xref: /openbmc/linux/kernel/sched/topology.c (revision 181a80d1f7f453f58c4b47f89084d0849632858c)
1f2cb1360SIngo Molnar /*
2f2cb1360SIngo Molnar  * Scheduler topology setup/handling methods
3f2cb1360SIngo Molnar  */
4f2cb1360SIngo Molnar #include <linux/sched.h>
5f2cb1360SIngo Molnar #include <linux/mutex.h>
6f2cb1360SIngo Molnar 
7f2cb1360SIngo Molnar #include "sched.h"
8f2cb1360SIngo Molnar 
9f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex);
10f2cb1360SIngo Molnar 
11f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */
12f2cb1360SIngo Molnar cpumask_var_t sched_domains_tmpmask;
131676330eSPeter Zijlstra cpumask_var_t sched_domains_tmpmask2;
14f2cb1360SIngo Molnar 
15f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
16f2cb1360SIngo Molnar 
17f2cb1360SIngo Molnar static __read_mostly int sched_debug_enabled;
18f2cb1360SIngo Molnar 
19f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str)
20f2cb1360SIngo Molnar {
21f2cb1360SIngo Molnar 	sched_debug_enabled = 1;
22f2cb1360SIngo Molnar 
23f2cb1360SIngo Molnar 	return 0;
24f2cb1360SIngo Molnar }
25f2cb1360SIngo Molnar early_param("sched_debug", sched_debug_setup);
26f2cb1360SIngo Molnar 
27f2cb1360SIngo Molnar static inline bool sched_debug(void)
28f2cb1360SIngo Molnar {
29f2cb1360SIngo Molnar 	return sched_debug_enabled;
30f2cb1360SIngo Molnar }
31f2cb1360SIngo Molnar 
32f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
33f2cb1360SIngo Molnar 				  struct cpumask *groupmask)
34f2cb1360SIngo Molnar {
35f2cb1360SIngo Molnar 	struct sched_group *group = sd->groups;
36f2cb1360SIngo Molnar 
37f2cb1360SIngo Molnar 	cpumask_clear(groupmask);
38f2cb1360SIngo Molnar 
39005f874dSPeter Zijlstra 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
40f2cb1360SIngo Molnar 
41f2cb1360SIngo Molnar 	if (!(sd->flags & SD_LOAD_BALANCE)) {
42f2cb1360SIngo Molnar 		printk("does not load-balance\n");
43f2cb1360SIngo Molnar 		if (sd->parent)
44f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
45f2cb1360SIngo Molnar 					" has parent");
46f2cb1360SIngo Molnar 		return -1;
47f2cb1360SIngo Molnar 	}
48f2cb1360SIngo Molnar 
49005f874dSPeter Zijlstra 	printk(KERN_CONT "span=%*pbl level=%s\n",
50f2cb1360SIngo Molnar 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
51f2cb1360SIngo Molnar 
52f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
53f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: domain->span does not contain "
54f2cb1360SIngo Molnar 				"CPU%d\n", cpu);
55f2cb1360SIngo Molnar 	}
56ae4df9d6SPeter Zijlstra 	if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
57f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: domain->groups does not contain"
58f2cb1360SIngo Molnar 				" CPU%d\n", cpu);
59f2cb1360SIngo Molnar 	}
60f2cb1360SIngo Molnar 
61f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
62f2cb1360SIngo Molnar 	do {
63f2cb1360SIngo Molnar 		if (!group) {
64f2cb1360SIngo Molnar 			printk("\n");
65f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: group is NULL\n");
66f2cb1360SIngo Molnar 			break;
67f2cb1360SIngo Molnar 		}
68f2cb1360SIngo Molnar 
69ae4df9d6SPeter Zijlstra 		if (!cpumask_weight(sched_group_span(group))) {
70f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
71f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: empty group\n");
72f2cb1360SIngo Molnar 			break;
73f2cb1360SIngo Molnar 		}
74f2cb1360SIngo Molnar 
75f2cb1360SIngo Molnar 		if (!(sd->flags & SD_OVERLAP) &&
76ae4df9d6SPeter Zijlstra 		    cpumask_intersects(groupmask, sched_group_span(group))) {
77f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
78f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: repeated CPUs\n");
79f2cb1360SIngo Molnar 			break;
80f2cb1360SIngo Molnar 		}
81f2cb1360SIngo Molnar 
82ae4df9d6SPeter Zijlstra 		cpumask_or(groupmask, groupmask, sched_group_span(group));
83f2cb1360SIngo Molnar 
84005f874dSPeter Zijlstra 		printk(KERN_CONT " %d:{ span=%*pbl",
85005f874dSPeter Zijlstra 				group->sgc->id,
86ae4df9d6SPeter Zijlstra 				cpumask_pr_args(sched_group_span(group)));
87b0151c25SPeter Zijlstra 
88af218122SPeter Zijlstra 		if ((sd->flags & SD_OVERLAP) &&
89ae4df9d6SPeter Zijlstra 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
90005f874dSPeter Zijlstra 			printk(KERN_CONT " mask=%*pbl",
91e5c14b1fSPeter Zijlstra 				cpumask_pr_args(group_balance_mask(group)));
92b0151c25SPeter Zijlstra 		}
93b0151c25SPeter Zijlstra 
94005f874dSPeter Zijlstra 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
95005f874dSPeter Zijlstra 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
96f2cb1360SIngo Molnar 
97a420b063SPeter Zijlstra 		if (group == sd->groups && sd->child &&
98a420b063SPeter Zijlstra 		    !cpumask_equal(sched_domain_span(sd->child),
99ae4df9d6SPeter Zijlstra 				   sched_group_span(group))) {
100a420b063SPeter Zijlstra 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
101a420b063SPeter Zijlstra 		}
102a420b063SPeter Zijlstra 
103005f874dSPeter Zijlstra 		printk(KERN_CONT " }");
104005f874dSPeter Zijlstra 
105f2cb1360SIngo Molnar 		group = group->next;
106b0151c25SPeter Zijlstra 
107b0151c25SPeter Zijlstra 		if (group != sd->groups)
108b0151c25SPeter Zijlstra 			printk(KERN_CONT ",");
109b0151c25SPeter Zijlstra 
110f2cb1360SIngo Molnar 	} while (group != sd->groups);
111f2cb1360SIngo Molnar 	printk(KERN_CONT "\n");
112f2cb1360SIngo Molnar 
113f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
114f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
115f2cb1360SIngo Molnar 
116f2cb1360SIngo Molnar 	if (sd->parent &&
117f2cb1360SIngo Molnar 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
118f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: parent span is not a superset "
119f2cb1360SIngo Molnar 			"of domain->span\n");
120f2cb1360SIngo Molnar 	return 0;
121f2cb1360SIngo Molnar }
122f2cb1360SIngo Molnar 
123f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu)
124f2cb1360SIngo Molnar {
125f2cb1360SIngo Molnar 	int level = 0;
126f2cb1360SIngo Molnar 
127f2cb1360SIngo Molnar 	if (!sched_debug_enabled)
128f2cb1360SIngo Molnar 		return;
129f2cb1360SIngo Molnar 
130f2cb1360SIngo Molnar 	if (!sd) {
131f2cb1360SIngo Molnar 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
132f2cb1360SIngo Molnar 		return;
133f2cb1360SIngo Molnar 	}
134f2cb1360SIngo Molnar 
135005f874dSPeter Zijlstra 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
136f2cb1360SIngo Molnar 
137f2cb1360SIngo Molnar 	for (;;) {
138f2cb1360SIngo Molnar 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
139f2cb1360SIngo Molnar 			break;
140f2cb1360SIngo Molnar 		level++;
141f2cb1360SIngo Molnar 		sd = sd->parent;
142f2cb1360SIngo Molnar 		if (!sd)
143f2cb1360SIngo Molnar 			break;
144f2cb1360SIngo Molnar 	}
145f2cb1360SIngo Molnar }
146f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */
147f2cb1360SIngo Molnar 
148f2cb1360SIngo Molnar # define sched_debug_enabled 0
149f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0)
150f2cb1360SIngo Molnar static inline bool sched_debug(void)
151f2cb1360SIngo Molnar {
152f2cb1360SIngo Molnar 	return false;
153f2cb1360SIngo Molnar }
154f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */
155f2cb1360SIngo Molnar 
156f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd)
157f2cb1360SIngo Molnar {
158f2cb1360SIngo Molnar 	if (cpumask_weight(sched_domain_span(sd)) == 1)
159f2cb1360SIngo Molnar 		return 1;
160f2cb1360SIngo Molnar 
161f2cb1360SIngo Molnar 	/* Following flags need at least 2 groups */
162f2cb1360SIngo Molnar 	if (sd->flags & (SD_LOAD_BALANCE |
163f2cb1360SIngo Molnar 			 SD_BALANCE_NEWIDLE |
164f2cb1360SIngo Molnar 			 SD_BALANCE_FORK |
165f2cb1360SIngo Molnar 			 SD_BALANCE_EXEC |
166f2cb1360SIngo Molnar 			 SD_SHARE_CPUCAPACITY |
167f2cb1360SIngo Molnar 			 SD_ASYM_CPUCAPACITY |
168f2cb1360SIngo Molnar 			 SD_SHARE_PKG_RESOURCES |
169f2cb1360SIngo Molnar 			 SD_SHARE_POWERDOMAIN)) {
170f2cb1360SIngo Molnar 		if (sd->groups != sd->groups->next)
171f2cb1360SIngo Molnar 			return 0;
172f2cb1360SIngo Molnar 	}
173f2cb1360SIngo Molnar 
174f2cb1360SIngo Molnar 	/* Following flags don't use groups */
175f2cb1360SIngo Molnar 	if (sd->flags & (SD_WAKE_AFFINE))
176f2cb1360SIngo Molnar 		return 0;
177f2cb1360SIngo Molnar 
178f2cb1360SIngo Molnar 	return 1;
179f2cb1360SIngo Molnar }
180f2cb1360SIngo Molnar 
181f2cb1360SIngo Molnar static int
182f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
183f2cb1360SIngo Molnar {
184f2cb1360SIngo Molnar 	unsigned long cflags = sd->flags, pflags = parent->flags;
185f2cb1360SIngo Molnar 
186f2cb1360SIngo Molnar 	if (sd_degenerate(parent))
187f2cb1360SIngo Molnar 		return 1;
188f2cb1360SIngo Molnar 
189f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
190f2cb1360SIngo Molnar 		return 0;
191f2cb1360SIngo Molnar 
192f2cb1360SIngo Molnar 	/* Flags needing groups don't count if only 1 group in parent */
193f2cb1360SIngo Molnar 	if (parent->groups == parent->groups->next) {
194f2cb1360SIngo Molnar 		pflags &= ~(SD_LOAD_BALANCE |
195f2cb1360SIngo Molnar 				SD_BALANCE_NEWIDLE |
196f2cb1360SIngo Molnar 				SD_BALANCE_FORK |
197f2cb1360SIngo Molnar 				SD_BALANCE_EXEC |
198f2cb1360SIngo Molnar 				SD_ASYM_CPUCAPACITY |
199f2cb1360SIngo Molnar 				SD_SHARE_CPUCAPACITY |
200f2cb1360SIngo Molnar 				SD_SHARE_PKG_RESOURCES |
201f2cb1360SIngo Molnar 				SD_PREFER_SIBLING |
202f2cb1360SIngo Molnar 				SD_SHARE_POWERDOMAIN);
203f2cb1360SIngo Molnar 		if (nr_node_ids == 1)
204f2cb1360SIngo Molnar 			pflags &= ~SD_SERIALIZE;
205f2cb1360SIngo Molnar 	}
206f2cb1360SIngo Molnar 	if (~cflags & pflags)
207f2cb1360SIngo Molnar 		return 0;
208f2cb1360SIngo Molnar 
209f2cb1360SIngo Molnar 	return 1;
210f2cb1360SIngo Molnar }
211f2cb1360SIngo Molnar 
212f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu)
213f2cb1360SIngo Molnar {
214f2cb1360SIngo Molnar 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
215f2cb1360SIngo Molnar 
216f2cb1360SIngo Molnar 	cpupri_cleanup(&rd->cpupri);
217f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
218f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
219f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
220f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
221f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
222f2cb1360SIngo Molnar 	kfree(rd);
223f2cb1360SIngo Molnar }
224f2cb1360SIngo Molnar 
225f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd)
226f2cb1360SIngo Molnar {
227f2cb1360SIngo Molnar 	struct root_domain *old_rd = NULL;
228f2cb1360SIngo Molnar 	unsigned long flags;
229f2cb1360SIngo Molnar 
230f2cb1360SIngo Molnar 	raw_spin_lock_irqsave(&rq->lock, flags);
231f2cb1360SIngo Molnar 
232f2cb1360SIngo Molnar 	if (rq->rd) {
233f2cb1360SIngo Molnar 		old_rd = rq->rd;
234f2cb1360SIngo Molnar 
235f2cb1360SIngo Molnar 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
236f2cb1360SIngo Molnar 			set_rq_offline(rq);
237f2cb1360SIngo Molnar 
238f2cb1360SIngo Molnar 		cpumask_clear_cpu(rq->cpu, old_rd->span);
239f2cb1360SIngo Molnar 
240f2cb1360SIngo Molnar 		/*
241f2cb1360SIngo Molnar 		 * If we dont want to free the old_rd yet then
242f2cb1360SIngo Molnar 		 * set old_rd to NULL to skip the freeing later
243f2cb1360SIngo Molnar 		 * in this function:
244f2cb1360SIngo Molnar 		 */
245f2cb1360SIngo Molnar 		if (!atomic_dec_and_test(&old_rd->refcount))
246f2cb1360SIngo Molnar 			old_rd = NULL;
247f2cb1360SIngo Molnar 	}
248f2cb1360SIngo Molnar 
249f2cb1360SIngo Molnar 	atomic_inc(&rd->refcount);
250f2cb1360SIngo Molnar 	rq->rd = rd;
251f2cb1360SIngo Molnar 
252f2cb1360SIngo Molnar 	cpumask_set_cpu(rq->cpu, rd->span);
253f2cb1360SIngo Molnar 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
254f2cb1360SIngo Molnar 		set_rq_online(rq);
255f2cb1360SIngo Molnar 
256f2cb1360SIngo Molnar 	raw_spin_unlock_irqrestore(&rq->lock, flags);
257f2cb1360SIngo Molnar 
258f2cb1360SIngo Molnar 	if (old_rd)
259f2cb1360SIngo Molnar 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
260f2cb1360SIngo Molnar }
261f2cb1360SIngo Molnar 
262f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd)
263f2cb1360SIngo Molnar {
264f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
265f2cb1360SIngo Molnar 		goto out;
266f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
267f2cb1360SIngo Molnar 		goto free_span;
268f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
269f2cb1360SIngo Molnar 		goto free_online;
270f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
271f2cb1360SIngo Molnar 		goto free_dlo_mask;
272f2cb1360SIngo Molnar 
273f2cb1360SIngo Molnar 	init_dl_bw(&rd->dl_bw);
274f2cb1360SIngo Molnar 	if (cpudl_init(&rd->cpudl) != 0)
275f2cb1360SIngo Molnar 		goto free_rto_mask;
276f2cb1360SIngo Molnar 
277f2cb1360SIngo Molnar 	if (cpupri_init(&rd->cpupri) != 0)
278f2cb1360SIngo Molnar 		goto free_cpudl;
279f2cb1360SIngo Molnar 	return 0;
280f2cb1360SIngo Molnar 
281f2cb1360SIngo Molnar free_cpudl:
282f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
283f2cb1360SIngo Molnar free_rto_mask:
284f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
285f2cb1360SIngo Molnar free_dlo_mask:
286f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
287f2cb1360SIngo Molnar free_online:
288f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
289f2cb1360SIngo Molnar free_span:
290f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
291f2cb1360SIngo Molnar out:
292f2cb1360SIngo Molnar 	return -ENOMEM;
293f2cb1360SIngo Molnar }
294f2cb1360SIngo Molnar 
295f2cb1360SIngo Molnar /*
296f2cb1360SIngo Molnar  * By default the system creates a single root-domain with all CPUs as
297f2cb1360SIngo Molnar  * members (mimicking the global state we have today).
298f2cb1360SIngo Molnar  */
299f2cb1360SIngo Molnar struct root_domain def_root_domain;
300f2cb1360SIngo Molnar 
301f2cb1360SIngo Molnar void init_defrootdomain(void)
302f2cb1360SIngo Molnar {
303f2cb1360SIngo Molnar 	init_rootdomain(&def_root_domain);
304f2cb1360SIngo Molnar 
305f2cb1360SIngo Molnar 	atomic_set(&def_root_domain.refcount, 1);
306f2cb1360SIngo Molnar }
307f2cb1360SIngo Molnar 
308f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void)
309f2cb1360SIngo Molnar {
310f2cb1360SIngo Molnar 	struct root_domain *rd;
311f2cb1360SIngo Molnar 
3124d13a06dSViresh Kumar 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
313f2cb1360SIngo Molnar 	if (!rd)
314f2cb1360SIngo Molnar 		return NULL;
315f2cb1360SIngo Molnar 
316f2cb1360SIngo Molnar 	if (init_rootdomain(rd) != 0) {
317f2cb1360SIngo Molnar 		kfree(rd);
318f2cb1360SIngo Molnar 		return NULL;
319f2cb1360SIngo Molnar 	}
320f2cb1360SIngo Molnar 
321f2cb1360SIngo Molnar 	return rd;
322f2cb1360SIngo Molnar }
323f2cb1360SIngo Molnar 
324f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc)
325f2cb1360SIngo Molnar {
326f2cb1360SIngo Molnar 	struct sched_group *tmp, *first;
327f2cb1360SIngo Molnar 
328f2cb1360SIngo Molnar 	if (!sg)
329f2cb1360SIngo Molnar 		return;
330f2cb1360SIngo Molnar 
331f2cb1360SIngo Molnar 	first = sg;
332f2cb1360SIngo Molnar 	do {
333f2cb1360SIngo Molnar 		tmp = sg->next;
334f2cb1360SIngo Molnar 
335f2cb1360SIngo Molnar 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
336f2cb1360SIngo Molnar 			kfree(sg->sgc);
337f2cb1360SIngo Molnar 
338f2cb1360SIngo Molnar 		kfree(sg);
339f2cb1360SIngo Molnar 		sg = tmp;
340f2cb1360SIngo Molnar 	} while (sg != first);
341f2cb1360SIngo Molnar }
342f2cb1360SIngo Molnar 
343f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd)
344f2cb1360SIngo Molnar {
345f2cb1360SIngo Molnar 	/*
346f2cb1360SIngo Molnar 	 * If its an overlapping domain it has private groups, iterate and
347f2cb1360SIngo Molnar 	 * nuke them all.
348f2cb1360SIngo Molnar 	 */
349f2cb1360SIngo Molnar 	if (sd->flags & SD_OVERLAP) {
350f2cb1360SIngo Molnar 		free_sched_groups(sd->groups, 1);
351f2cb1360SIngo Molnar 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
352f2cb1360SIngo Molnar 		kfree(sd->groups->sgc);
353f2cb1360SIngo Molnar 		kfree(sd->groups);
354f2cb1360SIngo Molnar 	}
355f2cb1360SIngo Molnar 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
356f2cb1360SIngo Molnar 		kfree(sd->shared);
357f2cb1360SIngo Molnar 	kfree(sd);
358f2cb1360SIngo Molnar }
359f2cb1360SIngo Molnar 
360f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu)
361f2cb1360SIngo Molnar {
362f2cb1360SIngo Molnar 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
363f2cb1360SIngo Molnar 
364f2cb1360SIngo Molnar 	while (sd) {
365f2cb1360SIngo Molnar 		struct sched_domain *parent = sd->parent;
366f2cb1360SIngo Molnar 		destroy_sched_domain(sd);
367f2cb1360SIngo Molnar 		sd = parent;
368f2cb1360SIngo Molnar 	}
369f2cb1360SIngo Molnar }
370f2cb1360SIngo Molnar 
371f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd)
372f2cb1360SIngo Molnar {
373f2cb1360SIngo Molnar 	if (sd)
374f2cb1360SIngo Molnar 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
375f2cb1360SIngo Molnar }
376f2cb1360SIngo Molnar 
377f2cb1360SIngo Molnar /*
378f2cb1360SIngo Molnar  * Keep a special pointer to the highest sched_domain that has
379f2cb1360SIngo Molnar  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
380f2cb1360SIngo Molnar  * allows us to avoid some pointer chasing select_idle_sibling().
381f2cb1360SIngo Molnar  *
382f2cb1360SIngo Molnar  * Also keep a unique ID per domain (we use the first CPU number in
383f2cb1360SIngo Molnar  * the cpumask of the domain), this allows us to quickly tell if
384f2cb1360SIngo Molnar  * two CPUs are in the same cache domain, see cpus_share_cache().
385f2cb1360SIngo Molnar  */
386f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_llc);
387f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size);
388f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id);
389f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
390f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_numa);
391f2cb1360SIngo Molnar DEFINE_PER_CPU(struct sched_domain *, sd_asym);
392f2cb1360SIngo Molnar 
393f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu)
394f2cb1360SIngo Molnar {
395f2cb1360SIngo Molnar 	struct sched_domain_shared *sds = NULL;
396f2cb1360SIngo Molnar 	struct sched_domain *sd;
397f2cb1360SIngo Molnar 	int id = cpu;
398f2cb1360SIngo Molnar 	int size = 1;
399f2cb1360SIngo Molnar 
400f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
401f2cb1360SIngo Molnar 	if (sd) {
402f2cb1360SIngo Molnar 		id = cpumask_first(sched_domain_span(sd));
403f2cb1360SIngo Molnar 		size = cpumask_weight(sched_domain_span(sd));
404f2cb1360SIngo Molnar 		sds = sd->shared;
405f2cb1360SIngo Molnar 	}
406f2cb1360SIngo Molnar 
407f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
408f2cb1360SIngo Molnar 	per_cpu(sd_llc_size, cpu) = size;
409f2cb1360SIngo Molnar 	per_cpu(sd_llc_id, cpu) = id;
410f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
411f2cb1360SIngo Molnar 
412f2cb1360SIngo Molnar 	sd = lowest_flag_domain(cpu, SD_NUMA);
413f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
414f2cb1360SIngo Molnar 
415f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
416f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
417f2cb1360SIngo Molnar }
418f2cb1360SIngo Molnar 
419f2cb1360SIngo Molnar /*
420f2cb1360SIngo Molnar  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
421f2cb1360SIngo Molnar  * hold the hotplug lock.
422f2cb1360SIngo Molnar  */
423f2cb1360SIngo Molnar static void
424f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
425f2cb1360SIngo Molnar {
426f2cb1360SIngo Molnar 	struct rq *rq = cpu_rq(cpu);
427f2cb1360SIngo Molnar 	struct sched_domain *tmp;
428f2cb1360SIngo Molnar 
429f2cb1360SIngo Molnar 	/* Remove the sched domains which do not contribute to scheduling. */
430f2cb1360SIngo Molnar 	for (tmp = sd; tmp; ) {
431f2cb1360SIngo Molnar 		struct sched_domain *parent = tmp->parent;
432f2cb1360SIngo Molnar 		if (!parent)
433f2cb1360SIngo Molnar 			break;
434f2cb1360SIngo Molnar 
435f2cb1360SIngo Molnar 		if (sd_parent_degenerate(tmp, parent)) {
436f2cb1360SIngo Molnar 			tmp->parent = parent->parent;
437f2cb1360SIngo Molnar 			if (parent->parent)
438f2cb1360SIngo Molnar 				parent->parent->child = tmp;
439f2cb1360SIngo Molnar 			/*
440f2cb1360SIngo Molnar 			 * Transfer SD_PREFER_SIBLING down in case of a
441f2cb1360SIngo Molnar 			 * degenerate parent; the spans match for this
442f2cb1360SIngo Molnar 			 * so the property transfers.
443f2cb1360SIngo Molnar 			 */
444f2cb1360SIngo Molnar 			if (parent->flags & SD_PREFER_SIBLING)
445f2cb1360SIngo Molnar 				tmp->flags |= SD_PREFER_SIBLING;
446f2cb1360SIngo Molnar 			destroy_sched_domain(parent);
447f2cb1360SIngo Molnar 		} else
448f2cb1360SIngo Molnar 			tmp = tmp->parent;
449f2cb1360SIngo Molnar 	}
450f2cb1360SIngo Molnar 
451f2cb1360SIngo Molnar 	if (sd && sd_degenerate(sd)) {
452f2cb1360SIngo Molnar 		tmp = sd;
453f2cb1360SIngo Molnar 		sd = sd->parent;
454f2cb1360SIngo Molnar 		destroy_sched_domain(tmp);
455f2cb1360SIngo Molnar 		if (sd)
456f2cb1360SIngo Molnar 			sd->child = NULL;
457f2cb1360SIngo Molnar 	}
458f2cb1360SIngo Molnar 
459f2cb1360SIngo Molnar 	sched_domain_debug(sd, cpu);
460f2cb1360SIngo Molnar 
461f2cb1360SIngo Molnar 	rq_attach_root(rq, rd);
462f2cb1360SIngo Molnar 	tmp = rq->sd;
463f2cb1360SIngo Molnar 	rcu_assign_pointer(rq->sd, sd);
464f2cb1360SIngo Molnar 	destroy_sched_domains(tmp);
465f2cb1360SIngo Molnar 
466f2cb1360SIngo Molnar 	update_top_cache_domain(cpu);
467f2cb1360SIngo Molnar }
468f2cb1360SIngo Molnar 
469f2cb1360SIngo Molnar /* Setup the mask of CPUs configured for isolated domains */
470f2cb1360SIngo Molnar static int __init isolated_cpu_setup(char *str)
471f2cb1360SIngo Molnar {
472f2cb1360SIngo Molnar 	int ret;
473f2cb1360SIngo Molnar 
474f2cb1360SIngo Molnar 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
475f2cb1360SIngo Molnar 	ret = cpulist_parse(str, cpu_isolated_map);
476f2cb1360SIngo Molnar 	if (ret) {
477f2cb1360SIngo Molnar 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
478f2cb1360SIngo Molnar 		return 0;
479f2cb1360SIngo Molnar 	}
480f2cb1360SIngo Molnar 	return 1;
481f2cb1360SIngo Molnar }
482f2cb1360SIngo Molnar __setup("isolcpus=", isolated_cpu_setup);
483f2cb1360SIngo Molnar 
484f2cb1360SIngo Molnar struct s_data {
485f2cb1360SIngo Molnar 	struct sched_domain ** __percpu sd;
486f2cb1360SIngo Molnar 	struct root_domain	*rd;
487f2cb1360SIngo Molnar };
488f2cb1360SIngo Molnar 
489f2cb1360SIngo Molnar enum s_alloc {
490f2cb1360SIngo Molnar 	sa_rootdomain,
491f2cb1360SIngo Molnar 	sa_sd,
492f2cb1360SIngo Molnar 	sa_sd_storage,
493f2cb1360SIngo Molnar 	sa_none,
494f2cb1360SIngo Molnar };
495f2cb1360SIngo Molnar 
496f2cb1360SIngo Molnar /*
49735a566e6SPeter Zijlstra  * Return the canonical balance CPU for this group, this is the first CPU
498e5c14b1fSPeter Zijlstra  * of this group that's also in the balance mask.
49935a566e6SPeter Zijlstra  *
500e5c14b1fSPeter Zijlstra  * The balance mask are all those CPUs that could actually end up at this
501e5c14b1fSPeter Zijlstra  * group. See build_balance_mask().
50235a566e6SPeter Zijlstra  *
50335a566e6SPeter Zijlstra  * Also see should_we_balance().
50435a566e6SPeter Zijlstra  */
50535a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg)
50635a566e6SPeter Zijlstra {
507e5c14b1fSPeter Zijlstra 	return cpumask_first(group_balance_mask(sg));
50835a566e6SPeter Zijlstra }
50935a566e6SPeter Zijlstra 
51035a566e6SPeter Zijlstra 
51135a566e6SPeter Zijlstra /*
51235a566e6SPeter Zijlstra  * NUMA topology (first read the regular topology blurb below)
51335a566e6SPeter Zijlstra  *
51435a566e6SPeter Zijlstra  * Given a node-distance table, for example:
51535a566e6SPeter Zijlstra  *
51635a566e6SPeter Zijlstra  *   node   0   1   2   3
51735a566e6SPeter Zijlstra  *     0:  10  20  30  20
51835a566e6SPeter Zijlstra  *     1:  20  10  20  30
51935a566e6SPeter Zijlstra  *     2:  30  20  10  20
52035a566e6SPeter Zijlstra  *     3:  20  30  20  10
52135a566e6SPeter Zijlstra  *
52235a566e6SPeter Zijlstra  * which represents a 4 node ring topology like:
52335a566e6SPeter Zijlstra  *
52435a566e6SPeter Zijlstra  *   0 ----- 1
52535a566e6SPeter Zijlstra  *   |       |
52635a566e6SPeter Zijlstra  *   |       |
52735a566e6SPeter Zijlstra  *   |       |
52835a566e6SPeter Zijlstra  *   3 ----- 2
52935a566e6SPeter Zijlstra  *
53035a566e6SPeter Zijlstra  * We want to construct domains and groups to represent this. The way we go
53135a566e6SPeter Zijlstra  * about doing this is to build the domains on 'hops'. For each NUMA level we
53235a566e6SPeter Zijlstra  * construct the mask of all nodes reachable in @level hops.
53335a566e6SPeter Zijlstra  *
53435a566e6SPeter Zijlstra  * For the above NUMA topology that gives 3 levels:
53535a566e6SPeter Zijlstra  *
53635a566e6SPeter Zijlstra  * NUMA-2	0-3		0-3		0-3		0-3
53735a566e6SPeter Zijlstra  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
53835a566e6SPeter Zijlstra  *
53935a566e6SPeter Zijlstra  * NUMA-1	0-1,3		0-2		1-3		0,2-3
54035a566e6SPeter Zijlstra  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
54135a566e6SPeter Zijlstra  *
54235a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
54335a566e6SPeter Zijlstra  *
54435a566e6SPeter Zijlstra  *
54535a566e6SPeter Zijlstra  * As can be seen; things don't nicely line up as with the regular topology.
54635a566e6SPeter Zijlstra  * When we iterate a domain in child domain chunks some nodes can be
54735a566e6SPeter Zijlstra  * represented multiple times -- hence the "overlap" naming for this part of
54835a566e6SPeter Zijlstra  * the topology.
54935a566e6SPeter Zijlstra  *
55035a566e6SPeter Zijlstra  * In order to minimize this overlap, we only build enough groups to cover the
55135a566e6SPeter Zijlstra  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
55235a566e6SPeter Zijlstra  *
55335a566e6SPeter Zijlstra  * Because:
55435a566e6SPeter Zijlstra  *
55535a566e6SPeter Zijlstra  *  - the first group of each domain is its child domain; this
55635a566e6SPeter Zijlstra  *    gets us the first 0-1,3
55735a566e6SPeter Zijlstra  *  - the only uncovered node is 2, who's child domain is 1-3.
55835a566e6SPeter Zijlstra  *
55935a566e6SPeter Zijlstra  * However, because of the overlap, computing a unique CPU for each group is
56035a566e6SPeter Zijlstra  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
56135a566e6SPeter Zijlstra  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
56235a566e6SPeter Zijlstra  * end up at those groups (they would end up in group: 0-1,3).
56335a566e6SPeter Zijlstra  *
564e5c14b1fSPeter Zijlstra  * To correct this we have to introduce the group balance mask. This mask
56535a566e6SPeter Zijlstra  * will contain those CPUs in the group that can reach this group given the
56635a566e6SPeter Zijlstra  * (child) domain tree.
56735a566e6SPeter Zijlstra  *
56835a566e6SPeter Zijlstra  * With this we can once again compute balance_cpu and sched_group_capacity
56935a566e6SPeter Zijlstra  * relations.
57035a566e6SPeter Zijlstra  *
57135a566e6SPeter Zijlstra  * XXX include words on how balance_cpu is unique and therefore can be
57235a566e6SPeter Zijlstra  * used for sched_group_capacity links.
57335a566e6SPeter Zijlstra  *
57435a566e6SPeter Zijlstra  *
57535a566e6SPeter Zijlstra  * Another 'interesting' topology is:
57635a566e6SPeter Zijlstra  *
57735a566e6SPeter Zijlstra  *   node   0   1   2   3
57835a566e6SPeter Zijlstra  *     0:  10  20  20  30
57935a566e6SPeter Zijlstra  *     1:  20  10  20  20
58035a566e6SPeter Zijlstra  *     2:  20  20  10  20
58135a566e6SPeter Zijlstra  *     3:  30  20  20  10
58235a566e6SPeter Zijlstra  *
58335a566e6SPeter Zijlstra  * Which looks a little like:
58435a566e6SPeter Zijlstra  *
58535a566e6SPeter Zijlstra  *   0 ----- 1
58635a566e6SPeter Zijlstra  *   |     / |
58735a566e6SPeter Zijlstra  *   |   /   |
58835a566e6SPeter Zijlstra  *   | /     |
58935a566e6SPeter Zijlstra  *   2 ----- 3
59035a566e6SPeter Zijlstra  *
59135a566e6SPeter Zijlstra  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
59235a566e6SPeter Zijlstra  * are not.
59335a566e6SPeter Zijlstra  *
59435a566e6SPeter Zijlstra  * This leads to a few particularly weird cases where the sched_domain's are
59535a566e6SPeter Zijlstra  * not of the same number for each cpu. Consider:
59635a566e6SPeter Zijlstra  *
59735a566e6SPeter Zijlstra  * NUMA-2	0-3						0-3
59835a566e6SPeter Zijlstra  *  groups:	{0-2},{1-3}					{1-3},{0-2}
59935a566e6SPeter Zijlstra  *
60035a566e6SPeter Zijlstra  * NUMA-1	0-2		0-3		0-3		1-3
60135a566e6SPeter Zijlstra  *
60235a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
60335a566e6SPeter Zijlstra  *
60435a566e6SPeter Zijlstra  */
60535a566e6SPeter Zijlstra 
60635a566e6SPeter Zijlstra 
60735a566e6SPeter Zijlstra /*
608e5c14b1fSPeter Zijlstra  * Build the balance mask; it contains only those CPUs that can arrive at this
609e5c14b1fSPeter Zijlstra  * group and should be considered to continue balancing.
61035a566e6SPeter Zijlstra  *
61135a566e6SPeter Zijlstra  * We do this during the group creation pass, therefore the group information
61235a566e6SPeter Zijlstra  * isn't complete yet, however since each group represents a (child) domain we
61335a566e6SPeter Zijlstra  * can fully construct this using the sched_domain bits (which are already
61435a566e6SPeter Zijlstra  * complete).
615f2cb1360SIngo Molnar  */
6161676330eSPeter Zijlstra static void
617e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
618f2cb1360SIngo Molnar {
619ae4df9d6SPeter Zijlstra 	const struct cpumask *sg_span = sched_group_span(sg);
620f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
621f2cb1360SIngo Molnar 	struct sched_domain *sibling;
622f2cb1360SIngo Molnar 	int i;
623f2cb1360SIngo Molnar 
6241676330eSPeter Zijlstra 	cpumask_clear(mask);
6251676330eSPeter Zijlstra 
626f32d782eSLauro Ramos Venancio 	for_each_cpu(i, sg_span) {
627f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
62873bb059fSPeter Zijlstra 
62973bb059fSPeter Zijlstra 		/*
63073bb059fSPeter Zijlstra 		 * Can happen in the asymmetric case, where these siblings are
63173bb059fSPeter Zijlstra 		 * unused. The mask will not be empty because those CPUs that
63273bb059fSPeter Zijlstra 		 * do have the top domain _should_ span the domain.
63373bb059fSPeter Zijlstra 		 */
63473bb059fSPeter Zijlstra 		if (!sibling->child)
63573bb059fSPeter Zijlstra 			continue;
63673bb059fSPeter Zijlstra 
63773bb059fSPeter Zijlstra 		/* If we would not end up here, we can't continue from here */
63873bb059fSPeter Zijlstra 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
639f2cb1360SIngo Molnar 			continue;
640f2cb1360SIngo Molnar 
6411676330eSPeter Zijlstra 		cpumask_set_cpu(i, mask);
642f2cb1360SIngo Molnar 	}
64373bb059fSPeter Zijlstra 
64473bb059fSPeter Zijlstra 	/* We must not have empty masks here */
6451676330eSPeter Zijlstra 	WARN_ON_ONCE(cpumask_empty(mask));
646f2cb1360SIngo Molnar }
647f2cb1360SIngo Molnar 
648f2cb1360SIngo Molnar /*
64935a566e6SPeter Zijlstra  * XXX: This creates per-node group entries; since the load-balancer will
65035a566e6SPeter Zijlstra  * immediately access remote memory to construct this group's load-balance
65135a566e6SPeter Zijlstra  * statistics having the groups node local is of dubious benefit.
652f2cb1360SIngo Molnar  */
6538c033469SLauro Ramos Venancio static struct sched_group *
6548c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
6558c033469SLauro Ramos Venancio {
6568c033469SLauro Ramos Venancio 	struct sched_group *sg;
6578c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
6588c033469SLauro Ramos Venancio 
6598c033469SLauro Ramos Venancio 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6608c033469SLauro Ramos Venancio 			GFP_KERNEL, cpu_to_node(cpu));
6618c033469SLauro Ramos Venancio 
6628c033469SLauro Ramos Venancio 	if (!sg)
6638c033469SLauro Ramos Venancio 		return NULL;
6648c033469SLauro Ramos Venancio 
665ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
6668c033469SLauro Ramos Venancio 	if (sd->child)
6678c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd->child));
6688c033469SLauro Ramos Venancio 	else
6698c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd));
6708c033469SLauro Ramos Venancio 
6718c033469SLauro Ramos Venancio 	return sg;
6728c033469SLauro Ramos Venancio }
6738c033469SLauro Ramos Venancio 
6748c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd,
6751676330eSPeter Zijlstra 				     struct sched_group *sg)
6768c033469SLauro Ramos Venancio {
6771676330eSPeter Zijlstra 	struct cpumask *mask = sched_domains_tmpmask2;
6788c033469SLauro Ramos Venancio 	struct sd_data *sdd = sd->private;
6798c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
6801676330eSPeter Zijlstra 	int cpu;
6811676330eSPeter Zijlstra 
682e5c14b1fSPeter Zijlstra 	build_balance_mask(sd, sg, mask);
683ae4df9d6SPeter Zijlstra 	cpu = cpumask_first_and(sched_group_span(sg), mask);
6848c033469SLauro Ramos Venancio 
6858c033469SLauro Ramos Venancio 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6868c033469SLauro Ramos Venancio 	if (atomic_inc_return(&sg->sgc->ref) == 1)
687e5c14b1fSPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), mask);
68835a566e6SPeter Zijlstra 	else
689e5c14b1fSPeter Zijlstra 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
6908c033469SLauro Ramos Venancio 
6918c033469SLauro Ramos Venancio 	/*
6928c033469SLauro Ramos Venancio 	 * Initialize sgc->capacity such that even if we mess up the
6938c033469SLauro Ramos Venancio 	 * domains and no possible iteration will get us here, we won't
6948c033469SLauro Ramos Venancio 	 * die on a /0 trap.
6958c033469SLauro Ramos Venancio 	 */
696ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
6978c033469SLauro Ramos Venancio 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6988c033469SLauro Ramos Venancio 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6998c033469SLauro Ramos Venancio }
7008c033469SLauro Ramos Venancio 
701f2cb1360SIngo Molnar static int
702f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu)
703f2cb1360SIngo Molnar {
70491eaed0dSPeter Zijlstra 	struct sched_group *first = NULL, *last = NULL, *sg;
705f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
706f2cb1360SIngo Molnar 	struct cpumask *covered = sched_domains_tmpmask;
707f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
708f2cb1360SIngo Molnar 	struct sched_domain *sibling;
709f2cb1360SIngo Molnar 	int i;
710f2cb1360SIngo Molnar 
711f2cb1360SIngo Molnar 	cpumask_clear(covered);
712f2cb1360SIngo Molnar 
7130372dd27SPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
714f2cb1360SIngo Molnar 		struct cpumask *sg_span;
715f2cb1360SIngo Molnar 
716f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
717f2cb1360SIngo Molnar 			continue;
718f2cb1360SIngo Molnar 
719f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
720f2cb1360SIngo Molnar 
721c20e1ea4SLauro Ramos Venancio 		/*
722c20e1ea4SLauro Ramos Venancio 		 * Asymmetric node setups can result in situations where the
723c20e1ea4SLauro Ramos Venancio 		 * domain tree is of unequal depth, make sure to skip domains
724c20e1ea4SLauro Ramos Venancio 		 * that already cover the entire range.
725c20e1ea4SLauro Ramos Venancio 		 *
726c20e1ea4SLauro Ramos Venancio 		 * In that case build_sched_domains() will have terminated the
727c20e1ea4SLauro Ramos Venancio 		 * iteration early and our sibling sd spans will be empty.
728c20e1ea4SLauro Ramos Venancio 		 * Domains should always include the CPU they're built on, so
729c20e1ea4SLauro Ramos Venancio 		 * check that.
730c20e1ea4SLauro Ramos Venancio 		 */
731f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
732f2cb1360SIngo Molnar 			continue;
733f2cb1360SIngo Molnar 
7348c033469SLauro Ramos Venancio 		sg = build_group_from_child_sched_domain(sibling, cpu);
735f2cb1360SIngo Molnar 		if (!sg)
736f2cb1360SIngo Molnar 			goto fail;
737f2cb1360SIngo Molnar 
738ae4df9d6SPeter Zijlstra 		sg_span = sched_group_span(sg);
739f2cb1360SIngo Molnar 		cpumask_or(covered, covered, sg_span);
740f2cb1360SIngo Molnar 
7411676330eSPeter Zijlstra 		init_overlap_sched_group(sd, sg);
742f2cb1360SIngo Molnar 
743f2cb1360SIngo Molnar 		if (!first)
744f2cb1360SIngo Molnar 			first = sg;
745f2cb1360SIngo Molnar 		if (last)
746f2cb1360SIngo Molnar 			last->next = sg;
747f2cb1360SIngo Molnar 		last = sg;
748f2cb1360SIngo Molnar 		last->next = first;
749f2cb1360SIngo Molnar 	}
75091eaed0dSPeter Zijlstra 	sd->groups = first;
751f2cb1360SIngo Molnar 
752f2cb1360SIngo Molnar 	return 0;
753f2cb1360SIngo Molnar 
754f2cb1360SIngo Molnar fail:
755f2cb1360SIngo Molnar 	free_sched_groups(first, 0);
756f2cb1360SIngo Molnar 
757f2cb1360SIngo Molnar 	return -ENOMEM;
758f2cb1360SIngo Molnar }
759f2cb1360SIngo Molnar 
76035a566e6SPeter Zijlstra 
76135a566e6SPeter Zijlstra /*
76235a566e6SPeter Zijlstra  * Package topology (also see the load-balance blurb in fair.c)
76335a566e6SPeter Zijlstra  *
76435a566e6SPeter Zijlstra  * The scheduler builds a tree structure to represent a number of important
76535a566e6SPeter Zijlstra  * topology features. By default (default_topology[]) these include:
76635a566e6SPeter Zijlstra  *
76735a566e6SPeter Zijlstra  *  - Simultaneous multithreading (SMT)
76835a566e6SPeter Zijlstra  *  - Multi-Core Cache (MC)
76935a566e6SPeter Zijlstra  *  - Package (DIE)
77035a566e6SPeter Zijlstra  *
77135a566e6SPeter Zijlstra  * Where the last one more or less denotes everything up to a NUMA node.
77235a566e6SPeter Zijlstra  *
77335a566e6SPeter Zijlstra  * The tree consists of 3 primary data structures:
77435a566e6SPeter Zijlstra  *
77535a566e6SPeter Zijlstra  *	sched_domain -> sched_group -> sched_group_capacity
77635a566e6SPeter Zijlstra  *	    ^ ^             ^ ^
77735a566e6SPeter Zijlstra  *          `-'             `-'
77835a566e6SPeter Zijlstra  *
77935a566e6SPeter Zijlstra  * The sched_domains are per-cpu and have a two way link (parent & child) and
78035a566e6SPeter Zijlstra  * denote the ever growing mask of CPUs belonging to that level of topology.
78135a566e6SPeter Zijlstra  *
78235a566e6SPeter Zijlstra  * Each sched_domain has a circular (double) linked list of sched_group's, each
78335a566e6SPeter Zijlstra  * denoting the domains of the level below (or individual CPUs in case of the
78435a566e6SPeter Zijlstra  * first domain level). The sched_group linked by a sched_domain includes the
78535a566e6SPeter Zijlstra  * CPU of that sched_domain [*].
78635a566e6SPeter Zijlstra  *
78735a566e6SPeter Zijlstra  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
78835a566e6SPeter Zijlstra  *
78935a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
79035a566e6SPeter Zijlstra  *
79135a566e6SPeter Zijlstra  * DIE  [                             ]
79235a566e6SPeter Zijlstra  * MC   [             ] [             ]
79335a566e6SPeter Zijlstra  * SMT  [     ] [     ] [     ] [     ]
79435a566e6SPeter Zijlstra  *
79535a566e6SPeter Zijlstra  *  - or -
79635a566e6SPeter Zijlstra  *
79735a566e6SPeter Zijlstra  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
79835a566e6SPeter Zijlstra  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
79935a566e6SPeter Zijlstra  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
80035a566e6SPeter Zijlstra  *
80135a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
80235a566e6SPeter Zijlstra  *
80335a566e6SPeter Zijlstra  * One way to think about it is: sched_domain moves you up and down among these
80435a566e6SPeter Zijlstra  * topology levels, while sched_group moves you sideways through it, at child
80535a566e6SPeter Zijlstra  * domain granularity.
80635a566e6SPeter Zijlstra  *
80735a566e6SPeter Zijlstra  * sched_group_capacity ensures each unique sched_group has shared storage.
80835a566e6SPeter Zijlstra  *
80935a566e6SPeter Zijlstra  * There are two related construction problems, both require a CPU that
81035a566e6SPeter Zijlstra  * uniquely identify each group (for a given domain):
81135a566e6SPeter Zijlstra  *
81235a566e6SPeter Zijlstra  *  - The first is the balance_cpu (see should_we_balance() and the
81335a566e6SPeter Zijlstra  *    load-balance blub in fair.c); for each group we only want 1 CPU to
81435a566e6SPeter Zijlstra  *    continue balancing at a higher domain.
81535a566e6SPeter Zijlstra  *
81635a566e6SPeter Zijlstra  *  - The second is the sched_group_capacity; we want all identical groups
81735a566e6SPeter Zijlstra  *    to share a single sched_group_capacity.
81835a566e6SPeter Zijlstra  *
81935a566e6SPeter Zijlstra  * Since these topologies are exclusive by construction. That is, its
82035a566e6SPeter Zijlstra  * impossible for an SMT thread to belong to multiple cores, and cores to
82135a566e6SPeter Zijlstra  * be part of multiple caches. There is a very clear and unique location
82235a566e6SPeter Zijlstra  * for each CPU in the hierarchy.
82335a566e6SPeter Zijlstra  *
82435a566e6SPeter Zijlstra  * Therefore computing a unique CPU for each group is trivial (the iteration
82535a566e6SPeter Zijlstra  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
82635a566e6SPeter Zijlstra  * group), we can simply pick the first CPU in each group.
82735a566e6SPeter Zijlstra  *
82835a566e6SPeter Zijlstra  *
82935a566e6SPeter Zijlstra  * [*] in other words, the first group of each domain is its child domain.
83035a566e6SPeter Zijlstra  */
83135a566e6SPeter Zijlstra 
8320c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd)
833f2cb1360SIngo Molnar {
834f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
835f2cb1360SIngo Molnar 	struct sched_domain *child = sd->child;
8360c0e776aSPeter Zijlstra 	struct sched_group *sg;
837f2cb1360SIngo Molnar 
838f2cb1360SIngo Molnar 	if (child)
839f2cb1360SIngo Molnar 		cpu = cpumask_first(sched_domain_span(child));
840f2cb1360SIngo Molnar 
8410c0e776aSPeter Zijlstra 	sg = *per_cpu_ptr(sdd->sg, cpu);
8420c0e776aSPeter Zijlstra 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
843f2cb1360SIngo Molnar 
844f2cb1360SIngo Molnar 	/* For claim_allocations: */
8450c0e776aSPeter Zijlstra 	atomic_inc(&sg->ref);
8460c0e776aSPeter Zijlstra 	atomic_inc(&sg->sgc->ref);
8470c0e776aSPeter Zijlstra 
8480c0e776aSPeter Zijlstra 	if (child) {
849ae4df9d6SPeter Zijlstra 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
850ae4df9d6SPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
8510c0e776aSPeter Zijlstra 	} else {
852ae4df9d6SPeter Zijlstra 		cpumask_set_cpu(cpu, sched_group_span(sg));
853e5c14b1fSPeter Zijlstra 		cpumask_set_cpu(cpu, group_balance_mask(sg));
854f2cb1360SIngo Molnar 	}
855f2cb1360SIngo Molnar 
856ae4df9d6SPeter Zijlstra 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
8570c0e776aSPeter Zijlstra 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
8580c0e776aSPeter Zijlstra 
8590c0e776aSPeter Zijlstra 	return sg;
860f2cb1360SIngo Molnar }
861f2cb1360SIngo Molnar 
862f2cb1360SIngo Molnar /*
863f2cb1360SIngo Molnar  * build_sched_groups will build a circular linked list of the groups
864f2cb1360SIngo Molnar  * covered by the given span, and will set each group's ->cpumask correctly,
865f2cb1360SIngo Molnar  * and ->cpu_capacity to 0.
866f2cb1360SIngo Molnar  *
867f2cb1360SIngo Molnar  * Assumes the sched_domain tree is fully constructed
868f2cb1360SIngo Molnar  */
869f2cb1360SIngo Molnar static int
870f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu)
871f2cb1360SIngo Molnar {
872f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL;
873f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
874f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
875f2cb1360SIngo Molnar 	struct cpumask *covered;
876f2cb1360SIngo Molnar 	int i;
877f2cb1360SIngo Molnar 
878f2cb1360SIngo Molnar 	lockdep_assert_held(&sched_domains_mutex);
879f2cb1360SIngo Molnar 	covered = sched_domains_tmpmask;
880f2cb1360SIngo Molnar 
881f2cb1360SIngo Molnar 	cpumask_clear(covered);
882f2cb1360SIngo Molnar 
8830c0e776aSPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
884f2cb1360SIngo Molnar 		struct sched_group *sg;
885f2cb1360SIngo Molnar 
886f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
887f2cb1360SIngo Molnar 			continue;
888f2cb1360SIngo Molnar 
8890c0e776aSPeter Zijlstra 		sg = get_group(i, sdd);
890f2cb1360SIngo Molnar 
891ae4df9d6SPeter Zijlstra 		cpumask_or(covered, covered, sched_group_span(sg));
892f2cb1360SIngo Molnar 
893f2cb1360SIngo Molnar 		if (!first)
894f2cb1360SIngo Molnar 			first = sg;
895f2cb1360SIngo Molnar 		if (last)
896f2cb1360SIngo Molnar 			last->next = sg;
897f2cb1360SIngo Molnar 		last = sg;
898f2cb1360SIngo Molnar 	}
899f2cb1360SIngo Molnar 	last->next = first;
9000c0e776aSPeter Zijlstra 	sd->groups = first;
901f2cb1360SIngo Molnar 
902f2cb1360SIngo Molnar 	return 0;
903f2cb1360SIngo Molnar }
904f2cb1360SIngo Molnar 
905f2cb1360SIngo Molnar /*
906f2cb1360SIngo Molnar  * Initialize sched groups cpu_capacity.
907f2cb1360SIngo Molnar  *
908f2cb1360SIngo Molnar  * cpu_capacity indicates the capacity of sched group, which is used while
909f2cb1360SIngo Molnar  * distributing the load between different sched groups in a sched domain.
910f2cb1360SIngo Molnar  * Typically cpu_capacity for all the groups in a sched domain will be same
911f2cb1360SIngo Molnar  * unless there are asymmetries in the topology. If there are asymmetries,
912f2cb1360SIngo Molnar  * group having more cpu_capacity will pickup more load compared to the
913f2cb1360SIngo Molnar  * group having less cpu_capacity.
914f2cb1360SIngo Molnar  */
915f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
916f2cb1360SIngo Molnar {
917f2cb1360SIngo Molnar 	struct sched_group *sg = sd->groups;
918f2cb1360SIngo Molnar 
919f2cb1360SIngo Molnar 	WARN_ON(!sg);
920f2cb1360SIngo Molnar 
921f2cb1360SIngo Molnar 	do {
922f2cb1360SIngo Molnar 		int cpu, max_cpu = -1;
923f2cb1360SIngo Molnar 
924ae4df9d6SPeter Zijlstra 		sg->group_weight = cpumask_weight(sched_group_span(sg));
925f2cb1360SIngo Molnar 
926f2cb1360SIngo Molnar 		if (!(sd->flags & SD_ASYM_PACKING))
927f2cb1360SIngo Molnar 			goto next;
928f2cb1360SIngo Molnar 
929ae4df9d6SPeter Zijlstra 		for_each_cpu(cpu, sched_group_span(sg)) {
930f2cb1360SIngo Molnar 			if (max_cpu < 0)
931f2cb1360SIngo Molnar 				max_cpu = cpu;
932f2cb1360SIngo Molnar 			else if (sched_asym_prefer(cpu, max_cpu))
933f2cb1360SIngo Molnar 				max_cpu = cpu;
934f2cb1360SIngo Molnar 		}
935f2cb1360SIngo Molnar 		sg->asym_prefer_cpu = max_cpu;
936f2cb1360SIngo Molnar 
937f2cb1360SIngo Molnar next:
938f2cb1360SIngo Molnar 		sg = sg->next;
939f2cb1360SIngo Molnar 	} while (sg != sd->groups);
940f2cb1360SIngo Molnar 
941f2cb1360SIngo Molnar 	if (cpu != group_balance_cpu(sg))
942f2cb1360SIngo Molnar 		return;
943f2cb1360SIngo Molnar 
944f2cb1360SIngo Molnar 	update_group_capacity(sd, cpu);
945f2cb1360SIngo Molnar }
946f2cb1360SIngo Molnar 
947f2cb1360SIngo Molnar /*
948f2cb1360SIngo Molnar  * Initializers for schedule domains
949f2cb1360SIngo Molnar  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
950f2cb1360SIngo Molnar  */
951f2cb1360SIngo Molnar 
952f2cb1360SIngo Molnar static int default_relax_domain_level = -1;
953f2cb1360SIngo Molnar int sched_domain_level_max;
954f2cb1360SIngo Molnar 
955f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str)
956f2cb1360SIngo Molnar {
957f2cb1360SIngo Molnar 	if (kstrtoint(str, 0, &default_relax_domain_level))
958f2cb1360SIngo Molnar 		pr_warn("Unable to set relax_domain_level\n");
959f2cb1360SIngo Molnar 
960f2cb1360SIngo Molnar 	return 1;
961f2cb1360SIngo Molnar }
962f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level);
963f2cb1360SIngo Molnar 
964f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd,
965f2cb1360SIngo Molnar 				 struct sched_domain_attr *attr)
966f2cb1360SIngo Molnar {
967f2cb1360SIngo Molnar 	int request;
968f2cb1360SIngo Molnar 
969f2cb1360SIngo Molnar 	if (!attr || attr->relax_domain_level < 0) {
970f2cb1360SIngo Molnar 		if (default_relax_domain_level < 0)
971f2cb1360SIngo Molnar 			return;
972f2cb1360SIngo Molnar 		else
973f2cb1360SIngo Molnar 			request = default_relax_domain_level;
974f2cb1360SIngo Molnar 	} else
975f2cb1360SIngo Molnar 		request = attr->relax_domain_level;
976f2cb1360SIngo Molnar 	if (request < sd->level) {
977f2cb1360SIngo Molnar 		/* Turn off idle balance on this domain: */
978f2cb1360SIngo Molnar 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
979f2cb1360SIngo Molnar 	} else {
980f2cb1360SIngo Molnar 		/* Turn on idle balance on this domain: */
981f2cb1360SIngo Molnar 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
982f2cb1360SIngo Molnar 	}
983f2cb1360SIngo Molnar }
984f2cb1360SIngo Molnar 
985f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map);
986f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map);
987f2cb1360SIngo Molnar 
988f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
989f2cb1360SIngo Molnar 				 const struct cpumask *cpu_map)
990f2cb1360SIngo Molnar {
991f2cb1360SIngo Molnar 	switch (what) {
992f2cb1360SIngo Molnar 	case sa_rootdomain:
993f2cb1360SIngo Molnar 		if (!atomic_read(&d->rd->refcount))
994f2cb1360SIngo Molnar 			free_rootdomain(&d->rd->rcu);
995f2cb1360SIngo Molnar 		/* Fall through */
996f2cb1360SIngo Molnar 	case sa_sd:
997f2cb1360SIngo Molnar 		free_percpu(d->sd);
998f2cb1360SIngo Molnar 		/* Fall through */
999f2cb1360SIngo Molnar 	case sa_sd_storage:
1000f2cb1360SIngo Molnar 		__sdt_free(cpu_map);
1001f2cb1360SIngo Molnar 		/* Fall through */
1002f2cb1360SIngo Molnar 	case sa_none:
1003f2cb1360SIngo Molnar 		break;
1004f2cb1360SIngo Molnar 	}
1005f2cb1360SIngo Molnar }
1006f2cb1360SIngo Molnar 
1007f2cb1360SIngo Molnar static enum s_alloc
1008f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1009f2cb1360SIngo Molnar {
1010f2cb1360SIngo Molnar 	memset(d, 0, sizeof(*d));
1011f2cb1360SIngo Molnar 
1012f2cb1360SIngo Molnar 	if (__sdt_alloc(cpu_map))
1013f2cb1360SIngo Molnar 		return sa_sd_storage;
1014f2cb1360SIngo Molnar 	d->sd = alloc_percpu(struct sched_domain *);
1015f2cb1360SIngo Molnar 	if (!d->sd)
1016f2cb1360SIngo Molnar 		return sa_sd_storage;
1017f2cb1360SIngo Molnar 	d->rd = alloc_rootdomain();
1018f2cb1360SIngo Molnar 	if (!d->rd)
1019f2cb1360SIngo Molnar 		return sa_sd;
1020f2cb1360SIngo Molnar 	return sa_rootdomain;
1021f2cb1360SIngo Molnar }
1022f2cb1360SIngo Molnar 
1023f2cb1360SIngo Molnar /*
1024f2cb1360SIngo Molnar  * NULL the sd_data elements we've used to build the sched_domain and
1025f2cb1360SIngo Molnar  * sched_group structure so that the subsequent __free_domain_allocs()
1026f2cb1360SIngo Molnar  * will not free the data we're using.
1027f2cb1360SIngo Molnar  */
1028f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd)
1029f2cb1360SIngo Molnar {
1030f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1031f2cb1360SIngo Molnar 
1032f2cb1360SIngo Molnar 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1033f2cb1360SIngo Molnar 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1034f2cb1360SIngo Molnar 
1035f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1036f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1037f2cb1360SIngo Molnar 
1038f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1039f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1040f2cb1360SIngo Molnar 
1041f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1042f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1043f2cb1360SIngo Molnar }
1044f2cb1360SIngo Molnar 
1045f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1046f2cb1360SIngo Molnar static int sched_domains_numa_levels;
1047f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type;
1048f2cb1360SIngo Molnar static int *sched_domains_numa_distance;
1049f2cb1360SIngo Molnar int sched_max_numa_distance;
1050f2cb1360SIngo Molnar static struct cpumask ***sched_domains_numa_masks;
1051f2cb1360SIngo Molnar static int sched_domains_curr_level;
1052f2cb1360SIngo Molnar #endif
1053f2cb1360SIngo Molnar 
1054f2cb1360SIngo Molnar /*
1055f2cb1360SIngo Molnar  * SD_flags allowed in topology descriptions.
1056f2cb1360SIngo Molnar  *
1057f2cb1360SIngo Molnar  * These flags are purely descriptive of the topology and do not prescribe
1058f2cb1360SIngo Molnar  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1059f2cb1360SIngo Molnar  * function:
1060f2cb1360SIngo Molnar  *
1061f2cb1360SIngo Molnar  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1062f2cb1360SIngo Molnar  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1063f2cb1360SIngo Molnar  *   SD_NUMA                - describes NUMA topologies
1064f2cb1360SIngo Molnar  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1065f2cb1360SIngo Molnar  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
1066f2cb1360SIngo Molnar  *
1067f2cb1360SIngo Molnar  * Odd one out, which beside describing the topology has a quirk also
1068f2cb1360SIngo Molnar  * prescribes the desired behaviour that goes along with it:
1069f2cb1360SIngo Molnar  *
1070f2cb1360SIngo Molnar  *   SD_ASYM_PACKING        - describes SMT quirks
1071f2cb1360SIngo Molnar  */
1072f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS		\
1073f2cb1360SIngo Molnar 	(SD_SHARE_CPUCAPACITY |		\
1074f2cb1360SIngo Molnar 	 SD_SHARE_PKG_RESOURCES |	\
1075f2cb1360SIngo Molnar 	 SD_NUMA |			\
1076f2cb1360SIngo Molnar 	 SD_ASYM_PACKING |		\
1077f2cb1360SIngo Molnar 	 SD_ASYM_CPUCAPACITY |		\
1078f2cb1360SIngo Molnar 	 SD_SHARE_POWERDOMAIN)
1079f2cb1360SIngo Molnar 
1080f2cb1360SIngo Molnar static struct sched_domain *
1081f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl,
1082f2cb1360SIngo Molnar 	const struct cpumask *cpu_map,
1083f2cb1360SIngo Molnar 	struct sched_domain *child, int cpu)
1084f2cb1360SIngo Molnar {
1085f2cb1360SIngo Molnar 	struct sd_data *sdd = &tl->data;
1086f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1087f2cb1360SIngo Molnar 	int sd_id, sd_weight, sd_flags = 0;
1088f2cb1360SIngo Molnar 
1089f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1090f2cb1360SIngo Molnar 	/*
1091f2cb1360SIngo Molnar 	 * Ugly hack to pass state to sd_numa_mask()...
1092f2cb1360SIngo Molnar 	 */
1093f2cb1360SIngo Molnar 	sched_domains_curr_level = tl->numa_level;
1094f2cb1360SIngo Molnar #endif
1095f2cb1360SIngo Molnar 
1096f2cb1360SIngo Molnar 	sd_weight = cpumask_weight(tl->mask(cpu));
1097f2cb1360SIngo Molnar 
1098f2cb1360SIngo Molnar 	if (tl->sd_flags)
1099f2cb1360SIngo Molnar 		sd_flags = (*tl->sd_flags)();
1100f2cb1360SIngo Molnar 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1101f2cb1360SIngo Molnar 			"wrong sd_flags in topology description\n"))
1102f2cb1360SIngo Molnar 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1103f2cb1360SIngo Molnar 
1104f2cb1360SIngo Molnar 	*sd = (struct sched_domain){
1105f2cb1360SIngo Molnar 		.min_interval		= sd_weight,
1106f2cb1360SIngo Molnar 		.max_interval		= 2*sd_weight,
1107f2cb1360SIngo Molnar 		.busy_factor		= 32,
1108f2cb1360SIngo Molnar 		.imbalance_pct		= 125,
1109f2cb1360SIngo Molnar 
1110f2cb1360SIngo Molnar 		.cache_nice_tries	= 0,
1111f2cb1360SIngo Molnar 		.busy_idx		= 0,
1112f2cb1360SIngo Molnar 		.idle_idx		= 0,
1113f2cb1360SIngo Molnar 		.newidle_idx		= 0,
1114f2cb1360SIngo Molnar 		.wake_idx		= 0,
1115f2cb1360SIngo Molnar 		.forkexec_idx		= 0,
1116f2cb1360SIngo Molnar 
1117f2cb1360SIngo Molnar 		.flags			= 1*SD_LOAD_BALANCE
1118f2cb1360SIngo Molnar 					| 1*SD_BALANCE_NEWIDLE
1119f2cb1360SIngo Molnar 					| 1*SD_BALANCE_EXEC
1120f2cb1360SIngo Molnar 					| 1*SD_BALANCE_FORK
1121f2cb1360SIngo Molnar 					| 0*SD_BALANCE_WAKE
1122f2cb1360SIngo Molnar 					| 1*SD_WAKE_AFFINE
1123f2cb1360SIngo Molnar 					| 0*SD_SHARE_CPUCAPACITY
1124f2cb1360SIngo Molnar 					| 0*SD_SHARE_PKG_RESOURCES
1125f2cb1360SIngo Molnar 					| 0*SD_SERIALIZE
1126f2cb1360SIngo Molnar 					| 0*SD_PREFER_SIBLING
1127f2cb1360SIngo Molnar 					| 0*SD_NUMA
1128f2cb1360SIngo Molnar 					| sd_flags
1129f2cb1360SIngo Molnar 					,
1130f2cb1360SIngo Molnar 
1131f2cb1360SIngo Molnar 		.last_balance		= jiffies,
1132f2cb1360SIngo Molnar 		.balance_interval	= sd_weight,
1133f2cb1360SIngo Molnar 		.smt_gain		= 0,
1134f2cb1360SIngo Molnar 		.max_newidle_lb_cost	= 0,
1135f2cb1360SIngo Molnar 		.next_decay_max_lb_cost	= jiffies,
1136f2cb1360SIngo Molnar 		.child			= child,
1137f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1138f2cb1360SIngo Molnar 		.name			= tl->name,
1139f2cb1360SIngo Molnar #endif
1140f2cb1360SIngo Molnar 	};
1141f2cb1360SIngo Molnar 
1142f2cb1360SIngo Molnar 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1143f2cb1360SIngo Molnar 	sd_id = cpumask_first(sched_domain_span(sd));
1144f2cb1360SIngo Molnar 
1145f2cb1360SIngo Molnar 	/*
1146f2cb1360SIngo Molnar 	 * Convert topological properties into behaviour.
1147f2cb1360SIngo Molnar 	 */
1148f2cb1360SIngo Molnar 
1149f2cb1360SIngo Molnar 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1150f2cb1360SIngo Molnar 		struct sched_domain *t = sd;
1151f2cb1360SIngo Molnar 
1152f2cb1360SIngo Molnar 		for_each_lower_domain(t)
1153f2cb1360SIngo Molnar 			t->flags |= SD_BALANCE_WAKE;
1154f2cb1360SIngo Molnar 	}
1155f2cb1360SIngo Molnar 
1156f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1157f2cb1360SIngo Molnar 		sd->flags |= SD_PREFER_SIBLING;
1158f2cb1360SIngo Molnar 		sd->imbalance_pct = 110;
1159f2cb1360SIngo Molnar 		sd->smt_gain = 1178; /* ~15% */
1160f2cb1360SIngo Molnar 
1161f2cb1360SIngo Molnar 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1162f2cb1360SIngo Molnar 		sd->imbalance_pct = 117;
1163f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1164f2cb1360SIngo Molnar 		sd->busy_idx = 2;
1165f2cb1360SIngo Molnar 
1166f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1167f2cb1360SIngo Molnar 	} else if (sd->flags & SD_NUMA) {
1168f2cb1360SIngo Molnar 		sd->cache_nice_tries = 2;
1169f2cb1360SIngo Molnar 		sd->busy_idx = 3;
1170f2cb1360SIngo Molnar 		sd->idle_idx = 2;
1171f2cb1360SIngo Molnar 
1172f2cb1360SIngo Molnar 		sd->flags |= SD_SERIALIZE;
1173f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1174f2cb1360SIngo Molnar 			sd->flags &= ~(SD_BALANCE_EXEC |
1175f2cb1360SIngo Molnar 				       SD_BALANCE_FORK |
1176f2cb1360SIngo Molnar 				       SD_WAKE_AFFINE);
1177f2cb1360SIngo Molnar 		}
1178f2cb1360SIngo Molnar 
1179f2cb1360SIngo Molnar #endif
1180f2cb1360SIngo Molnar 	} else {
1181f2cb1360SIngo Molnar 		sd->flags |= SD_PREFER_SIBLING;
1182f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1183f2cb1360SIngo Molnar 		sd->busy_idx = 2;
1184f2cb1360SIngo Molnar 		sd->idle_idx = 1;
1185f2cb1360SIngo Molnar 	}
1186f2cb1360SIngo Molnar 
1187f2cb1360SIngo Molnar 	/*
1188f2cb1360SIngo Molnar 	 * For all levels sharing cache; connect a sched_domain_shared
1189f2cb1360SIngo Molnar 	 * instance.
1190f2cb1360SIngo Molnar 	 */
1191f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1192f2cb1360SIngo Molnar 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1193f2cb1360SIngo Molnar 		atomic_inc(&sd->shared->ref);
1194f2cb1360SIngo Molnar 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1195f2cb1360SIngo Molnar 	}
1196f2cb1360SIngo Molnar 
1197f2cb1360SIngo Molnar 	sd->private = sdd;
1198f2cb1360SIngo Molnar 
1199f2cb1360SIngo Molnar 	return sd;
1200f2cb1360SIngo Molnar }
1201f2cb1360SIngo Molnar 
1202f2cb1360SIngo Molnar /*
1203f2cb1360SIngo Molnar  * Topology list, bottom-up.
1204f2cb1360SIngo Molnar  */
1205f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = {
1206f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT
1207f2cb1360SIngo Molnar 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1208f2cb1360SIngo Molnar #endif
1209f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC
1210f2cb1360SIngo Molnar 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1211f2cb1360SIngo Molnar #endif
1212f2cb1360SIngo Molnar 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1213f2cb1360SIngo Molnar 	{ NULL, },
1214f2cb1360SIngo Molnar };
1215f2cb1360SIngo Molnar 
1216f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology =
1217f2cb1360SIngo Molnar 	default_topology;
1218f2cb1360SIngo Molnar 
1219f2cb1360SIngo Molnar #define for_each_sd_topology(tl)			\
1220f2cb1360SIngo Molnar 	for (tl = sched_domain_topology; tl->mask; tl++)
1221f2cb1360SIngo Molnar 
1222f2cb1360SIngo Molnar void set_sched_topology(struct sched_domain_topology_level *tl)
1223f2cb1360SIngo Molnar {
1224f2cb1360SIngo Molnar 	if (WARN_ON_ONCE(sched_smp_initialized))
1225f2cb1360SIngo Molnar 		return;
1226f2cb1360SIngo Molnar 
1227f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1228f2cb1360SIngo Molnar }
1229f2cb1360SIngo Molnar 
1230f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1231f2cb1360SIngo Molnar 
1232f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu)
1233f2cb1360SIngo Molnar {
1234f2cb1360SIngo Molnar 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1235f2cb1360SIngo Molnar }
1236f2cb1360SIngo Molnar 
1237f2cb1360SIngo Molnar static void sched_numa_warn(const char *str)
1238f2cb1360SIngo Molnar {
1239f2cb1360SIngo Molnar 	static int done = false;
1240f2cb1360SIngo Molnar 	int i,j;
1241f2cb1360SIngo Molnar 
1242f2cb1360SIngo Molnar 	if (done)
1243f2cb1360SIngo Molnar 		return;
1244f2cb1360SIngo Molnar 
1245f2cb1360SIngo Molnar 	done = true;
1246f2cb1360SIngo Molnar 
1247f2cb1360SIngo Molnar 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1248f2cb1360SIngo Molnar 
1249f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1250f2cb1360SIngo Molnar 		printk(KERN_WARNING "  ");
1251f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1252f2cb1360SIngo Molnar 			printk(KERN_CONT "%02d ", node_distance(i,j));
1253f2cb1360SIngo Molnar 		printk(KERN_CONT "\n");
1254f2cb1360SIngo Molnar 	}
1255f2cb1360SIngo Molnar 	printk(KERN_WARNING "\n");
1256f2cb1360SIngo Molnar }
1257f2cb1360SIngo Molnar 
1258f2cb1360SIngo Molnar bool find_numa_distance(int distance)
1259f2cb1360SIngo Molnar {
1260f2cb1360SIngo Molnar 	int i;
1261f2cb1360SIngo Molnar 
1262f2cb1360SIngo Molnar 	if (distance == node_distance(0, 0))
1263f2cb1360SIngo Molnar 		return true;
1264f2cb1360SIngo Molnar 
1265f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1266f2cb1360SIngo Molnar 		if (sched_domains_numa_distance[i] == distance)
1267f2cb1360SIngo Molnar 			return true;
1268f2cb1360SIngo Molnar 	}
1269f2cb1360SIngo Molnar 
1270f2cb1360SIngo Molnar 	return false;
1271f2cb1360SIngo Molnar }
1272f2cb1360SIngo Molnar 
1273f2cb1360SIngo Molnar /*
1274f2cb1360SIngo Molnar  * A system can have three types of NUMA topology:
1275f2cb1360SIngo Molnar  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1276f2cb1360SIngo Molnar  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1277f2cb1360SIngo Molnar  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1278f2cb1360SIngo Molnar  *
1279f2cb1360SIngo Molnar  * The difference between a glueless mesh topology and a backplane
1280f2cb1360SIngo Molnar  * topology lies in whether communication between not directly
1281f2cb1360SIngo Molnar  * connected nodes goes through intermediary nodes (where programs
1282f2cb1360SIngo Molnar  * could run), or through backplane controllers. This affects
1283f2cb1360SIngo Molnar  * placement of programs.
1284f2cb1360SIngo Molnar  *
1285f2cb1360SIngo Molnar  * The type of topology can be discerned with the following tests:
1286f2cb1360SIngo Molnar  * - If the maximum distance between any nodes is 1 hop, the system
1287f2cb1360SIngo Molnar  *   is directly connected.
1288f2cb1360SIngo Molnar  * - If for two nodes A and B, located N > 1 hops away from each other,
1289f2cb1360SIngo Molnar  *   there is an intermediary node C, which is < N hops away from both
1290f2cb1360SIngo Molnar  *   nodes A and B, the system is a glueless mesh.
1291f2cb1360SIngo Molnar  */
1292f2cb1360SIngo Molnar static void init_numa_topology_type(void)
1293f2cb1360SIngo Molnar {
1294f2cb1360SIngo Molnar 	int a, b, c, n;
1295f2cb1360SIngo Molnar 
1296f2cb1360SIngo Molnar 	n = sched_max_numa_distance;
1297f2cb1360SIngo Molnar 
1298f2cb1360SIngo Molnar 	if (sched_domains_numa_levels <= 1) {
1299f2cb1360SIngo Molnar 		sched_numa_topology_type = NUMA_DIRECT;
1300f2cb1360SIngo Molnar 		return;
1301f2cb1360SIngo Molnar 	}
1302f2cb1360SIngo Molnar 
1303f2cb1360SIngo Molnar 	for_each_online_node(a) {
1304f2cb1360SIngo Molnar 		for_each_online_node(b) {
1305f2cb1360SIngo Molnar 			/* Find two nodes furthest removed from each other. */
1306f2cb1360SIngo Molnar 			if (node_distance(a, b) < n)
1307f2cb1360SIngo Molnar 				continue;
1308f2cb1360SIngo Molnar 
1309f2cb1360SIngo Molnar 			/* Is there an intermediary node between a and b? */
1310f2cb1360SIngo Molnar 			for_each_online_node(c) {
1311f2cb1360SIngo Molnar 				if (node_distance(a, c) < n &&
1312f2cb1360SIngo Molnar 				    node_distance(b, c) < n) {
1313f2cb1360SIngo Molnar 					sched_numa_topology_type =
1314f2cb1360SIngo Molnar 							NUMA_GLUELESS_MESH;
1315f2cb1360SIngo Molnar 					return;
1316f2cb1360SIngo Molnar 				}
1317f2cb1360SIngo Molnar 			}
1318f2cb1360SIngo Molnar 
1319f2cb1360SIngo Molnar 			sched_numa_topology_type = NUMA_BACKPLANE;
1320f2cb1360SIngo Molnar 			return;
1321f2cb1360SIngo Molnar 		}
1322f2cb1360SIngo Molnar 	}
1323f2cb1360SIngo Molnar }
1324f2cb1360SIngo Molnar 
1325f2cb1360SIngo Molnar void sched_init_numa(void)
1326f2cb1360SIngo Molnar {
1327f2cb1360SIngo Molnar 	int next_distance, curr_distance = node_distance(0, 0);
1328f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1329f2cb1360SIngo Molnar 	int level = 0;
1330f2cb1360SIngo Molnar 	int i, j, k;
1331f2cb1360SIngo Molnar 
1332f2cb1360SIngo Molnar 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1333f2cb1360SIngo Molnar 	if (!sched_domains_numa_distance)
1334f2cb1360SIngo Molnar 		return;
1335f2cb1360SIngo Molnar 
1336f2cb1360SIngo Molnar 	/*
1337f2cb1360SIngo Molnar 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1338f2cb1360SIngo Molnar 	 * unique distances in the node_distance() table.
1339f2cb1360SIngo Molnar 	 *
1340f2cb1360SIngo Molnar 	 * Assumes node_distance(0,j) includes all distances in
1341f2cb1360SIngo Molnar 	 * node_distance(i,j) in order to avoid cubic time.
1342f2cb1360SIngo Molnar 	 */
1343f2cb1360SIngo Molnar 	next_distance = curr_distance;
1344f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1345f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1346f2cb1360SIngo Molnar 			for (k = 0; k < nr_node_ids; k++) {
1347f2cb1360SIngo Molnar 				int distance = node_distance(i, k);
1348f2cb1360SIngo Molnar 
1349f2cb1360SIngo Molnar 				if (distance > curr_distance &&
1350f2cb1360SIngo Molnar 				    (distance < next_distance ||
1351f2cb1360SIngo Molnar 				     next_distance == curr_distance))
1352f2cb1360SIngo Molnar 					next_distance = distance;
1353f2cb1360SIngo Molnar 
1354f2cb1360SIngo Molnar 				/*
1355f2cb1360SIngo Molnar 				 * While not a strong assumption it would be nice to know
1356f2cb1360SIngo Molnar 				 * about cases where if node A is connected to B, B is not
1357f2cb1360SIngo Molnar 				 * equally connected to A.
1358f2cb1360SIngo Molnar 				 */
1359f2cb1360SIngo Molnar 				if (sched_debug() && node_distance(k, i) != distance)
1360f2cb1360SIngo Molnar 					sched_numa_warn("Node-distance not symmetric");
1361f2cb1360SIngo Molnar 
1362f2cb1360SIngo Molnar 				if (sched_debug() && i && !find_numa_distance(distance))
1363f2cb1360SIngo Molnar 					sched_numa_warn("Node-0 not representative");
1364f2cb1360SIngo Molnar 			}
1365f2cb1360SIngo Molnar 			if (next_distance != curr_distance) {
1366f2cb1360SIngo Molnar 				sched_domains_numa_distance[level++] = next_distance;
1367f2cb1360SIngo Molnar 				sched_domains_numa_levels = level;
1368f2cb1360SIngo Molnar 				curr_distance = next_distance;
1369f2cb1360SIngo Molnar 			} else break;
1370f2cb1360SIngo Molnar 		}
1371f2cb1360SIngo Molnar 
1372f2cb1360SIngo Molnar 		/*
1373f2cb1360SIngo Molnar 		 * In case of sched_debug() we verify the above assumption.
1374f2cb1360SIngo Molnar 		 */
1375f2cb1360SIngo Molnar 		if (!sched_debug())
1376f2cb1360SIngo Molnar 			break;
1377f2cb1360SIngo Molnar 	}
1378f2cb1360SIngo Molnar 
1379f2cb1360SIngo Molnar 	if (!level)
1380f2cb1360SIngo Molnar 		return;
1381f2cb1360SIngo Molnar 
1382f2cb1360SIngo Molnar 	/*
1383f2cb1360SIngo Molnar 	 * 'level' contains the number of unique distances, excluding the
1384f2cb1360SIngo Molnar 	 * identity distance node_distance(i,i).
1385f2cb1360SIngo Molnar 	 *
1386f2cb1360SIngo Molnar 	 * The sched_domains_numa_distance[] array includes the actual distance
1387f2cb1360SIngo Molnar 	 * numbers.
1388f2cb1360SIngo Molnar 	 */
1389f2cb1360SIngo Molnar 
1390f2cb1360SIngo Molnar 	/*
1391f2cb1360SIngo Molnar 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1392f2cb1360SIngo Molnar 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1393f2cb1360SIngo Molnar 	 * the array will contain less then 'level' members. This could be
1394f2cb1360SIngo Molnar 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1395f2cb1360SIngo Molnar 	 * in other functions.
1396f2cb1360SIngo Molnar 	 *
1397f2cb1360SIngo Molnar 	 * We reset it to 'level' at the end of this function.
1398f2cb1360SIngo Molnar 	 */
1399f2cb1360SIngo Molnar 	sched_domains_numa_levels = 0;
1400f2cb1360SIngo Molnar 
1401f2cb1360SIngo Molnar 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1402f2cb1360SIngo Molnar 	if (!sched_domains_numa_masks)
1403f2cb1360SIngo Molnar 		return;
1404f2cb1360SIngo Molnar 
1405f2cb1360SIngo Molnar 	/*
1406f2cb1360SIngo Molnar 	 * Now for each level, construct a mask per node which contains all
1407f2cb1360SIngo Molnar 	 * CPUs of nodes that are that many hops away from us.
1408f2cb1360SIngo Molnar 	 */
1409f2cb1360SIngo Molnar 	for (i = 0; i < level; i++) {
1410f2cb1360SIngo Molnar 		sched_domains_numa_masks[i] =
1411f2cb1360SIngo Molnar 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1412f2cb1360SIngo Molnar 		if (!sched_domains_numa_masks[i])
1413f2cb1360SIngo Molnar 			return;
1414f2cb1360SIngo Molnar 
1415f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1416f2cb1360SIngo Molnar 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1417f2cb1360SIngo Molnar 			if (!mask)
1418f2cb1360SIngo Molnar 				return;
1419f2cb1360SIngo Molnar 
1420f2cb1360SIngo Molnar 			sched_domains_numa_masks[i][j] = mask;
1421f2cb1360SIngo Molnar 
1422f2cb1360SIngo Molnar 			for_each_node(k) {
1423f2cb1360SIngo Molnar 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1424f2cb1360SIngo Molnar 					continue;
1425f2cb1360SIngo Molnar 
1426f2cb1360SIngo Molnar 				cpumask_or(mask, mask, cpumask_of_node(k));
1427f2cb1360SIngo Molnar 			}
1428f2cb1360SIngo Molnar 		}
1429f2cb1360SIngo Molnar 	}
1430f2cb1360SIngo Molnar 
1431f2cb1360SIngo Molnar 	/* Compute default topology size */
1432f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++);
1433f2cb1360SIngo Molnar 
1434f2cb1360SIngo Molnar 	tl = kzalloc((i + level + 1) *
1435f2cb1360SIngo Molnar 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1436f2cb1360SIngo Molnar 	if (!tl)
1437f2cb1360SIngo Molnar 		return;
1438f2cb1360SIngo Molnar 
1439f2cb1360SIngo Molnar 	/*
1440f2cb1360SIngo Molnar 	 * Copy the default topology bits..
1441f2cb1360SIngo Molnar 	 */
1442f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++)
1443f2cb1360SIngo Molnar 		tl[i] = sched_domain_topology[i];
1444f2cb1360SIngo Molnar 
1445f2cb1360SIngo Molnar 	/*
1446f2cb1360SIngo Molnar 	 * .. and append 'j' levels of NUMA goodness.
1447f2cb1360SIngo Molnar 	 */
1448f2cb1360SIngo Molnar 	for (j = 0; j < level; i++, j++) {
1449f2cb1360SIngo Molnar 		tl[i] = (struct sched_domain_topology_level){
1450f2cb1360SIngo Molnar 			.mask = sd_numa_mask,
1451f2cb1360SIngo Molnar 			.sd_flags = cpu_numa_flags,
1452f2cb1360SIngo Molnar 			.flags = SDTL_OVERLAP,
1453f2cb1360SIngo Molnar 			.numa_level = j,
1454f2cb1360SIngo Molnar 			SD_INIT_NAME(NUMA)
1455f2cb1360SIngo Molnar 		};
1456f2cb1360SIngo Molnar 	}
1457f2cb1360SIngo Molnar 
1458f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1459f2cb1360SIngo Molnar 
1460f2cb1360SIngo Molnar 	sched_domains_numa_levels = level;
1461f2cb1360SIngo Molnar 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1462f2cb1360SIngo Molnar 
1463f2cb1360SIngo Molnar 	init_numa_topology_type();
1464f2cb1360SIngo Molnar }
1465f2cb1360SIngo Molnar 
1466f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu)
1467f2cb1360SIngo Molnar {
1468f2cb1360SIngo Molnar 	int node = cpu_to_node(cpu);
1469f2cb1360SIngo Molnar 	int i, j;
1470f2cb1360SIngo Molnar 
1471f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1472f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
1473f2cb1360SIngo Molnar 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1474f2cb1360SIngo Molnar 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1475f2cb1360SIngo Molnar 		}
1476f2cb1360SIngo Molnar 	}
1477f2cb1360SIngo Molnar }
1478f2cb1360SIngo Molnar 
1479f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu)
1480f2cb1360SIngo Molnar {
1481f2cb1360SIngo Molnar 	int i, j;
1482f2cb1360SIngo Molnar 
1483f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
1484f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++)
1485f2cb1360SIngo Molnar 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1486f2cb1360SIngo Molnar 	}
1487f2cb1360SIngo Molnar }
1488f2cb1360SIngo Molnar 
1489f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */
1490f2cb1360SIngo Molnar 
1491f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map)
1492f2cb1360SIngo Molnar {
1493f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1494f2cb1360SIngo Molnar 	int j;
1495f2cb1360SIngo Molnar 
1496f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1497f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1498f2cb1360SIngo Molnar 
1499f2cb1360SIngo Molnar 		sdd->sd = alloc_percpu(struct sched_domain *);
1500f2cb1360SIngo Molnar 		if (!sdd->sd)
1501f2cb1360SIngo Molnar 			return -ENOMEM;
1502f2cb1360SIngo Molnar 
1503f2cb1360SIngo Molnar 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1504f2cb1360SIngo Molnar 		if (!sdd->sds)
1505f2cb1360SIngo Molnar 			return -ENOMEM;
1506f2cb1360SIngo Molnar 
1507f2cb1360SIngo Molnar 		sdd->sg = alloc_percpu(struct sched_group *);
1508f2cb1360SIngo Molnar 		if (!sdd->sg)
1509f2cb1360SIngo Molnar 			return -ENOMEM;
1510f2cb1360SIngo Molnar 
1511f2cb1360SIngo Molnar 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1512f2cb1360SIngo Molnar 		if (!sdd->sgc)
1513f2cb1360SIngo Molnar 			return -ENOMEM;
1514f2cb1360SIngo Molnar 
1515f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1516f2cb1360SIngo Molnar 			struct sched_domain *sd;
1517f2cb1360SIngo Molnar 			struct sched_domain_shared *sds;
1518f2cb1360SIngo Molnar 			struct sched_group *sg;
1519f2cb1360SIngo Molnar 			struct sched_group_capacity *sgc;
1520f2cb1360SIngo Molnar 
1521f2cb1360SIngo Molnar 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1522f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1523f2cb1360SIngo Molnar 			if (!sd)
1524f2cb1360SIngo Molnar 				return -ENOMEM;
1525f2cb1360SIngo Molnar 
1526f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sd, j) = sd;
1527f2cb1360SIngo Molnar 
1528f2cb1360SIngo Molnar 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1529f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1530f2cb1360SIngo Molnar 			if (!sds)
1531f2cb1360SIngo Molnar 				return -ENOMEM;
1532f2cb1360SIngo Molnar 
1533f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sds, j) = sds;
1534f2cb1360SIngo Molnar 
1535f2cb1360SIngo Molnar 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1536f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1537f2cb1360SIngo Molnar 			if (!sg)
1538f2cb1360SIngo Molnar 				return -ENOMEM;
1539f2cb1360SIngo Molnar 
1540f2cb1360SIngo Molnar 			sg->next = sg;
1541f2cb1360SIngo Molnar 
1542f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sg, j) = sg;
1543f2cb1360SIngo Molnar 
1544f2cb1360SIngo Molnar 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1545f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
1546f2cb1360SIngo Molnar 			if (!sgc)
1547f2cb1360SIngo Molnar 				return -ENOMEM;
1548f2cb1360SIngo Molnar 
1549005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG
1550005f874dSPeter Zijlstra 			sgc->id = j;
1551005f874dSPeter Zijlstra #endif
1552005f874dSPeter Zijlstra 
1553f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1554f2cb1360SIngo Molnar 		}
1555f2cb1360SIngo Molnar 	}
1556f2cb1360SIngo Molnar 
1557f2cb1360SIngo Molnar 	return 0;
1558f2cb1360SIngo Molnar }
1559f2cb1360SIngo Molnar 
1560f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map)
1561f2cb1360SIngo Molnar {
1562f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1563f2cb1360SIngo Molnar 	int j;
1564f2cb1360SIngo Molnar 
1565f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
1566f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
1567f2cb1360SIngo Molnar 
1568f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
1569f2cb1360SIngo Molnar 			struct sched_domain *sd;
1570f2cb1360SIngo Molnar 
1571f2cb1360SIngo Molnar 			if (sdd->sd) {
1572f2cb1360SIngo Molnar 				sd = *per_cpu_ptr(sdd->sd, j);
1573f2cb1360SIngo Molnar 				if (sd && (sd->flags & SD_OVERLAP))
1574f2cb1360SIngo Molnar 					free_sched_groups(sd->groups, 0);
1575f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sd, j));
1576f2cb1360SIngo Molnar 			}
1577f2cb1360SIngo Molnar 
1578f2cb1360SIngo Molnar 			if (sdd->sds)
1579f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sds, j));
1580f2cb1360SIngo Molnar 			if (sdd->sg)
1581f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sg, j));
1582f2cb1360SIngo Molnar 			if (sdd->sgc)
1583f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sgc, j));
1584f2cb1360SIngo Molnar 		}
1585f2cb1360SIngo Molnar 		free_percpu(sdd->sd);
1586f2cb1360SIngo Molnar 		sdd->sd = NULL;
1587f2cb1360SIngo Molnar 		free_percpu(sdd->sds);
1588f2cb1360SIngo Molnar 		sdd->sds = NULL;
1589f2cb1360SIngo Molnar 		free_percpu(sdd->sg);
1590f2cb1360SIngo Molnar 		sdd->sg = NULL;
1591f2cb1360SIngo Molnar 		free_percpu(sdd->sgc);
1592f2cb1360SIngo Molnar 		sdd->sgc = NULL;
1593f2cb1360SIngo Molnar 	}
1594f2cb1360SIngo Molnar }
1595f2cb1360SIngo Molnar 
1596*181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1597f2cb1360SIngo Molnar 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1598f2cb1360SIngo Molnar 		struct sched_domain *child, int cpu)
1599f2cb1360SIngo Molnar {
1600f2cb1360SIngo Molnar 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1601f2cb1360SIngo Molnar 
1602f2cb1360SIngo Molnar 	if (child) {
1603f2cb1360SIngo Molnar 		sd->level = child->level + 1;
1604f2cb1360SIngo Molnar 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1605f2cb1360SIngo Molnar 		child->parent = sd;
1606f2cb1360SIngo Molnar 
1607f2cb1360SIngo Molnar 		if (!cpumask_subset(sched_domain_span(child),
1608f2cb1360SIngo Molnar 				    sched_domain_span(sd))) {
1609f2cb1360SIngo Molnar 			pr_err("BUG: arch topology borken\n");
1610f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1611f2cb1360SIngo Molnar 			pr_err("     the %s domain not a subset of the %s domain\n",
1612f2cb1360SIngo Molnar 					child->name, sd->name);
1613f2cb1360SIngo Molnar #endif
1614f2cb1360SIngo Molnar 			/* Fixup, ensure @sd has at least @child cpus. */
1615f2cb1360SIngo Molnar 			cpumask_or(sched_domain_span(sd),
1616f2cb1360SIngo Molnar 				   sched_domain_span(sd),
1617f2cb1360SIngo Molnar 				   sched_domain_span(child));
1618f2cb1360SIngo Molnar 		}
1619f2cb1360SIngo Molnar 
1620f2cb1360SIngo Molnar 	}
1621f2cb1360SIngo Molnar 	set_domain_attribute(sd, attr);
1622f2cb1360SIngo Molnar 
1623f2cb1360SIngo Molnar 	return sd;
1624f2cb1360SIngo Molnar }
1625f2cb1360SIngo Molnar 
1626f2cb1360SIngo Molnar /*
1627f2cb1360SIngo Molnar  * Build sched domains for a given set of CPUs and attach the sched domains
1628f2cb1360SIngo Molnar  * to the individual CPUs
1629f2cb1360SIngo Molnar  */
1630f2cb1360SIngo Molnar static int
1631f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1632f2cb1360SIngo Molnar {
1633f2cb1360SIngo Molnar 	enum s_alloc alloc_state;
1634f2cb1360SIngo Molnar 	struct sched_domain *sd;
1635f2cb1360SIngo Molnar 	struct s_data d;
1636f2cb1360SIngo Molnar 	struct rq *rq = NULL;
1637f2cb1360SIngo Molnar 	int i, ret = -ENOMEM;
1638f2cb1360SIngo Molnar 
1639f2cb1360SIngo Molnar 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1640f2cb1360SIngo Molnar 	if (alloc_state != sa_rootdomain)
1641f2cb1360SIngo Molnar 		goto error;
1642f2cb1360SIngo Molnar 
1643f2cb1360SIngo Molnar 	/* Set up domains for CPUs specified by the cpu_map: */
1644f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1645f2cb1360SIngo Molnar 		struct sched_domain_topology_level *tl;
1646f2cb1360SIngo Molnar 
1647f2cb1360SIngo Molnar 		sd = NULL;
1648f2cb1360SIngo Molnar 		for_each_sd_topology(tl) {
1649f2cb1360SIngo Molnar 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1650f2cb1360SIngo Molnar 			if (tl == sched_domain_topology)
1651f2cb1360SIngo Molnar 				*per_cpu_ptr(d.sd, i) = sd;
1652af85596cSPeter Zijlstra 			if (tl->flags & SDTL_OVERLAP)
1653f2cb1360SIngo Molnar 				sd->flags |= SD_OVERLAP;
1654f2cb1360SIngo Molnar 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1655f2cb1360SIngo Molnar 				break;
1656f2cb1360SIngo Molnar 		}
1657f2cb1360SIngo Molnar 	}
1658f2cb1360SIngo Molnar 
1659f2cb1360SIngo Molnar 	/* Build the groups for the domains */
1660f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1661f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1662f2cb1360SIngo Molnar 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1663f2cb1360SIngo Molnar 			if (sd->flags & SD_OVERLAP) {
1664f2cb1360SIngo Molnar 				if (build_overlap_sched_groups(sd, i))
1665f2cb1360SIngo Molnar 					goto error;
1666f2cb1360SIngo Molnar 			} else {
1667f2cb1360SIngo Molnar 				if (build_sched_groups(sd, i))
1668f2cb1360SIngo Molnar 					goto error;
1669f2cb1360SIngo Molnar 			}
1670f2cb1360SIngo Molnar 		}
1671f2cb1360SIngo Molnar 	}
1672f2cb1360SIngo Molnar 
1673f2cb1360SIngo Molnar 	/* Calculate CPU capacity for physical packages and nodes */
1674f2cb1360SIngo Molnar 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1675f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, cpu_map))
1676f2cb1360SIngo Molnar 			continue;
1677f2cb1360SIngo Molnar 
1678f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1679f2cb1360SIngo Molnar 			claim_allocations(i, sd);
1680f2cb1360SIngo Molnar 			init_sched_groups_capacity(i, sd);
1681f2cb1360SIngo Molnar 		}
1682f2cb1360SIngo Molnar 	}
1683f2cb1360SIngo Molnar 
1684f2cb1360SIngo Molnar 	/* Attach the domains */
1685f2cb1360SIngo Molnar 	rcu_read_lock();
1686f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
1687f2cb1360SIngo Molnar 		rq = cpu_rq(i);
1688f2cb1360SIngo Molnar 		sd = *per_cpu_ptr(d.sd, i);
1689f2cb1360SIngo Molnar 
1690f2cb1360SIngo Molnar 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1691f2cb1360SIngo Molnar 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1692f2cb1360SIngo Molnar 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1693f2cb1360SIngo Molnar 
1694f2cb1360SIngo Molnar 		cpu_attach_domain(sd, d.rd, i);
1695f2cb1360SIngo Molnar 	}
1696f2cb1360SIngo Molnar 	rcu_read_unlock();
1697f2cb1360SIngo Molnar 
1698f2cb1360SIngo Molnar 	if (rq && sched_debug_enabled) {
1699f2cb1360SIngo Molnar 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1700f2cb1360SIngo Molnar 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1701f2cb1360SIngo Molnar 	}
1702f2cb1360SIngo Molnar 
1703f2cb1360SIngo Molnar 	ret = 0;
1704f2cb1360SIngo Molnar error:
1705f2cb1360SIngo Molnar 	__free_domain_allocs(&d, alloc_state, cpu_map);
1706f2cb1360SIngo Molnar 	return ret;
1707f2cb1360SIngo Molnar }
1708f2cb1360SIngo Molnar 
1709f2cb1360SIngo Molnar /* Current sched domains: */
1710f2cb1360SIngo Molnar static cpumask_var_t			*doms_cur;
1711f2cb1360SIngo Molnar 
1712f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */
1713f2cb1360SIngo Molnar static int				ndoms_cur;
1714f2cb1360SIngo Molnar 
1715f2cb1360SIngo Molnar /* Attribues of custom domains in 'doms_cur' */
1716f2cb1360SIngo Molnar static struct sched_domain_attr		*dattr_cur;
1717f2cb1360SIngo Molnar 
1718f2cb1360SIngo Molnar /*
1719f2cb1360SIngo Molnar  * Special case: If a kmalloc() of a doms_cur partition (array of
1720f2cb1360SIngo Molnar  * cpumask) fails, then fallback to a single sched domain,
1721f2cb1360SIngo Molnar  * as determined by the single cpumask fallback_doms.
1722f2cb1360SIngo Molnar  */
17238d5dc512SPeter Zijlstra static cpumask_var_t			fallback_doms;
1724f2cb1360SIngo Molnar 
1725f2cb1360SIngo Molnar /*
1726f2cb1360SIngo Molnar  * arch_update_cpu_topology lets virtualized architectures update the
1727f2cb1360SIngo Molnar  * CPU core maps. It is supposed to return 1 if the topology changed
1728f2cb1360SIngo Molnar  * or 0 if it stayed the same.
1729f2cb1360SIngo Molnar  */
1730f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void)
1731f2cb1360SIngo Molnar {
1732f2cb1360SIngo Molnar 	return 0;
1733f2cb1360SIngo Molnar }
1734f2cb1360SIngo Molnar 
1735f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1736f2cb1360SIngo Molnar {
1737f2cb1360SIngo Molnar 	int i;
1738f2cb1360SIngo Molnar 	cpumask_var_t *doms;
1739f2cb1360SIngo Molnar 
1740f2cb1360SIngo Molnar 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1741f2cb1360SIngo Molnar 	if (!doms)
1742f2cb1360SIngo Molnar 		return NULL;
1743f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++) {
1744f2cb1360SIngo Molnar 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1745f2cb1360SIngo Molnar 			free_sched_domains(doms, i);
1746f2cb1360SIngo Molnar 			return NULL;
1747f2cb1360SIngo Molnar 		}
1748f2cb1360SIngo Molnar 	}
1749f2cb1360SIngo Molnar 	return doms;
1750f2cb1360SIngo Molnar }
1751f2cb1360SIngo Molnar 
1752f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1753f2cb1360SIngo Molnar {
1754f2cb1360SIngo Molnar 	unsigned int i;
1755f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++)
1756f2cb1360SIngo Molnar 		free_cpumask_var(doms[i]);
1757f2cb1360SIngo Molnar 	kfree(doms);
1758f2cb1360SIngo Molnar }
1759f2cb1360SIngo Molnar 
1760f2cb1360SIngo Molnar /*
1761f2cb1360SIngo Molnar  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1762f2cb1360SIngo Molnar  * For now this just excludes isolated CPUs, but could be used to
1763f2cb1360SIngo Molnar  * exclude other special cases in the future.
1764f2cb1360SIngo Molnar  */
17658d5dc512SPeter Zijlstra int sched_init_domains(const struct cpumask *cpu_map)
1766f2cb1360SIngo Molnar {
1767f2cb1360SIngo Molnar 	int err;
1768f2cb1360SIngo Molnar 
17698d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
17701676330eSPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
17718d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
17728d5dc512SPeter Zijlstra 
1773f2cb1360SIngo Molnar 	arch_update_cpu_topology();
1774f2cb1360SIngo Molnar 	ndoms_cur = 1;
1775f2cb1360SIngo Molnar 	doms_cur = alloc_sched_domains(ndoms_cur);
1776f2cb1360SIngo Molnar 	if (!doms_cur)
1777f2cb1360SIngo Molnar 		doms_cur = &fallback_doms;
1778f2cb1360SIngo Molnar 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1779f2cb1360SIngo Molnar 	err = build_sched_domains(doms_cur[0], NULL);
1780f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
1781f2cb1360SIngo Molnar 
1782f2cb1360SIngo Molnar 	return err;
1783f2cb1360SIngo Molnar }
1784f2cb1360SIngo Molnar 
1785f2cb1360SIngo Molnar /*
1786f2cb1360SIngo Molnar  * Detach sched domains from a group of CPUs specified in cpu_map
1787f2cb1360SIngo Molnar  * These CPUs will now be attached to the NULL domain
1788f2cb1360SIngo Molnar  */
1789f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map)
1790f2cb1360SIngo Molnar {
1791f2cb1360SIngo Molnar 	int i;
1792f2cb1360SIngo Molnar 
1793f2cb1360SIngo Molnar 	rcu_read_lock();
1794f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map)
1795f2cb1360SIngo Molnar 		cpu_attach_domain(NULL, &def_root_domain, i);
1796f2cb1360SIngo Molnar 	rcu_read_unlock();
1797f2cb1360SIngo Molnar }
1798f2cb1360SIngo Molnar 
1799f2cb1360SIngo Molnar /* handle null as "default" */
1800f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1801f2cb1360SIngo Molnar 			struct sched_domain_attr *new, int idx_new)
1802f2cb1360SIngo Molnar {
1803f2cb1360SIngo Molnar 	struct sched_domain_attr tmp;
1804f2cb1360SIngo Molnar 
1805f2cb1360SIngo Molnar 	/* Fast path: */
1806f2cb1360SIngo Molnar 	if (!new && !cur)
1807f2cb1360SIngo Molnar 		return 1;
1808f2cb1360SIngo Molnar 
1809f2cb1360SIngo Molnar 	tmp = SD_ATTR_INIT;
1810f2cb1360SIngo Molnar 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1811f2cb1360SIngo Molnar 			new ? (new + idx_new) : &tmp,
1812f2cb1360SIngo Molnar 			sizeof(struct sched_domain_attr));
1813f2cb1360SIngo Molnar }
1814f2cb1360SIngo Molnar 
1815f2cb1360SIngo Molnar /*
1816f2cb1360SIngo Molnar  * Partition sched domains as specified by the 'ndoms_new'
1817f2cb1360SIngo Molnar  * cpumasks in the array doms_new[] of cpumasks. This compares
1818f2cb1360SIngo Molnar  * doms_new[] to the current sched domain partitioning, doms_cur[].
1819f2cb1360SIngo Molnar  * It destroys each deleted domain and builds each new domain.
1820f2cb1360SIngo Molnar  *
1821f2cb1360SIngo Molnar  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1822f2cb1360SIngo Molnar  * The masks don't intersect (don't overlap.) We should setup one
1823f2cb1360SIngo Molnar  * sched domain for each mask. CPUs not in any of the cpumasks will
1824f2cb1360SIngo Molnar  * not be load balanced. If the same cpumask appears both in the
1825f2cb1360SIngo Molnar  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1826f2cb1360SIngo Molnar  * it as it is.
1827f2cb1360SIngo Molnar  *
1828f2cb1360SIngo Molnar  * The passed in 'doms_new' should be allocated using
1829f2cb1360SIngo Molnar  * alloc_sched_domains.  This routine takes ownership of it and will
1830f2cb1360SIngo Molnar  * free_sched_domains it when done with it. If the caller failed the
1831f2cb1360SIngo Molnar  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1832f2cb1360SIngo Molnar  * and partition_sched_domains() will fallback to the single partition
1833f2cb1360SIngo Molnar  * 'fallback_doms', it also forces the domains to be rebuilt.
1834f2cb1360SIngo Molnar  *
1835f2cb1360SIngo Molnar  * If doms_new == NULL it will be replaced with cpu_online_mask.
1836f2cb1360SIngo Molnar  * ndoms_new == 0 is a special case for destroying existing domains,
1837f2cb1360SIngo Molnar  * and it will not create the default domain.
1838f2cb1360SIngo Molnar  *
1839f2cb1360SIngo Molnar  * Call with hotplug lock held
1840f2cb1360SIngo Molnar  */
1841f2cb1360SIngo Molnar void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1842f2cb1360SIngo Molnar 			     struct sched_domain_attr *dattr_new)
1843f2cb1360SIngo Molnar {
1844f2cb1360SIngo Molnar 	int i, j, n;
1845f2cb1360SIngo Molnar 	int new_topology;
1846f2cb1360SIngo Molnar 
1847f2cb1360SIngo Molnar 	mutex_lock(&sched_domains_mutex);
1848f2cb1360SIngo Molnar 
1849f2cb1360SIngo Molnar 	/* Always unregister in case we don't destroy any domains: */
1850f2cb1360SIngo Molnar 	unregister_sched_domain_sysctl();
1851f2cb1360SIngo Molnar 
1852f2cb1360SIngo Molnar 	/* Let the architecture update CPU core mappings: */
1853f2cb1360SIngo Molnar 	new_topology = arch_update_cpu_topology();
1854f2cb1360SIngo Molnar 
1855f2cb1360SIngo Molnar 	n = doms_new ? ndoms_new : 0;
1856f2cb1360SIngo Molnar 
1857f2cb1360SIngo Molnar 	/* Destroy deleted domains: */
1858f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_cur; i++) {
1859f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
1860f2cb1360SIngo Molnar 			if (cpumask_equal(doms_cur[i], doms_new[j])
1861f2cb1360SIngo Molnar 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1862f2cb1360SIngo Molnar 				goto match1;
1863f2cb1360SIngo Molnar 		}
1864f2cb1360SIngo Molnar 		/* No match - a current sched domain not in new doms_new[] */
1865f2cb1360SIngo Molnar 		detach_destroy_domains(doms_cur[i]);
1866f2cb1360SIngo Molnar match1:
1867f2cb1360SIngo Molnar 		;
1868f2cb1360SIngo Molnar 	}
1869f2cb1360SIngo Molnar 
1870f2cb1360SIngo Molnar 	n = ndoms_cur;
1871f2cb1360SIngo Molnar 	if (doms_new == NULL) {
1872f2cb1360SIngo Molnar 		n = 0;
1873f2cb1360SIngo Molnar 		doms_new = &fallback_doms;
1874f2cb1360SIngo Molnar 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1875f2cb1360SIngo Molnar 		WARN_ON_ONCE(dattr_new);
1876f2cb1360SIngo Molnar 	}
1877f2cb1360SIngo Molnar 
1878f2cb1360SIngo Molnar 	/* Build new domains: */
1879f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_new; i++) {
1880f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
1881f2cb1360SIngo Molnar 			if (cpumask_equal(doms_new[i], doms_cur[j])
1882f2cb1360SIngo Molnar 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1883f2cb1360SIngo Molnar 				goto match2;
1884f2cb1360SIngo Molnar 		}
1885f2cb1360SIngo Molnar 		/* No match - add a new doms_new */
1886f2cb1360SIngo Molnar 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1887f2cb1360SIngo Molnar match2:
1888f2cb1360SIngo Molnar 		;
1889f2cb1360SIngo Molnar 	}
1890f2cb1360SIngo Molnar 
1891f2cb1360SIngo Molnar 	/* Remember the new sched domains: */
1892f2cb1360SIngo Molnar 	if (doms_cur != &fallback_doms)
1893f2cb1360SIngo Molnar 		free_sched_domains(doms_cur, ndoms_cur);
1894f2cb1360SIngo Molnar 
1895f2cb1360SIngo Molnar 	kfree(dattr_cur);
1896f2cb1360SIngo Molnar 	doms_cur = doms_new;
1897f2cb1360SIngo Molnar 	dattr_cur = dattr_new;
1898f2cb1360SIngo Molnar 	ndoms_cur = ndoms_new;
1899f2cb1360SIngo Molnar 
1900f2cb1360SIngo Molnar 	register_sched_domain_sysctl();
1901f2cb1360SIngo Molnar 
1902f2cb1360SIngo Molnar 	mutex_unlock(&sched_domains_mutex);
1903f2cb1360SIngo Molnar }
1904f2cb1360SIngo Molnar 
1905