngo Molnar 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2187f2cb1360SIngo Molnar 			new ? (new + idx_new) : &tmp,
2188f2cb1360SIngo Molnar 			sizeof(struct sched_domain_attr));
2189f2cb1360SIngo Molnar }
2190f2cb1360SIngo Molnar 
2191f2cb1360SIngo Molnar /*
2192f2cb1360SIngo Molnar  * Partition sched domains as specified by the 'ndoms_new'
2193f2cb1360SIngo Molnar  * cpumasks in the array doms_new[] of cpumasks. This compares
2194f2cb1360SIngo Molnar  * doms_new[] to the current sched domain partitioning, doms_cur[].
2195f2cb1360SIngo Molnar  * It destroys each deleted domain and builds each new domain.
2196f2cb1360SIngo Molnar  *
2197f2cb1360SIngo Molnar  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2198f2cb1360SIngo Molnar  * The masks don't intersect (don't overlap.) We should setup one
2199f2cb1360SIngo Molnar  * sched domain for each mask. CPUs not in any of the cpumasks will
2200f2cb1360SIngo Molnar  * not be load balanced. If the same cpumask appears both in the
2201f2cb1360SIngo Molnar  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2202f2cb1360SIngo Molnar  * it as it is.
2203f2cb1360SIngo Molnar  *
2204f2cb1360SIngo Molnar  * The passed in 'doms_new' should be allocated using
2205f2cb1360SIngo Molnar  * alloc_sched_domains.  This routine takes ownership of it and will
2206f2cb1360SIngo Molnar  * free_sched_domains it when done with it. If the caller failed the
2207f2cb1360SIngo Molnar  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2208f2cb1360SIngo Molnar  * and partition_sched_domains() will fallback to the single partition
2209f2cb1360SIngo Molnar  * 'fallback_doms', it also forces the domains to be rebuilt.
2210f2cb1360SIngo Molnar  *
2211f2cb1360SIngo Molnar  * If doms_new == NULL it will be replaced with cpu_online_mask.
2212f2cb1360SIngo Molnar  * ndoms_new == 0 is a special case for destroying existing domains,
2213f2cb1360SIngo Molnar  * and it will not create the default domain.
2214f2cb1360SIngo Molnar  *
2215c22645f4SMathieu Poirier  * Call with hotplug lock and sched_domains_mutex held
2216f2cb1360SIngo Molnar  */
2217c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2218f2cb1360SIngo Molnar 				    struct sched_domain_attr *dattr_new)
2219f2cb1360SIngo Molnar {
22201f74de87SQuentin Perret 	bool __maybe_unused has_eas = false;
2221f2cb1360SIngo Molnar 	int i, j, n;
2222f2cb1360SIngo Molnar 	int new_topology;
2223f2cb1360SIngo Molnar 
2224c22645f4SMathieu Poirier 	lockdep_assert_held(&sched_domains_mutex);
2225f2cb1360SIngo Molnar 
2226f2cb1360SIngo Molnar 	/* Always unregister in case we don't destroy any domains: */
2227f2cb1360SIngo Molnar 	unregister_sched_domain_sysctl();
2228f2cb1360SIngo Molnar 
2229f2cb1360SIngo Molnar 	/* Let the architecture update CPU core mappings: */
2230f2cb1360SIngo Molnar 	new_topology = arch_update_cpu_topology();
2231f2cb1360SIngo Molnar 
223209e0dd8eSPeter Zijlstra 	if (!doms_new) {
223309e0dd8eSPeter Zijlstra 		WARN_ON_ONCE(dattr_new);
223409e0dd8eSPeter Zijlstra 		n = 0;
223509e0dd8eSPeter Zijlstra 		doms_new = alloc_sched_domains(1);
223609e0dd8eSPeter Zijlstra 		if (doms_new) {
223709e0dd8eSPeter Zijlstra 			n = 1;
2238edb93821SFrederic Weisbecker 			cpumask_and(doms_new[0], cpu_active_mask,
2239edb93821SFrederic Weisbecker 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
224009e0dd8eSPeter Zijlstra 		}
224109e0dd8eSPeter Zijlstra 	} else {
224209e0dd8eSPeter Zijlstra 		n = ndoms_new;
224309e0dd8eSPeter Zijlstra 	}
2244f2cb1360SIngo Molnar 
2245f2cb1360SIngo Molnar 	/* Destroy deleted domains: */
2246f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_cur; i++) {
2247f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
22486aa140faSQuentin Perret 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2249f9a25f77SMathieu Poirier 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2250f9a25f77SMathieu Poirier 				struct root_domain *rd;
2251f9a25f77SMathieu Poirier 
2252f9a25f77SMathieu Poirier 				/*
2253f9a25f77SMathieu Poirier 				 * This domain won't be destroyed and as such
2254f9a25f77SMathieu Poirier 				 * its dl_bw->total_bw needs to be cleared.  It
2255f9a25f77SMathieu Poirier 				 * will be recomputed in function
2256f9a25f77SMathieu Poirier 				 * update_tasks_root_domain().
2257f9a25f77SMathieu Poirier 				 */
2258f9a25f77SMathieu Poirier 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2259f9a25f77SMathieu Poirier 				dl_clear_root_domain(rd);
2260f2cb1360SIngo Molnar 				goto match1;
2261f2cb1360SIngo Molnar 			}
2262f9a25f77SMathieu Poirier 		}
2263f2cb1360SIngo Molnar 		/* No match - a current sched domain not in new doms_new[] */
2264f2cb1360SIngo Molnar 		detach_destroy_domains(doms_cur[i]);
2265f2cb1360SIngo Molnar match1:
2266f2cb1360SIngo Molnar 		;
2267f2cb1360SIngo Molnar 	}
2268f2cb1360SIngo Molnar 
2269f2cb1360SIngo Molnar 	n = ndoms_cur;
227009e0dd8eSPeter Zijlstra 	if (!doms_new) {
2271f2cb1360SIngo Molnar 		n = 0;
2272f2cb1360SIngo Molnar 		doms_new = &fallback_doms;
2273edb93821SFrederic Weisbecker 		cpumask_and(doms_new[0], cpu_active_mask,
2274edb93821SFrederic Weisbecker 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2275f2cb1360SIngo Molnar 	}
2276f2cb1360SIngo Molnar 
2277f2cb1360SIngo Molnar 	/* Build new domains: */
2278f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_new; i++) {
2279f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
22806aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
22816aa140faSQuentin Perret 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2282f2cb1360SIngo Molnar 				goto match2;
2283f2cb1360SIngo Molnar 		}
2284f2cb1360SIngo Molnar 		/* No match - add a new doms_new */
2285f2cb1360SIngo Molnar 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2286f2cb1360SIngo Molnar match2:
2287f2cb1360SIngo Molnar 		;
2288f2cb1360SIngo Molnar 	}
2289f2cb1360SIngo Molnar 
2290531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
22916aa140faSQuentin Perret 	/* Build perf. domains: */
22926aa140faSQuentin Perret 	for (i = 0; i < ndoms_new; i++) {
2293531b5c9fSQuentin Perret 		for (j = 0; j < n && !sched_energy_update; j++) {
22946aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
22951f74de87SQuentin Perret 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
22961f74de87SQuentin Perret 				has_eas = true;
22976aa140faSQuentin Perret 				goto match3;
22986aa140faSQuentin Perret 			}
22991f74de87SQuentin Perret 		}
23006aa140faSQuentin Perret 		/* No match - add perf. domains for a new rd */
23011f74de87SQuentin Perret 		has_eas |= build_perf_domains(doms_new[i]);
23026aa140faSQuentin Perret match3:
23036aa140faSQuentin Perret 		;
23046aa140faSQuentin Perret 	}
23051f74de87SQuentin Perret 	sched_energy_set(has_eas);
23066aa140faSQuentin Perret #endif
23076aa140faSQuentin Perret 
2308f2cb1360SIngo Molnar 	/* Remember the new sched domains: */
2309f2cb1360SIngo Molnar 	if (doms_cur != &fallback_doms)
2310f2cb1360SIngo Molnar 		free_sched_domains(doms_cur, ndoms_cur);
2311f2cb1360SIngo Molnar 
2312f2cb1360SIngo Molnar 	kfree(dattr_cur);
2313f2cb1360SIngo Molnar 	doms_cur = doms_new;
2314f2cb1360SIngo Molnar 	dattr_cur = dattr_new;
2315f2cb1360SIngo Molnar 	ndoms_cur = ndoms_new;
2316f2cb1360SIngo Molnar 
2317f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
2318c22645f4SMathieu Poirier }
2319f2cb1360SIngo Molnar 
2320c22645f4SMathieu Poirier /*
2321c22645f4SMathieu Poirier  * Call with hotplug lock held
2322c22645f4SMathieu Poirier  */
2323c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2324c22645f4SMathieu Poirier 			     struct sched_domain_attr *dattr_new)
2325c22645f4SMathieu Poirier {
2326c22645f4SMathieu Poirier 	mutex_lock(&sched_domains_mutex);
2327c22645f4SMathieu Poirier 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2328f2cb1360SIngo Molnar 	mutex_unlock(&sched_domains_mutex);
2329f2cb1360SIngo Molnar }
2330