xref: /openbmc/linux/kernel/sched/sched.h (revision 32ed980c3020b7a19e26dc488c10817807ba2a41)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/bitops.h>
40 #include <linux/blkdev.h>
41 #include <linux/compat.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpufreq.h>
44 #include <linux/cpuidle.h>
45 #include <linux/cpuset.h>
46 #include <linux/ctype.h>
47 #include <linux/debugfs.h>
48 #include <linux/delayacct.h>
49 #include <linux/energy_model.h>
50 #include <linux/init_task.h>
51 #include <linux/kprobes.h>
52 #include <linux/kthread.h>
53 #include <linux/membarrier.h>
54 #include <linux/migrate.h>
55 #include <linux/mmu_context.h>
56 #include <linux/nmi.h>
57 #include <linux/proc_fs.h>
58 #include <linux/prefetch.h>
59 #include <linux/profile.h>
60 #include <linux/psi.h>
61 #include <linux/ratelimit.h>
62 #include <linux/rcupdate_wait.h>
63 #include <linux/security.h>
64 #include <linux/stop_machine.h>
65 #include <linux/suspend.h>
66 #include <linux/swait.h>
67 #include <linux/syscalls.h>
68 #include <linux/task_work.h>
69 #include <linux/tsacct_kern.h>
70 
71 #include <asm/tlb.h>
72 
73 #ifdef CONFIG_PARAVIRT
74 # include <asm/paravirt.h>
75 #endif
76 
77 #include "cpupri.h"
78 #include "cpudeadline.h"
79 
80 #include <trace/events/sched.h>
81 
82 #ifdef CONFIG_SCHED_DEBUG
83 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
84 #else
85 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
86 #endif
87 
88 struct rq;
89 struct cpuidle_state;
90 
91 /* task_struct::on_rq states: */
92 #define TASK_ON_RQ_QUEUED	1
93 #define TASK_ON_RQ_MIGRATING	2
94 
95 extern __read_mostly int scheduler_running;
96 
97 extern unsigned long calc_load_update;
98 extern atomic_long_t calc_load_tasks;
99 
100 extern void calc_global_load_tick(struct rq *this_rq);
101 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
102 
103 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
104 /*
105  * Helpers for converting nanosecond timing to jiffy resolution
106  */
107 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 
109 /*
110  * Increase resolution of nice-level calculations for 64-bit architectures.
111  * The extra resolution improves shares distribution and load balancing of
112  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
113  * hierarchies, especially on larger systems. This is not a user-visible change
114  * and does not change the user-interface for setting shares/weights.
115  *
116  * We increase resolution only if we have enough bits to allow this increased
117  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
118  * are pretty high and the returns do not justify the increased costs.
119  *
120  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
121  * increase coverage and consistency always enable it on 64-bit platforms.
122  */
123 #ifdef CONFIG_64BIT
124 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load_down(w) \
127 ({ \
128 	unsigned long __w = (w); \
129 	if (__w) \
130 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
131 	__w; \
132 })
133 #else
134 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
135 # define scale_load(w)		(w)
136 # define scale_load_down(w)	(w)
137 #endif
138 
139 /*
140  * Task weight (visible to users) and its load (invisible to users) have
141  * independent resolution, but they should be well calibrated. We use
142  * scale_load() and scale_load_down(w) to convert between them. The
143  * following must be true:
144  *
145  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
146  *
147  */
148 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
149 
150 /*
151  * Single value that decides SCHED_DEADLINE internal math precision.
152  * 10 -> just above 1us
153  * 9  -> just above 0.5us
154  */
155 #define DL_SCALE		10
156 
157 /*
158  * Single value that denotes runtime == period, ie unlimited time.
159  */
160 #define RUNTIME_INF		((u64)~0ULL)
161 
162 static inline int idle_policy(int policy)
163 {
164 	return policy == SCHED_IDLE;
165 }
166 static inline int fair_policy(int policy)
167 {
168 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
169 }
170 
171 static inline int rt_policy(int policy)
172 {
173 	return policy == SCHED_FIFO || policy == SCHED_RR;
174 }
175 
176 static inline int dl_policy(int policy)
177 {
178 	return policy == SCHED_DEADLINE;
179 }
180 static inline bool valid_policy(int policy)
181 {
182 	return idle_policy(policy) || fair_policy(policy) ||
183 		rt_policy(policy) || dl_policy(policy);
184 }
185 
186 static inline int task_has_idle_policy(struct task_struct *p)
187 {
188 	return idle_policy(p->policy);
189 }
190 
191 static inline int task_has_rt_policy(struct task_struct *p)
192 {
193 	return rt_policy(p->policy);
194 }
195 
196 static inline int task_has_dl_policy(struct task_struct *p)
197 {
198 	return dl_policy(p->policy);
199 }
200 
201 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
202 
203 static inline void update_avg(u64 *avg, u64 sample)
204 {
205 	s64 diff = sample - *avg;
206 	*avg += diff / 8;
207 }
208 
209 /*
210  * Shifting a value by an exponent greater *or equal* to the size of said value
211  * is UB; cap at size-1.
212  */
213 #define shr_bound(val, shift)							\
214 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
215 
216 /*
217  * !! For sched_setattr_nocheck() (kernel) only !!
218  *
219  * This is actually gross. :(
220  *
221  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
222  * tasks, but still be able to sleep. We need this on platforms that cannot
223  * atomically change clock frequency. Remove once fast switching will be
224  * available on such platforms.
225  *
226  * SUGOV stands for SchedUtil GOVernor.
227  */
228 #define SCHED_FLAG_SUGOV	0x10000000
229 
230 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
231 
232 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
233 {
234 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
235 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
236 #else
237 	return false;
238 #endif
239 }
240 
241 /*
242  * Tells if entity @a should preempt entity @b.
243  */
244 static inline bool
245 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
246 {
247 	return dl_entity_is_special(a) ||
248 	       dl_time_before(a->deadline, b->deadline);
249 }
250 
251 /*
252  * This is the priority-queue data structure of the RT scheduling class:
253  */
254 struct rt_prio_array {
255 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
256 	struct list_head queue[MAX_RT_PRIO];
257 };
258 
259 struct rt_bandwidth {
260 	/* nests inside the rq lock: */
261 	raw_spinlock_t		rt_runtime_lock;
262 	ktime_t			rt_period;
263 	u64			rt_runtime;
264 	struct hrtimer		rt_period_timer;
265 	unsigned int		rt_period_active;
266 };
267 
268 void __dl_clear_params(struct task_struct *p);
269 
270 struct dl_bandwidth {
271 	raw_spinlock_t		dl_runtime_lock;
272 	u64			dl_runtime;
273 	u64			dl_period;
274 };
275 
276 static inline int dl_bandwidth_enabled(void)
277 {
278 	return sysctl_sched_rt_runtime >= 0;
279 }
280 
281 /*
282  * To keep the bandwidth of -deadline tasks under control
283  * we need some place where:
284  *  - store the maximum -deadline bandwidth of each cpu;
285  *  - cache the fraction of bandwidth that is currently allocated in
286  *    each root domain;
287  *
288  * This is all done in the data structure below. It is similar to the
289  * one used for RT-throttling (rt_bandwidth), with the main difference
290  * that, since here we are only interested in admission control, we
291  * do not decrease any runtime while the group "executes", neither we
292  * need a timer to replenish it.
293  *
294  * With respect to SMP, bandwidth is given on a per root domain basis,
295  * meaning that:
296  *  - bw (< 100%) is the deadline bandwidth of each CPU;
297  *  - total_bw is the currently allocated bandwidth in each root domain;
298  */
299 struct dl_bw {
300 	raw_spinlock_t		lock;
301 	u64			bw;
302 	u64			total_bw;
303 };
304 
305 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
306 
307 static inline
308 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
309 {
310 	dl_b->total_bw -= tsk_bw;
311 	__dl_update(dl_b, (s32)tsk_bw / cpus);
312 }
313 
314 static inline
315 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
316 {
317 	dl_b->total_bw += tsk_bw;
318 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
319 }
320 
321 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
322 				 u64 old_bw, u64 new_bw)
323 {
324 	return dl_b->bw != -1 &&
325 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
326 }
327 
328 /*
329  * Verify the fitness of task @p to run on @cpu taking into account the
330  * CPU original capacity and the runtime/deadline ratio of the task.
331  *
332  * The function will return true if the CPU original capacity of the
333  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
334  * task and false otherwise.
335  */
336 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
337 {
338 	unsigned long cap = arch_scale_cpu_capacity(cpu);
339 
340 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
341 }
342 
343 extern void init_dl_bw(struct dl_bw *dl_b);
344 extern int  sched_dl_global_validate(void);
345 extern void sched_dl_do_global(void);
346 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
347 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
348 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
349 extern bool __checkparam_dl(const struct sched_attr *attr);
350 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
351 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
352 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
353 extern bool dl_cpu_busy(unsigned int cpu);
354 
355 #ifdef CONFIG_CGROUP_SCHED
356 
357 #include <linux/cgroup.h>
358 #include <linux/psi.h>
359 
360 struct cfs_rq;
361 struct rt_rq;
362 
363 extern struct list_head task_groups;
364 
365 struct cfs_bandwidth {
366 #ifdef CONFIG_CFS_BANDWIDTH
367 	raw_spinlock_t		lock;
368 	ktime_t			period;
369 	u64			quota;
370 	u64			runtime;
371 	u64			burst;
372 	u64			runtime_snap;
373 	s64			hierarchical_quota;
374 
375 	u8			idle;
376 	u8			period_active;
377 	u8			slack_started;
378 	struct hrtimer		period_timer;
379 	struct hrtimer		slack_timer;
380 	struct list_head	throttled_cfs_rq;
381 
382 	/* Statistics: */
383 	int			nr_periods;
384 	int			nr_throttled;
385 	int			nr_burst;
386 	u64			throttled_time;
387 	u64			burst_time;
388 #endif
389 };
390 
391 /* Task group related information */
392 struct task_group {
393 	struct cgroup_subsys_state css;
394 
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 	/* schedulable entities of this group on each CPU */
397 	struct sched_entity	**se;
398 	/* runqueue "owned" by this group on each CPU */
399 	struct cfs_rq		**cfs_rq;
400 	unsigned long		shares;
401 
402 	/* A positive value indicates that this is a SCHED_IDLE group. */
403 	int			idle;
404 
405 #ifdef	CONFIG_SMP
406 	/*
407 	 * load_avg can be heavily contended at clock tick time, so put
408 	 * it in its own cacheline separated from the fields above which
409 	 * will also be accessed at each tick.
410 	 */
411 	atomic_long_t		load_avg ____cacheline_aligned;
412 #endif
413 #endif
414 
415 #ifdef CONFIG_RT_GROUP_SCHED
416 	struct sched_rt_entity	**rt_se;
417 	struct rt_rq		**rt_rq;
418 
419 	struct rt_bandwidth	rt_bandwidth;
420 #endif
421 
422 	struct rcu_head		rcu;
423 	struct list_head	list;
424 
425 	struct task_group	*parent;
426 	struct list_head	siblings;
427 	struct list_head	children;
428 
429 #ifdef CONFIG_SCHED_AUTOGROUP
430 	struct autogroup	*autogroup;
431 #endif
432 
433 	struct cfs_bandwidth	cfs_bandwidth;
434 
435 #ifdef CONFIG_UCLAMP_TASK_GROUP
436 	/* The two decimal precision [%] value requested from user-space */
437 	unsigned int		uclamp_pct[UCLAMP_CNT];
438 	/* Clamp values requested for a task group */
439 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
440 	/* Effective clamp values used for a task group */
441 	struct uclamp_se	uclamp[UCLAMP_CNT];
442 #endif
443 
444 };
445 
446 #ifdef CONFIG_FAIR_GROUP_SCHED
447 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
448 
449 /*
450  * A weight of 0 or 1 can cause arithmetics problems.
451  * A weight of a cfs_rq is the sum of weights of which entities
452  * are queued on this cfs_rq, so a weight of a entity should not be
453  * too large, so as the shares value of a task group.
454  * (The default weight is 1024 - so there's no practical
455  *  limitation from this.)
456  */
457 #define MIN_SHARES		(1UL <<  1)
458 #define MAX_SHARES		(1UL << 18)
459 #endif
460 
461 typedef int (*tg_visitor)(struct task_group *, void *);
462 
463 extern int walk_tg_tree_from(struct task_group *from,
464 			     tg_visitor down, tg_visitor up, void *data);
465 
466 /*
467  * Iterate the full tree, calling @down when first entering a node and @up when
468  * leaving it for the final time.
469  *
470  * Caller must hold rcu_lock or sufficient equivalent.
471  */
472 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
473 {
474 	return walk_tg_tree_from(&root_task_group, down, up, data);
475 }
476 
477 extern int tg_nop(struct task_group *tg, void *data);
478 
479 extern void free_fair_sched_group(struct task_group *tg);
480 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
481 extern void online_fair_sched_group(struct task_group *tg);
482 extern void unregister_fair_sched_group(struct task_group *tg);
483 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
484 			struct sched_entity *se, int cpu,
485 			struct sched_entity *parent);
486 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
487 
488 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
489 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
490 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
491 
492 extern void free_rt_sched_group(struct task_group *tg);
493 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
494 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
495 		struct sched_rt_entity *rt_se, int cpu,
496 		struct sched_rt_entity *parent);
497 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
498 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
499 extern long sched_group_rt_runtime(struct task_group *tg);
500 extern long sched_group_rt_period(struct task_group *tg);
501 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
502 
503 extern struct task_group *sched_create_group(struct task_group *parent);
504 extern void sched_online_group(struct task_group *tg,
505 			       struct task_group *parent);
506 extern void sched_destroy_group(struct task_group *tg);
507 extern void sched_offline_group(struct task_group *tg);
508 
509 extern void sched_move_task(struct task_struct *tsk);
510 
511 #ifdef CONFIG_FAIR_GROUP_SCHED
512 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
513 
514 extern int sched_group_set_idle(struct task_group *tg, long idle);
515 
516 #ifdef CONFIG_SMP
517 extern void set_task_rq_fair(struct sched_entity *se,
518 			     struct cfs_rq *prev, struct cfs_rq *next);
519 #else /* !CONFIG_SMP */
520 static inline void set_task_rq_fair(struct sched_entity *se,
521 			     struct cfs_rq *prev, struct cfs_rq *next) { }
522 #endif /* CONFIG_SMP */
523 #endif /* CONFIG_FAIR_GROUP_SCHED */
524 
525 #else /* CONFIG_CGROUP_SCHED */
526 
527 struct cfs_bandwidth { };
528 
529 #endif	/* CONFIG_CGROUP_SCHED */
530 
531 /* CFS-related fields in a runqueue */
532 struct cfs_rq {
533 	struct load_weight	load;
534 	unsigned int		nr_running;
535 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
536 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
537 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
538 
539 	u64			exec_clock;
540 	u64			min_vruntime;
541 #ifdef CONFIG_SCHED_CORE
542 	unsigned int		forceidle_seq;
543 	u64			min_vruntime_fi;
544 #endif
545 
546 #ifndef CONFIG_64BIT
547 	u64			min_vruntime_copy;
548 #endif
549 
550 	struct rb_root_cached	tasks_timeline;
551 
552 	/*
553 	 * 'curr' points to currently running entity on this cfs_rq.
554 	 * It is set to NULL otherwise (i.e when none are currently running).
555 	 */
556 	struct sched_entity	*curr;
557 	struct sched_entity	*next;
558 	struct sched_entity	*last;
559 	struct sched_entity	*skip;
560 
561 #ifdef	CONFIG_SCHED_DEBUG
562 	unsigned int		nr_spread_over;
563 #endif
564 
565 #ifdef CONFIG_SMP
566 	/*
567 	 * CFS load tracking
568 	 */
569 	struct sched_avg	avg;
570 #ifndef CONFIG_64BIT
571 	u64			load_last_update_time_copy;
572 #endif
573 	struct {
574 		raw_spinlock_t	lock ____cacheline_aligned;
575 		int		nr;
576 		unsigned long	load_avg;
577 		unsigned long	util_avg;
578 		unsigned long	runnable_avg;
579 	} removed;
580 
581 #ifdef CONFIG_FAIR_GROUP_SCHED
582 	unsigned long		tg_load_avg_contrib;
583 	long			propagate;
584 	long			prop_runnable_sum;
585 
586 	/*
587 	 *   h_load = weight * f(tg)
588 	 *
589 	 * Where f(tg) is the recursive weight fraction assigned to
590 	 * this group.
591 	 */
592 	unsigned long		h_load;
593 	u64			last_h_load_update;
594 	struct sched_entity	*h_load_next;
595 #endif /* CONFIG_FAIR_GROUP_SCHED */
596 #endif /* CONFIG_SMP */
597 
598 #ifdef CONFIG_FAIR_GROUP_SCHED
599 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
600 
601 	/*
602 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
603 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
604 	 * (like users, containers etc.)
605 	 *
606 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
607 	 * This list is used during load balance.
608 	 */
609 	int			on_list;
610 	struct list_head	leaf_cfs_rq_list;
611 	struct task_group	*tg;	/* group that "owns" this runqueue */
612 
613 	/* Locally cached copy of our task_group's idle value */
614 	int			idle;
615 
616 #ifdef CONFIG_CFS_BANDWIDTH
617 	int			runtime_enabled;
618 	s64			runtime_remaining;
619 
620 	u64			throttled_clock;
621 	u64			throttled_clock_task;
622 	u64			throttled_clock_task_time;
623 	int			throttled;
624 	int			throttle_count;
625 	struct list_head	throttled_list;
626 #endif /* CONFIG_CFS_BANDWIDTH */
627 #endif /* CONFIG_FAIR_GROUP_SCHED */
628 };
629 
630 static inline int rt_bandwidth_enabled(void)
631 {
632 	return sysctl_sched_rt_runtime >= 0;
633 }
634 
635 /* RT IPI pull logic requires IRQ_WORK */
636 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
637 # define HAVE_RT_PUSH_IPI
638 #endif
639 
640 /* Real-Time classes' related field in a runqueue: */
641 struct rt_rq {
642 	struct rt_prio_array	active;
643 	unsigned int		rt_nr_running;
644 	unsigned int		rr_nr_running;
645 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
646 	struct {
647 		int		curr; /* highest queued rt task prio */
648 #ifdef CONFIG_SMP
649 		int		next; /* next highest */
650 #endif
651 	} highest_prio;
652 #endif
653 #ifdef CONFIG_SMP
654 	unsigned int		rt_nr_migratory;
655 	unsigned int		rt_nr_total;
656 	int			overloaded;
657 	struct plist_head	pushable_tasks;
658 
659 #endif /* CONFIG_SMP */
660 	int			rt_queued;
661 
662 	int			rt_throttled;
663 	u64			rt_time;
664 	u64			rt_runtime;
665 	/* Nests inside the rq lock: */
666 	raw_spinlock_t		rt_runtime_lock;
667 
668 #ifdef CONFIG_RT_GROUP_SCHED
669 	unsigned int		rt_nr_boosted;
670 
671 	struct rq		*rq;
672 	struct task_group	*tg;
673 #endif
674 };
675 
676 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
677 {
678 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
679 }
680 
681 /* Deadline class' related fields in a runqueue */
682 struct dl_rq {
683 	/* runqueue is an rbtree, ordered by deadline */
684 	struct rb_root_cached	root;
685 
686 	unsigned int		dl_nr_running;
687 
688 #ifdef CONFIG_SMP
689 	/*
690 	 * Deadline values of the currently executing and the
691 	 * earliest ready task on this rq. Caching these facilitates
692 	 * the decision whether or not a ready but not running task
693 	 * should migrate somewhere else.
694 	 */
695 	struct {
696 		u64		curr;
697 		u64		next;
698 	} earliest_dl;
699 
700 	unsigned int		dl_nr_migratory;
701 	int			overloaded;
702 
703 	/*
704 	 * Tasks on this rq that can be pushed away. They are kept in
705 	 * an rb-tree, ordered by tasks' deadlines, with caching
706 	 * of the leftmost (earliest deadline) element.
707 	 */
708 	struct rb_root_cached	pushable_dl_tasks_root;
709 #else
710 	struct dl_bw		dl_bw;
711 #endif
712 	/*
713 	 * "Active utilization" for this runqueue: increased when a
714 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
715 	 * task blocks
716 	 */
717 	u64			running_bw;
718 
719 	/*
720 	 * Utilization of the tasks "assigned" to this runqueue (including
721 	 * the tasks that are in runqueue and the tasks that executed on this
722 	 * CPU and blocked). Increased when a task moves to this runqueue, and
723 	 * decreased when the task moves away (migrates, changes scheduling
724 	 * policy, or terminates).
725 	 * This is needed to compute the "inactive utilization" for the
726 	 * runqueue (inactive utilization = this_bw - running_bw).
727 	 */
728 	u64			this_bw;
729 	u64			extra_bw;
730 
731 	/*
732 	 * Inverse of the fraction of CPU utilization that can be reclaimed
733 	 * by the GRUB algorithm.
734 	 */
735 	u64			bw_ratio;
736 };
737 
738 #ifdef CONFIG_FAIR_GROUP_SCHED
739 /* An entity is a task if it doesn't "own" a runqueue */
740 #define entity_is_task(se)	(!se->my_q)
741 
742 static inline void se_update_runnable(struct sched_entity *se)
743 {
744 	if (!entity_is_task(se))
745 		se->runnable_weight = se->my_q->h_nr_running;
746 }
747 
748 static inline long se_runnable(struct sched_entity *se)
749 {
750 	if (entity_is_task(se))
751 		return !!se->on_rq;
752 	else
753 		return se->runnable_weight;
754 }
755 
756 #else
757 #define entity_is_task(se)	1
758 
759 static inline void se_update_runnable(struct sched_entity *se) {}
760 
761 static inline long se_runnable(struct sched_entity *se)
762 {
763 	return !!se->on_rq;
764 }
765 #endif
766 
767 #ifdef CONFIG_SMP
768 /*
769  * XXX we want to get rid of these helpers and use the full load resolution.
770  */
771 static inline long se_weight(struct sched_entity *se)
772 {
773 	return scale_load_down(se->load.weight);
774 }
775 
776 
777 static inline bool sched_asym_prefer(int a, int b)
778 {
779 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
780 }
781 
782 struct perf_domain {
783 	struct em_perf_domain *em_pd;
784 	struct perf_domain *next;
785 	struct rcu_head rcu;
786 };
787 
788 /* Scheduling group status flags */
789 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
790 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
791 
792 /*
793  * We add the notion of a root-domain which will be used to define per-domain
794  * variables. Each exclusive cpuset essentially defines an island domain by
795  * fully partitioning the member CPUs from any other cpuset. Whenever a new
796  * exclusive cpuset is created, we also create and attach a new root-domain
797  * object.
798  *
799  */
800 struct root_domain {
801 	atomic_t		refcount;
802 	atomic_t		rto_count;
803 	struct rcu_head		rcu;
804 	cpumask_var_t		span;
805 	cpumask_var_t		online;
806 
807 	/*
808 	 * Indicate pullable load on at least one CPU, e.g:
809 	 * - More than one runnable task
810 	 * - Running task is misfit
811 	 */
812 	int			overload;
813 
814 	/* Indicate one or more cpus over-utilized (tipping point) */
815 	int			overutilized;
816 
817 	/*
818 	 * The bit corresponding to a CPU gets set here if such CPU has more
819 	 * than one runnable -deadline task (as it is below for RT tasks).
820 	 */
821 	cpumask_var_t		dlo_mask;
822 	atomic_t		dlo_count;
823 	struct dl_bw		dl_bw;
824 	struct cpudl		cpudl;
825 
826 	/*
827 	 * Indicate whether a root_domain's dl_bw has been checked or
828 	 * updated. It's monotonously increasing value.
829 	 *
830 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
831 	 * that u64 is 'big enough'. So that shouldn't be a concern.
832 	 */
833 	u64 visit_gen;
834 
835 #ifdef HAVE_RT_PUSH_IPI
836 	/*
837 	 * For IPI pull requests, loop across the rto_mask.
838 	 */
839 	struct irq_work		rto_push_work;
840 	raw_spinlock_t		rto_lock;
841 	/* These are only updated and read within rto_lock */
842 	int			rto_loop;
843 	int			rto_cpu;
844 	/* These atomics are updated outside of a lock */
845 	atomic_t		rto_loop_next;
846 	atomic_t		rto_loop_start;
847 #endif
848 	/*
849 	 * The "RT overload" flag: it gets set if a CPU has more than
850 	 * one runnable RT task.
851 	 */
852 	cpumask_var_t		rto_mask;
853 	struct cpupri		cpupri;
854 
855 	unsigned long		max_cpu_capacity;
856 
857 	/*
858 	 * NULL-terminated list of performance domains intersecting with the
859 	 * CPUs of the rd. Protected by RCU.
860 	 */
861 	struct perf_domain __rcu *pd;
862 };
863 
864 extern void init_defrootdomain(void);
865 extern int sched_init_domains(const struct cpumask *cpu_map);
866 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
867 extern void sched_get_rd(struct root_domain *rd);
868 extern void sched_put_rd(struct root_domain *rd);
869 
870 #ifdef HAVE_RT_PUSH_IPI
871 extern void rto_push_irq_work_func(struct irq_work *work);
872 #endif
873 #endif /* CONFIG_SMP */
874 
875 #ifdef CONFIG_UCLAMP_TASK
876 /*
877  * struct uclamp_bucket - Utilization clamp bucket
878  * @value: utilization clamp value for tasks on this clamp bucket
879  * @tasks: number of RUNNABLE tasks on this clamp bucket
880  *
881  * Keep track of how many tasks are RUNNABLE for a given utilization
882  * clamp value.
883  */
884 struct uclamp_bucket {
885 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
886 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
887 };
888 
889 /*
890  * struct uclamp_rq - rq's utilization clamp
891  * @value: currently active clamp values for a rq
892  * @bucket: utilization clamp buckets affecting a rq
893  *
894  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
895  * A clamp value is affecting a rq when there is at least one task RUNNABLE
896  * (or actually running) with that value.
897  *
898  * There are up to UCLAMP_CNT possible different clamp values, currently there
899  * are only two: minimum utilization and maximum utilization.
900  *
901  * All utilization clamping values are MAX aggregated, since:
902  * - for util_min: we want to run the CPU at least at the max of the minimum
903  *   utilization required by its currently RUNNABLE tasks.
904  * - for util_max: we want to allow the CPU to run up to the max of the
905  *   maximum utilization allowed by its currently RUNNABLE tasks.
906  *
907  * Since on each system we expect only a limited number of different
908  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
909  * the metrics required to compute all the per-rq utilization clamp values.
910  */
911 struct uclamp_rq {
912 	unsigned int value;
913 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
914 };
915 
916 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
917 #endif /* CONFIG_UCLAMP_TASK */
918 
919 /*
920  * This is the main, per-CPU runqueue data structure.
921  *
922  * Locking rule: those places that want to lock multiple runqueues
923  * (such as the load balancing or the thread migration code), lock
924  * acquire operations must be ordered by ascending &runqueue.
925  */
926 struct rq {
927 	/* runqueue lock: */
928 	raw_spinlock_t		__lock;
929 
930 	/*
931 	 * nr_running and cpu_load should be in the same cacheline because
932 	 * remote CPUs use both these fields when doing load calculation.
933 	 */
934 	unsigned int		nr_running;
935 #ifdef CONFIG_NUMA_BALANCING
936 	unsigned int		nr_numa_running;
937 	unsigned int		nr_preferred_running;
938 	unsigned int		numa_migrate_on;
939 #endif
940 #ifdef CONFIG_NO_HZ_COMMON
941 #ifdef CONFIG_SMP
942 	unsigned long		last_blocked_load_update_tick;
943 	unsigned int		has_blocked_load;
944 	call_single_data_t	nohz_csd;
945 #endif /* CONFIG_SMP */
946 	unsigned int		nohz_tick_stopped;
947 	atomic_t		nohz_flags;
948 #endif /* CONFIG_NO_HZ_COMMON */
949 
950 #ifdef CONFIG_SMP
951 	unsigned int		ttwu_pending;
952 #endif
953 	u64			nr_switches;
954 
955 #ifdef CONFIG_UCLAMP_TASK
956 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
957 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
958 	unsigned int		uclamp_flags;
959 #define UCLAMP_FLAG_IDLE 0x01
960 #endif
961 
962 	struct cfs_rq		cfs;
963 	struct rt_rq		rt;
964 	struct dl_rq		dl;
965 
966 #ifdef CONFIG_FAIR_GROUP_SCHED
967 	/* list of leaf cfs_rq on this CPU: */
968 	struct list_head	leaf_cfs_rq_list;
969 	struct list_head	*tmp_alone_branch;
970 #endif /* CONFIG_FAIR_GROUP_SCHED */
971 
972 	/*
973 	 * This is part of a global counter where only the total sum
974 	 * over all CPUs matters. A task can increase this counter on
975 	 * one CPU and if it got migrated afterwards it may decrease
976 	 * it on another CPU. Always updated under the runqueue lock:
977 	 */
978 	unsigned int		nr_uninterruptible;
979 
980 	struct task_struct __rcu	*curr;
981 	struct task_struct	*idle;
982 	struct task_struct	*stop;
983 	unsigned long		next_balance;
984 	struct mm_struct	*prev_mm;
985 
986 	unsigned int		clock_update_flags;
987 	u64			clock;
988 	/* Ensure that all clocks are in the same cache line */
989 	u64			clock_task ____cacheline_aligned;
990 	u64			clock_pelt;
991 	unsigned long		lost_idle_time;
992 
993 	atomic_t		nr_iowait;
994 
995 #ifdef CONFIG_SCHED_DEBUG
996 	u64 last_seen_need_resched_ns;
997 	int ticks_without_resched;
998 #endif
999 
1000 #ifdef CONFIG_MEMBARRIER
1001 	int membarrier_state;
1002 #endif
1003 
1004 #ifdef CONFIG_SMP
1005 	struct root_domain		*rd;
1006 	struct sched_domain __rcu	*sd;
1007 
1008 	unsigned long		cpu_capacity;
1009 	unsigned long		cpu_capacity_orig;
1010 
1011 	struct callback_head	*balance_callback;
1012 
1013 	unsigned char		nohz_idle_balance;
1014 	unsigned char		idle_balance;
1015 
1016 	unsigned long		misfit_task_load;
1017 
1018 	/* For active balancing */
1019 	int			active_balance;
1020 	int			push_cpu;
1021 	struct cpu_stop_work	active_balance_work;
1022 
1023 	/* CPU of this runqueue: */
1024 	int			cpu;
1025 	int			online;
1026 
1027 	struct list_head cfs_tasks;
1028 
1029 	struct sched_avg	avg_rt;
1030 	struct sched_avg	avg_dl;
1031 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1032 	struct sched_avg	avg_irq;
1033 #endif
1034 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1035 	struct sched_avg	avg_thermal;
1036 #endif
1037 	u64			idle_stamp;
1038 	u64			avg_idle;
1039 
1040 	unsigned long		wake_stamp;
1041 	u64			wake_avg_idle;
1042 
1043 	/* This is used to determine avg_idle's max value */
1044 	u64			max_idle_balance_cost;
1045 
1046 #ifdef CONFIG_HOTPLUG_CPU
1047 	struct rcuwait		hotplug_wait;
1048 #endif
1049 #endif /* CONFIG_SMP */
1050 
1051 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1052 	u64			prev_irq_time;
1053 #endif
1054 #ifdef CONFIG_PARAVIRT
1055 	u64			prev_steal_time;
1056 #endif
1057 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1058 	u64			prev_steal_time_rq;
1059 #endif
1060 
1061 	/* calc_load related fields */
1062 	unsigned long		calc_load_update;
1063 	long			calc_load_active;
1064 
1065 #ifdef CONFIG_SCHED_HRTICK
1066 #ifdef CONFIG_SMP
1067 	call_single_data_t	hrtick_csd;
1068 #endif
1069 	struct hrtimer		hrtick_timer;
1070 	ktime_t 		hrtick_time;
1071 #endif
1072 
1073 #ifdef CONFIG_SCHEDSTATS
1074 	/* latency stats */
1075 	struct sched_info	rq_sched_info;
1076 	unsigned long long	rq_cpu_time;
1077 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1078 
1079 	/* sys_sched_yield() stats */
1080 	unsigned int		yld_count;
1081 
1082 	/* schedule() stats */
1083 	unsigned int		sched_count;
1084 	unsigned int		sched_goidle;
1085 
1086 	/* try_to_wake_up() stats */
1087 	unsigned int		ttwu_count;
1088 	unsigned int		ttwu_local;
1089 #endif
1090 
1091 #ifdef CONFIG_CPU_IDLE
1092 	/* Must be inspected within a rcu lock section */
1093 	struct cpuidle_state	*idle_state;
1094 #endif
1095 
1096 #ifdef CONFIG_SMP
1097 	unsigned int		nr_pinned;
1098 #endif
1099 	unsigned int		push_busy;
1100 	struct cpu_stop_work	push_work;
1101 
1102 #ifdef CONFIG_SCHED_CORE
1103 	/* per rq */
1104 	struct rq		*core;
1105 	struct task_struct	*core_pick;
1106 	unsigned int		core_enabled;
1107 	unsigned int		core_sched_seq;
1108 	struct rb_root		core_tree;
1109 
1110 	/* shared state -- careful with sched_core_cpu_deactivate() */
1111 	unsigned int		core_task_seq;
1112 	unsigned int		core_pick_seq;
1113 	unsigned long		core_cookie;
1114 	unsigned char		core_forceidle;
1115 	unsigned int		core_forceidle_seq;
1116 #endif
1117 };
1118 
1119 #ifdef CONFIG_FAIR_GROUP_SCHED
1120 
1121 /* CPU runqueue to which this cfs_rq is attached */
1122 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1123 {
1124 	return cfs_rq->rq;
1125 }
1126 
1127 #else
1128 
1129 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1130 {
1131 	return container_of(cfs_rq, struct rq, cfs);
1132 }
1133 #endif
1134 
1135 static inline int cpu_of(struct rq *rq)
1136 {
1137 #ifdef CONFIG_SMP
1138 	return rq->cpu;
1139 #else
1140 	return 0;
1141 #endif
1142 }
1143 
1144 #define MDF_PUSH	0x01
1145 
1146 static inline bool is_migration_disabled(struct task_struct *p)
1147 {
1148 #ifdef CONFIG_SMP
1149 	return p->migration_disabled;
1150 #else
1151 	return false;
1152 #endif
1153 }
1154 
1155 struct sched_group;
1156 #ifdef CONFIG_SCHED_CORE
1157 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1158 
1159 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1160 
1161 static inline bool sched_core_enabled(struct rq *rq)
1162 {
1163 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1164 }
1165 
1166 static inline bool sched_core_disabled(void)
1167 {
1168 	return !static_branch_unlikely(&__sched_core_enabled);
1169 }
1170 
1171 /*
1172  * Be careful with this function; not for general use. The return value isn't
1173  * stable unless you actually hold a relevant rq->__lock.
1174  */
1175 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1176 {
1177 	if (sched_core_enabled(rq))
1178 		return &rq->core->__lock;
1179 
1180 	return &rq->__lock;
1181 }
1182 
1183 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1184 {
1185 	if (rq->core_enabled)
1186 		return &rq->core->__lock;
1187 
1188 	return &rq->__lock;
1189 }
1190 
1191 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1192 
1193 /*
1194  * Helpers to check if the CPU's core cookie matches with the task's cookie
1195  * when core scheduling is enabled.
1196  * A special case is that the task's cookie always matches with CPU's core
1197  * cookie if the CPU is in an idle core.
1198  */
1199 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1200 {
1201 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1202 	if (!sched_core_enabled(rq))
1203 		return true;
1204 
1205 	return rq->core->core_cookie == p->core_cookie;
1206 }
1207 
1208 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1209 {
1210 	bool idle_core = true;
1211 	int cpu;
1212 
1213 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1214 	if (!sched_core_enabled(rq))
1215 		return true;
1216 
1217 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1218 		if (!available_idle_cpu(cpu)) {
1219 			idle_core = false;
1220 			break;
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * A CPU in an idle core is always the best choice for tasks with
1226 	 * cookies.
1227 	 */
1228 	return idle_core || rq->core->core_cookie == p->core_cookie;
1229 }
1230 
1231 static inline bool sched_group_cookie_match(struct rq *rq,
1232 					    struct task_struct *p,
1233 					    struct sched_group *group)
1234 {
1235 	int cpu;
1236 
1237 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1238 	if (!sched_core_enabled(rq))
1239 		return true;
1240 
1241 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1242 		if (sched_core_cookie_match(rq, p))
1243 			return true;
1244 	}
1245 	return false;
1246 }
1247 
1248 extern void queue_core_balance(struct rq *rq);
1249 
1250 static inline bool sched_core_enqueued(struct task_struct *p)
1251 {
1252 	return !RB_EMPTY_NODE(&p->core_node);
1253 }
1254 
1255 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1256 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p);
1257 
1258 extern void sched_core_get(void);
1259 extern void sched_core_put(void);
1260 
1261 extern unsigned long sched_core_alloc_cookie(void);
1262 extern void sched_core_put_cookie(unsigned long cookie);
1263 extern unsigned long sched_core_get_cookie(unsigned long cookie);
1264 extern unsigned long sched_core_update_cookie(struct task_struct *p, unsigned long cookie);
1265 
1266 #else /* !CONFIG_SCHED_CORE */
1267 
1268 static inline bool sched_core_enabled(struct rq *rq)
1269 {
1270 	return false;
1271 }
1272 
1273 static inline bool sched_core_disabled(void)
1274 {
1275 	return true;
1276 }
1277 
1278 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1279 {
1280 	return &rq->__lock;
1281 }
1282 
1283 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1284 {
1285 	return &rq->__lock;
1286 }
1287 
1288 static inline void queue_core_balance(struct rq *rq)
1289 {
1290 }
1291 
1292 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1293 {
1294 	return true;
1295 }
1296 
1297 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1298 {
1299 	return true;
1300 }
1301 
1302 static inline bool sched_group_cookie_match(struct rq *rq,
1303 					    struct task_struct *p,
1304 					    struct sched_group *group)
1305 {
1306 	return true;
1307 }
1308 #endif /* CONFIG_SCHED_CORE */
1309 
1310 static inline void lockdep_assert_rq_held(struct rq *rq)
1311 {
1312 	lockdep_assert_held(__rq_lockp(rq));
1313 }
1314 
1315 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1316 extern bool raw_spin_rq_trylock(struct rq *rq);
1317 extern void raw_spin_rq_unlock(struct rq *rq);
1318 
1319 static inline void raw_spin_rq_lock(struct rq *rq)
1320 {
1321 	raw_spin_rq_lock_nested(rq, 0);
1322 }
1323 
1324 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1325 {
1326 	local_irq_disable();
1327 	raw_spin_rq_lock(rq);
1328 }
1329 
1330 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1331 {
1332 	raw_spin_rq_unlock(rq);
1333 	local_irq_enable();
1334 }
1335 
1336 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1337 {
1338 	unsigned long flags;
1339 	local_irq_save(flags);
1340 	raw_spin_rq_lock(rq);
1341 	return flags;
1342 }
1343 
1344 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1345 {
1346 	raw_spin_rq_unlock(rq);
1347 	local_irq_restore(flags);
1348 }
1349 
1350 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1351 do {						\
1352 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1353 } while (0)
1354 
1355 #ifdef CONFIG_SCHED_SMT
1356 extern void __update_idle_core(struct rq *rq);
1357 
1358 static inline void update_idle_core(struct rq *rq)
1359 {
1360 	if (static_branch_unlikely(&sched_smt_present))
1361 		__update_idle_core(rq);
1362 }
1363 
1364 #else
1365 static inline void update_idle_core(struct rq *rq) { }
1366 #endif
1367 
1368 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1369 
1370 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1371 #define this_rq()		this_cpu_ptr(&runqueues)
1372 #define task_rq(p)		cpu_rq(task_cpu(p))
1373 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1374 #define raw_rq()		raw_cpu_ptr(&runqueues)
1375 
1376 #ifdef CONFIG_FAIR_GROUP_SCHED
1377 static inline struct task_struct *task_of(struct sched_entity *se)
1378 {
1379 	SCHED_WARN_ON(!entity_is_task(se));
1380 	return container_of(se, struct task_struct, se);
1381 }
1382 
1383 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1384 {
1385 	return p->se.cfs_rq;
1386 }
1387 
1388 /* runqueue on which this entity is (to be) queued */
1389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1390 {
1391 	return se->cfs_rq;
1392 }
1393 
1394 /* runqueue "owned" by this group */
1395 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1396 {
1397 	return grp->my_q;
1398 }
1399 
1400 #else
1401 
1402 static inline struct task_struct *task_of(struct sched_entity *se)
1403 {
1404 	return container_of(se, struct task_struct, se);
1405 }
1406 
1407 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1408 {
1409 	return &task_rq(p)->cfs;
1410 }
1411 
1412 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1413 {
1414 	struct task_struct *p = task_of(se);
1415 	struct rq *rq = task_rq(p);
1416 
1417 	return &rq->cfs;
1418 }
1419 
1420 /* runqueue "owned" by this group */
1421 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1422 {
1423 	return NULL;
1424 }
1425 #endif
1426 
1427 extern void update_rq_clock(struct rq *rq);
1428 
1429 /*
1430  * rq::clock_update_flags bits
1431  *
1432  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1433  *  call to __schedule(). This is an optimisation to avoid
1434  *  neighbouring rq clock updates.
1435  *
1436  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1437  *  in effect and calls to update_rq_clock() are being ignored.
1438  *
1439  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1440  *  made to update_rq_clock() since the last time rq::lock was pinned.
1441  *
1442  * If inside of __schedule(), clock_update_flags will have been
1443  * shifted left (a left shift is a cheap operation for the fast path
1444  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1445  *
1446  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1447  *
1448  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1449  * one position though, because the next rq_unpin_lock() will shift it
1450  * back.
1451  */
1452 #define RQCF_REQ_SKIP		0x01
1453 #define RQCF_ACT_SKIP		0x02
1454 #define RQCF_UPDATED		0x04
1455 
1456 static inline void assert_clock_updated(struct rq *rq)
1457 {
1458 	/*
1459 	 * The only reason for not seeing a clock update since the
1460 	 * last rq_pin_lock() is if we're currently skipping updates.
1461 	 */
1462 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1463 }
1464 
1465 static inline u64 rq_clock(struct rq *rq)
1466 {
1467 	lockdep_assert_rq_held(rq);
1468 	assert_clock_updated(rq);
1469 
1470 	return rq->clock;
1471 }
1472 
1473 static inline u64 rq_clock_task(struct rq *rq)
1474 {
1475 	lockdep_assert_rq_held(rq);
1476 	assert_clock_updated(rq);
1477 
1478 	return rq->clock_task;
1479 }
1480 
1481 /**
1482  * By default the decay is the default pelt decay period.
1483  * The decay shift can change the decay period in
1484  * multiples of 32.
1485  *  Decay shift		Decay period(ms)
1486  *	0			32
1487  *	1			64
1488  *	2			128
1489  *	3			256
1490  *	4			512
1491  */
1492 extern int sched_thermal_decay_shift;
1493 
1494 static inline u64 rq_clock_thermal(struct rq *rq)
1495 {
1496 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1497 }
1498 
1499 static inline void rq_clock_skip_update(struct rq *rq)
1500 {
1501 	lockdep_assert_rq_held(rq);
1502 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1503 }
1504 
1505 /*
1506  * See rt task throttling, which is the only time a skip
1507  * request is canceled.
1508  */
1509 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1510 {
1511 	lockdep_assert_rq_held(rq);
1512 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1513 }
1514 
1515 struct rq_flags {
1516 	unsigned long flags;
1517 	struct pin_cookie cookie;
1518 #ifdef CONFIG_SCHED_DEBUG
1519 	/*
1520 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1521 	 * current pin context is stashed here in case it needs to be
1522 	 * restored in rq_repin_lock().
1523 	 */
1524 	unsigned int clock_update_flags;
1525 #endif
1526 };
1527 
1528 extern struct callback_head balance_push_callback;
1529 
1530 /*
1531  * Lockdep annotation that avoids accidental unlocks; it's like a
1532  * sticky/continuous lockdep_assert_held().
1533  *
1534  * This avoids code that has access to 'struct rq *rq' (basically everything in
1535  * the scheduler) from accidentally unlocking the rq if they do not also have a
1536  * copy of the (on-stack) 'struct rq_flags rf'.
1537  *
1538  * Also see Documentation/locking/lockdep-design.rst.
1539  */
1540 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1541 {
1542 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1543 
1544 #ifdef CONFIG_SCHED_DEBUG
1545 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1546 	rf->clock_update_flags = 0;
1547 #ifdef CONFIG_SMP
1548 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1549 #endif
1550 #endif
1551 }
1552 
1553 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1554 {
1555 #ifdef CONFIG_SCHED_DEBUG
1556 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1557 		rf->clock_update_flags = RQCF_UPDATED;
1558 #endif
1559 
1560 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1561 }
1562 
1563 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1564 {
1565 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1566 
1567 #ifdef CONFIG_SCHED_DEBUG
1568 	/*
1569 	 * Restore the value we stashed in @rf for this pin context.
1570 	 */
1571 	rq->clock_update_flags |= rf->clock_update_flags;
1572 #endif
1573 }
1574 
1575 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1576 	__acquires(rq->lock);
1577 
1578 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1579 	__acquires(p->pi_lock)
1580 	__acquires(rq->lock);
1581 
1582 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1583 	__releases(rq->lock)
1584 {
1585 	rq_unpin_lock(rq, rf);
1586 	raw_spin_rq_unlock(rq);
1587 }
1588 
1589 static inline void
1590 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1591 	__releases(rq->lock)
1592 	__releases(p->pi_lock)
1593 {
1594 	rq_unpin_lock(rq, rf);
1595 	raw_spin_rq_unlock(rq);
1596 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1597 }
1598 
1599 static inline void
1600 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1601 	__acquires(rq->lock)
1602 {
1603 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1604 	rq_pin_lock(rq, rf);
1605 }
1606 
1607 static inline void
1608 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1609 	__acquires(rq->lock)
1610 {
1611 	raw_spin_rq_lock_irq(rq);
1612 	rq_pin_lock(rq, rf);
1613 }
1614 
1615 static inline void
1616 rq_lock(struct rq *rq, struct rq_flags *rf)
1617 	__acquires(rq->lock)
1618 {
1619 	raw_spin_rq_lock(rq);
1620 	rq_pin_lock(rq, rf);
1621 }
1622 
1623 static inline void
1624 rq_relock(struct rq *rq, struct rq_flags *rf)
1625 	__acquires(rq->lock)
1626 {
1627 	raw_spin_rq_lock(rq);
1628 	rq_repin_lock(rq, rf);
1629 }
1630 
1631 static inline void
1632 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1633 	__releases(rq->lock)
1634 {
1635 	rq_unpin_lock(rq, rf);
1636 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1637 }
1638 
1639 static inline void
1640 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1641 	__releases(rq->lock)
1642 {
1643 	rq_unpin_lock(rq, rf);
1644 	raw_spin_rq_unlock_irq(rq);
1645 }
1646 
1647 static inline void
1648 rq_unlock(struct rq *rq, struct rq_flags *rf)
1649 	__releases(rq->lock)
1650 {
1651 	rq_unpin_lock(rq, rf);
1652 	raw_spin_rq_unlock(rq);
1653 }
1654 
1655 static inline struct rq *
1656 this_rq_lock_irq(struct rq_flags *rf)
1657 	__acquires(rq->lock)
1658 {
1659 	struct rq *rq;
1660 
1661 	local_irq_disable();
1662 	rq = this_rq();
1663 	rq_lock(rq, rf);
1664 	return rq;
1665 }
1666 
1667 #ifdef CONFIG_NUMA
1668 enum numa_topology_type {
1669 	NUMA_DIRECT,
1670 	NUMA_GLUELESS_MESH,
1671 	NUMA_BACKPLANE,
1672 };
1673 extern enum numa_topology_type sched_numa_topology_type;
1674 extern int sched_max_numa_distance;
1675 extern bool find_numa_distance(int distance);
1676 extern void sched_init_numa(void);
1677 extern void sched_domains_numa_masks_set(unsigned int cpu);
1678 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1679 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1680 #else
1681 static inline void sched_init_numa(void) { }
1682 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1683 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1684 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1685 {
1686 	return nr_cpu_ids;
1687 }
1688 #endif
1689 
1690 #ifdef CONFIG_NUMA_BALANCING
1691 /* The regions in numa_faults array from task_struct */
1692 enum numa_faults_stats {
1693 	NUMA_MEM = 0,
1694 	NUMA_CPU,
1695 	NUMA_MEMBUF,
1696 	NUMA_CPUBUF
1697 };
1698 extern void sched_setnuma(struct task_struct *p, int node);
1699 extern int migrate_task_to(struct task_struct *p, int cpu);
1700 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1701 			int cpu, int scpu);
1702 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1703 #else
1704 static inline void
1705 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1706 {
1707 }
1708 #endif /* CONFIG_NUMA_BALANCING */
1709 
1710 #ifdef CONFIG_SMP
1711 
1712 static inline void
1713 queue_balance_callback(struct rq *rq,
1714 		       struct callback_head *head,
1715 		       void (*func)(struct rq *rq))
1716 {
1717 	lockdep_assert_rq_held(rq);
1718 
1719 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1720 		return;
1721 
1722 	head->func = (void (*)(struct callback_head *))func;
1723 	head->next = rq->balance_callback;
1724 	rq->balance_callback = head;
1725 }
1726 
1727 #define rcu_dereference_check_sched_domain(p) \
1728 	rcu_dereference_check((p), \
1729 			      lockdep_is_held(&sched_domains_mutex))
1730 
1731 /*
1732  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1733  * See destroy_sched_domains: call_rcu for details.
1734  *
1735  * The domain tree of any CPU may only be accessed from within
1736  * preempt-disabled sections.
1737  */
1738 #define for_each_domain(cpu, __sd) \
1739 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1740 			__sd; __sd = __sd->parent)
1741 
1742 /**
1743  * highest_flag_domain - Return highest sched_domain containing flag.
1744  * @cpu:	The CPU whose highest level of sched domain is to
1745  *		be returned.
1746  * @flag:	The flag to check for the highest sched_domain
1747  *		for the given CPU.
1748  *
1749  * Returns the highest sched_domain of a CPU which contains the given flag.
1750  */
1751 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1752 {
1753 	struct sched_domain *sd, *hsd = NULL;
1754 
1755 	for_each_domain(cpu, sd) {
1756 		if (!(sd->flags & flag))
1757 			break;
1758 		hsd = sd;
1759 	}
1760 
1761 	return hsd;
1762 }
1763 
1764 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1765 {
1766 	struct sched_domain *sd;
1767 
1768 	for_each_domain(cpu, sd) {
1769 		if (sd->flags & flag)
1770 			break;
1771 	}
1772 
1773 	return sd;
1774 }
1775 
1776 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1777 DECLARE_PER_CPU(int, sd_llc_size);
1778 DECLARE_PER_CPU(int, sd_llc_id);
1779 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1780 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1781 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1782 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1783 extern struct static_key_false sched_asym_cpucapacity;
1784 
1785 struct sched_group_capacity {
1786 	atomic_t		ref;
1787 	/*
1788 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1789 	 * for a single CPU.
1790 	 */
1791 	unsigned long		capacity;
1792 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1793 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1794 	unsigned long		next_update;
1795 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1796 
1797 #ifdef CONFIG_SCHED_DEBUG
1798 	int			id;
1799 #endif
1800 
1801 	unsigned long		cpumask[];		/* Balance mask */
1802 };
1803 
1804 struct sched_group {
1805 	struct sched_group	*next;			/* Must be a circular list */
1806 	atomic_t		ref;
1807 
1808 	unsigned int		group_weight;
1809 	struct sched_group_capacity *sgc;
1810 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1811 
1812 	/*
1813 	 * The CPUs this group covers.
1814 	 *
1815 	 * NOTE: this field is variable length. (Allocated dynamically
1816 	 * by attaching extra space to the end of the structure,
1817 	 * depending on how many CPUs the kernel has booted up with)
1818 	 */
1819 	unsigned long		cpumask[];
1820 };
1821 
1822 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1823 {
1824 	return to_cpumask(sg->cpumask);
1825 }
1826 
1827 /*
1828  * See build_balance_mask().
1829  */
1830 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1831 {
1832 	return to_cpumask(sg->sgc->cpumask);
1833 }
1834 
1835 /**
1836  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1837  * @group: The group whose first CPU is to be returned.
1838  */
1839 static inline unsigned int group_first_cpu(struct sched_group *group)
1840 {
1841 	return cpumask_first(sched_group_span(group));
1842 }
1843 
1844 extern int group_balance_cpu(struct sched_group *sg);
1845 
1846 #ifdef CONFIG_SCHED_DEBUG
1847 void update_sched_domain_debugfs(void);
1848 void dirty_sched_domain_sysctl(int cpu);
1849 #else
1850 static inline void update_sched_domain_debugfs(void)
1851 {
1852 }
1853 static inline void dirty_sched_domain_sysctl(int cpu)
1854 {
1855 }
1856 #endif
1857 
1858 extern int sched_update_scaling(void);
1859 
1860 extern void flush_smp_call_function_from_idle(void);
1861 
1862 #else /* !CONFIG_SMP: */
1863 static inline void flush_smp_call_function_from_idle(void) { }
1864 #endif
1865 
1866 #include "stats.h"
1867 #include "autogroup.h"
1868 
1869 #ifdef CONFIG_CGROUP_SCHED
1870 
1871 /*
1872  * Return the group to which this tasks belongs.
1873  *
1874  * We cannot use task_css() and friends because the cgroup subsystem
1875  * changes that value before the cgroup_subsys::attach() method is called,
1876  * therefore we cannot pin it and might observe the wrong value.
1877  *
1878  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1879  * core changes this before calling sched_move_task().
1880  *
1881  * Instead we use a 'copy' which is updated from sched_move_task() while
1882  * holding both task_struct::pi_lock and rq::lock.
1883  */
1884 static inline struct task_group *task_group(struct task_struct *p)
1885 {
1886 	return p->sched_task_group;
1887 }
1888 
1889 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1890 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1891 {
1892 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1893 	struct task_group *tg = task_group(p);
1894 #endif
1895 
1896 #ifdef CONFIG_FAIR_GROUP_SCHED
1897 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1898 	p->se.cfs_rq = tg->cfs_rq[cpu];
1899 	p->se.parent = tg->se[cpu];
1900 #endif
1901 
1902 #ifdef CONFIG_RT_GROUP_SCHED
1903 	p->rt.rt_rq  = tg->rt_rq[cpu];
1904 	p->rt.parent = tg->rt_se[cpu];
1905 #endif
1906 }
1907 
1908 #else /* CONFIG_CGROUP_SCHED */
1909 
1910 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1911 static inline struct task_group *task_group(struct task_struct *p)
1912 {
1913 	return NULL;
1914 }
1915 
1916 #endif /* CONFIG_CGROUP_SCHED */
1917 
1918 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1919 {
1920 	set_task_rq(p, cpu);
1921 #ifdef CONFIG_SMP
1922 	/*
1923 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1924 	 * successfully executed on another CPU. We must ensure that updates of
1925 	 * per-task data have been completed by this moment.
1926 	 */
1927 	smp_wmb();
1928 #ifdef CONFIG_THREAD_INFO_IN_TASK
1929 	WRITE_ONCE(p->cpu, cpu);
1930 #else
1931 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1932 #endif
1933 	p->wake_cpu = cpu;
1934 #endif
1935 }
1936 
1937 /*
1938  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1939  */
1940 #ifdef CONFIG_SCHED_DEBUG
1941 # include <linux/static_key.h>
1942 # define const_debug __read_mostly
1943 #else
1944 # define const_debug const
1945 #endif
1946 
1947 #define SCHED_FEAT(name, enabled)	\
1948 	__SCHED_FEAT_##name ,
1949 
1950 enum {
1951 #include "features.h"
1952 	__SCHED_FEAT_NR,
1953 };
1954 
1955 #undef SCHED_FEAT
1956 
1957 #ifdef CONFIG_SCHED_DEBUG
1958 
1959 /*
1960  * To support run-time toggling of sched features, all the translation units
1961  * (but core.c) reference the sysctl_sched_features defined in core.c.
1962  */
1963 extern const_debug unsigned int sysctl_sched_features;
1964 
1965 #ifdef CONFIG_JUMP_LABEL
1966 #define SCHED_FEAT(name, enabled)					\
1967 static __always_inline bool static_branch_##name(struct static_key *key) \
1968 {									\
1969 	return static_key_##enabled(key);				\
1970 }
1971 
1972 #include "features.h"
1973 #undef SCHED_FEAT
1974 
1975 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1976 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1977 
1978 #else /* !CONFIG_JUMP_LABEL */
1979 
1980 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1981 
1982 #endif /* CONFIG_JUMP_LABEL */
1983 
1984 #else /* !SCHED_DEBUG */
1985 
1986 /*
1987  * Each translation unit has its own copy of sysctl_sched_features to allow
1988  * constants propagation at compile time and compiler optimization based on
1989  * features default.
1990  */
1991 #define SCHED_FEAT(name, enabled)	\
1992 	(1UL << __SCHED_FEAT_##name) * enabled |
1993 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1994 #include "features.h"
1995 	0;
1996 #undef SCHED_FEAT
1997 
1998 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1999 
2000 #endif /* SCHED_DEBUG */
2001 
2002 extern struct static_key_false sched_numa_balancing;
2003 extern struct static_key_false sched_schedstats;
2004 
2005 static inline u64 global_rt_period(void)
2006 {
2007 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2008 }
2009 
2010 static inline u64 global_rt_runtime(void)
2011 {
2012 	if (sysctl_sched_rt_runtime < 0)
2013 		return RUNTIME_INF;
2014 
2015 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2016 }
2017 
2018 static inline int task_current(struct rq *rq, struct task_struct *p)
2019 {
2020 	return rq->curr == p;
2021 }
2022 
2023 static inline int task_running(struct rq *rq, struct task_struct *p)
2024 {
2025 #ifdef CONFIG_SMP
2026 	return p->on_cpu;
2027 #else
2028 	return task_current(rq, p);
2029 #endif
2030 }
2031 
2032 static inline int task_on_rq_queued(struct task_struct *p)
2033 {
2034 	return p->on_rq == TASK_ON_RQ_QUEUED;
2035 }
2036 
2037 static inline int task_on_rq_migrating(struct task_struct *p)
2038 {
2039 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2040 }
2041 
2042 /* Wake flags. The first three directly map to some SD flag value */
2043 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2044 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2045 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2046 
2047 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2048 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2049 #define WF_ON_CPU   0x40 /* Wakee is on_cpu */
2050 
2051 #ifdef CONFIG_SMP
2052 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2053 static_assert(WF_FORK == SD_BALANCE_FORK);
2054 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2055 #endif
2056 
2057 /*
2058  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2059  * of tasks with abnormal "nice" values across CPUs the contribution that
2060  * each task makes to its run queue's load is weighted according to its
2061  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2062  * scaled version of the new time slice allocation that they receive on time
2063  * slice expiry etc.
2064  */
2065 
2066 #define WEIGHT_IDLEPRIO		3
2067 #define WMULT_IDLEPRIO		1431655765
2068 
2069 extern const int		sched_prio_to_weight[40];
2070 extern const u32		sched_prio_to_wmult[40];
2071 
2072 /*
2073  * {de,en}queue flags:
2074  *
2075  * DEQUEUE_SLEEP  - task is no longer runnable
2076  * ENQUEUE_WAKEUP - task just became runnable
2077  *
2078  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2079  *                are in a known state which allows modification. Such pairs
2080  *                should preserve as much state as possible.
2081  *
2082  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2083  *        in the runqueue.
2084  *
2085  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2086  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2087  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2088  *
2089  */
2090 
2091 #define DEQUEUE_SLEEP		0x01
2092 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2093 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2094 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2095 
2096 #define ENQUEUE_WAKEUP		0x01
2097 #define ENQUEUE_RESTORE		0x02
2098 #define ENQUEUE_MOVE		0x04
2099 #define ENQUEUE_NOCLOCK		0x08
2100 
2101 #define ENQUEUE_HEAD		0x10
2102 #define ENQUEUE_REPLENISH	0x20
2103 #ifdef CONFIG_SMP
2104 #define ENQUEUE_MIGRATED	0x40
2105 #else
2106 #define ENQUEUE_MIGRATED	0x00
2107 #endif
2108 
2109 #define RETRY_TASK		((void *)-1UL)
2110 
2111 struct sched_class {
2112 
2113 #ifdef CONFIG_UCLAMP_TASK
2114 	int uclamp_enabled;
2115 #endif
2116 
2117 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2118 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2119 	void (*yield_task)   (struct rq *rq);
2120 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2121 
2122 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2123 
2124 	struct task_struct *(*pick_next_task)(struct rq *rq);
2125 
2126 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2127 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2128 
2129 #ifdef CONFIG_SMP
2130 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2131 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2132 
2133 	struct task_struct * (*pick_task)(struct rq *rq);
2134 
2135 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2136 
2137 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2138 
2139 	void (*set_cpus_allowed)(struct task_struct *p,
2140 				 const struct cpumask *newmask,
2141 				 u32 flags);
2142 
2143 	void (*rq_online)(struct rq *rq);
2144 	void (*rq_offline)(struct rq *rq);
2145 
2146 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2147 #endif
2148 
2149 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2150 	void (*task_fork)(struct task_struct *p);
2151 	void (*task_dead)(struct task_struct *p);
2152 
2153 	/*
2154 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2155 	 * cannot assume the switched_from/switched_to pair is serialized by
2156 	 * rq->lock. They are however serialized by p->pi_lock.
2157 	 */
2158 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2159 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2160 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2161 			      int oldprio);
2162 
2163 	unsigned int (*get_rr_interval)(struct rq *rq,
2164 					struct task_struct *task);
2165 
2166 	void (*update_curr)(struct rq *rq);
2167 
2168 #define TASK_SET_GROUP		0
2169 #define TASK_MOVE_GROUP		1
2170 
2171 #ifdef CONFIG_FAIR_GROUP_SCHED
2172 	void (*task_change_group)(struct task_struct *p, int type);
2173 #endif
2174 };
2175 
2176 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2177 {
2178 	WARN_ON_ONCE(rq->curr != prev);
2179 	prev->sched_class->put_prev_task(rq, prev);
2180 }
2181 
2182 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2183 {
2184 	next->sched_class->set_next_task(rq, next, false);
2185 }
2186 
2187 
2188 /*
2189  * Helper to define a sched_class instance; each one is placed in a separate
2190  * section which is ordered by the linker script:
2191  *
2192  *   include/asm-generic/vmlinux.lds.h
2193  *
2194  * Also enforce alignment on the instance, not the type, to guarantee layout.
2195  */
2196 #define DEFINE_SCHED_CLASS(name) \
2197 const struct sched_class name##_sched_class \
2198 	__aligned(__alignof__(struct sched_class)) \
2199 	__section("__" #name "_sched_class")
2200 
2201 /* Defined in include/asm-generic/vmlinux.lds.h */
2202 extern struct sched_class __begin_sched_classes[];
2203 extern struct sched_class __end_sched_classes[];
2204 
2205 #define sched_class_highest (__end_sched_classes - 1)
2206 #define sched_class_lowest  (__begin_sched_classes - 1)
2207 
2208 #define for_class_range(class, _from, _to) \
2209 	for (class = (_from); class != (_to); class--)
2210 
2211 #define for_each_class(class) \
2212 	for_class_range(class, sched_class_highest, sched_class_lowest)
2213 
2214 extern const struct sched_class stop_sched_class;
2215 extern const struct sched_class dl_sched_class;
2216 extern const struct sched_class rt_sched_class;
2217 extern const struct sched_class fair_sched_class;
2218 extern const struct sched_class idle_sched_class;
2219 
2220 static inline bool sched_stop_runnable(struct rq *rq)
2221 {
2222 	return rq->stop && task_on_rq_queued(rq->stop);
2223 }
2224 
2225 static inline bool sched_dl_runnable(struct rq *rq)
2226 {
2227 	return rq->dl.dl_nr_running > 0;
2228 }
2229 
2230 static inline bool sched_rt_runnable(struct rq *rq)
2231 {
2232 	return rq->rt.rt_queued > 0;
2233 }
2234 
2235 static inline bool sched_fair_runnable(struct rq *rq)
2236 {
2237 	return rq->cfs.nr_running > 0;
2238 }
2239 
2240 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2241 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2242 
2243 #define SCA_CHECK		0x01
2244 #define SCA_MIGRATE_DISABLE	0x02
2245 #define SCA_MIGRATE_ENABLE	0x04
2246 #define SCA_USER		0x08
2247 
2248 #ifdef CONFIG_SMP
2249 
2250 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2251 
2252 extern void trigger_load_balance(struct rq *rq);
2253 
2254 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2255 
2256 static inline struct task_struct *get_push_task(struct rq *rq)
2257 {
2258 	struct task_struct *p = rq->curr;
2259 
2260 	lockdep_assert_rq_held(rq);
2261 
2262 	if (rq->push_busy)
2263 		return NULL;
2264 
2265 	if (p->nr_cpus_allowed == 1)
2266 		return NULL;
2267 
2268 	if (p->migration_disabled)
2269 		return NULL;
2270 
2271 	rq->push_busy = true;
2272 	return get_task_struct(p);
2273 }
2274 
2275 extern int push_cpu_stop(void *arg);
2276 
2277 #endif
2278 
2279 #ifdef CONFIG_CPU_IDLE
2280 static inline void idle_set_state(struct rq *rq,
2281 				  struct cpuidle_state *idle_state)
2282 {
2283 	rq->idle_state = idle_state;
2284 }
2285 
2286 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2287 {
2288 	SCHED_WARN_ON(!rcu_read_lock_held());
2289 
2290 	return rq->idle_state;
2291 }
2292 #else
2293 static inline void idle_set_state(struct rq *rq,
2294 				  struct cpuidle_state *idle_state)
2295 {
2296 }
2297 
2298 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2299 {
2300 	return NULL;
2301 }
2302 #endif
2303 
2304 extern void schedule_idle(void);
2305 
2306 extern void sysrq_sched_debug_show(void);
2307 extern void sched_init_granularity(void);
2308 extern void update_max_interval(void);
2309 
2310 extern void init_sched_dl_class(void);
2311 extern void init_sched_rt_class(void);
2312 extern void init_sched_fair_class(void);
2313 
2314 extern void reweight_task(struct task_struct *p, int prio);
2315 
2316 extern void resched_curr(struct rq *rq);
2317 extern void resched_cpu(int cpu);
2318 
2319 extern struct rt_bandwidth def_rt_bandwidth;
2320 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2321 
2322 extern struct dl_bandwidth def_dl_bandwidth;
2323 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2324 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2325 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2326 
2327 #define BW_SHIFT		20
2328 #define BW_UNIT			(1 << BW_SHIFT)
2329 #define RATIO_SHIFT		8
2330 #define MAX_BW_BITS		(64 - BW_SHIFT)
2331 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2332 unsigned long to_ratio(u64 period, u64 runtime);
2333 
2334 extern void init_entity_runnable_average(struct sched_entity *se);
2335 extern void post_init_entity_util_avg(struct task_struct *p);
2336 
2337 #ifdef CONFIG_NO_HZ_FULL
2338 extern bool sched_can_stop_tick(struct rq *rq);
2339 extern int __init sched_tick_offload_init(void);
2340 
2341 /*
2342  * Tick may be needed by tasks in the runqueue depending on their policy and
2343  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2344  * nohz mode if necessary.
2345  */
2346 static inline void sched_update_tick_dependency(struct rq *rq)
2347 {
2348 	int cpu = cpu_of(rq);
2349 
2350 	if (!tick_nohz_full_cpu(cpu))
2351 		return;
2352 
2353 	if (sched_can_stop_tick(rq))
2354 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2355 	else
2356 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2357 }
2358 #else
2359 static inline int sched_tick_offload_init(void) { return 0; }
2360 static inline void sched_update_tick_dependency(struct rq *rq) { }
2361 #endif
2362 
2363 static inline void add_nr_running(struct rq *rq, unsigned count)
2364 {
2365 	unsigned prev_nr = rq->nr_running;
2366 
2367 	rq->nr_running = prev_nr + count;
2368 	if (trace_sched_update_nr_running_tp_enabled()) {
2369 		call_trace_sched_update_nr_running(rq, count);
2370 	}
2371 
2372 #ifdef CONFIG_SMP
2373 	if (prev_nr < 2 && rq->nr_running >= 2) {
2374 		if (!READ_ONCE(rq->rd->overload))
2375 			WRITE_ONCE(rq->rd->overload, 1);
2376 	}
2377 #endif
2378 
2379 	sched_update_tick_dependency(rq);
2380 }
2381 
2382 static inline void sub_nr_running(struct rq *rq, unsigned count)
2383 {
2384 	rq->nr_running -= count;
2385 	if (trace_sched_update_nr_running_tp_enabled()) {
2386 		call_trace_sched_update_nr_running(rq, -count);
2387 	}
2388 
2389 	/* Check if we still need preemption */
2390 	sched_update_tick_dependency(rq);
2391 }
2392 
2393 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2394 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2395 
2396 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2397 
2398 extern const_debug unsigned int sysctl_sched_nr_migrate;
2399 extern const_debug unsigned int sysctl_sched_migration_cost;
2400 
2401 #ifdef CONFIG_SCHED_DEBUG
2402 extern unsigned int sysctl_sched_latency;
2403 extern unsigned int sysctl_sched_min_granularity;
2404 extern unsigned int sysctl_sched_idle_min_granularity;
2405 extern unsigned int sysctl_sched_wakeup_granularity;
2406 extern int sysctl_resched_latency_warn_ms;
2407 extern int sysctl_resched_latency_warn_once;
2408 
2409 extern unsigned int sysctl_sched_tunable_scaling;
2410 
2411 extern unsigned int sysctl_numa_balancing_scan_delay;
2412 extern unsigned int sysctl_numa_balancing_scan_period_min;
2413 extern unsigned int sysctl_numa_balancing_scan_period_max;
2414 extern unsigned int sysctl_numa_balancing_scan_size;
2415 #endif
2416 
2417 #ifdef CONFIG_SCHED_HRTICK
2418 
2419 /*
2420  * Use hrtick when:
2421  *  - enabled by features
2422  *  - hrtimer is actually high res
2423  */
2424 static inline int hrtick_enabled(struct rq *rq)
2425 {
2426 	if (!cpu_active(cpu_of(rq)))
2427 		return 0;
2428 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2429 }
2430 
2431 static inline int hrtick_enabled_fair(struct rq *rq)
2432 {
2433 	if (!sched_feat(HRTICK))
2434 		return 0;
2435 	return hrtick_enabled(rq);
2436 }
2437 
2438 static inline int hrtick_enabled_dl(struct rq *rq)
2439 {
2440 	if (!sched_feat(HRTICK_DL))
2441 		return 0;
2442 	return hrtick_enabled(rq);
2443 }
2444 
2445 void hrtick_start(struct rq *rq, u64 delay);
2446 
2447 #else
2448 
2449 static inline int hrtick_enabled_fair(struct rq *rq)
2450 {
2451 	return 0;
2452 }
2453 
2454 static inline int hrtick_enabled_dl(struct rq *rq)
2455 {
2456 	return 0;
2457 }
2458 
2459 static inline int hrtick_enabled(struct rq *rq)
2460 {
2461 	return 0;
2462 }
2463 
2464 #endif /* CONFIG_SCHED_HRTICK */
2465 
2466 #ifndef arch_scale_freq_tick
2467 static __always_inline
2468 void arch_scale_freq_tick(void)
2469 {
2470 }
2471 #endif
2472 
2473 #ifndef arch_scale_freq_capacity
2474 /**
2475  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2476  * @cpu: the CPU in question.
2477  *
2478  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2479  *
2480  *     f_curr
2481  *     ------ * SCHED_CAPACITY_SCALE
2482  *     f_max
2483  */
2484 static __always_inline
2485 unsigned long arch_scale_freq_capacity(int cpu)
2486 {
2487 	return SCHED_CAPACITY_SCALE;
2488 }
2489 #endif
2490 
2491 
2492 #ifdef CONFIG_SMP
2493 
2494 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2495 {
2496 #ifdef CONFIG_SCHED_CORE
2497 	/*
2498 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2499 	 * order by core-id first and cpu-id second.
2500 	 *
2501 	 * Notably:
2502 	 *
2503 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2504 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2505 	 *
2506 	 * when only cpu-id is considered.
2507 	 */
2508 	if (rq1->core->cpu < rq2->core->cpu)
2509 		return true;
2510 	if (rq1->core->cpu > rq2->core->cpu)
2511 		return false;
2512 
2513 	/*
2514 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2515 	 */
2516 #endif
2517 	return rq1->cpu < rq2->cpu;
2518 }
2519 
2520 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2521 
2522 #ifdef CONFIG_PREEMPTION
2523 
2524 /*
2525  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2526  * way at the expense of forcing extra atomic operations in all
2527  * invocations.  This assures that the double_lock is acquired using the
2528  * same underlying policy as the spinlock_t on this architecture, which
2529  * reduces latency compared to the unfair variant below.  However, it
2530  * also adds more overhead and therefore may reduce throughput.
2531  */
2532 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2533 	__releases(this_rq->lock)
2534 	__acquires(busiest->lock)
2535 	__acquires(this_rq->lock)
2536 {
2537 	raw_spin_rq_unlock(this_rq);
2538 	double_rq_lock(this_rq, busiest);
2539 
2540 	return 1;
2541 }
2542 
2543 #else
2544 /*
2545  * Unfair double_lock_balance: Optimizes throughput at the expense of
2546  * latency by eliminating extra atomic operations when the locks are
2547  * already in proper order on entry.  This favors lower CPU-ids and will
2548  * grant the double lock to lower CPUs over higher ids under contention,
2549  * regardless of entry order into the function.
2550  */
2551 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2552 	__releases(this_rq->lock)
2553 	__acquires(busiest->lock)
2554 	__acquires(this_rq->lock)
2555 {
2556 	if (__rq_lockp(this_rq) == __rq_lockp(busiest))
2557 		return 0;
2558 
2559 	if (likely(raw_spin_rq_trylock(busiest)))
2560 		return 0;
2561 
2562 	if (rq_order_less(this_rq, busiest)) {
2563 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2564 		return 0;
2565 	}
2566 
2567 	raw_spin_rq_unlock(this_rq);
2568 	double_rq_lock(this_rq, busiest);
2569 
2570 	return 1;
2571 }
2572 
2573 #endif /* CONFIG_PREEMPTION */
2574 
2575 /*
2576  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2577  */
2578 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2579 {
2580 	lockdep_assert_irqs_disabled();
2581 
2582 	return _double_lock_balance(this_rq, busiest);
2583 }
2584 
2585 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2586 	__releases(busiest->lock)
2587 {
2588 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2589 		raw_spin_rq_unlock(busiest);
2590 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2591 }
2592 
2593 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2594 {
2595 	if (l1 > l2)
2596 		swap(l1, l2);
2597 
2598 	spin_lock(l1);
2599 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2600 }
2601 
2602 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2603 {
2604 	if (l1 > l2)
2605 		swap(l1, l2);
2606 
2607 	spin_lock_irq(l1);
2608 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2609 }
2610 
2611 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2612 {
2613 	if (l1 > l2)
2614 		swap(l1, l2);
2615 
2616 	raw_spin_lock(l1);
2617 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2618 }
2619 
2620 /*
2621  * double_rq_unlock - safely unlock two runqueues
2622  *
2623  * Note this does not restore interrupts like task_rq_unlock,
2624  * you need to do so manually after calling.
2625  */
2626 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2627 	__releases(rq1->lock)
2628 	__releases(rq2->lock)
2629 {
2630 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2631 		raw_spin_rq_unlock(rq2);
2632 	else
2633 		__release(rq2->lock);
2634 	raw_spin_rq_unlock(rq1);
2635 }
2636 
2637 extern void set_rq_online (struct rq *rq);
2638 extern void set_rq_offline(struct rq *rq);
2639 extern bool sched_smp_initialized;
2640 
2641 #else /* CONFIG_SMP */
2642 
2643 /*
2644  * double_rq_lock - safely lock two runqueues
2645  *
2646  * Note this does not disable interrupts like task_rq_lock,
2647  * you need to do so manually before calling.
2648  */
2649 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2650 	__acquires(rq1->lock)
2651 	__acquires(rq2->lock)
2652 {
2653 	BUG_ON(!irqs_disabled());
2654 	BUG_ON(rq1 != rq2);
2655 	raw_spin_rq_lock(rq1);
2656 	__acquire(rq2->lock);	/* Fake it out ;) */
2657 }
2658 
2659 /*
2660  * double_rq_unlock - safely unlock two runqueues
2661  *
2662  * Note this does not restore interrupts like task_rq_unlock,
2663  * you need to do so manually after calling.
2664  */
2665 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2666 	__releases(rq1->lock)
2667 	__releases(rq2->lock)
2668 {
2669 	BUG_ON(rq1 != rq2);
2670 	raw_spin_rq_unlock(rq1);
2671 	__release(rq2->lock);
2672 }
2673 
2674 #endif
2675 
2676 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2677 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2678 
2679 #ifdef	CONFIG_SCHED_DEBUG
2680 extern bool sched_debug_verbose;
2681 
2682 extern void print_cfs_stats(struct seq_file *m, int cpu);
2683 extern void print_rt_stats(struct seq_file *m, int cpu);
2684 extern void print_dl_stats(struct seq_file *m, int cpu);
2685 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2686 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2687 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2688 
2689 extern void resched_latency_warn(int cpu, u64 latency);
2690 #ifdef CONFIG_NUMA_BALANCING
2691 extern void
2692 show_numa_stats(struct task_struct *p, struct seq_file *m);
2693 extern void
2694 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2695 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2696 #endif /* CONFIG_NUMA_BALANCING */
2697 #else
2698 static inline void resched_latency_warn(int cpu, u64 latency) {}
2699 #endif /* CONFIG_SCHED_DEBUG */
2700 
2701 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2702 extern void init_rt_rq(struct rt_rq *rt_rq);
2703 extern void init_dl_rq(struct dl_rq *dl_rq);
2704 
2705 extern void cfs_bandwidth_usage_inc(void);
2706 extern void cfs_bandwidth_usage_dec(void);
2707 
2708 #ifdef CONFIG_NO_HZ_COMMON
2709 #define NOHZ_BALANCE_KICK_BIT	0
2710 #define NOHZ_STATS_KICK_BIT	1
2711 #define NOHZ_NEWILB_KICK_BIT	2
2712 #define NOHZ_NEXT_KICK_BIT	3
2713 
2714 /* Run rebalance_domains() */
2715 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2716 /* Update blocked load */
2717 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2718 /* Update blocked load when entering idle */
2719 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2720 /* Update nohz.next_balance */
2721 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2722 
2723 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2724 
2725 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2726 
2727 extern void nohz_balance_exit_idle(struct rq *rq);
2728 #else
2729 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2730 #endif
2731 
2732 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2733 extern void nohz_run_idle_balance(int cpu);
2734 #else
2735 static inline void nohz_run_idle_balance(int cpu) { }
2736 #endif
2737 
2738 #ifdef CONFIG_SMP
2739 static inline
2740 void __dl_update(struct dl_bw *dl_b, s64 bw)
2741 {
2742 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2743 	int i;
2744 
2745 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2746 			 "sched RCU must be held");
2747 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2748 		struct rq *rq = cpu_rq(i);
2749 
2750 		rq->dl.extra_bw += bw;
2751 	}
2752 }
2753 #else
2754 static inline
2755 void __dl_update(struct dl_bw *dl_b, s64 bw)
2756 {
2757 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2758 
2759 	dl->extra_bw += bw;
2760 }
2761 #endif
2762 
2763 
2764 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2765 struct irqtime {
2766 	u64			total;
2767 	u64			tick_delta;
2768 	u64			irq_start_time;
2769 	struct u64_stats_sync	sync;
2770 };
2771 
2772 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2773 
2774 /*
2775  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2776  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2777  * and never move forward.
2778  */
2779 static inline u64 irq_time_read(int cpu)
2780 {
2781 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2782 	unsigned int seq;
2783 	u64 total;
2784 
2785 	do {
2786 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2787 		total = irqtime->total;
2788 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2789 
2790 	return total;
2791 }
2792 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2793 
2794 #ifdef CONFIG_CPU_FREQ
2795 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2796 
2797 /**
2798  * cpufreq_update_util - Take a note about CPU utilization changes.
2799  * @rq: Runqueue to carry out the update for.
2800  * @flags: Update reason flags.
2801  *
2802  * This function is called by the scheduler on the CPU whose utilization is
2803  * being updated.
2804  *
2805  * It can only be called from RCU-sched read-side critical sections.
2806  *
2807  * The way cpufreq is currently arranged requires it to evaluate the CPU
2808  * performance state (frequency/voltage) on a regular basis to prevent it from
2809  * being stuck in a completely inadequate performance level for too long.
2810  * That is not guaranteed to happen if the updates are only triggered from CFS
2811  * and DL, though, because they may not be coming in if only RT tasks are
2812  * active all the time (or there are RT tasks only).
2813  *
2814  * As a workaround for that issue, this function is called periodically by the
2815  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2816  * but that really is a band-aid.  Going forward it should be replaced with
2817  * solutions targeted more specifically at RT tasks.
2818  */
2819 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2820 {
2821 	struct update_util_data *data;
2822 
2823 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2824 						  cpu_of(rq)));
2825 	if (data)
2826 		data->func(data, rq_clock(rq), flags);
2827 }
2828 #else
2829 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2830 #endif /* CONFIG_CPU_FREQ */
2831 
2832 #ifdef CONFIG_UCLAMP_TASK
2833 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2834 
2835 /**
2836  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2837  * @rq:		The rq to clamp against. Must not be NULL.
2838  * @util:	The util value to clamp.
2839  * @p:		The task to clamp against. Can be NULL if you want to clamp
2840  *		against @rq only.
2841  *
2842  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2843  *
2844  * If sched_uclamp_used static key is disabled, then just return the util
2845  * without any clamping since uclamp aggregation at the rq level in the fast
2846  * path is disabled, rendering this operation a NOP.
2847  *
2848  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2849  * will return the correct effective uclamp value of the task even if the
2850  * static key is disabled.
2851  */
2852 static __always_inline
2853 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2854 				  struct task_struct *p)
2855 {
2856 	unsigned long min_util = 0;
2857 	unsigned long max_util = 0;
2858 
2859 	if (!static_branch_likely(&sched_uclamp_used))
2860 		return util;
2861 
2862 	if (p) {
2863 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2864 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2865 
2866 		/*
2867 		 * Ignore last runnable task's max clamp, as this task will
2868 		 * reset it. Similarly, no need to read the rq's min clamp.
2869 		 */
2870 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2871 			goto out;
2872 	}
2873 
2874 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2875 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2876 out:
2877 	/*
2878 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2879 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2880 	 * inversion. Fix it now when the clamps are applied.
2881 	 */
2882 	if (unlikely(min_util >= max_util))
2883 		return min_util;
2884 
2885 	return clamp(util, min_util, max_util);
2886 }
2887 
2888 /*
2889  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2890  * by default in the fast path and only gets turned on once userspace performs
2891  * an operation that requires it.
2892  *
2893  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2894  * hence is active.
2895  */
2896 static inline bool uclamp_is_used(void)
2897 {
2898 	return static_branch_likely(&sched_uclamp_used);
2899 }
2900 #else /* CONFIG_UCLAMP_TASK */
2901 static inline
2902 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2903 				  struct task_struct *p)
2904 {
2905 	return util;
2906 }
2907 
2908 static inline bool uclamp_is_used(void)
2909 {
2910 	return false;
2911 }
2912 #endif /* CONFIG_UCLAMP_TASK */
2913 
2914 #ifdef arch_scale_freq_capacity
2915 # ifndef arch_scale_freq_invariant
2916 #  define arch_scale_freq_invariant()	true
2917 # endif
2918 #else
2919 # define arch_scale_freq_invariant()	false
2920 #endif
2921 
2922 #ifdef CONFIG_SMP
2923 static inline unsigned long capacity_orig_of(int cpu)
2924 {
2925 	return cpu_rq(cpu)->cpu_capacity_orig;
2926 }
2927 
2928 /**
2929  * enum cpu_util_type - CPU utilization type
2930  * @FREQUENCY_UTIL:	Utilization used to select frequency
2931  * @ENERGY_UTIL:	Utilization used during energy calculation
2932  *
2933  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2934  * need to be aggregated differently depending on the usage made of them. This
2935  * enum is used within effective_cpu_util() to differentiate the types of
2936  * utilization expected by the callers, and adjust the aggregation accordingly.
2937  */
2938 enum cpu_util_type {
2939 	FREQUENCY_UTIL,
2940 	ENERGY_UTIL,
2941 };
2942 
2943 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2944 				 unsigned long max, enum cpu_util_type type,
2945 				 struct task_struct *p);
2946 
2947 static inline unsigned long cpu_bw_dl(struct rq *rq)
2948 {
2949 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2950 }
2951 
2952 static inline unsigned long cpu_util_dl(struct rq *rq)
2953 {
2954 	return READ_ONCE(rq->avg_dl.util_avg);
2955 }
2956 
2957 static inline unsigned long cpu_util_cfs(struct rq *rq)
2958 {
2959 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2960 
2961 	if (sched_feat(UTIL_EST)) {
2962 		util = max_t(unsigned long, util,
2963 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2964 	}
2965 
2966 	return util;
2967 }
2968 
2969 static inline unsigned long cpu_util_rt(struct rq *rq)
2970 {
2971 	return READ_ONCE(rq->avg_rt.util_avg);
2972 }
2973 #endif
2974 
2975 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2976 static inline unsigned long cpu_util_irq(struct rq *rq)
2977 {
2978 	return rq->avg_irq.util_avg;
2979 }
2980 
2981 static inline
2982 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2983 {
2984 	util *= (max - irq);
2985 	util /= max;
2986 
2987 	return util;
2988 
2989 }
2990 #else
2991 static inline unsigned long cpu_util_irq(struct rq *rq)
2992 {
2993 	return 0;
2994 }
2995 
2996 static inline
2997 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2998 {
2999 	return util;
3000 }
3001 #endif
3002 
3003 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3004 
3005 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3006 
3007 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3008 
3009 static inline bool sched_energy_enabled(void)
3010 {
3011 	return static_branch_unlikely(&sched_energy_present);
3012 }
3013 
3014 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3015 
3016 #define perf_domain_span(pd) NULL
3017 static inline bool sched_energy_enabled(void) { return false; }
3018 
3019 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3020 
3021 #ifdef CONFIG_MEMBARRIER
3022 /*
3023  * The scheduler provides memory barriers required by membarrier between:
3024  * - prior user-space memory accesses and store to rq->membarrier_state,
3025  * - store to rq->membarrier_state and following user-space memory accesses.
3026  * In the same way it provides those guarantees around store to rq->curr.
3027  */
3028 static inline void membarrier_switch_mm(struct rq *rq,
3029 					struct mm_struct *prev_mm,
3030 					struct mm_struct *next_mm)
3031 {
3032 	int membarrier_state;
3033 
3034 	if (prev_mm == next_mm)
3035 		return;
3036 
3037 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3038 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3039 		return;
3040 
3041 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3042 }
3043 #else
3044 static inline void membarrier_switch_mm(struct rq *rq,
3045 					struct mm_struct *prev_mm,
3046 					struct mm_struct *next_mm)
3047 {
3048 }
3049 #endif
3050 
3051 #ifdef CONFIG_SMP
3052 static inline bool is_per_cpu_kthread(struct task_struct *p)
3053 {
3054 	if (!(p->flags & PF_KTHREAD))
3055 		return false;
3056 
3057 	if (p->nr_cpus_allowed != 1)
3058 		return false;
3059 
3060 	return true;
3061 }
3062 #endif
3063 
3064 extern void swake_up_all_locked(struct swait_queue_head *q);
3065 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3066 
3067 #ifdef CONFIG_PREEMPT_DYNAMIC
3068 extern int preempt_dynamic_mode;
3069 extern int sched_dynamic_mode(const char *str);
3070 extern void sched_dynamic_update(int mode);
3071 #endif
3072 
3073