1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0 2f2cb1360SIngo Molnar /* 3f2cb1360SIngo Molnar * Scheduler topology setup/handling methods 4f2cb1360SIngo Molnar */ 5f2cb1360SIngo Molnar #include "sched.h" 6f2cb1360SIngo Molnar 7f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex); 8f2cb1360SIngo Molnar 9f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */ 10ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask; 11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2; 12f2cb1360SIngo Molnar 13f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 14f2cb1360SIngo Molnar 15f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str) 16f2cb1360SIngo Molnar { 179469eb01SPeter Zijlstra sched_debug_enabled = true; 18f2cb1360SIngo Molnar 19f2cb1360SIngo Molnar return 0; 20f2cb1360SIngo Molnar } 21f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup); 22f2cb1360SIngo Molnar 23f2cb1360SIngo Molnar static inline bool sched_debug(void) 24f2cb1360SIngo Molnar { 25f2cb1360SIngo Molnar return sched_debug_enabled; 26f2cb1360SIngo Molnar } 27f2cb1360SIngo Molnar 28848785dfSValentin Schneider #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 29848785dfSValentin Schneider const struct sd_flag_debug sd_flag_debug[] = { 30848785dfSValentin Schneider #include <linux/sched/sd_flags.h> 31848785dfSValentin Schneider }; 32848785dfSValentin Schneider #undef SD_FLAG 33848785dfSValentin Schneider 34f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 35f2cb1360SIngo Molnar struct cpumask *groupmask) 36f2cb1360SIngo Molnar { 37f2cb1360SIngo Molnar struct sched_group *group = sd->groups; 3865c5e253SValentin Schneider unsigned long flags = sd->flags; 3965c5e253SValentin Schneider unsigned int idx; 40f2cb1360SIngo Molnar 41f2cb1360SIngo Molnar cpumask_clear(groupmask); 42f2cb1360SIngo Molnar 43005f874dSPeter Zijlstra printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 44005f874dSPeter Zijlstra printk(KERN_CONT "span=%*pbl level=%s\n", 45f2cb1360SIngo Molnar cpumask_pr_args(sched_domain_span(sd)), sd->name); 46f2cb1360SIngo Molnar 47f2cb1360SIngo Molnar if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 4897fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49f2cb1360SIngo Molnar } 506cd0c583SYi Wang if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 5197fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52f2cb1360SIngo Molnar } 53f2cb1360SIngo Molnar 5465c5e253SValentin Schneider for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 5565c5e253SValentin Schneider unsigned int flag = BIT(idx); 5665c5e253SValentin Schneider unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 5765c5e253SValentin Schneider 5865c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 5965c5e253SValentin Schneider !(sd->child->flags & flag)) 6065c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 6165c5e253SValentin Schneider sd_flag_debug[idx].name); 6265c5e253SValentin Schneider 6365c5e253SValentin Schneider if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 6465c5e253SValentin Schneider !(sd->parent->flags & flag)) 6565c5e253SValentin Schneider printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 6665c5e253SValentin Schneider sd_flag_debug[idx].name); 6765c5e253SValentin Schneider } 6865c5e253SValentin Schneider 69f2cb1360SIngo Molnar printk(KERN_DEBUG "%*s groups:", level + 1, ""); 70f2cb1360SIngo Molnar do { 71f2cb1360SIngo Molnar if (!group) { 72f2cb1360SIngo Molnar printk("\n"); 73f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: group is NULL\n"); 74f2cb1360SIngo Molnar break; 75f2cb1360SIngo Molnar } 76f2cb1360SIngo Molnar 77ae4df9d6SPeter Zijlstra if (!cpumask_weight(sched_group_span(group))) { 78f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 79f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: empty group\n"); 80f2cb1360SIngo Molnar break; 81f2cb1360SIngo Molnar } 82f2cb1360SIngo Molnar 83f2cb1360SIngo Molnar if (!(sd->flags & SD_OVERLAP) && 84ae4df9d6SPeter Zijlstra cpumask_intersects(groupmask, sched_group_span(group))) { 85f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 86f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: repeated CPUs\n"); 87f2cb1360SIngo Molnar break; 88f2cb1360SIngo Molnar } 89f2cb1360SIngo Molnar 90ae4df9d6SPeter Zijlstra cpumask_or(groupmask, groupmask, sched_group_span(group)); 91f2cb1360SIngo Molnar 92005f874dSPeter Zijlstra printk(KERN_CONT " %d:{ span=%*pbl", 93005f874dSPeter Zijlstra group->sgc->id, 94ae4df9d6SPeter Zijlstra cpumask_pr_args(sched_group_span(group))); 95b0151c25SPeter Zijlstra 96af218122SPeter Zijlstra if ((sd->flags & SD_OVERLAP) && 97ae4df9d6SPeter Zijlstra !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 98005f874dSPeter Zijlstra printk(KERN_CONT " mask=%*pbl", 99e5c14b1fSPeter Zijlstra cpumask_pr_args(group_balance_mask(group))); 100b0151c25SPeter Zijlstra } 101b0151c25SPeter Zijlstra 102005f874dSPeter Zijlstra if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 103005f874dSPeter Zijlstra printk(KERN_CONT " cap=%lu", group->sgc->capacity); 104f2cb1360SIngo Molnar 105a420b063SPeter Zijlstra if (group == sd->groups && sd->child && 106a420b063SPeter Zijlstra !cpumask_equal(sched_domain_span(sd->child), 107ae4df9d6SPeter Zijlstra sched_group_span(group))) { 108a420b063SPeter Zijlstra printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 109a420b063SPeter Zijlstra } 110a420b063SPeter Zijlstra 111005f874dSPeter Zijlstra printk(KERN_CONT " }"); 112005f874dSPeter Zijlstra 113f2cb1360SIngo Molnar group = group->next; 114b0151c25SPeter Zijlstra 115b0151c25SPeter Zijlstra if (group != sd->groups) 116b0151c25SPeter Zijlstra printk(KERN_CONT ","); 117b0151c25SPeter Zijlstra 118f2cb1360SIngo Molnar } while (group != sd->groups); 119f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 120f2cb1360SIngo Molnar 121f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), groupmask)) 122f2cb1360SIngo Molnar printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 123f2cb1360SIngo Molnar 124f2cb1360SIngo Molnar if (sd->parent && 125f2cb1360SIngo Molnar !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 12697fb7a0aSIngo Molnar printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 127f2cb1360SIngo Molnar return 0; 128f2cb1360SIngo Molnar } 129f2cb1360SIngo Molnar 130f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu) 131f2cb1360SIngo Molnar { 132f2cb1360SIngo Molnar int level = 0; 133f2cb1360SIngo Molnar 134f2cb1360SIngo Molnar if (!sched_debug_enabled) 135f2cb1360SIngo Molnar return; 136f2cb1360SIngo Molnar 137f2cb1360SIngo Molnar if (!sd) { 138f2cb1360SIngo Molnar printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 139f2cb1360SIngo Molnar return; 140f2cb1360SIngo Molnar } 141f2cb1360SIngo Molnar 142005f874dSPeter Zijlstra printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 143f2cb1360SIngo Molnar 144f2cb1360SIngo Molnar for (;;) { 145f2cb1360SIngo Molnar if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 146f2cb1360SIngo Molnar break; 147f2cb1360SIngo Molnar level++; 148f2cb1360SIngo Molnar sd = sd->parent; 149f2cb1360SIngo Molnar if (!sd) 150f2cb1360SIngo Molnar break; 151f2cb1360SIngo Molnar } 152f2cb1360SIngo Molnar } 153f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */ 154f2cb1360SIngo Molnar 155f2cb1360SIngo Molnar # define sched_debug_enabled 0 156f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0) 157f2cb1360SIngo Molnar static inline bool sched_debug(void) 158f2cb1360SIngo Molnar { 159f2cb1360SIngo Molnar return false; 160f2cb1360SIngo Molnar } 161f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */ 162f2cb1360SIngo Molnar 1634fc472f1SValentin Schneider /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 1644fc472f1SValentin Schneider #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 1654fc472f1SValentin Schneider static const unsigned int SD_DEGENERATE_GROUPS_MASK = 1664fc472f1SValentin Schneider #include <linux/sched/sd_flags.h> 1674fc472f1SValentin Schneider 0; 1684fc472f1SValentin Schneider #undef SD_FLAG 1694fc472f1SValentin Schneider 170f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd) 171f2cb1360SIngo Molnar { 172f2cb1360SIngo Molnar if (cpumask_weight(sched_domain_span(sd)) == 1) 173f2cb1360SIngo Molnar return 1; 174f2cb1360SIngo Molnar 175f2cb1360SIngo Molnar /* Following flags need at least 2 groups */ 1766f349818SValentin Schneider if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 1776f349818SValentin Schneider (sd->groups != sd->groups->next)) 178f2cb1360SIngo Molnar return 0; 179f2cb1360SIngo Molnar 180f2cb1360SIngo Molnar /* Following flags don't use groups */ 181f2cb1360SIngo Molnar if (sd->flags & (SD_WAKE_AFFINE)) 182f2cb1360SIngo Molnar return 0; 183f2cb1360SIngo Molnar 184f2cb1360SIngo Molnar return 1; 185f2cb1360SIngo Molnar } 186f2cb1360SIngo Molnar 187f2cb1360SIngo Molnar static int 188f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 189f2cb1360SIngo Molnar { 190f2cb1360SIngo Molnar unsigned long cflags = sd->flags, pflags = parent->flags; 191f2cb1360SIngo Molnar 192f2cb1360SIngo Molnar if (sd_degenerate(parent)) 193f2cb1360SIngo Molnar return 1; 194f2cb1360SIngo Molnar 195f2cb1360SIngo Molnar if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 196f2cb1360SIngo Molnar return 0; 197f2cb1360SIngo Molnar 198f2cb1360SIngo Molnar /* Flags needing groups don't count if only 1 group in parent */ 199ab65afb0SValentin Schneider if (parent->groups == parent->groups->next) 2003a6712c7SValentin Schneider pflags &= ~SD_DEGENERATE_GROUPS_MASK; 201ab65afb0SValentin Schneider 202f2cb1360SIngo Molnar if (~cflags & pflags) 203f2cb1360SIngo Molnar return 0; 204f2cb1360SIngo Molnar 205f2cb1360SIngo Molnar return 1; 206f2cb1360SIngo Molnar } 207f2cb1360SIngo Molnar 208531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 209f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present); 2108d5d0cfbSQuentin Perret unsigned int sysctl_sched_energy_aware = 1; 211531b5c9fSQuentin Perret DEFINE_MUTEX(sched_energy_mutex); 212531b5c9fSQuentin Perret bool sched_energy_update; 213531b5c9fSQuentin Perret 214*31f6a8c0SIonela Voinescu void rebuild_sched_domains_energy(void) 215*31f6a8c0SIonela Voinescu { 216*31f6a8c0SIonela Voinescu mutex_lock(&sched_energy_mutex); 217*31f6a8c0SIonela Voinescu sched_energy_update = true; 218*31f6a8c0SIonela Voinescu rebuild_sched_domains(); 219*31f6a8c0SIonela Voinescu sched_energy_update = false; 220*31f6a8c0SIonela Voinescu mutex_unlock(&sched_energy_mutex); 221*31f6a8c0SIonela Voinescu } 222*31f6a8c0SIonela Voinescu 2238d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL 2248d5d0cfbSQuentin Perret int sched_energy_aware_handler(struct ctl_table *table, int write, 22532927393SChristoph Hellwig void *buffer, size_t *lenp, loff_t *ppos) 2268d5d0cfbSQuentin Perret { 2278d5d0cfbSQuentin Perret int ret, state; 2288d5d0cfbSQuentin Perret 2298d5d0cfbSQuentin Perret if (write && !capable(CAP_SYS_ADMIN)) 2308d5d0cfbSQuentin Perret return -EPERM; 2318d5d0cfbSQuentin Perret 2328d5d0cfbSQuentin Perret ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2338d5d0cfbSQuentin Perret if (!ret && write) { 2348d5d0cfbSQuentin Perret state = static_branch_unlikely(&sched_energy_present); 235*31f6a8c0SIonela Voinescu if (state != sysctl_sched_energy_aware) 236*31f6a8c0SIonela Voinescu rebuild_sched_domains_energy(); 2378d5d0cfbSQuentin Perret } 2388d5d0cfbSQuentin Perret 2398d5d0cfbSQuentin Perret return ret; 2408d5d0cfbSQuentin Perret } 2418d5d0cfbSQuentin Perret #endif 2428d5d0cfbSQuentin Perret 2436aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) 2446aa140faSQuentin Perret { 2456aa140faSQuentin Perret struct perf_domain *tmp; 2466aa140faSQuentin Perret 2476aa140faSQuentin Perret while (pd) { 2486aa140faSQuentin Perret tmp = pd->next; 2496aa140faSQuentin Perret kfree(pd); 2506aa140faSQuentin Perret pd = tmp; 2516aa140faSQuentin Perret } 2526aa140faSQuentin Perret } 2536aa140faSQuentin Perret 2546aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 2556aa140faSQuentin Perret { 2566aa140faSQuentin Perret while (pd) { 2576aa140faSQuentin Perret if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 2586aa140faSQuentin Perret return pd; 2596aa140faSQuentin Perret pd = pd->next; 2606aa140faSQuentin Perret } 2616aa140faSQuentin Perret 2626aa140faSQuentin Perret return NULL; 2636aa140faSQuentin Perret } 2646aa140faSQuentin Perret 2656aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu) 2666aa140faSQuentin Perret { 2676aa140faSQuentin Perret struct em_perf_domain *obj = em_cpu_get(cpu); 2686aa140faSQuentin Perret struct perf_domain *pd; 2696aa140faSQuentin Perret 2706aa140faSQuentin Perret if (!obj) { 2716aa140faSQuentin Perret if (sched_debug()) 2726aa140faSQuentin Perret pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 2736aa140faSQuentin Perret return NULL; 2746aa140faSQuentin Perret } 2756aa140faSQuentin Perret 2766aa140faSQuentin Perret pd = kzalloc(sizeof(*pd), GFP_KERNEL); 2776aa140faSQuentin Perret if (!pd) 2786aa140faSQuentin Perret return NULL; 2796aa140faSQuentin Perret pd->em_pd = obj; 2806aa140faSQuentin Perret 2816aa140faSQuentin Perret return pd; 2826aa140faSQuentin Perret } 2836aa140faSQuentin Perret 2846aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map, 2856aa140faSQuentin Perret struct perf_domain *pd) 2866aa140faSQuentin Perret { 2876aa140faSQuentin Perret if (!sched_debug() || !pd) 2886aa140faSQuentin Perret return; 2896aa140faSQuentin Perret 2906aa140faSQuentin Perret printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 2916aa140faSQuentin Perret 2926aa140faSQuentin Perret while (pd) { 293521b512bSLukasz Luba printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 2946aa140faSQuentin Perret cpumask_first(perf_domain_span(pd)), 2956aa140faSQuentin Perret cpumask_pr_args(perf_domain_span(pd)), 296521b512bSLukasz Luba em_pd_nr_perf_states(pd->em_pd)); 2976aa140faSQuentin Perret pd = pd->next; 2986aa140faSQuentin Perret } 2996aa140faSQuentin Perret 3006aa140faSQuentin Perret printk(KERN_CONT "\n"); 3016aa140faSQuentin Perret } 3026aa140faSQuentin Perret 3036aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp) 3046aa140faSQuentin Perret { 3056aa140faSQuentin Perret struct perf_domain *pd; 3066aa140faSQuentin Perret 3076aa140faSQuentin Perret pd = container_of(rp, struct perf_domain, rcu); 3086aa140faSQuentin Perret free_pd(pd); 3096aa140faSQuentin Perret } 3106aa140faSQuentin Perret 3111f74de87SQuentin Perret static void sched_energy_set(bool has_eas) 3121f74de87SQuentin Perret { 3131f74de87SQuentin Perret if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 3141f74de87SQuentin Perret if (sched_debug()) 3151f74de87SQuentin Perret pr_info("%s: stopping EAS\n", __func__); 3161f74de87SQuentin Perret static_branch_disable_cpuslocked(&sched_energy_present); 3171f74de87SQuentin Perret } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 3181f74de87SQuentin Perret if (sched_debug()) 3191f74de87SQuentin Perret pr_info("%s: starting EAS\n", __func__); 3201f74de87SQuentin Perret static_branch_enable_cpuslocked(&sched_energy_present); 3211f74de87SQuentin Perret } 3221f74de87SQuentin Perret } 3231f74de87SQuentin Perret 324b68a4c0dSQuentin Perret /* 325b68a4c0dSQuentin Perret * EAS can be used on a root domain if it meets all the following conditions: 326b68a4c0dSQuentin Perret * 1. an Energy Model (EM) is available; 327b68a4c0dSQuentin Perret * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 32838502ab4SValentin Schneider * 3. no SMT is detected. 32938502ab4SValentin Schneider * 4. the EM complexity is low enough to keep scheduling overheads low; 33038502ab4SValentin Schneider * 5. schedutil is driving the frequency of all CPUs of the rd; 331b68a4c0dSQuentin Perret * 332b68a4c0dSQuentin Perret * The complexity of the Energy Model is defined as: 333b68a4c0dSQuentin Perret * 334521b512bSLukasz Luba * C = nr_pd * (nr_cpus + nr_ps) 335b68a4c0dSQuentin Perret * 336b68a4c0dSQuentin Perret * with parameters defined as: 337b68a4c0dSQuentin Perret * - nr_pd: the number of performance domains 338b68a4c0dSQuentin Perret * - nr_cpus: the number of CPUs 339521b512bSLukasz Luba * - nr_ps: the sum of the number of performance states of all performance 340b68a4c0dSQuentin Perret * domains (for example, on a system with 2 performance domains, 341521b512bSLukasz Luba * with 10 performance states each, nr_ps = 2 * 10 = 20). 342b68a4c0dSQuentin Perret * 343b68a4c0dSQuentin Perret * It is generally not a good idea to use such a model in the wake-up path on 344b68a4c0dSQuentin Perret * very complex platforms because of the associated scheduling overheads. The 345b68a4c0dSQuentin Perret * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 346521b512bSLukasz Luba * with per-CPU DVFS and less than 8 performance states each, for example. 347b68a4c0dSQuentin Perret */ 348b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048 349b68a4c0dSQuentin Perret 350531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov; 3511f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map) 3526aa140faSQuentin Perret { 353521b512bSLukasz Luba int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 3546aa140faSQuentin Perret struct perf_domain *pd = NULL, *tmp; 3556aa140faSQuentin Perret int cpu = cpumask_first(cpu_map); 3566aa140faSQuentin Perret struct root_domain *rd = cpu_rq(cpu)->rd; 357531b5c9fSQuentin Perret struct cpufreq_policy *policy; 358531b5c9fSQuentin Perret struct cpufreq_governor *gov; 359b68a4c0dSQuentin Perret 3608d5d0cfbSQuentin Perret if (!sysctl_sched_energy_aware) 3618d5d0cfbSQuentin Perret goto free; 3628d5d0cfbSQuentin Perret 363b68a4c0dSQuentin Perret /* EAS is enabled for asymmetric CPU capacity topologies. */ 364b68a4c0dSQuentin Perret if (!per_cpu(sd_asym_cpucapacity, cpu)) { 365b68a4c0dSQuentin Perret if (sched_debug()) { 366b68a4c0dSQuentin Perret pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 367b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 368b68a4c0dSQuentin Perret } 369b68a4c0dSQuentin Perret goto free; 370b68a4c0dSQuentin Perret } 3716aa140faSQuentin Perret 37238502ab4SValentin Schneider /* EAS definitely does *not* handle SMT */ 37338502ab4SValentin Schneider if (sched_smt_active()) { 37438502ab4SValentin Schneider pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 37538502ab4SValentin Schneider cpumask_pr_args(cpu_map)); 37638502ab4SValentin Schneider goto free; 37738502ab4SValentin Schneider } 37838502ab4SValentin Schneider 3796aa140faSQuentin Perret for_each_cpu(i, cpu_map) { 3806aa140faSQuentin Perret /* Skip already covered CPUs. */ 3816aa140faSQuentin Perret if (find_pd(pd, i)) 3826aa140faSQuentin Perret continue; 3836aa140faSQuentin Perret 384531b5c9fSQuentin Perret /* Do not attempt EAS if schedutil is not being used. */ 385531b5c9fSQuentin Perret policy = cpufreq_cpu_get(i); 386531b5c9fSQuentin Perret if (!policy) 387531b5c9fSQuentin Perret goto free; 388531b5c9fSQuentin Perret gov = policy->governor; 389531b5c9fSQuentin Perret cpufreq_cpu_put(policy); 390531b5c9fSQuentin Perret if (gov != &schedutil_gov) { 391531b5c9fSQuentin Perret if (rd->pd) 392531b5c9fSQuentin Perret pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 393531b5c9fSQuentin Perret cpumask_pr_args(cpu_map)); 394531b5c9fSQuentin Perret goto free; 395531b5c9fSQuentin Perret } 396531b5c9fSQuentin Perret 3976aa140faSQuentin Perret /* Create the new pd and add it to the local list. */ 3986aa140faSQuentin Perret tmp = pd_init(i); 3996aa140faSQuentin Perret if (!tmp) 4006aa140faSQuentin Perret goto free; 4016aa140faSQuentin Perret tmp->next = pd; 4026aa140faSQuentin Perret pd = tmp; 403b68a4c0dSQuentin Perret 404b68a4c0dSQuentin Perret /* 405521b512bSLukasz Luba * Count performance domains and performance states for the 406b68a4c0dSQuentin Perret * complexity check. 407b68a4c0dSQuentin Perret */ 408b68a4c0dSQuentin Perret nr_pd++; 409521b512bSLukasz Luba nr_ps += em_pd_nr_perf_states(pd->em_pd); 410b68a4c0dSQuentin Perret } 411b68a4c0dSQuentin Perret 412b68a4c0dSQuentin Perret /* Bail out if the Energy Model complexity is too high. */ 413521b512bSLukasz Luba if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 414b68a4c0dSQuentin Perret WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 415b68a4c0dSQuentin Perret cpumask_pr_args(cpu_map)); 416b68a4c0dSQuentin Perret goto free; 4176aa140faSQuentin Perret } 4186aa140faSQuentin Perret 4196aa140faSQuentin Perret perf_domain_debug(cpu_map, pd); 4206aa140faSQuentin Perret 4216aa140faSQuentin Perret /* Attach the new list of performance domains to the root domain. */ 4226aa140faSQuentin Perret tmp = rd->pd; 4236aa140faSQuentin Perret rcu_assign_pointer(rd->pd, pd); 4246aa140faSQuentin Perret if (tmp) 4256aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4266aa140faSQuentin Perret 4271f74de87SQuentin Perret return !!pd; 4286aa140faSQuentin Perret 4296aa140faSQuentin Perret free: 4306aa140faSQuentin Perret free_pd(pd); 4316aa140faSQuentin Perret tmp = rd->pd; 4326aa140faSQuentin Perret rcu_assign_pointer(rd->pd, NULL); 4336aa140faSQuentin Perret if (tmp) 4346aa140faSQuentin Perret call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 4351f74de87SQuentin Perret 4361f74de87SQuentin Perret return false; 4376aa140faSQuentin Perret } 4386aa140faSQuentin Perret #else 4396aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { } 440531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 4416aa140faSQuentin Perret 442f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu) 443f2cb1360SIngo Molnar { 444f2cb1360SIngo Molnar struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 445f2cb1360SIngo Molnar 446f2cb1360SIngo Molnar cpupri_cleanup(&rd->cpupri); 447f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 448f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 449f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 450f2cb1360SIngo Molnar free_cpumask_var(rd->online); 451f2cb1360SIngo Molnar free_cpumask_var(rd->span); 4526aa140faSQuentin Perret free_pd(rd->pd); 453f2cb1360SIngo Molnar kfree(rd); 454f2cb1360SIngo Molnar } 455f2cb1360SIngo Molnar 456f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd) 457f2cb1360SIngo Molnar { 458f2cb1360SIngo Molnar struct root_domain *old_rd = NULL; 459f2cb1360SIngo Molnar unsigned long flags; 460f2cb1360SIngo Molnar 461f2cb1360SIngo Molnar raw_spin_lock_irqsave(&rq->lock, flags); 462f2cb1360SIngo Molnar 463f2cb1360SIngo Molnar if (rq->rd) { 464f2cb1360SIngo Molnar old_rd = rq->rd; 465f2cb1360SIngo Molnar 466f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, old_rd->online)) 467f2cb1360SIngo Molnar set_rq_offline(rq); 468f2cb1360SIngo Molnar 469f2cb1360SIngo Molnar cpumask_clear_cpu(rq->cpu, old_rd->span); 470f2cb1360SIngo Molnar 471f2cb1360SIngo Molnar /* 472f2cb1360SIngo Molnar * If we dont want to free the old_rd yet then 473f2cb1360SIngo Molnar * set old_rd to NULL to skip the freeing later 474f2cb1360SIngo Molnar * in this function: 475f2cb1360SIngo Molnar */ 476f2cb1360SIngo Molnar if (!atomic_dec_and_test(&old_rd->refcount)) 477f2cb1360SIngo Molnar old_rd = NULL; 478f2cb1360SIngo Molnar } 479f2cb1360SIngo Molnar 480f2cb1360SIngo Molnar atomic_inc(&rd->refcount); 481f2cb1360SIngo Molnar rq->rd = rd; 482f2cb1360SIngo Molnar 483f2cb1360SIngo Molnar cpumask_set_cpu(rq->cpu, rd->span); 484f2cb1360SIngo Molnar if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 485f2cb1360SIngo Molnar set_rq_online(rq); 486f2cb1360SIngo Molnar 487f2cb1360SIngo Molnar raw_spin_unlock_irqrestore(&rq->lock, flags); 488f2cb1360SIngo Molnar 489f2cb1360SIngo Molnar if (old_rd) 490337e9b07SPaul E. McKenney call_rcu(&old_rd->rcu, free_rootdomain); 491f2cb1360SIngo Molnar } 492f2cb1360SIngo Molnar 493364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd) 494364f5665SSteven Rostedt (VMware) { 495364f5665SSteven Rostedt (VMware) atomic_inc(&rd->refcount); 496364f5665SSteven Rostedt (VMware) } 497364f5665SSteven Rostedt (VMware) 498364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd) 499364f5665SSteven Rostedt (VMware) { 500364f5665SSteven Rostedt (VMware) if (!atomic_dec_and_test(&rd->refcount)) 501364f5665SSteven Rostedt (VMware) return; 502364f5665SSteven Rostedt (VMware) 503337e9b07SPaul E. McKenney call_rcu(&rd->rcu, free_rootdomain); 504364f5665SSteven Rostedt (VMware) } 505364f5665SSteven Rostedt (VMware) 506f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd) 507f2cb1360SIngo Molnar { 508f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 509f2cb1360SIngo Molnar goto out; 510f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 511f2cb1360SIngo Molnar goto free_span; 512f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 513f2cb1360SIngo Molnar goto free_online; 514f2cb1360SIngo Molnar if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 515f2cb1360SIngo Molnar goto free_dlo_mask; 516f2cb1360SIngo Molnar 5174bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI 5184bdced5cSSteven Rostedt (Red Hat) rd->rto_cpu = -1; 5194bdced5cSSteven Rostedt (Red Hat) raw_spin_lock_init(&rd->rto_lock); 5204bdced5cSSteven Rostedt (Red Hat) init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 5214bdced5cSSteven Rostedt (Red Hat) #endif 5224bdced5cSSteven Rostedt (Red Hat) 52326762423SPeng Liu rd->visit_gen = 0; 524f2cb1360SIngo Molnar init_dl_bw(&rd->dl_bw); 525f2cb1360SIngo Molnar if (cpudl_init(&rd->cpudl) != 0) 526f2cb1360SIngo Molnar goto free_rto_mask; 527f2cb1360SIngo Molnar 528f2cb1360SIngo Molnar if (cpupri_init(&rd->cpupri) != 0) 529f2cb1360SIngo Molnar goto free_cpudl; 530f2cb1360SIngo Molnar return 0; 531f2cb1360SIngo Molnar 532f2cb1360SIngo Molnar free_cpudl: 533f2cb1360SIngo Molnar cpudl_cleanup(&rd->cpudl); 534f2cb1360SIngo Molnar free_rto_mask: 535f2cb1360SIngo Molnar free_cpumask_var(rd->rto_mask); 536f2cb1360SIngo Molnar free_dlo_mask: 537f2cb1360SIngo Molnar free_cpumask_var(rd->dlo_mask); 538f2cb1360SIngo Molnar free_online: 539f2cb1360SIngo Molnar free_cpumask_var(rd->online); 540f2cb1360SIngo Molnar free_span: 541f2cb1360SIngo Molnar free_cpumask_var(rd->span); 542f2cb1360SIngo Molnar out: 543f2cb1360SIngo Molnar return -ENOMEM; 544f2cb1360SIngo Molnar } 545f2cb1360SIngo Molnar 546f2cb1360SIngo Molnar /* 547f2cb1360SIngo Molnar * By default the system creates a single root-domain with all CPUs as 548f2cb1360SIngo Molnar * members (mimicking the global state we have today). 549f2cb1360SIngo Molnar */ 550f2cb1360SIngo Molnar struct root_domain def_root_domain; 551f2cb1360SIngo Molnar 552f2cb1360SIngo Molnar void init_defrootdomain(void) 553f2cb1360SIngo Molnar { 554f2cb1360SIngo Molnar init_rootdomain(&def_root_domain); 555f2cb1360SIngo Molnar 556f2cb1360SIngo Molnar atomic_set(&def_root_domain.refcount, 1); 557f2cb1360SIngo Molnar } 558f2cb1360SIngo Molnar 559f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void) 560f2cb1360SIngo Molnar { 561f2cb1360SIngo Molnar struct root_domain *rd; 562f2cb1360SIngo Molnar 5634d13a06dSViresh Kumar rd = kzalloc(sizeof(*rd), GFP_KERNEL); 564f2cb1360SIngo Molnar if (!rd) 565f2cb1360SIngo Molnar return NULL; 566f2cb1360SIngo Molnar 567f2cb1360SIngo Molnar if (init_rootdomain(rd) != 0) { 568f2cb1360SIngo Molnar kfree(rd); 569f2cb1360SIngo Molnar return NULL; 570f2cb1360SIngo Molnar } 571f2cb1360SIngo Molnar 572f2cb1360SIngo Molnar return rd; 573f2cb1360SIngo Molnar } 574f2cb1360SIngo Molnar 575f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc) 576f2cb1360SIngo Molnar { 577f2cb1360SIngo Molnar struct sched_group *tmp, *first; 578f2cb1360SIngo Molnar 579f2cb1360SIngo Molnar if (!sg) 580f2cb1360SIngo Molnar return; 581f2cb1360SIngo Molnar 582f2cb1360SIngo Molnar first = sg; 583f2cb1360SIngo Molnar do { 584f2cb1360SIngo Molnar tmp = sg->next; 585f2cb1360SIngo Molnar 586f2cb1360SIngo Molnar if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 587f2cb1360SIngo Molnar kfree(sg->sgc); 588f2cb1360SIngo Molnar 589213c5a45SShu Wang if (atomic_dec_and_test(&sg->ref)) 590f2cb1360SIngo Molnar kfree(sg); 591f2cb1360SIngo Molnar sg = tmp; 592f2cb1360SIngo Molnar } while (sg != first); 593f2cb1360SIngo Molnar } 594f2cb1360SIngo Molnar 595f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd) 596f2cb1360SIngo Molnar { 597f2cb1360SIngo Molnar /* 598a090c4f2SPeter Zijlstra * A normal sched domain may have multiple group references, an 599a090c4f2SPeter Zijlstra * overlapping domain, having private groups, only one. Iterate, 600a090c4f2SPeter Zijlstra * dropping group/capacity references, freeing where none remain. 601f2cb1360SIngo Molnar */ 602f2cb1360SIngo Molnar free_sched_groups(sd->groups, 1); 603213c5a45SShu Wang 604f2cb1360SIngo Molnar if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 605f2cb1360SIngo Molnar kfree(sd->shared); 606f2cb1360SIngo Molnar kfree(sd); 607f2cb1360SIngo Molnar } 608f2cb1360SIngo Molnar 609f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu) 610f2cb1360SIngo Molnar { 611f2cb1360SIngo Molnar struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 612f2cb1360SIngo Molnar 613f2cb1360SIngo Molnar while (sd) { 614f2cb1360SIngo Molnar struct sched_domain *parent = sd->parent; 615f2cb1360SIngo Molnar destroy_sched_domain(sd); 616f2cb1360SIngo Molnar sd = parent; 617f2cb1360SIngo Molnar } 618f2cb1360SIngo Molnar } 619f2cb1360SIngo Molnar 620f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd) 621f2cb1360SIngo Molnar { 622f2cb1360SIngo Molnar if (sd) 623f2cb1360SIngo Molnar call_rcu(&sd->rcu, destroy_sched_domains_rcu); 624f2cb1360SIngo Molnar } 625f2cb1360SIngo Molnar 626f2cb1360SIngo Molnar /* 627f2cb1360SIngo Molnar * Keep a special pointer to the highest sched_domain that has 628f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 629f2cb1360SIngo Molnar * allows us to avoid some pointer chasing select_idle_sibling(). 630f2cb1360SIngo Molnar * 631f2cb1360SIngo Molnar * Also keep a unique ID per domain (we use the first CPU number in 632f2cb1360SIngo Molnar * the cpumask of the domain), this allows us to quickly tell if 633f2cb1360SIngo Molnar * two CPUs are in the same cache domain, see cpus_share_cache(). 634f2cb1360SIngo Molnar */ 635994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 636f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size); 637f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id); 638994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 639994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 640994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 641994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 642df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 643f2cb1360SIngo Molnar 644f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu) 645f2cb1360SIngo Molnar { 646f2cb1360SIngo Molnar struct sched_domain_shared *sds = NULL; 647f2cb1360SIngo Molnar struct sched_domain *sd; 648f2cb1360SIngo Molnar int id = cpu; 649f2cb1360SIngo Molnar int size = 1; 650f2cb1360SIngo Molnar 651f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 652f2cb1360SIngo Molnar if (sd) { 653f2cb1360SIngo Molnar id = cpumask_first(sched_domain_span(sd)); 654f2cb1360SIngo Molnar size = cpumask_weight(sched_domain_span(sd)); 655f2cb1360SIngo Molnar sds = sd->shared; 656f2cb1360SIngo Molnar } 657f2cb1360SIngo Molnar 658f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 659f2cb1360SIngo Molnar per_cpu(sd_llc_size, cpu) = size; 660f2cb1360SIngo Molnar per_cpu(sd_llc_id, cpu) = id; 661f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 662f2cb1360SIngo Molnar 663f2cb1360SIngo Molnar sd = lowest_flag_domain(cpu, SD_NUMA); 664f2cb1360SIngo Molnar rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 665f2cb1360SIngo Molnar 666f2cb1360SIngo Molnar sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 667011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 668011b27bbSQuentin Perret 669011b27bbSQuentin Perret sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 670011b27bbSQuentin Perret rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 671f2cb1360SIngo Molnar } 672f2cb1360SIngo Molnar 673f2cb1360SIngo Molnar /* 674f2cb1360SIngo Molnar * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 675f2cb1360SIngo Molnar * hold the hotplug lock. 676f2cb1360SIngo Molnar */ 677f2cb1360SIngo Molnar static void 678f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 679f2cb1360SIngo Molnar { 680f2cb1360SIngo Molnar struct rq *rq = cpu_rq(cpu); 681f2cb1360SIngo Molnar struct sched_domain *tmp; 682b5b21734SValentin Schneider int numa_distance = 0; 683f2cb1360SIngo Molnar 684f2cb1360SIngo Molnar /* Remove the sched domains which do not contribute to scheduling. */ 685f2cb1360SIngo Molnar for (tmp = sd; tmp; ) { 686f2cb1360SIngo Molnar struct sched_domain *parent = tmp->parent; 687f2cb1360SIngo Molnar if (!parent) 688f2cb1360SIngo Molnar break; 689f2cb1360SIngo Molnar 690f2cb1360SIngo Molnar if (sd_parent_degenerate(tmp, parent)) { 691f2cb1360SIngo Molnar tmp->parent = parent->parent; 692f2cb1360SIngo Molnar if (parent->parent) 693f2cb1360SIngo Molnar parent->parent->child = tmp; 694f2cb1360SIngo Molnar /* 695f2cb1360SIngo Molnar * Transfer SD_PREFER_SIBLING down in case of a 696f2cb1360SIngo Molnar * degenerate parent; the spans match for this 697f2cb1360SIngo Molnar * so the property transfers. 698f2cb1360SIngo Molnar */ 699f2cb1360SIngo Molnar if (parent->flags & SD_PREFER_SIBLING) 700f2cb1360SIngo Molnar tmp->flags |= SD_PREFER_SIBLING; 701f2cb1360SIngo Molnar destroy_sched_domain(parent); 702f2cb1360SIngo Molnar } else 703f2cb1360SIngo Molnar tmp = tmp->parent; 704f2cb1360SIngo Molnar } 705f2cb1360SIngo Molnar 706f2cb1360SIngo Molnar if (sd && sd_degenerate(sd)) { 707f2cb1360SIngo Molnar tmp = sd; 708f2cb1360SIngo Molnar sd = sd->parent; 709f2cb1360SIngo Molnar destroy_sched_domain(tmp); 710f2cb1360SIngo Molnar if (sd) 711f2cb1360SIngo Molnar sd->child = NULL; 712f2cb1360SIngo Molnar } 713f2cb1360SIngo Molnar 714b5b21734SValentin Schneider for (tmp = sd; tmp; tmp = tmp->parent) 715b5b21734SValentin Schneider numa_distance += !!(tmp->flags & SD_NUMA); 716b5b21734SValentin Schneider 717b5b21734SValentin Schneider /* 718b5b21734SValentin Schneider * FIXME: Diameter >=3 is misrepresented. 719b5b21734SValentin Schneider * 720b5b21734SValentin Schneider * Smallest diameter=3 topology is: 721b5b21734SValentin Schneider * 722b5b21734SValentin Schneider * node 0 1 2 3 723b5b21734SValentin Schneider * 0: 10 20 30 40 724b5b21734SValentin Schneider * 1: 20 10 20 30 725b5b21734SValentin Schneider * 2: 30 20 10 20 726b5b21734SValentin Schneider * 3: 40 30 20 10 727b5b21734SValentin Schneider * 728b5b21734SValentin Schneider * 0 --- 1 --- 2 --- 3 729b5b21734SValentin Schneider * 730b5b21734SValentin Schneider * NUMA-3 0-3 N/A N/A 0-3 731b5b21734SValentin Schneider * groups: {0-2},{1-3} {1-3},{0-2} 732b5b21734SValentin Schneider * 733b5b21734SValentin Schneider * NUMA-2 0-2 0-3 0-3 1-3 734b5b21734SValentin Schneider * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 735b5b21734SValentin Schneider * 736b5b21734SValentin Schneider * NUMA-1 0-1 0-2 1-3 2-3 737b5b21734SValentin Schneider * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 738b5b21734SValentin Schneider * 739b5b21734SValentin Schneider * NUMA-0 0 1 2 3 740b5b21734SValentin Schneider * 741b5b21734SValentin Schneider * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 742b5b21734SValentin Schneider * group span isn't a subset of the domain span. 743b5b21734SValentin Schneider */ 744b5b21734SValentin Schneider WARN_ONCE(numa_distance > 2, "Shortest NUMA path spans too many nodes\n"); 745b5b21734SValentin Schneider 746f2cb1360SIngo Molnar sched_domain_debug(sd, cpu); 747f2cb1360SIngo Molnar 748f2cb1360SIngo Molnar rq_attach_root(rq, rd); 749f2cb1360SIngo Molnar tmp = rq->sd; 750f2cb1360SIngo Molnar rcu_assign_pointer(rq->sd, sd); 751bbdacdfeSPeter Zijlstra dirty_sched_domain_sysctl(cpu); 752f2cb1360SIngo Molnar destroy_sched_domains(tmp); 753f2cb1360SIngo Molnar 754f2cb1360SIngo Molnar update_top_cache_domain(cpu); 755f2cb1360SIngo Molnar } 756f2cb1360SIngo Molnar 757f2cb1360SIngo Molnar struct s_data { 75899687cdbSLuc Van Oostenryck struct sched_domain * __percpu *sd; 759f2cb1360SIngo Molnar struct root_domain *rd; 760f2cb1360SIngo Molnar }; 761f2cb1360SIngo Molnar 762f2cb1360SIngo Molnar enum s_alloc { 763f2cb1360SIngo Molnar sa_rootdomain, 764f2cb1360SIngo Molnar sa_sd, 765f2cb1360SIngo Molnar sa_sd_storage, 766f2cb1360SIngo Molnar sa_none, 767f2cb1360SIngo Molnar }; 768f2cb1360SIngo Molnar 769f2cb1360SIngo Molnar /* 77035a566e6SPeter Zijlstra * Return the canonical balance CPU for this group, this is the first CPU 771e5c14b1fSPeter Zijlstra * of this group that's also in the balance mask. 77235a566e6SPeter Zijlstra * 773e5c14b1fSPeter Zijlstra * The balance mask are all those CPUs that could actually end up at this 774e5c14b1fSPeter Zijlstra * group. See build_balance_mask(). 77535a566e6SPeter Zijlstra * 77635a566e6SPeter Zijlstra * Also see should_we_balance(). 77735a566e6SPeter Zijlstra */ 77835a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg) 77935a566e6SPeter Zijlstra { 780e5c14b1fSPeter Zijlstra return cpumask_first(group_balance_mask(sg)); 78135a566e6SPeter Zijlstra } 78235a566e6SPeter Zijlstra 78335a566e6SPeter Zijlstra 78435a566e6SPeter Zijlstra /* 78535a566e6SPeter Zijlstra * NUMA topology (first read the regular topology blurb below) 78635a566e6SPeter Zijlstra * 78735a566e6SPeter Zijlstra * Given a node-distance table, for example: 78835a566e6SPeter Zijlstra * 78935a566e6SPeter Zijlstra * node 0 1 2 3 79035a566e6SPeter Zijlstra * 0: 10 20 30 20 79135a566e6SPeter Zijlstra * 1: 20 10 20 30 79235a566e6SPeter Zijlstra * 2: 30 20 10 20 79335a566e6SPeter Zijlstra * 3: 20 30 20 10 79435a566e6SPeter Zijlstra * 79535a566e6SPeter Zijlstra * which represents a 4 node ring topology like: 79635a566e6SPeter Zijlstra * 79735a566e6SPeter Zijlstra * 0 ----- 1 79835a566e6SPeter Zijlstra * | | 79935a566e6SPeter Zijlstra * | | 80035a566e6SPeter Zijlstra * | | 80135a566e6SPeter Zijlstra * 3 ----- 2 80235a566e6SPeter Zijlstra * 80335a566e6SPeter Zijlstra * We want to construct domains and groups to represent this. The way we go 80435a566e6SPeter Zijlstra * about doing this is to build the domains on 'hops'. For each NUMA level we 80535a566e6SPeter Zijlstra * construct the mask of all nodes reachable in @level hops. 80635a566e6SPeter Zijlstra * 80735a566e6SPeter Zijlstra * For the above NUMA topology that gives 3 levels: 80835a566e6SPeter Zijlstra * 80935a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 0-3 0-3 81035a566e6SPeter Zijlstra * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 81135a566e6SPeter Zijlstra * 81235a566e6SPeter Zijlstra * NUMA-1 0-1,3 0-2 1-3 0,2-3 81335a566e6SPeter Zijlstra * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 81435a566e6SPeter Zijlstra * 81535a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 81635a566e6SPeter Zijlstra * 81735a566e6SPeter Zijlstra * 81835a566e6SPeter Zijlstra * As can be seen; things don't nicely line up as with the regular topology. 81935a566e6SPeter Zijlstra * When we iterate a domain in child domain chunks some nodes can be 82035a566e6SPeter Zijlstra * represented multiple times -- hence the "overlap" naming for this part of 82135a566e6SPeter Zijlstra * the topology. 82235a566e6SPeter Zijlstra * 82335a566e6SPeter Zijlstra * In order to minimize this overlap, we only build enough groups to cover the 82435a566e6SPeter Zijlstra * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 82535a566e6SPeter Zijlstra * 82635a566e6SPeter Zijlstra * Because: 82735a566e6SPeter Zijlstra * 82835a566e6SPeter Zijlstra * - the first group of each domain is its child domain; this 82935a566e6SPeter Zijlstra * gets us the first 0-1,3 83035a566e6SPeter Zijlstra * - the only uncovered node is 2, who's child domain is 1-3. 83135a566e6SPeter Zijlstra * 83235a566e6SPeter Zijlstra * However, because of the overlap, computing a unique CPU for each group is 83335a566e6SPeter Zijlstra * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 83435a566e6SPeter Zijlstra * groups include the CPUs of Node-0, while those CPUs would not in fact ever 83535a566e6SPeter Zijlstra * end up at those groups (they would end up in group: 0-1,3). 83635a566e6SPeter Zijlstra * 837e5c14b1fSPeter Zijlstra * To correct this we have to introduce the group balance mask. This mask 83835a566e6SPeter Zijlstra * will contain those CPUs in the group that can reach this group given the 83935a566e6SPeter Zijlstra * (child) domain tree. 84035a566e6SPeter Zijlstra * 84135a566e6SPeter Zijlstra * With this we can once again compute balance_cpu and sched_group_capacity 84235a566e6SPeter Zijlstra * relations. 84335a566e6SPeter Zijlstra * 84435a566e6SPeter Zijlstra * XXX include words on how balance_cpu is unique and therefore can be 84535a566e6SPeter Zijlstra * used for sched_group_capacity links. 84635a566e6SPeter Zijlstra * 84735a566e6SPeter Zijlstra * 84835a566e6SPeter Zijlstra * Another 'interesting' topology is: 84935a566e6SPeter Zijlstra * 85035a566e6SPeter Zijlstra * node 0 1 2 3 85135a566e6SPeter Zijlstra * 0: 10 20 20 30 85235a566e6SPeter Zijlstra * 1: 20 10 20 20 85335a566e6SPeter Zijlstra * 2: 20 20 10 20 85435a566e6SPeter Zijlstra * 3: 30 20 20 10 85535a566e6SPeter Zijlstra * 85635a566e6SPeter Zijlstra * Which looks a little like: 85735a566e6SPeter Zijlstra * 85835a566e6SPeter Zijlstra * 0 ----- 1 85935a566e6SPeter Zijlstra * | / | 86035a566e6SPeter Zijlstra * | / | 86135a566e6SPeter Zijlstra * | / | 86235a566e6SPeter Zijlstra * 2 ----- 3 86335a566e6SPeter Zijlstra * 86435a566e6SPeter Zijlstra * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 86535a566e6SPeter Zijlstra * are not. 86635a566e6SPeter Zijlstra * 86735a566e6SPeter Zijlstra * This leads to a few particularly weird cases where the sched_domain's are 86897fb7a0aSIngo Molnar * not of the same number for each CPU. Consider: 86935a566e6SPeter Zijlstra * 87035a566e6SPeter Zijlstra * NUMA-2 0-3 0-3 87135a566e6SPeter Zijlstra * groups: {0-2},{1-3} {1-3},{0-2} 87235a566e6SPeter Zijlstra * 87335a566e6SPeter Zijlstra * NUMA-1 0-2 0-3 0-3 1-3 87435a566e6SPeter Zijlstra * 87535a566e6SPeter Zijlstra * NUMA-0 0 1 2 3 87635a566e6SPeter Zijlstra * 87735a566e6SPeter Zijlstra */ 87835a566e6SPeter Zijlstra 87935a566e6SPeter Zijlstra 88035a566e6SPeter Zijlstra /* 881e5c14b1fSPeter Zijlstra * Build the balance mask; it contains only those CPUs that can arrive at this 882e5c14b1fSPeter Zijlstra * group and should be considered to continue balancing. 88335a566e6SPeter Zijlstra * 88435a566e6SPeter Zijlstra * We do this during the group creation pass, therefore the group information 88535a566e6SPeter Zijlstra * isn't complete yet, however since each group represents a (child) domain we 88635a566e6SPeter Zijlstra * can fully construct this using the sched_domain bits (which are already 88735a566e6SPeter Zijlstra * complete). 888f2cb1360SIngo Molnar */ 8891676330eSPeter Zijlstra static void 890e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 891f2cb1360SIngo Molnar { 892ae4df9d6SPeter Zijlstra const struct cpumask *sg_span = sched_group_span(sg); 893f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 894f2cb1360SIngo Molnar struct sched_domain *sibling; 895f2cb1360SIngo Molnar int i; 896f2cb1360SIngo Molnar 8971676330eSPeter Zijlstra cpumask_clear(mask); 8981676330eSPeter Zijlstra 899f32d782eSLauro Ramos Venancio for_each_cpu(i, sg_span) { 900f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 90173bb059fSPeter Zijlstra 90273bb059fSPeter Zijlstra /* 90373bb059fSPeter Zijlstra * Can happen in the asymmetric case, where these siblings are 90473bb059fSPeter Zijlstra * unused. The mask will not be empty because those CPUs that 90573bb059fSPeter Zijlstra * do have the top domain _should_ span the domain. 90673bb059fSPeter Zijlstra */ 90773bb059fSPeter Zijlstra if (!sibling->child) 90873bb059fSPeter Zijlstra continue; 90973bb059fSPeter Zijlstra 91073bb059fSPeter Zijlstra /* If we would not end up here, we can't continue from here */ 91173bb059fSPeter Zijlstra if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 912f2cb1360SIngo Molnar continue; 913f2cb1360SIngo Molnar 9141676330eSPeter Zijlstra cpumask_set_cpu(i, mask); 915f2cb1360SIngo Molnar } 91673bb059fSPeter Zijlstra 91773bb059fSPeter Zijlstra /* We must not have empty masks here */ 9181676330eSPeter Zijlstra WARN_ON_ONCE(cpumask_empty(mask)); 919f2cb1360SIngo Molnar } 920f2cb1360SIngo Molnar 921f2cb1360SIngo Molnar /* 92235a566e6SPeter Zijlstra * XXX: This creates per-node group entries; since the load-balancer will 92335a566e6SPeter Zijlstra * immediately access remote memory to construct this group's load-balance 92435a566e6SPeter Zijlstra * statistics having the groups node local is of dubious benefit. 925f2cb1360SIngo Molnar */ 9268c033469SLauro Ramos Venancio static struct sched_group * 9278c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 9288c033469SLauro Ramos Venancio { 9298c033469SLauro Ramos Venancio struct sched_group *sg; 9308c033469SLauro Ramos Venancio struct cpumask *sg_span; 9318c033469SLauro Ramos Venancio 9328c033469SLauro Ramos Venancio sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 9338c033469SLauro Ramos Venancio GFP_KERNEL, cpu_to_node(cpu)); 9348c033469SLauro Ramos Venancio 9358c033469SLauro Ramos Venancio if (!sg) 9368c033469SLauro Ramos Venancio return NULL; 9378c033469SLauro Ramos Venancio 938ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9398c033469SLauro Ramos Venancio if (sd->child) 9408c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd->child)); 9418c033469SLauro Ramos Venancio else 9428c033469SLauro Ramos Venancio cpumask_copy(sg_span, sched_domain_span(sd)); 9438c033469SLauro Ramos Venancio 944213c5a45SShu Wang atomic_inc(&sg->ref); 9458c033469SLauro Ramos Venancio return sg; 9468c033469SLauro Ramos Venancio } 9478c033469SLauro Ramos Venancio 9488c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd, 9491676330eSPeter Zijlstra struct sched_group *sg) 9508c033469SLauro Ramos Venancio { 9511676330eSPeter Zijlstra struct cpumask *mask = sched_domains_tmpmask2; 9528c033469SLauro Ramos Venancio struct sd_data *sdd = sd->private; 9538c033469SLauro Ramos Venancio struct cpumask *sg_span; 9541676330eSPeter Zijlstra int cpu; 9551676330eSPeter Zijlstra 956e5c14b1fSPeter Zijlstra build_balance_mask(sd, sg, mask); 957ae4df9d6SPeter Zijlstra cpu = cpumask_first_and(sched_group_span(sg), mask); 9588c033469SLauro Ramos Venancio 9598c033469SLauro Ramos Venancio sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 9608c033469SLauro Ramos Venancio if (atomic_inc_return(&sg->sgc->ref) == 1) 961e5c14b1fSPeter Zijlstra cpumask_copy(group_balance_mask(sg), mask); 96235a566e6SPeter Zijlstra else 963e5c14b1fSPeter Zijlstra WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 9648c033469SLauro Ramos Venancio 9658c033469SLauro Ramos Venancio /* 9668c033469SLauro Ramos Venancio * Initialize sgc->capacity such that even if we mess up the 9678c033469SLauro Ramos Venancio * domains and no possible iteration will get us here, we won't 9688c033469SLauro Ramos Venancio * die on a /0 trap. 9698c033469SLauro Ramos Venancio */ 970ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 9718c033469SLauro Ramos Venancio sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 9728c033469SLauro Ramos Venancio sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 973e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 9748c033469SLauro Ramos Venancio } 9758c033469SLauro Ramos Venancio 976f2cb1360SIngo Molnar static int 977f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu) 978f2cb1360SIngo Molnar { 97991eaed0dSPeter Zijlstra struct sched_group *first = NULL, *last = NULL, *sg; 980f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 981f2cb1360SIngo Molnar struct cpumask *covered = sched_domains_tmpmask; 982f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 983f2cb1360SIngo Molnar struct sched_domain *sibling; 984f2cb1360SIngo Molnar int i; 985f2cb1360SIngo Molnar 986f2cb1360SIngo Molnar cpumask_clear(covered); 987f2cb1360SIngo Molnar 9880372dd27SPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 989f2cb1360SIngo Molnar struct cpumask *sg_span; 990f2cb1360SIngo Molnar 991f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 992f2cb1360SIngo Molnar continue; 993f2cb1360SIngo Molnar 994f2cb1360SIngo Molnar sibling = *per_cpu_ptr(sdd->sd, i); 995f2cb1360SIngo Molnar 996c20e1ea4SLauro Ramos Venancio /* 997c20e1ea4SLauro Ramos Venancio * Asymmetric node setups can result in situations where the 998c20e1ea4SLauro Ramos Venancio * domain tree is of unequal depth, make sure to skip domains 999c20e1ea4SLauro Ramos Venancio * that already cover the entire range. 1000c20e1ea4SLauro Ramos Venancio * 1001c20e1ea4SLauro Ramos Venancio * In that case build_sched_domains() will have terminated the 1002c20e1ea4SLauro Ramos Venancio * iteration early and our sibling sd spans will be empty. 1003c20e1ea4SLauro Ramos Venancio * Domains should always include the CPU they're built on, so 1004c20e1ea4SLauro Ramos Venancio * check that. 1005c20e1ea4SLauro Ramos Venancio */ 1006f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1007f2cb1360SIngo Molnar continue; 1008f2cb1360SIngo Molnar 10098c033469SLauro Ramos Venancio sg = build_group_from_child_sched_domain(sibling, cpu); 1010f2cb1360SIngo Molnar if (!sg) 1011f2cb1360SIngo Molnar goto fail; 1012f2cb1360SIngo Molnar 1013ae4df9d6SPeter Zijlstra sg_span = sched_group_span(sg); 1014f2cb1360SIngo Molnar cpumask_or(covered, covered, sg_span); 1015f2cb1360SIngo Molnar 10161676330eSPeter Zijlstra init_overlap_sched_group(sd, sg); 1017f2cb1360SIngo Molnar 1018f2cb1360SIngo Molnar if (!first) 1019f2cb1360SIngo Molnar first = sg; 1020f2cb1360SIngo Molnar if (last) 1021f2cb1360SIngo Molnar last->next = sg; 1022f2cb1360SIngo Molnar last = sg; 1023f2cb1360SIngo Molnar last->next = first; 1024f2cb1360SIngo Molnar } 102591eaed0dSPeter Zijlstra sd->groups = first; 1026f2cb1360SIngo Molnar 1027f2cb1360SIngo Molnar return 0; 1028f2cb1360SIngo Molnar 1029f2cb1360SIngo Molnar fail: 1030f2cb1360SIngo Molnar free_sched_groups(first, 0); 1031f2cb1360SIngo Molnar 1032f2cb1360SIngo Molnar return -ENOMEM; 1033f2cb1360SIngo Molnar } 1034f2cb1360SIngo Molnar 103535a566e6SPeter Zijlstra 103635a566e6SPeter Zijlstra /* 103735a566e6SPeter Zijlstra * Package topology (also see the load-balance blurb in fair.c) 103835a566e6SPeter Zijlstra * 103935a566e6SPeter Zijlstra * The scheduler builds a tree structure to represent a number of important 104035a566e6SPeter Zijlstra * topology features. By default (default_topology[]) these include: 104135a566e6SPeter Zijlstra * 104235a566e6SPeter Zijlstra * - Simultaneous multithreading (SMT) 104335a566e6SPeter Zijlstra * - Multi-Core Cache (MC) 104435a566e6SPeter Zijlstra * - Package (DIE) 104535a566e6SPeter Zijlstra * 104635a566e6SPeter Zijlstra * Where the last one more or less denotes everything up to a NUMA node. 104735a566e6SPeter Zijlstra * 104835a566e6SPeter Zijlstra * The tree consists of 3 primary data structures: 104935a566e6SPeter Zijlstra * 105035a566e6SPeter Zijlstra * sched_domain -> sched_group -> sched_group_capacity 105135a566e6SPeter Zijlstra * ^ ^ ^ ^ 105235a566e6SPeter Zijlstra * `-' `-' 105335a566e6SPeter Zijlstra * 105497fb7a0aSIngo Molnar * The sched_domains are per-CPU and have a two way link (parent & child) and 105535a566e6SPeter Zijlstra * denote the ever growing mask of CPUs belonging to that level of topology. 105635a566e6SPeter Zijlstra * 105735a566e6SPeter Zijlstra * Each sched_domain has a circular (double) linked list of sched_group's, each 105835a566e6SPeter Zijlstra * denoting the domains of the level below (or individual CPUs in case of the 105935a566e6SPeter Zijlstra * first domain level). The sched_group linked by a sched_domain includes the 106035a566e6SPeter Zijlstra * CPU of that sched_domain [*]. 106135a566e6SPeter Zijlstra * 106235a566e6SPeter Zijlstra * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 106335a566e6SPeter Zijlstra * 106435a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 106535a566e6SPeter Zijlstra * 106635a566e6SPeter Zijlstra * DIE [ ] 106735a566e6SPeter Zijlstra * MC [ ] [ ] 106835a566e6SPeter Zijlstra * SMT [ ] [ ] [ ] [ ] 106935a566e6SPeter Zijlstra * 107035a566e6SPeter Zijlstra * - or - 107135a566e6SPeter Zijlstra * 107235a566e6SPeter Zijlstra * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 107335a566e6SPeter Zijlstra * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 107435a566e6SPeter Zijlstra * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 107535a566e6SPeter Zijlstra * 107635a566e6SPeter Zijlstra * CPU 0 1 2 3 4 5 6 7 107735a566e6SPeter Zijlstra * 107835a566e6SPeter Zijlstra * One way to think about it is: sched_domain moves you up and down among these 107935a566e6SPeter Zijlstra * topology levels, while sched_group moves you sideways through it, at child 108035a566e6SPeter Zijlstra * domain granularity. 108135a566e6SPeter Zijlstra * 108235a566e6SPeter Zijlstra * sched_group_capacity ensures each unique sched_group has shared storage. 108335a566e6SPeter Zijlstra * 108435a566e6SPeter Zijlstra * There are two related construction problems, both require a CPU that 108535a566e6SPeter Zijlstra * uniquely identify each group (for a given domain): 108635a566e6SPeter Zijlstra * 108735a566e6SPeter Zijlstra * - The first is the balance_cpu (see should_we_balance() and the 108835a566e6SPeter Zijlstra * load-balance blub in fair.c); for each group we only want 1 CPU to 108935a566e6SPeter Zijlstra * continue balancing at a higher domain. 109035a566e6SPeter Zijlstra * 109135a566e6SPeter Zijlstra * - The second is the sched_group_capacity; we want all identical groups 109235a566e6SPeter Zijlstra * to share a single sched_group_capacity. 109335a566e6SPeter Zijlstra * 109435a566e6SPeter Zijlstra * Since these topologies are exclusive by construction. That is, its 109535a566e6SPeter Zijlstra * impossible for an SMT thread to belong to multiple cores, and cores to 109635a566e6SPeter Zijlstra * be part of multiple caches. There is a very clear and unique location 109735a566e6SPeter Zijlstra * for each CPU in the hierarchy. 109835a566e6SPeter Zijlstra * 109935a566e6SPeter Zijlstra * Therefore computing a unique CPU for each group is trivial (the iteration 110035a566e6SPeter Zijlstra * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 110135a566e6SPeter Zijlstra * group), we can simply pick the first CPU in each group. 110235a566e6SPeter Zijlstra * 110335a566e6SPeter Zijlstra * 110435a566e6SPeter Zijlstra * [*] in other words, the first group of each domain is its child domain. 110535a566e6SPeter Zijlstra */ 110635a566e6SPeter Zijlstra 11070c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1108f2cb1360SIngo Molnar { 1109f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1110f2cb1360SIngo Molnar struct sched_domain *child = sd->child; 11110c0e776aSPeter Zijlstra struct sched_group *sg; 111267d4f6ffSValentin Schneider bool already_visited; 1113f2cb1360SIngo Molnar 1114f2cb1360SIngo Molnar if (child) 1115f2cb1360SIngo Molnar cpu = cpumask_first(sched_domain_span(child)); 1116f2cb1360SIngo Molnar 11170c0e776aSPeter Zijlstra sg = *per_cpu_ptr(sdd->sg, cpu); 11180c0e776aSPeter Zijlstra sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1119f2cb1360SIngo Molnar 112067d4f6ffSValentin Schneider /* Increase refcounts for claim_allocations: */ 112167d4f6ffSValentin Schneider already_visited = atomic_inc_return(&sg->ref) > 1; 112267d4f6ffSValentin Schneider /* sgc visits should follow a similar trend as sg */ 112367d4f6ffSValentin Schneider WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 112467d4f6ffSValentin Schneider 112567d4f6ffSValentin Schneider /* If we have already visited that group, it's already initialized. */ 112667d4f6ffSValentin Schneider if (already_visited) 112767d4f6ffSValentin Schneider return sg; 11280c0e776aSPeter Zijlstra 11290c0e776aSPeter Zijlstra if (child) { 1130ae4df9d6SPeter Zijlstra cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1131ae4df9d6SPeter Zijlstra cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 11320c0e776aSPeter Zijlstra } else { 1133ae4df9d6SPeter Zijlstra cpumask_set_cpu(cpu, sched_group_span(sg)); 1134e5c14b1fSPeter Zijlstra cpumask_set_cpu(cpu, group_balance_mask(sg)); 1135f2cb1360SIngo Molnar } 1136f2cb1360SIngo Molnar 1137ae4df9d6SPeter Zijlstra sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 11380c0e776aSPeter Zijlstra sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1139e3d6d0cbSMorten Rasmussen sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 11400c0e776aSPeter Zijlstra 11410c0e776aSPeter Zijlstra return sg; 1142f2cb1360SIngo Molnar } 1143f2cb1360SIngo Molnar 1144f2cb1360SIngo Molnar /* 1145f2cb1360SIngo Molnar * build_sched_groups will build a circular linked list of the groups 1146d8743230SValentin Schneider * covered by the given span, will set each group's ->cpumask correctly, 1147d8743230SValentin Schneider * and will initialize their ->sgc. 1148f2cb1360SIngo Molnar * 1149f2cb1360SIngo Molnar * Assumes the sched_domain tree is fully constructed 1150f2cb1360SIngo Molnar */ 1151f2cb1360SIngo Molnar static int 1152f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu) 1153f2cb1360SIngo Molnar { 1154f2cb1360SIngo Molnar struct sched_group *first = NULL, *last = NULL; 1155f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1156f2cb1360SIngo Molnar const struct cpumask *span = sched_domain_span(sd); 1157f2cb1360SIngo Molnar struct cpumask *covered; 1158f2cb1360SIngo Molnar int i; 1159f2cb1360SIngo Molnar 1160f2cb1360SIngo Molnar lockdep_assert_held(&sched_domains_mutex); 1161f2cb1360SIngo Molnar covered = sched_domains_tmpmask; 1162f2cb1360SIngo Molnar 1163f2cb1360SIngo Molnar cpumask_clear(covered); 1164f2cb1360SIngo Molnar 11650c0e776aSPeter Zijlstra for_each_cpu_wrap(i, span, cpu) { 1166f2cb1360SIngo Molnar struct sched_group *sg; 1167f2cb1360SIngo Molnar 1168f2cb1360SIngo Molnar if (cpumask_test_cpu(i, covered)) 1169f2cb1360SIngo Molnar continue; 1170f2cb1360SIngo Molnar 11710c0e776aSPeter Zijlstra sg = get_group(i, sdd); 1172f2cb1360SIngo Molnar 1173ae4df9d6SPeter Zijlstra cpumask_or(covered, covered, sched_group_span(sg)); 1174f2cb1360SIngo Molnar 1175f2cb1360SIngo Molnar if (!first) 1176f2cb1360SIngo Molnar first = sg; 1177f2cb1360SIngo Molnar if (last) 1178f2cb1360SIngo Molnar last->next = sg; 1179f2cb1360SIngo Molnar last = sg; 1180f2cb1360SIngo Molnar } 1181f2cb1360SIngo Molnar last->next = first; 11820c0e776aSPeter Zijlstra sd->groups = first; 1183f2cb1360SIngo Molnar 1184f2cb1360SIngo Molnar return 0; 1185f2cb1360SIngo Molnar } 1186f2cb1360SIngo Molnar 1187f2cb1360SIngo Molnar /* 1188f2cb1360SIngo Molnar * Initialize sched groups cpu_capacity. 1189f2cb1360SIngo Molnar * 1190f2cb1360SIngo Molnar * cpu_capacity indicates the capacity of sched group, which is used while 1191f2cb1360SIngo Molnar * distributing the load between different sched groups in a sched domain. 1192f2cb1360SIngo Molnar * Typically cpu_capacity for all the groups in a sched domain will be same 1193f2cb1360SIngo Molnar * unless there are asymmetries in the topology. If there are asymmetries, 1194f2cb1360SIngo Molnar * group having more cpu_capacity will pickup more load compared to the 1195f2cb1360SIngo Molnar * group having less cpu_capacity. 1196f2cb1360SIngo Molnar */ 1197f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1198f2cb1360SIngo Molnar { 1199f2cb1360SIngo Molnar struct sched_group *sg = sd->groups; 1200f2cb1360SIngo Molnar 1201f2cb1360SIngo Molnar WARN_ON(!sg); 1202f2cb1360SIngo Molnar 1203f2cb1360SIngo Molnar do { 1204f2cb1360SIngo Molnar int cpu, max_cpu = -1; 1205f2cb1360SIngo Molnar 1206ae4df9d6SPeter Zijlstra sg->group_weight = cpumask_weight(sched_group_span(sg)); 1207f2cb1360SIngo Molnar 1208f2cb1360SIngo Molnar if (!(sd->flags & SD_ASYM_PACKING)) 1209f2cb1360SIngo Molnar goto next; 1210f2cb1360SIngo Molnar 1211ae4df9d6SPeter Zijlstra for_each_cpu(cpu, sched_group_span(sg)) { 1212f2cb1360SIngo Molnar if (max_cpu < 0) 1213f2cb1360SIngo Molnar max_cpu = cpu; 1214f2cb1360SIngo Molnar else if (sched_asym_prefer(cpu, max_cpu)) 1215f2cb1360SIngo Molnar max_cpu = cpu; 1216f2cb1360SIngo Molnar } 1217f2cb1360SIngo Molnar sg->asym_prefer_cpu = max_cpu; 1218f2cb1360SIngo Molnar 1219f2cb1360SIngo Molnar next: 1220f2cb1360SIngo Molnar sg = sg->next; 1221f2cb1360SIngo Molnar } while (sg != sd->groups); 1222f2cb1360SIngo Molnar 1223f2cb1360SIngo Molnar if (cpu != group_balance_cpu(sg)) 1224f2cb1360SIngo Molnar return; 1225f2cb1360SIngo Molnar 1226f2cb1360SIngo Molnar update_group_capacity(sd, cpu); 1227f2cb1360SIngo Molnar } 1228f2cb1360SIngo Molnar 1229f2cb1360SIngo Molnar /* 1230f2cb1360SIngo Molnar * Initializers for schedule domains 1231f2cb1360SIngo Molnar * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1232f2cb1360SIngo Molnar */ 1233f2cb1360SIngo Molnar 1234f2cb1360SIngo Molnar static int default_relax_domain_level = -1; 1235f2cb1360SIngo Molnar int sched_domain_level_max; 1236f2cb1360SIngo Molnar 1237f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str) 1238f2cb1360SIngo Molnar { 1239f2cb1360SIngo Molnar if (kstrtoint(str, 0, &default_relax_domain_level)) 1240f2cb1360SIngo Molnar pr_warn("Unable to set relax_domain_level\n"); 1241f2cb1360SIngo Molnar 1242f2cb1360SIngo Molnar return 1; 1243f2cb1360SIngo Molnar } 1244f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level); 1245f2cb1360SIngo Molnar 1246f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd, 1247f2cb1360SIngo Molnar struct sched_domain_attr *attr) 1248f2cb1360SIngo Molnar { 1249f2cb1360SIngo Molnar int request; 1250f2cb1360SIngo Molnar 1251f2cb1360SIngo Molnar if (!attr || attr->relax_domain_level < 0) { 1252f2cb1360SIngo Molnar if (default_relax_domain_level < 0) 1253f2cb1360SIngo Molnar return; 1254f2cb1360SIngo Molnar request = default_relax_domain_level; 1255f2cb1360SIngo Molnar } else 1256f2cb1360SIngo Molnar request = attr->relax_domain_level; 12579ae7ab20SValentin Schneider 12589ae7ab20SValentin Schneider if (sd->level > request) { 1259f2cb1360SIngo Molnar /* Turn off idle balance on this domain: */ 1260f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1261f2cb1360SIngo Molnar } 1262f2cb1360SIngo Molnar } 1263f2cb1360SIngo Molnar 1264f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map); 1265f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map); 1266f2cb1360SIngo Molnar 1267f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1268f2cb1360SIngo Molnar const struct cpumask *cpu_map) 1269f2cb1360SIngo Molnar { 1270f2cb1360SIngo Molnar switch (what) { 1271f2cb1360SIngo Molnar case sa_rootdomain: 1272f2cb1360SIngo Molnar if (!atomic_read(&d->rd->refcount)) 1273f2cb1360SIngo Molnar free_rootdomain(&d->rd->rcu); 1274df561f66SGustavo A. R. Silva fallthrough; 1275f2cb1360SIngo Molnar case sa_sd: 1276f2cb1360SIngo Molnar free_percpu(d->sd); 1277df561f66SGustavo A. R. Silva fallthrough; 1278f2cb1360SIngo Molnar case sa_sd_storage: 1279f2cb1360SIngo Molnar __sdt_free(cpu_map); 1280df561f66SGustavo A. R. Silva fallthrough; 1281f2cb1360SIngo Molnar case sa_none: 1282f2cb1360SIngo Molnar break; 1283f2cb1360SIngo Molnar } 1284f2cb1360SIngo Molnar } 1285f2cb1360SIngo Molnar 1286f2cb1360SIngo Molnar static enum s_alloc 1287f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1288f2cb1360SIngo Molnar { 1289f2cb1360SIngo Molnar memset(d, 0, sizeof(*d)); 1290f2cb1360SIngo Molnar 1291f2cb1360SIngo Molnar if (__sdt_alloc(cpu_map)) 1292f2cb1360SIngo Molnar return sa_sd_storage; 1293f2cb1360SIngo Molnar d->sd = alloc_percpu(struct sched_domain *); 1294f2cb1360SIngo Molnar if (!d->sd) 1295f2cb1360SIngo Molnar return sa_sd_storage; 1296f2cb1360SIngo Molnar d->rd = alloc_rootdomain(); 1297f2cb1360SIngo Molnar if (!d->rd) 1298f2cb1360SIngo Molnar return sa_sd; 129997fb7a0aSIngo Molnar 1300f2cb1360SIngo Molnar return sa_rootdomain; 1301f2cb1360SIngo Molnar } 1302f2cb1360SIngo Molnar 1303f2cb1360SIngo Molnar /* 1304f2cb1360SIngo Molnar * NULL the sd_data elements we've used to build the sched_domain and 1305f2cb1360SIngo Molnar * sched_group structure so that the subsequent __free_domain_allocs() 1306f2cb1360SIngo Molnar * will not free the data we're using. 1307f2cb1360SIngo Molnar */ 1308f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd) 1309f2cb1360SIngo Molnar { 1310f2cb1360SIngo Molnar struct sd_data *sdd = sd->private; 1311f2cb1360SIngo Molnar 1312f2cb1360SIngo Molnar WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1313f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, cpu) = NULL; 1314f2cb1360SIngo Molnar 1315f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1316f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, cpu) = NULL; 1317f2cb1360SIngo Molnar 1318f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1319f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, cpu) = NULL; 1320f2cb1360SIngo Molnar 1321f2cb1360SIngo Molnar if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1322f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1323f2cb1360SIngo Molnar } 1324f2cb1360SIngo Molnar 1325f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1326f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type; 132797fb7a0aSIngo Molnar 132897fb7a0aSIngo Molnar static int sched_domains_numa_levels; 1329f2cb1360SIngo Molnar static int sched_domains_curr_level; 133097fb7a0aSIngo Molnar 133197fb7a0aSIngo Molnar int sched_max_numa_distance; 133297fb7a0aSIngo Molnar static int *sched_domains_numa_distance; 133397fb7a0aSIngo Molnar static struct cpumask ***sched_domains_numa_masks; 1334a55c7454SMatt Fleming int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1335f2cb1360SIngo Molnar #endif 1336f2cb1360SIngo Molnar 1337f2cb1360SIngo Molnar /* 1338f2cb1360SIngo Molnar * SD_flags allowed in topology descriptions. 1339f2cb1360SIngo Molnar * 1340f2cb1360SIngo Molnar * These flags are purely descriptive of the topology and do not prescribe 1341f2cb1360SIngo Molnar * behaviour. Behaviour is artificial and mapped in the below sd_init() 1342f2cb1360SIngo Molnar * function: 1343f2cb1360SIngo Molnar * 1344f2cb1360SIngo Molnar * SD_SHARE_CPUCAPACITY - describes SMT topologies 1345f2cb1360SIngo Molnar * SD_SHARE_PKG_RESOURCES - describes shared caches 1346f2cb1360SIngo Molnar * SD_NUMA - describes NUMA topologies 1347f2cb1360SIngo Molnar * 1348f2cb1360SIngo Molnar * Odd one out, which beside describing the topology has a quirk also 1349f2cb1360SIngo Molnar * prescribes the desired behaviour that goes along with it: 1350f2cb1360SIngo Molnar * 1351f2cb1360SIngo Molnar * SD_ASYM_PACKING - describes SMT quirks 1352f2cb1360SIngo Molnar */ 1353f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS \ 1354f2cb1360SIngo Molnar (SD_SHARE_CPUCAPACITY | \ 1355f2cb1360SIngo Molnar SD_SHARE_PKG_RESOURCES | \ 1356f2cb1360SIngo Molnar SD_NUMA | \ 1357cfe7ddcbSValentin Schneider SD_ASYM_PACKING) 1358f2cb1360SIngo Molnar 1359f2cb1360SIngo Molnar static struct sched_domain * 1360f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl, 1361f2cb1360SIngo Molnar const struct cpumask *cpu_map, 136205484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1363f2cb1360SIngo Molnar { 1364f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1365f2cb1360SIngo Molnar struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1366f2cb1360SIngo Molnar int sd_id, sd_weight, sd_flags = 0; 1367f2cb1360SIngo Molnar 1368f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1369f2cb1360SIngo Molnar /* 1370f2cb1360SIngo Molnar * Ugly hack to pass state to sd_numa_mask()... 1371f2cb1360SIngo Molnar */ 1372f2cb1360SIngo Molnar sched_domains_curr_level = tl->numa_level; 1373f2cb1360SIngo Molnar #endif 1374f2cb1360SIngo Molnar 1375f2cb1360SIngo Molnar sd_weight = cpumask_weight(tl->mask(cpu)); 1376f2cb1360SIngo Molnar 1377f2cb1360SIngo Molnar if (tl->sd_flags) 1378f2cb1360SIngo Molnar sd_flags = (*tl->sd_flags)(); 1379f2cb1360SIngo Molnar if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1380f2cb1360SIngo Molnar "wrong sd_flags in topology description\n")) 13819b1b234bSPeng Liu sd_flags &= TOPOLOGY_SD_FLAGS; 1382f2cb1360SIngo Molnar 138305484e09SMorten Rasmussen /* Apply detected topology flags */ 138405484e09SMorten Rasmussen sd_flags |= dflags; 138505484e09SMorten Rasmussen 1386f2cb1360SIngo Molnar *sd = (struct sched_domain){ 1387f2cb1360SIngo Molnar .min_interval = sd_weight, 1388f2cb1360SIngo Molnar .max_interval = 2*sd_weight, 13896e749913SVincent Guittot .busy_factor = 16, 13902208cdaaSVincent Guittot .imbalance_pct = 117, 1391f2cb1360SIngo Molnar 1392f2cb1360SIngo Molnar .cache_nice_tries = 0, 1393f2cb1360SIngo Molnar 139436c5bdc4SValentin Schneider .flags = 1*SD_BALANCE_NEWIDLE 1395f2cb1360SIngo Molnar | 1*SD_BALANCE_EXEC 1396f2cb1360SIngo Molnar | 1*SD_BALANCE_FORK 1397f2cb1360SIngo Molnar | 0*SD_BALANCE_WAKE 1398f2cb1360SIngo Molnar | 1*SD_WAKE_AFFINE 1399f2cb1360SIngo Molnar | 0*SD_SHARE_CPUCAPACITY 1400f2cb1360SIngo Molnar | 0*SD_SHARE_PKG_RESOURCES 1401f2cb1360SIngo Molnar | 0*SD_SERIALIZE 14029c63e84dSMorten Rasmussen | 1*SD_PREFER_SIBLING 1403f2cb1360SIngo Molnar | 0*SD_NUMA 1404f2cb1360SIngo Molnar | sd_flags 1405f2cb1360SIngo Molnar , 1406f2cb1360SIngo Molnar 1407f2cb1360SIngo Molnar .last_balance = jiffies, 1408f2cb1360SIngo Molnar .balance_interval = sd_weight, 1409f2cb1360SIngo Molnar .max_newidle_lb_cost = 0, 1410f2cb1360SIngo Molnar .next_decay_max_lb_cost = jiffies, 1411f2cb1360SIngo Molnar .child = child, 1412f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1413f2cb1360SIngo Molnar .name = tl->name, 1414f2cb1360SIngo Molnar #endif 1415f2cb1360SIngo Molnar }; 1416f2cb1360SIngo Molnar 1417f2cb1360SIngo Molnar cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1418f2cb1360SIngo Molnar sd_id = cpumask_first(sched_domain_span(sd)); 1419f2cb1360SIngo Molnar 1420f2cb1360SIngo Molnar /* 1421f2cb1360SIngo Molnar * Convert topological properties into behaviour. 1422f2cb1360SIngo Molnar */ 1423f2cb1360SIngo Molnar 1424a526d466SMorten Rasmussen /* Don't attempt to spread across CPUs of different capacities. */ 1425a526d466SMorten Rasmussen if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 14269c63e84dSMorten Rasmussen sd->child->flags &= ~SD_PREFER_SIBLING; 14279c63e84dSMorten Rasmussen 1428f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_CPUCAPACITY) { 1429f2cb1360SIngo Molnar sd->imbalance_pct = 110; 1430f2cb1360SIngo Molnar 1431f2cb1360SIngo Molnar } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1432f2cb1360SIngo Molnar sd->imbalance_pct = 117; 1433f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1434f2cb1360SIngo Molnar 1435f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1436f2cb1360SIngo Molnar } else if (sd->flags & SD_NUMA) { 1437f2cb1360SIngo Molnar sd->cache_nice_tries = 2; 1438f2cb1360SIngo Molnar 14399c63e84dSMorten Rasmussen sd->flags &= ~SD_PREFER_SIBLING; 1440f2cb1360SIngo Molnar sd->flags |= SD_SERIALIZE; 1441a55c7454SMatt Fleming if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1442f2cb1360SIngo Molnar sd->flags &= ~(SD_BALANCE_EXEC | 1443f2cb1360SIngo Molnar SD_BALANCE_FORK | 1444f2cb1360SIngo Molnar SD_WAKE_AFFINE); 1445f2cb1360SIngo Molnar } 1446f2cb1360SIngo Molnar 1447f2cb1360SIngo Molnar #endif 1448f2cb1360SIngo Molnar } else { 1449f2cb1360SIngo Molnar sd->cache_nice_tries = 1; 1450f2cb1360SIngo Molnar } 1451f2cb1360SIngo Molnar 1452f2cb1360SIngo Molnar /* 1453f2cb1360SIngo Molnar * For all levels sharing cache; connect a sched_domain_shared 1454f2cb1360SIngo Molnar * instance. 1455f2cb1360SIngo Molnar */ 1456f2cb1360SIngo Molnar if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1457f2cb1360SIngo Molnar sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1458f2cb1360SIngo Molnar atomic_inc(&sd->shared->ref); 1459f2cb1360SIngo Molnar atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1460f2cb1360SIngo Molnar } 1461f2cb1360SIngo Molnar 1462f2cb1360SIngo Molnar sd->private = sdd; 1463f2cb1360SIngo Molnar 1464f2cb1360SIngo Molnar return sd; 1465f2cb1360SIngo Molnar } 1466f2cb1360SIngo Molnar 1467f2cb1360SIngo Molnar /* 1468f2cb1360SIngo Molnar * Topology list, bottom-up. 1469f2cb1360SIngo Molnar */ 1470f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = { 1471f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT 1472f2cb1360SIngo Molnar { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1473f2cb1360SIngo Molnar #endif 1474f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC 1475f2cb1360SIngo Molnar { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1476f2cb1360SIngo Molnar #endif 1477f2cb1360SIngo Molnar { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1478f2cb1360SIngo Molnar { NULL, }, 1479f2cb1360SIngo Molnar }; 1480f2cb1360SIngo Molnar 1481f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology = 1482f2cb1360SIngo Molnar default_topology; 1483f2cb1360SIngo Molnar 1484f2cb1360SIngo Molnar #define for_each_sd_topology(tl) \ 1485f2cb1360SIngo Molnar for (tl = sched_domain_topology; tl->mask; tl++) 1486f2cb1360SIngo Molnar 1487f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl) 1488f2cb1360SIngo Molnar { 1489f2cb1360SIngo Molnar if (WARN_ON_ONCE(sched_smp_initialized)) 1490f2cb1360SIngo Molnar return; 1491f2cb1360SIngo Molnar 1492f2cb1360SIngo Molnar sched_domain_topology = tl; 1493f2cb1360SIngo Molnar } 1494f2cb1360SIngo Molnar 1495f2cb1360SIngo Molnar #ifdef CONFIG_NUMA 1496f2cb1360SIngo Molnar 1497f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu) 1498f2cb1360SIngo Molnar { 1499f2cb1360SIngo Molnar return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1500f2cb1360SIngo Molnar } 1501f2cb1360SIngo Molnar 1502f2cb1360SIngo Molnar static void sched_numa_warn(const char *str) 1503f2cb1360SIngo Molnar { 1504f2cb1360SIngo Molnar static int done = false; 1505f2cb1360SIngo Molnar int i,j; 1506f2cb1360SIngo Molnar 1507f2cb1360SIngo Molnar if (done) 1508f2cb1360SIngo Molnar return; 1509f2cb1360SIngo Molnar 1510f2cb1360SIngo Molnar done = true; 1511f2cb1360SIngo Molnar 1512f2cb1360SIngo Molnar printk(KERN_WARNING "ERROR: %s\n\n", str); 1513f2cb1360SIngo Molnar 1514f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1515f2cb1360SIngo Molnar printk(KERN_WARNING " "); 1516f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1517f2cb1360SIngo Molnar printk(KERN_CONT "%02d ", node_distance(i,j)); 1518f2cb1360SIngo Molnar printk(KERN_CONT "\n"); 1519f2cb1360SIngo Molnar } 1520f2cb1360SIngo Molnar printk(KERN_WARNING "\n"); 1521f2cb1360SIngo Molnar } 1522f2cb1360SIngo Molnar 1523f2cb1360SIngo Molnar bool find_numa_distance(int distance) 1524f2cb1360SIngo Molnar { 1525f2cb1360SIngo Molnar int i; 1526f2cb1360SIngo Molnar 1527f2cb1360SIngo Molnar if (distance == node_distance(0, 0)) 1528f2cb1360SIngo Molnar return true; 1529f2cb1360SIngo Molnar 1530f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1531f2cb1360SIngo Molnar if (sched_domains_numa_distance[i] == distance) 1532f2cb1360SIngo Molnar return true; 1533f2cb1360SIngo Molnar } 1534f2cb1360SIngo Molnar 1535f2cb1360SIngo Molnar return false; 1536f2cb1360SIngo Molnar } 1537f2cb1360SIngo Molnar 1538f2cb1360SIngo Molnar /* 1539f2cb1360SIngo Molnar * A system can have three types of NUMA topology: 1540f2cb1360SIngo Molnar * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1541f2cb1360SIngo Molnar * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1542f2cb1360SIngo Molnar * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1543f2cb1360SIngo Molnar * 1544f2cb1360SIngo Molnar * The difference between a glueless mesh topology and a backplane 1545f2cb1360SIngo Molnar * topology lies in whether communication between not directly 1546f2cb1360SIngo Molnar * connected nodes goes through intermediary nodes (where programs 1547f2cb1360SIngo Molnar * could run), or through backplane controllers. This affects 1548f2cb1360SIngo Molnar * placement of programs. 1549f2cb1360SIngo Molnar * 1550f2cb1360SIngo Molnar * The type of topology can be discerned with the following tests: 1551f2cb1360SIngo Molnar * - If the maximum distance between any nodes is 1 hop, the system 1552f2cb1360SIngo Molnar * is directly connected. 1553f2cb1360SIngo Molnar * - If for two nodes A and B, located N > 1 hops away from each other, 1554f2cb1360SIngo Molnar * there is an intermediary node C, which is < N hops away from both 1555f2cb1360SIngo Molnar * nodes A and B, the system is a glueless mesh. 1556f2cb1360SIngo Molnar */ 1557f2cb1360SIngo Molnar static void init_numa_topology_type(void) 1558f2cb1360SIngo Molnar { 1559f2cb1360SIngo Molnar int a, b, c, n; 1560f2cb1360SIngo Molnar 1561f2cb1360SIngo Molnar n = sched_max_numa_distance; 1562f2cb1360SIngo Molnar 1563e5e96fafSSrikar Dronamraju if (sched_domains_numa_levels <= 2) { 1564f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_DIRECT; 1565f2cb1360SIngo Molnar return; 1566f2cb1360SIngo Molnar } 1567f2cb1360SIngo Molnar 1568f2cb1360SIngo Molnar for_each_online_node(a) { 1569f2cb1360SIngo Molnar for_each_online_node(b) { 1570f2cb1360SIngo Molnar /* Find two nodes furthest removed from each other. */ 1571f2cb1360SIngo Molnar if (node_distance(a, b) < n) 1572f2cb1360SIngo Molnar continue; 1573f2cb1360SIngo Molnar 1574f2cb1360SIngo Molnar /* Is there an intermediary node between a and b? */ 1575f2cb1360SIngo Molnar for_each_online_node(c) { 1576f2cb1360SIngo Molnar if (node_distance(a, c) < n && 1577f2cb1360SIngo Molnar node_distance(b, c) < n) { 1578f2cb1360SIngo Molnar sched_numa_topology_type = 1579f2cb1360SIngo Molnar NUMA_GLUELESS_MESH; 1580f2cb1360SIngo Molnar return; 1581f2cb1360SIngo Molnar } 1582f2cb1360SIngo Molnar } 1583f2cb1360SIngo Molnar 1584f2cb1360SIngo Molnar sched_numa_topology_type = NUMA_BACKPLANE; 1585f2cb1360SIngo Molnar return; 1586f2cb1360SIngo Molnar } 1587f2cb1360SIngo Molnar } 1588f2cb1360SIngo Molnar } 1589f2cb1360SIngo Molnar 1590f2cb1360SIngo Molnar void sched_init_numa(void) 1591f2cb1360SIngo Molnar { 1592f2cb1360SIngo Molnar int next_distance, curr_distance = node_distance(0, 0); 1593f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1594f2cb1360SIngo Molnar int level = 0; 1595f2cb1360SIngo Molnar int i, j, k; 1596f2cb1360SIngo Molnar 1597993f0b05SPeter Zijlstra sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1598f2cb1360SIngo Molnar if (!sched_domains_numa_distance) 1599f2cb1360SIngo Molnar return; 1600f2cb1360SIngo Molnar 1601051f3ca0SSuravee Suthikulpanit /* Includes NUMA identity node at level 0. */ 1602051f3ca0SSuravee Suthikulpanit sched_domains_numa_distance[level++] = curr_distance; 1603051f3ca0SSuravee Suthikulpanit sched_domains_numa_levels = level; 1604051f3ca0SSuravee Suthikulpanit 1605f2cb1360SIngo Molnar /* 1606f2cb1360SIngo Molnar * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1607f2cb1360SIngo Molnar * unique distances in the node_distance() table. 1608f2cb1360SIngo Molnar * 1609f2cb1360SIngo Molnar * Assumes node_distance(0,j) includes all distances in 1610f2cb1360SIngo Molnar * node_distance(i,j) in order to avoid cubic time. 1611f2cb1360SIngo Molnar */ 1612f2cb1360SIngo Molnar next_distance = curr_distance; 1613f2cb1360SIngo Molnar for (i = 0; i < nr_node_ids; i++) { 1614f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1615f2cb1360SIngo Molnar for (k = 0; k < nr_node_ids; k++) { 1616f2cb1360SIngo Molnar int distance = node_distance(i, k); 1617f2cb1360SIngo Molnar 1618f2cb1360SIngo Molnar if (distance > curr_distance && 1619f2cb1360SIngo Molnar (distance < next_distance || 1620f2cb1360SIngo Molnar next_distance == curr_distance)) 1621f2cb1360SIngo Molnar next_distance = distance; 1622f2cb1360SIngo Molnar 1623f2cb1360SIngo Molnar /* 1624f2cb1360SIngo Molnar * While not a strong assumption it would be nice to know 1625f2cb1360SIngo Molnar * about cases where if node A is connected to B, B is not 1626f2cb1360SIngo Molnar * equally connected to A. 1627f2cb1360SIngo Molnar */ 1628f2cb1360SIngo Molnar if (sched_debug() && node_distance(k, i) != distance) 1629f2cb1360SIngo Molnar sched_numa_warn("Node-distance not symmetric"); 1630f2cb1360SIngo Molnar 1631f2cb1360SIngo Molnar if (sched_debug() && i && !find_numa_distance(distance)) 1632f2cb1360SIngo Molnar sched_numa_warn("Node-0 not representative"); 1633f2cb1360SIngo Molnar } 1634f2cb1360SIngo Molnar if (next_distance != curr_distance) { 1635f2cb1360SIngo Molnar sched_domains_numa_distance[level++] = next_distance; 1636f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1637f2cb1360SIngo Molnar curr_distance = next_distance; 1638f2cb1360SIngo Molnar } else break; 1639f2cb1360SIngo Molnar } 1640f2cb1360SIngo Molnar 1641f2cb1360SIngo Molnar /* 1642f2cb1360SIngo Molnar * In case of sched_debug() we verify the above assumption. 1643f2cb1360SIngo Molnar */ 1644f2cb1360SIngo Molnar if (!sched_debug()) 1645f2cb1360SIngo Molnar break; 1646f2cb1360SIngo Molnar } 1647f2cb1360SIngo Molnar 1648f2cb1360SIngo Molnar /* 1649051f3ca0SSuravee Suthikulpanit * 'level' contains the number of unique distances 1650f2cb1360SIngo Molnar * 1651f2cb1360SIngo Molnar * The sched_domains_numa_distance[] array includes the actual distance 1652f2cb1360SIngo Molnar * numbers. 1653f2cb1360SIngo Molnar */ 1654f2cb1360SIngo Molnar 1655f2cb1360SIngo Molnar /* 1656f2cb1360SIngo Molnar * Here, we should temporarily reset sched_domains_numa_levels to 0. 1657f2cb1360SIngo Molnar * If it fails to allocate memory for array sched_domains_numa_masks[][], 1658f2cb1360SIngo Molnar * the array will contain less then 'level' members. This could be 1659f2cb1360SIngo Molnar * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1660f2cb1360SIngo Molnar * in other functions. 1661f2cb1360SIngo Molnar * 1662f2cb1360SIngo Molnar * We reset it to 'level' at the end of this function. 1663f2cb1360SIngo Molnar */ 1664f2cb1360SIngo Molnar sched_domains_numa_levels = 0; 1665f2cb1360SIngo Molnar 1666f2cb1360SIngo Molnar sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1667f2cb1360SIngo Molnar if (!sched_domains_numa_masks) 1668f2cb1360SIngo Molnar return; 1669f2cb1360SIngo Molnar 1670f2cb1360SIngo Molnar /* 1671f2cb1360SIngo Molnar * Now for each level, construct a mask per node which contains all 1672f2cb1360SIngo Molnar * CPUs of nodes that are that many hops away from us. 1673f2cb1360SIngo Molnar */ 1674f2cb1360SIngo Molnar for (i = 0; i < level; i++) { 1675f2cb1360SIngo Molnar sched_domains_numa_masks[i] = 1676f2cb1360SIngo Molnar kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1677f2cb1360SIngo Molnar if (!sched_domains_numa_masks[i]) 1678f2cb1360SIngo Molnar return; 1679f2cb1360SIngo Molnar 1680f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1681f2cb1360SIngo Molnar struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1682f2cb1360SIngo Molnar if (!mask) 1683f2cb1360SIngo Molnar return; 1684f2cb1360SIngo Molnar 1685f2cb1360SIngo Molnar sched_domains_numa_masks[i][j] = mask; 1686f2cb1360SIngo Molnar 1687f2cb1360SIngo Molnar for_each_node(k) { 1688f2cb1360SIngo Molnar if (node_distance(j, k) > sched_domains_numa_distance[i]) 1689f2cb1360SIngo Molnar continue; 1690f2cb1360SIngo Molnar 1691f2cb1360SIngo Molnar cpumask_or(mask, mask, cpumask_of_node(k)); 1692f2cb1360SIngo Molnar } 1693f2cb1360SIngo Molnar } 1694f2cb1360SIngo Molnar } 1695f2cb1360SIngo Molnar 1696f2cb1360SIngo Molnar /* Compute default topology size */ 1697f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++); 1698f2cb1360SIngo Molnar 1699f2cb1360SIngo Molnar tl = kzalloc((i + level + 1) * 1700f2cb1360SIngo Molnar sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1701f2cb1360SIngo Molnar if (!tl) 1702f2cb1360SIngo Molnar return; 1703f2cb1360SIngo Molnar 1704f2cb1360SIngo Molnar /* 1705f2cb1360SIngo Molnar * Copy the default topology bits.. 1706f2cb1360SIngo Molnar */ 1707f2cb1360SIngo Molnar for (i = 0; sched_domain_topology[i].mask; i++) 1708f2cb1360SIngo Molnar tl[i] = sched_domain_topology[i]; 1709f2cb1360SIngo Molnar 1710f2cb1360SIngo Molnar /* 1711051f3ca0SSuravee Suthikulpanit * Add the NUMA identity distance, aka single NODE. 1712051f3ca0SSuravee Suthikulpanit */ 1713051f3ca0SSuravee Suthikulpanit tl[i++] = (struct sched_domain_topology_level){ 1714051f3ca0SSuravee Suthikulpanit .mask = sd_numa_mask, 1715051f3ca0SSuravee Suthikulpanit .numa_level = 0, 1716051f3ca0SSuravee Suthikulpanit SD_INIT_NAME(NODE) 1717051f3ca0SSuravee Suthikulpanit }; 1718051f3ca0SSuravee Suthikulpanit 1719051f3ca0SSuravee Suthikulpanit /* 1720f2cb1360SIngo Molnar * .. and append 'j' levels of NUMA goodness. 1721f2cb1360SIngo Molnar */ 1722051f3ca0SSuravee Suthikulpanit for (j = 1; j < level; i++, j++) { 1723f2cb1360SIngo Molnar tl[i] = (struct sched_domain_topology_level){ 1724f2cb1360SIngo Molnar .mask = sd_numa_mask, 1725f2cb1360SIngo Molnar .sd_flags = cpu_numa_flags, 1726f2cb1360SIngo Molnar .flags = SDTL_OVERLAP, 1727f2cb1360SIngo Molnar .numa_level = j, 1728f2cb1360SIngo Molnar SD_INIT_NAME(NUMA) 1729f2cb1360SIngo Molnar }; 1730f2cb1360SIngo Molnar } 1731f2cb1360SIngo Molnar 1732f2cb1360SIngo Molnar sched_domain_topology = tl; 1733f2cb1360SIngo Molnar 1734f2cb1360SIngo Molnar sched_domains_numa_levels = level; 1735f2cb1360SIngo Molnar sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1736f2cb1360SIngo Molnar 1737f2cb1360SIngo Molnar init_numa_topology_type(); 1738f2cb1360SIngo Molnar } 1739f2cb1360SIngo Molnar 1740f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu) 1741f2cb1360SIngo Molnar { 1742f2cb1360SIngo Molnar int node = cpu_to_node(cpu); 1743f2cb1360SIngo Molnar int i, j; 1744f2cb1360SIngo Molnar 1745f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1746f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) { 1747f2cb1360SIngo Molnar if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1748f2cb1360SIngo Molnar cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1749f2cb1360SIngo Molnar } 1750f2cb1360SIngo Molnar } 1751f2cb1360SIngo Molnar } 1752f2cb1360SIngo Molnar 1753f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu) 1754f2cb1360SIngo Molnar { 1755f2cb1360SIngo Molnar int i, j; 1756f2cb1360SIngo Molnar 1757f2cb1360SIngo Molnar for (i = 0; i < sched_domains_numa_levels; i++) { 1758f2cb1360SIngo Molnar for (j = 0; j < nr_node_ids; j++) 1759f2cb1360SIngo Molnar cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1760f2cb1360SIngo Molnar } 1761f2cb1360SIngo Molnar } 1762f2cb1360SIngo Molnar 1763e0e8d491SWanpeng Li /* 1764e0e8d491SWanpeng Li * sched_numa_find_closest() - given the NUMA topology, find the cpu 1765e0e8d491SWanpeng Li * closest to @cpu from @cpumask. 1766e0e8d491SWanpeng Li * cpumask: cpumask to find a cpu from 1767e0e8d491SWanpeng Li * cpu: cpu to be close to 1768e0e8d491SWanpeng Li * 1769e0e8d491SWanpeng Li * returns: cpu, or nr_cpu_ids when nothing found. 1770e0e8d491SWanpeng Li */ 1771e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1772e0e8d491SWanpeng Li { 1773e0e8d491SWanpeng Li int i, j = cpu_to_node(cpu); 1774e0e8d491SWanpeng Li 1775e0e8d491SWanpeng Li for (i = 0; i < sched_domains_numa_levels; i++) { 1776e0e8d491SWanpeng Li cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 1777e0e8d491SWanpeng Li if (cpu < nr_cpu_ids) 1778e0e8d491SWanpeng Li return cpu; 1779e0e8d491SWanpeng Li } 1780e0e8d491SWanpeng Li return nr_cpu_ids; 1781e0e8d491SWanpeng Li } 1782e0e8d491SWanpeng Li 1783f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */ 1784f2cb1360SIngo Molnar 1785f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map) 1786f2cb1360SIngo Molnar { 1787f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1788f2cb1360SIngo Molnar int j; 1789f2cb1360SIngo Molnar 1790f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1791f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1792f2cb1360SIngo Molnar 1793f2cb1360SIngo Molnar sdd->sd = alloc_percpu(struct sched_domain *); 1794f2cb1360SIngo Molnar if (!sdd->sd) 1795f2cb1360SIngo Molnar return -ENOMEM; 1796f2cb1360SIngo Molnar 1797f2cb1360SIngo Molnar sdd->sds = alloc_percpu(struct sched_domain_shared *); 1798f2cb1360SIngo Molnar if (!sdd->sds) 1799f2cb1360SIngo Molnar return -ENOMEM; 1800f2cb1360SIngo Molnar 1801f2cb1360SIngo Molnar sdd->sg = alloc_percpu(struct sched_group *); 1802f2cb1360SIngo Molnar if (!sdd->sg) 1803f2cb1360SIngo Molnar return -ENOMEM; 1804f2cb1360SIngo Molnar 1805f2cb1360SIngo Molnar sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1806f2cb1360SIngo Molnar if (!sdd->sgc) 1807f2cb1360SIngo Molnar return -ENOMEM; 1808f2cb1360SIngo Molnar 1809f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1810f2cb1360SIngo Molnar struct sched_domain *sd; 1811f2cb1360SIngo Molnar struct sched_domain_shared *sds; 1812f2cb1360SIngo Molnar struct sched_group *sg; 1813f2cb1360SIngo Molnar struct sched_group_capacity *sgc; 1814f2cb1360SIngo Molnar 1815f2cb1360SIngo Molnar sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1816f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1817f2cb1360SIngo Molnar if (!sd) 1818f2cb1360SIngo Molnar return -ENOMEM; 1819f2cb1360SIngo Molnar 1820f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sd, j) = sd; 1821f2cb1360SIngo Molnar 1822f2cb1360SIngo Molnar sds = kzalloc_node(sizeof(struct sched_domain_shared), 1823f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1824f2cb1360SIngo Molnar if (!sds) 1825f2cb1360SIngo Molnar return -ENOMEM; 1826f2cb1360SIngo Molnar 1827f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sds, j) = sds; 1828f2cb1360SIngo Molnar 1829f2cb1360SIngo Molnar sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1830f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1831f2cb1360SIngo Molnar if (!sg) 1832f2cb1360SIngo Molnar return -ENOMEM; 1833f2cb1360SIngo Molnar 1834f2cb1360SIngo Molnar sg->next = sg; 1835f2cb1360SIngo Molnar 1836f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sg, j) = sg; 1837f2cb1360SIngo Molnar 1838f2cb1360SIngo Molnar sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1839f2cb1360SIngo Molnar GFP_KERNEL, cpu_to_node(j)); 1840f2cb1360SIngo Molnar if (!sgc) 1841f2cb1360SIngo Molnar return -ENOMEM; 1842f2cb1360SIngo Molnar 1843005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG 1844005f874dSPeter Zijlstra sgc->id = j; 1845005f874dSPeter Zijlstra #endif 1846005f874dSPeter Zijlstra 1847f2cb1360SIngo Molnar *per_cpu_ptr(sdd->sgc, j) = sgc; 1848f2cb1360SIngo Molnar } 1849f2cb1360SIngo Molnar } 1850f2cb1360SIngo Molnar 1851f2cb1360SIngo Molnar return 0; 1852f2cb1360SIngo Molnar } 1853f2cb1360SIngo Molnar 1854f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map) 1855f2cb1360SIngo Molnar { 1856f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 1857f2cb1360SIngo Molnar int j; 1858f2cb1360SIngo Molnar 1859f2cb1360SIngo Molnar for_each_sd_topology(tl) { 1860f2cb1360SIngo Molnar struct sd_data *sdd = &tl->data; 1861f2cb1360SIngo Molnar 1862f2cb1360SIngo Molnar for_each_cpu(j, cpu_map) { 1863f2cb1360SIngo Molnar struct sched_domain *sd; 1864f2cb1360SIngo Molnar 1865f2cb1360SIngo Molnar if (sdd->sd) { 1866f2cb1360SIngo Molnar sd = *per_cpu_ptr(sdd->sd, j); 1867f2cb1360SIngo Molnar if (sd && (sd->flags & SD_OVERLAP)) 1868f2cb1360SIngo Molnar free_sched_groups(sd->groups, 0); 1869f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sd, j)); 1870f2cb1360SIngo Molnar } 1871f2cb1360SIngo Molnar 1872f2cb1360SIngo Molnar if (sdd->sds) 1873f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sds, j)); 1874f2cb1360SIngo Molnar if (sdd->sg) 1875f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sg, j)); 1876f2cb1360SIngo Molnar if (sdd->sgc) 1877f2cb1360SIngo Molnar kfree(*per_cpu_ptr(sdd->sgc, j)); 1878f2cb1360SIngo Molnar } 1879f2cb1360SIngo Molnar free_percpu(sdd->sd); 1880f2cb1360SIngo Molnar sdd->sd = NULL; 1881f2cb1360SIngo Molnar free_percpu(sdd->sds); 1882f2cb1360SIngo Molnar sdd->sds = NULL; 1883f2cb1360SIngo Molnar free_percpu(sdd->sg); 1884f2cb1360SIngo Molnar sdd->sg = NULL; 1885f2cb1360SIngo Molnar free_percpu(sdd->sgc); 1886f2cb1360SIngo Molnar sdd->sgc = NULL; 1887f2cb1360SIngo Molnar } 1888f2cb1360SIngo Molnar } 1889f2cb1360SIngo Molnar 1890181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1891f2cb1360SIngo Molnar const struct cpumask *cpu_map, struct sched_domain_attr *attr, 189205484e09SMorten Rasmussen struct sched_domain *child, int dflags, int cpu) 1893f2cb1360SIngo Molnar { 189405484e09SMorten Rasmussen struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1895f2cb1360SIngo Molnar 1896f2cb1360SIngo Molnar if (child) { 1897f2cb1360SIngo Molnar sd->level = child->level + 1; 1898f2cb1360SIngo Molnar sched_domain_level_max = max(sched_domain_level_max, sd->level); 1899f2cb1360SIngo Molnar child->parent = sd; 1900f2cb1360SIngo Molnar 1901f2cb1360SIngo Molnar if (!cpumask_subset(sched_domain_span(child), 1902f2cb1360SIngo Molnar sched_domain_span(sd))) { 1903f2cb1360SIngo Molnar pr_err("BUG: arch topology borken\n"); 1904f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG 1905f2cb1360SIngo Molnar pr_err(" the %s domain not a subset of the %s domain\n", 1906f2cb1360SIngo Molnar child->name, sd->name); 1907f2cb1360SIngo Molnar #endif 190897fb7a0aSIngo Molnar /* Fixup, ensure @sd has at least @child CPUs. */ 1909f2cb1360SIngo Molnar cpumask_or(sched_domain_span(sd), 1910f2cb1360SIngo Molnar sched_domain_span(sd), 1911f2cb1360SIngo Molnar sched_domain_span(child)); 1912f2cb1360SIngo Molnar } 1913f2cb1360SIngo Molnar 1914f2cb1360SIngo Molnar } 1915f2cb1360SIngo Molnar set_domain_attribute(sd, attr); 1916f2cb1360SIngo Molnar 1917f2cb1360SIngo Molnar return sd; 1918f2cb1360SIngo Molnar } 1919f2cb1360SIngo Molnar 1920f2cb1360SIngo Molnar /* 1921ccf74128SValentin Schneider * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 1922ccf74128SValentin Schneider * any two given CPUs at this (non-NUMA) topology level. 1923ccf74128SValentin Schneider */ 1924ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl, 1925ccf74128SValentin Schneider const struct cpumask *cpu_map, int cpu) 1926ccf74128SValentin Schneider { 1927ccf74128SValentin Schneider int i; 1928ccf74128SValentin Schneider 1929ccf74128SValentin Schneider /* NUMA levels are allowed to overlap */ 1930ccf74128SValentin Schneider if (tl->flags & SDTL_OVERLAP) 1931ccf74128SValentin Schneider return true; 1932ccf74128SValentin Schneider 1933ccf74128SValentin Schneider /* 1934ccf74128SValentin Schneider * Non-NUMA levels cannot partially overlap - they must be either 1935ccf74128SValentin Schneider * completely equal or completely disjoint. Otherwise we can end up 1936ccf74128SValentin Schneider * breaking the sched_group lists - i.e. a later get_group() pass 1937ccf74128SValentin Schneider * breaks the linking done for an earlier span. 1938ccf74128SValentin Schneider */ 1939ccf74128SValentin Schneider for_each_cpu(i, cpu_map) { 1940ccf74128SValentin Schneider if (i == cpu) 1941ccf74128SValentin Schneider continue; 1942ccf74128SValentin Schneider /* 1943ccf74128SValentin Schneider * We should 'and' all those masks with 'cpu_map' to exactly 1944ccf74128SValentin Schneider * match the topology we're about to build, but that can only 1945ccf74128SValentin Schneider * remove CPUs, which only lessens our ability to detect 1946ccf74128SValentin Schneider * overlaps 1947ccf74128SValentin Schneider */ 1948ccf74128SValentin Schneider if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 1949ccf74128SValentin Schneider cpumask_intersects(tl->mask(cpu), tl->mask(i))) 1950ccf74128SValentin Schneider return false; 1951ccf74128SValentin Schneider } 1952ccf74128SValentin Schneider 1953ccf74128SValentin Schneider return true; 1954ccf74128SValentin Schneider } 1955ccf74128SValentin Schneider 1956ccf74128SValentin Schneider /* 195705484e09SMorten Rasmussen * Find the sched_domain_topology_level where all CPU capacities are visible 195805484e09SMorten Rasmussen * for all CPUs. 195905484e09SMorten Rasmussen */ 196005484e09SMorten Rasmussen static struct sched_domain_topology_level 196105484e09SMorten Rasmussen *asym_cpu_capacity_level(const struct cpumask *cpu_map) 196205484e09SMorten Rasmussen { 196305484e09SMorten Rasmussen int i, j, asym_level = 0; 196405484e09SMorten Rasmussen bool asym = false; 196505484e09SMorten Rasmussen struct sched_domain_topology_level *tl, *asym_tl = NULL; 196605484e09SMorten Rasmussen unsigned long cap; 196705484e09SMorten Rasmussen 196805484e09SMorten Rasmussen /* Is there any asymmetry? */ 19698ec59c0fSVincent Guittot cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); 197005484e09SMorten Rasmussen 197105484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19728ec59c0fSVincent Guittot if (arch_scale_cpu_capacity(i) != cap) { 197305484e09SMorten Rasmussen asym = true; 197405484e09SMorten Rasmussen break; 197505484e09SMorten Rasmussen } 197605484e09SMorten Rasmussen } 197705484e09SMorten Rasmussen 197805484e09SMorten Rasmussen if (!asym) 197905484e09SMorten Rasmussen return NULL; 198005484e09SMorten Rasmussen 198105484e09SMorten Rasmussen /* 198205484e09SMorten Rasmussen * Examine topology from all CPU's point of views to detect the lowest 198305484e09SMorten Rasmussen * sched_domain_topology_level where a highest capacity CPU is visible 198405484e09SMorten Rasmussen * to everyone. 198505484e09SMorten Rasmussen */ 198605484e09SMorten Rasmussen for_each_cpu(i, cpu_map) { 19878ec59c0fSVincent Guittot unsigned long max_capacity = arch_scale_cpu_capacity(i); 198805484e09SMorten Rasmussen int tl_id = 0; 198905484e09SMorten Rasmussen 199005484e09SMorten Rasmussen for_each_sd_topology(tl) { 199105484e09SMorten Rasmussen if (tl_id < asym_level) 199205484e09SMorten Rasmussen goto next_level; 199305484e09SMorten Rasmussen 199405484e09SMorten Rasmussen for_each_cpu_and(j, tl->mask(i), cpu_map) { 199505484e09SMorten Rasmussen unsigned long capacity; 199605484e09SMorten Rasmussen 19978ec59c0fSVincent Guittot capacity = arch_scale_cpu_capacity(j); 199805484e09SMorten Rasmussen 199905484e09SMorten Rasmussen if (capacity <= max_capacity) 200005484e09SMorten Rasmussen continue; 200105484e09SMorten Rasmussen 200205484e09SMorten Rasmussen max_capacity = capacity; 200305484e09SMorten Rasmussen asym_level = tl_id; 200405484e09SMorten Rasmussen asym_tl = tl; 200505484e09SMorten Rasmussen } 200605484e09SMorten Rasmussen next_level: 200705484e09SMorten Rasmussen tl_id++; 200805484e09SMorten Rasmussen } 200905484e09SMorten Rasmussen } 201005484e09SMorten Rasmussen 201105484e09SMorten Rasmussen return asym_tl; 201205484e09SMorten Rasmussen } 201305484e09SMorten Rasmussen 201405484e09SMorten Rasmussen 201505484e09SMorten Rasmussen /* 2016f2cb1360SIngo Molnar * Build sched domains for a given set of CPUs and attach the sched domains 2017f2cb1360SIngo Molnar * to the individual CPUs 2018f2cb1360SIngo Molnar */ 2019f2cb1360SIngo Molnar static int 2020f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2021f2cb1360SIngo Molnar { 2022cd1cb335SValentin Schneider enum s_alloc alloc_state = sa_none; 2023f2cb1360SIngo Molnar struct sched_domain *sd; 2024f2cb1360SIngo Molnar struct s_data d; 2025f2cb1360SIngo Molnar struct rq *rq = NULL; 2026f2cb1360SIngo Molnar int i, ret = -ENOMEM; 202705484e09SMorten Rasmussen struct sched_domain_topology_level *tl_asym; 2028df054e84SMorten Rasmussen bool has_asym = false; 2029f2cb1360SIngo Molnar 2030cd1cb335SValentin Schneider if (WARN_ON(cpumask_empty(cpu_map))) 2031cd1cb335SValentin Schneider goto error; 2032cd1cb335SValentin Schneider 2033f2cb1360SIngo Molnar alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2034f2cb1360SIngo Molnar if (alloc_state != sa_rootdomain) 2035f2cb1360SIngo Molnar goto error; 2036f2cb1360SIngo Molnar 203705484e09SMorten Rasmussen tl_asym = asym_cpu_capacity_level(cpu_map); 203805484e09SMorten Rasmussen 2039f2cb1360SIngo Molnar /* Set up domains for CPUs specified by the cpu_map: */ 2040f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2041f2cb1360SIngo Molnar struct sched_domain_topology_level *tl; 2042c200191dSValentin Schneider int dflags = 0; 2043f2cb1360SIngo Molnar 2044f2cb1360SIngo Molnar sd = NULL; 2045f2cb1360SIngo Molnar for_each_sd_topology(tl) { 2046df054e84SMorten Rasmussen if (tl == tl_asym) { 204705484e09SMorten Rasmussen dflags |= SD_ASYM_CPUCAPACITY; 2048df054e84SMorten Rasmussen has_asym = true; 2049df054e84SMorten Rasmussen } 205005484e09SMorten Rasmussen 2051ccf74128SValentin Schneider if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2052ccf74128SValentin Schneider goto error; 2053ccf74128SValentin Schneider 205405484e09SMorten Rasmussen sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 205505484e09SMorten Rasmussen 2056f2cb1360SIngo Molnar if (tl == sched_domain_topology) 2057f2cb1360SIngo Molnar *per_cpu_ptr(d.sd, i) = sd; 2058af85596cSPeter Zijlstra if (tl->flags & SDTL_OVERLAP) 2059f2cb1360SIngo Molnar sd->flags |= SD_OVERLAP; 2060f2cb1360SIngo Molnar if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2061f2cb1360SIngo Molnar break; 2062f2cb1360SIngo Molnar } 2063f2cb1360SIngo Molnar } 2064f2cb1360SIngo Molnar 2065f2cb1360SIngo Molnar /* Build the groups for the domains */ 2066f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2067f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2068f2cb1360SIngo Molnar sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2069f2cb1360SIngo Molnar if (sd->flags & SD_OVERLAP) { 2070f2cb1360SIngo Molnar if (build_overlap_sched_groups(sd, i)) 2071f2cb1360SIngo Molnar goto error; 2072f2cb1360SIngo Molnar } else { 2073f2cb1360SIngo Molnar if (build_sched_groups(sd, i)) 2074f2cb1360SIngo Molnar goto error; 2075f2cb1360SIngo Molnar } 2076f2cb1360SIngo Molnar } 2077f2cb1360SIngo Molnar } 2078f2cb1360SIngo Molnar 2079f2cb1360SIngo Molnar /* Calculate CPU capacity for physical packages and nodes */ 2080f2cb1360SIngo Molnar for (i = nr_cpumask_bits-1; i >= 0; i--) { 2081f2cb1360SIngo Molnar if (!cpumask_test_cpu(i, cpu_map)) 2082f2cb1360SIngo Molnar continue; 2083f2cb1360SIngo Molnar 2084f2cb1360SIngo Molnar for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2085f2cb1360SIngo Molnar claim_allocations(i, sd); 2086f2cb1360SIngo Molnar init_sched_groups_capacity(i, sd); 2087f2cb1360SIngo Molnar } 2088f2cb1360SIngo Molnar } 2089f2cb1360SIngo Molnar 2090f2cb1360SIngo Molnar /* Attach the domains */ 2091f2cb1360SIngo Molnar rcu_read_lock(); 2092f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) { 2093f2cb1360SIngo Molnar rq = cpu_rq(i); 2094f2cb1360SIngo Molnar sd = *per_cpu_ptr(d.sd, i); 2095f2cb1360SIngo Molnar 2096f2cb1360SIngo Molnar /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2097f2cb1360SIngo Molnar if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2098f2cb1360SIngo Molnar WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2099f2cb1360SIngo Molnar 2100f2cb1360SIngo Molnar cpu_attach_domain(sd, d.rd, i); 2101f2cb1360SIngo Molnar } 2102f2cb1360SIngo Molnar rcu_read_unlock(); 2103f2cb1360SIngo Molnar 2104df054e84SMorten Rasmussen if (has_asym) 2105e284df70SValentin Schneider static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2106df054e84SMorten Rasmussen 2107f2cb1360SIngo Molnar if (rq && sched_debug_enabled) { 2108bf5015a5SJuri Lelli pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2109f2cb1360SIngo Molnar cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2110f2cb1360SIngo Molnar } 2111f2cb1360SIngo Molnar 2112f2cb1360SIngo Molnar ret = 0; 2113f2cb1360SIngo Molnar error: 2114f2cb1360SIngo Molnar __free_domain_allocs(&d, alloc_state, cpu_map); 211597fb7a0aSIngo Molnar 2116f2cb1360SIngo Molnar return ret; 2117f2cb1360SIngo Molnar } 2118f2cb1360SIngo Molnar 2119f2cb1360SIngo Molnar /* Current sched domains: */ 2120f2cb1360SIngo Molnar static cpumask_var_t *doms_cur; 2121f2cb1360SIngo Molnar 2122f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */ 2123f2cb1360SIngo Molnar static int ndoms_cur; 2124f2cb1360SIngo Molnar 2125f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */ 2126f2cb1360SIngo Molnar static struct sched_domain_attr *dattr_cur; 2127f2cb1360SIngo Molnar 2128f2cb1360SIngo Molnar /* 2129f2cb1360SIngo Molnar * Special case: If a kmalloc() of a doms_cur partition (array of 2130f2cb1360SIngo Molnar * cpumask) fails, then fallback to a single sched domain, 2131f2cb1360SIngo Molnar * as determined by the single cpumask fallback_doms. 2132f2cb1360SIngo Molnar */ 21338d5dc512SPeter Zijlstra static cpumask_var_t fallback_doms; 2134f2cb1360SIngo Molnar 2135f2cb1360SIngo Molnar /* 2136f2cb1360SIngo Molnar * arch_update_cpu_topology lets virtualized architectures update the 2137f2cb1360SIngo Molnar * CPU core maps. It is supposed to return 1 if the topology changed 2138f2cb1360SIngo Molnar * or 0 if it stayed the same. 2139f2cb1360SIngo Molnar */ 2140f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void) 2141f2cb1360SIngo Molnar { 2142f2cb1360SIngo Molnar return 0; 2143f2cb1360SIngo Molnar } 2144f2cb1360SIngo Molnar 2145f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2146f2cb1360SIngo Molnar { 2147f2cb1360SIngo Molnar int i; 2148f2cb1360SIngo Molnar cpumask_var_t *doms; 2149f2cb1360SIngo Molnar 21506da2ec56SKees Cook doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2151f2cb1360SIngo Molnar if (!doms) 2152f2cb1360SIngo Molnar return NULL; 2153f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) { 2154f2cb1360SIngo Molnar if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2155f2cb1360SIngo Molnar free_sched_domains(doms, i); 2156f2cb1360SIngo Molnar return NULL; 2157f2cb1360SIngo Molnar } 2158f2cb1360SIngo Molnar } 2159f2cb1360SIngo Molnar return doms; 2160f2cb1360SIngo Molnar } 2161f2cb1360SIngo Molnar 2162f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2163f2cb1360SIngo Molnar { 2164f2cb1360SIngo Molnar unsigned int i; 2165f2cb1360SIngo Molnar for (i = 0; i < ndoms; i++) 2166f2cb1360SIngo Molnar free_cpumask_var(doms[i]); 2167f2cb1360SIngo Molnar kfree(doms); 2168f2cb1360SIngo Molnar } 2169f2cb1360SIngo Molnar 2170f2cb1360SIngo Molnar /* 2171cb0c0414SJuri Lelli * Set up scheduler domains and groups. For now this just excludes isolated 2172cb0c0414SJuri Lelli * CPUs, but could be used to exclude other special cases in the future. 2173f2cb1360SIngo Molnar */ 21748d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map) 2175f2cb1360SIngo Molnar { 2176f2cb1360SIngo Molnar int err; 2177f2cb1360SIngo Molnar 21788d5dc512SPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 21791676330eSPeter Zijlstra zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 21808d5dc512SPeter Zijlstra zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 21818d5dc512SPeter Zijlstra 2182f2cb1360SIngo Molnar arch_update_cpu_topology(); 2183f2cb1360SIngo Molnar ndoms_cur = 1; 2184f2cb1360SIngo Molnar doms_cur = alloc_sched_domains(ndoms_cur); 2185f2cb1360SIngo Molnar if (!doms_cur) 2186f2cb1360SIngo Molnar doms_cur = &fallback_doms; 2187edb93821SFrederic Weisbecker cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2188f2cb1360SIngo Molnar err = build_sched_domains(doms_cur[0], NULL); 2189f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2190f2cb1360SIngo Molnar 2191f2cb1360SIngo Molnar return err; 2192f2cb1360SIngo Molnar } 2193f2cb1360SIngo Molnar 2194f2cb1360SIngo Molnar /* 2195f2cb1360SIngo Molnar * Detach sched domains from a group of CPUs specified in cpu_map 2196f2cb1360SIngo Molnar * These CPUs will now be attached to the NULL domain 2197f2cb1360SIngo Molnar */ 2198f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map) 2199f2cb1360SIngo Molnar { 2200e284df70SValentin Schneider unsigned int cpu = cpumask_any(cpu_map); 2201f2cb1360SIngo Molnar int i; 2202f2cb1360SIngo Molnar 2203e284df70SValentin Schneider if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2204e284df70SValentin Schneider static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2205e284df70SValentin Schneider 2206f2cb1360SIngo Molnar rcu_read_lock(); 2207f2cb1360SIngo Molnar for_each_cpu(i, cpu_map) 2208f2cb1360SIngo Molnar cpu_attach_domain(NULL, &def_root_domain, i); 2209f2cb1360SIngo Molnar rcu_read_unlock(); 2210f2cb1360SIngo Molnar } 2211f2cb1360SIngo Molnar 2212f2cb1360SIngo Molnar /* handle null as "default" */ 2213f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2214f2cb1360SIngo Molnar struct sched_domain_attr *new, int idx_new) 2215f2cb1360SIngo Molnar { 2216f2cb1360SIngo Molnar struct sched_domain_attr tmp; 2217f2cb1360SIngo Molnar 2218f2cb1360SIngo Molnar /* Fast path: */ 2219f2cb1360SIngo Molnar if (!new && !cur) 2220f2cb1360SIngo Molnar return 1; 2221f2cb1360SIngo Molnar 2222f2cb1360SIngo Molnar tmp = SD_ATTR_INIT; 222397fb7a0aSIngo Molnar 2224f2cb1360SIngo Molnar return !memcmp(cur ? (cur + idx_cur) : &tmp, 2225f2cb1360SIngo Molnar new ? (new + idx_new) : &tmp, 2226f2cb1360SIngo Molnar sizeof(struct sched_domain_attr)); 2227f2cb1360SIngo Molnar } 2228f2cb1360SIngo Molnar 2229f2cb1360SIngo Molnar /* 2230f2cb1360SIngo Molnar * Partition sched domains as specified by the 'ndoms_new' 2231f2cb1360SIngo Molnar * cpumasks in the array doms_new[] of cpumasks. This compares 2232f2cb1360SIngo Molnar * doms_new[] to the current sched domain partitioning, doms_cur[]. 2233f2cb1360SIngo Molnar * It destroys each deleted domain and builds each new domain. 2234f2cb1360SIngo Molnar * 2235f2cb1360SIngo Molnar * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2236f2cb1360SIngo Molnar * The masks don't intersect (don't overlap.) We should setup one 2237f2cb1360SIngo Molnar * sched domain for each mask. CPUs not in any of the cpumasks will 2238f2cb1360SIngo Molnar * not be load balanced. If the same cpumask appears both in the 2239f2cb1360SIngo Molnar * current 'doms_cur' domains and in the new 'doms_new', we can leave 2240f2cb1360SIngo Molnar * it as it is. 2241f2cb1360SIngo Molnar * 2242f2cb1360SIngo Molnar * The passed in 'doms_new' should be allocated using 2243f2cb1360SIngo Molnar * alloc_sched_domains. This routine takes ownership of it and will 2244f2cb1360SIngo Molnar * free_sched_domains it when done with it. If the caller failed the 2245f2cb1360SIngo Molnar * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2246f2cb1360SIngo Molnar * and partition_sched_domains() will fallback to the single partition 2247f2cb1360SIngo Molnar * 'fallback_doms', it also forces the domains to be rebuilt. 2248f2cb1360SIngo Molnar * 2249f2cb1360SIngo Molnar * If doms_new == NULL it will be replaced with cpu_online_mask. 2250f2cb1360SIngo Molnar * ndoms_new == 0 is a special case for destroying existing domains, 2251f2cb1360SIngo Molnar * and it will not create the default domain. 2252f2cb1360SIngo Molnar * 2253c22645f4SMathieu Poirier * Call with hotplug lock and sched_domains_mutex held 2254f2cb1360SIngo Molnar */ 2255c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2256f2cb1360SIngo Molnar struct sched_domain_attr *dattr_new) 2257f2cb1360SIngo Molnar { 22581f74de87SQuentin Perret bool __maybe_unused has_eas = false; 2259f2cb1360SIngo Molnar int i, j, n; 2260f2cb1360SIngo Molnar int new_topology; 2261f2cb1360SIngo Molnar 2262c22645f4SMathieu Poirier lockdep_assert_held(&sched_domains_mutex); 2263f2cb1360SIngo Molnar 2264f2cb1360SIngo Molnar /* Always unregister in case we don't destroy any domains: */ 2265f2cb1360SIngo Molnar unregister_sched_domain_sysctl(); 2266f2cb1360SIngo Molnar 2267f2cb1360SIngo Molnar /* Let the architecture update CPU core mappings: */ 2268f2cb1360SIngo Molnar new_topology = arch_update_cpu_topology(); 2269f2cb1360SIngo Molnar 227009e0dd8eSPeter Zijlstra if (!doms_new) { 227109e0dd8eSPeter Zijlstra WARN_ON_ONCE(dattr_new); 227209e0dd8eSPeter Zijlstra n = 0; 227309e0dd8eSPeter Zijlstra doms_new = alloc_sched_domains(1); 227409e0dd8eSPeter Zijlstra if (doms_new) { 227509e0dd8eSPeter Zijlstra n = 1; 2276edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2277edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 227809e0dd8eSPeter Zijlstra } 227909e0dd8eSPeter Zijlstra } else { 228009e0dd8eSPeter Zijlstra n = ndoms_new; 228109e0dd8eSPeter Zijlstra } 2282f2cb1360SIngo Molnar 2283f2cb1360SIngo Molnar /* Destroy deleted domains: */ 2284f2cb1360SIngo Molnar for (i = 0; i < ndoms_cur; i++) { 2285f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 22866aa140faSQuentin Perret if (cpumask_equal(doms_cur[i], doms_new[j]) && 2287f9a25f77SMathieu Poirier dattrs_equal(dattr_cur, i, dattr_new, j)) { 2288f9a25f77SMathieu Poirier struct root_domain *rd; 2289f9a25f77SMathieu Poirier 2290f9a25f77SMathieu Poirier /* 2291f9a25f77SMathieu Poirier * This domain won't be destroyed and as such 2292f9a25f77SMathieu Poirier * its dl_bw->total_bw needs to be cleared. It 2293f9a25f77SMathieu Poirier * will be recomputed in function 2294f9a25f77SMathieu Poirier * update_tasks_root_domain(). 2295f9a25f77SMathieu Poirier */ 2296f9a25f77SMathieu Poirier rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2297f9a25f77SMathieu Poirier dl_clear_root_domain(rd); 2298f2cb1360SIngo Molnar goto match1; 2299f2cb1360SIngo Molnar } 2300f9a25f77SMathieu Poirier } 2301f2cb1360SIngo Molnar /* No match - a current sched domain not in new doms_new[] */ 2302f2cb1360SIngo Molnar detach_destroy_domains(doms_cur[i]); 2303f2cb1360SIngo Molnar match1: 2304f2cb1360SIngo Molnar ; 2305f2cb1360SIngo Molnar } 2306f2cb1360SIngo Molnar 2307f2cb1360SIngo Molnar n = ndoms_cur; 230809e0dd8eSPeter Zijlstra if (!doms_new) { 2309f2cb1360SIngo Molnar n = 0; 2310f2cb1360SIngo Molnar doms_new = &fallback_doms; 2311edb93821SFrederic Weisbecker cpumask_and(doms_new[0], cpu_active_mask, 2312edb93821SFrederic Weisbecker housekeeping_cpumask(HK_FLAG_DOMAIN)); 2313f2cb1360SIngo Molnar } 2314f2cb1360SIngo Molnar 2315f2cb1360SIngo Molnar /* Build new domains: */ 2316f2cb1360SIngo Molnar for (i = 0; i < ndoms_new; i++) { 2317f2cb1360SIngo Molnar for (j = 0; j < n && !new_topology; j++) { 23186aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 23196aa140faSQuentin Perret dattrs_equal(dattr_new, i, dattr_cur, j)) 2320f2cb1360SIngo Molnar goto match2; 2321f2cb1360SIngo Molnar } 2322f2cb1360SIngo Molnar /* No match - add a new doms_new */ 2323f2cb1360SIngo Molnar build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2324f2cb1360SIngo Molnar match2: 2325f2cb1360SIngo Molnar ; 2326f2cb1360SIngo Molnar } 2327f2cb1360SIngo Molnar 2328531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 23296aa140faSQuentin Perret /* Build perf. domains: */ 23306aa140faSQuentin Perret for (i = 0; i < ndoms_new; i++) { 2331531b5c9fSQuentin Perret for (j = 0; j < n && !sched_energy_update; j++) { 23326aa140faSQuentin Perret if (cpumask_equal(doms_new[i], doms_cur[j]) && 23331f74de87SQuentin Perret cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 23341f74de87SQuentin Perret has_eas = true; 23356aa140faSQuentin Perret goto match3; 23366aa140faSQuentin Perret } 23371f74de87SQuentin Perret } 23386aa140faSQuentin Perret /* No match - add perf. domains for a new rd */ 23391f74de87SQuentin Perret has_eas |= build_perf_domains(doms_new[i]); 23406aa140faSQuentin Perret match3: 23416aa140faSQuentin Perret ; 23426aa140faSQuentin Perret } 23431f74de87SQuentin Perret sched_energy_set(has_eas); 23446aa140faSQuentin Perret #endif 23456aa140faSQuentin Perret 2346f2cb1360SIngo Molnar /* Remember the new sched domains: */ 2347f2cb1360SIngo Molnar if (doms_cur != &fallback_doms) 2348f2cb1360SIngo Molnar free_sched_domains(doms_cur, ndoms_cur); 2349f2cb1360SIngo Molnar 2350f2cb1360SIngo Molnar kfree(dattr_cur); 2351f2cb1360SIngo Molnar doms_cur = doms_new; 2352f2cb1360SIngo Molnar dattr_cur = dattr_new; 2353f2cb1360SIngo Molnar ndoms_cur = ndoms_new; 2354f2cb1360SIngo Molnar 2355f2cb1360SIngo Molnar register_sched_domain_sysctl(); 2356c22645f4SMathieu Poirier } 2357f2cb1360SIngo Molnar 2358c22645f4SMathieu Poirier /* 2359c22645f4SMathieu Poirier * Call with hotplug lock held 2360c22645f4SMathieu Poirier */ 2361c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2362c22645f4SMathieu Poirier struct sched_domain_attr *dattr_new) 2363c22645f4SMathieu Poirier { 2364c22645f4SMathieu Poirier mutex_lock(&sched_domains_mutex); 2365c22645f4SMathieu Poirier partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2366f2cb1360SIngo Molnar mutex_unlock(&sched_domains_mutex); 2367f2cb1360SIngo Molnar } 2368