xref: /openbmc/linux/kernel/sched/sched.h (revision 6417f03132a6952cd17ddd8eaddbac92b61b17e0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 
69 #include <asm/tlb.h>
70 
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
73 #endif
74 
75 #include "cpupri.h"
76 #include "cpudeadline.h"
77 
78 #include <trace/events/sched.h>
79 
80 #ifdef CONFIG_SCHED_DEBUG
81 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
82 #else
83 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
84 #endif
85 
86 struct rq;
87 struct cpuidle_state;
88 
89 /* task_struct::on_rq states: */
90 #define TASK_ON_RQ_QUEUED	1
91 #define TASK_ON_RQ_MIGRATING	2
92 
93 extern __read_mostly int scheduler_running;
94 
95 extern unsigned long calc_load_update;
96 extern atomic_long_t calc_load_tasks;
97 
98 extern void calc_global_load_tick(struct rq *this_rq);
99 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
100 
101 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
102 /*
103  * Helpers for converting nanosecond timing to jiffy resolution
104  */
105 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 
107 /*
108  * Increase resolution of nice-level calculations for 64-bit architectures.
109  * The extra resolution improves shares distribution and load balancing of
110  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
111  * hierarchies, especially on larger systems. This is not a user-visible change
112  * and does not change the user-interface for setting shares/weights.
113  *
114  * We increase resolution only if we have enough bits to allow this increased
115  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
116  * are pretty high and the returns do not justify the increased costs.
117  *
118  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
119  * increase coverage and consistency always enable it on 64-bit platforms.
120  */
121 #ifdef CONFIG_64BIT
122 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
123 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load_down(w) \
125 ({ \
126 	unsigned long __w = (w); \
127 	if (__w) \
128 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
129 	__w; \
130 })
131 #else
132 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
133 # define scale_load(w)		(w)
134 # define scale_load_down(w)	(w)
135 #endif
136 
137 /*
138  * Task weight (visible to users) and its load (invisible to users) have
139  * independent resolution, but they should be well calibrated. We use
140  * scale_load() and scale_load_down(w) to convert between them. The
141  * following must be true:
142  *
143  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
144  *
145  */
146 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
147 
148 /*
149  * Single value that decides SCHED_DEADLINE internal math precision.
150  * 10 -> just above 1us
151  * 9  -> just above 0.5us
152  */
153 #define DL_SCALE		10
154 
155 /*
156  * Single value that denotes runtime == period, ie unlimited time.
157  */
158 #define RUNTIME_INF		((u64)~0ULL)
159 
160 static inline int idle_policy(int policy)
161 {
162 	return policy == SCHED_IDLE;
163 }
164 static inline int fair_policy(int policy)
165 {
166 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
167 }
168 
169 static inline int rt_policy(int policy)
170 {
171 	return policy == SCHED_FIFO || policy == SCHED_RR;
172 }
173 
174 static inline int dl_policy(int policy)
175 {
176 	return policy == SCHED_DEADLINE;
177 }
178 static inline bool valid_policy(int policy)
179 {
180 	return idle_policy(policy) || fair_policy(policy) ||
181 		rt_policy(policy) || dl_policy(policy);
182 }
183 
184 static inline int task_has_idle_policy(struct task_struct *p)
185 {
186 	return idle_policy(p->policy);
187 }
188 
189 static inline int task_has_rt_policy(struct task_struct *p)
190 {
191 	return rt_policy(p->policy);
192 }
193 
194 static inline int task_has_dl_policy(struct task_struct *p)
195 {
196 	return dl_policy(p->policy);
197 }
198 
199 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
200 
201 static inline void update_avg(u64 *avg, u64 sample)
202 {
203 	s64 diff = sample - *avg;
204 	*avg += diff / 8;
205 }
206 
207 /*
208  * !! For sched_setattr_nocheck() (kernel) only !!
209  *
210  * This is actually gross. :(
211  *
212  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
213  * tasks, but still be able to sleep. We need this on platforms that cannot
214  * atomically change clock frequency. Remove once fast switching will be
215  * available on such platforms.
216  *
217  * SUGOV stands for SchedUtil GOVernor.
218  */
219 #define SCHED_FLAG_SUGOV	0x10000000
220 
221 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
222 {
223 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
224 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
225 #else
226 	return false;
227 #endif
228 }
229 
230 /*
231  * Tells if entity @a should preempt entity @b.
232  */
233 static inline bool
234 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
235 {
236 	return dl_entity_is_special(a) ||
237 	       dl_time_before(a->deadline, b->deadline);
238 }
239 
240 /*
241  * This is the priority-queue data structure of the RT scheduling class:
242  */
243 struct rt_prio_array {
244 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
245 	struct list_head queue[MAX_RT_PRIO];
246 };
247 
248 struct rt_bandwidth {
249 	/* nests inside the rq lock: */
250 	raw_spinlock_t		rt_runtime_lock;
251 	ktime_t			rt_period;
252 	u64			rt_runtime;
253 	struct hrtimer		rt_period_timer;
254 	unsigned int		rt_period_active;
255 };
256 
257 void __dl_clear_params(struct task_struct *p);
258 
259 struct dl_bandwidth {
260 	raw_spinlock_t		dl_runtime_lock;
261 	u64			dl_runtime;
262 	u64			dl_period;
263 };
264 
265 static inline int dl_bandwidth_enabled(void)
266 {
267 	return sysctl_sched_rt_runtime >= 0;
268 }
269 
270 /*
271  * To keep the bandwidth of -deadline tasks under control
272  * we need some place where:
273  *  - store the maximum -deadline bandwidth of each cpu;
274  *  - cache the fraction of bandwidth that is currently allocated in
275  *    each root domain;
276  *
277  * This is all done in the data structure below. It is similar to the
278  * one used for RT-throttling (rt_bandwidth), with the main difference
279  * that, since here we are only interested in admission control, we
280  * do not decrease any runtime while the group "executes", neither we
281  * need a timer to replenish it.
282  *
283  * With respect to SMP, bandwidth is given on a per root domain basis,
284  * meaning that:
285  *  - bw (< 100%) is the deadline bandwidth of each CPU;
286  *  - total_bw is the currently allocated bandwidth in each root domain;
287  */
288 struct dl_bw {
289 	raw_spinlock_t		lock;
290 	u64			bw;
291 	u64			total_bw;
292 };
293 
294 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
295 
296 static inline
297 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
298 {
299 	dl_b->total_bw -= tsk_bw;
300 	__dl_update(dl_b, (s32)tsk_bw / cpus);
301 }
302 
303 static inline
304 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
305 {
306 	dl_b->total_bw += tsk_bw;
307 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
308 }
309 
310 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
311 				 u64 old_bw, u64 new_bw)
312 {
313 	return dl_b->bw != -1 &&
314 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
315 }
316 
317 /*
318  * Verify the fitness of task @p to run on @cpu taking into account the
319  * CPU original capacity and the runtime/deadline ratio of the task.
320  *
321  * The function will return true if the CPU original capacity of the
322  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
323  * task and false otherwise.
324  */
325 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
326 {
327 	unsigned long cap = arch_scale_cpu_capacity(cpu);
328 
329 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
330 }
331 
332 extern void init_dl_bw(struct dl_bw *dl_b);
333 extern int  sched_dl_global_validate(void);
334 extern void sched_dl_do_global(void);
335 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
336 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
337 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
338 extern bool __checkparam_dl(const struct sched_attr *attr);
339 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
340 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
341 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
342 extern bool dl_cpu_busy(unsigned int cpu);
343 
344 #ifdef CONFIG_CGROUP_SCHED
345 
346 #include <linux/cgroup.h>
347 #include <linux/psi.h>
348 
349 struct cfs_rq;
350 struct rt_rq;
351 
352 extern struct list_head task_groups;
353 
354 struct cfs_bandwidth {
355 #ifdef CONFIG_CFS_BANDWIDTH
356 	raw_spinlock_t		lock;
357 	ktime_t			period;
358 	u64			quota;
359 	u64			runtime;
360 	s64			hierarchical_quota;
361 
362 	u8			idle;
363 	u8			period_active;
364 	u8			slack_started;
365 	struct hrtimer		period_timer;
366 	struct hrtimer		slack_timer;
367 	struct list_head	throttled_cfs_rq;
368 
369 	/* Statistics: */
370 	int			nr_periods;
371 	int			nr_throttled;
372 	u64			throttled_time;
373 #endif
374 };
375 
376 /* Task group related information */
377 struct task_group {
378 	struct cgroup_subsys_state css;
379 
380 #ifdef CONFIG_FAIR_GROUP_SCHED
381 	/* schedulable entities of this group on each CPU */
382 	struct sched_entity	**se;
383 	/* runqueue "owned" by this group on each CPU */
384 	struct cfs_rq		**cfs_rq;
385 	unsigned long		shares;
386 
387 #ifdef	CONFIG_SMP
388 	/*
389 	 * load_avg can be heavily contended at clock tick time, so put
390 	 * it in its own cacheline separated from the fields above which
391 	 * will also be accessed at each tick.
392 	 */
393 	atomic_long_t		load_avg ____cacheline_aligned;
394 #endif
395 #endif
396 
397 #ifdef CONFIG_RT_GROUP_SCHED
398 	struct sched_rt_entity	**rt_se;
399 	struct rt_rq		**rt_rq;
400 
401 	struct rt_bandwidth	rt_bandwidth;
402 #endif
403 
404 	struct rcu_head		rcu;
405 	struct list_head	list;
406 
407 	struct task_group	*parent;
408 	struct list_head	siblings;
409 	struct list_head	children;
410 
411 #ifdef CONFIG_SCHED_AUTOGROUP
412 	struct autogroup	*autogroup;
413 #endif
414 
415 	struct cfs_bandwidth	cfs_bandwidth;
416 
417 #ifdef CONFIG_UCLAMP_TASK_GROUP
418 	/* The two decimal precision [%] value requested from user-space */
419 	unsigned int		uclamp_pct[UCLAMP_CNT];
420 	/* Clamp values requested for a task group */
421 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
422 	/* Effective clamp values used for a task group */
423 	struct uclamp_se	uclamp[UCLAMP_CNT];
424 #endif
425 
426 };
427 
428 #ifdef CONFIG_FAIR_GROUP_SCHED
429 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
430 
431 /*
432  * A weight of 0 or 1 can cause arithmetics problems.
433  * A weight of a cfs_rq is the sum of weights of which entities
434  * are queued on this cfs_rq, so a weight of a entity should not be
435  * too large, so as the shares value of a task group.
436  * (The default weight is 1024 - so there's no practical
437  *  limitation from this.)
438  */
439 #define MIN_SHARES		(1UL <<  1)
440 #define MAX_SHARES		(1UL << 18)
441 #endif
442 
443 typedef int (*tg_visitor)(struct task_group *, void *);
444 
445 extern int walk_tg_tree_from(struct task_group *from,
446 			     tg_visitor down, tg_visitor up, void *data);
447 
448 /*
449  * Iterate the full tree, calling @down when first entering a node and @up when
450  * leaving it for the final time.
451  *
452  * Caller must hold rcu_lock or sufficient equivalent.
453  */
454 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
455 {
456 	return walk_tg_tree_from(&root_task_group, down, up, data);
457 }
458 
459 extern int tg_nop(struct task_group *tg, void *data);
460 
461 extern void free_fair_sched_group(struct task_group *tg);
462 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
463 extern void online_fair_sched_group(struct task_group *tg);
464 extern void unregister_fair_sched_group(struct task_group *tg);
465 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
466 			struct sched_entity *se, int cpu,
467 			struct sched_entity *parent);
468 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
469 
470 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
471 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
472 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
473 
474 extern void free_rt_sched_group(struct task_group *tg);
475 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
476 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
477 		struct sched_rt_entity *rt_se, int cpu,
478 		struct sched_rt_entity *parent);
479 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
480 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
481 extern long sched_group_rt_runtime(struct task_group *tg);
482 extern long sched_group_rt_period(struct task_group *tg);
483 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
484 
485 extern struct task_group *sched_create_group(struct task_group *parent);
486 extern void sched_online_group(struct task_group *tg,
487 			       struct task_group *parent);
488 extern void sched_destroy_group(struct task_group *tg);
489 extern void sched_offline_group(struct task_group *tg);
490 
491 extern void sched_move_task(struct task_struct *tsk);
492 
493 #ifdef CONFIG_FAIR_GROUP_SCHED
494 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
495 
496 #ifdef CONFIG_SMP
497 extern void set_task_rq_fair(struct sched_entity *se,
498 			     struct cfs_rq *prev, struct cfs_rq *next);
499 #else /* !CONFIG_SMP */
500 static inline void set_task_rq_fair(struct sched_entity *se,
501 			     struct cfs_rq *prev, struct cfs_rq *next) { }
502 #endif /* CONFIG_SMP */
503 #endif /* CONFIG_FAIR_GROUP_SCHED */
504 
505 #else /* CONFIG_CGROUP_SCHED */
506 
507 struct cfs_bandwidth { };
508 
509 #endif	/* CONFIG_CGROUP_SCHED */
510 
511 /* CFS-related fields in a runqueue */
512 struct cfs_rq {
513 	struct load_weight	load;
514 	unsigned int		nr_running;
515 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
516 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
517 
518 	u64			exec_clock;
519 	u64			min_vruntime;
520 #ifndef CONFIG_64BIT
521 	u64			min_vruntime_copy;
522 #endif
523 
524 	struct rb_root_cached	tasks_timeline;
525 
526 	/*
527 	 * 'curr' points to currently running entity on this cfs_rq.
528 	 * It is set to NULL otherwise (i.e when none are currently running).
529 	 */
530 	struct sched_entity	*curr;
531 	struct sched_entity	*next;
532 	struct sched_entity	*last;
533 	struct sched_entity	*skip;
534 
535 #ifdef	CONFIG_SCHED_DEBUG
536 	unsigned int		nr_spread_over;
537 #endif
538 
539 #ifdef CONFIG_SMP
540 	/*
541 	 * CFS load tracking
542 	 */
543 	struct sched_avg	avg;
544 #ifndef CONFIG_64BIT
545 	u64			load_last_update_time_copy;
546 #endif
547 	struct {
548 		raw_spinlock_t	lock ____cacheline_aligned;
549 		int		nr;
550 		unsigned long	load_avg;
551 		unsigned long	util_avg;
552 		unsigned long	runnable_avg;
553 	} removed;
554 
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 	unsigned long		tg_load_avg_contrib;
557 	long			propagate;
558 	long			prop_runnable_sum;
559 
560 	/*
561 	 *   h_load = weight * f(tg)
562 	 *
563 	 * Where f(tg) is the recursive weight fraction assigned to
564 	 * this group.
565 	 */
566 	unsigned long		h_load;
567 	u64			last_h_load_update;
568 	struct sched_entity	*h_load_next;
569 #endif /* CONFIG_FAIR_GROUP_SCHED */
570 #endif /* CONFIG_SMP */
571 
572 #ifdef CONFIG_FAIR_GROUP_SCHED
573 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
574 
575 	/*
576 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
577 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
578 	 * (like users, containers etc.)
579 	 *
580 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
581 	 * This list is used during load balance.
582 	 */
583 	int			on_list;
584 	struct list_head	leaf_cfs_rq_list;
585 	struct task_group	*tg;	/* group that "owns" this runqueue */
586 
587 #ifdef CONFIG_CFS_BANDWIDTH
588 	int			runtime_enabled;
589 	s64			runtime_remaining;
590 
591 	u64			throttled_clock;
592 	u64			throttled_clock_task;
593 	u64			throttled_clock_task_time;
594 	int			throttled;
595 	int			throttle_count;
596 	struct list_head	throttled_list;
597 #endif /* CONFIG_CFS_BANDWIDTH */
598 #endif /* CONFIG_FAIR_GROUP_SCHED */
599 };
600 
601 static inline int rt_bandwidth_enabled(void)
602 {
603 	return sysctl_sched_rt_runtime >= 0;
604 }
605 
606 /* RT IPI pull logic requires IRQ_WORK */
607 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
608 # define HAVE_RT_PUSH_IPI
609 #endif
610 
611 /* Real-Time classes' related field in a runqueue: */
612 struct rt_rq {
613 	struct rt_prio_array	active;
614 	unsigned int		rt_nr_running;
615 	unsigned int		rr_nr_running;
616 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
617 	struct {
618 		int		curr; /* highest queued rt task prio */
619 #ifdef CONFIG_SMP
620 		int		next; /* next highest */
621 #endif
622 	} highest_prio;
623 #endif
624 #ifdef CONFIG_SMP
625 	unsigned long		rt_nr_migratory;
626 	unsigned long		rt_nr_total;
627 	int			overloaded;
628 	struct plist_head	pushable_tasks;
629 
630 #endif /* CONFIG_SMP */
631 	int			rt_queued;
632 
633 	int			rt_throttled;
634 	u64			rt_time;
635 	u64			rt_runtime;
636 	/* Nests inside the rq lock: */
637 	raw_spinlock_t		rt_runtime_lock;
638 
639 #ifdef CONFIG_RT_GROUP_SCHED
640 	unsigned long		rt_nr_boosted;
641 
642 	struct rq		*rq;
643 	struct task_group	*tg;
644 #endif
645 };
646 
647 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
648 {
649 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
650 }
651 
652 /* Deadline class' related fields in a runqueue */
653 struct dl_rq {
654 	/* runqueue is an rbtree, ordered by deadline */
655 	struct rb_root_cached	root;
656 
657 	unsigned long		dl_nr_running;
658 
659 #ifdef CONFIG_SMP
660 	/*
661 	 * Deadline values of the currently executing and the
662 	 * earliest ready task on this rq. Caching these facilitates
663 	 * the decision whether or not a ready but not running task
664 	 * should migrate somewhere else.
665 	 */
666 	struct {
667 		u64		curr;
668 		u64		next;
669 	} earliest_dl;
670 
671 	unsigned long		dl_nr_migratory;
672 	int			overloaded;
673 
674 	/*
675 	 * Tasks on this rq that can be pushed away. They are kept in
676 	 * an rb-tree, ordered by tasks' deadlines, with caching
677 	 * of the leftmost (earliest deadline) element.
678 	 */
679 	struct rb_root_cached	pushable_dl_tasks_root;
680 #else
681 	struct dl_bw		dl_bw;
682 #endif
683 	/*
684 	 * "Active utilization" for this runqueue: increased when a
685 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
686 	 * task blocks
687 	 */
688 	u64			running_bw;
689 
690 	/*
691 	 * Utilization of the tasks "assigned" to this runqueue (including
692 	 * the tasks that are in runqueue and the tasks that executed on this
693 	 * CPU and blocked). Increased when a task moves to this runqueue, and
694 	 * decreased when the task moves away (migrates, changes scheduling
695 	 * policy, or terminates).
696 	 * This is needed to compute the "inactive utilization" for the
697 	 * runqueue (inactive utilization = this_bw - running_bw).
698 	 */
699 	u64			this_bw;
700 	u64			extra_bw;
701 
702 	/*
703 	 * Inverse of the fraction of CPU utilization that can be reclaimed
704 	 * by the GRUB algorithm.
705 	 */
706 	u64			bw_ratio;
707 };
708 
709 #ifdef CONFIG_FAIR_GROUP_SCHED
710 /* An entity is a task if it doesn't "own" a runqueue */
711 #define entity_is_task(se)	(!se->my_q)
712 
713 static inline void se_update_runnable(struct sched_entity *se)
714 {
715 	if (!entity_is_task(se))
716 		se->runnable_weight = se->my_q->h_nr_running;
717 }
718 
719 static inline long se_runnable(struct sched_entity *se)
720 {
721 	if (entity_is_task(se))
722 		return !!se->on_rq;
723 	else
724 		return se->runnable_weight;
725 }
726 
727 #else
728 #define entity_is_task(se)	1
729 
730 static inline void se_update_runnable(struct sched_entity *se) {}
731 
732 static inline long se_runnable(struct sched_entity *se)
733 {
734 	return !!se->on_rq;
735 }
736 #endif
737 
738 #ifdef CONFIG_SMP
739 /*
740  * XXX we want to get rid of these helpers and use the full load resolution.
741  */
742 static inline long se_weight(struct sched_entity *se)
743 {
744 	return scale_load_down(se->load.weight);
745 }
746 
747 
748 static inline bool sched_asym_prefer(int a, int b)
749 {
750 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
751 }
752 
753 struct perf_domain {
754 	struct em_perf_domain *em_pd;
755 	struct perf_domain *next;
756 	struct rcu_head rcu;
757 };
758 
759 /* Scheduling group status flags */
760 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
761 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
762 
763 /*
764  * We add the notion of a root-domain which will be used to define per-domain
765  * variables. Each exclusive cpuset essentially defines an island domain by
766  * fully partitioning the member CPUs from any other cpuset. Whenever a new
767  * exclusive cpuset is created, we also create and attach a new root-domain
768  * object.
769  *
770  */
771 struct root_domain {
772 	atomic_t		refcount;
773 	atomic_t		rto_count;
774 	struct rcu_head		rcu;
775 	cpumask_var_t		span;
776 	cpumask_var_t		online;
777 
778 	/*
779 	 * Indicate pullable load on at least one CPU, e.g:
780 	 * - More than one runnable task
781 	 * - Running task is misfit
782 	 */
783 	int			overload;
784 
785 	/* Indicate one or more cpus over-utilized (tipping point) */
786 	int			overutilized;
787 
788 	/*
789 	 * The bit corresponding to a CPU gets set here if such CPU has more
790 	 * than one runnable -deadline task (as it is below for RT tasks).
791 	 */
792 	cpumask_var_t		dlo_mask;
793 	atomic_t		dlo_count;
794 	struct dl_bw		dl_bw;
795 	struct cpudl		cpudl;
796 
797 	/*
798 	 * Indicate whether a root_domain's dl_bw has been checked or
799 	 * updated. It's monotonously increasing value.
800 	 *
801 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
802 	 * that u64 is 'big enough'. So that shouldn't be a concern.
803 	 */
804 	u64 visit_gen;
805 
806 #ifdef HAVE_RT_PUSH_IPI
807 	/*
808 	 * For IPI pull requests, loop across the rto_mask.
809 	 */
810 	struct irq_work		rto_push_work;
811 	raw_spinlock_t		rto_lock;
812 	/* These are only updated and read within rto_lock */
813 	int			rto_loop;
814 	int			rto_cpu;
815 	/* These atomics are updated outside of a lock */
816 	atomic_t		rto_loop_next;
817 	atomic_t		rto_loop_start;
818 #endif
819 	/*
820 	 * The "RT overload" flag: it gets set if a CPU has more than
821 	 * one runnable RT task.
822 	 */
823 	cpumask_var_t		rto_mask;
824 	struct cpupri		cpupri;
825 
826 	unsigned long		max_cpu_capacity;
827 
828 	/*
829 	 * NULL-terminated list of performance domains intersecting with the
830 	 * CPUs of the rd. Protected by RCU.
831 	 */
832 	struct perf_domain __rcu *pd;
833 };
834 
835 extern void init_defrootdomain(void);
836 extern int sched_init_domains(const struct cpumask *cpu_map);
837 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
838 extern void sched_get_rd(struct root_domain *rd);
839 extern void sched_put_rd(struct root_domain *rd);
840 
841 #ifdef HAVE_RT_PUSH_IPI
842 extern void rto_push_irq_work_func(struct irq_work *work);
843 #endif
844 #endif /* CONFIG_SMP */
845 
846 #ifdef CONFIG_UCLAMP_TASK
847 /*
848  * struct uclamp_bucket - Utilization clamp bucket
849  * @value: utilization clamp value for tasks on this clamp bucket
850  * @tasks: number of RUNNABLE tasks on this clamp bucket
851  *
852  * Keep track of how many tasks are RUNNABLE for a given utilization
853  * clamp value.
854  */
855 struct uclamp_bucket {
856 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
857 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
858 };
859 
860 /*
861  * struct uclamp_rq - rq's utilization clamp
862  * @value: currently active clamp values for a rq
863  * @bucket: utilization clamp buckets affecting a rq
864  *
865  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
866  * A clamp value is affecting a rq when there is at least one task RUNNABLE
867  * (or actually running) with that value.
868  *
869  * There are up to UCLAMP_CNT possible different clamp values, currently there
870  * are only two: minimum utilization and maximum utilization.
871  *
872  * All utilization clamping values are MAX aggregated, since:
873  * - for util_min: we want to run the CPU at least at the max of the minimum
874  *   utilization required by its currently RUNNABLE tasks.
875  * - for util_max: we want to allow the CPU to run up to the max of the
876  *   maximum utilization allowed by its currently RUNNABLE tasks.
877  *
878  * Since on each system we expect only a limited number of different
879  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
880  * the metrics required to compute all the per-rq utilization clamp values.
881  */
882 struct uclamp_rq {
883 	unsigned int value;
884 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
885 };
886 
887 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
888 #endif /* CONFIG_UCLAMP_TASK */
889 
890 /*
891  * This is the main, per-CPU runqueue data structure.
892  *
893  * Locking rule: those places that want to lock multiple runqueues
894  * (such as the load balancing or the thread migration code), lock
895  * acquire operations must be ordered by ascending &runqueue.
896  */
897 struct rq {
898 	/* runqueue lock: */
899 	raw_spinlock_t		lock;
900 
901 	/*
902 	 * nr_running and cpu_load should be in the same cacheline because
903 	 * remote CPUs use both these fields when doing load calculation.
904 	 */
905 	unsigned int		nr_running;
906 #ifdef CONFIG_NUMA_BALANCING
907 	unsigned int		nr_numa_running;
908 	unsigned int		nr_preferred_running;
909 	unsigned int		numa_migrate_on;
910 #endif
911 #ifdef CONFIG_NO_HZ_COMMON
912 #ifdef CONFIG_SMP
913 	unsigned long		last_blocked_load_update_tick;
914 	unsigned int		has_blocked_load;
915 	call_single_data_t	nohz_csd;
916 #endif /* CONFIG_SMP */
917 	unsigned int		nohz_tick_stopped;
918 	atomic_t		nohz_flags;
919 #endif /* CONFIG_NO_HZ_COMMON */
920 
921 #ifdef CONFIG_SMP
922 	unsigned int		ttwu_pending;
923 #endif
924 	u64			nr_switches;
925 
926 #ifdef CONFIG_UCLAMP_TASK
927 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
928 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
929 	unsigned int		uclamp_flags;
930 #define UCLAMP_FLAG_IDLE 0x01
931 #endif
932 
933 	struct cfs_rq		cfs;
934 	struct rt_rq		rt;
935 	struct dl_rq		dl;
936 
937 #ifdef CONFIG_FAIR_GROUP_SCHED
938 	/* list of leaf cfs_rq on this CPU: */
939 	struct list_head	leaf_cfs_rq_list;
940 	struct list_head	*tmp_alone_branch;
941 #endif /* CONFIG_FAIR_GROUP_SCHED */
942 
943 	/*
944 	 * This is part of a global counter where only the total sum
945 	 * over all CPUs matters. A task can increase this counter on
946 	 * one CPU and if it got migrated afterwards it may decrease
947 	 * it on another CPU. Always updated under the runqueue lock:
948 	 */
949 	unsigned long		nr_uninterruptible;
950 
951 	struct task_struct __rcu	*curr;
952 	struct task_struct	*idle;
953 	struct task_struct	*stop;
954 	unsigned long		next_balance;
955 	struct mm_struct	*prev_mm;
956 
957 	unsigned int		clock_update_flags;
958 	u64			clock;
959 	/* Ensure that all clocks are in the same cache line */
960 	u64			clock_task ____cacheline_aligned;
961 	u64			clock_pelt;
962 	unsigned long		lost_idle_time;
963 
964 	atomic_t		nr_iowait;
965 
966 #ifdef CONFIG_MEMBARRIER
967 	int membarrier_state;
968 #endif
969 
970 #ifdef CONFIG_SMP
971 	struct root_domain		*rd;
972 	struct sched_domain __rcu	*sd;
973 
974 	unsigned long		cpu_capacity;
975 	unsigned long		cpu_capacity_orig;
976 
977 	struct callback_head	*balance_callback;
978 	unsigned char		balance_push;
979 
980 	unsigned char		nohz_idle_balance;
981 	unsigned char		idle_balance;
982 
983 	unsigned long		misfit_task_load;
984 
985 	/* For active balancing */
986 	int			active_balance;
987 	int			push_cpu;
988 	struct cpu_stop_work	active_balance_work;
989 
990 	/* CPU of this runqueue: */
991 	int			cpu;
992 	int			online;
993 
994 	struct list_head cfs_tasks;
995 
996 	struct sched_avg	avg_rt;
997 	struct sched_avg	avg_dl;
998 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
999 	struct sched_avg	avg_irq;
1000 #endif
1001 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1002 	struct sched_avg	avg_thermal;
1003 #endif
1004 	u64			idle_stamp;
1005 	u64			avg_idle;
1006 
1007 	/* This is used to determine avg_idle's max value */
1008 	u64			max_idle_balance_cost;
1009 
1010 #ifdef CONFIG_HOTPLUG_CPU
1011 	struct rcuwait		hotplug_wait;
1012 #endif
1013 #endif /* CONFIG_SMP */
1014 
1015 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1016 	u64			prev_irq_time;
1017 #endif
1018 #ifdef CONFIG_PARAVIRT
1019 	u64			prev_steal_time;
1020 #endif
1021 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1022 	u64			prev_steal_time_rq;
1023 #endif
1024 
1025 	/* calc_load related fields */
1026 	unsigned long		calc_load_update;
1027 	long			calc_load_active;
1028 
1029 #ifdef CONFIG_SCHED_HRTICK
1030 #ifdef CONFIG_SMP
1031 	call_single_data_t	hrtick_csd;
1032 #endif
1033 	struct hrtimer		hrtick_timer;
1034 	ktime_t 		hrtick_time;
1035 #endif
1036 
1037 #ifdef CONFIG_SCHEDSTATS
1038 	/* latency stats */
1039 	struct sched_info	rq_sched_info;
1040 	unsigned long long	rq_cpu_time;
1041 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1042 
1043 	/* sys_sched_yield() stats */
1044 	unsigned int		yld_count;
1045 
1046 	/* schedule() stats */
1047 	unsigned int		sched_count;
1048 	unsigned int		sched_goidle;
1049 
1050 	/* try_to_wake_up() stats */
1051 	unsigned int		ttwu_count;
1052 	unsigned int		ttwu_local;
1053 #endif
1054 
1055 #ifdef CONFIG_CPU_IDLE
1056 	/* Must be inspected within a rcu lock section */
1057 	struct cpuidle_state	*idle_state;
1058 #endif
1059 
1060 #ifdef CONFIG_SMP
1061 	unsigned int		nr_pinned;
1062 #endif
1063 	unsigned int		push_busy;
1064 	struct cpu_stop_work	push_work;
1065 };
1066 
1067 #ifdef CONFIG_FAIR_GROUP_SCHED
1068 
1069 /* CPU runqueue to which this cfs_rq is attached */
1070 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1071 {
1072 	return cfs_rq->rq;
1073 }
1074 
1075 #else
1076 
1077 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1078 {
1079 	return container_of(cfs_rq, struct rq, cfs);
1080 }
1081 #endif
1082 
1083 static inline int cpu_of(struct rq *rq)
1084 {
1085 #ifdef CONFIG_SMP
1086 	return rq->cpu;
1087 #else
1088 	return 0;
1089 #endif
1090 }
1091 
1092 #define MDF_PUSH	0x01
1093 
1094 static inline bool is_migration_disabled(struct task_struct *p)
1095 {
1096 #ifdef CONFIG_SMP
1097 	return p->migration_disabled;
1098 #else
1099 	return false;
1100 #endif
1101 }
1102 
1103 #ifdef CONFIG_SCHED_SMT
1104 extern void __update_idle_core(struct rq *rq);
1105 
1106 static inline void update_idle_core(struct rq *rq)
1107 {
1108 	if (static_branch_unlikely(&sched_smt_present))
1109 		__update_idle_core(rq);
1110 }
1111 
1112 #else
1113 static inline void update_idle_core(struct rq *rq) { }
1114 #endif
1115 
1116 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1117 
1118 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1119 #define this_rq()		this_cpu_ptr(&runqueues)
1120 #define task_rq(p)		cpu_rq(task_cpu(p))
1121 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1122 #define raw_rq()		raw_cpu_ptr(&runqueues)
1123 
1124 extern void update_rq_clock(struct rq *rq);
1125 
1126 static inline u64 __rq_clock_broken(struct rq *rq)
1127 {
1128 	return READ_ONCE(rq->clock);
1129 }
1130 
1131 /*
1132  * rq::clock_update_flags bits
1133  *
1134  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1135  *  call to __schedule(). This is an optimisation to avoid
1136  *  neighbouring rq clock updates.
1137  *
1138  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1139  *  in effect and calls to update_rq_clock() are being ignored.
1140  *
1141  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1142  *  made to update_rq_clock() since the last time rq::lock was pinned.
1143  *
1144  * If inside of __schedule(), clock_update_flags will have been
1145  * shifted left (a left shift is a cheap operation for the fast path
1146  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1147  *
1148  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1149  *
1150  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1151  * one position though, because the next rq_unpin_lock() will shift it
1152  * back.
1153  */
1154 #define RQCF_REQ_SKIP		0x01
1155 #define RQCF_ACT_SKIP		0x02
1156 #define RQCF_UPDATED		0x04
1157 
1158 static inline void assert_clock_updated(struct rq *rq)
1159 {
1160 	/*
1161 	 * The only reason for not seeing a clock update since the
1162 	 * last rq_pin_lock() is if we're currently skipping updates.
1163 	 */
1164 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1165 }
1166 
1167 static inline u64 rq_clock(struct rq *rq)
1168 {
1169 	lockdep_assert_held(&rq->lock);
1170 	assert_clock_updated(rq);
1171 
1172 	return rq->clock;
1173 }
1174 
1175 static inline u64 rq_clock_task(struct rq *rq)
1176 {
1177 	lockdep_assert_held(&rq->lock);
1178 	assert_clock_updated(rq);
1179 
1180 	return rq->clock_task;
1181 }
1182 
1183 /**
1184  * By default the decay is the default pelt decay period.
1185  * The decay shift can change the decay period in
1186  * multiples of 32.
1187  *  Decay shift		Decay period(ms)
1188  *	0			32
1189  *	1			64
1190  *	2			128
1191  *	3			256
1192  *	4			512
1193  */
1194 extern int sched_thermal_decay_shift;
1195 
1196 static inline u64 rq_clock_thermal(struct rq *rq)
1197 {
1198 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1199 }
1200 
1201 static inline void rq_clock_skip_update(struct rq *rq)
1202 {
1203 	lockdep_assert_held(&rq->lock);
1204 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1205 }
1206 
1207 /*
1208  * See rt task throttling, which is the only time a skip
1209  * request is cancelled.
1210  */
1211 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1212 {
1213 	lockdep_assert_held(&rq->lock);
1214 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1215 }
1216 
1217 struct rq_flags {
1218 	unsigned long flags;
1219 	struct pin_cookie cookie;
1220 #ifdef CONFIG_SCHED_DEBUG
1221 	/*
1222 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1223 	 * current pin context is stashed here in case it needs to be
1224 	 * restored in rq_repin_lock().
1225 	 */
1226 	unsigned int clock_update_flags;
1227 #endif
1228 };
1229 
1230 extern struct callback_head balance_push_callback;
1231 
1232 /*
1233  * Lockdep annotation that avoids accidental unlocks; it's like a
1234  * sticky/continuous lockdep_assert_held().
1235  *
1236  * This avoids code that has access to 'struct rq *rq' (basically everything in
1237  * the scheduler) from accidentally unlocking the rq if they do not also have a
1238  * copy of the (on-stack) 'struct rq_flags rf'.
1239  *
1240  * Also see Documentation/locking/lockdep-design.rst.
1241  */
1242 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1243 {
1244 	rf->cookie = lockdep_pin_lock(&rq->lock);
1245 
1246 #ifdef CONFIG_SCHED_DEBUG
1247 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1248 	rf->clock_update_flags = 0;
1249 #ifdef CONFIG_SMP
1250 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1251 #endif
1252 #endif
1253 }
1254 
1255 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1256 {
1257 #ifdef CONFIG_SCHED_DEBUG
1258 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1259 		rf->clock_update_flags = RQCF_UPDATED;
1260 #endif
1261 
1262 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1263 }
1264 
1265 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1266 {
1267 	lockdep_repin_lock(&rq->lock, rf->cookie);
1268 
1269 #ifdef CONFIG_SCHED_DEBUG
1270 	/*
1271 	 * Restore the value we stashed in @rf for this pin context.
1272 	 */
1273 	rq->clock_update_flags |= rf->clock_update_flags;
1274 #endif
1275 }
1276 
1277 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1278 	__acquires(rq->lock);
1279 
1280 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1281 	__acquires(p->pi_lock)
1282 	__acquires(rq->lock);
1283 
1284 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1285 	__releases(rq->lock)
1286 {
1287 	rq_unpin_lock(rq, rf);
1288 	raw_spin_unlock(&rq->lock);
1289 }
1290 
1291 static inline void
1292 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1293 	__releases(rq->lock)
1294 	__releases(p->pi_lock)
1295 {
1296 	rq_unpin_lock(rq, rf);
1297 	raw_spin_unlock(&rq->lock);
1298 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1299 }
1300 
1301 static inline void
1302 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1303 	__acquires(rq->lock)
1304 {
1305 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1306 	rq_pin_lock(rq, rf);
1307 }
1308 
1309 static inline void
1310 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1311 	__acquires(rq->lock)
1312 {
1313 	raw_spin_lock_irq(&rq->lock);
1314 	rq_pin_lock(rq, rf);
1315 }
1316 
1317 static inline void
1318 rq_lock(struct rq *rq, struct rq_flags *rf)
1319 	__acquires(rq->lock)
1320 {
1321 	raw_spin_lock(&rq->lock);
1322 	rq_pin_lock(rq, rf);
1323 }
1324 
1325 static inline void
1326 rq_relock(struct rq *rq, struct rq_flags *rf)
1327 	__acquires(rq->lock)
1328 {
1329 	raw_spin_lock(&rq->lock);
1330 	rq_repin_lock(rq, rf);
1331 }
1332 
1333 static inline void
1334 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1335 	__releases(rq->lock)
1336 {
1337 	rq_unpin_lock(rq, rf);
1338 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1339 }
1340 
1341 static inline void
1342 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1343 	__releases(rq->lock)
1344 {
1345 	rq_unpin_lock(rq, rf);
1346 	raw_spin_unlock_irq(&rq->lock);
1347 }
1348 
1349 static inline void
1350 rq_unlock(struct rq *rq, struct rq_flags *rf)
1351 	__releases(rq->lock)
1352 {
1353 	rq_unpin_lock(rq, rf);
1354 	raw_spin_unlock(&rq->lock);
1355 }
1356 
1357 static inline struct rq *
1358 this_rq_lock_irq(struct rq_flags *rf)
1359 	__acquires(rq->lock)
1360 {
1361 	struct rq *rq;
1362 
1363 	local_irq_disable();
1364 	rq = this_rq();
1365 	rq_lock(rq, rf);
1366 	return rq;
1367 }
1368 
1369 #ifdef CONFIG_NUMA
1370 enum numa_topology_type {
1371 	NUMA_DIRECT,
1372 	NUMA_GLUELESS_MESH,
1373 	NUMA_BACKPLANE,
1374 };
1375 extern enum numa_topology_type sched_numa_topology_type;
1376 extern int sched_max_numa_distance;
1377 extern bool find_numa_distance(int distance);
1378 extern void sched_init_numa(void);
1379 extern void sched_domains_numa_masks_set(unsigned int cpu);
1380 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1381 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1382 #else
1383 static inline void sched_init_numa(void) { }
1384 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1385 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1386 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1387 {
1388 	return nr_cpu_ids;
1389 }
1390 #endif
1391 
1392 #ifdef CONFIG_NUMA_BALANCING
1393 /* The regions in numa_faults array from task_struct */
1394 enum numa_faults_stats {
1395 	NUMA_MEM = 0,
1396 	NUMA_CPU,
1397 	NUMA_MEMBUF,
1398 	NUMA_CPUBUF
1399 };
1400 extern void sched_setnuma(struct task_struct *p, int node);
1401 extern int migrate_task_to(struct task_struct *p, int cpu);
1402 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1403 			int cpu, int scpu);
1404 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1405 #else
1406 static inline void
1407 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1408 {
1409 }
1410 #endif /* CONFIG_NUMA_BALANCING */
1411 
1412 #ifdef CONFIG_SMP
1413 
1414 static inline void
1415 queue_balance_callback(struct rq *rq,
1416 		       struct callback_head *head,
1417 		       void (*func)(struct rq *rq))
1418 {
1419 	lockdep_assert_held(&rq->lock);
1420 
1421 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1422 		return;
1423 
1424 	head->func = (void (*)(struct callback_head *))func;
1425 	head->next = rq->balance_callback;
1426 	rq->balance_callback = head;
1427 }
1428 
1429 #define rcu_dereference_check_sched_domain(p) \
1430 	rcu_dereference_check((p), \
1431 			      lockdep_is_held(&sched_domains_mutex))
1432 
1433 /*
1434  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1435  * See destroy_sched_domains: call_rcu for details.
1436  *
1437  * The domain tree of any CPU may only be accessed from within
1438  * preempt-disabled sections.
1439  */
1440 #define for_each_domain(cpu, __sd) \
1441 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1442 			__sd; __sd = __sd->parent)
1443 
1444 /**
1445  * highest_flag_domain - Return highest sched_domain containing flag.
1446  * @cpu:	The CPU whose highest level of sched domain is to
1447  *		be returned.
1448  * @flag:	The flag to check for the highest sched_domain
1449  *		for the given CPU.
1450  *
1451  * Returns the highest sched_domain of a CPU which contains the given flag.
1452  */
1453 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1454 {
1455 	struct sched_domain *sd, *hsd = NULL;
1456 
1457 	for_each_domain(cpu, sd) {
1458 		if (!(sd->flags & flag))
1459 			break;
1460 		hsd = sd;
1461 	}
1462 
1463 	return hsd;
1464 }
1465 
1466 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1467 {
1468 	struct sched_domain *sd;
1469 
1470 	for_each_domain(cpu, sd) {
1471 		if (sd->flags & flag)
1472 			break;
1473 	}
1474 
1475 	return sd;
1476 }
1477 
1478 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1479 DECLARE_PER_CPU(int, sd_llc_size);
1480 DECLARE_PER_CPU(int, sd_llc_id);
1481 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1482 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1483 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1484 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1485 extern struct static_key_false sched_asym_cpucapacity;
1486 
1487 struct sched_group_capacity {
1488 	atomic_t		ref;
1489 	/*
1490 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1491 	 * for a single CPU.
1492 	 */
1493 	unsigned long		capacity;
1494 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1495 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1496 	unsigned long		next_update;
1497 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1498 
1499 #ifdef CONFIG_SCHED_DEBUG
1500 	int			id;
1501 #endif
1502 
1503 	unsigned long		cpumask[];		/* Balance mask */
1504 };
1505 
1506 struct sched_group {
1507 	struct sched_group	*next;			/* Must be a circular list */
1508 	atomic_t		ref;
1509 
1510 	unsigned int		group_weight;
1511 	struct sched_group_capacity *sgc;
1512 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1513 
1514 	/*
1515 	 * The CPUs this group covers.
1516 	 *
1517 	 * NOTE: this field is variable length. (Allocated dynamically
1518 	 * by attaching extra space to the end of the structure,
1519 	 * depending on how many CPUs the kernel has booted up with)
1520 	 */
1521 	unsigned long		cpumask[];
1522 };
1523 
1524 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1525 {
1526 	return to_cpumask(sg->cpumask);
1527 }
1528 
1529 /*
1530  * See build_balance_mask().
1531  */
1532 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1533 {
1534 	return to_cpumask(sg->sgc->cpumask);
1535 }
1536 
1537 /**
1538  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1539  * @group: The group whose first CPU is to be returned.
1540  */
1541 static inline unsigned int group_first_cpu(struct sched_group *group)
1542 {
1543 	return cpumask_first(sched_group_span(group));
1544 }
1545 
1546 extern int group_balance_cpu(struct sched_group *sg);
1547 
1548 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1549 void register_sched_domain_sysctl(void);
1550 void dirty_sched_domain_sysctl(int cpu);
1551 void unregister_sched_domain_sysctl(void);
1552 #else
1553 static inline void register_sched_domain_sysctl(void)
1554 {
1555 }
1556 static inline void dirty_sched_domain_sysctl(int cpu)
1557 {
1558 }
1559 static inline void unregister_sched_domain_sysctl(void)
1560 {
1561 }
1562 #endif
1563 
1564 extern void flush_smp_call_function_from_idle(void);
1565 
1566 #else /* !CONFIG_SMP: */
1567 static inline void flush_smp_call_function_from_idle(void) { }
1568 #endif
1569 
1570 #include "stats.h"
1571 #include "autogroup.h"
1572 
1573 #ifdef CONFIG_CGROUP_SCHED
1574 
1575 /*
1576  * Return the group to which this tasks belongs.
1577  *
1578  * We cannot use task_css() and friends because the cgroup subsystem
1579  * changes that value before the cgroup_subsys::attach() method is called,
1580  * therefore we cannot pin it and might observe the wrong value.
1581  *
1582  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1583  * core changes this before calling sched_move_task().
1584  *
1585  * Instead we use a 'copy' which is updated from sched_move_task() while
1586  * holding both task_struct::pi_lock and rq::lock.
1587  */
1588 static inline struct task_group *task_group(struct task_struct *p)
1589 {
1590 	return p->sched_task_group;
1591 }
1592 
1593 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1594 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1595 {
1596 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1597 	struct task_group *tg = task_group(p);
1598 #endif
1599 
1600 #ifdef CONFIG_FAIR_GROUP_SCHED
1601 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1602 	p->se.cfs_rq = tg->cfs_rq[cpu];
1603 	p->se.parent = tg->se[cpu];
1604 #endif
1605 
1606 #ifdef CONFIG_RT_GROUP_SCHED
1607 	p->rt.rt_rq  = tg->rt_rq[cpu];
1608 	p->rt.parent = tg->rt_se[cpu];
1609 #endif
1610 }
1611 
1612 #else /* CONFIG_CGROUP_SCHED */
1613 
1614 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1615 static inline struct task_group *task_group(struct task_struct *p)
1616 {
1617 	return NULL;
1618 }
1619 
1620 #endif /* CONFIG_CGROUP_SCHED */
1621 
1622 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1623 {
1624 	set_task_rq(p, cpu);
1625 #ifdef CONFIG_SMP
1626 	/*
1627 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1628 	 * successfully executed on another CPU. We must ensure that updates of
1629 	 * per-task data have been completed by this moment.
1630 	 */
1631 	smp_wmb();
1632 #ifdef CONFIG_THREAD_INFO_IN_TASK
1633 	WRITE_ONCE(p->cpu, cpu);
1634 #else
1635 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1636 #endif
1637 	p->wake_cpu = cpu;
1638 #endif
1639 }
1640 
1641 /*
1642  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1643  */
1644 #ifdef CONFIG_SCHED_DEBUG
1645 # include <linux/static_key.h>
1646 # define const_debug __read_mostly
1647 #else
1648 # define const_debug const
1649 #endif
1650 
1651 #define SCHED_FEAT(name, enabled)	\
1652 	__SCHED_FEAT_##name ,
1653 
1654 enum {
1655 #include "features.h"
1656 	__SCHED_FEAT_NR,
1657 };
1658 
1659 #undef SCHED_FEAT
1660 
1661 #ifdef CONFIG_SCHED_DEBUG
1662 
1663 /*
1664  * To support run-time toggling of sched features, all the translation units
1665  * (but core.c) reference the sysctl_sched_features defined in core.c.
1666  */
1667 extern const_debug unsigned int sysctl_sched_features;
1668 
1669 #ifdef CONFIG_JUMP_LABEL
1670 #define SCHED_FEAT(name, enabled)					\
1671 static __always_inline bool static_branch_##name(struct static_key *key) \
1672 {									\
1673 	return static_key_##enabled(key);				\
1674 }
1675 
1676 #include "features.h"
1677 #undef SCHED_FEAT
1678 
1679 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1680 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1681 
1682 #else /* !CONFIG_JUMP_LABEL */
1683 
1684 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1685 
1686 #endif /* CONFIG_JUMP_LABEL */
1687 
1688 #else /* !SCHED_DEBUG */
1689 
1690 /*
1691  * Each translation unit has its own copy of sysctl_sched_features to allow
1692  * constants propagation at compile time and compiler optimization based on
1693  * features default.
1694  */
1695 #define SCHED_FEAT(name, enabled)	\
1696 	(1UL << __SCHED_FEAT_##name) * enabled |
1697 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1698 #include "features.h"
1699 	0;
1700 #undef SCHED_FEAT
1701 
1702 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1703 
1704 #endif /* SCHED_DEBUG */
1705 
1706 extern struct static_key_false sched_numa_balancing;
1707 extern struct static_key_false sched_schedstats;
1708 
1709 static inline u64 global_rt_period(void)
1710 {
1711 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1712 }
1713 
1714 static inline u64 global_rt_runtime(void)
1715 {
1716 	if (sysctl_sched_rt_runtime < 0)
1717 		return RUNTIME_INF;
1718 
1719 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1720 }
1721 
1722 static inline int task_current(struct rq *rq, struct task_struct *p)
1723 {
1724 	return rq->curr == p;
1725 }
1726 
1727 static inline int task_running(struct rq *rq, struct task_struct *p)
1728 {
1729 #ifdef CONFIG_SMP
1730 	return p->on_cpu;
1731 #else
1732 	return task_current(rq, p);
1733 #endif
1734 }
1735 
1736 static inline int task_on_rq_queued(struct task_struct *p)
1737 {
1738 	return p->on_rq == TASK_ON_RQ_QUEUED;
1739 }
1740 
1741 static inline int task_on_rq_migrating(struct task_struct *p)
1742 {
1743 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1744 }
1745 
1746 /* Wake flags. The first three directly map to some SD flag value */
1747 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
1748 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
1749 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
1750 
1751 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
1752 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
1753 #define WF_ON_CPU   0x40 /* Wakee is on_cpu */
1754 
1755 #ifdef CONFIG_SMP
1756 static_assert(WF_EXEC == SD_BALANCE_EXEC);
1757 static_assert(WF_FORK == SD_BALANCE_FORK);
1758 static_assert(WF_TTWU == SD_BALANCE_WAKE);
1759 #endif
1760 
1761 /*
1762  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1763  * of tasks with abnormal "nice" values across CPUs the contribution that
1764  * each task makes to its run queue's load is weighted according to its
1765  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1766  * scaled version of the new time slice allocation that they receive on time
1767  * slice expiry etc.
1768  */
1769 
1770 #define WEIGHT_IDLEPRIO		3
1771 #define WMULT_IDLEPRIO		1431655765
1772 
1773 extern const int		sched_prio_to_weight[40];
1774 extern const u32		sched_prio_to_wmult[40];
1775 
1776 /*
1777  * {de,en}queue flags:
1778  *
1779  * DEQUEUE_SLEEP  - task is no longer runnable
1780  * ENQUEUE_WAKEUP - task just became runnable
1781  *
1782  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1783  *                are in a known state which allows modification. Such pairs
1784  *                should preserve as much state as possible.
1785  *
1786  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1787  *        in the runqueue.
1788  *
1789  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1790  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1791  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1792  *
1793  */
1794 
1795 #define DEQUEUE_SLEEP		0x01
1796 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1797 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1798 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1799 
1800 #define ENQUEUE_WAKEUP		0x01
1801 #define ENQUEUE_RESTORE		0x02
1802 #define ENQUEUE_MOVE		0x04
1803 #define ENQUEUE_NOCLOCK		0x08
1804 
1805 #define ENQUEUE_HEAD		0x10
1806 #define ENQUEUE_REPLENISH	0x20
1807 #ifdef CONFIG_SMP
1808 #define ENQUEUE_MIGRATED	0x40
1809 #else
1810 #define ENQUEUE_MIGRATED	0x00
1811 #endif
1812 
1813 #define RETRY_TASK		((void *)-1UL)
1814 
1815 struct sched_class {
1816 
1817 #ifdef CONFIG_UCLAMP_TASK
1818 	int uclamp_enabled;
1819 #endif
1820 
1821 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1822 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1823 	void (*yield_task)   (struct rq *rq);
1824 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1825 
1826 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1827 
1828 	struct task_struct *(*pick_next_task)(struct rq *rq);
1829 
1830 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1831 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1832 
1833 #ifdef CONFIG_SMP
1834 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1835 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
1836 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1837 
1838 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1839 
1840 	void (*set_cpus_allowed)(struct task_struct *p,
1841 				 const struct cpumask *newmask,
1842 				 u32 flags);
1843 
1844 	void (*rq_online)(struct rq *rq);
1845 	void (*rq_offline)(struct rq *rq);
1846 
1847 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
1848 #endif
1849 
1850 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1851 	void (*task_fork)(struct task_struct *p);
1852 	void (*task_dead)(struct task_struct *p);
1853 
1854 	/*
1855 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1856 	 * cannot assume the switched_from/switched_to pair is serliazed by
1857 	 * rq->lock. They are however serialized by p->pi_lock.
1858 	 */
1859 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1860 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1861 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1862 			      int oldprio);
1863 
1864 	unsigned int (*get_rr_interval)(struct rq *rq,
1865 					struct task_struct *task);
1866 
1867 	void (*update_curr)(struct rq *rq);
1868 
1869 #define TASK_SET_GROUP		0
1870 #define TASK_MOVE_GROUP		1
1871 
1872 #ifdef CONFIG_FAIR_GROUP_SCHED
1873 	void (*task_change_group)(struct task_struct *p, int type);
1874 #endif
1875 };
1876 
1877 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1878 {
1879 	WARN_ON_ONCE(rq->curr != prev);
1880 	prev->sched_class->put_prev_task(rq, prev);
1881 }
1882 
1883 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1884 {
1885 	WARN_ON_ONCE(rq->curr != next);
1886 	next->sched_class->set_next_task(rq, next, false);
1887 }
1888 
1889 
1890 /*
1891  * Helper to define a sched_class instance; each one is placed in a separate
1892  * section which is ordered by the linker script:
1893  *
1894  *   include/asm-generic/vmlinux.lds.h
1895  *
1896  * Also enforce alignment on the instance, not the type, to guarantee layout.
1897  */
1898 #define DEFINE_SCHED_CLASS(name) \
1899 const struct sched_class name##_sched_class \
1900 	__aligned(__alignof__(struct sched_class)) \
1901 	__section("__" #name "_sched_class")
1902 
1903 /* Defined in include/asm-generic/vmlinux.lds.h */
1904 extern struct sched_class __begin_sched_classes[];
1905 extern struct sched_class __end_sched_classes[];
1906 
1907 #define sched_class_highest (__end_sched_classes - 1)
1908 #define sched_class_lowest  (__begin_sched_classes - 1)
1909 
1910 #define for_class_range(class, _from, _to) \
1911 	for (class = (_from); class != (_to); class--)
1912 
1913 #define for_each_class(class) \
1914 	for_class_range(class, sched_class_highest, sched_class_lowest)
1915 
1916 extern const struct sched_class stop_sched_class;
1917 extern const struct sched_class dl_sched_class;
1918 extern const struct sched_class rt_sched_class;
1919 extern const struct sched_class fair_sched_class;
1920 extern const struct sched_class idle_sched_class;
1921 
1922 static inline bool sched_stop_runnable(struct rq *rq)
1923 {
1924 	return rq->stop && task_on_rq_queued(rq->stop);
1925 }
1926 
1927 static inline bool sched_dl_runnable(struct rq *rq)
1928 {
1929 	return rq->dl.dl_nr_running > 0;
1930 }
1931 
1932 static inline bool sched_rt_runnable(struct rq *rq)
1933 {
1934 	return rq->rt.rt_queued > 0;
1935 }
1936 
1937 static inline bool sched_fair_runnable(struct rq *rq)
1938 {
1939 	return rq->cfs.nr_running > 0;
1940 }
1941 
1942 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1943 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1944 
1945 #define SCA_CHECK		0x01
1946 #define SCA_MIGRATE_DISABLE	0x02
1947 #define SCA_MIGRATE_ENABLE	0x04
1948 
1949 #ifdef CONFIG_SMP
1950 
1951 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1952 
1953 extern void trigger_load_balance(struct rq *rq);
1954 
1955 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1956 
1957 static inline struct task_struct *get_push_task(struct rq *rq)
1958 {
1959 	struct task_struct *p = rq->curr;
1960 
1961 	lockdep_assert_held(&rq->lock);
1962 
1963 	if (rq->push_busy)
1964 		return NULL;
1965 
1966 	if (p->nr_cpus_allowed == 1)
1967 		return NULL;
1968 
1969 	rq->push_busy = true;
1970 	return get_task_struct(p);
1971 }
1972 
1973 extern int push_cpu_stop(void *arg);
1974 
1975 #endif
1976 
1977 #ifdef CONFIG_CPU_IDLE
1978 static inline void idle_set_state(struct rq *rq,
1979 				  struct cpuidle_state *idle_state)
1980 {
1981 	rq->idle_state = idle_state;
1982 }
1983 
1984 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1985 {
1986 	SCHED_WARN_ON(!rcu_read_lock_held());
1987 
1988 	return rq->idle_state;
1989 }
1990 #else
1991 static inline void idle_set_state(struct rq *rq,
1992 				  struct cpuidle_state *idle_state)
1993 {
1994 }
1995 
1996 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1997 {
1998 	return NULL;
1999 }
2000 #endif
2001 
2002 extern void schedule_idle(void);
2003 
2004 extern void sysrq_sched_debug_show(void);
2005 extern void sched_init_granularity(void);
2006 extern void update_max_interval(void);
2007 
2008 extern void init_sched_dl_class(void);
2009 extern void init_sched_rt_class(void);
2010 extern void init_sched_fair_class(void);
2011 
2012 extern void reweight_task(struct task_struct *p, int prio);
2013 
2014 extern void resched_curr(struct rq *rq);
2015 extern void resched_cpu(int cpu);
2016 
2017 extern struct rt_bandwidth def_rt_bandwidth;
2018 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2019 
2020 extern struct dl_bandwidth def_dl_bandwidth;
2021 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2022 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2023 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2024 
2025 #define BW_SHIFT		20
2026 #define BW_UNIT			(1 << BW_SHIFT)
2027 #define RATIO_SHIFT		8
2028 #define MAX_BW_BITS		(64 - BW_SHIFT)
2029 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2030 unsigned long to_ratio(u64 period, u64 runtime);
2031 
2032 extern void init_entity_runnable_average(struct sched_entity *se);
2033 extern void post_init_entity_util_avg(struct task_struct *p);
2034 
2035 #ifdef CONFIG_NO_HZ_FULL
2036 extern bool sched_can_stop_tick(struct rq *rq);
2037 extern int __init sched_tick_offload_init(void);
2038 
2039 /*
2040  * Tick may be needed by tasks in the runqueue depending on their policy and
2041  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2042  * nohz mode if necessary.
2043  */
2044 static inline void sched_update_tick_dependency(struct rq *rq)
2045 {
2046 	int cpu = cpu_of(rq);
2047 
2048 	if (!tick_nohz_full_cpu(cpu))
2049 		return;
2050 
2051 	if (sched_can_stop_tick(rq))
2052 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2053 	else
2054 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2055 }
2056 #else
2057 static inline int sched_tick_offload_init(void) { return 0; }
2058 static inline void sched_update_tick_dependency(struct rq *rq) { }
2059 #endif
2060 
2061 static inline void add_nr_running(struct rq *rq, unsigned count)
2062 {
2063 	unsigned prev_nr = rq->nr_running;
2064 
2065 	rq->nr_running = prev_nr + count;
2066 	if (trace_sched_update_nr_running_tp_enabled()) {
2067 		call_trace_sched_update_nr_running(rq, count);
2068 	}
2069 
2070 #ifdef CONFIG_SMP
2071 	if (prev_nr < 2 && rq->nr_running >= 2) {
2072 		if (!READ_ONCE(rq->rd->overload))
2073 			WRITE_ONCE(rq->rd->overload, 1);
2074 	}
2075 #endif
2076 
2077 	sched_update_tick_dependency(rq);
2078 }
2079 
2080 static inline void sub_nr_running(struct rq *rq, unsigned count)
2081 {
2082 	rq->nr_running -= count;
2083 	if (trace_sched_update_nr_running_tp_enabled()) {
2084 		call_trace_sched_update_nr_running(rq, -count);
2085 	}
2086 
2087 	/* Check if we still need preemption */
2088 	sched_update_tick_dependency(rq);
2089 }
2090 
2091 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2092 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2093 
2094 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2095 
2096 extern const_debug unsigned int sysctl_sched_nr_migrate;
2097 extern const_debug unsigned int sysctl_sched_migration_cost;
2098 
2099 #ifdef CONFIG_SCHED_HRTICK
2100 
2101 /*
2102  * Use hrtick when:
2103  *  - enabled by features
2104  *  - hrtimer is actually high res
2105  */
2106 static inline int hrtick_enabled(struct rq *rq)
2107 {
2108 	if (!cpu_active(cpu_of(rq)))
2109 		return 0;
2110 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2111 }
2112 
2113 static inline int hrtick_enabled_fair(struct rq *rq)
2114 {
2115 	if (!sched_feat(HRTICK))
2116 		return 0;
2117 	return hrtick_enabled(rq);
2118 }
2119 
2120 static inline int hrtick_enabled_dl(struct rq *rq)
2121 {
2122 	if (!sched_feat(HRTICK_DL))
2123 		return 0;
2124 	return hrtick_enabled(rq);
2125 }
2126 
2127 void hrtick_start(struct rq *rq, u64 delay);
2128 
2129 #else
2130 
2131 static inline int hrtick_enabled_fair(struct rq *rq)
2132 {
2133 	return 0;
2134 }
2135 
2136 static inline int hrtick_enabled_dl(struct rq *rq)
2137 {
2138 	return 0;
2139 }
2140 
2141 static inline int hrtick_enabled(struct rq *rq)
2142 {
2143 	return 0;
2144 }
2145 
2146 #endif /* CONFIG_SCHED_HRTICK */
2147 
2148 #ifndef arch_scale_freq_tick
2149 static __always_inline
2150 void arch_scale_freq_tick(void)
2151 {
2152 }
2153 #endif
2154 
2155 #ifndef arch_scale_freq_capacity
2156 /**
2157  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2158  * @cpu: the CPU in question.
2159  *
2160  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2161  *
2162  *     f_curr
2163  *     ------ * SCHED_CAPACITY_SCALE
2164  *     f_max
2165  */
2166 static __always_inline
2167 unsigned long arch_scale_freq_capacity(int cpu)
2168 {
2169 	return SCHED_CAPACITY_SCALE;
2170 }
2171 #endif
2172 
2173 #ifdef CONFIG_SMP
2174 #ifdef CONFIG_PREEMPTION
2175 
2176 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2177 
2178 /*
2179  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2180  * way at the expense of forcing extra atomic operations in all
2181  * invocations.  This assures that the double_lock is acquired using the
2182  * same underlying policy as the spinlock_t on this architecture, which
2183  * reduces latency compared to the unfair variant below.  However, it
2184  * also adds more overhead and therefore may reduce throughput.
2185  */
2186 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2187 	__releases(this_rq->lock)
2188 	__acquires(busiest->lock)
2189 	__acquires(this_rq->lock)
2190 {
2191 	raw_spin_unlock(&this_rq->lock);
2192 	double_rq_lock(this_rq, busiest);
2193 
2194 	return 1;
2195 }
2196 
2197 #else
2198 /*
2199  * Unfair double_lock_balance: Optimizes throughput at the expense of
2200  * latency by eliminating extra atomic operations when the locks are
2201  * already in proper order on entry.  This favors lower CPU-ids and will
2202  * grant the double lock to lower CPUs over higher ids under contention,
2203  * regardless of entry order into the function.
2204  */
2205 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2206 	__releases(this_rq->lock)
2207 	__acquires(busiest->lock)
2208 	__acquires(this_rq->lock)
2209 {
2210 	int ret = 0;
2211 
2212 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2213 		if (busiest < this_rq) {
2214 			raw_spin_unlock(&this_rq->lock);
2215 			raw_spin_lock(&busiest->lock);
2216 			raw_spin_lock_nested(&this_rq->lock,
2217 					      SINGLE_DEPTH_NESTING);
2218 			ret = 1;
2219 		} else
2220 			raw_spin_lock_nested(&busiest->lock,
2221 					      SINGLE_DEPTH_NESTING);
2222 	}
2223 	return ret;
2224 }
2225 
2226 #endif /* CONFIG_PREEMPTION */
2227 
2228 /*
2229  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2230  */
2231 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2232 {
2233 	if (unlikely(!irqs_disabled())) {
2234 		/* printk() doesn't work well under rq->lock */
2235 		raw_spin_unlock(&this_rq->lock);
2236 		BUG_ON(1);
2237 	}
2238 
2239 	return _double_lock_balance(this_rq, busiest);
2240 }
2241 
2242 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2243 	__releases(busiest->lock)
2244 {
2245 	raw_spin_unlock(&busiest->lock);
2246 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2247 }
2248 
2249 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2250 {
2251 	if (l1 > l2)
2252 		swap(l1, l2);
2253 
2254 	spin_lock(l1);
2255 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2256 }
2257 
2258 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2259 {
2260 	if (l1 > l2)
2261 		swap(l1, l2);
2262 
2263 	spin_lock_irq(l1);
2264 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2265 }
2266 
2267 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2268 {
2269 	if (l1 > l2)
2270 		swap(l1, l2);
2271 
2272 	raw_spin_lock(l1);
2273 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2274 }
2275 
2276 /*
2277  * double_rq_lock - safely lock two runqueues
2278  *
2279  * Note this does not disable interrupts like task_rq_lock,
2280  * you need to do so manually before calling.
2281  */
2282 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2283 	__acquires(rq1->lock)
2284 	__acquires(rq2->lock)
2285 {
2286 	BUG_ON(!irqs_disabled());
2287 	if (rq1 == rq2) {
2288 		raw_spin_lock(&rq1->lock);
2289 		__acquire(rq2->lock);	/* Fake it out ;) */
2290 	} else {
2291 		if (rq1 < rq2) {
2292 			raw_spin_lock(&rq1->lock);
2293 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2294 		} else {
2295 			raw_spin_lock(&rq2->lock);
2296 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2297 		}
2298 	}
2299 }
2300 
2301 /*
2302  * double_rq_unlock - safely unlock two runqueues
2303  *
2304  * Note this does not restore interrupts like task_rq_unlock,
2305  * you need to do so manually after calling.
2306  */
2307 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2308 	__releases(rq1->lock)
2309 	__releases(rq2->lock)
2310 {
2311 	raw_spin_unlock(&rq1->lock);
2312 	if (rq1 != rq2)
2313 		raw_spin_unlock(&rq2->lock);
2314 	else
2315 		__release(rq2->lock);
2316 }
2317 
2318 extern void set_rq_online (struct rq *rq);
2319 extern void set_rq_offline(struct rq *rq);
2320 extern bool sched_smp_initialized;
2321 
2322 #else /* CONFIG_SMP */
2323 
2324 /*
2325  * double_rq_lock - safely lock two runqueues
2326  *
2327  * Note this does not disable interrupts like task_rq_lock,
2328  * you need to do so manually before calling.
2329  */
2330 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2331 	__acquires(rq1->lock)
2332 	__acquires(rq2->lock)
2333 {
2334 	BUG_ON(!irqs_disabled());
2335 	BUG_ON(rq1 != rq2);
2336 	raw_spin_lock(&rq1->lock);
2337 	__acquire(rq2->lock);	/* Fake it out ;) */
2338 }
2339 
2340 /*
2341  * double_rq_unlock - safely unlock two runqueues
2342  *
2343  * Note this does not restore interrupts like task_rq_unlock,
2344  * you need to do so manually after calling.
2345  */
2346 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2347 	__releases(rq1->lock)
2348 	__releases(rq2->lock)
2349 {
2350 	BUG_ON(rq1 != rq2);
2351 	raw_spin_unlock(&rq1->lock);
2352 	__release(rq2->lock);
2353 }
2354 
2355 #endif
2356 
2357 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2358 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2359 
2360 #ifdef	CONFIG_SCHED_DEBUG
2361 extern bool sched_debug_enabled;
2362 
2363 extern void print_cfs_stats(struct seq_file *m, int cpu);
2364 extern void print_rt_stats(struct seq_file *m, int cpu);
2365 extern void print_dl_stats(struct seq_file *m, int cpu);
2366 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2367 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2368 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2369 #ifdef CONFIG_NUMA_BALANCING
2370 extern void
2371 show_numa_stats(struct task_struct *p, struct seq_file *m);
2372 extern void
2373 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2374 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2375 #endif /* CONFIG_NUMA_BALANCING */
2376 #endif /* CONFIG_SCHED_DEBUG */
2377 
2378 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2379 extern void init_rt_rq(struct rt_rq *rt_rq);
2380 extern void init_dl_rq(struct dl_rq *dl_rq);
2381 
2382 extern void cfs_bandwidth_usage_inc(void);
2383 extern void cfs_bandwidth_usage_dec(void);
2384 
2385 #ifdef CONFIG_NO_HZ_COMMON
2386 #define NOHZ_BALANCE_KICK_BIT	0
2387 #define NOHZ_STATS_KICK_BIT	1
2388 
2389 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2390 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2391 
2392 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2393 
2394 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2395 
2396 extern void nohz_balance_exit_idle(struct rq *rq);
2397 #else
2398 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2399 #endif
2400 
2401 
2402 #ifdef CONFIG_SMP
2403 static inline
2404 void __dl_update(struct dl_bw *dl_b, s64 bw)
2405 {
2406 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2407 	int i;
2408 
2409 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2410 			 "sched RCU must be held");
2411 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2412 		struct rq *rq = cpu_rq(i);
2413 
2414 		rq->dl.extra_bw += bw;
2415 	}
2416 }
2417 #else
2418 static inline
2419 void __dl_update(struct dl_bw *dl_b, s64 bw)
2420 {
2421 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2422 
2423 	dl->extra_bw += bw;
2424 }
2425 #endif
2426 
2427 
2428 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2429 struct irqtime {
2430 	u64			total;
2431 	u64			tick_delta;
2432 	u64			irq_start_time;
2433 	struct u64_stats_sync	sync;
2434 };
2435 
2436 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2437 
2438 /*
2439  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2440  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2441  * and never move forward.
2442  */
2443 static inline u64 irq_time_read(int cpu)
2444 {
2445 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2446 	unsigned int seq;
2447 	u64 total;
2448 
2449 	do {
2450 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2451 		total = irqtime->total;
2452 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2453 
2454 	return total;
2455 }
2456 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2457 
2458 #ifdef CONFIG_CPU_FREQ
2459 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2460 
2461 /**
2462  * cpufreq_update_util - Take a note about CPU utilization changes.
2463  * @rq: Runqueue to carry out the update for.
2464  * @flags: Update reason flags.
2465  *
2466  * This function is called by the scheduler on the CPU whose utilization is
2467  * being updated.
2468  *
2469  * It can only be called from RCU-sched read-side critical sections.
2470  *
2471  * The way cpufreq is currently arranged requires it to evaluate the CPU
2472  * performance state (frequency/voltage) on a regular basis to prevent it from
2473  * being stuck in a completely inadequate performance level for too long.
2474  * That is not guaranteed to happen if the updates are only triggered from CFS
2475  * and DL, though, because they may not be coming in if only RT tasks are
2476  * active all the time (or there are RT tasks only).
2477  *
2478  * As a workaround for that issue, this function is called periodically by the
2479  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2480  * but that really is a band-aid.  Going forward it should be replaced with
2481  * solutions targeted more specifically at RT tasks.
2482  */
2483 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2484 {
2485 	struct update_util_data *data;
2486 
2487 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2488 						  cpu_of(rq)));
2489 	if (data)
2490 		data->func(data, rq_clock(rq), flags);
2491 }
2492 #else
2493 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2494 #endif /* CONFIG_CPU_FREQ */
2495 
2496 #ifdef CONFIG_UCLAMP_TASK
2497 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2498 
2499 /**
2500  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2501  * @rq:		The rq to clamp against. Must not be NULL.
2502  * @util:	The util value to clamp.
2503  * @p:		The task to clamp against. Can be NULL if you want to clamp
2504  *		against @rq only.
2505  *
2506  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2507  *
2508  * If sched_uclamp_used static key is disabled, then just return the util
2509  * without any clamping since uclamp aggregation at the rq level in the fast
2510  * path is disabled, rendering this operation a NOP.
2511  *
2512  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2513  * will return the correct effective uclamp value of the task even if the
2514  * static key is disabled.
2515  */
2516 static __always_inline
2517 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2518 				  struct task_struct *p)
2519 {
2520 	unsigned long min_util;
2521 	unsigned long max_util;
2522 
2523 	if (!static_branch_likely(&sched_uclamp_used))
2524 		return util;
2525 
2526 	min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2527 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2528 
2529 	if (p) {
2530 		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2531 		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2532 	}
2533 
2534 	/*
2535 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2536 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2537 	 * inversion. Fix it now when the clamps are applied.
2538 	 */
2539 	if (unlikely(min_util >= max_util))
2540 		return min_util;
2541 
2542 	return clamp(util, min_util, max_util);
2543 }
2544 
2545 /*
2546  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2547  * by default in the fast path and only gets turned on once userspace performs
2548  * an operation that requires it.
2549  *
2550  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2551  * hence is active.
2552  */
2553 static inline bool uclamp_is_used(void)
2554 {
2555 	return static_branch_likely(&sched_uclamp_used);
2556 }
2557 #else /* CONFIG_UCLAMP_TASK */
2558 static inline
2559 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2560 				  struct task_struct *p)
2561 {
2562 	return util;
2563 }
2564 
2565 static inline bool uclamp_is_used(void)
2566 {
2567 	return false;
2568 }
2569 #endif /* CONFIG_UCLAMP_TASK */
2570 
2571 #ifdef arch_scale_freq_capacity
2572 # ifndef arch_scale_freq_invariant
2573 #  define arch_scale_freq_invariant()	true
2574 # endif
2575 #else
2576 # define arch_scale_freq_invariant()	false
2577 #endif
2578 
2579 #ifdef CONFIG_SMP
2580 static inline unsigned long capacity_orig_of(int cpu)
2581 {
2582 	return cpu_rq(cpu)->cpu_capacity_orig;
2583 }
2584 
2585 /**
2586  * enum cpu_util_type - CPU utilization type
2587  * @FREQUENCY_UTIL:	Utilization used to select frequency
2588  * @ENERGY_UTIL:	Utilization used during energy calculation
2589  *
2590  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2591  * need to be aggregated differently depending on the usage made of them. This
2592  * enum is used within effective_cpu_util() to differentiate the types of
2593  * utilization expected by the callers, and adjust the aggregation accordingly.
2594  */
2595 enum cpu_util_type {
2596 	FREQUENCY_UTIL,
2597 	ENERGY_UTIL,
2598 };
2599 
2600 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2601 				 unsigned long max, enum cpu_util_type type,
2602 				 struct task_struct *p);
2603 
2604 static inline unsigned long cpu_bw_dl(struct rq *rq)
2605 {
2606 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2607 }
2608 
2609 static inline unsigned long cpu_util_dl(struct rq *rq)
2610 {
2611 	return READ_ONCE(rq->avg_dl.util_avg);
2612 }
2613 
2614 static inline unsigned long cpu_util_cfs(struct rq *rq)
2615 {
2616 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2617 
2618 	if (sched_feat(UTIL_EST)) {
2619 		util = max_t(unsigned long, util,
2620 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2621 	}
2622 
2623 	return util;
2624 }
2625 
2626 static inline unsigned long cpu_util_rt(struct rq *rq)
2627 {
2628 	return READ_ONCE(rq->avg_rt.util_avg);
2629 }
2630 #endif
2631 
2632 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2633 static inline unsigned long cpu_util_irq(struct rq *rq)
2634 {
2635 	return rq->avg_irq.util_avg;
2636 }
2637 
2638 static inline
2639 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2640 {
2641 	util *= (max - irq);
2642 	util /= max;
2643 
2644 	return util;
2645 
2646 }
2647 #else
2648 static inline unsigned long cpu_util_irq(struct rq *rq)
2649 {
2650 	return 0;
2651 }
2652 
2653 static inline
2654 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2655 {
2656 	return util;
2657 }
2658 #endif
2659 
2660 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2661 
2662 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2663 
2664 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2665 
2666 static inline bool sched_energy_enabled(void)
2667 {
2668 	return static_branch_unlikely(&sched_energy_present);
2669 }
2670 
2671 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2672 
2673 #define perf_domain_span(pd) NULL
2674 static inline bool sched_energy_enabled(void) { return false; }
2675 
2676 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2677 
2678 #ifdef CONFIG_MEMBARRIER
2679 /*
2680  * The scheduler provides memory barriers required by membarrier between:
2681  * - prior user-space memory accesses and store to rq->membarrier_state,
2682  * - store to rq->membarrier_state and following user-space memory accesses.
2683  * In the same way it provides those guarantees around store to rq->curr.
2684  */
2685 static inline void membarrier_switch_mm(struct rq *rq,
2686 					struct mm_struct *prev_mm,
2687 					struct mm_struct *next_mm)
2688 {
2689 	int membarrier_state;
2690 
2691 	if (prev_mm == next_mm)
2692 		return;
2693 
2694 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2695 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2696 		return;
2697 
2698 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2699 }
2700 #else
2701 static inline void membarrier_switch_mm(struct rq *rq,
2702 					struct mm_struct *prev_mm,
2703 					struct mm_struct *next_mm)
2704 {
2705 }
2706 #endif
2707 
2708 #ifdef CONFIG_SMP
2709 static inline bool is_per_cpu_kthread(struct task_struct *p)
2710 {
2711 	if (!(p->flags & PF_KTHREAD))
2712 		return false;
2713 
2714 	if (p->nr_cpus_allowed != 1)
2715 		return false;
2716 
2717 	return true;
2718 }
2719 #endif
2720 
2721 void swake_up_all_locked(struct swait_queue_head *q);
2722 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2723