xref: /openbmc/linux/kernel/sched/topology.c (revision 26d0dfbb16fcb17d128a79dc70f3020ea6992af0)
1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0
2f2cb1360SIngo Molnar /*
3f2cb1360SIngo Molnar  * Scheduler topology setup/handling methods
4f2cb1360SIngo Molnar  */
5f2cb1360SIngo Molnar 
6cd7f5535SYury Norov #include <linux/bsearch.h>
7cd7f5535SYury Norov 
8f2cb1360SIngo Molnar DEFINE_MUTEX(sched_domains_mutex);
9f2cb1360SIngo Molnar 
10f2cb1360SIngo Molnar /* Protected by sched_domains_mutex: */
11ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask;
12ace80310Szhong jiang static cpumask_var_t sched_domains_tmpmask2;
13f2cb1360SIngo Molnar 
14f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
15f2cb1360SIngo Molnar 
sched_debug_setup(char * str)16f2cb1360SIngo Molnar static int __init sched_debug_setup(char *str)
17f2cb1360SIngo Molnar {
189406415fSPeter Zijlstra 	sched_debug_verbose = true;
19f2cb1360SIngo Molnar 
20f2cb1360SIngo Molnar 	return 0;
21f2cb1360SIngo Molnar }
229406415fSPeter Zijlstra early_param("sched_verbose", sched_debug_setup);
23f2cb1360SIngo Molnar 
sched_debug(void)24f2cb1360SIngo Molnar static inline bool sched_debug(void)
25f2cb1360SIngo Molnar {
269406415fSPeter Zijlstra 	return sched_debug_verbose;
27f2cb1360SIngo Molnar }
28f2cb1360SIngo Molnar 
29848785dfSValentin Schneider #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30848785dfSValentin Schneider const struct sd_flag_debug sd_flag_debug[] = {
31848785dfSValentin Schneider #include <linux/sched/sd_flags.h>
32848785dfSValentin Schneider };
33848785dfSValentin Schneider #undef SD_FLAG
34848785dfSValentin Schneider 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)35f2cb1360SIngo Molnar static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36f2cb1360SIngo Molnar 				  struct cpumask *groupmask)
37f2cb1360SIngo Molnar {
38f2cb1360SIngo Molnar 	struct sched_group *group = sd->groups;
3965c5e253SValentin Schneider 	unsigned long flags = sd->flags;
4065c5e253SValentin Schneider 	unsigned int idx;
41f2cb1360SIngo Molnar 
42f2cb1360SIngo Molnar 	cpumask_clear(groupmask);
43f2cb1360SIngo Molnar 
44005f874dSPeter Zijlstra 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45005f874dSPeter Zijlstra 	printk(KERN_CONT "span=%*pbl level=%s\n",
46f2cb1360SIngo Molnar 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
47f2cb1360SIngo Molnar 
48f2cb1360SIngo Molnar 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4997fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50f2cb1360SIngo Molnar 	}
516cd0c583SYi Wang 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
5297fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
53f2cb1360SIngo Molnar 	}
54f2cb1360SIngo Molnar 
5565c5e253SValentin Schneider 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
5665c5e253SValentin Schneider 		unsigned int flag = BIT(idx);
5765c5e253SValentin Schneider 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
5865c5e253SValentin Schneider 
5965c5e253SValentin Schneider 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
6065c5e253SValentin Schneider 		    !(sd->child->flags & flag))
6165c5e253SValentin Schneider 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
6265c5e253SValentin Schneider 			       sd_flag_debug[idx].name);
6365c5e253SValentin Schneider 
6465c5e253SValentin Schneider 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
6565c5e253SValentin Schneider 		    !(sd->parent->flags & flag))
6665c5e253SValentin Schneider 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
6765c5e253SValentin Schneider 			       sd_flag_debug[idx].name);
6865c5e253SValentin Schneider 	}
6965c5e253SValentin Schneider 
70f2cb1360SIngo Molnar 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
71f2cb1360SIngo Molnar 	do {
72f2cb1360SIngo Molnar 		if (!group) {
73f2cb1360SIngo Molnar 			printk("\n");
74f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: group is NULL\n");
75f2cb1360SIngo Molnar 			break;
76f2cb1360SIngo Molnar 		}
77f2cb1360SIngo Molnar 
781087ad4eSYury Norov 		if (cpumask_empty(sched_group_span(group))) {
79f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
80f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: empty group\n");
81f2cb1360SIngo Molnar 			break;
82f2cb1360SIngo Molnar 		}
83f2cb1360SIngo Molnar 
84f2cb1360SIngo Molnar 		if (!(sd->flags & SD_OVERLAP) &&
85ae4df9d6SPeter Zijlstra 		    cpumask_intersects(groupmask, sched_group_span(group))) {
86f2cb1360SIngo Molnar 			printk(KERN_CONT "\n");
87f2cb1360SIngo Molnar 			printk(KERN_ERR "ERROR: repeated CPUs\n");
88f2cb1360SIngo Molnar 			break;
89f2cb1360SIngo Molnar 		}
90f2cb1360SIngo Molnar 
91ae4df9d6SPeter Zijlstra 		cpumask_or(groupmask, groupmask, sched_group_span(group));
92f2cb1360SIngo Molnar 
93005f874dSPeter Zijlstra 		printk(KERN_CONT " %d:{ span=%*pbl",
94005f874dSPeter Zijlstra 				group->sgc->id,
95ae4df9d6SPeter Zijlstra 				cpumask_pr_args(sched_group_span(group)));
96b0151c25SPeter Zijlstra 
97af218122SPeter Zijlstra 		if ((sd->flags & SD_OVERLAP) &&
98ae4df9d6SPeter Zijlstra 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99005f874dSPeter Zijlstra 			printk(KERN_CONT " mask=%*pbl",
100e5c14b1fSPeter Zijlstra 				cpumask_pr_args(group_balance_mask(group)));
101b0151c25SPeter Zijlstra 		}
102b0151c25SPeter Zijlstra 
103005f874dSPeter Zijlstra 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104005f874dSPeter Zijlstra 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
105f2cb1360SIngo Molnar 
106a420b063SPeter Zijlstra 		if (group == sd->groups && sd->child &&
107a420b063SPeter Zijlstra 		    !cpumask_equal(sched_domain_span(sd->child),
108ae4df9d6SPeter Zijlstra 				   sched_group_span(group))) {
109a420b063SPeter Zijlstra 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
110a420b063SPeter Zijlstra 		}
111a420b063SPeter Zijlstra 
112005f874dSPeter Zijlstra 		printk(KERN_CONT " }");
113005f874dSPeter Zijlstra 
114f2cb1360SIngo Molnar 		group = group->next;
115b0151c25SPeter Zijlstra 
116b0151c25SPeter Zijlstra 		if (group != sd->groups)
117b0151c25SPeter Zijlstra 			printk(KERN_CONT ",");
118b0151c25SPeter Zijlstra 
119f2cb1360SIngo Molnar 	} while (group != sd->groups);
120f2cb1360SIngo Molnar 	printk(KERN_CONT "\n");
121f2cb1360SIngo Molnar 
122f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
123f2cb1360SIngo Molnar 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
124f2cb1360SIngo Molnar 
125f2cb1360SIngo Molnar 	if (sd->parent &&
126f2cb1360SIngo Molnar 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
12797fb7a0aSIngo Molnar 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
128f2cb1360SIngo Molnar 	return 0;
129f2cb1360SIngo Molnar }
130f2cb1360SIngo Molnar 
sched_domain_debug(struct sched_domain * sd,int cpu)131f2cb1360SIngo Molnar static void sched_domain_debug(struct sched_domain *sd, int cpu)
132f2cb1360SIngo Molnar {
133f2cb1360SIngo Molnar 	int level = 0;
134f2cb1360SIngo Molnar 
1359406415fSPeter Zijlstra 	if (!sched_debug_verbose)
136f2cb1360SIngo Molnar 		return;
137f2cb1360SIngo Molnar 
138f2cb1360SIngo Molnar 	if (!sd) {
139f2cb1360SIngo Molnar 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
140f2cb1360SIngo Molnar 		return;
141f2cb1360SIngo Molnar 	}
142f2cb1360SIngo Molnar 
143005f874dSPeter Zijlstra 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144f2cb1360SIngo Molnar 
145f2cb1360SIngo Molnar 	for (;;) {
146f2cb1360SIngo Molnar 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
147f2cb1360SIngo Molnar 			break;
148f2cb1360SIngo Molnar 		level++;
149f2cb1360SIngo Molnar 		sd = sd->parent;
150f2cb1360SIngo Molnar 		if (!sd)
151f2cb1360SIngo Molnar 			break;
152f2cb1360SIngo Molnar 	}
153f2cb1360SIngo Molnar }
154f2cb1360SIngo Molnar #else /* !CONFIG_SCHED_DEBUG */
155f2cb1360SIngo Molnar 
1569406415fSPeter Zijlstra # define sched_debug_verbose 0
157f2cb1360SIngo Molnar # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)158f2cb1360SIngo Molnar static inline bool sched_debug(void)
159f2cb1360SIngo Molnar {
160f2cb1360SIngo Molnar 	return false;
161f2cb1360SIngo Molnar }
162f2cb1360SIngo Molnar #endif /* CONFIG_SCHED_DEBUG */
163f2cb1360SIngo Molnar 
1644fc472f1SValentin Schneider /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
1654fc472f1SValentin Schneider #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
1664fc472f1SValentin Schneider static const unsigned int SD_DEGENERATE_GROUPS_MASK =
1674fc472f1SValentin Schneider #include <linux/sched/sd_flags.h>
1684fc472f1SValentin Schneider 0;
1694fc472f1SValentin Schneider #undef SD_FLAG
1704fc472f1SValentin Schneider 
sd_degenerate(struct sched_domain * sd)171f2cb1360SIngo Molnar static int sd_degenerate(struct sched_domain *sd)
172f2cb1360SIngo Molnar {
173f2cb1360SIngo Molnar 	if (cpumask_weight(sched_domain_span(sd)) == 1)
174f2cb1360SIngo Molnar 		return 1;
175f2cb1360SIngo Molnar 
176f2cb1360SIngo Molnar 	/* Following flags need at least 2 groups */
1776f349818SValentin Schneider 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
1786f349818SValentin Schneider 	    (sd->groups != sd->groups->next))
179f2cb1360SIngo Molnar 		return 0;
180f2cb1360SIngo Molnar 
181f2cb1360SIngo Molnar 	/* Following flags don't use groups */
182f2cb1360SIngo Molnar 	if (sd->flags & (SD_WAKE_AFFINE))
183f2cb1360SIngo Molnar 		return 0;
184f2cb1360SIngo Molnar 
185f2cb1360SIngo Molnar 	return 1;
186f2cb1360SIngo Molnar }
187f2cb1360SIngo Molnar 
188f2cb1360SIngo Molnar static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)189f2cb1360SIngo Molnar sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
190f2cb1360SIngo Molnar {
191f2cb1360SIngo Molnar 	unsigned long cflags = sd->flags, pflags = parent->flags;
192f2cb1360SIngo Molnar 
193f2cb1360SIngo Molnar 	if (sd_degenerate(parent))
194f2cb1360SIngo Molnar 		return 1;
195f2cb1360SIngo Molnar 
196f2cb1360SIngo Molnar 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
197f2cb1360SIngo Molnar 		return 0;
198f2cb1360SIngo Molnar 
199f2cb1360SIngo Molnar 	/* Flags needing groups don't count if only 1 group in parent */
200ab65afb0SValentin Schneider 	if (parent->groups == parent->groups->next)
2013a6712c7SValentin Schneider 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
202ab65afb0SValentin Schneider 
203f2cb1360SIngo Molnar 	if (~cflags & pflags)
204f2cb1360SIngo Molnar 		return 0;
205f2cb1360SIngo Molnar 
206f2cb1360SIngo Molnar 	return 1;
207f2cb1360SIngo Molnar }
208f2cb1360SIngo Molnar 
209531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210f8a696f2SPeter Zijlstra DEFINE_STATIC_KEY_FALSE(sched_energy_present);
2118a044141SZhen Ni static unsigned int sysctl_sched_energy_aware = 1;
212d91e15a2STom Rix static DEFINE_MUTEX(sched_energy_mutex);
213d91e15a2STom Rix static bool sched_energy_update;
214531b5c9fSQuentin Perret 
rebuild_sched_domains_energy(void)21531f6a8c0SIonela Voinescu void rebuild_sched_domains_energy(void)
21631f6a8c0SIonela Voinescu {
21731f6a8c0SIonela Voinescu 	mutex_lock(&sched_energy_mutex);
21831f6a8c0SIonela Voinescu 	sched_energy_update = true;
21931f6a8c0SIonela Voinescu 	rebuild_sched_domains();
22031f6a8c0SIonela Voinescu 	sched_energy_update = false;
22131f6a8c0SIonela Voinescu 	mutex_unlock(&sched_energy_mutex);
22231f6a8c0SIonela Voinescu }
22331f6a8c0SIonela Voinescu 
2248d5d0cfbSQuentin Perret #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2258a044141SZhen Ni static int sched_energy_aware_handler(struct ctl_table *table, int write,
22632927393SChristoph Hellwig 		void *buffer, size_t *lenp, loff_t *ppos)
2278d5d0cfbSQuentin Perret {
2288d5d0cfbSQuentin Perret 	int ret, state;
2298d5d0cfbSQuentin Perret 
2308d5d0cfbSQuentin Perret 	if (write && !capable(CAP_SYS_ADMIN))
2318d5d0cfbSQuentin Perret 		return -EPERM;
2328d5d0cfbSQuentin Perret 
2338d5d0cfbSQuentin Perret 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2348d5d0cfbSQuentin Perret 	if (!ret && write) {
2358d5d0cfbSQuentin Perret 		state = static_branch_unlikely(&sched_energy_present);
23631f6a8c0SIonela Voinescu 		if (state != sysctl_sched_energy_aware)
23731f6a8c0SIonela Voinescu 			rebuild_sched_domains_energy();
2388d5d0cfbSQuentin Perret 	}
2398d5d0cfbSQuentin Perret 
2408d5d0cfbSQuentin Perret 	return ret;
2418d5d0cfbSQuentin Perret }
2428a044141SZhen Ni 
2438a044141SZhen Ni static struct ctl_table sched_energy_aware_sysctls[] = {
2448a044141SZhen Ni 	{
2458a044141SZhen Ni 		.procname       = "sched_energy_aware",
2468a044141SZhen Ni 		.data           = &sysctl_sched_energy_aware,
2478a044141SZhen Ni 		.maxlen         = sizeof(unsigned int),
2488a044141SZhen Ni 		.mode           = 0644,
2498a044141SZhen Ni 		.proc_handler   = sched_energy_aware_handler,
2508a044141SZhen Ni 		.extra1         = SYSCTL_ZERO,
2518a044141SZhen Ni 		.extra2         = SYSCTL_ONE,
2528a044141SZhen Ni 	},
2538a044141SZhen Ni 	{}
2548a044141SZhen Ni };
2558a044141SZhen Ni 
sched_energy_aware_sysctl_init(void)2568a044141SZhen Ni static int __init sched_energy_aware_sysctl_init(void)
2578a044141SZhen Ni {
2588a044141SZhen Ni 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
2598a044141SZhen Ni 	return 0;
2608a044141SZhen Ni }
2618a044141SZhen Ni 
2628a044141SZhen Ni late_initcall(sched_energy_aware_sysctl_init);
2638d5d0cfbSQuentin Perret #endif
2648d5d0cfbSQuentin Perret 
free_pd(struct perf_domain * pd)2656aa140faSQuentin Perret static void free_pd(struct perf_domain *pd)
2666aa140faSQuentin Perret {
2676aa140faSQuentin Perret 	struct perf_domain *tmp;
2686aa140faSQuentin Perret 
2696aa140faSQuentin Perret 	while (pd) {
2706aa140faSQuentin Perret 		tmp = pd->next;
2716aa140faSQuentin Perret 		kfree(pd);
2726aa140faSQuentin Perret 		pd = tmp;
2736aa140faSQuentin Perret 	}
2746aa140faSQuentin Perret }
2756aa140faSQuentin Perret 
find_pd(struct perf_domain * pd,int cpu)2766aa140faSQuentin Perret static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
2776aa140faSQuentin Perret {
2786aa140faSQuentin Perret 	while (pd) {
2796aa140faSQuentin Perret 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
2806aa140faSQuentin Perret 			return pd;
2816aa140faSQuentin Perret 		pd = pd->next;
2826aa140faSQuentin Perret 	}
2836aa140faSQuentin Perret 
2846aa140faSQuentin Perret 	return NULL;
2856aa140faSQuentin Perret }
2866aa140faSQuentin Perret 
pd_init(int cpu)2876aa140faSQuentin Perret static struct perf_domain *pd_init(int cpu)
2886aa140faSQuentin Perret {
2896aa140faSQuentin Perret 	struct em_perf_domain *obj = em_cpu_get(cpu);
2906aa140faSQuentin Perret 	struct perf_domain *pd;
2916aa140faSQuentin Perret 
2926aa140faSQuentin Perret 	if (!obj) {
2936aa140faSQuentin Perret 		if (sched_debug())
2946aa140faSQuentin Perret 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
2956aa140faSQuentin Perret 		return NULL;
2966aa140faSQuentin Perret 	}
2976aa140faSQuentin Perret 
2986aa140faSQuentin Perret 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
2996aa140faSQuentin Perret 	if (!pd)
3006aa140faSQuentin Perret 		return NULL;
3016aa140faSQuentin Perret 	pd->em_pd = obj;
3026aa140faSQuentin Perret 
3036aa140faSQuentin Perret 	return pd;
3046aa140faSQuentin Perret }
3056aa140faSQuentin Perret 
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)3066aa140faSQuentin Perret static void perf_domain_debug(const struct cpumask *cpu_map,
3076aa140faSQuentin Perret 						struct perf_domain *pd)
3086aa140faSQuentin Perret {
3096aa140faSQuentin Perret 	if (!sched_debug() || !pd)
3106aa140faSQuentin Perret 		return;
3116aa140faSQuentin Perret 
3126aa140faSQuentin Perret 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
3136aa140faSQuentin Perret 
3146aa140faSQuentin Perret 	while (pd) {
315521b512bSLukasz Luba 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
3166aa140faSQuentin Perret 				cpumask_first(perf_domain_span(pd)),
3176aa140faSQuentin Perret 				cpumask_pr_args(perf_domain_span(pd)),
318521b512bSLukasz Luba 				em_pd_nr_perf_states(pd->em_pd));
3196aa140faSQuentin Perret 		pd = pd->next;
3206aa140faSQuentin Perret 	}
3216aa140faSQuentin Perret 
3226aa140faSQuentin Perret 	printk(KERN_CONT "\n");
3236aa140faSQuentin Perret }
3246aa140faSQuentin Perret 
destroy_perf_domain_rcu(struct rcu_head * rp)3256aa140faSQuentin Perret static void destroy_perf_domain_rcu(struct rcu_head *rp)
3266aa140faSQuentin Perret {
3276aa140faSQuentin Perret 	struct perf_domain *pd;
3286aa140faSQuentin Perret 
3296aa140faSQuentin Perret 	pd = container_of(rp, struct perf_domain, rcu);
3306aa140faSQuentin Perret 	free_pd(pd);
3316aa140faSQuentin Perret }
3326aa140faSQuentin Perret 
sched_energy_set(bool has_eas)3331f74de87SQuentin Perret static void sched_energy_set(bool has_eas)
3341f74de87SQuentin Perret {
3351f74de87SQuentin Perret 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
3361f74de87SQuentin Perret 		if (sched_debug())
3371f74de87SQuentin Perret 			pr_info("%s: stopping EAS\n", __func__);
3381f74de87SQuentin Perret 		static_branch_disable_cpuslocked(&sched_energy_present);
3391f74de87SQuentin Perret 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
3401f74de87SQuentin Perret 		if (sched_debug())
3411f74de87SQuentin Perret 			pr_info("%s: starting EAS\n", __func__);
3421f74de87SQuentin Perret 		static_branch_enable_cpuslocked(&sched_energy_present);
3431f74de87SQuentin Perret 	}
3441f74de87SQuentin Perret }
3451f74de87SQuentin Perret 
346b68a4c0dSQuentin Perret /*
347b68a4c0dSQuentin Perret  * EAS can be used on a root domain if it meets all the following conditions:
348b68a4c0dSQuentin Perret  *    1. an Energy Model (EM) is available;
349b68a4c0dSQuentin Perret  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
35038502ab4SValentin Schneider  *    3. no SMT is detected.
35138502ab4SValentin Schneider  *    4. the EM complexity is low enough to keep scheduling overheads low;
35238502ab4SValentin Schneider  *    5. schedutil is driving the frequency of all CPUs of the rd;
353fa50e2b4SIonela Voinescu  *    6. frequency invariance support is present;
354b68a4c0dSQuentin Perret  *
355b68a4c0dSQuentin Perret  * The complexity of the Energy Model is defined as:
356b68a4c0dSQuentin Perret  *
357521b512bSLukasz Luba  *              C = nr_pd * (nr_cpus + nr_ps)
358b68a4c0dSQuentin Perret  *
359b68a4c0dSQuentin Perret  * with parameters defined as:
360b68a4c0dSQuentin Perret  *  - nr_pd:    the number of performance domains
361b68a4c0dSQuentin Perret  *  - nr_cpus:  the number of CPUs
362521b512bSLukasz Luba  *  - nr_ps:    the sum of the number of performance states of all performance
363b68a4c0dSQuentin Perret  *              domains (for example, on a system with 2 performance domains,
364521b512bSLukasz Luba  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
365b68a4c0dSQuentin Perret  *
366b68a4c0dSQuentin Perret  * It is generally not a good idea to use such a model in the wake-up path on
367b68a4c0dSQuentin Perret  * very complex platforms because of the associated scheduling overheads. The
368b68a4c0dSQuentin Perret  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
369521b512bSLukasz Luba  * with per-CPU DVFS and less than 8 performance states each, for example.
370b68a4c0dSQuentin Perret  */
371b68a4c0dSQuentin Perret #define EM_MAX_COMPLEXITY 2048
372b68a4c0dSQuentin Perret 
373531b5c9fSQuentin Perret extern struct cpufreq_governor schedutil_gov;
build_perf_domains(const struct cpumask * cpu_map)3741f74de87SQuentin Perret static bool build_perf_domains(const struct cpumask *cpu_map)
3756aa140faSQuentin Perret {
376521b512bSLukasz Luba 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
3776aa140faSQuentin Perret 	struct perf_domain *pd = NULL, *tmp;
3786aa140faSQuentin Perret 	int cpu = cpumask_first(cpu_map);
3796aa140faSQuentin Perret 	struct root_domain *rd = cpu_rq(cpu)->rd;
380531b5c9fSQuentin Perret 	struct cpufreq_policy *policy;
381531b5c9fSQuentin Perret 	struct cpufreq_governor *gov;
382b68a4c0dSQuentin Perret 
3838d5d0cfbSQuentin Perret 	if (!sysctl_sched_energy_aware)
3848d5d0cfbSQuentin Perret 		goto free;
3858d5d0cfbSQuentin Perret 
386b68a4c0dSQuentin Perret 	/* EAS is enabled for asymmetric CPU capacity topologies. */
387b68a4c0dSQuentin Perret 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
388b68a4c0dSQuentin Perret 		if (sched_debug()) {
389b68a4c0dSQuentin Perret 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
390b68a4c0dSQuentin Perret 					cpumask_pr_args(cpu_map));
391b68a4c0dSQuentin Perret 		}
392b68a4c0dSQuentin Perret 		goto free;
393b68a4c0dSQuentin Perret 	}
3946aa140faSQuentin Perret 
39538502ab4SValentin Schneider 	/* EAS definitely does *not* handle SMT */
39638502ab4SValentin Schneider 	if (sched_smt_active()) {
39738502ab4SValentin Schneider 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
39838502ab4SValentin Schneider 			cpumask_pr_args(cpu_map));
39938502ab4SValentin Schneider 		goto free;
40038502ab4SValentin Schneider 	}
40138502ab4SValentin Schneider 
402fa50e2b4SIonela Voinescu 	if (!arch_scale_freq_invariant()) {
403fa50e2b4SIonela Voinescu 		if (sched_debug()) {
404fa50e2b4SIonela Voinescu 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
405fa50e2b4SIonela Voinescu 				cpumask_pr_args(cpu_map));
406fa50e2b4SIonela Voinescu 		}
407fa50e2b4SIonela Voinescu 		goto free;
408fa50e2b4SIonela Voinescu 	}
409fa50e2b4SIonela Voinescu 
4106aa140faSQuentin Perret 	for_each_cpu(i, cpu_map) {
4116aa140faSQuentin Perret 		/* Skip already covered CPUs. */
4126aa140faSQuentin Perret 		if (find_pd(pd, i))
4136aa140faSQuentin Perret 			continue;
4146aa140faSQuentin Perret 
415531b5c9fSQuentin Perret 		/* Do not attempt EAS if schedutil is not being used. */
416531b5c9fSQuentin Perret 		policy = cpufreq_cpu_get(i);
417531b5c9fSQuentin Perret 		if (!policy)
418531b5c9fSQuentin Perret 			goto free;
419531b5c9fSQuentin Perret 		gov = policy->governor;
420531b5c9fSQuentin Perret 		cpufreq_cpu_put(policy);
421531b5c9fSQuentin Perret 		if (gov != &schedutil_gov) {
422531b5c9fSQuentin Perret 			if (rd->pd)
423531b5c9fSQuentin Perret 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
424531b5c9fSQuentin Perret 						cpumask_pr_args(cpu_map));
425531b5c9fSQuentin Perret 			goto free;
426531b5c9fSQuentin Perret 		}
427531b5c9fSQuentin Perret 
4286aa140faSQuentin Perret 		/* Create the new pd and add it to the local list. */
4296aa140faSQuentin Perret 		tmp = pd_init(i);
4306aa140faSQuentin Perret 		if (!tmp)
4316aa140faSQuentin Perret 			goto free;
4326aa140faSQuentin Perret 		tmp->next = pd;
4336aa140faSQuentin Perret 		pd = tmp;
434b68a4c0dSQuentin Perret 
435b68a4c0dSQuentin Perret 		/*
436521b512bSLukasz Luba 		 * Count performance domains and performance states for the
437b68a4c0dSQuentin Perret 		 * complexity check.
438b68a4c0dSQuentin Perret 		 */
439b68a4c0dSQuentin Perret 		nr_pd++;
440521b512bSLukasz Luba 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
441b68a4c0dSQuentin Perret 	}
442b68a4c0dSQuentin Perret 
443b68a4c0dSQuentin Perret 	/* Bail out if the Energy Model complexity is too high. */
444521b512bSLukasz Luba 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
445b68a4c0dSQuentin Perret 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
446b68a4c0dSQuentin Perret 						cpumask_pr_args(cpu_map));
447b68a4c0dSQuentin Perret 		goto free;
4486aa140faSQuentin Perret 	}
4496aa140faSQuentin Perret 
4506aa140faSQuentin Perret 	perf_domain_debug(cpu_map, pd);
4516aa140faSQuentin Perret 
4526aa140faSQuentin Perret 	/* Attach the new list of performance domains to the root domain. */
4536aa140faSQuentin Perret 	tmp = rd->pd;
4546aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, pd);
4556aa140faSQuentin Perret 	if (tmp)
4566aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
4576aa140faSQuentin Perret 
4581f74de87SQuentin Perret 	return !!pd;
4596aa140faSQuentin Perret 
4606aa140faSQuentin Perret free:
4616aa140faSQuentin Perret 	free_pd(pd);
4626aa140faSQuentin Perret 	tmp = rd->pd;
4636aa140faSQuentin Perret 	rcu_assign_pointer(rd->pd, NULL);
4646aa140faSQuentin Perret 	if (tmp)
4656aa140faSQuentin Perret 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
4661f74de87SQuentin Perret 
4671f74de87SQuentin Perret 	return false;
4686aa140faSQuentin Perret }
4696aa140faSQuentin Perret #else
free_pd(struct perf_domain * pd)4706aa140faSQuentin Perret static void free_pd(struct perf_domain *pd) { }
471531b5c9fSQuentin Perret #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
4726aa140faSQuentin Perret 
free_rootdomain(struct rcu_head * rcu)473f2cb1360SIngo Molnar static void free_rootdomain(struct rcu_head *rcu)
474f2cb1360SIngo Molnar {
475f2cb1360SIngo Molnar 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
476f2cb1360SIngo Molnar 
477f2cb1360SIngo Molnar 	cpupri_cleanup(&rd->cpupri);
478f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
479f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
480f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
481f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
482f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
4836aa140faSQuentin Perret 	free_pd(rd->pd);
484f2cb1360SIngo Molnar 	kfree(rd);
485f2cb1360SIngo Molnar }
486f2cb1360SIngo Molnar 
rq_attach_root(struct rq * rq,struct root_domain * rd)487f2cb1360SIngo Molnar void rq_attach_root(struct rq *rq, struct root_domain *rd)
488f2cb1360SIngo Molnar {
489f2cb1360SIngo Molnar 	struct root_domain *old_rd = NULL;
490cab3ecaeSHao Jia 	struct rq_flags rf;
491f2cb1360SIngo Molnar 
492cab3ecaeSHao Jia 	rq_lock_irqsave(rq, &rf);
493f2cb1360SIngo Molnar 
494f2cb1360SIngo Molnar 	if (rq->rd) {
495f2cb1360SIngo Molnar 		old_rd = rq->rd;
496f2cb1360SIngo Molnar 
497f2cb1360SIngo Molnar 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
498f2cb1360SIngo Molnar 			set_rq_offline(rq);
499f2cb1360SIngo Molnar 
500f2cb1360SIngo Molnar 		cpumask_clear_cpu(rq->cpu, old_rd->span);
501f2cb1360SIngo Molnar 
502f2cb1360SIngo Molnar 		/*
503f2cb1360SIngo Molnar 		 * If we dont want to free the old_rd yet then
504f2cb1360SIngo Molnar 		 * set old_rd to NULL to skip the freeing later
505f2cb1360SIngo Molnar 		 * in this function:
506f2cb1360SIngo Molnar 		 */
507f2cb1360SIngo Molnar 		if (!atomic_dec_and_test(&old_rd->refcount))
508f2cb1360SIngo Molnar 			old_rd = NULL;
509f2cb1360SIngo Molnar 	}
510f2cb1360SIngo Molnar 
511f2cb1360SIngo Molnar 	atomic_inc(&rd->refcount);
512f2cb1360SIngo Molnar 	rq->rd = rd;
513f2cb1360SIngo Molnar 
514f2cb1360SIngo Molnar 	cpumask_set_cpu(rq->cpu, rd->span);
515f2cb1360SIngo Molnar 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
516f2cb1360SIngo Molnar 		set_rq_online(rq);
517f2cb1360SIngo Molnar 
518cab3ecaeSHao Jia 	rq_unlock_irqrestore(rq, &rf);
519f2cb1360SIngo Molnar 
520f2cb1360SIngo Molnar 	if (old_rd)
521337e9b07SPaul E. McKenney 		call_rcu(&old_rd->rcu, free_rootdomain);
522f2cb1360SIngo Molnar }
523f2cb1360SIngo Molnar 
sched_get_rd(struct root_domain * rd)524364f5665SSteven Rostedt (VMware) void sched_get_rd(struct root_domain *rd)
525364f5665SSteven Rostedt (VMware) {
526364f5665SSteven Rostedt (VMware) 	atomic_inc(&rd->refcount);
527364f5665SSteven Rostedt (VMware) }
528364f5665SSteven Rostedt (VMware) 
sched_put_rd(struct root_domain * rd)529364f5665SSteven Rostedt (VMware) void sched_put_rd(struct root_domain *rd)
530364f5665SSteven Rostedt (VMware) {
531364f5665SSteven Rostedt (VMware) 	if (!atomic_dec_and_test(&rd->refcount))
532364f5665SSteven Rostedt (VMware) 		return;
533364f5665SSteven Rostedt (VMware) 
534337e9b07SPaul E. McKenney 	call_rcu(&rd->rcu, free_rootdomain);
535364f5665SSteven Rostedt (VMware) }
536364f5665SSteven Rostedt (VMware) 
init_rootdomain(struct root_domain * rd)537f2cb1360SIngo Molnar static int init_rootdomain(struct root_domain *rd)
538f2cb1360SIngo Molnar {
539f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
540f2cb1360SIngo Molnar 		goto out;
541f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
542f2cb1360SIngo Molnar 		goto free_span;
543f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
544f2cb1360SIngo Molnar 		goto free_online;
545f2cb1360SIngo Molnar 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
546f2cb1360SIngo Molnar 		goto free_dlo_mask;
547f2cb1360SIngo Molnar 
5484bdced5cSSteven Rostedt (Red Hat) #ifdef HAVE_RT_PUSH_IPI
5494bdced5cSSteven Rostedt (Red Hat) 	rd->rto_cpu = -1;
5504bdced5cSSteven Rostedt (Red Hat) 	raw_spin_lock_init(&rd->rto_lock);
551da6ff099SSebastian Andrzej Siewior 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
5524bdced5cSSteven Rostedt (Red Hat) #endif
5534bdced5cSSteven Rostedt (Red Hat) 
55426762423SPeng Liu 	rd->visit_gen = 0;
555f2cb1360SIngo Molnar 	init_dl_bw(&rd->dl_bw);
556f2cb1360SIngo Molnar 	if (cpudl_init(&rd->cpudl) != 0)
557f2cb1360SIngo Molnar 		goto free_rto_mask;
558f2cb1360SIngo Molnar 
559f2cb1360SIngo Molnar 	if (cpupri_init(&rd->cpupri) != 0)
560f2cb1360SIngo Molnar 		goto free_cpudl;
561f2cb1360SIngo Molnar 	return 0;
562f2cb1360SIngo Molnar 
563f2cb1360SIngo Molnar free_cpudl:
564f2cb1360SIngo Molnar 	cpudl_cleanup(&rd->cpudl);
565f2cb1360SIngo Molnar free_rto_mask:
566f2cb1360SIngo Molnar 	free_cpumask_var(rd->rto_mask);
567f2cb1360SIngo Molnar free_dlo_mask:
568f2cb1360SIngo Molnar 	free_cpumask_var(rd->dlo_mask);
569f2cb1360SIngo Molnar free_online:
570f2cb1360SIngo Molnar 	free_cpumask_var(rd->online);
571f2cb1360SIngo Molnar free_span:
572f2cb1360SIngo Molnar 	free_cpumask_var(rd->span);
573f2cb1360SIngo Molnar out:
574f2cb1360SIngo Molnar 	return -ENOMEM;
575f2cb1360SIngo Molnar }
576f2cb1360SIngo Molnar 
577f2cb1360SIngo Molnar /*
578f2cb1360SIngo Molnar  * By default the system creates a single root-domain with all CPUs as
579f2cb1360SIngo Molnar  * members (mimicking the global state we have today).
580f2cb1360SIngo Molnar  */
581f2cb1360SIngo Molnar struct root_domain def_root_domain;
582f2cb1360SIngo Molnar 
init_defrootdomain(void)5839a5322dbSBing Huang void __init init_defrootdomain(void)
584f2cb1360SIngo Molnar {
585f2cb1360SIngo Molnar 	init_rootdomain(&def_root_domain);
586f2cb1360SIngo Molnar 
587f2cb1360SIngo Molnar 	atomic_set(&def_root_domain.refcount, 1);
588f2cb1360SIngo Molnar }
589f2cb1360SIngo Molnar 
alloc_rootdomain(void)590f2cb1360SIngo Molnar static struct root_domain *alloc_rootdomain(void)
591f2cb1360SIngo Molnar {
592f2cb1360SIngo Molnar 	struct root_domain *rd;
593f2cb1360SIngo Molnar 
5944d13a06dSViresh Kumar 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
595f2cb1360SIngo Molnar 	if (!rd)
596f2cb1360SIngo Molnar 		return NULL;
597f2cb1360SIngo Molnar 
598f2cb1360SIngo Molnar 	if (init_rootdomain(rd) != 0) {
599f2cb1360SIngo Molnar 		kfree(rd);
600f2cb1360SIngo Molnar 		return NULL;
601f2cb1360SIngo Molnar 	}
602f2cb1360SIngo Molnar 
603f2cb1360SIngo Molnar 	return rd;
604f2cb1360SIngo Molnar }
605f2cb1360SIngo Molnar 
free_sched_groups(struct sched_group * sg,int free_sgc)606f2cb1360SIngo Molnar static void free_sched_groups(struct sched_group *sg, int free_sgc)
607f2cb1360SIngo Molnar {
608f2cb1360SIngo Molnar 	struct sched_group *tmp, *first;
609f2cb1360SIngo Molnar 
610f2cb1360SIngo Molnar 	if (!sg)
611f2cb1360SIngo Molnar 		return;
612f2cb1360SIngo Molnar 
613f2cb1360SIngo Molnar 	first = sg;
614f2cb1360SIngo Molnar 	do {
615f2cb1360SIngo Molnar 		tmp = sg->next;
616f2cb1360SIngo Molnar 
617f2cb1360SIngo Molnar 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
618f2cb1360SIngo Molnar 			kfree(sg->sgc);
619f2cb1360SIngo Molnar 
620213c5a45SShu Wang 		if (atomic_dec_and_test(&sg->ref))
621f2cb1360SIngo Molnar 			kfree(sg);
622f2cb1360SIngo Molnar 		sg = tmp;
623f2cb1360SIngo Molnar 	} while (sg != first);
624f2cb1360SIngo Molnar }
625f2cb1360SIngo Molnar 
destroy_sched_domain(struct sched_domain * sd)626f2cb1360SIngo Molnar static void destroy_sched_domain(struct sched_domain *sd)
627f2cb1360SIngo Molnar {
628f2cb1360SIngo Molnar 	/*
629a090c4f2SPeter Zijlstra 	 * A normal sched domain may have multiple group references, an
630a090c4f2SPeter Zijlstra 	 * overlapping domain, having private groups, only one.  Iterate,
631a090c4f2SPeter Zijlstra 	 * dropping group/capacity references, freeing where none remain.
632f2cb1360SIngo Molnar 	 */
633f2cb1360SIngo Molnar 	free_sched_groups(sd->groups, 1);
634213c5a45SShu Wang 
635f2cb1360SIngo Molnar 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
636f2cb1360SIngo Molnar 		kfree(sd->shared);
637f2cb1360SIngo Molnar 	kfree(sd);
638f2cb1360SIngo Molnar }
639f2cb1360SIngo Molnar 
destroy_sched_domains_rcu(struct rcu_head * rcu)640f2cb1360SIngo Molnar static void destroy_sched_domains_rcu(struct rcu_head *rcu)
641f2cb1360SIngo Molnar {
642f2cb1360SIngo Molnar 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
643f2cb1360SIngo Molnar 
644f2cb1360SIngo Molnar 	while (sd) {
645f2cb1360SIngo Molnar 		struct sched_domain *parent = sd->parent;
646f2cb1360SIngo Molnar 		destroy_sched_domain(sd);
647f2cb1360SIngo Molnar 		sd = parent;
648f2cb1360SIngo Molnar 	}
649f2cb1360SIngo Molnar }
650f2cb1360SIngo Molnar 
destroy_sched_domains(struct sched_domain * sd)651f2cb1360SIngo Molnar static void destroy_sched_domains(struct sched_domain *sd)
652f2cb1360SIngo Molnar {
653f2cb1360SIngo Molnar 	if (sd)
654f2cb1360SIngo Molnar 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
655f2cb1360SIngo Molnar }
656f2cb1360SIngo Molnar 
657f2cb1360SIngo Molnar /*
658f2cb1360SIngo Molnar  * Keep a special pointer to the highest sched_domain that has
659f2cb1360SIngo Molnar  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
660f2cb1360SIngo Molnar  * allows us to avoid some pointer chasing select_idle_sibling().
661f2cb1360SIngo Molnar  *
662f2cb1360SIngo Molnar  * Also keep a unique ID per domain (we use the first CPU number in
663f2cb1360SIngo Molnar  * the cpumask of the domain), this allows us to quickly tell if
664f2cb1360SIngo Molnar  * two CPUs are in the same cache domain, see cpus_share_cache().
665f2cb1360SIngo Molnar  */
666994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
667f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_size);
668f2cb1360SIngo Molnar DEFINE_PER_CPU(int, sd_llc_id);
669994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
670994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
671994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
672994aeb7aSJoel Fernandes (Google) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
673df054e84SMorten Rasmussen DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
674f2cb1360SIngo Molnar 
update_top_cache_domain(int cpu)675f2cb1360SIngo Molnar static void update_top_cache_domain(int cpu)
676f2cb1360SIngo Molnar {
677f2cb1360SIngo Molnar 	struct sched_domain_shared *sds = NULL;
678f2cb1360SIngo Molnar 	struct sched_domain *sd;
679f2cb1360SIngo Molnar 	int id = cpu;
680f2cb1360SIngo Molnar 	int size = 1;
681f2cb1360SIngo Molnar 
682f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
683f2cb1360SIngo Molnar 	if (sd) {
684f2cb1360SIngo Molnar 		id = cpumask_first(sched_domain_span(sd));
685f2cb1360SIngo Molnar 		size = cpumask_weight(sched_domain_span(sd));
686f2cb1360SIngo Molnar 		sds = sd->shared;
687f2cb1360SIngo Molnar 	}
688f2cb1360SIngo Molnar 
689f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
690f2cb1360SIngo Molnar 	per_cpu(sd_llc_size, cpu) = size;
691f2cb1360SIngo Molnar 	per_cpu(sd_llc_id, cpu) = id;
692f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
693f2cb1360SIngo Molnar 
694f2cb1360SIngo Molnar 	sd = lowest_flag_domain(cpu, SD_NUMA);
695f2cb1360SIngo Molnar 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
696f2cb1360SIngo Molnar 
697f2cb1360SIngo Molnar 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
698011b27bbSQuentin Perret 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
699011b27bbSQuentin Perret 
700c744dc4aSBeata Michalska 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
701011b27bbSQuentin Perret 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
702f2cb1360SIngo Molnar }
703f2cb1360SIngo Molnar 
704f2cb1360SIngo Molnar /*
705f2cb1360SIngo Molnar  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
706f2cb1360SIngo Molnar  * hold the hotplug lock.
707f2cb1360SIngo Molnar  */
708f2cb1360SIngo Molnar static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)709f2cb1360SIngo Molnar cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
710f2cb1360SIngo Molnar {
711f2cb1360SIngo Molnar 	struct rq *rq = cpu_rq(cpu);
712f2cb1360SIngo Molnar 	struct sched_domain *tmp;
713f2cb1360SIngo Molnar 
714f2cb1360SIngo Molnar 	/* Remove the sched domains which do not contribute to scheduling. */
715f2cb1360SIngo Molnar 	for (tmp = sd; tmp; ) {
716f2cb1360SIngo Molnar 		struct sched_domain *parent = tmp->parent;
717f2cb1360SIngo Molnar 		if (!parent)
718f2cb1360SIngo Molnar 			break;
719f2cb1360SIngo Molnar 
720f2cb1360SIngo Molnar 		if (sd_parent_degenerate(tmp, parent)) {
721f2cb1360SIngo Molnar 			tmp->parent = parent->parent;
722bf2dc42dSTim C Chen 
723bf2dc42dSTim C Chen 			if (parent->parent) {
724f2cb1360SIngo Molnar 				parent->parent->child = tmp;
7254efcc8bcSChen Yu 				parent->parent->groups->flags = tmp->flags;
726bf2dc42dSTim C Chen 			}
727bf2dc42dSTim C Chen 
728f2cb1360SIngo Molnar 			/*
729f2cb1360SIngo Molnar 			 * Transfer SD_PREFER_SIBLING down in case of a
730f2cb1360SIngo Molnar 			 * degenerate parent; the spans match for this
731f2cb1360SIngo Molnar 			 * so the property transfers.
732f2cb1360SIngo Molnar 			 */
733f2cb1360SIngo Molnar 			if (parent->flags & SD_PREFER_SIBLING)
734f2cb1360SIngo Molnar 				tmp->flags |= SD_PREFER_SIBLING;
735f2cb1360SIngo Molnar 			destroy_sched_domain(parent);
736f2cb1360SIngo Molnar 		} else
737f2cb1360SIngo Molnar 			tmp = tmp->parent;
738f2cb1360SIngo Molnar 	}
739f2cb1360SIngo Molnar 
740f2cb1360SIngo Molnar 	if (sd && sd_degenerate(sd)) {
741f2cb1360SIngo Molnar 		tmp = sd;
742f2cb1360SIngo Molnar 		sd = sd->parent;
743f2cb1360SIngo Molnar 		destroy_sched_domain(tmp);
74416d364baSRicardo Neri 		if (sd) {
74516d364baSRicardo Neri 			struct sched_group *sg = sd->groups;
74616d364baSRicardo Neri 
74716d364baSRicardo Neri 			/*
74816d364baSRicardo Neri 			 * sched groups hold the flags of the child sched
74916d364baSRicardo Neri 			 * domain for convenience. Clear such flags since
75016d364baSRicardo Neri 			 * the child is being destroyed.
75116d364baSRicardo Neri 			 */
75216d364baSRicardo Neri 			do {
75316d364baSRicardo Neri 				sg->flags = 0;
75416d364baSRicardo Neri 			} while (sg != sd->groups);
75516d364baSRicardo Neri 
756f2cb1360SIngo Molnar 			sd->child = NULL;
757f2cb1360SIngo Molnar 		}
75816d364baSRicardo Neri 	}
759f2cb1360SIngo Molnar 
760f2cb1360SIngo Molnar 	sched_domain_debug(sd, cpu);
761f2cb1360SIngo Molnar 
762f2cb1360SIngo Molnar 	rq_attach_root(rq, rd);
763f2cb1360SIngo Molnar 	tmp = rq->sd;
764f2cb1360SIngo Molnar 	rcu_assign_pointer(rq->sd, sd);
765bbdacdfeSPeter Zijlstra 	dirty_sched_domain_sysctl(cpu);
766f2cb1360SIngo Molnar 	destroy_sched_domains(tmp);
767f2cb1360SIngo Molnar 
768f2cb1360SIngo Molnar 	update_top_cache_domain(cpu);
769f2cb1360SIngo Molnar }
770f2cb1360SIngo Molnar 
771f2cb1360SIngo Molnar struct s_data {
77299687cdbSLuc Van Oostenryck 	struct sched_domain * __percpu *sd;
773f2cb1360SIngo Molnar 	struct root_domain	*rd;
774f2cb1360SIngo Molnar };
775f2cb1360SIngo Molnar 
776f2cb1360SIngo Molnar enum s_alloc {
777f2cb1360SIngo Molnar 	sa_rootdomain,
778f2cb1360SIngo Molnar 	sa_sd,
779f2cb1360SIngo Molnar 	sa_sd_storage,
780f2cb1360SIngo Molnar 	sa_none,
781f2cb1360SIngo Molnar };
782f2cb1360SIngo Molnar 
783f2cb1360SIngo Molnar /*
78435a566e6SPeter Zijlstra  * Return the canonical balance CPU for this group, this is the first CPU
785e5c14b1fSPeter Zijlstra  * of this group that's also in the balance mask.
78635a566e6SPeter Zijlstra  *
787e5c14b1fSPeter Zijlstra  * The balance mask are all those CPUs that could actually end up at this
788e5c14b1fSPeter Zijlstra  * group. See build_balance_mask().
78935a566e6SPeter Zijlstra  *
79035a566e6SPeter Zijlstra  * Also see should_we_balance().
79135a566e6SPeter Zijlstra  */
group_balance_cpu(struct sched_group * sg)79235a566e6SPeter Zijlstra int group_balance_cpu(struct sched_group *sg)
79335a566e6SPeter Zijlstra {
794e5c14b1fSPeter Zijlstra 	return cpumask_first(group_balance_mask(sg));
79535a566e6SPeter Zijlstra }
79635a566e6SPeter Zijlstra 
79735a566e6SPeter Zijlstra 
79835a566e6SPeter Zijlstra /*
79935a566e6SPeter Zijlstra  * NUMA topology (first read the regular topology blurb below)
80035a566e6SPeter Zijlstra  *
80135a566e6SPeter Zijlstra  * Given a node-distance table, for example:
80235a566e6SPeter Zijlstra  *
80335a566e6SPeter Zijlstra  *   node   0   1   2   3
80435a566e6SPeter Zijlstra  *     0:  10  20  30  20
80535a566e6SPeter Zijlstra  *     1:  20  10  20  30
80635a566e6SPeter Zijlstra  *     2:  30  20  10  20
80735a566e6SPeter Zijlstra  *     3:  20  30  20  10
80835a566e6SPeter Zijlstra  *
80935a566e6SPeter Zijlstra  * which represents a 4 node ring topology like:
81035a566e6SPeter Zijlstra  *
81135a566e6SPeter Zijlstra  *   0 ----- 1
81235a566e6SPeter Zijlstra  *   |       |
81335a566e6SPeter Zijlstra  *   |       |
81435a566e6SPeter Zijlstra  *   |       |
81535a566e6SPeter Zijlstra  *   3 ----- 2
81635a566e6SPeter Zijlstra  *
81735a566e6SPeter Zijlstra  * We want to construct domains and groups to represent this. The way we go
81835a566e6SPeter Zijlstra  * about doing this is to build the domains on 'hops'. For each NUMA level we
81935a566e6SPeter Zijlstra  * construct the mask of all nodes reachable in @level hops.
82035a566e6SPeter Zijlstra  *
82135a566e6SPeter Zijlstra  * For the above NUMA topology that gives 3 levels:
82235a566e6SPeter Zijlstra  *
82335a566e6SPeter Zijlstra  * NUMA-2	0-3		0-3		0-3		0-3
82435a566e6SPeter Zijlstra  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
82535a566e6SPeter Zijlstra  *
82635a566e6SPeter Zijlstra  * NUMA-1	0-1,3		0-2		1-3		0,2-3
82735a566e6SPeter Zijlstra  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
82835a566e6SPeter Zijlstra  *
82935a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
83035a566e6SPeter Zijlstra  *
83135a566e6SPeter Zijlstra  *
83235a566e6SPeter Zijlstra  * As can be seen; things don't nicely line up as with the regular topology.
83335a566e6SPeter Zijlstra  * When we iterate a domain in child domain chunks some nodes can be
83435a566e6SPeter Zijlstra  * represented multiple times -- hence the "overlap" naming for this part of
83535a566e6SPeter Zijlstra  * the topology.
83635a566e6SPeter Zijlstra  *
83735a566e6SPeter Zijlstra  * In order to minimize this overlap, we only build enough groups to cover the
83835a566e6SPeter Zijlstra  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
83935a566e6SPeter Zijlstra  *
84035a566e6SPeter Zijlstra  * Because:
84135a566e6SPeter Zijlstra  *
84235a566e6SPeter Zijlstra  *  - the first group of each domain is its child domain; this
84335a566e6SPeter Zijlstra  *    gets us the first 0-1,3
84435a566e6SPeter Zijlstra  *  - the only uncovered node is 2, who's child domain is 1-3.
84535a566e6SPeter Zijlstra  *
84635a566e6SPeter Zijlstra  * However, because of the overlap, computing a unique CPU for each group is
84735a566e6SPeter Zijlstra  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
84835a566e6SPeter Zijlstra  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
84935a566e6SPeter Zijlstra  * end up at those groups (they would end up in group: 0-1,3).
85035a566e6SPeter Zijlstra  *
851e5c14b1fSPeter Zijlstra  * To correct this we have to introduce the group balance mask. This mask
85235a566e6SPeter Zijlstra  * will contain those CPUs in the group that can reach this group given the
85335a566e6SPeter Zijlstra  * (child) domain tree.
85435a566e6SPeter Zijlstra  *
85535a566e6SPeter Zijlstra  * With this we can once again compute balance_cpu and sched_group_capacity
85635a566e6SPeter Zijlstra  * relations.
85735a566e6SPeter Zijlstra  *
85835a566e6SPeter Zijlstra  * XXX include words on how balance_cpu is unique and therefore can be
85935a566e6SPeter Zijlstra  * used for sched_group_capacity links.
86035a566e6SPeter Zijlstra  *
86135a566e6SPeter Zijlstra  *
86235a566e6SPeter Zijlstra  * Another 'interesting' topology is:
86335a566e6SPeter Zijlstra  *
86435a566e6SPeter Zijlstra  *   node   0   1   2   3
86535a566e6SPeter Zijlstra  *     0:  10  20  20  30
86635a566e6SPeter Zijlstra  *     1:  20  10  20  20
86735a566e6SPeter Zijlstra  *     2:  20  20  10  20
86835a566e6SPeter Zijlstra  *     3:  30  20  20  10
86935a566e6SPeter Zijlstra  *
87035a566e6SPeter Zijlstra  * Which looks a little like:
87135a566e6SPeter Zijlstra  *
87235a566e6SPeter Zijlstra  *   0 ----- 1
87335a566e6SPeter Zijlstra  *   |     / |
87435a566e6SPeter Zijlstra  *   |   /   |
87535a566e6SPeter Zijlstra  *   | /     |
87635a566e6SPeter Zijlstra  *   2 ----- 3
87735a566e6SPeter Zijlstra  *
87835a566e6SPeter Zijlstra  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
87935a566e6SPeter Zijlstra  * are not.
88035a566e6SPeter Zijlstra  *
88135a566e6SPeter Zijlstra  * This leads to a few particularly weird cases where the sched_domain's are
88297fb7a0aSIngo Molnar  * not of the same number for each CPU. Consider:
88335a566e6SPeter Zijlstra  *
88435a566e6SPeter Zijlstra  * NUMA-2	0-3						0-3
88535a566e6SPeter Zijlstra  *  groups:	{0-2},{1-3}					{1-3},{0-2}
88635a566e6SPeter Zijlstra  *
88735a566e6SPeter Zijlstra  * NUMA-1	0-2		0-3		0-3		1-3
88835a566e6SPeter Zijlstra  *
88935a566e6SPeter Zijlstra  * NUMA-0	0		1		2		3
89035a566e6SPeter Zijlstra  *
89135a566e6SPeter Zijlstra  */
89235a566e6SPeter Zijlstra 
89335a566e6SPeter Zijlstra 
89435a566e6SPeter Zijlstra /*
895e5c14b1fSPeter Zijlstra  * Build the balance mask; it contains only those CPUs that can arrive at this
896e5c14b1fSPeter Zijlstra  * group and should be considered to continue balancing.
89735a566e6SPeter Zijlstra  *
89835a566e6SPeter Zijlstra  * We do this during the group creation pass, therefore the group information
89935a566e6SPeter Zijlstra  * isn't complete yet, however since each group represents a (child) domain we
90035a566e6SPeter Zijlstra  * can fully construct this using the sched_domain bits (which are already
90135a566e6SPeter Zijlstra  * complete).
902f2cb1360SIngo Molnar  */
9031676330eSPeter Zijlstra static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)904e5c14b1fSPeter Zijlstra build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
905f2cb1360SIngo Molnar {
906ae4df9d6SPeter Zijlstra 	const struct cpumask *sg_span = sched_group_span(sg);
907f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
908f2cb1360SIngo Molnar 	struct sched_domain *sibling;
909f2cb1360SIngo Molnar 	int i;
910f2cb1360SIngo Molnar 
9111676330eSPeter Zijlstra 	cpumask_clear(mask);
9121676330eSPeter Zijlstra 
913f32d782eSLauro Ramos Venancio 	for_each_cpu(i, sg_span) {
914f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
91573bb059fSPeter Zijlstra 
91673bb059fSPeter Zijlstra 		/*
91773bb059fSPeter Zijlstra 		 * Can happen in the asymmetric case, where these siblings are
91873bb059fSPeter Zijlstra 		 * unused. The mask will not be empty because those CPUs that
91973bb059fSPeter Zijlstra 		 * do have the top domain _should_ span the domain.
92073bb059fSPeter Zijlstra 		 */
92173bb059fSPeter Zijlstra 		if (!sibling->child)
92273bb059fSPeter Zijlstra 			continue;
92373bb059fSPeter Zijlstra 
92473bb059fSPeter Zijlstra 		/* If we would not end up here, we can't continue from here */
92573bb059fSPeter Zijlstra 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
926f2cb1360SIngo Molnar 			continue;
927f2cb1360SIngo Molnar 
9281676330eSPeter Zijlstra 		cpumask_set_cpu(i, mask);
929f2cb1360SIngo Molnar 	}
93073bb059fSPeter Zijlstra 
93173bb059fSPeter Zijlstra 	/* We must not have empty masks here */
9321676330eSPeter Zijlstra 	WARN_ON_ONCE(cpumask_empty(mask));
933f2cb1360SIngo Molnar }
934f2cb1360SIngo Molnar 
935f2cb1360SIngo Molnar /*
93635a566e6SPeter Zijlstra  * XXX: This creates per-node group entries; since the load-balancer will
93735a566e6SPeter Zijlstra  * immediately access remote memory to construct this group's load-balance
93835a566e6SPeter Zijlstra  * statistics having the groups node local is of dubious benefit.
939f2cb1360SIngo Molnar  */
9408c033469SLauro Ramos Venancio static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)9418c033469SLauro Ramos Venancio build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
9428c033469SLauro Ramos Venancio {
9438c033469SLauro Ramos Venancio 	struct sched_group *sg;
9448c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
9458c033469SLauro Ramos Venancio 
9468c033469SLauro Ramos Venancio 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
9478c033469SLauro Ramos Venancio 			GFP_KERNEL, cpu_to_node(cpu));
9488c033469SLauro Ramos Venancio 
9498c033469SLauro Ramos Venancio 	if (!sg)
9508c033469SLauro Ramos Venancio 		return NULL;
9518c033469SLauro Ramos Venancio 
952ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
95316d364baSRicardo Neri 	if (sd->child) {
9548c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd->child));
95516d364baSRicardo Neri 		sg->flags = sd->child->flags;
95616d364baSRicardo Neri 	} else {
9578c033469SLauro Ramos Venancio 		cpumask_copy(sg_span, sched_domain_span(sd));
95816d364baSRicardo Neri 	}
9598c033469SLauro Ramos Venancio 
960213c5a45SShu Wang 	atomic_inc(&sg->ref);
9618c033469SLauro Ramos Venancio 	return sg;
9628c033469SLauro Ramos Venancio }
9638c033469SLauro Ramos Venancio 
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)9648c033469SLauro Ramos Venancio static void init_overlap_sched_group(struct sched_domain *sd,
9651676330eSPeter Zijlstra 				     struct sched_group *sg)
9668c033469SLauro Ramos Venancio {
9671676330eSPeter Zijlstra 	struct cpumask *mask = sched_domains_tmpmask2;
9688c033469SLauro Ramos Venancio 	struct sd_data *sdd = sd->private;
9698c033469SLauro Ramos Venancio 	struct cpumask *sg_span;
9701676330eSPeter Zijlstra 	int cpu;
9711676330eSPeter Zijlstra 
972e5c14b1fSPeter Zijlstra 	build_balance_mask(sd, sg, mask);
9730a2b65c0SBarry Song 	cpu = cpumask_first(mask);
9748c033469SLauro Ramos Venancio 
9758c033469SLauro Ramos Venancio 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
9768c033469SLauro Ramos Venancio 	if (atomic_inc_return(&sg->sgc->ref) == 1)
977e5c14b1fSPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), mask);
97835a566e6SPeter Zijlstra 	else
979e5c14b1fSPeter Zijlstra 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
9808c033469SLauro Ramos Venancio 
9818c033469SLauro Ramos Venancio 	/*
9828c033469SLauro Ramos Venancio 	 * Initialize sgc->capacity such that even if we mess up the
9838c033469SLauro Ramos Venancio 	 * domains and no possible iteration will get us here, we won't
9848c033469SLauro Ramos Venancio 	 * die on a /0 trap.
9858c033469SLauro Ramos Venancio 	 */
986ae4df9d6SPeter Zijlstra 	sg_span = sched_group_span(sg);
9878c033469SLauro Ramos Venancio 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
9888c033469SLauro Ramos Venancio 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
989e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
9908c033469SLauro Ramos Venancio }
9918c033469SLauro Ramos Venancio 
992585b6d27SBarry Song static struct sched_domain *
find_descended_sibling(struct sched_domain * sd,struct sched_domain * sibling)993585b6d27SBarry Song find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
994585b6d27SBarry Song {
995585b6d27SBarry Song 	/*
996585b6d27SBarry Song 	 * The proper descendant would be the one whose child won't span out
997585b6d27SBarry Song 	 * of sd
998585b6d27SBarry Song 	 */
999585b6d27SBarry Song 	while (sibling->child &&
1000585b6d27SBarry Song 	       !cpumask_subset(sched_domain_span(sibling->child),
1001585b6d27SBarry Song 			       sched_domain_span(sd)))
1002585b6d27SBarry Song 		sibling = sibling->child;
1003585b6d27SBarry Song 
1004585b6d27SBarry Song 	/*
1005585b6d27SBarry Song 	 * As we are referencing sgc across different topology level, we need
1006585b6d27SBarry Song 	 * to go down to skip those sched_domains which don't contribute to
1007585b6d27SBarry Song 	 * scheduling because they will be degenerated in cpu_attach_domain
1008585b6d27SBarry Song 	 */
1009585b6d27SBarry Song 	while (sibling->child &&
1010585b6d27SBarry Song 	       cpumask_equal(sched_domain_span(sibling->child),
1011585b6d27SBarry Song 			     sched_domain_span(sibling)))
1012585b6d27SBarry Song 		sibling = sibling->child;
1013585b6d27SBarry Song 
1014585b6d27SBarry Song 	return sibling;
1015585b6d27SBarry Song }
1016585b6d27SBarry Song 
1017f2cb1360SIngo Molnar static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)1018f2cb1360SIngo Molnar build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1019f2cb1360SIngo Molnar {
102091eaed0dSPeter Zijlstra 	struct sched_group *first = NULL, *last = NULL, *sg;
1021f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
1022f2cb1360SIngo Molnar 	struct cpumask *covered = sched_domains_tmpmask;
1023f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1024f2cb1360SIngo Molnar 	struct sched_domain *sibling;
1025f2cb1360SIngo Molnar 	int i;
1026f2cb1360SIngo Molnar 
1027f2cb1360SIngo Molnar 	cpumask_clear(covered);
1028f2cb1360SIngo Molnar 
10290372dd27SPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
1030f2cb1360SIngo Molnar 		struct cpumask *sg_span;
1031f2cb1360SIngo Molnar 
1032f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
1033f2cb1360SIngo Molnar 			continue;
1034f2cb1360SIngo Molnar 
1035f2cb1360SIngo Molnar 		sibling = *per_cpu_ptr(sdd->sd, i);
1036f2cb1360SIngo Molnar 
1037c20e1ea4SLauro Ramos Venancio 		/*
1038c20e1ea4SLauro Ramos Venancio 		 * Asymmetric node setups can result in situations where the
1039c20e1ea4SLauro Ramos Venancio 		 * domain tree is of unequal depth, make sure to skip domains
1040c20e1ea4SLauro Ramos Venancio 		 * that already cover the entire range.
1041c20e1ea4SLauro Ramos Venancio 		 *
1042c20e1ea4SLauro Ramos Venancio 		 * In that case build_sched_domains() will have terminated the
1043c20e1ea4SLauro Ramos Venancio 		 * iteration early and our sibling sd spans will be empty.
1044c20e1ea4SLauro Ramos Venancio 		 * Domains should always include the CPU they're built on, so
1045c20e1ea4SLauro Ramos Venancio 		 * check that.
1046c20e1ea4SLauro Ramos Venancio 		 */
1047f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1048f2cb1360SIngo Molnar 			continue;
1049f2cb1360SIngo Molnar 
1050585b6d27SBarry Song 		/*
1051585b6d27SBarry Song 		 * Usually we build sched_group by sibling's child sched_domain
1052585b6d27SBarry Song 		 * But for machines whose NUMA diameter are 3 or above, we move
1053585b6d27SBarry Song 		 * to build sched_group by sibling's proper descendant's child
1054585b6d27SBarry Song 		 * domain because sibling's child sched_domain will span out of
1055585b6d27SBarry Song 		 * the sched_domain being built as below.
1056585b6d27SBarry Song 		 *
1057585b6d27SBarry Song 		 * Smallest diameter=3 topology is:
1058585b6d27SBarry Song 		 *
1059585b6d27SBarry Song 		 *   node   0   1   2   3
1060585b6d27SBarry Song 		 *     0:  10  20  30  40
1061585b6d27SBarry Song 		 *     1:  20  10  20  30
1062585b6d27SBarry Song 		 *     2:  30  20  10  20
1063585b6d27SBarry Song 		 *     3:  40  30  20  10
1064585b6d27SBarry Song 		 *
1065585b6d27SBarry Song 		 *   0 --- 1 --- 2 --- 3
1066585b6d27SBarry Song 		 *
1067585b6d27SBarry Song 		 * NUMA-3       0-3             N/A             N/A             0-3
1068585b6d27SBarry Song 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1069585b6d27SBarry Song 		 *
1070585b6d27SBarry Song 		 * NUMA-2       0-2             0-3             0-3             1-3
1071585b6d27SBarry Song 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1072585b6d27SBarry Song 		 *
1073585b6d27SBarry Song 		 * NUMA-1       0-1             0-2             1-3             2-3
1074585b6d27SBarry Song 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1075585b6d27SBarry Song 		 *
1076585b6d27SBarry Song 		 * NUMA-0       0               1               2               3
1077585b6d27SBarry Song 		 *
1078585b6d27SBarry Song 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1079585b6d27SBarry Song 		 * group span isn't a subset of the domain span.
1080585b6d27SBarry Song 		 */
1081585b6d27SBarry Song 		if (sibling->child &&
1082585b6d27SBarry Song 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1083585b6d27SBarry Song 			sibling = find_descended_sibling(sd, sibling);
1084585b6d27SBarry Song 
10858c033469SLauro Ramos Venancio 		sg = build_group_from_child_sched_domain(sibling, cpu);
1086f2cb1360SIngo Molnar 		if (!sg)
1087f2cb1360SIngo Molnar 			goto fail;
1088f2cb1360SIngo Molnar 
1089ae4df9d6SPeter Zijlstra 		sg_span = sched_group_span(sg);
1090f2cb1360SIngo Molnar 		cpumask_or(covered, covered, sg_span);
1091f2cb1360SIngo Molnar 
1092585b6d27SBarry Song 		init_overlap_sched_group(sibling, sg);
1093f2cb1360SIngo Molnar 
1094f2cb1360SIngo Molnar 		if (!first)
1095f2cb1360SIngo Molnar 			first = sg;
1096f2cb1360SIngo Molnar 		if (last)
1097f2cb1360SIngo Molnar 			last->next = sg;
1098f2cb1360SIngo Molnar 		last = sg;
1099f2cb1360SIngo Molnar 		last->next = first;
1100f2cb1360SIngo Molnar 	}
110191eaed0dSPeter Zijlstra 	sd->groups = first;
1102f2cb1360SIngo Molnar 
1103f2cb1360SIngo Molnar 	return 0;
1104f2cb1360SIngo Molnar 
1105f2cb1360SIngo Molnar fail:
1106f2cb1360SIngo Molnar 	free_sched_groups(first, 0);
1107f2cb1360SIngo Molnar 
1108f2cb1360SIngo Molnar 	return -ENOMEM;
1109f2cb1360SIngo Molnar }
1110f2cb1360SIngo Molnar 
111135a566e6SPeter Zijlstra 
111235a566e6SPeter Zijlstra /*
111335a566e6SPeter Zijlstra  * Package topology (also see the load-balance blurb in fair.c)
111435a566e6SPeter Zijlstra  *
111535a566e6SPeter Zijlstra  * The scheduler builds a tree structure to represent a number of important
111635a566e6SPeter Zijlstra  * topology features. By default (default_topology[]) these include:
111735a566e6SPeter Zijlstra  *
111835a566e6SPeter Zijlstra  *  - Simultaneous multithreading (SMT)
111935a566e6SPeter Zijlstra  *  - Multi-Core Cache (MC)
112035a566e6SPeter Zijlstra  *  - Package (DIE)
112135a566e6SPeter Zijlstra  *
112235a566e6SPeter Zijlstra  * Where the last one more or less denotes everything up to a NUMA node.
112335a566e6SPeter Zijlstra  *
112435a566e6SPeter Zijlstra  * The tree consists of 3 primary data structures:
112535a566e6SPeter Zijlstra  *
112635a566e6SPeter Zijlstra  *	sched_domain -> sched_group -> sched_group_capacity
112735a566e6SPeter Zijlstra  *	    ^ ^             ^ ^
112835a566e6SPeter Zijlstra  *          `-'             `-'
112935a566e6SPeter Zijlstra  *
113097fb7a0aSIngo Molnar  * The sched_domains are per-CPU and have a two way link (parent & child) and
113135a566e6SPeter Zijlstra  * denote the ever growing mask of CPUs belonging to that level of topology.
113235a566e6SPeter Zijlstra  *
113335a566e6SPeter Zijlstra  * Each sched_domain has a circular (double) linked list of sched_group's, each
113435a566e6SPeter Zijlstra  * denoting the domains of the level below (or individual CPUs in case of the
113535a566e6SPeter Zijlstra  * first domain level). The sched_group linked by a sched_domain includes the
113635a566e6SPeter Zijlstra  * CPU of that sched_domain [*].
113735a566e6SPeter Zijlstra  *
113835a566e6SPeter Zijlstra  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
113935a566e6SPeter Zijlstra  *
114035a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
114135a566e6SPeter Zijlstra  *
114235a566e6SPeter Zijlstra  * DIE  [                             ]
114335a566e6SPeter Zijlstra  * MC   [             ] [             ]
114435a566e6SPeter Zijlstra  * SMT  [     ] [     ] [     ] [     ]
114535a566e6SPeter Zijlstra  *
114635a566e6SPeter Zijlstra  *  - or -
114735a566e6SPeter Zijlstra  *
114835a566e6SPeter Zijlstra  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
114935a566e6SPeter Zijlstra  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
115035a566e6SPeter Zijlstra  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
115135a566e6SPeter Zijlstra  *
115235a566e6SPeter Zijlstra  * CPU   0   1   2   3   4   5   6   7
115335a566e6SPeter Zijlstra  *
115435a566e6SPeter Zijlstra  * One way to think about it is: sched_domain moves you up and down among these
115535a566e6SPeter Zijlstra  * topology levels, while sched_group moves you sideways through it, at child
115635a566e6SPeter Zijlstra  * domain granularity.
115735a566e6SPeter Zijlstra  *
115835a566e6SPeter Zijlstra  * sched_group_capacity ensures each unique sched_group has shared storage.
115935a566e6SPeter Zijlstra  *
116035a566e6SPeter Zijlstra  * There are two related construction problems, both require a CPU that
116135a566e6SPeter Zijlstra  * uniquely identify each group (for a given domain):
116235a566e6SPeter Zijlstra  *
116335a566e6SPeter Zijlstra  *  - The first is the balance_cpu (see should_we_balance() and the
116435a566e6SPeter Zijlstra  *    load-balance blub in fair.c); for each group we only want 1 CPU to
116535a566e6SPeter Zijlstra  *    continue balancing at a higher domain.
116635a566e6SPeter Zijlstra  *
116735a566e6SPeter Zijlstra  *  - The second is the sched_group_capacity; we want all identical groups
116835a566e6SPeter Zijlstra  *    to share a single sched_group_capacity.
116935a566e6SPeter Zijlstra  *
117035a566e6SPeter Zijlstra  * Since these topologies are exclusive by construction. That is, its
117135a566e6SPeter Zijlstra  * impossible for an SMT thread to belong to multiple cores, and cores to
117235a566e6SPeter Zijlstra  * be part of multiple caches. There is a very clear and unique location
117335a566e6SPeter Zijlstra  * for each CPU in the hierarchy.
117435a566e6SPeter Zijlstra  *
117535a566e6SPeter Zijlstra  * Therefore computing a unique CPU for each group is trivial (the iteration
117635a566e6SPeter Zijlstra  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
117735a566e6SPeter Zijlstra  * group), we can simply pick the first CPU in each group.
117835a566e6SPeter Zijlstra  *
117935a566e6SPeter Zijlstra  *
118035a566e6SPeter Zijlstra  * [*] in other words, the first group of each domain is its child domain.
118135a566e6SPeter Zijlstra  */
118235a566e6SPeter Zijlstra 
get_group(int cpu,struct sd_data * sdd)11830c0e776aSPeter Zijlstra static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1184f2cb1360SIngo Molnar {
1185f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1186f2cb1360SIngo Molnar 	struct sched_domain *child = sd->child;
11870c0e776aSPeter Zijlstra 	struct sched_group *sg;
118867d4f6ffSValentin Schneider 	bool already_visited;
1189f2cb1360SIngo Molnar 
1190f2cb1360SIngo Molnar 	if (child)
1191f2cb1360SIngo Molnar 		cpu = cpumask_first(sched_domain_span(child));
1192f2cb1360SIngo Molnar 
11930c0e776aSPeter Zijlstra 	sg = *per_cpu_ptr(sdd->sg, cpu);
11940c0e776aSPeter Zijlstra 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1195f2cb1360SIngo Molnar 
119667d4f6ffSValentin Schneider 	/* Increase refcounts for claim_allocations: */
119767d4f6ffSValentin Schneider 	already_visited = atomic_inc_return(&sg->ref) > 1;
119867d4f6ffSValentin Schneider 	/* sgc visits should follow a similar trend as sg */
119967d4f6ffSValentin Schneider 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
120067d4f6ffSValentin Schneider 
120167d4f6ffSValentin Schneider 	/* If we have already visited that group, it's already initialized. */
120267d4f6ffSValentin Schneider 	if (already_visited)
120367d4f6ffSValentin Schneider 		return sg;
12040c0e776aSPeter Zijlstra 
12050c0e776aSPeter Zijlstra 	if (child) {
1206ae4df9d6SPeter Zijlstra 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1207ae4df9d6SPeter Zijlstra 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
120816d364baSRicardo Neri 		sg->flags = child->flags;
12090c0e776aSPeter Zijlstra 	} else {
1210ae4df9d6SPeter Zijlstra 		cpumask_set_cpu(cpu, sched_group_span(sg));
1211e5c14b1fSPeter Zijlstra 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1212f2cb1360SIngo Molnar 	}
1213f2cb1360SIngo Molnar 
1214ae4df9d6SPeter Zijlstra 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
12150c0e776aSPeter Zijlstra 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1216e3d6d0cbSMorten Rasmussen 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
12170c0e776aSPeter Zijlstra 
12180c0e776aSPeter Zijlstra 	return sg;
1219f2cb1360SIngo Molnar }
1220f2cb1360SIngo Molnar 
1221f2cb1360SIngo Molnar /*
1222f2cb1360SIngo Molnar  * build_sched_groups will build a circular linked list of the groups
1223d8743230SValentin Schneider  * covered by the given span, will set each group's ->cpumask correctly,
1224d8743230SValentin Schneider  * and will initialize their ->sgc.
1225f2cb1360SIngo Molnar  *
1226f2cb1360SIngo Molnar  * Assumes the sched_domain tree is fully constructed
1227f2cb1360SIngo Molnar  */
1228f2cb1360SIngo Molnar static int
build_sched_groups(struct sched_domain * sd,int cpu)1229f2cb1360SIngo Molnar build_sched_groups(struct sched_domain *sd, int cpu)
1230f2cb1360SIngo Molnar {
1231f2cb1360SIngo Molnar 	struct sched_group *first = NULL, *last = NULL;
1232f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1233f2cb1360SIngo Molnar 	const struct cpumask *span = sched_domain_span(sd);
1234f2cb1360SIngo Molnar 	struct cpumask *covered;
1235f2cb1360SIngo Molnar 	int i;
1236f2cb1360SIngo Molnar 
1237f2cb1360SIngo Molnar 	lockdep_assert_held(&sched_domains_mutex);
1238f2cb1360SIngo Molnar 	covered = sched_domains_tmpmask;
1239f2cb1360SIngo Molnar 
1240f2cb1360SIngo Molnar 	cpumask_clear(covered);
1241f2cb1360SIngo Molnar 
12420c0e776aSPeter Zijlstra 	for_each_cpu_wrap(i, span, cpu) {
1243f2cb1360SIngo Molnar 		struct sched_group *sg;
1244f2cb1360SIngo Molnar 
1245f2cb1360SIngo Molnar 		if (cpumask_test_cpu(i, covered))
1246f2cb1360SIngo Molnar 			continue;
1247f2cb1360SIngo Molnar 
12480c0e776aSPeter Zijlstra 		sg = get_group(i, sdd);
1249f2cb1360SIngo Molnar 
1250ae4df9d6SPeter Zijlstra 		cpumask_or(covered, covered, sched_group_span(sg));
1251f2cb1360SIngo Molnar 
1252f2cb1360SIngo Molnar 		if (!first)
1253f2cb1360SIngo Molnar 			first = sg;
1254f2cb1360SIngo Molnar 		if (last)
1255f2cb1360SIngo Molnar 			last->next = sg;
1256f2cb1360SIngo Molnar 		last = sg;
1257f2cb1360SIngo Molnar 	}
1258f2cb1360SIngo Molnar 	last->next = first;
12590c0e776aSPeter Zijlstra 	sd->groups = first;
1260f2cb1360SIngo Molnar 
1261f2cb1360SIngo Molnar 	return 0;
1262f2cb1360SIngo Molnar }
1263f2cb1360SIngo Molnar 
1264f2cb1360SIngo Molnar /*
1265f2cb1360SIngo Molnar  * Initialize sched groups cpu_capacity.
1266f2cb1360SIngo Molnar  *
1267f2cb1360SIngo Molnar  * cpu_capacity indicates the capacity of sched group, which is used while
1268f2cb1360SIngo Molnar  * distributing the load between different sched groups in a sched domain.
1269f2cb1360SIngo Molnar  * Typically cpu_capacity for all the groups in a sched domain will be same
1270f2cb1360SIngo Molnar  * unless there are asymmetries in the topology. If there are asymmetries,
1271f2cb1360SIngo Molnar  * group having more cpu_capacity will pickup more load compared to the
1272f2cb1360SIngo Molnar  * group having less cpu_capacity.
1273f2cb1360SIngo Molnar  */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1274f2cb1360SIngo Molnar static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1275f2cb1360SIngo Molnar {
1276f2cb1360SIngo Molnar 	struct sched_group *sg = sd->groups;
1277d24cb0d9STim C Chen 	struct cpumask *mask = sched_domains_tmpmask2;
1278f2cb1360SIngo Molnar 
1279f2cb1360SIngo Molnar 	WARN_ON(!sg);
1280f2cb1360SIngo Molnar 
1281f2cb1360SIngo Molnar 	do {
1282d24cb0d9STim C Chen 		int cpu, cores = 0, max_cpu = -1;
1283f2cb1360SIngo Molnar 
1284ae4df9d6SPeter Zijlstra 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1285f2cb1360SIngo Molnar 
1286d24cb0d9STim C Chen 		cpumask_copy(mask, sched_group_span(sg));
1287d24cb0d9STim C Chen 		for_each_cpu(cpu, mask) {
1288d24cb0d9STim C Chen 			cores++;
1289d24cb0d9STim C Chen #ifdef CONFIG_SCHED_SMT
1290d24cb0d9STim C Chen 			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1291d24cb0d9STim C Chen #endif
1292d24cb0d9STim C Chen 		}
1293d24cb0d9STim C Chen 		sg->cores = cores;
1294d24cb0d9STim C Chen 
1295f2cb1360SIngo Molnar 		if (!(sd->flags & SD_ASYM_PACKING))
1296f2cb1360SIngo Molnar 			goto next;
1297f2cb1360SIngo Molnar 
1298ae4df9d6SPeter Zijlstra 		for_each_cpu(cpu, sched_group_span(sg)) {
1299f2cb1360SIngo Molnar 			if (max_cpu < 0)
1300f2cb1360SIngo Molnar 				max_cpu = cpu;
1301f2cb1360SIngo Molnar 			else if (sched_asym_prefer(cpu, max_cpu))
1302f2cb1360SIngo Molnar 				max_cpu = cpu;
1303f2cb1360SIngo Molnar 		}
1304f2cb1360SIngo Molnar 		sg->asym_prefer_cpu = max_cpu;
1305f2cb1360SIngo Molnar 
1306f2cb1360SIngo Molnar next:
1307f2cb1360SIngo Molnar 		sg = sg->next;
1308f2cb1360SIngo Molnar 	} while (sg != sd->groups);
1309f2cb1360SIngo Molnar 
1310f2cb1360SIngo Molnar 	if (cpu != group_balance_cpu(sg))
1311f2cb1360SIngo Molnar 		return;
1312f2cb1360SIngo Molnar 
1313f2cb1360SIngo Molnar 	update_group_capacity(sd, cpu);
1314f2cb1360SIngo Molnar }
1315f2cb1360SIngo Molnar 
1316f2cb1360SIngo Molnar /*
1317c744dc4aSBeata Michalska  * Asymmetric CPU capacity bits
1318c744dc4aSBeata Michalska  */
1319c744dc4aSBeata Michalska struct asym_cap_data {
1320c744dc4aSBeata Michalska 	struct list_head link;
1321c744dc4aSBeata Michalska 	unsigned long capacity;
1322c744dc4aSBeata Michalska 	unsigned long cpus[];
1323c744dc4aSBeata Michalska };
1324c744dc4aSBeata Michalska 
1325c744dc4aSBeata Michalska /*
1326c744dc4aSBeata Michalska  * Set of available CPUs grouped by their corresponding capacities
1327c744dc4aSBeata Michalska  * Each list entry contains a CPU mask reflecting CPUs that share the same
1328c744dc4aSBeata Michalska  * capacity.
1329c744dc4aSBeata Michalska  * The lifespan of data is unlimited.
1330c744dc4aSBeata Michalska  */
1331c744dc4aSBeata Michalska static LIST_HEAD(asym_cap_list);
1332c744dc4aSBeata Michalska 
1333c744dc4aSBeata Michalska #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1334c744dc4aSBeata Michalska 
1335c744dc4aSBeata Michalska /*
1336c744dc4aSBeata Michalska  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1337c744dc4aSBeata Michalska  * Provides sd_flags reflecting the asymmetry scope.
1338c744dc4aSBeata Michalska  */
1339c744dc4aSBeata Michalska static inline int
asym_cpu_capacity_classify(const struct cpumask * sd_span,const struct cpumask * cpu_map)1340c744dc4aSBeata Michalska asym_cpu_capacity_classify(const struct cpumask *sd_span,
1341c744dc4aSBeata Michalska 			   const struct cpumask *cpu_map)
1342c744dc4aSBeata Michalska {
1343c744dc4aSBeata Michalska 	struct asym_cap_data *entry;
1344c744dc4aSBeata Michalska 	int count = 0, miss = 0;
1345c744dc4aSBeata Michalska 
1346c744dc4aSBeata Michalska 	/*
1347c744dc4aSBeata Michalska 	 * Count how many unique CPU capacities this domain spans across
1348c744dc4aSBeata Michalska 	 * (compare sched_domain CPUs mask with ones representing  available
1349c744dc4aSBeata Michalska 	 * CPUs capacities). Take into account CPUs that might be offline:
1350c744dc4aSBeata Michalska 	 * skip those.
1351c744dc4aSBeata Michalska 	 */
1352c744dc4aSBeata Michalska 	list_for_each_entry(entry, &asym_cap_list, link) {
1353c744dc4aSBeata Michalska 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1354c744dc4aSBeata Michalska 			++count;
1355c744dc4aSBeata Michalska 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1356c744dc4aSBeata Michalska 			++miss;
1357c744dc4aSBeata Michalska 	}
1358c744dc4aSBeata Michalska 
1359c744dc4aSBeata Michalska 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1360c744dc4aSBeata Michalska 
1361c744dc4aSBeata Michalska 	/* No asymmetry detected */
1362c744dc4aSBeata Michalska 	if (count < 2)
1363c744dc4aSBeata Michalska 		return 0;
1364c744dc4aSBeata Michalska 	/* Some of the available CPU capacity values have not been detected */
1365c744dc4aSBeata Michalska 	if (miss)
1366c744dc4aSBeata Michalska 		return SD_ASYM_CPUCAPACITY;
1367c744dc4aSBeata Michalska 
1368c744dc4aSBeata Michalska 	/* Full asymmetry */
1369c744dc4aSBeata Michalska 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1370c744dc4aSBeata Michalska 
1371c744dc4aSBeata Michalska }
1372c744dc4aSBeata Michalska 
asym_cpu_capacity_update_data(int cpu)1373c744dc4aSBeata Michalska static inline void asym_cpu_capacity_update_data(int cpu)
1374c744dc4aSBeata Michalska {
1375c744dc4aSBeata Michalska 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1376c744dc4aSBeata Michalska 	struct asym_cap_data *entry = NULL;
1377c744dc4aSBeata Michalska 
1378c744dc4aSBeata Michalska 	list_for_each_entry(entry, &asym_cap_list, link) {
1379c744dc4aSBeata Michalska 		if (capacity == entry->capacity)
1380c744dc4aSBeata Michalska 			goto done;
1381c744dc4aSBeata Michalska 	}
1382c744dc4aSBeata Michalska 
1383c744dc4aSBeata Michalska 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1384c744dc4aSBeata Michalska 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1385c744dc4aSBeata Michalska 		return;
1386c744dc4aSBeata Michalska 	entry->capacity = capacity;
1387c744dc4aSBeata Michalska 	list_add(&entry->link, &asym_cap_list);
1388c744dc4aSBeata Michalska done:
1389c744dc4aSBeata Michalska 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1390c744dc4aSBeata Michalska }
1391c744dc4aSBeata Michalska 
1392c744dc4aSBeata Michalska /*
1393c744dc4aSBeata Michalska  * Build-up/update list of CPUs grouped by their capacities
1394c744dc4aSBeata Michalska  * An update requires explicit request to rebuild sched domains
1395c744dc4aSBeata Michalska  * with state indicating CPU topology changes.
1396c744dc4aSBeata Michalska  */
asym_cpu_capacity_scan(void)1397c744dc4aSBeata Michalska static void asym_cpu_capacity_scan(void)
1398c744dc4aSBeata Michalska {
1399c744dc4aSBeata Michalska 	struct asym_cap_data *entry, *next;
1400c744dc4aSBeata Michalska 	int cpu;
1401c744dc4aSBeata Michalska 
1402c744dc4aSBeata Michalska 	list_for_each_entry(entry, &asym_cap_list, link)
1403c744dc4aSBeata Michalska 		cpumask_clear(cpu_capacity_span(entry));
1404c744dc4aSBeata Michalska 
140504d4e665SFrederic Weisbecker 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1406c744dc4aSBeata Michalska 		asym_cpu_capacity_update_data(cpu);
1407c744dc4aSBeata Michalska 
1408c744dc4aSBeata Michalska 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1409c744dc4aSBeata Michalska 		if (cpumask_empty(cpu_capacity_span(entry))) {
1410c744dc4aSBeata Michalska 			list_del(&entry->link);
1411c744dc4aSBeata Michalska 			kfree(entry);
1412c744dc4aSBeata Michalska 		}
1413c744dc4aSBeata Michalska 	}
1414c744dc4aSBeata Michalska 
1415c744dc4aSBeata Michalska 	/*
1416c744dc4aSBeata Michalska 	 * Only one capacity value has been detected i.e. this system is symmetric.
1417c744dc4aSBeata Michalska 	 * No need to keep this data around.
1418c744dc4aSBeata Michalska 	 */
1419c744dc4aSBeata Michalska 	if (list_is_singular(&asym_cap_list)) {
1420c744dc4aSBeata Michalska 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1421c744dc4aSBeata Michalska 		list_del(&entry->link);
1422c744dc4aSBeata Michalska 		kfree(entry);
1423c744dc4aSBeata Michalska 	}
1424c744dc4aSBeata Michalska }
1425c744dc4aSBeata Michalska 
1426c744dc4aSBeata Michalska /*
1427f2cb1360SIngo Molnar  * Initializers for schedule domains
1428f2cb1360SIngo Molnar  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1429f2cb1360SIngo Molnar  */
1430f2cb1360SIngo Molnar 
1431f2cb1360SIngo Molnar static int default_relax_domain_level = -1;
1432f2cb1360SIngo Molnar int sched_domain_level_max;
1433f2cb1360SIngo Molnar 
setup_relax_domain_level(char * str)1434f2cb1360SIngo Molnar static int __init setup_relax_domain_level(char *str)
1435f2cb1360SIngo Molnar {
1436f2cb1360SIngo Molnar 	if (kstrtoint(str, 0, &default_relax_domain_level))
1437f2cb1360SIngo Molnar 		pr_warn("Unable to set relax_domain_level\n");
1438f2cb1360SIngo Molnar 
1439f2cb1360SIngo Molnar 	return 1;
1440f2cb1360SIngo Molnar }
1441f2cb1360SIngo Molnar __setup("relax_domain_level=", setup_relax_domain_level);
1442f2cb1360SIngo Molnar 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1443f2cb1360SIngo Molnar static void set_domain_attribute(struct sched_domain *sd,
1444f2cb1360SIngo Molnar 				 struct sched_domain_attr *attr)
1445f2cb1360SIngo Molnar {
1446f2cb1360SIngo Molnar 	int request;
1447f2cb1360SIngo Molnar 
1448f2cb1360SIngo Molnar 	if (!attr || attr->relax_domain_level < 0) {
1449f2cb1360SIngo Molnar 		if (default_relax_domain_level < 0)
1450f2cb1360SIngo Molnar 			return;
1451f2cb1360SIngo Molnar 		request = default_relax_domain_level;
1452f2cb1360SIngo Molnar 	} else
1453f2cb1360SIngo Molnar 		request = attr->relax_domain_level;
14549ae7ab20SValentin Schneider 
14554d9d099aSVitalii Bursov 	if (sd->level >= request) {
1456f2cb1360SIngo Molnar 		/* Turn off idle balance on this domain: */
1457f2cb1360SIngo Molnar 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1458f2cb1360SIngo Molnar 	}
1459f2cb1360SIngo Molnar }
1460f2cb1360SIngo Molnar 
1461f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map);
1462f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map);
1463f2cb1360SIngo Molnar 
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1464f2cb1360SIngo Molnar static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1465f2cb1360SIngo Molnar 				 const struct cpumask *cpu_map)
1466f2cb1360SIngo Molnar {
1467f2cb1360SIngo Molnar 	switch (what) {
1468f2cb1360SIngo Molnar 	case sa_rootdomain:
1469f2cb1360SIngo Molnar 		if (!atomic_read(&d->rd->refcount))
1470f2cb1360SIngo Molnar 			free_rootdomain(&d->rd->rcu);
1471df561f66SGustavo A. R. Silva 		fallthrough;
1472f2cb1360SIngo Molnar 	case sa_sd:
1473f2cb1360SIngo Molnar 		free_percpu(d->sd);
1474df561f66SGustavo A. R. Silva 		fallthrough;
1475f2cb1360SIngo Molnar 	case sa_sd_storage:
1476f2cb1360SIngo Molnar 		__sdt_free(cpu_map);
1477df561f66SGustavo A. R. Silva 		fallthrough;
1478f2cb1360SIngo Molnar 	case sa_none:
1479f2cb1360SIngo Molnar 		break;
1480f2cb1360SIngo Molnar 	}
1481f2cb1360SIngo Molnar }
1482f2cb1360SIngo Molnar 
1483f2cb1360SIngo Molnar static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1484f2cb1360SIngo Molnar __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1485f2cb1360SIngo Molnar {
1486f2cb1360SIngo Molnar 	memset(d, 0, sizeof(*d));
1487f2cb1360SIngo Molnar 
1488f2cb1360SIngo Molnar 	if (__sdt_alloc(cpu_map))
1489f2cb1360SIngo Molnar 		return sa_sd_storage;
1490f2cb1360SIngo Molnar 	d->sd = alloc_percpu(struct sched_domain *);
1491f2cb1360SIngo Molnar 	if (!d->sd)
1492f2cb1360SIngo Molnar 		return sa_sd_storage;
1493f2cb1360SIngo Molnar 	d->rd = alloc_rootdomain();
1494f2cb1360SIngo Molnar 	if (!d->rd)
1495f2cb1360SIngo Molnar 		return sa_sd;
149697fb7a0aSIngo Molnar 
1497f2cb1360SIngo Molnar 	return sa_rootdomain;
1498f2cb1360SIngo Molnar }
1499f2cb1360SIngo Molnar 
1500f2cb1360SIngo Molnar /*
1501f2cb1360SIngo Molnar  * NULL the sd_data elements we've used to build the sched_domain and
1502f2cb1360SIngo Molnar  * sched_group structure so that the subsequent __free_domain_allocs()
1503f2cb1360SIngo Molnar  * will not free the data we're using.
1504f2cb1360SIngo Molnar  */
claim_allocations(int cpu,struct sched_domain * sd)1505f2cb1360SIngo Molnar static void claim_allocations(int cpu, struct sched_domain *sd)
1506f2cb1360SIngo Molnar {
1507f2cb1360SIngo Molnar 	struct sd_data *sdd = sd->private;
1508f2cb1360SIngo Molnar 
1509f2cb1360SIngo Molnar 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1510f2cb1360SIngo Molnar 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1511f2cb1360SIngo Molnar 
1512f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1513f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1514f2cb1360SIngo Molnar 
1515f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1516f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1517f2cb1360SIngo Molnar 
1518f2cb1360SIngo Molnar 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1519f2cb1360SIngo Molnar 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1520f2cb1360SIngo Molnar }
1521f2cb1360SIngo Molnar 
1522f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1523f2cb1360SIngo Molnar enum numa_topology_type sched_numa_topology_type;
152497fb7a0aSIngo Molnar 
152597fb7a0aSIngo Molnar static int			sched_domains_numa_levels;
1526f2cb1360SIngo Molnar static int			sched_domains_curr_level;
152797fb7a0aSIngo Molnar 
152897fb7a0aSIngo Molnar int				sched_max_numa_distance;
152997fb7a0aSIngo Molnar static int			*sched_domains_numa_distance;
153097fb7a0aSIngo Molnar static struct cpumask		***sched_domains_numa_masks;
1531f2cb1360SIngo Molnar #endif
1532f2cb1360SIngo Molnar 
1533f2cb1360SIngo Molnar /*
1534f2cb1360SIngo Molnar  * SD_flags allowed in topology descriptions.
1535f2cb1360SIngo Molnar  *
1536f2cb1360SIngo Molnar  * These flags are purely descriptive of the topology and do not prescribe
1537f2cb1360SIngo Molnar  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1538f2cb1360SIngo Molnar  * function:
1539f2cb1360SIngo Molnar  *
1540f2cb1360SIngo Molnar  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1541f2cb1360SIngo Molnar  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1542f2cb1360SIngo Molnar  *   SD_NUMA                - describes NUMA topologies
1543f2cb1360SIngo Molnar  *
1544f2cb1360SIngo Molnar  * Odd one out, which beside describing the topology has a quirk also
1545f2cb1360SIngo Molnar  * prescribes the desired behaviour that goes along with it:
1546f2cb1360SIngo Molnar  *
1547f2cb1360SIngo Molnar  *   SD_ASYM_PACKING        - describes SMT quirks
1548f2cb1360SIngo Molnar  */
1549f2cb1360SIngo Molnar #define TOPOLOGY_SD_FLAGS		\
1550f2cb1360SIngo Molnar 	(SD_SHARE_CPUCAPACITY	|	\
1551f2cb1360SIngo Molnar 	 SD_SHARE_PKG_RESOURCES |	\
1552f2cb1360SIngo Molnar 	 SD_NUMA		|	\
1553cfe7ddcbSValentin Schneider 	 SD_ASYM_PACKING)
1554f2cb1360SIngo Molnar 
1555f2cb1360SIngo Molnar static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)1556f2cb1360SIngo Molnar sd_init(struct sched_domain_topology_level *tl,
1557f2cb1360SIngo Molnar 	const struct cpumask *cpu_map,
1558c744dc4aSBeata Michalska 	struct sched_domain *child, int cpu)
1559f2cb1360SIngo Molnar {
1560f2cb1360SIngo Molnar 	struct sd_data *sdd = &tl->data;
1561f2cb1360SIngo Molnar 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1562f2cb1360SIngo Molnar 	int sd_id, sd_weight, sd_flags = 0;
1563c744dc4aSBeata Michalska 	struct cpumask *sd_span;
1564f2cb1360SIngo Molnar 
1565f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1566f2cb1360SIngo Molnar 	/*
1567f2cb1360SIngo Molnar 	 * Ugly hack to pass state to sd_numa_mask()...
1568f2cb1360SIngo Molnar 	 */
1569f2cb1360SIngo Molnar 	sched_domains_curr_level = tl->numa_level;
1570f2cb1360SIngo Molnar #endif
1571f2cb1360SIngo Molnar 
1572f2cb1360SIngo Molnar 	sd_weight = cpumask_weight(tl->mask(cpu));
1573f2cb1360SIngo Molnar 
1574f2cb1360SIngo Molnar 	if (tl->sd_flags)
1575f2cb1360SIngo Molnar 		sd_flags = (*tl->sd_flags)();
1576f2cb1360SIngo Molnar 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1577f2cb1360SIngo Molnar 			"wrong sd_flags in topology description\n"))
15789b1b234bSPeng Liu 		sd_flags &= TOPOLOGY_SD_FLAGS;
1579f2cb1360SIngo Molnar 
1580f2cb1360SIngo Molnar 	*sd = (struct sched_domain){
1581f2cb1360SIngo Molnar 		.min_interval		= sd_weight,
1582f2cb1360SIngo Molnar 		.max_interval		= 2*sd_weight,
15836e749913SVincent Guittot 		.busy_factor		= 16,
15842208cdaaSVincent Guittot 		.imbalance_pct		= 117,
1585f2cb1360SIngo Molnar 
1586f2cb1360SIngo Molnar 		.cache_nice_tries	= 0,
1587f2cb1360SIngo Molnar 
158836c5bdc4SValentin Schneider 		.flags			= 1*SD_BALANCE_NEWIDLE
1589f2cb1360SIngo Molnar 					| 1*SD_BALANCE_EXEC
1590f2cb1360SIngo Molnar 					| 1*SD_BALANCE_FORK
1591f2cb1360SIngo Molnar 					| 0*SD_BALANCE_WAKE
1592f2cb1360SIngo Molnar 					| 1*SD_WAKE_AFFINE
1593f2cb1360SIngo Molnar 					| 0*SD_SHARE_CPUCAPACITY
1594f2cb1360SIngo Molnar 					| 0*SD_SHARE_PKG_RESOURCES
1595f2cb1360SIngo Molnar 					| 0*SD_SERIALIZE
15969c63e84dSMorten Rasmussen 					| 1*SD_PREFER_SIBLING
1597f2cb1360SIngo Molnar 					| 0*SD_NUMA
1598f2cb1360SIngo Molnar 					| sd_flags
1599f2cb1360SIngo Molnar 					,
1600f2cb1360SIngo Molnar 
1601f2cb1360SIngo Molnar 		.last_balance		= jiffies,
1602f2cb1360SIngo Molnar 		.balance_interval	= sd_weight,
1603f2cb1360SIngo Molnar 		.max_newidle_lb_cost	= 0,
1604e60b56e4SVincent Guittot 		.last_decay_max_lb_cost	= jiffies,
1605f2cb1360SIngo Molnar 		.child			= child,
1606f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
1607f2cb1360SIngo Molnar 		.name			= tl->name,
1608f2cb1360SIngo Molnar #endif
1609f2cb1360SIngo Molnar 	};
1610f2cb1360SIngo Molnar 
1611c744dc4aSBeata Michalska 	sd_span = sched_domain_span(sd);
1612c744dc4aSBeata Michalska 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1613c744dc4aSBeata Michalska 	sd_id = cpumask_first(sd_span);
1614c744dc4aSBeata Michalska 
1615c744dc4aSBeata Michalska 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1616c744dc4aSBeata Michalska 
1617c744dc4aSBeata Michalska 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1618c744dc4aSBeata Michalska 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1619c744dc4aSBeata Michalska 		  "CPU capacity asymmetry not supported on SMT\n");
1620f2cb1360SIngo Molnar 
1621f2cb1360SIngo Molnar 	/*
1622f2cb1360SIngo Molnar 	 * Convert topological properties into behaviour.
1623f2cb1360SIngo Molnar 	 */
1624a526d466SMorten Rasmussen 	/* Don't attempt to spread across CPUs of different capacities. */
1625a526d466SMorten Rasmussen 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
16269c63e84dSMorten Rasmussen 		sd->child->flags &= ~SD_PREFER_SIBLING;
16279c63e84dSMorten Rasmussen 
1628f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1629f2cb1360SIngo Molnar 		sd->imbalance_pct = 110;
1630f2cb1360SIngo Molnar 
1631f2cb1360SIngo Molnar 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1632f2cb1360SIngo Molnar 		sd->imbalance_pct = 117;
1633f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1634f2cb1360SIngo Molnar 
1635f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1636f2cb1360SIngo Molnar 	} else if (sd->flags & SD_NUMA) {
1637f2cb1360SIngo Molnar 		sd->cache_nice_tries = 2;
1638f2cb1360SIngo Molnar 
16399c63e84dSMorten Rasmussen 		sd->flags &= ~SD_PREFER_SIBLING;
1640f2cb1360SIngo Molnar 		sd->flags |= SD_SERIALIZE;
1641a55c7454SMatt Fleming 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1642f2cb1360SIngo Molnar 			sd->flags &= ~(SD_BALANCE_EXEC |
1643f2cb1360SIngo Molnar 				       SD_BALANCE_FORK |
1644f2cb1360SIngo Molnar 				       SD_WAKE_AFFINE);
1645f2cb1360SIngo Molnar 		}
1646f2cb1360SIngo Molnar 
1647f2cb1360SIngo Molnar #endif
1648f2cb1360SIngo Molnar 	} else {
1649f2cb1360SIngo Molnar 		sd->cache_nice_tries = 1;
1650f2cb1360SIngo Molnar 	}
1651f2cb1360SIngo Molnar 
1652f2cb1360SIngo Molnar 	/*
1653f2cb1360SIngo Molnar 	 * For all levels sharing cache; connect a sched_domain_shared
1654f2cb1360SIngo Molnar 	 * instance.
1655f2cb1360SIngo Molnar 	 */
1656f2cb1360SIngo Molnar 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1657f2cb1360SIngo Molnar 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1658f2cb1360SIngo Molnar 		atomic_inc(&sd->shared->ref);
1659f2cb1360SIngo Molnar 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1660f2cb1360SIngo Molnar 	}
1661f2cb1360SIngo Molnar 
1662f2cb1360SIngo Molnar 	sd->private = sdd;
1663f2cb1360SIngo Molnar 
1664f2cb1360SIngo Molnar 	return sd;
1665f2cb1360SIngo Molnar }
1666f2cb1360SIngo Molnar 
1667f2cb1360SIngo Molnar /*
1668f2cb1360SIngo Molnar  * Topology list, bottom-up.
1669f2cb1360SIngo Molnar  */
1670f2cb1360SIngo Molnar static struct sched_domain_topology_level default_topology[] = {
1671f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_SMT
1672f2cb1360SIngo Molnar 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1673f2cb1360SIngo Molnar #endif
1674778c558fSBarry Song 
1675778c558fSBarry Song #ifdef CONFIG_SCHED_CLUSTER
1676778c558fSBarry Song 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1677778c558fSBarry Song #endif
1678778c558fSBarry Song 
1679f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_MC
1680f2cb1360SIngo Molnar 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1681f2cb1360SIngo Molnar #endif
1682f2cb1360SIngo Molnar 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1683f2cb1360SIngo Molnar 	{ NULL, },
1684f2cb1360SIngo Molnar };
1685f2cb1360SIngo Molnar 
1686f2cb1360SIngo Molnar static struct sched_domain_topology_level *sched_domain_topology =
1687f2cb1360SIngo Molnar 	default_topology;
16880fb3978bSHuang Ying static struct sched_domain_topology_level *sched_domain_topology_saved;
1689f2cb1360SIngo Molnar 
1690f2cb1360SIngo Molnar #define for_each_sd_topology(tl)			\
1691f2cb1360SIngo Molnar 	for (tl = sched_domain_topology; tl->mask; tl++)
1692f2cb1360SIngo Molnar 
set_sched_topology(struct sched_domain_topology_level * tl)16930cce0fdeSMiaohe Lin void __init set_sched_topology(struct sched_domain_topology_level *tl)
1694f2cb1360SIngo Molnar {
1695f2cb1360SIngo Molnar 	if (WARN_ON_ONCE(sched_smp_initialized))
1696f2cb1360SIngo Molnar 		return;
1697f2cb1360SIngo Molnar 
1698f2cb1360SIngo Molnar 	sched_domain_topology = tl;
16990fb3978bSHuang Ying 	sched_domain_topology_saved = NULL;
1700f2cb1360SIngo Molnar }
1701f2cb1360SIngo Molnar 
1702f2cb1360SIngo Molnar #ifdef CONFIG_NUMA
1703f2cb1360SIngo Molnar 
sd_numa_mask(int cpu)1704f2cb1360SIngo Molnar static const struct cpumask *sd_numa_mask(int cpu)
1705f2cb1360SIngo Molnar {
1706f2cb1360SIngo Molnar 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1707f2cb1360SIngo Molnar }
1708f2cb1360SIngo Molnar 
sched_numa_warn(const char * str)1709f2cb1360SIngo Molnar static void sched_numa_warn(const char *str)
1710f2cb1360SIngo Molnar {
1711f2cb1360SIngo Molnar 	static int done = false;
1712f2cb1360SIngo Molnar 	int i,j;
1713f2cb1360SIngo Molnar 
1714f2cb1360SIngo Molnar 	if (done)
1715f2cb1360SIngo Molnar 		return;
1716f2cb1360SIngo Molnar 
1717f2cb1360SIngo Molnar 	done = true;
1718f2cb1360SIngo Molnar 
1719f2cb1360SIngo Molnar 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1720f2cb1360SIngo Molnar 
1721f2cb1360SIngo Molnar 	for (i = 0; i < nr_node_ids; i++) {
1722f2cb1360SIngo Molnar 		printk(KERN_WARNING "  ");
17230fb3978bSHuang Ying 		for (j = 0; j < nr_node_ids; j++) {
17240fb3978bSHuang Ying 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
17250fb3978bSHuang Ying 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
17260fb3978bSHuang Ying 			else
1727f2cb1360SIngo Molnar 				printk(KERN_CONT " %02d  ", node_distance(i,j));
17280fb3978bSHuang Ying 		}
1729f2cb1360SIngo Molnar 		printk(KERN_CONT "\n");
1730f2cb1360SIngo Molnar 	}
1731f2cb1360SIngo Molnar 	printk(KERN_WARNING "\n");
1732f2cb1360SIngo Molnar }
1733f2cb1360SIngo Molnar 
find_numa_distance(int distance)1734f2cb1360SIngo Molnar bool find_numa_distance(int distance)
1735f2cb1360SIngo Molnar {
17360fb3978bSHuang Ying 	bool found = false;
17370fb3978bSHuang Ying 	int i, *distances;
1738f2cb1360SIngo Molnar 
1739f2cb1360SIngo Molnar 	if (distance == node_distance(0, 0))
1740f2cb1360SIngo Molnar 		return true;
1741f2cb1360SIngo Molnar 
17420fb3978bSHuang Ying 	rcu_read_lock();
17430fb3978bSHuang Ying 	distances = rcu_dereference(sched_domains_numa_distance);
17440fb3978bSHuang Ying 	if (!distances)
17450fb3978bSHuang Ying 		goto unlock;
1746f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
17470fb3978bSHuang Ying 		if (distances[i] == distance) {
17480fb3978bSHuang Ying 			found = true;
17490fb3978bSHuang Ying 			break;
17500fb3978bSHuang Ying 		}
17510fb3978bSHuang Ying 	}
17520fb3978bSHuang Ying unlock:
17530fb3978bSHuang Ying 	rcu_read_unlock();
17540fb3978bSHuang Ying 
17550fb3978bSHuang Ying 	return found;
1756f2cb1360SIngo Molnar }
1757f2cb1360SIngo Molnar 
17580fb3978bSHuang Ying #define for_each_cpu_node_but(n, nbut)		\
17590fb3978bSHuang Ying 	for_each_node_state(n, N_CPU)		\
17600fb3978bSHuang Ying 		if (n == nbut)			\
17610fb3978bSHuang Ying 			continue;		\
17620fb3978bSHuang Ying 		else
1763f2cb1360SIngo Molnar 
1764f2cb1360SIngo Molnar /*
1765f2cb1360SIngo Molnar  * A system can have three types of NUMA topology:
1766f2cb1360SIngo Molnar  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1767f2cb1360SIngo Molnar  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1768f2cb1360SIngo Molnar  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1769f2cb1360SIngo Molnar  *
1770f2cb1360SIngo Molnar  * The difference between a glueless mesh topology and a backplane
1771f2cb1360SIngo Molnar  * topology lies in whether communication between not directly
1772f2cb1360SIngo Molnar  * connected nodes goes through intermediary nodes (where programs
1773f2cb1360SIngo Molnar  * could run), or through backplane controllers. This affects
1774f2cb1360SIngo Molnar  * placement of programs.
1775f2cb1360SIngo Molnar  *
1776f2cb1360SIngo Molnar  * The type of topology can be discerned with the following tests:
1777f2cb1360SIngo Molnar  * - If the maximum distance between any nodes is 1 hop, the system
1778f2cb1360SIngo Molnar  *   is directly connected.
1779f2cb1360SIngo Molnar  * - If for two nodes A and B, located N > 1 hops away from each other,
1780f2cb1360SIngo Molnar  *   there is an intermediary node C, which is < N hops away from both
1781f2cb1360SIngo Molnar  *   nodes A and B, the system is a glueless mesh.
1782f2cb1360SIngo Molnar  */
init_numa_topology_type(int offline_node)17830fb3978bSHuang Ying static void init_numa_topology_type(int offline_node)
1784f2cb1360SIngo Molnar {
1785f2cb1360SIngo Molnar 	int a, b, c, n;
1786f2cb1360SIngo Molnar 
1787f2cb1360SIngo Molnar 	n = sched_max_numa_distance;
1788f2cb1360SIngo Molnar 
1789e5e96fafSSrikar Dronamraju 	if (sched_domains_numa_levels <= 2) {
1790f2cb1360SIngo Molnar 		sched_numa_topology_type = NUMA_DIRECT;
1791f2cb1360SIngo Molnar 		return;
1792f2cb1360SIngo Molnar 	}
1793f2cb1360SIngo Molnar 
17940fb3978bSHuang Ying 	for_each_cpu_node_but(a, offline_node) {
17950fb3978bSHuang Ying 		for_each_cpu_node_but(b, offline_node) {
1796f2cb1360SIngo Molnar 			/* Find two nodes furthest removed from each other. */
1797f2cb1360SIngo Molnar 			if (node_distance(a, b) < n)
1798f2cb1360SIngo Molnar 				continue;
1799f2cb1360SIngo Molnar 
1800f2cb1360SIngo Molnar 			/* Is there an intermediary node between a and b? */
18010fb3978bSHuang Ying 			for_each_cpu_node_but(c, offline_node) {
1802f2cb1360SIngo Molnar 				if (node_distance(a, c) < n &&
1803f2cb1360SIngo Molnar 				    node_distance(b, c) < n) {
1804f2cb1360SIngo Molnar 					sched_numa_topology_type =
1805f2cb1360SIngo Molnar 							NUMA_GLUELESS_MESH;
1806f2cb1360SIngo Molnar 					return;
1807f2cb1360SIngo Molnar 				}
1808f2cb1360SIngo Molnar 			}
1809f2cb1360SIngo Molnar 
1810f2cb1360SIngo Molnar 			sched_numa_topology_type = NUMA_BACKPLANE;
1811f2cb1360SIngo Molnar 			return;
1812f2cb1360SIngo Molnar 		}
1813f2cb1360SIngo Molnar 	}
18140fb3978bSHuang Ying 
18150fb3978bSHuang Ying 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
18160fb3978bSHuang Ying 	sched_numa_topology_type = NUMA_DIRECT;
1817f2cb1360SIngo Molnar }
1818f2cb1360SIngo Molnar 
1819620a6dc4SValentin Schneider 
1820620a6dc4SValentin Schneider #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1821620a6dc4SValentin Schneider 
sched_init_numa(int offline_node)18220fb3978bSHuang Ying void sched_init_numa(int offline_node)
1823f2cb1360SIngo Molnar {
1824f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
1825620a6dc4SValentin Schneider 	unsigned long *distance_map;
1826620a6dc4SValentin Schneider 	int nr_levels = 0;
1827620a6dc4SValentin Schneider 	int i, j;
18280fb3978bSHuang Ying 	int *distances;
18290fb3978bSHuang Ying 	struct cpumask ***masks;
1830051f3ca0SSuravee Suthikulpanit 
1831f2cb1360SIngo Molnar 	/*
1832f2cb1360SIngo Molnar 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1833f2cb1360SIngo Molnar 	 * unique distances in the node_distance() table.
1834f2cb1360SIngo Molnar 	 */
1835620a6dc4SValentin Schneider 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1836620a6dc4SValentin Schneider 	if (!distance_map)
1837620a6dc4SValentin Schneider 		return;
1838620a6dc4SValentin Schneider 
1839620a6dc4SValentin Schneider 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
18400fb3978bSHuang Ying 	for_each_cpu_node_but(i, offline_node) {
18410fb3978bSHuang Ying 		for_each_cpu_node_but(j, offline_node) {
1842620a6dc4SValentin Schneider 			int distance = node_distance(i, j);
1843f2cb1360SIngo Molnar 
1844620a6dc4SValentin Schneider 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1845620a6dc4SValentin Schneider 				sched_numa_warn("Invalid distance value range");
18460fb3978bSHuang Ying 				bitmap_free(distance_map);
1847620a6dc4SValentin Schneider 				return;
1848620a6dc4SValentin Schneider 			}
1849f2cb1360SIngo Molnar 
1850620a6dc4SValentin Schneider 			bitmap_set(distance_map, distance, 1);
1851620a6dc4SValentin Schneider 		}
1852620a6dc4SValentin Schneider 	}
1853f2cb1360SIngo Molnar 	/*
1854620a6dc4SValentin Schneider 	 * We can now figure out how many unique distance values there are and
1855620a6dc4SValentin Schneider 	 * allocate memory accordingly.
1856f2cb1360SIngo Molnar 	 */
1857620a6dc4SValentin Schneider 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1858f2cb1360SIngo Molnar 
18590fb3978bSHuang Ying 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
18600fb3978bSHuang Ying 	if (!distances) {
1861620a6dc4SValentin Schneider 		bitmap_free(distance_map);
1862620a6dc4SValentin Schneider 		return;
1863f2cb1360SIngo Molnar 	}
1864620a6dc4SValentin Schneider 
1865620a6dc4SValentin Schneider 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1866620a6dc4SValentin Schneider 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
18670fb3978bSHuang Ying 		distances[i] = j;
1868f2cb1360SIngo Molnar 	}
18690fb3978bSHuang Ying 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1870f2cb1360SIngo Molnar 
1871620a6dc4SValentin Schneider 	bitmap_free(distance_map);
1872620a6dc4SValentin Schneider 
1873f2cb1360SIngo Molnar 	/*
1874620a6dc4SValentin Schneider 	 * 'nr_levels' contains the number of unique distances
1875f2cb1360SIngo Molnar 	 *
1876f2cb1360SIngo Molnar 	 * The sched_domains_numa_distance[] array includes the actual distance
1877f2cb1360SIngo Molnar 	 * numbers.
1878f2cb1360SIngo Molnar 	 */
1879f2cb1360SIngo Molnar 
1880f2cb1360SIngo Molnar 	/*
1881f2cb1360SIngo Molnar 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1882f2cb1360SIngo Molnar 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1883620a6dc4SValentin Schneider 	 * the array will contain less then 'nr_levels' members. This could be
1884f2cb1360SIngo Molnar 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1885f2cb1360SIngo Molnar 	 * in other functions.
1886f2cb1360SIngo Molnar 	 *
1887620a6dc4SValentin Schneider 	 * We reset it to 'nr_levels' at the end of this function.
1888f2cb1360SIngo Molnar 	 */
1889f2cb1360SIngo Molnar 	sched_domains_numa_levels = 0;
1890f2cb1360SIngo Molnar 
18910fb3978bSHuang Ying 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
18920fb3978bSHuang Ying 	if (!masks)
1893f2cb1360SIngo Molnar 		return;
1894f2cb1360SIngo Molnar 
1895f2cb1360SIngo Molnar 	/*
1896f2cb1360SIngo Molnar 	 * Now for each level, construct a mask per node which contains all
1897f2cb1360SIngo Molnar 	 * CPUs of nodes that are that many hops away from us.
1898f2cb1360SIngo Molnar 	 */
1899620a6dc4SValentin Schneider 	for (i = 0; i < nr_levels; i++) {
19000fb3978bSHuang Ying 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
19010fb3978bSHuang Ying 		if (!masks[i])
1902f2cb1360SIngo Molnar 			return;
1903f2cb1360SIngo Molnar 
19040fb3978bSHuang Ying 		for_each_cpu_node_but(j, offline_node) {
1905f2cb1360SIngo Molnar 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1906620a6dc4SValentin Schneider 			int k;
1907620a6dc4SValentin Schneider 
1908f2cb1360SIngo Molnar 			if (!mask)
1909f2cb1360SIngo Molnar 				return;
1910f2cb1360SIngo Molnar 
19110fb3978bSHuang Ying 			masks[i][j] = mask;
1912f2cb1360SIngo Molnar 
19130fb3978bSHuang Ying 			for_each_cpu_node_but(k, offline_node) {
1914620a6dc4SValentin Schneider 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1915620a6dc4SValentin Schneider 					sched_numa_warn("Node-distance not symmetric");
1916620a6dc4SValentin Schneider 
1917f2cb1360SIngo Molnar 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1918f2cb1360SIngo Molnar 					continue;
1919f2cb1360SIngo Molnar 
1920f2cb1360SIngo Molnar 				cpumask_or(mask, mask, cpumask_of_node(k));
1921f2cb1360SIngo Molnar 			}
1922f2cb1360SIngo Molnar 		}
1923f2cb1360SIngo Molnar 	}
19240fb3978bSHuang Ying 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1925f2cb1360SIngo Molnar 
1926f2cb1360SIngo Molnar 	/* Compute default topology size */
1927f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++);
1928f2cb1360SIngo Molnar 
192971e5f664SDietmar Eggemann 	tl = kzalloc((i + nr_levels + 1) *
1930f2cb1360SIngo Molnar 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1931f2cb1360SIngo Molnar 	if (!tl)
1932f2cb1360SIngo Molnar 		return;
1933f2cb1360SIngo Molnar 
1934f2cb1360SIngo Molnar 	/*
1935f2cb1360SIngo Molnar 	 * Copy the default topology bits..
1936f2cb1360SIngo Molnar 	 */
1937f2cb1360SIngo Molnar 	for (i = 0; sched_domain_topology[i].mask; i++)
1938f2cb1360SIngo Molnar 		tl[i] = sched_domain_topology[i];
1939f2cb1360SIngo Molnar 
1940f2cb1360SIngo Molnar 	/*
1941051f3ca0SSuravee Suthikulpanit 	 * Add the NUMA identity distance, aka single NODE.
1942051f3ca0SSuravee Suthikulpanit 	 */
1943051f3ca0SSuravee Suthikulpanit 	tl[i++] = (struct sched_domain_topology_level){
1944051f3ca0SSuravee Suthikulpanit 		.mask = sd_numa_mask,
1945051f3ca0SSuravee Suthikulpanit 		.numa_level = 0,
1946051f3ca0SSuravee Suthikulpanit 		SD_INIT_NAME(NODE)
1947051f3ca0SSuravee Suthikulpanit 	};
1948051f3ca0SSuravee Suthikulpanit 
1949051f3ca0SSuravee Suthikulpanit 	/*
1950f2cb1360SIngo Molnar 	 * .. and append 'j' levels of NUMA goodness.
1951f2cb1360SIngo Molnar 	 */
1952620a6dc4SValentin Schneider 	for (j = 1; j < nr_levels; i++, j++) {
1953f2cb1360SIngo Molnar 		tl[i] = (struct sched_domain_topology_level){
1954f2cb1360SIngo Molnar 			.mask = sd_numa_mask,
1955f2cb1360SIngo Molnar 			.sd_flags = cpu_numa_flags,
1956f2cb1360SIngo Molnar 			.flags = SDTL_OVERLAP,
1957f2cb1360SIngo Molnar 			.numa_level = j,
1958f2cb1360SIngo Molnar 			SD_INIT_NAME(NUMA)
1959f2cb1360SIngo Molnar 		};
1960f2cb1360SIngo Molnar 	}
1961f2cb1360SIngo Molnar 
19620fb3978bSHuang Ying 	sched_domain_topology_saved = sched_domain_topology;
1963f2cb1360SIngo Molnar 	sched_domain_topology = tl;
1964f2cb1360SIngo Molnar 
1965620a6dc4SValentin Schneider 	sched_domains_numa_levels = nr_levels;
19660fb3978bSHuang Ying 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1967f2cb1360SIngo Molnar 
19680fb3978bSHuang Ying 	init_numa_topology_type(offline_node);
19690083242cSValentin Schneider }
19700083242cSValentin Schneider 
19710fb3978bSHuang Ying 
sched_reset_numa(void)19720fb3978bSHuang Ying static void sched_reset_numa(void)
19730083242cSValentin Schneider {
19740fb3978bSHuang Ying 	int nr_levels, *distances;
19750fb3978bSHuang Ying 	struct cpumask ***masks;
19760fb3978bSHuang Ying 
19770fb3978bSHuang Ying 	nr_levels = sched_domains_numa_levels;
19780fb3978bSHuang Ying 	sched_domains_numa_levels = 0;
19790fb3978bSHuang Ying 	sched_max_numa_distance = 0;
19800fb3978bSHuang Ying 	sched_numa_topology_type = NUMA_DIRECT;
19810fb3978bSHuang Ying 	distances = sched_domains_numa_distance;
19820fb3978bSHuang Ying 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
19830fb3978bSHuang Ying 	masks = sched_domains_numa_masks;
19840fb3978bSHuang Ying 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
19850fb3978bSHuang Ying 	if (distances || masks) {
19860083242cSValentin Schneider 		int i, j;
19870083242cSValentin Schneider 
19880fb3978bSHuang Ying 		synchronize_rcu();
19890fb3978bSHuang Ying 		kfree(distances);
19900fb3978bSHuang Ying 		for (i = 0; i < nr_levels && masks; i++) {
19910fb3978bSHuang Ying 			if (!masks[i])
19920fb3978bSHuang Ying 				continue;
19930fb3978bSHuang Ying 			for_each_node(j)
19940fb3978bSHuang Ying 				kfree(masks[i][j]);
19950fb3978bSHuang Ying 			kfree(masks[i]);
19960fb3978bSHuang Ying 		}
19970fb3978bSHuang Ying 		kfree(masks);
19980fb3978bSHuang Ying 	}
19990fb3978bSHuang Ying 	if (sched_domain_topology_saved) {
20000fb3978bSHuang Ying 		kfree(sched_domain_topology);
20010fb3978bSHuang Ying 		sched_domain_topology = sched_domain_topology_saved;
20020fb3978bSHuang Ying 		sched_domain_topology_saved = NULL;
20030fb3978bSHuang Ying 	}
20040fb3978bSHuang Ying }
20050fb3978bSHuang Ying 
20060083242cSValentin Schneider /*
20070fb3978bSHuang Ying  * Call with hotplug lock held
20080083242cSValentin Schneider  */
sched_update_numa(int cpu,bool online)20090fb3978bSHuang Ying void sched_update_numa(int cpu, bool online)
20100fb3978bSHuang Ying {
20110fb3978bSHuang Ying 	int node;
20120fb3978bSHuang Ying 
20130fb3978bSHuang Ying 	node = cpu_to_node(cpu);
20140fb3978bSHuang Ying 	/*
20150fb3978bSHuang Ying 	 * Scheduler NUMA topology is updated when the first CPU of a
20160fb3978bSHuang Ying 	 * node is onlined or the last CPU of a node is offlined.
20170fb3978bSHuang Ying 	 */
20180fb3978bSHuang Ying 	if (cpumask_weight(cpumask_of_node(node)) != 1)
20190083242cSValentin Schneider 		return;
20200083242cSValentin Schneider 
20210fb3978bSHuang Ying 	sched_reset_numa();
20220fb3978bSHuang Ying 	sched_init_numa(online ? NUMA_NO_NODE : node);
2023f2cb1360SIngo Molnar }
2024f2cb1360SIngo Molnar 
sched_domains_numa_masks_set(unsigned int cpu)2025f2cb1360SIngo Molnar void sched_domains_numa_masks_set(unsigned int cpu)
2026f2cb1360SIngo Molnar {
2027f2cb1360SIngo Molnar 	int node = cpu_to_node(cpu);
2028f2cb1360SIngo Molnar 	int i, j;
2029f2cb1360SIngo Molnar 
2030f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
2031f2cb1360SIngo Molnar 		for (j = 0; j < nr_node_ids; j++) {
20320fb3978bSHuang Ying 			if (!node_state(j, N_CPU))
20330083242cSValentin Schneider 				continue;
20340083242cSValentin Schneider 
20350083242cSValentin Schneider 			/* Set ourselves in the remote node's masks */
2036f2cb1360SIngo Molnar 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2037f2cb1360SIngo Molnar 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2038f2cb1360SIngo Molnar 		}
2039f2cb1360SIngo Molnar 	}
2040f2cb1360SIngo Molnar }
2041f2cb1360SIngo Molnar 
sched_domains_numa_masks_clear(unsigned int cpu)2042f2cb1360SIngo Molnar void sched_domains_numa_masks_clear(unsigned int cpu)
2043f2cb1360SIngo Molnar {
2044f2cb1360SIngo Molnar 	int i, j;
2045f2cb1360SIngo Molnar 
2046f2cb1360SIngo Molnar 	for (i = 0; i < sched_domains_numa_levels; i++) {
20470fb3978bSHuang Ying 		for (j = 0; j < nr_node_ids; j++) {
20480fb3978bSHuang Ying 			if (sched_domains_numa_masks[i][j])
2049f2cb1360SIngo Molnar 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2050f2cb1360SIngo Molnar 		}
2051f2cb1360SIngo Molnar 	}
20520fb3978bSHuang Ying }
2053f2cb1360SIngo Molnar 
2054e0e8d491SWanpeng Li /*
2055e0e8d491SWanpeng Li  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2056e0e8d491SWanpeng Li  *                             closest to @cpu from @cpumask.
2057e0e8d491SWanpeng Li  * cpumask: cpumask to find a cpu from
2058e0e8d491SWanpeng Li  * cpu: cpu to be close to
2059e0e8d491SWanpeng Li  *
2060e0e8d491SWanpeng Li  * returns: cpu, or nr_cpu_ids when nothing found.
2061e0e8d491SWanpeng Li  */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)2062e0e8d491SWanpeng Li int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2063e0e8d491SWanpeng Li {
20640fb3978bSHuang Ying 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
20650fb3978bSHuang Ying 	struct cpumask ***masks;
2066e0e8d491SWanpeng Li 
20670fb3978bSHuang Ying 	rcu_read_lock();
20680fb3978bSHuang Ying 	masks = rcu_dereference(sched_domains_numa_masks);
20690fb3978bSHuang Ying 	if (!masks)
20700fb3978bSHuang Ying 		goto unlock;
2071e0e8d491SWanpeng Li 	for (i = 0; i < sched_domains_numa_levels; i++) {
20720fb3978bSHuang Ying 		if (!masks[i][j])
20730fb3978bSHuang Ying 			break;
20740fb3978bSHuang Ying 		cpu = cpumask_any_and(cpus, masks[i][j]);
20750fb3978bSHuang Ying 		if (cpu < nr_cpu_ids) {
20760fb3978bSHuang Ying 			found = cpu;
20770fb3978bSHuang Ying 			break;
2078e0e8d491SWanpeng Li 		}
20790fb3978bSHuang Ying 	}
20800fb3978bSHuang Ying unlock:
20810fb3978bSHuang Ying 	rcu_read_unlock();
20820fb3978bSHuang Ying 
20830fb3978bSHuang Ying 	return found;
2084e0e8d491SWanpeng Li }
2085e0e8d491SWanpeng Li 
2086cd7f5535SYury Norov struct __cmp_key {
2087cd7f5535SYury Norov 	const struct cpumask *cpus;
2088cd7f5535SYury Norov 	struct cpumask ***masks;
2089cd7f5535SYury Norov 	int node;
2090cd7f5535SYury Norov 	int cpu;
2091cd7f5535SYury Norov 	int w;
2092cd7f5535SYury Norov };
2093cd7f5535SYury Norov 
hop_cmp(const void * a,const void * b)2094cd7f5535SYury Norov static int hop_cmp(const void *a, const void *b)
2095cd7f5535SYury Norov {
209601bb11adSYury Norov 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2097cd7f5535SYury Norov 	struct __cmp_key *k = (struct __cmp_key *)a;
2098cd7f5535SYury Norov 
2099cd7f5535SYury Norov 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2100cd7f5535SYury Norov 		return 1;
2101cd7f5535SYury Norov 
210201bb11adSYury Norov 	if (b == k->masks) {
210301bb11adSYury Norov 		k->w = 0;
210401bb11adSYury Norov 		return 0;
210501bb11adSYury Norov 	}
210601bb11adSYury Norov 
210701bb11adSYury Norov 	prev_hop = *((struct cpumask ***)b - 1);
210801bb11adSYury Norov 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2109cd7f5535SYury Norov 	if (k->w <= k->cpu)
2110cd7f5535SYury Norov 		return 0;
2111cd7f5535SYury Norov 
2112cd7f5535SYury Norov 	return -1;
2113cd7f5535SYury Norov }
2114cd7f5535SYury Norov 
2115cd7f5535SYury Norov /*
2116cd7f5535SYury Norov  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth next cpu
2117cd7f5535SYury Norov  *                             closest to @cpu from @cpumask.
2118cd7f5535SYury Norov  * cpumask: cpumask to find a cpu from
2119cd7f5535SYury Norov  * cpu: Nth cpu to find
2120cd7f5535SYury Norov  *
2121cd7f5535SYury Norov  * returns: cpu, or nr_cpu_ids when nothing found.
2122cd7f5535SYury Norov  */
sched_numa_find_nth_cpu(const struct cpumask * cpus,int cpu,int node)2123cd7f5535SYury Norov int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2124cd7f5535SYury Norov {
2125b633c051SYury Norov 	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2126cd7f5535SYury Norov 	struct cpumask ***hop_masks;
2127cd7f5535SYury Norov 	int hop, ret = nr_cpu_ids;
2128cd7f5535SYury Norov 
2129*97f38170SYury Norov 	if (node == NUMA_NO_NODE)
2130*97f38170SYury Norov 		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2131*97f38170SYury Norov 
2132cd7f5535SYury Norov 	rcu_read_lock();
2133cd7f5535SYury Norov 
2134b633c051SYury Norov 	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2135b633c051SYury Norov 	node = numa_nearest_node(node, N_CPU);
2136b633c051SYury Norov 	k.node = node;
2137b633c051SYury Norov 
2138cd7f5535SYury Norov 	k.masks = rcu_dereference(sched_domains_numa_masks);
2139cd7f5535SYury Norov 	if (!k.masks)
2140cd7f5535SYury Norov 		goto unlock;
2141cd7f5535SYury Norov 
2142cd7f5535SYury Norov 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2143cd7f5535SYury Norov 	hop = hop_masks	- k.masks;
2144cd7f5535SYury Norov 
2145cd7f5535SYury Norov 	ret = hop ?
2146cd7f5535SYury Norov 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2147cd7f5535SYury Norov 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2148cd7f5535SYury Norov unlock:
2149cd7f5535SYury Norov 	rcu_read_unlock();
2150cd7f5535SYury Norov 	return ret;
2151cd7f5535SYury Norov }
2152cd7f5535SYury Norov EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
21539feae658SValentin Schneider 
21549feae658SValentin Schneider /**
21559feae658SValentin Schneider  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
21569feae658SValentin Schneider  *                         @node
21579feae658SValentin Schneider  * @node: The node to count hops from.
21589feae658SValentin Schneider  * @hops: Include CPUs up to that many hops away. 0 means local node.
21599feae658SValentin Schneider  *
21609feae658SValentin Schneider  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
21619feae658SValentin Schneider  * @node, an error value otherwise.
21629feae658SValentin Schneider  *
21639feae658SValentin Schneider  * Requires rcu_lock to be held. Returned cpumask is only valid within that
21649feae658SValentin Schneider  * read-side section, copy it if required beyond that.
21659feae658SValentin Schneider  *
21669feae658SValentin Schneider  * Note that not all hops are equal in distance; see sched_init_numa() for how
21679feae658SValentin Schneider  * distances and masks are handled.
21689feae658SValentin Schneider  * Also note that this is a reflection of sched_domains_numa_masks, which may change
21699feae658SValentin Schneider  * during the lifetime of the system (offline nodes are taken out of the masks).
21709feae658SValentin Schneider  */
sched_numa_hop_mask(unsigned int node,unsigned int hops)21719feae658SValentin Schneider const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
21729feae658SValentin Schneider {
21739feae658SValentin Schneider 	struct cpumask ***masks;
21749feae658SValentin Schneider 
21759feae658SValentin Schneider 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
21769feae658SValentin Schneider 		return ERR_PTR(-EINVAL);
21779feae658SValentin Schneider 
21789feae658SValentin Schneider 	masks = rcu_dereference(sched_domains_numa_masks);
21799feae658SValentin Schneider 	if (!masks)
21809feae658SValentin Schneider 		return ERR_PTR(-EBUSY);
21819feae658SValentin Schneider 
21829feae658SValentin Schneider 	return masks[hops][node];
21839feae658SValentin Schneider }
21849feae658SValentin Schneider EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
21859feae658SValentin Schneider 
2186f2cb1360SIngo Molnar #endif /* CONFIG_NUMA */
2187f2cb1360SIngo Molnar 
__sdt_alloc(const struct cpumask * cpu_map)2188f2cb1360SIngo Molnar static int __sdt_alloc(const struct cpumask *cpu_map)
2189f2cb1360SIngo Molnar {
2190f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
2191f2cb1360SIngo Molnar 	int j;
2192f2cb1360SIngo Molnar 
2193f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
2194f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
2195f2cb1360SIngo Molnar 
2196f2cb1360SIngo Molnar 		sdd->sd = alloc_percpu(struct sched_domain *);
2197f2cb1360SIngo Molnar 		if (!sdd->sd)
2198f2cb1360SIngo Molnar 			return -ENOMEM;
2199f2cb1360SIngo Molnar 
2200f2cb1360SIngo Molnar 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2201f2cb1360SIngo Molnar 		if (!sdd->sds)
2202f2cb1360SIngo Molnar 			return -ENOMEM;
2203f2cb1360SIngo Molnar 
2204f2cb1360SIngo Molnar 		sdd->sg = alloc_percpu(struct sched_group *);
2205f2cb1360SIngo Molnar 		if (!sdd->sg)
2206f2cb1360SIngo Molnar 			return -ENOMEM;
2207f2cb1360SIngo Molnar 
2208f2cb1360SIngo Molnar 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2209f2cb1360SIngo Molnar 		if (!sdd->sgc)
2210f2cb1360SIngo Molnar 			return -ENOMEM;
2211f2cb1360SIngo Molnar 
2212f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
2213f2cb1360SIngo Molnar 			struct sched_domain *sd;
2214f2cb1360SIngo Molnar 			struct sched_domain_shared *sds;
2215f2cb1360SIngo Molnar 			struct sched_group *sg;
2216f2cb1360SIngo Molnar 			struct sched_group_capacity *sgc;
2217f2cb1360SIngo Molnar 
2218f2cb1360SIngo Molnar 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2219f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
2220f2cb1360SIngo Molnar 			if (!sd)
2221f2cb1360SIngo Molnar 				return -ENOMEM;
2222f2cb1360SIngo Molnar 
2223f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sd, j) = sd;
2224f2cb1360SIngo Molnar 
2225f2cb1360SIngo Molnar 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2226f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
2227f2cb1360SIngo Molnar 			if (!sds)
2228f2cb1360SIngo Molnar 				return -ENOMEM;
2229f2cb1360SIngo Molnar 
2230f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sds, j) = sds;
2231f2cb1360SIngo Molnar 
2232f2cb1360SIngo Molnar 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2233f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
2234f2cb1360SIngo Molnar 			if (!sg)
2235f2cb1360SIngo Molnar 				return -ENOMEM;
2236f2cb1360SIngo Molnar 
2237f2cb1360SIngo Molnar 			sg->next = sg;
2238f2cb1360SIngo Molnar 
2239f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sg, j) = sg;
2240f2cb1360SIngo Molnar 
2241f2cb1360SIngo Molnar 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2242f2cb1360SIngo Molnar 					GFP_KERNEL, cpu_to_node(j));
2243f2cb1360SIngo Molnar 			if (!sgc)
2244f2cb1360SIngo Molnar 				return -ENOMEM;
2245f2cb1360SIngo Molnar 
2246005f874dSPeter Zijlstra #ifdef CONFIG_SCHED_DEBUG
2247005f874dSPeter Zijlstra 			sgc->id = j;
2248005f874dSPeter Zijlstra #endif
2249005f874dSPeter Zijlstra 
2250f2cb1360SIngo Molnar 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2251f2cb1360SIngo Molnar 		}
2252f2cb1360SIngo Molnar 	}
2253f2cb1360SIngo Molnar 
2254f2cb1360SIngo Molnar 	return 0;
2255f2cb1360SIngo Molnar }
2256f2cb1360SIngo Molnar 
__sdt_free(const struct cpumask * cpu_map)2257f2cb1360SIngo Molnar static void __sdt_free(const struct cpumask *cpu_map)
2258f2cb1360SIngo Molnar {
2259f2cb1360SIngo Molnar 	struct sched_domain_topology_level *tl;
2260f2cb1360SIngo Molnar 	int j;
2261f2cb1360SIngo Molnar 
2262f2cb1360SIngo Molnar 	for_each_sd_topology(tl) {
2263f2cb1360SIngo Molnar 		struct sd_data *sdd = &tl->data;
2264f2cb1360SIngo Molnar 
2265f2cb1360SIngo Molnar 		for_each_cpu(j, cpu_map) {
2266f2cb1360SIngo Molnar 			struct sched_domain *sd;
2267f2cb1360SIngo Molnar 
2268f2cb1360SIngo Molnar 			if (sdd->sd) {
2269f2cb1360SIngo Molnar 				sd = *per_cpu_ptr(sdd->sd, j);
2270f2cb1360SIngo Molnar 				if (sd && (sd->flags & SD_OVERLAP))
2271f2cb1360SIngo Molnar 					free_sched_groups(sd->groups, 0);
2272f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sd, j));
2273f2cb1360SIngo Molnar 			}
2274f2cb1360SIngo Molnar 
2275f2cb1360SIngo Molnar 			if (sdd->sds)
2276f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sds, j));
2277f2cb1360SIngo Molnar 			if (sdd->sg)
2278f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sg, j));
2279f2cb1360SIngo Molnar 			if (sdd->sgc)
2280f2cb1360SIngo Molnar 				kfree(*per_cpu_ptr(sdd->sgc, j));
2281f2cb1360SIngo Molnar 		}
2282f2cb1360SIngo Molnar 		free_percpu(sdd->sd);
2283f2cb1360SIngo Molnar 		sdd->sd = NULL;
2284f2cb1360SIngo Molnar 		free_percpu(sdd->sds);
2285f2cb1360SIngo Molnar 		sdd->sds = NULL;
2286f2cb1360SIngo Molnar 		free_percpu(sdd->sg);
2287f2cb1360SIngo Molnar 		sdd->sg = NULL;
2288f2cb1360SIngo Molnar 		free_percpu(sdd->sgc);
2289f2cb1360SIngo Molnar 		sdd->sgc = NULL;
2290f2cb1360SIngo Molnar 	}
2291f2cb1360SIngo Molnar }
2292f2cb1360SIngo Molnar 
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)2293181a80d1SViresh Kumar static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2294f2cb1360SIngo Molnar 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2295c744dc4aSBeata Michalska 		struct sched_domain *child, int cpu)
2296f2cb1360SIngo Molnar {
2297c744dc4aSBeata Michalska 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2298f2cb1360SIngo Molnar 
2299f2cb1360SIngo Molnar 	if (child) {
2300f2cb1360SIngo Molnar 		sd->level = child->level + 1;
2301f2cb1360SIngo Molnar 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2302f2cb1360SIngo Molnar 		child->parent = sd;
2303f2cb1360SIngo Molnar 
2304f2cb1360SIngo Molnar 		if (!cpumask_subset(sched_domain_span(child),
2305f2cb1360SIngo Molnar 				    sched_domain_span(sd))) {
2306f2cb1360SIngo Molnar 			pr_err("BUG: arch topology borken\n");
2307f2cb1360SIngo Molnar #ifdef CONFIG_SCHED_DEBUG
2308f2cb1360SIngo Molnar 			pr_err("     the %s domain not a subset of the %s domain\n",
2309f2cb1360SIngo Molnar 					child->name, sd->name);
2310f2cb1360SIngo Molnar #endif
231197fb7a0aSIngo Molnar 			/* Fixup, ensure @sd has at least @child CPUs. */
2312f2cb1360SIngo Molnar 			cpumask_or(sched_domain_span(sd),
2313f2cb1360SIngo Molnar 				   sched_domain_span(sd),
2314f2cb1360SIngo Molnar 				   sched_domain_span(child));
2315f2cb1360SIngo Molnar 		}
2316f2cb1360SIngo Molnar 
2317f2cb1360SIngo Molnar 	}
2318f2cb1360SIngo Molnar 	set_domain_attribute(sd, attr);
2319f2cb1360SIngo Molnar 
2320f2cb1360SIngo Molnar 	return sd;
2321f2cb1360SIngo Molnar }
2322f2cb1360SIngo Molnar 
2323f2cb1360SIngo Molnar /*
2324ccf74128SValentin Schneider  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2325ccf74128SValentin Schneider  * any two given CPUs at this (non-NUMA) topology level.
2326ccf74128SValentin Schneider  */
topology_span_sane(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,int cpu)2327ccf74128SValentin Schneider static bool topology_span_sane(struct sched_domain_topology_level *tl,
2328ccf74128SValentin Schneider 			      const struct cpumask *cpu_map, int cpu)
2329ccf74128SValentin Schneider {
2330ccf74128SValentin Schneider 	int i;
2331ccf74128SValentin Schneider 
2332ccf74128SValentin Schneider 	/* NUMA levels are allowed to overlap */
2333ccf74128SValentin Schneider 	if (tl->flags & SDTL_OVERLAP)
2334ccf74128SValentin Schneider 		return true;
2335ccf74128SValentin Schneider 
2336ccf74128SValentin Schneider 	/*
2337ccf74128SValentin Schneider 	 * Non-NUMA levels cannot partially overlap - they must be either
2338ccf74128SValentin Schneider 	 * completely equal or completely disjoint. Otherwise we can end up
2339ccf74128SValentin Schneider 	 * breaking the sched_group lists - i.e. a later get_group() pass
2340ccf74128SValentin Schneider 	 * breaks the linking done for an earlier span.
2341ccf74128SValentin Schneider 	 */
2342ccf74128SValentin Schneider 	for_each_cpu(i, cpu_map) {
2343ccf74128SValentin Schneider 		if (i == cpu)
2344ccf74128SValentin Schneider 			continue;
2345ccf74128SValentin Schneider 		/*
2346ccf74128SValentin Schneider 		 * We should 'and' all those masks with 'cpu_map' to exactly
2347ccf74128SValentin Schneider 		 * match the topology we're about to build, but that can only
2348ccf74128SValentin Schneider 		 * remove CPUs, which only lessens our ability to detect
2349ccf74128SValentin Schneider 		 * overlaps
2350ccf74128SValentin Schneider 		 */
2351ccf74128SValentin Schneider 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2352ccf74128SValentin Schneider 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2353ccf74128SValentin Schneider 			return false;
2354ccf74128SValentin Schneider 	}
2355ccf74128SValentin Schneider 
2356ccf74128SValentin Schneider 	return true;
2357ccf74128SValentin Schneider }
2358ccf74128SValentin Schneider 
2359ccf74128SValentin Schneider /*
2360f2cb1360SIngo Molnar  * Build sched domains for a given set of CPUs and attach the sched domains
2361f2cb1360SIngo Molnar  * to the individual CPUs
2362f2cb1360SIngo Molnar  */
2363f2cb1360SIngo Molnar static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)2364f2cb1360SIngo Molnar build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2365f2cb1360SIngo Molnar {
2366cd1cb335SValentin Schneider 	enum s_alloc alloc_state = sa_none;
2367f2cb1360SIngo Molnar 	struct sched_domain *sd;
2368f2cb1360SIngo Molnar 	struct s_data d;
2369f2cb1360SIngo Molnar 	struct rq *rq = NULL;
2370f2cb1360SIngo Molnar 	int i, ret = -ENOMEM;
2371df054e84SMorten Rasmussen 	bool has_asym = false;
2372f2cb1360SIngo Molnar 
2373cd1cb335SValentin Schneider 	if (WARN_ON(cpumask_empty(cpu_map)))
2374cd1cb335SValentin Schneider 		goto error;
2375cd1cb335SValentin Schneider 
2376f2cb1360SIngo Molnar 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2377f2cb1360SIngo Molnar 	if (alloc_state != sa_rootdomain)
2378f2cb1360SIngo Molnar 		goto error;
2379f2cb1360SIngo Molnar 
2380f2cb1360SIngo Molnar 	/* Set up domains for CPUs specified by the cpu_map: */
2381f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
2382f2cb1360SIngo Molnar 		struct sched_domain_topology_level *tl;
2383f2cb1360SIngo Molnar 
2384f2cb1360SIngo Molnar 		sd = NULL;
2385f2cb1360SIngo Molnar 		for_each_sd_topology(tl) {
238605484e09SMorten Rasmussen 
2387ccf74128SValentin Schneider 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2388ccf74128SValentin Schneider 				goto error;
2389ccf74128SValentin Schneider 
2390c744dc4aSBeata Michalska 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2391c744dc4aSBeata Michalska 
2392c744dc4aSBeata Michalska 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
239305484e09SMorten Rasmussen 
2394f2cb1360SIngo Molnar 			if (tl == sched_domain_topology)
2395f2cb1360SIngo Molnar 				*per_cpu_ptr(d.sd, i) = sd;
2396af85596cSPeter Zijlstra 			if (tl->flags & SDTL_OVERLAP)
2397f2cb1360SIngo Molnar 				sd->flags |= SD_OVERLAP;
2398f2cb1360SIngo Molnar 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2399f2cb1360SIngo Molnar 				break;
2400f2cb1360SIngo Molnar 		}
2401f2cb1360SIngo Molnar 	}
2402f2cb1360SIngo Molnar 
2403f2cb1360SIngo Molnar 	/* Build the groups for the domains */
2404f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
2405f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2406f2cb1360SIngo Molnar 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2407f2cb1360SIngo Molnar 			if (sd->flags & SD_OVERLAP) {
2408f2cb1360SIngo Molnar 				if (build_overlap_sched_groups(sd, i))
2409f2cb1360SIngo Molnar 					goto error;
2410f2cb1360SIngo Molnar 			} else {
2411f2cb1360SIngo Molnar 				if (build_sched_groups(sd, i))
2412f2cb1360SIngo Molnar 					goto error;
2413f2cb1360SIngo Molnar 			}
2414f2cb1360SIngo Molnar 		}
2415f2cb1360SIngo Molnar 	}
2416f2cb1360SIngo Molnar 
2417e496132eSMel Gorman 	/*
2418e496132eSMel Gorman 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2419e496132eSMel Gorman 	 * imbalanced.
2420e496132eSMel Gorman 	 */
2421e496132eSMel Gorman 	for_each_cpu(i, cpu_map) {
2422e496132eSMel Gorman 		unsigned int imb = 0;
2423e496132eSMel Gorman 		unsigned int imb_span = 1;
2424e496132eSMel Gorman 
2425e496132eSMel Gorman 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2426e496132eSMel Gorman 			struct sched_domain *child = sd->child;
2427e496132eSMel Gorman 
2428e496132eSMel Gorman 			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2429e496132eSMel Gorman 			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
24307f434dffSK Prateek Nayak 				struct sched_domain __rcu *top_p;
2431e496132eSMel Gorman 				unsigned int nr_llcs;
2432e496132eSMel Gorman 
2433e496132eSMel Gorman 				/*
2434e496132eSMel Gorman 				 * For a single LLC per node, allow an
2435026b98a9SMel Gorman 				 * imbalance up to 12.5% of the node. This is
2436026b98a9SMel Gorman 				 * arbitrary cutoff based two factors -- SMT and
2437026b98a9SMel Gorman 				 * memory channels. For SMT-2, the intent is to
2438026b98a9SMel Gorman 				 * avoid premature sharing of HT resources but
2439026b98a9SMel Gorman 				 * SMT-4 or SMT-8 *may* benefit from a different
2440026b98a9SMel Gorman 				 * cutoff. For memory channels, this is a very
2441026b98a9SMel Gorman 				 * rough estimate of how many channels may be
2442026b98a9SMel Gorman 				 * active and is based on recent CPUs with
2443026b98a9SMel Gorman 				 * many cores.
2444e496132eSMel Gorman 				 *
2445e496132eSMel Gorman 				 * For multiple LLCs, allow an imbalance
2446e496132eSMel Gorman 				 * until multiple tasks would share an LLC
2447e496132eSMel Gorman 				 * on one node while LLCs on another node
2448026b98a9SMel Gorman 				 * remain idle. This assumes that there are
2449026b98a9SMel Gorman 				 * enough logical CPUs per LLC to avoid SMT
2450026b98a9SMel Gorman 				 * factors and that there is a correlation
2451026b98a9SMel Gorman 				 * between LLCs and memory channels.
2452e496132eSMel Gorman 				 */
2453e496132eSMel Gorman 				nr_llcs = sd->span_weight / child->span_weight;
2454e496132eSMel Gorman 				if (nr_llcs == 1)
2455026b98a9SMel Gorman 					imb = sd->span_weight >> 3;
2456e496132eSMel Gorman 				else
2457e496132eSMel Gorman 					imb = nr_llcs;
2458026b98a9SMel Gorman 				imb = max(1U, imb);
2459e496132eSMel Gorman 				sd->imb_numa_nr = imb;
2460e496132eSMel Gorman 
2461e496132eSMel Gorman 				/* Set span based on the first NUMA domain. */
24627f434dffSK Prateek Nayak 				top_p = sd->parent;
2463e496132eSMel Gorman 				while (top_p && !(top_p->flags & SD_NUMA)) {
24647f434dffSK Prateek Nayak 					top_p = top_p->parent;
2465e496132eSMel Gorman 				}
2466e496132eSMel Gorman 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2467e496132eSMel Gorman 			} else {
2468e496132eSMel Gorman 				int factor = max(1U, (sd->span_weight / imb_span));
2469e496132eSMel Gorman 
2470e496132eSMel Gorman 				sd->imb_numa_nr = imb * factor;
2471e496132eSMel Gorman 			}
2472e496132eSMel Gorman 		}
2473e496132eSMel Gorman 	}
2474e496132eSMel Gorman 
2475f2cb1360SIngo Molnar 	/* Calculate CPU capacity for physical packages and nodes */
2476f2cb1360SIngo Molnar 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2477f2cb1360SIngo Molnar 		if (!cpumask_test_cpu(i, cpu_map))
2478f2cb1360SIngo Molnar 			continue;
2479f2cb1360SIngo Molnar 
2480f2cb1360SIngo Molnar 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2481f2cb1360SIngo Molnar 			claim_allocations(i, sd);
2482f2cb1360SIngo Molnar 			init_sched_groups_capacity(i, sd);
2483f2cb1360SIngo Molnar 		}
2484f2cb1360SIngo Molnar 	}
2485f2cb1360SIngo Molnar 
2486f2cb1360SIngo Molnar 	/* Attach the domains */
2487f2cb1360SIngo Molnar 	rcu_read_lock();
2488f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map) {
2489f2cb1360SIngo Molnar 		rq = cpu_rq(i);
2490f2cb1360SIngo Molnar 		sd = *per_cpu_ptr(d.sd, i);
2491f2cb1360SIngo Molnar 
2492f2cb1360SIngo Molnar 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2493f2cb1360SIngo Molnar 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2494f2cb1360SIngo Molnar 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2495f2cb1360SIngo Molnar 
2496f2cb1360SIngo Molnar 		cpu_attach_domain(sd, d.rd, i);
2497f2cb1360SIngo Molnar 	}
2498f2cb1360SIngo Molnar 	rcu_read_unlock();
2499f2cb1360SIngo Molnar 
2500df054e84SMorten Rasmussen 	if (has_asym)
2501e284df70SValentin Schneider 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2502df054e84SMorten Rasmussen 
25039406415fSPeter Zijlstra 	if (rq && sched_debug_verbose) {
2504bf5015a5SJuri Lelli 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2505f2cb1360SIngo Molnar 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2506f2cb1360SIngo Molnar 	}
2507f2cb1360SIngo Molnar 
2508f2cb1360SIngo Molnar 	ret = 0;
2509f2cb1360SIngo Molnar error:
2510f2cb1360SIngo Molnar 	__free_domain_allocs(&d, alloc_state, cpu_map);
251197fb7a0aSIngo Molnar 
2512f2cb1360SIngo Molnar 	return ret;
2513f2cb1360SIngo Molnar }
2514f2cb1360SIngo Molnar 
2515f2cb1360SIngo Molnar /* Current sched domains: */
2516f2cb1360SIngo Molnar static cpumask_var_t			*doms_cur;
2517f2cb1360SIngo Molnar 
2518f2cb1360SIngo Molnar /* Number of sched domains in 'doms_cur': */
2519f2cb1360SIngo Molnar static int				ndoms_cur;
2520f2cb1360SIngo Molnar 
25213b03706fSIngo Molnar /* Attributes of custom domains in 'doms_cur' */
2522f2cb1360SIngo Molnar static struct sched_domain_attr		*dattr_cur;
2523f2cb1360SIngo Molnar 
2524f2cb1360SIngo Molnar /*
2525f2cb1360SIngo Molnar  * Special case: If a kmalloc() of a doms_cur partition (array of
2526f2cb1360SIngo Molnar  * cpumask) fails, then fallback to a single sched domain,
2527f2cb1360SIngo Molnar  * as determined by the single cpumask fallback_doms.
2528f2cb1360SIngo Molnar  */
25298d5dc512SPeter Zijlstra static cpumask_var_t			fallback_doms;
2530f2cb1360SIngo Molnar 
2531f2cb1360SIngo Molnar /*
2532f2cb1360SIngo Molnar  * arch_update_cpu_topology lets virtualized architectures update the
2533f2cb1360SIngo Molnar  * CPU core maps. It is supposed to return 1 if the topology changed
2534f2cb1360SIngo Molnar  * or 0 if it stayed the same.
2535f2cb1360SIngo Molnar  */
arch_update_cpu_topology(void)2536f2cb1360SIngo Molnar int __weak arch_update_cpu_topology(void)
2537f2cb1360SIngo Molnar {
2538f2cb1360SIngo Molnar 	return 0;
2539f2cb1360SIngo Molnar }
2540f2cb1360SIngo Molnar 
alloc_sched_domains(unsigned int ndoms)2541f2cb1360SIngo Molnar cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2542f2cb1360SIngo Molnar {
2543f2cb1360SIngo Molnar 	int i;
2544f2cb1360SIngo Molnar 	cpumask_var_t *doms;
2545f2cb1360SIngo Molnar 
25466da2ec56SKees Cook 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2547f2cb1360SIngo Molnar 	if (!doms)
2548f2cb1360SIngo Molnar 		return NULL;
2549f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++) {
2550f2cb1360SIngo Molnar 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2551f2cb1360SIngo Molnar 			free_sched_domains(doms, i);
2552f2cb1360SIngo Molnar 			return NULL;
2553f2cb1360SIngo Molnar 		}
2554f2cb1360SIngo Molnar 	}
2555f2cb1360SIngo Molnar 	return doms;
2556f2cb1360SIngo Molnar }
2557f2cb1360SIngo Molnar 
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2558f2cb1360SIngo Molnar void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2559f2cb1360SIngo Molnar {
2560f2cb1360SIngo Molnar 	unsigned int i;
2561f2cb1360SIngo Molnar 	for (i = 0; i < ndoms; i++)
2562f2cb1360SIngo Molnar 		free_cpumask_var(doms[i]);
2563f2cb1360SIngo Molnar 	kfree(doms);
2564f2cb1360SIngo Molnar }
2565f2cb1360SIngo Molnar 
2566f2cb1360SIngo Molnar /*
2567cb0c0414SJuri Lelli  * Set up scheduler domains and groups.  For now this just excludes isolated
2568cb0c0414SJuri Lelli  * CPUs, but could be used to exclude other special cases in the future.
2569f2cb1360SIngo Molnar  */
sched_init_domains(const struct cpumask * cpu_map)2570ef90cf22SBing Huang int __init sched_init_domains(const struct cpumask *cpu_map)
2571f2cb1360SIngo Molnar {
2572f2cb1360SIngo Molnar 	int err;
2573f2cb1360SIngo Molnar 
25748d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
25751676330eSPeter Zijlstra 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
25768d5dc512SPeter Zijlstra 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
25778d5dc512SPeter Zijlstra 
2578f2cb1360SIngo Molnar 	arch_update_cpu_topology();
2579c744dc4aSBeata Michalska 	asym_cpu_capacity_scan();
2580f2cb1360SIngo Molnar 	ndoms_cur = 1;
2581f2cb1360SIngo Molnar 	doms_cur = alloc_sched_domains(ndoms_cur);
2582f2cb1360SIngo Molnar 	if (!doms_cur)
2583f2cb1360SIngo Molnar 		doms_cur = &fallback_doms;
258404d4e665SFrederic Weisbecker 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2585f2cb1360SIngo Molnar 	err = build_sched_domains(doms_cur[0], NULL);
2586f2cb1360SIngo Molnar 
2587f2cb1360SIngo Molnar 	return err;
2588f2cb1360SIngo Molnar }
2589f2cb1360SIngo Molnar 
2590f2cb1360SIngo Molnar /*
2591f2cb1360SIngo Molnar  * Detach sched domains from a group of CPUs specified in cpu_map
2592f2cb1360SIngo Molnar  * These CPUs will now be attached to the NULL domain
2593f2cb1360SIngo Molnar  */
detach_destroy_domains(const struct cpumask * cpu_map)2594f2cb1360SIngo Molnar static void detach_destroy_domains(const struct cpumask *cpu_map)
2595f2cb1360SIngo Molnar {
2596e284df70SValentin Schneider 	unsigned int cpu = cpumask_any(cpu_map);
2597f2cb1360SIngo Molnar 	int i;
2598f2cb1360SIngo Molnar 
2599e284df70SValentin Schneider 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2600e284df70SValentin Schneider 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2601e284df70SValentin Schneider 
2602f2cb1360SIngo Molnar 	rcu_read_lock();
2603f2cb1360SIngo Molnar 	for_each_cpu(i, cpu_map)
2604f2cb1360SIngo Molnar 		cpu_attach_domain(NULL, &def_root_domain, i);
2605f2cb1360SIngo Molnar 	rcu_read_unlock();
2606f2cb1360SIngo Molnar }
2607f2cb1360SIngo Molnar 
2608f2cb1360SIngo Molnar /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2609f2cb1360SIngo Molnar static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2610f2cb1360SIngo Molnar 			struct sched_domain_attr *new, int idx_new)
2611f2cb1360SIngo Molnar {
2612f2cb1360SIngo Molnar 	struct sched_domain_attr tmp;
2613f2cb1360SIngo Molnar 
2614f2cb1360SIngo Molnar 	/* Fast path: */
2615f2cb1360SIngo Molnar 	if (!new && !cur)
2616f2cb1360SIngo Molnar 		return 1;
2617f2cb1360SIngo Molnar 
2618f2cb1360SIngo Molnar 	tmp = SD_ATTR_INIT;
261997fb7a0aSIngo Molnar 
2620f2cb1360SIngo Molnar 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2621f2cb1360SIngo Molnar 			new ? (new + idx_new) : &tmp,
2622f2cb1360SIngo Molnar 			sizeof(struct sched_domain_attr));
2623f2cb1360SIngo Molnar }
2624f2cb1360SIngo Molnar 
2625f2cb1360SIngo Molnar /*
2626f2cb1360SIngo Molnar  * Partition sched domains as specified by the 'ndoms_new'
2627f2cb1360SIngo Molnar  * cpumasks in the array doms_new[] of cpumasks. This compares
2628f2cb1360SIngo Molnar  * doms_new[] to the current sched domain partitioning, doms_cur[].
2629f2cb1360SIngo Molnar  * It destroys each deleted domain and builds each new domain.
2630f2cb1360SIngo Molnar  *
2631f2cb1360SIngo Molnar  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2632f2cb1360SIngo Molnar  * The masks don't intersect (don't overlap.) We should setup one
2633f2cb1360SIngo Molnar  * sched domain for each mask. CPUs not in any of the cpumasks will
2634f2cb1360SIngo Molnar  * not be load balanced. If the same cpumask appears both in the
2635f2cb1360SIngo Molnar  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2636f2cb1360SIngo Molnar  * it as it is.
2637f2cb1360SIngo Molnar  *
2638f2cb1360SIngo Molnar  * The passed in 'doms_new' should be allocated using
2639f2cb1360SIngo Molnar  * alloc_sched_domains.  This routine takes ownership of it and will
2640f2cb1360SIngo Molnar  * free_sched_domains it when done with it. If the caller failed the
2641f2cb1360SIngo Molnar  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2642f2cb1360SIngo Molnar  * and partition_sched_domains() will fallback to the single partition
2643f2cb1360SIngo Molnar  * 'fallback_doms', it also forces the domains to be rebuilt.
2644f2cb1360SIngo Molnar  *
2645f2cb1360SIngo Molnar  * If doms_new == NULL it will be replaced with cpu_online_mask.
2646f2cb1360SIngo Molnar  * ndoms_new == 0 is a special case for destroying existing domains,
2647f2cb1360SIngo Molnar  * and it will not create the default domain.
2648f2cb1360SIngo Molnar  *
2649c22645f4SMathieu Poirier  * Call with hotplug lock and sched_domains_mutex held
2650f2cb1360SIngo Molnar  */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2651c22645f4SMathieu Poirier void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2652f2cb1360SIngo Molnar 				    struct sched_domain_attr *dattr_new)
2653f2cb1360SIngo Molnar {
26541f74de87SQuentin Perret 	bool __maybe_unused has_eas = false;
2655f2cb1360SIngo Molnar 	int i, j, n;
2656f2cb1360SIngo Molnar 	int new_topology;
2657f2cb1360SIngo Molnar 
2658c22645f4SMathieu Poirier 	lockdep_assert_held(&sched_domains_mutex);
2659f2cb1360SIngo Molnar 
2660f2cb1360SIngo Molnar 	/* Let the architecture update CPU core mappings: */
2661f2cb1360SIngo Molnar 	new_topology = arch_update_cpu_topology();
2662c744dc4aSBeata Michalska 	/* Trigger rebuilding CPU capacity asymmetry data */
2663c744dc4aSBeata Michalska 	if (new_topology)
2664c744dc4aSBeata Michalska 		asym_cpu_capacity_scan();
2665f2cb1360SIngo Molnar 
266609e0dd8eSPeter Zijlstra 	if (!doms_new) {
266709e0dd8eSPeter Zijlstra 		WARN_ON_ONCE(dattr_new);
266809e0dd8eSPeter Zijlstra 		n = 0;
266909e0dd8eSPeter Zijlstra 		doms_new = alloc_sched_domains(1);
267009e0dd8eSPeter Zijlstra 		if (doms_new) {
267109e0dd8eSPeter Zijlstra 			n = 1;
2672edb93821SFrederic Weisbecker 			cpumask_and(doms_new[0], cpu_active_mask,
267304d4e665SFrederic Weisbecker 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
267409e0dd8eSPeter Zijlstra 		}
267509e0dd8eSPeter Zijlstra 	} else {
267609e0dd8eSPeter Zijlstra 		n = ndoms_new;
267709e0dd8eSPeter Zijlstra 	}
2678f2cb1360SIngo Molnar 
2679f2cb1360SIngo Molnar 	/* Destroy deleted domains: */
2680f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_cur; i++) {
2681f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
26826aa140faSQuentin Perret 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2683f9a25f77SMathieu Poirier 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2684f9a25f77SMathieu Poirier 				struct root_domain *rd;
2685f9a25f77SMathieu Poirier 
2686f9a25f77SMathieu Poirier 				/*
2687f9a25f77SMathieu Poirier 				 * This domain won't be destroyed and as such
2688f9a25f77SMathieu Poirier 				 * its dl_bw->total_bw needs to be cleared.  It
2689f9a25f77SMathieu Poirier 				 * will be recomputed in function
2690f9a25f77SMathieu Poirier 				 * update_tasks_root_domain().
2691f9a25f77SMathieu Poirier 				 */
2692f9a25f77SMathieu Poirier 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2693f9a25f77SMathieu Poirier 				dl_clear_root_domain(rd);
2694f2cb1360SIngo Molnar 				goto match1;
2695f2cb1360SIngo Molnar 			}
2696f9a25f77SMathieu Poirier 		}
2697f2cb1360SIngo Molnar 		/* No match - a current sched domain not in new doms_new[] */
2698f2cb1360SIngo Molnar 		detach_destroy_domains(doms_cur[i]);
2699f2cb1360SIngo Molnar match1:
2700f2cb1360SIngo Molnar 		;
2701f2cb1360SIngo Molnar 	}
2702f2cb1360SIngo Molnar 
2703f2cb1360SIngo Molnar 	n = ndoms_cur;
270409e0dd8eSPeter Zijlstra 	if (!doms_new) {
2705f2cb1360SIngo Molnar 		n = 0;
2706f2cb1360SIngo Molnar 		doms_new = &fallback_doms;
2707edb93821SFrederic Weisbecker 		cpumask_and(doms_new[0], cpu_active_mask,
270804d4e665SFrederic Weisbecker 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2709f2cb1360SIngo Molnar 	}
2710f2cb1360SIngo Molnar 
2711f2cb1360SIngo Molnar 	/* Build new domains: */
2712f2cb1360SIngo Molnar 	for (i = 0; i < ndoms_new; i++) {
2713f2cb1360SIngo Molnar 		for (j = 0; j < n && !new_topology; j++) {
27146aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
27156aa140faSQuentin Perret 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2716f2cb1360SIngo Molnar 				goto match2;
2717f2cb1360SIngo Molnar 		}
2718f2cb1360SIngo Molnar 		/* No match - add a new doms_new */
2719f2cb1360SIngo Molnar 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2720f2cb1360SIngo Molnar match2:
2721f2cb1360SIngo Molnar 		;
2722f2cb1360SIngo Molnar 	}
2723f2cb1360SIngo Molnar 
2724531b5c9fSQuentin Perret #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
27256aa140faSQuentin Perret 	/* Build perf. domains: */
27266aa140faSQuentin Perret 	for (i = 0; i < ndoms_new; i++) {
2727531b5c9fSQuentin Perret 		for (j = 0; j < n && !sched_energy_update; j++) {
27286aa140faSQuentin Perret 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
27291f74de87SQuentin Perret 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
27301f74de87SQuentin Perret 				has_eas = true;
27316aa140faSQuentin Perret 				goto match3;
27326aa140faSQuentin Perret 			}
27331f74de87SQuentin Perret 		}
27346aa140faSQuentin Perret 		/* No match - add perf. domains for a new rd */
27351f74de87SQuentin Perret 		has_eas |= build_perf_domains(doms_new[i]);
27366aa140faSQuentin Perret match3:
27376aa140faSQuentin Perret 		;
27386aa140faSQuentin Perret 	}
27391f74de87SQuentin Perret 	sched_energy_set(has_eas);
27406aa140faSQuentin Perret #endif
27416aa140faSQuentin Perret 
2742f2cb1360SIngo Molnar 	/* Remember the new sched domains: */
2743f2cb1360SIngo Molnar 	if (doms_cur != &fallback_doms)
2744f2cb1360SIngo Molnar 		free_sched_domains(doms_cur, ndoms_cur);
2745f2cb1360SIngo Molnar 
2746f2cb1360SIngo Molnar 	kfree(dattr_cur);
2747f2cb1360SIngo Molnar 	doms_cur = doms_new;
2748f2cb1360SIngo Molnar 	dattr_cur = dattr_new;
2749f2cb1360SIngo Molnar 	ndoms_cur = ndoms_new;
2750f2cb1360SIngo Molnar 
27513b87f136SPeter Zijlstra 	update_sched_domain_debugfs();
2752c22645f4SMathieu Poirier }
2753f2cb1360SIngo Molnar 
2754c22645f4SMathieu Poirier /*
2755c22645f4SMathieu Poirier  * Call with hotplug lock held
2756c22645f4SMathieu Poirier  */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2757c22645f4SMathieu Poirier void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2758c22645f4SMathieu Poirier 			     struct sched_domain_attr *dattr_new)
2759c22645f4SMathieu Poirier {
2760c22645f4SMathieu Poirier 	mutex_lock(&sched_domains_mutex);
2761c22645f4SMathieu Poirier 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2762f2cb1360SIngo Molnar 	mutex_unlock(&sched_domains_mutex);
2763f2cb1360SIngo Molnar }
2764