xref: /openbmc/linux/kernel/sched/sched.h (revision 16d364ba6ef2aa59b409df70682770f3ed23f7c0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/bitops.h>
40 #include <linux/blkdev.h>
41 #include <linux/compat.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpufreq.h>
44 #include <linux/cpuidle.h>
45 #include <linux/cpuset.h>
46 #include <linux/ctype.h>
47 #include <linux/debugfs.h>
48 #include <linux/delayacct.h>
49 #include <linux/energy_model.h>
50 #include <linux/init_task.h>
51 #include <linux/kprobes.h>
52 #include <linux/kthread.h>
53 #include <linux/membarrier.h>
54 #include <linux/migrate.h>
55 #include <linux/mmu_context.h>
56 #include <linux/nmi.h>
57 #include <linux/proc_fs.h>
58 #include <linux/prefetch.h>
59 #include <linux/profile.h>
60 #include <linux/psi.h>
61 #include <linux/ratelimit.h>
62 #include <linux/rcupdate_wait.h>
63 #include <linux/security.h>
64 #include <linux/stop_machine.h>
65 #include <linux/suspend.h>
66 #include <linux/swait.h>
67 #include <linux/syscalls.h>
68 #include <linux/task_work.h>
69 #include <linux/tsacct_kern.h>
70 
71 #include <asm/tlb.h>
72 
73 #ifdef CONFIG_PARAVIRT
74 # include <asm/paravirt.h>
75 #endif
76 
77 #include "cpupri.h"
78 #include "cpudeadline.h"
79 
80 #include <trace/events/sched.h>
81 
82 #ifdef CONFIG_SCHED_DEBUG
83 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
84 #else
85 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
86 #endif
87 
88 struct rq;
89 struct cpuidle_state;
90 
91 /* task_struct::on_rq states: */
92 #define TASK_ON_RQ_QUEUED	1
93 #define TASK_ON_RQ_MIGRATING	2
94 
95 extern __read_mostly int scheduler_running;
96 
97 extern unsigned long calc_load_update;
98 extern atomic_long_t calc_load_tasks;
99 
100 extern void calc_global_load_tick(struct rq *this_rq);
101 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
102 
103 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
104 /*
105  * Helpers for converting nanosecond timing to jiffy resolution
106  */
107 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 
109 /*
110  * Increase resolution of nice-level calculations for 64-bit architectures.
111  * The extra resolution improves shares distribution and load balancing of
112  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
113  * hierarchies, especially on larger systems. This is not a user-visible change
114  * and does not change the user-interface for setting shares/weights.
115  *
116  * We increase resolution only if we have enough bits to allow this increased
117  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
118  * are pretty high and the returns do not justify the increased costs.
119  *
120  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
121  * increase coverage and consistency always enable it on 64-bit platforms.
122  */
123 #ifdef CONFIG_64BIT
124 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load_down(w) \
127 ({ \
128 	unsigned long __w = (w); \
129 	if (__w) \
130 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
131 	__w; \
132 })
133 #else
134 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
135 # define scale_load(w)		(w)
136 # define scale_load_down(w)	(w)
137 #endif
138 
139 /*
140  * Task weight (visible to users) and its load (invisible to users) have
141  * independent resolution, but they should be well calibrated. We use
142  * scale_load() and scale_load_down(w) to convert between them. The
143  * following must be true:
144  *
145  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
146  *
147  */
148 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
149 
150 /*
151  * Single value that decides SCHED_DEADLINE internal math precision.
152  * 10 -> just above 1us
153  * 9  -> just above 0.5us
154  */
155 #define DL_SCALE		10
156 
157 /*
158  * Single value that denotes runtime == period, ie unlimited time.
159  */
160 #define RUNTIME_INF		((u64)~0ULL)
161 
162 static inline int idle_policy(int policy)
163 {
164 	return policy == SCHED_IDLE;
165 }
166 static inline int fair_policy(int policy)
167 {
168 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
169 }
170 
171 static inline int rt_policy(int policy)
172 {
173 	return policy == SCHED_FIFO || policy == SCHED_RR;
174 }
175 
176 static inline int dl_policy(int policy)
177 {
178 	return policy == SCHED_DEADLINE;
179 }
180 static inline bool valid_policy(int policy)
181 {
182 	return idle_policy(policy) || fair_policy(policy) ||
183 		rt_policy(policy) || dl_policy(policy);
184 }
185 
186 static inline int task_has_idle_policy(struct task_struct *p)
187 {
188 	return idle_policy(p->policy);
189 }
190 
191 static inline int task_has_rt_policy(struct task_struct *p)
192 {
193 	return rt_policy(p->policy);
194 }
195 
196 static inline int task_has_dl_policy(struct task_struct *p)
197 {
198 	return dl_policy(p->policy);
199 }
200 
201 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
202 
203 static inline void update_avg(u64 *avg, u64 sample)
204 {
205 	s64 diff = sample - *avg;
206 	*avg += diff / 8;
207 }
208 
209 /*
210  * Shifting a value by an exponent greater *or equal* to the size of said value
211  * is UB; cap at size-1.
212  */
213 #define shr_bound(val, shift)							\
214 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
215 
216 /*
217  * !! For sched_setattr_nocheck() (kernel) only !!
218  *
219  * This is actually gross. :(
220  *
221  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
222  * tasks, but still be able to sleep. We need this on platforms that cannot
223  * atomically change clock frequency. Remove once fast switching will be
224  * available on such platforms.
225  *
226  * SUGOV stands for SchedUtil GOVernor.
227  */
228 #define SCHED_FLAG_SUGOV	0x10000000
229 
230 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
231 
232 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
233 {
234 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
235 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
236 #else
237 	return false;
238 #endif
239 }
240 
241 /*
242  * Tells if entity @a should preempt entity @b.
243  */
244 static inline bool
245 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
246 {
247 	return dl_entity_is_special(a) ||
248 	       dl_time_before(a->deadline, b->deadline);
249 }
250 
251 /*
252  * This is the priority-queue data structure of the RT scheduling class:
253  */
254 struct rt_prio_array {
255 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
256 	struct list_head queue[MAX_RT_PRIO];
257 };
258 
259 struct rt_bandwidth {
260 	/* nests inside the rq lock: */
261 	raw_spinlock_t		rt_runtime_lock;
262 	ktime_t			rt_period;
263 	u64			rt_runtime;
264 	struct hrtimer		rt_period_timer;
265 	unsigned int		rt_period_active;
266 };
267 
268 void __dl_clear_params(struct task_struct *p);
269 
270 struct dl_bandwidth {
271 	raw_spinlock_t		dl_runtime_lock;
272 	u64			dl_runtime;
273 	u64			dl_period;
274 };
275 
276 static inline int dl_bandwidth_enabled(void)
277 {
278 	return sysctl_sched_rt_runtime >= 0;
279 }
280 
281 /*
282  * To keep the bandwidth of -deadline tasks under control
283  * we need some place where:
284  *  - store the maximum -deadline bandwidth of each cpu;
285  *  - cache the fraction of bandwidth that is currently allocated in
286  *    each root domain;
287  *
288  * This is all done in the data structure below. It is similar to the
289  * one used for RT-throttling (rt_bandwidth), with the main difference
290  * that, since here we are only interested in admission control, we
291  * do not decrease any runtime while the group "executes", neither we
292  * need a timer to replenish it.
293  *
294  * With respect to SMP, bandwidth is given on a per root domain basis,
295  * meaning that:
296  *  - bw (< 100%) is the deadline bandwidth of each CPU;
297  *  - total_bw is the currently allocated bandwidth in each root domain;
298  */
299 struct dl_bw {
300 	raw_spinlock_t		lock;
301 	u64			bw;
302 	u64			total_bw;
303 };
304 
305 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
306 
307 static inline
308 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
309 {
310 	dl_b->total_bw -= tsk_bw;
311 	__dl_update(dl_b, (s32)tsk_bw / cpus);
312 }
313 
314 static inline
315 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
316 {
317 	dl_b->total_bw += tsk_bw;
318 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
319 }
320 
321 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
322 				 u64 old_bw, u64 new_bw)
323 {
324 	return dl_b->bw != -1 &&
325 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
326 }
327 
328 /*
329  * Verify the fitness of task @p to run on @cpu taking into account the
330  * CPU original capacity and the runtime/deadline ratio of the task.
331  *
332  * The function will return true if the CPU original capacity of the
333  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
334  * task and false otherwise.
335  */
336 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
337 {
338 	unsigned long cap = arch_scale_cpu_capacity(cpu);
339 
340 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
341 }
342 
343 extern void init_dl_bw(struct dl_bw *dl_b);
344 extern int  sched_dl_global_validate(void);
345 extern void sched_dl_do_global(void);
346 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
347 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
348 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
349 extern bool __checkparam_dl(const struct sched_attr *attr);
350 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
351 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
352 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
353 extern bool dl_cpu_busy(unsigned int cpu);
354 
355 #ifdef CONFIG_CGROUP_SCHED
356 
357 #include <linux/cgroup.h>
358 #include <linux/psi.h>
359 
360 struct cfs_rq;
361 struct rt_rq;
362 
363 extern struct list_head task_groups;
364 
365 struct cfs_bandwidth {
366 #ifdef CONFIG_CFS_BANDWIDTH
367 	raw_spinlock_t		lock;
368 	ktime_t			period;
369 	u64			quota;
370 	u64			runtime;
371 	u64			burst;
372 	u64			runtime_snap;
373 	s64			hierarchical_quota;
374 
375 	u8			idle;
376 	u8			period_active;
377 	u8			slack_started;
378 	struct hrtimer		period_timer;
379 	struct hrtimer		slack_timer;
380 	struct list_head	throttled_cfs_rq;
381 
382 	/* Statistics: */
383 	int			nr_periods;
384 	int			nr_throttled;
385 	int			nr_burst;
386 	u64			throttled_time;
387 	u64			burst_time;
388 #endif
389 };
390 
391 /* Task group related information */
392 struct task_group {
393 	struct cgroup_subsys_state css;
394 
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 	/* schedulable entities of this group on each CPU */
397 	struct sched_entity	**se;
398 	/* runqueue "owned" by this group on each CPU */
399 	struct cfs_rq		**cfs_rq;
400 	unsigned long		shares;
401 
402 	/* A positive value indicates that this is a SCHED_IDLE group. */
403 	int			idle;
404 
405 #ifdef	CONFIG_SMP
406 	/*
407 	 * load_avg can be heavily contended at clock tick time, so put
408 	 * it in its own cacheline separated from the fields above which
409 	 * will also be accessed at each tick.
410 	 */
411 	atomic_long_t		load_avg ____cacheline_aligned;
412 #endif
413 #endif
414 
415 #ifdef CONFIG_RT_GROUP_SCHED
416 	struct sched_rt_entity	**rt_se;
417 	struct rt_rq		**rt_rq;
418 
419 	struct rt_bandwidth	rt_bandwidth;
420 #endif
421 
422 	struct rcu_head		rcu;
423 	struct list_head	list;
424 
425 	struct task_group	*parent;
426 	struct list_head	siblings;
427 	struct list_head	children;
428 
429 #ifdef CONFIG_SCHED_AUTOGROUP
430 	struct autogroup	*autogroup;
431 #endif
432 
433 	struct cfs_bandwidth	cfs_bandwidth;
434 
435 #ifdef CONFIG_UCLAMP_TASK_GROUP
436 	/* The two decimal precision [%] value requested from user-space */
437 	unsigned int		uclamp_pct[UCLAMP_CNT];
438 	/* Clamp values requested for a task group */
439 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
440 	/* Effective clamp values used for a task group */
441 	struct uclamp_se	uclamp[UCLAMP_CNT];
442 #endif
443 
444 };
445 
446 #ifdef CONFIG_FAIR_GROUP_SCHED
447 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
448 
449 /*
450  * A weight of 0 or 1 can cause arithmetics problems.
451  * A weight of a cfs_rq is the sum of weights of which entities
452  * are queued on this cfs_rq, so a weight of a entity should not be
453  * too large, so as the shares value of a task group.
454  * (The default weight is 1024 - so there's no practical
455  *  limitation from this.)
456  */
457 #define MIN_SHARES		(1UL <<  1)
458 #define MAX_SHARES		(1UL << 18)
459 #endif
460 
461 typedef int (*tg_visitor)(struct task_group *, void *);
462 
463 extern int walk_tg_tree_from(struct task_group *from,
464 			     tg_visitor down, tg_visitor up, void *data);
465 
466 /*
467  * Iterate the full tree, calling @down when first entering a node and @up when
468  * leaving it for the final time.
469  *
470  * Caller must hold rcu_lock or sufficient equivalent.
471  */
472 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
473 {
474 	return walk_tg_tree_from(&root_task_group, down, up, data);
475 }
476 
477 extern int tg_nop(struct task_group *tg, void *data);
478 
479 extern void free_fair_sched_group(struct task_group *tg);
480 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
481 extern void online_fair_sched_group(struct task_group *tg);
482 extern void unregister_fair_sched_group(struct task_group *tg);
483 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
484 			struct sched_entity *se, int cpu,
485 			struct sched_entity *parent);
486 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
487 
488 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
489 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
490 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
491 
492 extern void free_rt_sched_group(struct task_group *tg);
493 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
494 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
495 		struct sched_rt_entity *rt_se, int cpu,
496 		struct sched_rt_entity *parent);
497 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
498 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
499 extern long sched_group_rt_runtime(struct task_group *tg);
500 extern long sched_group_rt_period(struct task_group *tg);
501 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
502 
503 extern struct task_group *sched_create_group(struct task_group *parent);
504 extern void sched_online_group(struct task_group *tg,
505 			       struct task_group *parent);
506 extern void sched_destroy_group(struct task_group *tg);
507 extern void sched_offline_group(struct task_group *tg);
508 
509 extern void sched_move_task(struct task_struct *tsk);
510 
511 #ifdef CONFIG_FAIR_GROUP_SCHED
512 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
513 
514 extern int sched_group_set_idle(struct task_group *tg, long idle);
515 
516 #ifdef CONFIG_SMP
517 extern void set_task_rq_fair(struct sched_entity *se,
518 			     struct cfs_rq *prev, struct cfs_rq *next);
519 #else /* !CONFIG_SMP */
520 static inline void set_task_rq_fair(struct sched_entity *se,
521 			     struct cfs_rq *prev, struct cfs_rq *next) { }
522 #endif /* CONFIG_SMP */
523 #endif /* CONFIG_FAIR_GROUP_SCHED */
524 
525 #else /* CONFIG_CGROUP_SCHED */
526 
527 struct cfs_bandwidth { };
528 
529 #endif	/* CONFIG_CGROUP_SCHED */
530 
531 /* CFS-related fields in a runqueue */
532 struct cfs_rq {
533 	struct load_weight	load;
534 	unsigned int		nr_running;
535 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
536 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
537 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
538 
539 	u64			exec_clock;
540 	u64			min_vruntime;
541 #ifdef CONFIG_SCHED_CORE
542 	unsigned int		forceidle_seq;
543 	u64			min_vruntime_fi;
544 #endif
545 
546 #ifndef CONFIG_64BIT
547 	u64			min_vruntime_copy;
548 #endif
549 
550 	struct rb_root_cached	tasks_timeline;
551 
552 	/*
553 	 * 'curr' points to currently running entity on this cfs_rq.
554 	 * It is set to NULL otherwise (i.e when none are currently running).
555 	 */
556 	struct sched_entity	*curr;
557 	struct sched_entity	*next;
558 	struct sched_entity	*last;
559 	struct sched_entity	*skip;
560 
561 #ifdef	CONFIG_SCHED_DEBUG
562 	unsigned int		nr_spread_over;
563 #endif
564 
565 #ifdef CONFIG_SMP
566 	/*
567 	 * CFS load tracking
568 	 */
569 	struct sched_avg	avg;
570 #ifndef CONFIG_64BIT
571 	u64			load_last_update_time_copy;
572 #endif
573 	struct {
574 		raw_spinlock_t	lock ____cacheline_aligned;
575 		int		nr;
576 		unsigned long	load_avg;
577 		unsigned long	util_avg;
578 		unsigned long	runnable_avg;
579 	} removed;
580 
581 #ifdef CONFIG_FAIR_GROUP_SCHED
582 	unsigned long		tg_load_avg_contrib;
583 	long			propagate;
584 	long			prop_runnable_sum;
585 
586 	/*
587 	 *   h_load = weight * f(tg)
588 	 *
589 	 * Where f(tg) is the recursive weight fraction assigned to
590 	 * this group.
591 	 */
592 	unsigned long		h_load;
593 	u64			last_h_load_update;
594 	struct sched_entity	*h_load_next;
595 #endif /* CONFIG_FAIR_GROUP_SCHED */
596 #endif /* CONFIG_SMP */
597 
598 #ifdef CONFIG_FAIR_GROUP_SCHED
599 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
600 
601 	/*
602 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
603 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
604 	 * (like users, containers etc.)
605 	 *
606 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
607 	 * This list is used during load balance.
608 	 */
609 	int			on_list;
610 	struct list_head	leaf_cfs_rq_list;
611 	struct task_group	*tg;	/* group that "owns" this runqueue */
612 
613 	/* Locally cached copy of our task_group's idle value */
614 	int			idle;
615 
616 #ifdef CONFIG_CFS_BANDWIDTH
617 	int			runtime_enabled;
618 	s64			runtime_remaining;
619 
620 	u64			throttled_clock;
621 	u64			throttled_clock_task;
622 	u64			throttled_clock_task_time;
623 	int			throttled;
624 	int			throttle_count;
625 	struct list_head	throttled_list;
626 #endif /* CONFIG_CFS_BANDWIDTH */
627 #endif /* CONFIG_FAIR_GROUP_SCHED */
628 };
629 
630 static inline int rt_bandwidth_enabled(void)
631 {
632 	return sysctl_sched_rt_runtime >= 0;
633 }
634 
635 /* RT IPI pull logic requires IRQ_WORK */
636 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
637 # define HAVE_RT_PUSH_IPI
638 #endif
639 
640 /* Real-Time classes' related field in a runqueue: */
641 struct rt_rq {
642 	struct rt_prio_array	active;
643 	unsigned int		rt_nr_running;
644 	unsigned int		rr_nr_running;
645 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
646 	struct {
647 		int		curr; /* highest queued rt task prio */
648 #ifdef CONFIG_SMP
649 		int		next; /* next highest */
650 #endif
651 	} highest_prio;
652 #endif
653 #ifdef CONFIG_SMP
654 	unsigned int		rt_nr_migratory;
655 	unsigned int		rt_nr_total;
656 	int			overloaded;
657 	struct plist_head	pushable_tasks;
658 
659 #endif /* CONFIG_SMP */
660 	int			rt_queued;
661 
662 	int			rt_throttled;
663 	u64			rt_time;
664 	u64			rt_runtime;
665 	/* Nests inside the rq lock: */
666 	raw_spinlock_t		rt_runtime_lock;
667 
668 #ifdef CONFIG_RT_GROUP_SCHED
669 	unsigned int		rt_nr_boosted;
670 
671 	struct rq		*rq;
672 	struct task_group	*tg;
673 #endif
674 };
675 
676 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
677 {
678 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
679 }
680 
681 /* Deadline class' related fields in a runqueue */
682 struct dl_rq {
683 	/* runqueue is an rbtree, ordered by deadline */
684 	struct rb_root_cached	root;
685 
686 	unsigned int		dl_nr_running;
687 
688 #ifdef CONFIG_SMP
689 	/*
690 	 * Deadline values of the currently executing and the
691 	 * earliest ready task on this rq. Caching these facilitates
692 	 * the decision whether or not a ready but not running task
693 	 * should migrate somewhere else.
694 	 */
695 	struct {
696 		u64		curr;
697 		u64		next;
698 	} earliest_dl;
699 
700 	unsigned int		dl_nr_migratory;
701 	int			overloaded;
702 
703 	/*
704 	 * Tasks on this rq that can be pushed away. They are kept in
705 	 * an rb-tree, ordered by tasks' deadlines, with caching
706 	 * of the leftmost (earliest deadline) element.
707 	 */
708 	struct rb_root_cached	pushable_dl_tasks_root;
709 #else
710 	struct dl_bw		dl_bw;
711 #endif
712 	/*
713 	 * "Active utilization" for this runqueue: increased when a
714 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
715 	 * task blocks
716 	 */
717 	u64			running_bw;
718 
719 	/*
720 	 * Utilization of the tasks "assigned" to this runqueue (including
721 	 * the tasks that are in runqueue and the tasks that executed on this
722 	 * CPU and blocked). Increased when a task moves to this runqueue, and
723 	 * decreased when the task moves away (migrates, changes scheduling
724 	 * policy, or terminates).
725 	 * This is needed to compute the "inactive utilization" for the
726 	 * runqueue (inactive utilization = this_bw - running_bw).
727 	 */
728 	u64			this_bw;
729 	u64			extra_bw;
730 
731 	/*
732 	 * Inverse of the fraction of CPU utilization that can be reclaimed
733 	 * by the GRUB algorithm.
734 	 */
735 	u64			bw_ratio;
736 };
737 
738 #ifdef CONFIG_FAIR_GROUP_SCHED
739 /* An entity is a task if it doesn't "own" a runqueue */
740 #define entity_is_task(se)	(!se->my_q)
741 
742 static inline void se_update_runnable(struct sched_entity *se)
743 {
744 	if (!entity_is_task(se))
745 		se->runnable_weight = se->my_q->h_nr_running;
746 }
747 
748 static inline long se_runnable(struct sched_entity *se)
749 {
750 	if (entity_is_task(se))
751 		return !!se->on_rq;
752 	else
753 		return se->runnable_weight;
754 }
755 
756 #else
757 #define entity_is_task(se)	1
758 
759 static inline void se_update_runnable(struct sched_entity *se) {}
760 
761 static inline long se_runnable(struct sched_entity *se)
762 {
763 	return !!se->on_rq;
764 }
765 #endif
766 
767 #ifdef CONFIG_SMP
768 /*
769  * XXX we want to get rid of these helpers and use the full load resolution.
770  */
771 static inline long se_weight(struct sched_entity *se)
772 {
773 	return scale_load_down(se->load.weight);
774 }
775 
776 
777 static inline bool sched_asym_prefer(int a, int b)
778 {
779 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
780 }
781 
782 struct perf_domain {
783 	struct em_perf_domain *em_pd;
784 	struct perf_domain *next;
785 	struct rcu_head rcu;
786 };
787 
788 /* Scheduling group status flags */
789 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
790 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
791 
792 /*
793  * We add the notion of a root-domain which will be used to define per-domain
794  * variables. Each exclusive cpuset essentially defines an island domain by
795  * fully partitioning the member CPUs from any other cpuset. Whenever a new
796  * exclusive cpuset is created, we also create and attach a new root-domain
797  * object.
798  *
799  */
800 struct root_domain {
801 	atomic_t		refcount;
802 	atomic_t		rto_count;
803 	struct rcu_head		rcu;
804 	cpumask_var_t		span;
805 	cpumask_var_t		online;
806 
807 	/*
808 	 * Indicate pullable load on at least one CPU, e.g:
809 	 * - More than one runnable task
810 	 * - Running task is misfit
811 	 */
812 	int			overload;
813 
814 	/* Indicate one or more cpus over-utilized (tipping point) */
815 	int			overutilized;
816 
817 	/*
818 	 * The bit corresponding to a CPU gets set here if such CPU has more
819 	 * than one runnable -deadline task (as it is below for RT tasks).
820 	 */
821 	cpumask_var_t		dlo_mask;
822 	atomic_t		dlo_count;
823 	struct dl_bw		dl_bw;
824 	struct cpudl		cpudl;
825 
826 	/*
827 	 * Indicate whether a root_domain's dl_bw has been checked or
828 	 * updated. It's monotonously increasing value.
829 	 *
830 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
831 	 * that u64 is 'big enough'. So that shouldn't be a concern.
832 	 */
833 	u64 visit_gen;
834 
835 #ifdef HAVE_RT_PUSH_IPI
836 	/*
837 	 * For IPI pull requests, loop across the rto_mask.
838 	 */
839 	struct irq_work		rto_push_work;
840 	raw_spinlock_t		rto_lock;
841 	/* These are only updated and read within rto_lock */
842 	int			rto_loop;
843 	int			rto_cpu;
844 	/* These atomics are updated outside of a lock */
845 	atomic_t		rto_loop_next;
846 	atomic_t		rto_loop_start;
847 #endif
848 	/*
849 	 * The "RT overload" flag: it gets set if a CPU has more than
850 	 * one runnable RT task.
851 	 */
852 	cpumask_var_t		rto_mask;
853 	struct cpupri		cpupri;
854 
855 	unsigned long		max_cpu_capacity;
856 
857 	/*
858 	 * NULL-terminated list of performance domains intersecting with the
859 	 * CPUs of the rd. Protected by RCU.
860 	 */
861 	struct perf_domain __rcu *pd;
862 };
863 
864 extern void init_defrootdomain(void);
865 extern int sched_init_domains(const struct cpumask *cpu_map);
866 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
867 extern void sched_get_rd(struct root_domain *rd);
868 extern void sched_put_rd(struct root_domain *rd);
869 
870 #ifdef HAVE_RT_PUSH_IPI
871 extern void rto_push_irq_work_func(struct irq_work *work);
872 #endif
873 #endif /* CONFIG_SMP */
874 
875 #ifdef CONFIG_UCLAMP_TASK
876 /*
877  * struct uclamp_bucket - Utilization clamp bucket
878  * @value: utilization clamp value for tasks on this clamp bucket
879  * @tasks: number of RUNNABLE tasks on this clamp bucket
880  *
881  * Keep track of how many tasks are RUNNABLE for a given utilization
882  * clamp value.
883  */
884 struct uclamp_bucket {
885 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
886 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
887 };
888 
889 /*
890  * struct uclamp_rq - rq's utilization clamp
891  * @value: currently active clamp values for a rq
892  * @bucket: utilization clamp buckets affecting a rq
893  *
894  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
895  * A clamp value is affecting a rq when there is at least one task RUNNABLE
896  * (or actually running) with that value.
897  *
898  * There are up to UCLAMP_CNT possible different clamp values, currently there
899  * are only two: minimum utilization and maximum utilization.
900  *
901  * All utilization clamping values are MAX aggregated, since:
902  * - for util_min: we want to run the CPU at least at the max of the minimum
903  *   utilization required by its currently RUNNABLE tasks.
904  * - for util_max: we want to allow the CPU to run up to the max of the
905  *   maximum utilization allowed by its currently RUNNABLE tasks.
906  *
907  * Since on each system we expect only a limited number of different
908  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
909  * the metrics required to compute all the per-rq utilization clamp values.
910  */
911 struct uclamp_rq {
912 	unsigned int value;
913 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
914 };
915 
916 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
917 #endif /* CONFIG_UCLAMP_TASK */
918 
919 /*
920  * This is the main, per-CPU runqueue data structure.
921  *
922  * Locking rule: those places that want to lock multiple runqueues
923  * (such as the load balancing or the thread migration code), lock
924  * acquire operations must be ordered by ascending &runqueue.
925  */
926 struct rq {
927 	/* runqueue lock: */
928 	raw_spinlock_t		__lock;
929 
930 	/*
931 	 * nr_running and cpu_load should be in the same cacheline because
932 	 * remote CPUs use both these fields when doing load calculation.
933 	 */
934 	unsigned int		nr_running;
935 #ifdef CONFIG_NUMA_BALANCING
936 	unsigned int		nr_numa_running;
937 	unsigned int		nr_preferred_running;
938 	unsigned int		numa_migrate_on;
939 #endif
940 #ifdef CONFIG_NO_HZ_COMMON
941 #ifdef CONFIG_SMP
942 	unsigned long		last_blocked_load_update_tick;
943 	unsigned int		has_blocked_load;
944 	call_single_data_t	nohz_csd;
945 #endif /* CONFIG_SMP */
946 	unsigned int		nohz_tick_stopped;
947 	atomic_t		nohz_flags;
948 #endif /* CONFIG_NO_HZ_COMMON */
949 
950 #ifdef CONFIG_SMP
951 	unsigned int		ttwu_pending;
952 #endif
953 	u64			nr_switches;
954 
955 #ifdef CONFIG_UCLAMP_TASK
956 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
957 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
958 	unsigned int		uclamp_flags;
959 #define UCLAMP_FLAG_IDLE 0x01
960 #endif
961 
962 	struct cfs_rq		cfs;
963 	struct rt_rq		rt;
964 	struct dl_rq		dl;
965 
966 #ifdef CONFIG_FAIR_GROUP_SCHED
967 	/* list of leaf cfs_rq on this CPU: */
968 	struct list_head	leaf_cfs_rq_list;
969 	struct list_head	*tmp_alone_branch;
970 #endif /* CONFIG_FAIR_GROUP_SCHED */
971 
972 	/*
973 	 * This is part of a global counter where only the total sum
974 	 * over all CPUs matters. A task can increase this counter on
975 	 * one CPU and if it got migrated afterwards it may decrease
976 	 * it on another CPU. Always updated under the runqueue lock:
977 	 */
978 	unsigned int		nr_uninterruptible;
979 
980 	struct task_struct __rcu	*curr;
981 	struct task_struct	*idle;
982 	struct task_struct	*stop;
983 	unsigned long		next_balance;
984 	struct mm_struct	*prev_mm;
985 
986 	unsigned int		clock_update_flags;
987 	u64			clock;
988 	/* Ensure that all clocks are in the same cache line */
989 	u64			clock_task ____cacheline_aligned;
990 	u64			clock_pelt;
991 	unsigned long		lost_idle_time;
992 
993 	atomic_t		nr_iowait;
994 
995 #ifdef CONFIG_SCHED_DEBUG
996 	u64 last_seen_need_resched_ns;
997 	int ticks_without_resched;
998 #endif
999 
1000 #ifdef CONFIG_MEMBARRIER
1001 	int membarrier_state;
1002 #endif
1003 
1004 #ifdef CONFIG_SMP
1005 	struct root_domain		*rd;
1006 	struct sched_domain __rcu	*sd;
1007 
1008 	unsigned long		cpu_capacity;
1009 	unsigned long		cpu_capacity_orig;
1010 
1011 	struct callback_head	*balance_callback;
1012 
1013 	unsigned char		nohz_idle_balance;
1014 	unsigned char		idle_balance;
1015 
1016 	unsigned long		misfit_task_load;
1017 
1018 	/* For active balancing */
1019 	int			active_balance;
1020 	int			push_cpu;
1021 	struct cpu_stop_work	active_balance_work;
1022 
1023 	/* CPU of this runqueue: */
1024 	int			cpu;
1025 	int			online;
1026 
1027 	struct list_head cfs_tasks;
1028 
1029 	struct sched_avg	avg_rt;
1030 	struct sched_avg	avg_dl;
1031 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1032 	struct sched_avg	avg_irq;
1033 #endif
1034 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1035 	struct sched_avg	avg_thermal;
1036 #endif
1037 	u64			idle_stamp;
1038 	u64			avg_idle;
1039 
1040 	unsigned long		wake_stamp;
1041 	u64			wake_avg_idle;
1042 
1043 	/* This is used to determine avg_idle's max value */
1044 	u64			max_idle_balance_cost;
1045 
1046 #ifdef CONFIG_HOTPLUG_CPU
1047 	struct rcuwait		hotplug_wait;
1048 #endif
1049 #endif /* CONFIG_SMP */
1050 
1051 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1052 	u64			prev_irq_time;
1053 #endif
1054 #ifdef CONFIG_PARAVIRT
1055 	u64			prev_steal_time;
1056 #endif
1057 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1058 	u64			prev_steal_time_rq;
1059 #endif
1060 
1061 	/* calc_load related fields */
1062 	unsigned long		calc_load_update;
1063 	long			calc_load_active;
1064 
1065 #ifdef CONFIG_SCHED_HRTICK
1066 #ifdef CONFIG_SMP
1067 	call_single_data_t	hrtick_csd;
1068 #endif
1069 	struct hrtimer		hrtick_timer;
1070 	ktime_t 		hrtick_time;
1071 #endif
1072 
1073 #ifdef CONFIG_SCHEDSTATS
1074 	/* latency stats */
1075 	struct sched_info	rq_sched_info;
1076 	unsigned long long	rq_cpu_time;
1077 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1078 
1079 	/* sys_sched_yield() stats */
1080 	unsigned int		yld_count;
1081 
1082 	/* schedule() stats */
1083 	unsigned int		sched_count;
1084 	unsigned int		sched_goidle;
1085 
1086 	/* try_to_wake_up() stats */
1087 	unsigned int		ttwu_count;
1088 	unsigned int		ttwu_local;
1089 #endif
1090 
1091 #ifdef CONFIG_CPU_IDLE
1092 	/* Must be inspected within a rcu lock section */
1093 	struct cpuidle_state	*idle_state;
1094 #endif
1095 
1096 #ifdef CONFIG_SMP
1097 	unsigned int		nr_pinned;
1098 #endif
1099 	unsigned int		push_busy;
1100 	struct cpu_stop_work	push_work;
1101 
1102 #ifdef CONFIG_SCHED_CORE
1103 	/* per rq */
1104 	struct rq		*core;
1105 	struct task_struct	*core_pick;
1106 	unsigned int		core_enabled;
1107 	unsigned int		core_sched_seq;
1108 	struct rb_root		core_tree;
1109 
1110 	/* shared state -- careful with sched_core_cpu_deactivate() */
1111 	unsigned int		core_task_seq;
1112 	unsigned int		core_pick_seq;
1113 	unsigned long		core_cookie;
1114 	unsigned char		core_forceidle;
1115 	unsigned int		core_forceidle_seq;
1116 #endif
1117 };
1118 
1119 #ifdef CONFIG_FAIR_GROUP_SCHED
1120 
1121 /* CPU runqueue to which this cfs_rq is attached */
1122 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1123 {
1124 	return cfs_rq->rq;
1125 }
1126 
1127 #else
1128 
1129 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1130 {
1131 	return container_of(cfs_rq, struct rq, cfs);
1132 }
1133 #endif
1134 
1135 static inline int cpu_of(struct rq *rq)
1136 {
1137 #ifdef CONFIG_SMP
1138 	return rq->cpu;
1139 #else
1140 	return 0;
1141 #endif
1142 }
1143 
1144 #define MDF_PUSH	0x01
1145 
1146 static inline bool is_migration_disabled(struct task_struct *p)
1147 {
1148 #ifdef CONFIG_SMP
1149 	return p->migration_disabled;
1150 #else
1151 	return false;
1152 #endif
1153 }
1154 
1155 struct sched_group;
1156 #ifdef CONFIG_SCHED_CORE
1157 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1158 
1159 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1160 
1161 static inline bool sched_core_enabled(struct rq *rq)
1162 {
1163 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1164 }
1165 
1166 static inline bool sched_core_disabled(void)
1167 {
1168 	return !static_branch_unlikely(&__sched_core_enabled);
1169 }
1170 
1171 /*
1172  * Be careful with this function; not for general use. The return value isn't
1173  * stable unless you actually hold a relevant rq->__lock.
1174  */
1175 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1176 {
1177 	if (sched_core_enabled(rq))
1178 		return &rq->core->__lock;
1179 
1180 	return &rq->__lock;
1181 }
1182 
1183 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1184 {
1185 	if (rq->core_enabled)
1186 		return &rq->core->__lock;
1187 
1188 	return &rq->__lock;
1189 }
1190 
1191 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1192 
1193 /*
1194  * Helpers to check if the CPU's core cookie matches with the task's cookie
1195  * when core scheduling is enabled.
1196  * A special case is that the task's cookie always matches with CPU's core
1197  * cookie if the CPU is in an idle core.
1198  */
1199 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1200 {
1201 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1202 	if (!sched_core_enabled(rq))
1203 		return true;
1204 
1205 	return rq->core->core_cookie == p->core_cookie;
1206 }
1207 
1208 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1209 {
1210 	bool idle_core = true;
1211 	int cpu;
1212 
1213 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1214 	if (!sched_core_enabled(rq))
1215 		return true;
1216 
1217 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1218 		if (!available_idle_cpu(cpu)) {
1219 			idle_core = false;
1220 			break;
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * A CPU in an idle core is always the best choice for tasks with
1226 	 * cookies.
1227 	 */
1228 	return idle_core || rq->core->core_cookie == p->core_cookie;
1229 }
1230 
1231 static inline bool sched_group_cookie_match(struct rq *rq,
1232 					    struct task_struct *p,
1233 					    struct sched_group *group)
1234 {
1235 	int cpu;
1236 
1237 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1238 	if (!sched_core_enabled(rq))
1239 		return true;
1240 
1241 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1242 		if (sched_core_cookie_match(rq, p))
1243 			return true;
1244 	}
1245 	return false;
1246 }
1247 
1248 extern void queue_core_balance(struct rq *rq);
1249 
1250 static inline bool sched_core_enqueued(struct task_struct *p)
1251 {
1252 	return !RB_EMPTY_NODE(&p->core_node);
1253 }
1254 
1255 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1256 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p);
1257 
1258 extern void sched_core_get(void);
1259 extern void sched_core_put(void);
1260 
1261 extern unsigned long sched_core_alloc_cookie(void);
1262 extern void sched_core_put_cookie(unsigned long cookie);
1263 extern unsigned long sched_core_get_cookie(unsigned long cookie);
1264 extern unsigned long sched_core_update_cookie(struct task_struct *p, unsigned long cookie);
1265 
1266 #else /* !CONFIG_SCHED_CORE */
1267 
1268 static inline bool sched_core_enabled(struct rq *rq)
1269 {
1270 	return false;
1271 }
1272 
1273 static inline bool sched_core_disabled(void)
1274 {
1275 	return true;
1276 }
1277 
1278 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1279 {
1280 	return &rq->__lock;
1281 }
1282 
1283 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1284 {
1285 	return &rq->__lock;
1286 }
1287 
1288 static inline void queue_core_balance(struct rq *rq)
1289 {
1290 }
1291 
1292 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1293 {
1294 	return true;
1295 }
1296 
1297 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1298 {
1299 	return true;
1300 }
1301 
1302 static inline bool sched_group_cookie_match(struct rq *rq,
1303 					    struct task_struct *p,
1304 					    struct sched_group *group)
1305 {
1306 	return true;
1307 }
1308 #endif /* CONFIG_SCHED_CORE */
1309 
1310 static inline void lockdep_assert_rq_held(struct rq *rq)
1311 {
1312 	lockdep_assert_held(__rq_lockp(rq));
1313 }
1314 
1315 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1316 extern bool raw_spin_rq_trylock(struct rq *rq);
1317 extern void raw_spin_rq_unlock(struct rq *rq);
1318 
1319 static inline void raw_spin_rq_lock(struct rq *rq)
1320 {
1321 	raw_spin_rq_lock_nested(rq, 0);
1322 }
1323 
1324 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1325 {
1326 	local_irq_disable();
1327 	raw_spin_rq_lock(rq);
1328 }
1329 
1330 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1331 {
1332 	raw_spin_rq_unlock(rq);
1333 	local_irq_enable();
1334 }
1335 
1336 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1337 {
1338 	unsigned long flags;
1339 	local_irq_save(flags);
1340 	raw_spin_rq_lock(rq);
1341 	return flags;
1342 }
1343 
1344 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1345 {
1346 	raw_spin_rq_unlock(rq);
1347 	local_irq_restore(flags);
1348 }
1349 
1350 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1351 do {						\
1352 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1353 } while (0)
1354 
1355 #ifdef CONFIG_SCHED_SMT
1356 extern void __update_idle_core(struct rq *rq);
1357 
1358 static inline void update_idle_core(struct rq *rq)
1359 {
1360 	if (static_branch_unlikely(&sched_smt_present))
1361 		__update_idle_core(rq);
1362 }
1363 
1364 #else
1365 static inline void update_idle_core(struct rq *rq) { }
1366 #endif
1367 
1368 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1369 
1370 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1371 #define this_rq()		this_cpu_ptr(&runqueues)
1372 #define task_rq(p)		cpu_rq(task_cpu(p))
1373 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1374 #define raw_rq()		raw_cpu_ptr(&runqueues)
1375 
1376 #ifdef CONFIG_FAIR_GROUP_SCHED
1377 static inline struct task_struct *task_of(struct sched_entity *se)
1378 {
1379 	SCHED_WARN_ON(!entity_is_task(se));
1380 	return container_of(se, struct task_struct, se);
1381 }
1382 
1383 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1384 {
1385 	return p->se.cfs_rq;
1386 }
1387 
1388 /* runqueue on which this entity is (to be) queued */
1389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1390 {
1391 	return se->cfs_rq;
1392 }
1393 
1394 /* runqueue "owned" by this group */
1395 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1396 {
1397 	return grp->my_q;
1398 }
1399 
1400 #else
1401 
1402 static inline struct task_struct *task_of(struct sched_entity *se)
1403 {
1404 	return container_of(se, struct task_struct, se);
1405 }
1406 
1407 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1408 {
1409 	return &task_rq(p)->cfs;
1410 }
1411 
1412 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1413 {
1414 	struct task_struct *p = task_of(se);
1415 	struct rq *rq = task_rq(p);
1416 
1417 	return &rq->cfs;
1418 }
1419 
1420 /* runqueue "owned" by this group */
1421 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1422 {
1423 	return NULL;
1424 }
1425 #endif
1426 
1427 extern void update_rq_clock(struct rq *rq);
1428 
1429 /*
1430  * rq::clock_update_flags bits
1431  *
1432  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1433  *  call to __schedule(). This is an optimisation to avoid
1434  *  neighbouring rq clock updates.
1435  *
1436  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1437  *  in effect and calls to update_rq_clock() are being ignored.
1438  *
1439  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1440  *  made to update_rq_clock() since the last time rq::lock was pinned.
1441  *
1442  * If inside of __schedule(), clock_update_flags will have been
1443  * shifted left (a left shift is a cheap operation for the fast path
1444  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1445  *
1446  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1447  *
1448  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1449  * one position though, because the next rq_unpin_lock() will shift it
1450  * back.
1451  */
1452 #define RQCF_REQ_SKIP		0x01
1453 #define RQCF_ACT_SKIP		0x02
1454 #define RQCF_UPDATED		0x04
1455 
1456 static inline void assert_clock_updated(struct rq *rq)
1457 {
1458 	/*
1459 	 * The only reason for not seeing a clock update since the
1460 	 * last rq_pin_lock() is if we're currently skipping updates.
1461 	 */
1462 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1463 }
1464 
1465 static inline u64 rq_clock(struct rq *rq)
1466 {
1467 	lockdep_assert_rq_held(rq);
1468 	assert_clock_updated(rq);
1469 
1470 	return rq->clock;
1471 }
1472 
1473 static inline u64 rq_clock_task(struct rq *rq)
1474 {
1475 	lockdep_assert_rq_held(rq);
1476 	assert_clock_updated(rq);
1477 
1478 	return rq->clock_task;
1479 }
1480 
1481 /**
1482  * By default the decay is the default pelt decay period.
1483  * The decay shift can change the decay period in
1484  * multiples of 32.
1485  *  Decay shift		Decay period(ms)
1486  *	0			32
1487  *	1			64
1488  *	2			128
1489  *	3			256
1490  *	4			512
1491  */
1492 extern int sched_thermal_decay_shift;
1493 
1494 static inline u64 rq_clock_thermal(struct rq *rq)
1495 {
1496 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1497 }
1498 
1499 static inline void rq_clock_skip_update(struct rq *rq)
1500 {
1501 	lockdep_assert_rq_held(rq);
1502 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1503 }
1504 
1505 /*
1506  * See rt task throttling, which is the only time a skip
1507  * request is canceled.
1508  */
1509 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1510 {
1511 	lockdep_assert_rq_held(rq);
1512 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1513 }
1514 
1515 struct rq_flags {
1516 	unsigned long flags;
1517 	struct pin_cookie cookie;
1518 #ifdef CONFIG_SCHED_DEBUG
1519 	/*
1520 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1521 	 * current pin context is stashed here in case it needs to be
1522 	 * restored in rq_repin_lock().
1523 	 */
1524 	unsigned int clock_update_flags;
1525 #endif
1526 };
1527 
1528 extern struct callback_head balance_push_callback;
1529 
1530 /*
1531  * Lockdep annotation that avoids accidental unlocks; it's like a
1532  * sticky/continuous lockdep_assert_held().
1533  *
1534  * This avoids code that has access to 'struct rq *rq' (basically everything in
1535  * the scheduler) from accidentally unlocking the rq if they do not also have a
1536  * copy of the (on-stack) 'struct rq_flags rf'.
1537  *
1538  * Also see Documentation/locking/lockdep-design.rst.
1539  */
1540 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1541 {
1542 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1543 
1544 #ifdef CONFIG_SCHED_DEBUG
1545 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1546 	rf->clock_update_flags = 0;
1547 #ifdef CONFIG_SMP
1548 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1549 #endif
1550 #endif
1551 }
1552 
1553 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1554 {
1555 #ifdef CONFIG_SCHED_DEBUG
1556 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1557 		rf->clock_update_flags = RQCF_UPDATED;
1558 #endif
1559 
1560 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1561 }
1562 
1563 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1564 {
1565 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1566 
1567 #ifdef CONFIG_SCHED_DEBUG
1568 	/*
1569 	 * Restore the value we stashed in @rf for this pin context.
1570 	 */
1571 	rq->clock_update_flags |= rf->clock_update_flags;
1572 #endif
1573 }
1574 
1575 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1576 	__acquires(rq->lock);
1577 
1578 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1579 	__acquires(p->pi_lock)
1580 	__acquires(rq->lock);
1581 
1582 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1583 	__releases(rq->lock)
1584 {
1585 	rq_unpin_lock(rq, rf);
1586 	raw_spin_rq_unlock(rq);
1587 }
1588 
1589 static inline void
1590 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1591 	__releases(rq->lock)
1592 	__releases(p->pi_lock)
1593 {
1594 	rq_unpin_lock(rq, rf);
1595 	raw_spin_rq_unlock(rq);
1596 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1597 }
1598 
1599 static inline void
1600 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1601 	__acquires(rq->lock)
1602 {
1603 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1604 	rq_pin_lock(rq, rf);
1605 }
1606 
1607 static inline void
1608 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1609 	__acquires(rq->lock)
1610 {
1611 	raw_spin_rq_lock_irq(rq);
1612 	rq_pin_lock(rq, rf);
1613 }
1614 
1615 static inline void
1616 rq_lock(struct rq *rq, struct rq_flags *rf)
1617 	__acquires(rq->lock)
1618 {
1619 	raw_spin_rq_lock(rq);
1620 	rq_pin_lock(rq, rf);
1621 }
1622 
1623 static inline void
1624 rq_relock(struct rq *rq, struct rq_flags *rf)
1625 	__acquires(rq->lock)
1626 {
1627 	raw_spin_rq_lock(rq);
1628 	rq_repin_lock(rq, rf);
1629 }
1630 
1631 static inline void
1632 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1633 	__releases(rq->lock)
1634 {
1635 	rq_unpin_lock(rq, rf);
1636 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1637 }
1638 
1639 static inline void
1640 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1641 	__releases(rq->lock)
1642 {
1643 	rq_unpin_lock(rq, rf);
1644 	raw_spin_rq_unlock_irq(rq);
1645 }
1646 
1647 static inline void
1648 rq_unlock(struct rq *rq, struct rq_flags *rf)
1649 	__releases(rq->lock)
1650 {
1651 	rq_unpin_lock(rq, rf);
1652 	raw_spin_rq_unlock(rq);
1653 }
1654 
1655 static inline struct rq *
1656 this_rq_lock_irq(struct rq_flags *rf)
1657 	__acquires(rq->lock)
1658 {
1659 	struct rq *rq;
1660 
1661 	local_irq_disable();
1662 	rq = this_rq();
1663 	rq_lock(rq, rf);
1664 	return rq;
1665 }
1666 
1667 #ifdef CONFIG_NUMA
1668 enum numa_topology_type {
1669 	NUMA_DIRECT,
1670 	NUMA_GLUELESS_MESH,
1671 	NUMA_BACKPLANE,
1672 };
1673 extern enum numa_topology_type sched_numa_topology_type;
1674 extern int sched_max_numa_distance;
1675 extern bool find_numa_distance(int distance);
1676 extern void sched_init_numa(void);
1677 extern void sched_domains_numa_masks_set(unsigned int cpu);
1678 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1679 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1680 #else
1681 static inline void sched_init_numa(void) { }
1682 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1683 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1684 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1685 {
1686 	return nr_cpu_ids;
1687 }
1688 #endif
1689 
1690 #ifdef CONFIG_NUMA_BALANCING
1691 /* The regions in numa_faults array from task_struct */
1692 enum numa_faults_stats {
1693 	NUMA_MEM = 0,
1694 	NUMA_CPU,
1695 	NUMA_MEMBUF,
1696 	NUMA_CPUBUF
1697 };
1698 extern void sched_setnuma(struct task_struct *p, int node);
1699 extern int migrate_task_to(struct task_struct *p, int cpu);
1700 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1701 			int cpu, int scpu);
1702 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1703 #else
1704 static inline void
1705 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1706 {
1707 }
1708 #endif /* CONFIG_NUMA_BALANCING */
1709 
1710 #ifdef CONFIG_SMP
1711 
1712 static inline void
1713 queue_balance_callback(struct rq *rq,
1714 		       struct callback_head *head,
1715 		       void (*func)(struct rq *rq))
1716 {
1717 	lockdep_assert_rq_held(rq);
1718 
1719 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1720 		return;
1721 
1722 	head->func = (void (*)(struct callback_head *))func;
1723 	head->next = rq->balance_callback;
1724 	rq->balance_callback = head;
1725 }
1726 
1727 #define rcu_dereference_check_sched_domain(p) \
1728 	rcu_dereference_check((p), \
1729 			      lockdep_is_held(&sched_domains_mutex))
1730 
1731 /*
1732  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1733  * See destroy_sched_domains: call_rcu for details.
1734  *
1735  * The domain tree of any CPU may only be accessed from within
1736  * preempt-disabled sections.
1737  */
1738 #define for_each_domain(cpu, __sd) \
1739 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1740 			__sd; __sd = __sd->parent)
1741 
1742 /**
1743  * highest_flag_domain - Return highest sched_domain containing flag.
1744  * @cpu:	The CPU whose highest level of sched domain is to
1745  *		be returned.
1746  * @flag:	The flag to check for the highest sched_domain
1747  *		for the given CPU.
1748  *
1749  * Returns the highest sched_domain of a CPU which contains the given flag.
1750  */
1751 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1752 {
1753 	struct sched_domain *sd, *hsd = NULL;
1754 
1755 	for_each_domain(cpu, sd) {
1756 		if (!(sd->flags & flag))
1757 			break;
1758 		hsd = sd;
1759 	}
1760 
1761 	return hsd;
1762 }
1763 
1764 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1765 {
1766 	struct sched_domain *sd;
1767 
1768 	for_each_domain(cpu, sd) {
1769 		if (sd->flags & flag)
1770 			break;
1771 	}
1772 
1773 	return sd;
1774 }
1775 
1776 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1777 DECLARE_PER_CPU(int, sd_llc_size);
1778 DECLARE_PER_CPU(int, sd_llc_id);
1779 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1780 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1781 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1782 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1783 extern struct static_key_false sched_asym_cpucapacity;
1784 
1785 struct sched_group_capacity {
1786 	atomic_t		ref;
1787 	/*
1788 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1789 	 * for a single CPU.
1790 	 */
1791 	unsigned long		capacity;
1792 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1793 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1794 	unsigned long		next_update;
1795 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1796 
1797 #ifdef CONFIG_SCHED_DEBUG
1798 	int			id;
1799 #endif
1800 
1801 	unsigned long		cpumask[];		/* Balance mask */
1802 };
1803 
1804 struct sched_group {
1805 	struct sched_group	*next;			/* Must be a circular list */
1806 	atomic_t		ref;
1807 
1808 	unsigned int		group_weight;
1809 	struct sched_group_capacity *sgc;
1810 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1811 	int			flags;
1812 
1813 	/*
1814 	 * The CPUs this group covers.
1815 	 *
1816 	 * NOTE: this field is variable length. (Allocated dynamically
1817 	 * by attaching extra space to the end of the structure,
1818 	 * depending on how many CPUs the kernel has booted up with)
1819 	 */
1820 	unsigned long		cpumask[];
1821 };
1822 
1823 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1824 {
1825 	return to_cpumask(sg->cpumask);
1826 }
1827 
1828 /*
1829  * See build_balance_mask().
1830  */
1831 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1832 {
1833 	return to_cpumask(sg->sgc->cpumask);
1834 }
1835 
1836 /**
1837  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1838  * @group: The group whose first CPU is to be returned.
1839  */
1840 static inline unsigned int group_first_cpu(struct sched_group *group)
1841 {
1842 	return cpumask_first(sched_group_span(group));
1843 }
1844 
1845 extern int group_balance_cpu(struct sched_group *sg);
1846 
1847 #ifdef CONFIG_SCHED_DEBUG
1848 void update_sched_domain_debugfs(void);
1849 void dirty_sched_domain_sysctl(int cpu);
1850 #else
1851 static inline void update_sched_domain_debugfs(void)
1852 {
1853 }
1854 static inline void dirty_sched_domain_sysctl(int cpu)
1855 {
1856 }
1857 #endif
1858 
1859 extern int sched_update_scaling(void);
1860 
1861 extern void flush_smp_call_function_from_idle(void);
1862 
1863 #else /* !CONFIG_SMP: */
1864 static inline void flush_smp_call_function_from_idle(void) { }
1865 #endif
1866 
1867 #include "stats.h"
1868 #include "autogroup.h"
1869 
1870 #ifdef CONFIG_CGROUP_SCHED
1871 
1872 /*
1873  * Return the group to which this tasks belongs.
1874  *
1875  * We cannot use task_css() and friends because the cgroup subsystem
1876  * changes that value before the cgroup_subsys::attach() method is called,
1877  * therefore we cannot pin it and might observe the wrong value.
1878  *
1879  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1880  * core changes this before calling sched_move_task().
1881  *
1882  * Instead we use a 'copy' which is updated from sched_move_task() while
1883  * holding both task_struct::pi_lock and rq::lock.
1884  */
1885 static inline struct task_group *task_group(struct task_struct *p)
1886 {
1887 	return p->sched_task_group;
1888 }
1889 
1890 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1891 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1892 {
1893 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1894 	struct task_group *tg = task_group(p);
1895 #endif
1896 
1897 #ifdef CONFIG_FAIR_GROUP_SCHED
1898 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1899 	p->se.cfs_rq = tg->cfs_rq[cpu];
1900 	p->se.parent = tg->se[cpu];
1901 #endif
1902 
1903 #ifdef CONFIG_RT_GROUP_SCHED
1904 	p->rt.rt_rq  = tg->rt_rq[cpu];
1905 	p->rt.parent = tg->rt_se[cpu];
1906 #endif
1907 }
1908 
1909 #else /* CONFIG_CGROUP_SCHED */
1910 
1911 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1912 static inline struct task_group *task_group(struct task_struct *p)
1913 {
1914 	return NULL;
1915 }
1916 
1917 #endif /* CONFIG_CGROUP_SCHED */
1918 
1919 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1920 {
1921 	set_task_rq(p, cpu);
1922 #ifdef CONFIG_SMP
1923 	/*
1924 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1925 	 * successfully executed on another CPU. We must ensure that updates of
1926 	 * per-task data have been completed by this moment.
1927 	 */
1928 	smp_wmb();
1929 #ifdef CONFIG_THREAD_INFO_IN_TASK
1930 	WRITE_ONCE(p->cpu, cpu);
1931 #else
1932 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1933 #endif
1934 	p->wake_cpu = cpu;
1935 #endif
1936 }
1937 
1938 /*
1939  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1940  */
1941 #ifdef CONFIG_SCHED_DEBUG
1942 # include <linux/static_key.h>
1943 # define const_debug __read_mostly
1944 #else
1945 # define const_debug const
1946 #endif
1947 
1948 #define SCHED_FEAT(name, enabled)	\
1949 	__SCHED_FEAT_##name ,
1950 
1951 enum {
1952 #include "features.h"
1953 	__SCHED_FEAT_NR,
1954 };
1955 
1956 #undef SCHED_FEAT
1957 
1958 #ifdef CONFIG_SCHED_DEBUG
1959 
1960 /*
1961  * To support run-time toggling of sched features, all the translation units
1962  * (but core.c) reference the sysctl_sched_features defined in core.c.
1963  */
1964 extern const_debug unsigned int sysctl_sched_features;
1965 
1966 #ifdef CONFIG_JUMP_LABEL
1967 #define SCHED_FEAT(name, enabled)					\
1968 static __always_inline bool static_branch_##name(struct static_key *key) \
1969 {									\
1970 	return static_key_##enabled(key);				\
1971 }
1972 
1973 #include "features.h"
1974 #undef SCHED_FEAT
1975 
1976 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1977 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1978 
1979 #else /* !CONFIG_JUMP_LABEL */
1980 
1981 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1982 
1983 #endif /* CONFIG_JUMP_LABEL */
1984 
1985 #else /* !SCHED_DEBUG */
1986 
1987 /*
1988  * Each translation unit has its own copy of sysctl_sched_features to allow
1989  * constants propagation at compile time and compiler optimization based on
1990  * features default.
1991  */
1992 #define SCHED_FEAT(name, enabled)	\
1993 	(1UL << __SCHED_FEAT_##name) * enabled |
1994 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1995 #include "features.h"
1996 	0;
1997 #undef SCHED_FEAT
1998 
1999 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2000 
2001 #endif /* SCHED_DEBUG */
2002 
2003 extern struct static_key_false sched_numa_balancing;
2004 extern struct static_key_false sched_schedstats;
2005 
2006 static inline u64 global_rt_period(void)
2007 {
2008 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2009 }
2010 
2011 static inline u64 global_rt_runtime(void)
2012 {
2013 	if (sysctl_sched_rt_runtime < 0)
2014 		return RUNTIME_INF;
2015 
2016 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2017 }
2018 
2019 static inline int task_current(struct rq *rq, struct task_struct *p)
2020 {
2021 	return rq->curr == p;
2022 }
2023 
2024 static inline int task_running(struct rq *rq, struct task_struct *p)
2025 {
2026 #ifdef CONFIG_SMP
2027 	return p->on_cpu;
2028 #else
2029 	return task_current(rq, p);
2030 #endif
2031 }
2032 
2033 static inline int task_on_rq_queued(struct task_struct *p)
2034 {
2035 	return p->on_rq == TASK_ON_RQ_QUEUED;
2036 }
2037 
2038 static inline int task_on_rq_migrating(struct task_struct *p)
2039 {
2040 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2041 }
2042 
2043 /* Wake flags. The first three directly map to some SD flag value */
2044 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2045 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2046 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2047 
2048 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2049 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2050 #define WF_ON_CPU   0x40 /* Wakee is on_cpu */
2051 
2052 #ifdef CONFIG_SMP
2053 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2054 static_assert(WF_FORK == SD_BALANCE_FORK);
2055 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2056 #endif
2057 
2058 /*
2059  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2060  * of tasks with abnormal "nice" values across CPUs the contribution that
2061  * each task makes to its run queue's load is weighted according to its
2062  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2063  * scaled version of the new time slice allocation that they receive on time
2064  * slice expiry etc.
2065  */
2066 
2067 #define WEIGHT_IDLEPRIO		3
2068 #define WMULT_IDLEPRIO		1431655765
2069 
2070 extern const int		sched_prio_to_weight[40];
2071 extern const u32		sched_prio_to_wmult[40];
2072 
2073 /*
2074  * {de,en}queue flags:
2075  *
2076  * DEQUEUE_SLEEP  - task is no longer runnable
2077  * ENQUEUE_WAKEUP - task just became runnable
2078  *
2079  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2080  *                are in a known state which allows modification. Such pairs
2081  *                should preserve as much state as possible.
2082  *
2083  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2084  *        in the runqueue.
2085  *
2086  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2087  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2088  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2089  *
2090  */
2091 
2092 #define DEQUEUE_SLEEP		0x01
2093 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2094 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2095 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2096 
2097 #define ENQUEUE_WAKEUP		0x01
2098 #define ENQUEUE_RESTORE		0x02
2099 #define ENQUEUE_MOVE		0x04
2100 #define ENQUEUE_NOCLOCK		0x08
2101 
2102 #define ENQUEUE_HEAD		0x10
2103 #define ENQUEUE_REPLENISH	0x20
2104 #ifdef CONFIG_SMP
2105 #define ENQUEUE_MIGRATED	0x40
2106 #else
2107 #define ENQUEUE_MIGRATED	0x00
2108 #endif
2109 
2110 #define RETRY_TASK		((void *)-1UL)
2111 
2112 struct sched_class {
2113 
2114 #ifdef CONFIG_UCLAMP_TASK
2115 	int uclamp_enabled;
2116 #endif
2117 
2118 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2119 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2120 	void (*yield_task)   (struct rq *rq);
2121 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2122 
2123 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2124 
2125 	struct task_struct *(*pick_next_task)(struct rq *rq);
2126 
2127 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2128 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2129 
2130 #ifdef CONFIG_SMP
2131 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2132 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2133 
2134 	struct task_struct * (*pick_task)(struct rq *rq);
2135 
2136 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2137 
2138 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2139 
2140 	void (*set_cpus_allowed)(struct task_struct *p,
2141 				 const struct cpumask *newmask,
2142 				 u32 flags);
2143 
2144 	void (*rq_online)(struct rq *rq);
2145 	void (*rq_offline)(struct rq *rq);
2146 
2147 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2148 #endif
2149 
2150 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2151 	void (*task_fork)(struct task_struct *p);
2152 	void (*task_dead)(struct task_struct *p);
2153 
2154 	/*
2155 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2156 	 * cannot assume the switched_from/switched_to pair is serialized by
2157 	 * rq->lock. They are however serialized by p->pi_lock.
2158 	 */
2159 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2160 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2161 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2162 			      int oldprio);
2163 
2164 	unsigned int (*get_rr_interval)(struct rq *rq,
2165 					struct task_struct *task);
2166 
2167 	void (*update_curr)(struct rq *rq);
2168 
2169 #define TASK_SET_GROUP		0
2170 #define TASK_MOVE_GROUP		1
2171 
2172 #ifdef CONFIG_FAIR_GROUP_SCHED
2173 	void (*task_change_group)(struct task_struct *p, int type);
2174 #endif
2175 };
2176 
2177 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2178 {
2179 	WARN_ON_ONCE(rq->curr != prev);
2180 	prev->sched_class->put_prev_task(rq, prev);
2181 }
2182 
2183 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2184 {
2185 	next->sched_class->set_next_task(rq, next, false);
2186 }
2187 
2188 
2189 /*
2190  * Helper to define a sched_class instance; each one is placed in a separate
2191  * section which is ordered by the linker script:
2192  *
2193  *   include/asm-generic/vmlinux.lds.h
2194  *
2195  * Also enforce alignment on the instance, not the type, to guarantee layout.
2196  */
2197 #define DEFINE_SCHED_CLASS(name) \
2198 const struct sched_class name##_sched_class \
2199 	__aligned(__alignof__(struct sched_class)) \
2200 	__section("__" #name "_sched_class")
2201 
2202 /* Defined in include/asm-generic/vmlinux.lds.h */
2203 extern struct sched_class __begin_sched_classes[];
2204 extern struct sched_class __end_sched_classes[];
2205 
2206 #define sched_class_highest (__end_sched_classes - 1)
2207 #define sched_class_lowest  (__begin_sched_classes - 1)
2208 
2209 #define for_class_range(class, _from, _to) \
2210 	for (class = (_from); class != (_to); class--)
2211 
2212 #define for_each_class(class) \
2213 	for_class_range(class, sched_class_highest, sched_class_lowest)
2214 
2215 extern const struct sched_class stop_sched_class;
2216 extern const struct sched_class dl_sched_class;
2217 extern const struct sched_class rt_sched_class;
2218 extern const struct sched_class fair_sched_class;
2219 extern const struct sched_class idle_sched_class;
2220 
2221 static inline bool sched_stop_runnable(struct rq *rq)
2222 {
2223 	return rq->stop && task_on_rq_queued(rq->stop);
2224 }
2225 
2226 static inline bool sched_dl_runnable(struct rq *rq)
2227 {
2228 	return rq->dl.dl_nr_running > 0;
2229 }
2230 
2231 static inline bool sched_rt_runnable(struct rq *rq)
2232 {
2233 	return rq->rt.rt_queued > 0;
2234 }
2235 
2236 static inline bool sched_fair_runnable(struct rq *rq)
2237 {
2238 	return rq->cfs.nr_running > 0;
2239 }
2240 
2241 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2242 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2243 
2244 #define SCA_CHECK		0x01
2245 #define SCA_MIGRATE_DISABLE	0x02
2246 #define SCA_MIGRATE_ENABLE	0x04
2247 #define SCA_USER		0x08
2248 
2249 #ifdef CONFIG_SMP
2250 
2251 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2252 
2253 extern void trigger_load_balance(struct rq *rq);
2254 
2255 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2256 
2257 static inline struct task_struct *get_push_task(struct rq *rq)
2258 {
2259 	struct task_struct *p = rq->curr;
2260 
2261 	lockdep_assert_rq_held(rq);
2262 
2263 	if (rq->push_busy)
2264 		return NULL;
2265 
2266 	if (p->nr_cpus_allowed == 1)
2267 		return NULL;
2268 
2269 	if (p->migration_disabled)
2270 		return NULL;
2271 
2272 	rq->push_busy = true;
2273 	return get_task_struct(p);
2274 }
2275 
2276 extern int push_cpu_stop(void *arg);
2277 
2278 #endif
2279 
2280 #ifdef CONFIG_CPU_IDLE
2281 static inline void idle_set_state(struct rq *rq,
2282 				  struct cpuidle_state *idle_state)
2283 {
2284 	rq->idle_state = idle_state;
2285 }
2286 
2287 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2288 {
2289 	SCHED_WARN_ON(!rcu_read_lock_held());
2290 
2291 	return rq->idle_state;
2292 }
2293 #else
2294 static inline void idle_set_state(struct rq *rq,
2295 				  struct cpuidle_state *idle_state)
2296 {
2297 }
2298 
2299 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2300 {
2301 	return NULL;
2302 }
2303 #endif
2304 
2305 extern void schedule_idle(void);
2306 
2307 extern void sysrq_sched_debug_show(void);
2308 extern void sched_init_granularity(void);
2309 extern void update_max_interval(void);
2310 
2311 extern void init_sched_dl_class(void);
2312 extern void init_sched_rt_class(void);
2313 extern void init_sched_fair_class(void);
2314 
2315 extern void reweight_task(struct task_struct *p, int prio);
2316 
2317 extern void resched_curr(struct rq *rq);
2318 extern void resched_cpu(int cpu);
2319 
2320 extern struct rt_bandwidth def_rt_bandwidth;
2321 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2322 
2323 extern struct dl_bandwidth def_dl_bandwidth;
2324 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2325 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2326 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2327 
2328 #define BW_SHIFT		20
2329 #define BW_UNIT			(1 << BW_SHIFT)
2330 #define RATIO_SHIFT		8
2331 #define MAX_BW_BITS		(64 - BW_SHIFT)
2332 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2333 unsigned long to_ratio(u64 period, u64 runtime);
2334 
2335 extern void init_entity_runnable_average(struct sched_entity *se);
2336 extern void post_init_entity_util_avg(struct task_struct *p);
2337 
2338 #ifdef CONFIG_NO_HZ_FULL
2339 extern bool sched_can_stop_tick(struct rq *rq);
2340 extern int __init sched_tick_offload_init(void);
2341 
2342 /*
2343  * Tick may be needed by tasks in the runqueue depending on their policy and
2344  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2345  * nohz mode if necessary.
2346  */
2347 static inline void sched_update_tick_dependency(struct rq *rq)
2348 {
2349 	int cpu = cpu_of(rq);
2350 
2351 	if (!tick_nohz_full_cpu(cpu))
2352 		return;
2353 
2354 	if (sched_can_stop_tick(rq))
2355 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2356 	else
2357 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2358 }
2359 #else
2360 static inline int sched_tick_offload_init(void) { return 0; }
2361 static inline void sched_update_tick_dependency(struct rq *rq) { }
2362 #endif
2363 
2364 static inline void add_nr_running(struct rq *rq, unsigned count)
2365 {
2366 	unsigned prev_nr = rq->nr_running;
2367 
2368 	rq->nr_running = prev_nr + count;
2369 	if (trace_sched_update_nr_running_tp_enabled()) {
2370 		call_trace_sched_update_nr_running(rq, count);
2371 	}
2372 
2373 #ifdef CONFIG_SMP
2374 	if (prev_nr < 2 && rq->nr_running >= 2) {
2375 		if (!READ_ONCE(rq->rd->overload))
2376 			WRITE_ONCE(rq->rd->overload, 1);
2377 	}
2378 #endif
2379 
2380 	sched_update_tick_dependency(rq);
2381 }
2382 
2383 static inline void sub_nr_running(struct rq *rq, unsigned count)
2384 {
2385 	rq->nr_running -= count;
2386 	if (trace_sched_update_nr_running_tp_enabled()) {
2387 		call_trace_sched_update_nr_running(rq, -count);
2388 	}
2389 
2390 	/* Check if we still need preemption */
2391 	sched_update_tick_dependency(rq);
2392 }
2393 
2394 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2395 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2396 
2397 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2398 
2399 extern const_debug unsigned int sysctl_sched_nr_migrate;
2400 extern const_debug unsigned int sysctl_sched_migration_cost;
2401 
2402 #ifdef CONFIG_SCHED_DEBUG
2403 extern unsigned int sysctl_sched_latency;
2404 extern unsigned int sysctl_sched_min_granularity;
2405 extern unsigned int sysctl_sched_idle_min_granularity;
2406 extern unsigned int sysctl_sched_wakeup_granularity;
2407 extern int sysctl_resched_latency_warn_ms;
2408 extern int sysctl_resched_latency_warn_once;
2409 
2410 extern unsigned int sysctl_sched_tunable_scaling;
2411 
2412 extern unsigned int sysctl_numa_balancing_scan_delay;
2413 extern unsigned int sysctl_numa_balancing_scan_period_min;
2414 extern unsigned int sysctl_numa_balancing_scan_period_max;
2415 extern unsigned int sysctl_numa_balancing_scan_size;
2416 #endif
2417 
2418 #ifdef CONFIG_SCHED_HRTICK
2419 
2420 /*
2421  * Use hrtick when:
2422  *  - enabled by features
2423  *  - hrtimer is actually high res
2424  */
2425 static inline int hrtick_enabled(struct rq *rq)
2426 {
2427 	if (!cpu_active(cpu_of(rq)))
2428 		return 0;
2429 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2430 }
2431 
2432 static inline int hrtick_enabled_fair(struct rq *rq)
2433 {
2434 	if (!sched_feat(HRTICK))
2435 		return 0;
2436 	return hrtick_enabled(rq);
2437 }
2438 
2439 static inline int hrtick_enabled_dl(struct rq *rq)
2440 {
2441 	if (!sched_feat(HRTICK_DL))
2442 		return 0;
2443 	return hrtick_enabled(rq);
2444 }
2445 
2446 void hrtick_start(struct rq *rq, u64 delay);
2447 
2448 #else
2449 
2450 static inline int hrtick_enabled_fair(struct rq *rq)
2451 {
2452 	return 0;
2453 }
2454 
2455 static inline int hrtick_enabled_dl(struct rq *rq)
2456 {
2457 	return 0;
2458 }
2459 
2460 static inline int hrtick_enabled(struct rq *rq)
2461 {
2462 	return 0;
2463 }
2464 
2465 #endif /* CONFIG_SCHED_HRTICK */
2466 
2467 #ifndef arch_scale_freq_tick
2468 static __always_inline
2469 void arch_scale_freq_tick(void)
2470 {
2471 }
2472 #endif
2473 
2474 #ifndef arch_scale_freq_capacity
2475 /**
2476  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2477  * @cpu: the CPU in question.
2478  *
2479  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2480  *
2481  *     f_curr
2482  *     ------ * SCHED_CAPACITY_SCALE
2483  *     f_max
2484  */
2485 static __always_inline
2486 unsigned long arch_scale_freq_capacity(int cpu)
2487 {
2488 	return SCHED_CAPACITY_SCALE;
2489 }
2490 #endif
2491 
2492 
2493 #ifdef CONFIG_SMP
2494 
2495 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2496 {
2497 #ifdef CONFIG_SCHED_CORE
2498 	/*
2499 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2500 	 * order by core-id first and cpu-id second.
2501 	 *
2502 	 * Notably:
2503 	 *
2504 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2505 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2506 	 *
2507 	 * when only cpu-id is considered.
2508 	 */
2509 	if (rq1->core->cpu < rq2->core->cpu)
2510 		return true;
2511 	if (rq1->core->cpu > rq2->core->cpu)
2512 		return false;
2513 
2514 	/*
2515 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2516 	 */
2517 #endif
2518 	return rq1->cpu < rq2->cpu;
2519 }
2520 
2521 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2522 
2523 #ifdef CONFIG_PREEMPTION
2524 
2525 /*
2526  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2527  * way at the expense of forcing extra atomic operations in all
2528  * invocations.  This assures that the double_lock is acquired using the
2529  * same underlying policy as the spinlock_t on this architecture, which
2530  * reduces latency compared to the unfair variant below.  However, it
2531  * also adds more overhead and therefore may reduce throughput.
2532  */
2533 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2534 	__releases(this_rq->lock)
2535 	__acquires(busiest->lock)
2536 	__acquires(this_rq->lock)
2537 {
2538 	raw_spin_rq_unlock(this_rq);
2539 	double_rq_lock(this_rq, busiest);
2540 
2541 	return 1;
2542 }
2543 
2544 #else
2545 /*
2546  * Unfair double_lock_balance: Optimizes throughput at the expense of
2547  * latency by eliminating extra atomic operations when the locks are
2548  * already in proper order on entry.  This favors lower CPU-ids and will
2549  * grant the double lock to lower CPUs over higher ids under contention,
2550  * regardless of entry order into the function.
2551  */
2552 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2553 	__releases(this_rq->lock)
2554 	__acquires(busiest->lock)
2555 	__acquires(this_rq->lock)
2556 {
2557 	if (__rq_lockp(this_rq) == __rq_lockp(busiest))
2558 		return 0;
2559 
2560 	if (likely(raw_spin_rq_trylock(busiest)))
2561 		return 0;
2562 
2563 	if (rq_order_less(this_rq, busiest)) {
2564 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2565 		return 0;
2566 	}
2567 
2568 	raw_spin_rq_unlock(this_rq);
2569 	double_rq_lock(this_rq, busiest);
2570 
2571 	return 1;
2572 }
2573 
2574 #endif /* CONFIG_PREEMPTION */
2575 
2576 /*
2577  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2578  */
2579 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2580 {
2581 	lockdep_assert_irqs_disabled();
2582 
2583 	return _double_lock_balance(this_rq, busiest);
2584 }
2585 
2586 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2587 	__releases(busiest->lock)
2588 {
2589 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2590 		raw_spin_rq_unlock(busiest);
2591 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2592 }
2593 
2594 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2595 {
2596 	if (l1 > l2)
2597 		swap(l1, l2);
2598 
2599 	spin_lock(l1);
2600 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2601 }
2602 
2603 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2604 {
2605 	if (l1 > l2)
2606 		swap(l1, l2);
2607 
2608 	spin_lock_irq(l1);
2609 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2610 }
2611 
2612 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2613 {
2614 	if (l1 > l2)
2615 		swap(l1, l2);
2616 
2617 	raw_spin_lock(l1);
2618 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2619 }
2620 
2621 /*
2622  * double_rq_unlock - safely unlock two runqueues
2623  *
2624  * Note this does not restore interrupts like task_rq_unlock,
2625  * you need to do so manually after calling.
2626  */
2627 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2628 	__releases(rq1->lock)
2629 	__releases(rq2->lock)
2630 {
2631 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2632 		raw_spin_rq_unlock(rq2);
2633 	else
2634 		__release(rq2->lock);
2635 	raw_spin_rq_unlock(rq1);
2636 }
2637 
2638 extern void set_rq_online (struct rq *rq);
2639 extern void set_rq_offline(struct rq *rq);
2640 extern bool sched_smp_initialized;
2641 
2642 #else /* CONFIG_SMP */
2643 
2644 /*
2645  * double_rq_lock - safely lock two runqueues
2646  *
2647  * Note this does not disable interrupts like task_rq_lock,
2648  * you need to do so manually before calling.
2649  */
2650 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2651 	__acquires(rq1->lock)
2652 	__acquires(rq2->lock)
2653 {
2654 	BUG_ON(!irqs_disabled());
2655 	BUG_ON(rq1 != rq2);
2656 	raw_spin_rq_lock(rq1);
2657 	__acquire(rq2->lock);	/* Fake it out ;) */
2658 }
2659 
2660 /*
2661  * double_rq_unlock - safely unlock two runqueues
2662  *
2663  * Note this does not restore interrupts like task_rq_unlock,
2664  * you need to do so manually after calling.
2665  */
2666 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2667 	__releases(rq1->lock)
2668 	__releases(rq2->lock)
2669 {
2670 	BUG_ON(rq1 != rq2);
2671 	raw_spin_rq_unlock(rq1);
2672 	__release(rq2->lock);
2673 }
2674 
2675 #endif
2676 
2677 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2678 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2679 
2680 #ifdef	CONFIG_SCHED_DEBUG
2681 extern bool sched_debug_verbose;
2682 
2683 extern void print_cfs_stats(struct seq_file *m, int cpu);
2684 extern void print_rt_stats(struct seq_file *m, int cpu);
2685 extern void print_dl_stats(struct seq_file *m, int cpu);
2686 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2687 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2688 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2689 
2690 extern void resched_latency_warn(int cpu, u64 latency);
2691 #ifdef CONFIG_NUMA_BALANCING
2692 extern void
2693 show_numa_stats(struct task_struct *p, struct seq_file *m);
2694 extern void
2695 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2696 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2697 #endif /* CONFIG_NUMA_BALANCING */
2698 #else
2699 static inline void resched_latency_warn(int cpu, u64 latency) {}
2700 #endif /* CONFIG_SCHED_DEBUG */
2701 
2702 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2703 extern void init_rt_rq(struct rt_rq *rt_rq);
2704 extern void init_dl_rq(struct dl_rq *dl_rq);
2705 
2706 extern void cfs_bandwidth_usage_inc(void);
2707 extern void cfs_bandwidth_usage_dec(void);
2708 
2709 #ifdef CONFIG_NO_HZ_COMMON
2710 #define NOHZ_BALANCE_KICK_BIT	0
2711 #define NOHZ_STATS_KICK_BIT	1
2712 #define NOHZ_NEWILB_KICK_BIT	2
2713 #define NOHZ_NEXT_KICK_BIT	3
2714 
2715 /* Run rebalance_domains() */
2716 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2717 /* Update blocked load */
2718 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2719 /* Update blocked load when entering idle */
2720 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2721 /* Update nohz.next_balance */
2722 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2723 
2724 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2725 
2726 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2727 
2728 extern void nohz_balance_exit_idle(struct rq *rq);
2729 #else
2730 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2731 #endif
2732 
2733 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2734 extern void nohz_run_idle_balance(int cpu);
2735 #else
2736 static inline void nohz_run_idle_balance(int cpu) { }
2737 #endif
2738 
2739 #ifdef CONFIG_SMP
2740 static inline
2741 void __dl_update(struct dl_bw *dl_b, s64 bw)
2742 {
2743 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2744 	int i;
2745 
2746 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2747 			 "sched RCU must be held");
2748 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2749 		struct rq *rq = cpu_rq(i);
2750 
2751 		rq->dl.extra_bw += bw;
2752 	}
2753 }
2754 #else
2755 static inline
2756 void __dl_update(struct dl_bw *dl_b, s64 bw)
2757 {
2758 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2759 
2760 	dl->extra_bw += bw;
2761 }
2762 #endif
2763 
2764 
2765 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2766 struct irqtime {
2767 	u64			total;
2768 	u64			tick_delta;
2769 	u64			irq_start_time;
2770 	struct u64_stats_sync	sync;
2771 };
2772 
2773 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2774 
2775 /*
2776  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2777  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2778  * and never move forward.
2779  */
2780 static inline u64 irq_time_read(int cpu)
2781 {
2782 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2783 	unsigned int seq;
2784 	u64 total;
2785 
2786 	do {
2787 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2788 		total = irqtime->total;
2789 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2790 
2791 	return total;
2792 }
2793 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2794 
2795 #ifdef CONFIG_CPU_FREQ
2796 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2797 
2798 /**
2799  * cpufreq_update_util - Take a note about CPU utilization changes.
2800  * @rq: Runqueue to carry out the update for.
2801  * @flags: Update reason flags.
2802  *
2803  * This function is called by the scheduler on the CPU whose utilization is
2804  * being updated.
2805  *
2806  * It can only be called from RCU-sched read-side critical sections.
2807  *
2808  * The way cpufreq is currently arranged requires it to evaluate the CPU
2809  * performance state (frequency/voltage) on a regular basis to prevent it from
2810  * being stuck in a completely inadequate performance level for too long.
2811  * That is not guaranteed to happen if the updates are only triggered from CFS
2812  * and DL, though, because they may not be coming in if only RT tasks are
2813  * active all the time (or there are RT tasks only).
2814  *
2815  * As a workaround for that issue, this function is called periodically by the
2816  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2817  * but that really is a band-aid.  Going forward it should be replaced with
2818  * solutions targeted more specifically at RT tasks.
2819  */
2820 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2821 {
2822 	struct update_util_data *data;
2823 
2824 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2825 						  cpu_of(rq)));
2826 	if (data)
2827 		data->func(data, rq_clock(rq), flags);
2828 }
2829 #else
2830 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2831 #endif /* CONFIG_CPU_FREQ */
2832 
2833 #ifdef CONFIG_UCLAMP_TASK
2834 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2835 
2836 /**
2837  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2838  * @rq:		The rq to clamp against. Must not be NULL.
2839  * @util:	The util value to clamp.
2840  * @p:		The task to clamp against. Can be NULL if you want to clamp
2841  *		against @rq only.
2842  *
2843  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2844  *
2845  * If sched_uclamp_used static key is disabled, then just return the util
2846  * without any clamping since uclamp aggregation at the rq level in the fast
2847  * path is disabled, rendering this operation a NOP.
2848  *
2849  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2850  * will return the correct effective uclamp value of the task even if the
2851  * static key is disabled.
2852  */
2853 static __always_inline
2854 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2855 				  struct task_struct *p)
2856 {
2857 	unsigned long min_util = 0;
2858 	unsigned long max_util = 0;
2859 
2860 	if (!static_branch_likely(&sched_uclamp_used))
2861 		return util;
2862 
2863 	if (p) {
2864 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2865 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2866 
2867 		/*
2868 		 * Ignore last runnable task's max clamp, as this task will
2869 		 * reset it. Similarly, no need to read the rq's min clamp.
2870 		 */
2871 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2872 			goto out;
2873 	}
2874 
2875 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2876 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2877 out:
2878 	/*
2879 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2880 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2881 	 * inversion. Fix it now when the clamps are applied.
2882 	 */
2883 	if (unlikely(min_util >= max_util))
2884 		return min_util;
2885 
2886 	return clamp(util, min_util, max_util);
2887 }
2888 
2889 /*
2890  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2891  * by default in the fast path and only gets turned on once userspace performs
2892  * an operation that requires it.
2893  *
2894  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2895  * hence is active.
2896  */
2897 static inline bool uclamp_is_used(void)
2898 {
2899 	return static_branch_likely(&sched_uclamp_used);
2900 }
2901 #else /* CONFIG_UCLAMP_TASK */
2902 static inline
2903 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2904 				  struct task_struct *p)
2905 {
2906 	return util;
2907 }
2908 
2909 static inline bool uclamp_is_used(void)
2910 {
2911 	return false;
2912 }
2913 #endif /* CONFIG_UCLAMP_TASK */
2914 
2915 #ifdef arch_scale_freq_capacity
2916 # ifndef arch_scale_freq_invariant
2917 #  define arch_scale_freq_invariant()	true
2918 # endif
2919 #else
2920 # define arch_scale_freq_invariant()	false
2921 #endif
2922 
2923 #ifdef CONFIG_SMP
2924 static inline unsigned long capacity_orig_of(int cpu)
2925 {
2926 	return cpu_rq(cpu)->cpu_capacity_orig;
2927 }
2928 
2929 /**
2930  * enum cpu_util_type - CPU utilization type
2931  * @FREQUENCY_UTIL:	Utilization used to select frequency
2932  * @ENERGY_UTIL:	Utilization used during energy calculation
2933  *
2934  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2935  * need to be aggregated differently depending on the usage made of them. This
2936  * enum is used within effective_cpu_util() to differentiate the types of
2937  * utilization expected by the callers, and adjust the aggregation accordingly.
2938  */
2939 enum cpu_util_type {
2940 	FREQUENCY_UTIL,
2941 	ENERGY_UTIL,
2942 };
2943 
2944 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2945 				 unsigned long max, enum cpu_util_type type,
2946 				 struct task_struct *p);
2947 
2948 static inline unsigned long cpu_bw_dl(struct rq *rq)
2949 {
2950 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2951 }
2952 
2953 static inline unsigned long cpu_util_dl(struct rq *rq)
2954 {
2955 	return READ_ONCE(rq->avg_dl.util_avg);
2956 }
2957 
2958 static inline unsigned long cpu_util_cfs(struct rq *rq)
2959 {
2960 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2961 
2962 	if (sched_feat(UTIL_EST)) {
2963 		util = max_t(unsigned long, util,
2964 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2965 	}
2966 
2967 	return util;
2968 }
2969 
2970 static inline unsigned long cpu_util_rt(struct rq *rq)
2971 {
2972 	return READ_ONCE(rq->avg_rt.util_avg);
2973 }
2974 #endif
2975 
2976 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2977 static inline unsigned long cpu_util_irq(struct rq *rq)
2978 {
2979 	return rq->avg_irq.util_avg;
2980 }
2981 
2982 static inline
2983 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2984 {
2985 	util *= (max - irq);
2986 	util /= max;
2987 
2988 	return util;
2989 
2990 }
2991 #else
2992 static inline unsigned long cpu_util_irq(struct rq *rq)
2993 {
2994 	return 0;
2995 }
2996 
2997 static inline
2998 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2999 {
3000 	return util;
3001 }
3002 #endif
3003 
3004 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3005 
3006 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3007 
3008 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3009 
3010 static inline bool sched_energy_enabled(void)
3011 {
3012 	return static_branch_unlikely(&sched_energy_present);
3013 }
3014 
3015 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3016 
3017 #define perf_domain_span(pd) NULL
3018 static inline bool sched_energy_enabled(void) { return false; }
3019 
3020 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3021 
3022 #ifdef CONFIG_MEMBARRIER
3023 /*
3024  * The scheduler provides memory barriers required by membarrier between:
3025  * - prior user-space memory accesses and store to rq->membarrier_state,
3026  * - store to rq->membarrier_state and following user-space memory accesses.
3027  * In the same way it provides those guarantees around store to rq->curr.
3028  */
3029 static inline void membarrier_switch_mm(struct rq *rq,
3030 					struct mm_struct *prev_mm,
3031 					struct mm_struct *next_mm)
3032 {
3033 	int membarrier_state;
3034 
3035 	if (prev_mm == next_mm)
3036 		return;
3037 
3038 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3039 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3040 		return;
3041 
3042 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3043 }
3044 #else
3045 static inline void membarrier_switch_mm(struct rq *rq,
3046 					struct mm_struct *prev_mm,
3047 					struct mm_struct *next_mm)
3048 {
3049 }
3050 #endif
3051 
3052 #ifdef CONFIG_SMP
3053 static inline bool is_per_cpu_kthread(struct task_struct *p)
3054 {
3055 	if (!(p->flags & PF_KTHREAD))
3056 		return false;
3057 
3058 	if (p->nr_cpus_allowed != 1)
3059 		return false;
3060 
3061 	return true;
3062 }
3063 #endif
3064 
3065 extern void swake_up_all_locked(struct swait_queue_head *q);
3066 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3067 
3068 #ifdef CONFIG_PREEMPT_DYNAMIC
3069 extern int preempt_dynamic_mode;
3070 extern int sched_dynamic_mode(const char *str);
3071 extern void sched_dynamic_update(int mode);
3072 #endif
3073 
3074