xref: /openbmc/linux/kernel/sched/rt.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 
14 struct rt_bandwidth def_rt_bandwidth;
15 
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 	struct rt_bandwidth *rt_b =
19 		container_of(timer, struct rt_bandwidth, rt_period_timer);
20 	ktime_t now;
21 	int overrun;
22 	int idle = 0;
23 
24 	for (;;) {
25 		now = hrtimer_cb_get_time(timer);
26 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27 
28 		if (!overrun)
29 			break;
30 
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 	}
33 
34 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36 
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 	rt_b->rt_period = ns_to_ktime(period);
40 	rt_b->rt_runtime = runtime;
41 
42 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
43 
44 	hrtimer_init(&rt_b->rt_period_timer,
45 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 	rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48 
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 		return;
53 
54 	if (hrtimer_active(&rt_b->rt_period_timer))
55 		return;
56 
57 	raw_spin_lock(&rt_b->rt_runtime_lock);
58 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 	raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61 
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 	struct rt_prio_array *array;
65 	int i;
66 
67 	array = &rt_rq->active;
68 	for (i = 0; i < MAX_RT_PRIO; i++) {
69 		INIT_LIST_HEAD(array->queue + i);
70 		__clear_bit(i, array->bitmap);
71 	}
72 	/* delimiter for bitsearch: */
73 	__set_bit(MAX_RT_PRIO, array->bitmap);
74 
75 #if defined CONFIG_SMP
76 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 	rt_rq->highest_prio.next = MAX_RT_PRIO;
78 	rt_rq->rt_nr_migratory = 0;
79 	rt_rq->overloaded = 0;
80 	plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82 	/* We start is dequeued state, because no RT tasks are queued */
83 	rt_rq->rt_queued = 0;
84 
85 	rt_rq->rt_time = 0;
86 	rt_rq->rt_throttled = 0;
87 	rt_rq->rt_runtime = 0;
88 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89 }
90 
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93 {
94 	hrtimer_cancel(&rt_b->rt_period_timer);
95 }
96 
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98 
99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100 {
101 #ifdef CONFIG_SCHED_DEBUG
102 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103 #endif
104 	return container_of(rt_se, struct task_struct, rt);
105 }
106 
107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108 {
109 	return rt_rq->rq;
110 }
111 
112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113 {
114 	return rt_se->rt_rq;
115 }
116 
117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118 {
119 	struct rt_rq *rt_rq = rt_se->rt_rq;
120 
121 	return rt_rq->rq;
122 }
123 
124 void free_rt_sched_group(struct task_group *tg)
125 {
126 	int i;
127 
128 	if (tg->rt_se)
129 		destroy_rt_bandwidth(&tg->rt_bandwidth);
130 
131 	for_each_possible_cpu(i) {
132 		if (tg->rt_rq)
133 			kfree(tg->rt_rq[i]);
134 		if (tg->rt_se)
135 			kfree(tg->rt_se[i]);
136 	}
137 
138 	kfree(tg->rt_rq);
139 	kfree(tg->rt_se);
140 }
141 
142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143 		struct sched_rt_entity *rt_se, int cpu,
144 		struct sched_rt_entity *parent)
145 {
146 	struct rq *rq = cpu_rq(cpu);
147 
148 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
149 	rt_rq->rt_nr_boosted = 0;
150 	rt_rq->rq = rq;
151 	rt_rq->tg = tg;
152 
153 	tg->rt_rq[cpu] = rt_rq;
154 	tg->rt_se[cpu] = rt_se;
155 
156 	if (!rt_se)
157 		return;
158 
159 	if (!parent)
160 		rt_se->rt_rq = &rq->rt;
161 	else
162 		rt_se->rt_rq = parent->my_q;
163 
164 	rt_se->my_q = rt_rq;
165 	rt_se->parent = parent;
166 	INIT_LIST_HEAD(&rt_se->run_list);
167 }
168 
169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170 {
171 	struct rt_rq *rt_rq;
172 	struct sched_rt_entity *rt_se;
173 	int i;
174 
175 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176 	if (!tg->rt_rq)
177 		goto err;
178 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179 	if (!tg->rt_se)
180 		goto err;
181 
182 	init_rt_bandwidth(&tg->rt_bandwidth,
183 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184 
185 	for_each_possible_cpu(i) {
186 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
187 				     GFP_KERNEL, cpu_to_node(i));
188 		if (!rt_rq)
189 			goto err;
190 
191 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192 				     GFP_KERNEL, cpu_to_node(i));
193 		if (!rt_se)
194 			goto err_free_rq;
195 
196 		init_rt_rq(rt_rq, cpu_rq(i));
197 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199 	}
200 
201 	return 1;
202 
203 err_free_rq:
204 	kfree(rt_rq);
205 err:
206 	return 0;
207 }
208 
209 #else /* CONFIG_RT_GROUP_SCHED */
210 
211 #define rt_entity_is_task(rt_se) (1)
212 
213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214 {
215 	return container_of(rt_se, struct task_struct, rt);
216 }
217 
218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219 {
220 	return container_of(rt_rq, struct rq, rt);
221 }
222 
223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 {
225 	struct task_struct *p = rt_task_of(rt_se);
226 
227 	return task_rq(p);
228 }
229 
230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231 {
232 	struct rq *rq = rq_of_rt_se(rt_se);
233 
234 	return &rq->rt;
235 }
236 
237 void free_rt_sched_group(struct task_group *tg) { }
238 
239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240 {
241 	return 1;
242 }
243 #endif /* CONFIG_RT_GROUP_SCHED */
244 
245 #ifdef CONFIG_SMP
246 
247 static int pull_rt_task(struct rq *this_rq);
248 
249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250 {
251 	/* Try to pull RT tasks here if we lower this rq's prio */
252 	return rq->rt.highest_prio.curr > prev->prio;
253 }
254 
255 static inline int rt_overloaded(struct rq *rq)
256 {
257 	return atomic_read(&rq->rd->rto_count);
258 }
259 
260 static inline void rt_set_overload(struct rq *rq)
261 {
262 	if (!rq->online)
263 		return;
264 
265 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
266 	/*
267 	 * Make sure the mask is visible before we set
268 	 * the overload count. That is checked to determine
269 	 * if we should look at the mask. It would be a shame
270 	 * if we looked at the mask, but the mask was not
271 	 * updated yet.
272 	 *
273 	 * Matched by the barrier in pull_rt_task().
274 	 */
275 	smp_wmb();
276 	atomic_inc(&rq->rd->rto_count);
277 }
278 
279 static inline void rt_clear_overload(struct rq *rq)
280 {
281 	if (!rq->online)
282 		return;
283 
284 	/* the order here really doesn't matter */
285 	atomic_dec(&rq->rd->rto_count);
286 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
287 }
288 
289 static void update_rt_migration(struct rt_rq *rt_rq)
290 {
291 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 		if (!rt_rq->overloaded) {
293 			rt_set_overload(rq_of_rt_rq(rt_rq));
294 			rt_rq->overloaded = 1;
295 		}
296 	} else if (rt_rq->overloaded) {
297 		rt_clear_overload(rq_of_rt_rq(rt_rq));
298 		rt_rq->overloaded = 0;
299 	}
300 }
301 
302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303 {
304 	struct task_struct *p;
305 
306 	if (!rt_entity_is_task(rt_se))
307 		return;
308 
309 	p = rt_task_of(rt_se);
310 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311 
312 	rt_rq->rt_nr_total++;
313 	if (p->nr_cpus_allowed > 1)
314 		rt_rq->rt_nr_migratory++;
315 
316 	update_rt_migration(rt_rq);
317 }
318 
319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 {
321 	struct task_struct *p;
322 
323 	if (!rt_entity_is_task(rt_se))
324 		return;
325 
326 	p = rt_task_of(rt_se);
327 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328 
329 	rt_rq->rt_nr_total--;
330 	if (p->nr_cpus_allowed > 1)
331 		rt_rq->rt_nr_migratory--;
332 
333 	update_rt_migration(rt_rq);
334 }
335 
336 static inline int has_pushable_tasks(struct rq *rq)
337 {
338 	return !plist_head_empty(&rq->rt.pushable_tasks);
339 }
340 
341 static inline void set_post_schedule(struct rq *rq)
342 {
343 	/*
344 	 * We detect this state here so that we can avoid taking the RQ
345 	 * lock again later if there is no need to push
346 	 */
347 	rq->post_schedule = has_pushable_tasks(rq);
348 }
349 
350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351 {
352 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353 	plist_node_init(&p->pushable_tasks, p->prio);
354 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355 
356 	/* Update the highest prio pushable task */
357 	if (p->prio < rq->rt.highest_prio.next)
358 		rq->rt.highest_prio.next = p->prio;
359 }
360 
361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
364 
365 	/* Update the new highest prio pushable task */
366 	if (has_pushable_tasks(rq)) {
367 		p = plist_first_entry(&rq->rt.pushable_tasks,
368 				      struct task_struct, pushable_tasks);
369 		rq->rt.highest_prio.next = p->prio;
370 	} else
371 		rq->rt.highest_prio.next = MAX_RT_PRIO;
372 }
373 
374 #else
375 
376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 }
379 
380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381 {
382 }
383 
384 static inline
385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386 {
387 }
388 
389 static inline
390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391 {
392 }
393 
394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395 {
396 	return false;
397 }
398 
399 static inline int pull_rt_task(struct rq *this_rq)
400 {
401 	return 0;
402 }
403 
404 static inline void set_post_schedule(struct rq *rq)
405 {
406 }
407 #endif /* CONFIG_SMP */
408 
409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411 
412 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413 {
414 	return !list_empty(&rt_se->run_list);
415 }
416 
417 #ifdef CONFIG_RT_GROUP_SCHED
418 
419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
420 {
421 	if (!rt_rq->tg)
422 		return RUNTIME_INF;
423 
424 	return rt_rq->rt_runtime;
425 }
426 
427 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428 {
429 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
430 }
431 
432 typedef struct task_group *rt_rq_iter_t;
433 
434 static inline struct task_group *next_task_group(struct task_group *tg)
435 {
436 	do {
437 		tg = list_entry_rcu(tg->list.next,
438 			typeof(struct task_group), list);
439 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440 
441 	if (&tg->list == &task_groups)
442 		tg = NULL;
443 
444 	return tg;
445 }
446 
447 #define for_each_rt_rq(rt_rq, iter, rq)					\
448 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
449 		(iter = next_task_group(iter)) &&			\
450 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
451 
452 #define for_each_sched_rt_entity(rt_se) \
453 	for (; rt_se; rt_se = rt_se->parent)
454 
455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456 {
457 	return rt_se->my_q;
458 }
459 
460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462 
463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
464 {
465 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466 	struct rq *rq = rq_of_rt_rq(rt_rq);
467 	struct sched_rt_entity *rt_se;
468 
469 	int cpu = cpu_of(rq);
470 
471 	rt_se = rt_rq->tg->rt_se[cpu];
472 
473 	if (rt_rq->rt_nr_running) {
474 		if (!rt_se)
475 			enqueue_top_rt_rq(rt_rq);
476 		else if (!on_rt_rq(rt_se))
477 			enqueue_rt_entity(rt_se, false);
478 
479 		if (rt_rq->highest_prio.curr < curr->prio)
480 			resched_curr(rq);
481 	}
482 }
483 
484 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
485 {
486 	struct sched_rt_entity *rt_se;
487 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
488 
489 	rt_se = rt_rq->tg->rt_se[cpu];
490 
491 	if (!rt_se)
492 		dequeue_top_rt_rq(rt_rq);
493 	else if (on_rt_rq(rt_se))
494 		dequeue_rt_entity(rt_se);
495 }
496 
497 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
498 {
499 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
500 }
501 
502 static int rt_se_boosted(struct sched_rt_entity *rt_se)
503 {
504 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
505 	struct task_struct *p;
506 
507 	if (rt_rq)
508 		return !!rt_rq->rt_nr_boosted;
509 
510 	p = rt_task_of(rt_se);
511 	return p->prio != p->normal_prio;
512 }
513 
514 #ifdef CONFIG_SMP
515 static inline const struct cpumask *sched_rt_period_mask(void)
516 {
517 	return this_rq()->rd->span;
518 }
519 #else
520 static inline const struct cpumask *sched_rt_period_mask(void)
521 {
522 	return cpu_online_mask;
523 }
524 #endif
525 
526 static inline
527 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
528 {
529 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
530 }
531 
532 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
533 {
534 	return &rt_rq->tg->rt_bandwidth;
535 }
536 
537 #else /* !CONFIG_RT_GROUP_SCHED */
538 
539 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
540 {
541 	return rt_rq->rt_runtime;
542 }
543 
544 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
545 {
546 	return ktime_to_ns(def_rt_bandwidth.rt_period);
547 }
548 
549 typedef struct rt_rq *rt_rq_iter_t;
550 
551 #define for_each_rt_rq(rt_rq, iter, rq) \
552 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
553 
554 #define for_each_sched_rt_entity(rt_se) \
555 	for (; rt_se; rt_se = NULL)
556 
557 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
558 {
559 	return NULL;
560 }
561 
562 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
563 {
564 	struct rq *rq = rq_of_rt_rq(rt_rq);
565 
566 	if (!rt_rq->rt_nr_running)
567 		return;
568 
569 	enqueue_top_rt_rq(rt_rq);
570 	resched_curr(rq);
571 }
572 
573 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
574 {
575 	dequeue_top_rt_rq(rt_rq);
576 }
577 
578 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
579 {
580 	return rt_rq->rt_throttled;
581 }
582 
583 static inline const struct cpumask *sched_rt_period_mask(void)
584 {
585 	return cpu_online_mask;
586 }
587 
588 static inline
589 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
590 {
591 	return &cpu_rq(cpu)->rt;
592 }
593 
594 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
595 {
596 	return &def_rt_bandwidth;
597 }
598 
599 #endif /* CONFIG_RT_GROUP_SCHED */
600 
601 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
602 {
603 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
604 
605 	return (hrtimer_active(&rt_b->rt_period_timer) ||
606 		rt_rq->rt_time < rt_b->rt_runtime);
607 }
608 
609 #ifdef CONFIG_SMP
610 /*
611  * We ran out of runtime, see if we can borrow some from our neighbours.
612  */
613 static int do_balance_runtime(struct rt_rq *rt_rq)
614 {
615 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
616 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
617 	int i, weight, more = 0;
618 	u64 rt_period;
619 
620 	weight = cpumask_weight(rd->span);
621 
622 	raw_spin_lock(&rt_b->rt_runtime_lock);
623 	rt_period = ktime_to_ns(rt_b->rt_period);
624 	for_each_cpu(i, rd->span) {
625 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
626 		s64 diff;
627 
628 		if (iter == rt_rq)
629 			continue;
630 
631 		raw_spin_lock(&iter->rt_runtime_lock);
632 		/*
633 		 * Either all rqs have inf runtime and there's nothing to steal
634 		 * or __disable_runtime() below sets a specific rq to inf to
635 		 * indicate its been disabled and disalow stealing.
636 		 */
637 		if (iter->rt_runtime == RUNTIME_INF)
638 			goto next;
639 
640 		/*
641 		 * From runqueues with spare time, take 1/n part of their
642 		 * spare time, but no more than our period.
643 		 */
644 		diff = iter->rt_runtime - iter->rt_time;
645 		if (diff > 0) {
646 			diff = div_u64((u64)diff, weight);
647 			if (rt_rq->rt_runtime + diff > rt_period)
648 				diff = rt_period - rt_rq->rt_runtime;
649 			iter->rt_runtime -= diff;
650 			rt_rq->rt_runtime += diff;
651 			more = 1;
652 			if (rt_rq->rt_runtime == rt_period) {
653 				raw_spin_unlock(&iter->rt_runtime_lock);
654 				break;
655 			}
656 		}
657 next:
658 		raw_spin_unlock(&iter->rt_runtime_lock);
659 	}
660 	raw_spin_unlock(&rt_b->rt_runtime_lock);
661 
662 	return more;
663 }
664 
665 /*
666  * Ensure this RQ takes back all the runtime it lend to its neighbours.
667  */
668 static void __disable_runtime(struct rq *rq)
669 {
670 	struct root_domain *rd = rq->rd;
671 	rt_rq_iter_t iter;
672 	struct rt_rq *rt_rq;
673 
674 	if (unlikely(!scheduler_running))
675 		return;
676 
677 	for_each_rt_rq(rt_rq, iter, rq) {
678 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
679 		s64 want;
680 		int i;
681 
682 		raw_spin_lock(&rt_b->rt_runtime_lock);
683 		raw_spin_lock(&rt_rq->rt_runtime_lock);
684 		/*
685 		 * Either we're all inf and nobody needs to borrow, or we're
686 		 * already disabled and thus have nothing to do, or we have
687 		 * exactly the right amount of runtime to take out.
688 		 */
689 		if (rt_rq->rt_runtime == RUNTIME_INF ||
690 				rt_rq->rt_runtime == rt_b->rt_runtime)
691 			goto balanced;
692 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
693 
694 		/*
695 		 * Calculate the difference between what we started out with
696 		 * and what we current have, that's the amount of runtime
697 		 * we lend and now have to reclaim.
698 		 */
699 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
700 
701 		/*
702 		 * Greedy reclaim, take back as much as we can.
703 		 */
704 		for_each_cpu(i, rd->span) {
705 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
706 			s64 diff;
707 
708 			/*
709 			 * Can't reclaim from ourselves or disabled runqueues.
710 			 */
711 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
712 				continue;
713 
714 			raw_spin_lock(&iter->rt_runtime_lock);
715 			if (want > 0) {
716 				diff = min_t(s64, iter->rt_runtime, want);
717 				iter->rt_runtime -= diff;
718 				want -= diff;
719 			} else {
720 				iter->rt_runtime -= want;
721 				want -= want;
722 			}
723 			raw_spin_unlock(&iter->rt_runtime_lock);
724 
725 			if (!want)
726 				break;
727 		}
728 
729 		raw_spin_lock(&rt_rq->rt_runtime_lock);
730 		/*
731 		 * We cannot be left wanting - that would mean some runtime
732 		 * leaked out of the system.
733 		 */
734 		BUG_ON(want);
735 balanced:
736 		/*
737 		 * Disable all the borrow logic by pretending we have inf
738 		 * runtime - in which case borrowing doesn't make sense.
739 		 */
740 		rt_rq->rt_runtime = RUNTIME_INF;
741 		rt_rq->rt_throttled = 0;
742 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
743 		raw_spin_unlock(&rt_b->rt_runtime_lock);
744 
745 		/* Make rt_rq available for pick_next_task() */
746 		sched_rt_rq_enqueue(rt_rq);
747 	}
748 }
749 
750 static void __enable_runtime(struct rq *rq)
751 {
752 	rt_rq_iter_t iter;
753 	struct rt_rq *rt_rq;
754 
755 	if (unlikely(!scheduler_running))
756 		return;
757 
758 	/*
759 	 * Reset each runqueue's bandwidth settings
760 	 */
761 	for_each_rt_rq(rt_rq, iter, rq) {
762 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
763 
764 		raw_spin_lock(&rt_b->rt_runtime_lock);
765 		raw_spin_lock(&rt_rq->rt_runtime_lock);
766 		rt_rq->rt_runtime = rt_b->rt_runtime;
767 		rt_rq->rt_time = 0;
768 		rt_rq->rt_throttled = 0;
769 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
770 		raw_spin_unlock(&rt_b->rt_runtime_lock);
771 	}
772 }
773 
774 static int balance_runtime(struct rt_rq *rt_rq)
775 {
776 	int more = 0;
777 
778 	if (!sched_feat(RT_RUNTIME_SHARE))
779 		return more;
780 
781 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
782 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
783 		more = do_balance_runtime(rt_rq);
784 		raw_spin_lock(&rt_rq->rt_runtime_lock);
785 	}
786 
787 	return more;
788 }
789 #else /* !CONFIG_SMP */
790 static inline int balance_runtime(struct rt_rq *rt_rq)
791 {
792 	return 0;
793 }
794 #endif /* CONFIG_SMP */
795 
796 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
797 {
798 	int i, idle = 1, throttled = 0;
799 	const struct cpumask *span;
800 
801 	span = sched_rt_period_mask();
802 #ifdef CONFIG_RT_GROUP_SCHED
803 	/*
804 	 * FIXME: isolated CPUs should really leave the root task group,
805 	 * whether they are isolcpus or were isolated via cpusets, lest
806 	 * the timer run on a CPU which does not service all runqueues,
807 	 * potentially leaving other CPUs indefinitely throttled.  If
808 	 * isolation is really required, the user will turn the throttle
809 	 * off to kill the perturbations it causes anyway.  Meanwhile,
810 	 * this maintains functionality for boot and/or troubleshooting.
811 	 */
812 	if (rt_b == &root_task_group.rt_bandwidth)
813 		span = cpu_online_mask;
814 #endif
815 	for_each_cpu(i, span) {
816 		int enqueue = 0;
817 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
818 		struct rq *rq = rq_of_rt_rq(rt_rq);
819 
820 		raw_spin_lock(&rq->lock);
821 		if (rt_rq->rt_time) {
822 			u64 runtime;
823 
824 			raw_spin_lock(&rt_rq->rt_runtime_lock);
825 			if (rt_rq->rt_throttled)
826 				balance_runtime(rt_rq);
827 			runtime = rt_rq->rt_runtime;
828 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
829 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
830 				rt_rq->rt_throttled = 0;
831 				enqueue = 1;
832 
833 				/*
834 				 * Force a clock update if the CPU was idle,
835 				 * lest wakeup -> unthrottle time accumulate.
836 				 */
837 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
838 					rq->skip_clock_update = -1;
839 			}
840 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
841 				idle = 0;
842 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 		} else if (rt_rq->rt_nr_running) {
844 			idle = 0;
845 			if (!rt_rq_throttled(rt_rq))
846 				enqueue = 1;
847 		}
848 		if (rt_rq->rt_throttled)
849 			throttled = 1;
850 
851 		if (enqueue)
852 			sched_rt_rq_enqueue(rt_rq);
853 		raw_spin_unlock(&rq->lock);
854 	}
855 
856 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
857 		return 1;
858 
859 	return idle;
860 }
861 
862 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
863 {
864 #ifdef CONFIG_RT_GROUP_SCHED
865 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
866 
867 	if (rt_rq)
868 		return rt_rq->highest_prio.curr;
869 #endif
870 
871 	return rt_task_of(rt_se)->prio;
872 }
873 
874 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
875 {
876 	u64 runtime = sched_rt_runtime(rt_rq);
877 
878 	if (rt_rq->rt_throttled)
879 		return rt_rq_throttled(rt_rq);
880 
881 	if (runtime >= sched_rt_period(rt_rq))
882 		return 0;
883 
884 	balance_runtime(rt_rq);
885 	runtime = sched_rt_runtime(rt_rq);
886 	if (runtime == RUNTIME_INF)
887 		return 0;
888 
889 	if (rt_rq->rt_time > runtime) {
890 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
891 
892 		/*
893 		 * Don't actually throttle groups that have no runtime assigned
894 		 * but accrue some time due to boosting.
895 		 */
896 		if (likely(rt_b->rt_runtime)) {
897 			rt_rq->rt_throttled = 1;
898 			printk_deferred_once("sched: RT throttling activated\n");
899 		} else {
900 			/*
901 			 * In case we did anyway, make it go away,
902 			 * replenishment is a joke, since it will replenish us
903 			 * with exactly 0 ns.
904 			 */
905 			rt_rq->rt_time = 0;
906 		}
907 
908 		if (rt_rq_throttled(rt_rq)) {
909 			sched_rt_rq_dequeue(rt_rq);
910 			return 1;
911 		}
912 	}
913 
914 	return 0;
915 }
916 
917 /*
918  * Update the current task's runtime statistics. Skip current tasks that
919  * are not in our scheduling class.
920  */
921 static void update_curr_rt(struct rq *rq)
922 {
923 	struct task_struct *curr = rq->curr;
924 	struct sched_rt_entity *rt_se = &curr->rt;
925 	u64 delta_exec;
926 
927 	if (curr->sched_class != &rt_sched_class)
928 		return;
929 
930 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
931 	if (unlikely((s64)delta_exec <= 0))
932 		return;
933 
934 	schedstat_set(curr->se.statistics.exec_max,
935 		      max(curr->se.statistics.exec_max, delta_exec));
936 
937 	curr->se.sum_exec_runtime += delta_exec;
938 	account_group_exec_runtime(curr, delta_exec);
939 
940 	curr->se.exec_start = rq_clock_task(rq);
941 	cpuacct_charge(curr, delta_exec);
942 
943 	sched_rt_avg_update(rq, delta_exec);
944 
945 	if (!rt_bandwidth_enabled())
946 		return;
947 
948 	for_each_sched_rt_entity(rt_se) {
949 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
950 
951 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
952 			raw_spin_lock(&rt_rq->rt_runtime_lock);
953 			rt_rq->rt_time += delta_exec;
954 			if (sched_rt_runtime_exceeded(rt_rq))
955 				resched_curr(rq);
956 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
957 		}
958 	}
959 }
960 
961 static void
962 dequeue_top_rt_rq(struct rt_rq *rt_rq)
963 {
964 	struct rq *rq = rq_of_rt_rq(rt_rq);
965 
966 	BUG_ON(&rq->rt != rt_rq);
967 
968 	if (!rt_rq->rt_queued)
969 		return;
970 
971 	BUG_ON(!rq->nr_running);
972 
973 	sub_nr_running(rq, rt_rq->rt_nr_running);
974 	rt_rq->rt_queued = 0;
975 }
976 
977 static void
978 enqueue_top_rt_rq(struct rt_rq *rt_rq)
979 {
980 	struct rq *rq = rq_of_rt_rq(rt_rq);
981 
982 	BUG_ON(&rq->rt != rt_rq);
983 
984 	if (rt_rq->rt_queued)
985 		return;
986 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
987 		return;
988 
989 	add_nr_running(rq, rt_rq->rt_nr_running);
990 	rt_rq->rt_queued = 1;
991 }
992 
993 #if defined CONFIG_SMP
994 
995 static void
996 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
997 {
998 	struct rq *rq = rq_of_rt_rq(rt_rq);
999 
1000 #ifdef CONFIG_RT_GROUP_SCHED
1001 	/*
1002 	 * Change rq's cpupri only if rt_rq is the top queue.
1003 	 */
1004 	if (&rq->rt != rt_rq)
1005 		return;
1006 #endif
1007 	if (rq->online && prio < prev_prio)
1008 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1009 }
1010 
1011 static void
1012 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1013 {
1014 	struct rq *rq = rq_of_rt_rq(rt_rq);
1015 
1016 #ifdef CONFIG_RT_GROUP_SCHED
1017 	/*
1018 	 * Change rq's cpupri only if rt_rq is the top queue.
1019 	 */
1020 	if (&rq->rt != rt_rq)
1021 		return;
1022 #endif
1023 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1024 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1025 }
1026 
1027 #else /* CONFIG_SMP */
1028 
1029 static inline
1030 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1031 static inline
1032 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1033 
1034 #endif /* CONFIG_SMP */
1035 
1036 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1037 static void
1038 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1039 {
1040 	int prev_prio = rt_rq->highest_prio.curr;
1041 
1042 	if (prio < prev_prio)
1043 		rt_rq->highest_prio.curr = prio;
1044 
1045 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1046 }
1047 
1048 static void
1049 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1050 {
1051 	int prev_prio = rt_rq->highest_prio.curr;
1052 
1053 	if (rt_rq->rt_nr_running) {
1054 
1055 		WARN_ON(prio < prev_prio);
1056 
1057 		/*
1058 		 * This may have been our highest task, and therefore
1059 		 * we may have some recomputation to do
1060 		 */
1061 		if (prio == prev_prio) {
1062 			struct rt_prio_array *array = &rt_rq->active;
1063 
1064 			rt_rq->highest_prio.curr =
1065 				sched_find_first_bit(array->bitmap);
1066 		}
1067 
1068 	} else
1069 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1070 
1071 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1072 }
1073 
1074 #else
1075 
1076 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1077 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1078 
1079 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1080 
1081 #ifdef CONFIG_RT_GROUP_SCHED
1082 
1083 static void
1084 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1085 {
1086 	if (rt_se_boosted(rt_se))
1087 		rt_rq->rt_nr_boosted++;
1088 
1089 	if (rt_rq->tg)
1090 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1091 }
1092 
1093 static void
1094 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1095 {
1096 	if (rt_se_boosted(rt_se))
1097 		rt_rq->rt_nr_boosted--;
1098 
1099 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1100 }
1101 
1102 #else /* CONFIG_RT_GROUP_SCHED */
1103 
1104 static void
1105 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1106 {
1107 	start_rt_bandwidth(&def_rt_bandwidth);
1108 }
1109 
1110 static inline
1111 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1112 
1113 #endif /* CONFIG_RT_GROUP_SCHED */
1114 
1115 static inline
1116 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1117 {
1118 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1119 
1120 	if (group_rq)
1121 		return group_rq->rt_nr_running;
1122 	else
1123 		return 1;
1124 }
1125 
1126 static inline
1127 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1128 {
1129 	int prio = rt_se_prio(rt_se);
1130 
1131 	WARN_ON(!rt_prio(prio));
1132 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1133 
1134 	inc_rt_prio(rt_rq, prio);
1135 	inc_rt_migration(rt_se, rt_rq);
1136 	inc_rt_group(rt_se, rt_rq);
1137 }
1138 
1139 static inline
1140 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1141 {
1142 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1143 	WARN_ON(!rt_rq->rt_nr_running);
1144 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1145 
1146 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1147 	dec_rt_migration(rt_se, rt_rq);
1148 	dec_rt_group(rt_se, rt_rq);
1149 }
1150 
1151 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1152 {
1153 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1154 	struct rt_prio_array *array = &rt_rq->active;
1155 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1156 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1157 
1158 	/*
1159 	 * Don't enqueue the group if its throttled, or when empty.
1160 	 * The latter is a consequence of the former when a child group
1161 	 * get throttled and the current group doesn't have any other
1162 	 * active members.
1163 	 */
1164 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1165 		return;
1166 
1167 	if (head)
1168 		list_add(&rt_se->run_list, queue);
1169 	else
1170 		list_add_tail(&rt_se->run_list, queue);
1171 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1172 
1173 	inc_rt_tasks(rt_se, rt_rq);
1174 }
1175 
1176 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1177 {
1178 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1179 	struct rt_prio_array *array = &rt_rq->active;
1180 
1181 	list_del_init(&rt_se->run_list);
1182 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1183 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1184 
1185 	dec_rt_tasks(rt_se, rt_rq);
1186 }
1187 
1188 /*
1189  * Because the prio of an upper entry depends on the lower
1190  * entries, we must remove entries top - down.
1191  */
1192 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1193 {
1194 	struct sched_rt_entity *back = NULL;
1195 
1196 	for_each_sched_rt_entity(rt_se) {
1197 		rt_se->back = back;
1198 		back = rt_se;
1199 	}
1200 
1201 	dequeue_top_rt_rq(rt_rq_of_se(back));
1202 
1203 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1204 		if (on_rt_rq(rt_se))
1205 			__dequeue_rt_entity(rt_se);
1206 	}
1207 }
1208 
1209 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1210 {
1211 	struct rq *rq = rq_of_rt_se(rt_se);
1212 
1213 	dequeue_rt_stack(rt_se);
1214 	for_each_sched_rt_entity(rt_se)
1215 		__enqueue_rt_entity(rt_se, head);
1216 	enqueue_top_rt_rq(&rq->rt);
1217 }
1218 
1219 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1220 {
1221 	struct rq *rq = rq_of_rt_se(rt_se);
1222 
1223 	dequeue_rt_stack(rt_se);
1224 
1225 	for_each_sched_rt_entity(rt_se) {
1226 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1227 
1228 		if (rt_rq && rt_rq->rt_nr_running)
1229 			__enqueue_rt_entity(rt_se, false);
1230 	}
1231 	enqueue_top_rt_rq(&rq->rt);
1232 }
1233 
1234 /*
1235  * Adding/removing a task to/from a priority array:
1236  */
1237 static void
1238 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1239 {
1240 	struct sched_rt_entity *rt_se = &p->rt;
1241 
1242 	if (flags & ENQUEUE_WAKEUP)
1243 		rt_se->timeout = 0;
1244 
1245 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1246 
1247 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1248 		enqueue_pushable_task(rq, p);
1249 }
1250 
1251 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1252 {
1253 	struct sched_rt_entity *rt_se = &p->rt;
1254 
1255 	update_curr_rt(rq);
1256 	dequeue_rt_entity(rt_se);
1257 
1258 	dequeue_pushable_task(rq, p);
1259 }
1260 
1261 /*
1262  * Put task to the head or the end of the run list without the overhead of
1263  * dequeue followed by enqueue.
1264  */
1265 static void
1266 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1267 {
1268 	if (on_rt_rq(rt_se)) {
1269 		struct rt_prio_array *array = &rt_rq->active;
1270 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1271 
1272 		if (head)
1273 			list_move(&rt_se->run_list, queue);
1274 		else
1275 			list_move_tail(&rt_se->run_list, queue);
1276 	}
1277 }
1278 
1279 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1280 {
1281 	struct sched_rt_entity *rt_se = &p->rt;
1282 	struct rt_rq *rt_rq;
1283 
1284 	for_each_sched_rt_entity(rt_se) {
1285 		rt_rq = rt_rq_of_se(rt_se);
1286 		requeue_rt_entity(rt_rq, rt_se, head);
1287 	}
1288 }
1289 
1290 static void yield_task_rt(struct rq *rq)
1291 {
1292 	requeue_task_rt(rq, rq->curr, 0);
1293 }
1294 
1295 #ifdef CONFIG_SMP
1296 static int find_lowest_rq(struct task_struct *task);
1297 
1298 static int
1299 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1300 {
1301 	struct task_struct *curr;
1302 	struct rq *rq;
1303 
1304 	if (p->nr_cpus_allowed == 1)
1305 		goto out;
1306 
1307 	/* For anything but wake ups, just return the task_cpu */
1308 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1309 		goto out;
1310 
1311 	rq = cpu_rq(cpu);
1312 
1313 	rcu_read_lock();
1314 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1315 
1316 	/*
1317 	 * If the current task on @p's runqueue is an RT task, then
1318 	 * try to see if we can wake this RT task up on another
1319 	 * runqueue. Otherwise simply start this RT task
1320 	 * on its current runqueue.
1321 	 *
1322 	 * We want to avoid overloading runqueues. If the woken
1323 	 * task is a higher priority, then it will stay on this CPU
1324 	 * and the lower prio task should be moved to another CPU.
1325 	 * Even though this will probably make the lower prio task
1326 	 * lose its cache, we do not want to bounce a higher task
1327 	 * around just because it gave up its CPU, perhaps for a
1328 	 * lock?
1329 	 *
1330 	 * For equal prio tasks, we just let the scheduler sort it out.
1331 	 *
1332 	 * Otherwise, just let it ride on the affined RQ and the
1333 	 * post-schedule router will push the preempted task away
1334 	 *
1335 	 * This test is optimistic, if we get it wrong the load-balancer
1336 	 * will have to sort it out.
1337 	 */
1338 	if (curr && unlikely(rt_task(curr)) &&
1339 	    (curr->nr_cpus_allowed < 2 ||
1340 	     curr->prio <= p->prio)) {
1341 		int target = find_lowest_rq(p);
1342 
1343 		if (target != -1)
1344 			cpu = target;
1345 	}
1346 	rcu_read_unlock();
1347 
1348 out:
1349 	return cpu;
1350 }
1351 
1352 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1353 {
1354 	if (rq->curr->nr_cpus_allowed == 1)
1355 		return;
1356 
1357 	if (p->nr_cpus_allowed != 1
1358 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1359 		return;
1360 
1361 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1362 		return;
1363 
1364 	/*
1365 	 * There appears to be other cpus that can accept
1366 	 * current and none to run 'p', so lets reschedule
1367 	 * to try and push current away:
1368 	 */
1369 	requeue_task_rt(rq, p, 1);
1370 	resched_curr(rq);
1371 }
1372 
1373 #endif /* CONFIG_SMP */
1374 
1375 /*
1376  * Preempt the current task with a newly woken task if needed:
1377  */
1378 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1379 {
1380 	if (p->prio < rq->curr->prio) {
1381 		resched_curr(rq);
1382 		return;
1383 	}
1384 
1385 #ifdef CONFIG_SMP
1386 	/*
1387 	 * If:
1388 	 *
1389 	 * - the newly woken task is of equal priority to the current task
1390 	 * - the newly woken task is non-migratable while current is migratable
1391 	 * - current will be preempted on the next reschedule
1392 	 *
1393 	 * we should check to see if current can readily move to a different
1394 	 * cpu.  If so, we will reschedule to allow the push logic to try
1395 	 * to move current somewhere else, making room for our non-migratable
1396 	 * task.
1397 	 */
1398 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1399 		check_preempt_equal_prio(rq, p);
1400 #endif
1401 }
1402 
1403 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1404 						   struct rt_rq *rt_rq)
1405 {
1406 	struct rt_prio_array *array = &rt_rq->active;
1407 	struct sched_rt_entity *next = NULL;
1408 	struct list_head *queue;
1409 	int idx;
1410 
1411 	idx = sched_find_first_bit(array->bitmap);
1412 	BUG_ON(idx >= MAX_RT_PRIO);
1413 
1414 	queue = array->queue + idx;
1415 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1416 
1417 	return next;
1418 }
1419 
1420 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1421 {
1422 	struct sched_rt_entity *rt_se;
1423 	struct task_struct *p;
1424 	struct rt_rq *rt_rq  = &rq->rt;
1425 
1426 	do {
1427 		rt_se = pick_next_rt_entity(rq, rt_rq);
1428 		BUG_ON(!rt_se);
1429 		rt_rq = group_rt_rq(rt_se);
1430 	} while (rt_rq);
1431 
1432 	p = rt_task_of(rt_se);
1433 	p->se.exec_start = rq_clock_task(rq);
1434 
1435 	return p;
1436 }
1437 
1438 static struct task_struct *
1439 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1440 {
1441 	struct task_struct *p;
1442 	struct rt_rq *rt_rq = &rq->rt;
1443 
1444 	if (need_pull_rt_task(rq, prev)) {
1445 		pull_rt_task(rq);
1446 		/*
1447 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1448 		 * means a dl or stop task can slip in, in which case we need
1449 		 * to re-start task selection.
1450 		 */
1451 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1452 			     rq->dl.dl_nr_running))
1453 			return RETRY_TASK;
1454 	}
1455 
1456 	/*
1457 	 * We may dequeue prev's rt_rq in put_prev_task().
1458 	 * So, we update time before rt_nr_running check.
1459 	 */
1460 	if (prev->sched_class == &rt_sched_class)
1461 		update_curr_rt(rq);
1462 
1463 	if (!rt_rq->rt_queued)
1464 		return NULL;
1465 
1466 	put_prev_task(rq, prev);
1467 
1468 	p = _pick_next_task_rt(rq);
1469 
1470 	/* The running task is never eligible for pushing */
1471 	dequeue_pushable_task(rq, p);
1472 
1473 	set_post_schedule(rq);
1474 
1475 	return p;
1476 }
1477 
1478 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1479 {
1480 	update_curr_rt(rq);
1481 
1482 	/*
1483 	 * The previous task needs to be made eligible for pushing
1484 	 * if it is still active
1485 	 */
1486 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1487 		enqueue_pushable_task(rq, p);
1488 }
1489 
1490 #ifdef CONFIG_SMP
1491 
1492 /* Only try algorithms three times */
1493 #define RT_MAX_TRIES 3
1494 
1495 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1496 {
1497 	if (!task_running(rq, p) &&
1498 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1499 		return 1;
1500 	return 0;
1501 }
1502 
1503 /*
1504  * Return the highest pushable rq's task, which is suitable to be executed
1505  * on the cpu, NULL otherwise
1506  */
1507 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1508 {
1509 	struct plist_head *head = &rq->rt.pushable_tasks;
1510 	struct task_struct *p;
1511 
1512 	if (!has_pushable_tasks(rq))
1513 		return NULL;
1514 
1515 	plist_for_each_entry(p, head, pushable_tasks) {
1516 		if (pick_rt_task(rq, p, cpu))
1517 			return p;
1518 	}
1519 
1520 	return NULL;
1521 }
1522 
1523 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1524 
1525 static int find_lowest_rq(struct task_struct *task)
1526 {
1527 	struct sched_domain *sd;
1528 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1529 	int this_cpu = smp_processor_id();
1530 	int cpu      = task_cpu(task);
1531 
1532 	/* Make sure the mask is initialized first */
1533 	if (unlikely(!lowest_mask))
1534 		return -1;
1535 
1536 	if (task->nr_cpus_allowed == 1)
1537 		return -1; /* No other targets possible */
1538 
1539 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1540 		return -1; /* No targets found */
1541 
1542 	/*
1543 	 * At this point we have built a mask of cpus representing the
1544 	 * lowest priority tasks in the system.  Now we want to elect
1545 	 * the best one based on our affinity and topology.
1546 	 *
1547 	 * We prioritize the last cpu that the task executed on since
1548 	 * it is most likely cache-hot in that location.
1549 	 */
1550 	if (cpumask_test_cpu(cpu, lowest_mask))
1551 		return cpu;
1552 
1553 	/*
1554 	 * Otherwise, we consult the sched_domains span maps to figure
1555 	 * out which cpu is logically closest to our hot cache data.
1556 	 */
1557 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1558 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1559 
1560 	rcu_read_lock();
1561 	for_each_domain(cpu, sd) {
1562 		if (sd->flags & SD_WAKE_AFFINE) {
1563 			int best_cpu;
1564 
1565 			/*
1566 			 * "this_cpu" is cheaper to preempt than a
1567 			 * remote processor.
1568 			 */
1569 			if (this_cpu != -1 &&
1570 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1571 				rcu_read_unlock();
1572 				return this_cpu;
1573 			}
1574 
1575 			best_cpu = cpumask_first_and(lowest_mask,
1576 						     sched_domain_span(sd));
1577 			if (best_cpu < nr_cpu_ids) {
1578 				rcu_read_unlock();
1579 				return best_cpu;
1580 			}
1581 		}
1582 	}
1583 	rcu_read_unlock();
1584 
1585 	/*
1586 	 * And finally, if there were no matches within the domains
1587 	 * just give the caller *something* to work with from the compatible
1588 	 * locations.
1589 	 */
1590 	if (this_cpu != -1)
1591 		return this_cpu;
1592 
1593 	cpu = cpumask_any(lowest_mask);
1594 	if (cpu < nr_cpu_ids)
1595 		return cpu;
1596 	return -1;
1597 }
1598 
1599 /* Will lock the rq it finds */
1600 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1601 {
1602 	struct rq *lowest_rq = NULL;
1603 	int tries;
1604 	int cpu;
1605 
1606 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1607 		cpu = find_lowest_rq(task);
1608 
1609 		if ((cpu == -1) || (cpu == rq->cpu))
1610 			break;
1611 
1612 		lowest_rq = cpu_rq(cpu);
1613 
1614 		/* if the prio of this runqueue changed, try again */
1615 		if (double_lock_balance(rq, lowest_rq)) {
1616 			/*
1617 			 * We had to unlock the run queue. In
1618 			 * the mean time, task could have
1619 			 * migrated already or had its affinity changed.
1620 			 * Also make sure that it wasn't scheduled on its rq.
1621 			 */
1622 			if (unlikely(task_rq(task) != rq ||
1623 				     !cpumask_test_cpu(lowest_rq->cpu,
1624 						       tsk_cpus_allowed(task)) ||
1625 				     task_running(rq, task) ||
1626 				     !task_on_rq_queued(task))) {
1627 
1628 				double_unlock_balance(rq, lowest_rq);
1629 				lowest_rq = NULL;
1630 				break;
1631 			}
1632 		}
1633 
1634 		/* If this rq is still suitable use it. */
1635 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1636 			break;
1637 
1638 		/* try again */
1639 		double_unlock_balance(rq, lowest_rq);
1640 		lowest_rq = NULL;
1641 	}
1642 
1643 	return lowest_rq;
1644 }
1645 
1646 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1647 {
1648 	struct task_struct *p;
1649 
1650 	if (!has_pushable_tasks(rq))
1651 		return NULL;
1652 
1653 	p = plist_first_entry(&rq->rt.pushable_tasks,
1654 			      struct task_struct, pushable_tasks);
1655 
1656 	BUG_ON(rq->cpu != task_cpu(p));
1657 	BUG_ON(task_current(rq, p));
1658 	BUG_ON(p->nr_cpus_allowed <= 1);
1659 
1660 	BUG_ON(!task_on_rq_queued(p));
1661 	BUG_ON(!rt_task(p));
1662 
1663 	return p;
1664 }
1665 
1666 /*
1667  * If the current CPU has more than one RT task, see if the non
1668  * running task can migrate over to a CPU that is running a task
1669  * of lesser priority.
1670  */
1671 static int push_rt_task(struct rq *rq)
1672 {
1673 	struct task_struct *next_task;
1674 	struct rq *lowest_rq;
1675 	int ret = 0;
1676 
1677 	if (!rq->rt.overloaded)
1678 		return 0;
1679 
1680 	next_task = pick_next_pushable_task(rq);
1681 	if (!next_task)
1682 		return 0;
1683 
1684 retry:
1685 	if (unlikely(next_task == rq->curr)) {
1686 		WARN_ON(1);
1687 		return 0;
1688 	}
1689 
1690 	/*
1691 	 * It's possible that the next_task slipped in of
1692 	 * higher priority than current. If that's the case
1693 	 * just reschedule current.
1694 	 */
1695 	if (unlikely(next_task->prio < rq->curr->prio)) {
1696 		resched_curr(rq);
1697 		return 0;
1698 	}
1699 
1700 	/* We might release rq lock */
1701 	get_task_struct(next_task);
1702 
1703 	/* find_lock_lowest_rq locks the rq if found */
1704 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1705 	if (!lowest_rq) {
1706 		struct task_struct *task;
1707 		/*
1708 		 * find_lock_lowest_rq releases rq->lock
1709 		 * so it is possible that next_task has migrated.
1710 		 *
1711 		 * We need to make sure that the task is still on the same
1712 		 * run-queue and is also still the next task eligible for
1713 		 * pushing.
1714 		 */
1715 		task = pick_next_pushable_task(rq);
1716 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1717 			/*
1718 			 * The task hasn't migrated, and is still the next
1719 			 * eligible task, but we failed to find a run-queue
1720 			 * to push it to.  Do not retry in this case, since
1721 			 * other cpus will pull from us when ready.
1722 			 */
1723 			goto out;
1724 		}
1725 
1726 		if (!task)
1727 			/* No more tasks, just exit */
1728 			goto out;
1729 
1730 		/*
1731 		 * Something has shifted, try again.
1732 		 */
1733 		put_task_struct(next_task);
1734 		next_task = task;
1735 		goto retry;
1736 	}
1737 
1738 	deactivate_task(rq, next_task, 0);
1739 	set_task_cpu(next_task, lowest_rq->cpu);
1740 	activate_task(lowest_rq, next_task, 0);
1741 	ret = 1;
1742 
1743 	resched_curr(lowest_rq);
1744 
1745 	double_unlock_balance(rq, lowest_rq);
1746 
1747 out:
1748 	put_task_struct(next_task);
1749 
1750 	return ret;
1751 }
1752 
1753 static void push_rt_tasks(struct rq *rq)
1754 {
1755 	/* push_rt_task will return true if it moved an RT */
1756 	while (push_rt_task(rq))
1757 		;
1758 }
1759 
1760 static int pull_rt_task(struct rq *this_rq)
1761 {
1762 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1763 	struct task_struct *p;
1764 	struct rq *src_rq;
1765 
1766 	if (likely(!rt_overloaded(this_rq)))
1767 		return 0;
1768 
1769 	/*
1770 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1771 	 * see overloaded we must also see the rto_mask bit.
1772 	 */
1773 	smp_rmb();
1774 
1775 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1776 		if (this_cpu == cpu)
1777 			continue;
1778 
1779 		src_rq = cpu_rq(cpu);
1780 
1781 		/*
1782 		 * Don't bother taking the src_rq->lock if the next highest
1783 		 * task is known to be lower-priority than our current task.
1784 		 * This may look racy, but if this value is about to go
1785 		 * logically higher, the src_rq will push this task away.
1786 		 * And if its going logically lower, we do not care
1787 		 */
1788 		if (src_rq->rt.highest_prio.next >=
1789 		    this_rq->rt.highest_prio.curr)
1790 			continue;
1791 
1792 		/*
1793 		 * We can potentially drop this_rq's lock in
1794 		 * double_lock_balance, and another CPU could
1795 		 * alter this_rq
1796 		 */
1797 		double_lock_balance(this_rq, src_rq);
1798 
1799 		/*
1800 		 * We can pull only a task, which is pushable
1801 		 * on its rq, and no others.
1802 		 */
1803 		p = pick_highest_pushable_task(src_rq, this_cpu);
1804 
1805 		/*
1806 		 * Do we have an RT task that preempts
1807 		 * the to-be-scheduled task?
1808 		 */
1809 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1810 			WARN_ON(p == src_rq->curr);
1811 			WARN_ON(!task_on_rq_queued(p));
1812 
1813 			/*
1814 			 * There's a chance that p is higher in priority
1815 			 * than what's currently running on its cpu.
1816 			 * This is just that p is wakeing up and hasn't
1817 			 * had a chance to schedule. We only pull
1818 			 * p if it is lower in priority than the
1819 			 * current task on the run queue
1820 			 */
1821 			if (p->prio < src_rq->curr->prio)
1822 				goto skip;
1823 
1824 			ret = 1;
1825 
1826 			deactivate_task(src_rq, p, 0);
1827 			set_task_cpu(p, this_cpu);
1828 			activate_task(this_rq, p, 0);
1829 			/*
1830 			 * We continue with the search, just in
1831 			 * case there's an even higher prio task
1832 			 * in another runqueue. (low likelihood
1833 			 * but possible)
1834 			 */
1835 		}
1836 skip:
1837 		double_unlock_balance(this_rq, src_rq);
1838 	}
1839 
1840 	return ret;
1841 }
1842 
1843 static void post_schedule_rt(struct rq *rq)
1844 {
1845 	push_rt_tasks(rq);
1846 }
1847 
1848 /*
1849  * If we are not running and we are not going to reschedule soon, we should
1850  * try to push tasks away now
1851  */
1852 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1853 {
1854 	if (!task_running(rq, p) &&
1855 	    !test_tsk_need_resched(rq->curr) &&
1856 	    has_pushable_tasks(rq) &&
1857 	    p->nr_cpus_allowed > 1 &&
1858 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1859 	    (rq->curr->nr_cpus_allowed < 2 ||
1860 	     rq->curr->prio <= p->prio))
1861 		push_rt_tasks(rq);
1862 }
1863 
1864 static void set_cpus_allowed_rt(struct task_struct *p,
1865 				const struct cpumask *new_mask)
1866 {
1867 	struct rq *rq;
1868 	int weight;
1869 
1870 	BUG_ON(!rt_task(p));
1871 
1872 	if (!task_on_rq_queued(p))
1873 		return;
1874 
1875 	weight = cpumask_weight(new_mask);
1876 
1877 	/*
1878 	 * Only update if the process changes its state from whether it
1879 	 * can migrate or not.
1880 	 */
1881 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1882 		return;
1883 
1884 	rq = task_rq(p);
1885 
1886 	/*
1887 	 * The process used to be able to migrate OR it can now migrate
1888 	 */
1889 	if (weight <= 1) {
1890 		if (!task_current(rq, p))
1891 			dequeue_pushable_task(rq, p);
1892 		BUG_ON(!rq->rt.rt_nr_migratory);
1893 		rq->rt.rt_nr_migratory--;
1894 	} else {
1895 		if (!task_current(rq, p))
1896 			enqueue_pushable_task(rq, p);
1897 		rq->rt.rt_nr_migratory++;
1898 	}
1899 
1900 	update_rt_migration(&rq->rt);
1901 }
1902 
1903 /* Assumes rq->lock is held */
1904 static void rq_online_rt(struct rq *rq)
1905 {
1906 	if (rq->rt.overloaded)
1907 		rt_set_overload(rq);
1908 
1909 	__enable_runtime(rq);
1910 
1911 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1912 }
1913 
1914 /* Assumes rq->lock is held */
1915 static void rq_offline_rt(struct rq *rq)
1916 {
1917 	if (rq->rt.overloaded)
1918 		rt_clear_overload(rq);
1919 
1920 	__disable_runtime(rq);
1921 
1922 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1923 }
1924 
1925 /*
1926  * When switch from the rt queue, we bring ourselves to a position
1927  * that we might want to pull RT tasks from other runqueues.
1928  */
1929 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1930 {
1931 	/*
1932 	 * If there are other RT tasks then we will reschedule
1933 	 * and the scheduling of the other RT tasks will handle
1934 	 * the balancing. But if we are the last RT task
1935 	 * we may need to handle the pulling of RT tasks
1936 	 * now.
1937 	 */
1938 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1939 		return;
1940 
1941 	if (pull_rt_task(rq))
1942 		resched_curr(rq);
1943 }
1944 
1945 void __init init_sched_rt_class(void)
1946 {
1947 	unsigned int i;
1948 
1949 	for_each_possible_cpu(i) {
1950 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1951 					GFP_KERNEL, cpu_to_node(i));
1952 	}
1953 }
1954 #endif /* CONFIG_SMP */
1955 
1956 /*
1957  * When switching a task to RT, we may overload the runqueue
1958  * with RT tasks. In this case we try to push them off to
1959  * other runqueues.
1960  */
1961 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1962 {
1963 	int check_resched = 1;
1964 
1965 	/*
1966 	 * If we are already running, then there's nothing
1967 	 * that needs to be done. But if we are not running
1968 	 * we may need to preempt the current running task.
1969 	 * If that current running task is also an RT task
1970 	 * then see if we can move to another run queue.
1971 	 */
1972 	if (task_on_rq_queued(p) && rq->curr != p) {
1973 #ifdef CONFIG_SMP
1974 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1975 		    /* Don't resched if we changed runqueues */
1976 		    push_rt_task(rq) && rq != task_rq(p))
1977 			check_resched = 0;
1978 #endif /* CONFIG_SMP */
1979 		if (check_resched && p->prio < rq->curr->prio)
1980 			resched_curr(rq);
1981 	}
1982 }
1983 
1984 /*
1985  * Priority of the task has changed. This may cause
1986  * us to initiate a push or pull.
1987  */
1988 static void
1989 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1990 {
1991 	if (!task_on_rq_queued(p))
1992 		return;
1993 
1994 	if (rq->curr == p) {
1995 #ifdef CONFIG_SMP
1996 		/*
1997 		 * If our priority decreases while running, we
1998 		 * may need to pull tasks to this runqueue.
1999 		 */
2000 		if (oldprio < p->prio)
2001 			pull_rt_task(rq);
2002 		/*
2003 		 * If there's a higher priority task waiting to run
2004 		 * then reschedule. Note, the above pull_rt_task
2005 		 * can release the rq lock and p could migrate.
2006 		 * Only reschedule if p is still on the same runqueue.
2007 		 */
2008 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2009 			resched_curr(rq);
2010 #else
2011 		/* For UP simply resched on drop of prio */
2012 		if (oldprio < p->prio)
2013 			resched_curr(rq);
2014 #endif /* CONFIG_SMP */
2015 	} else {
2016 		/*
2017 		 * This task is not running, but if it is
2018 		 * greater than the current running task
2019 		 * then reschedule.
2020 		 */
2021 		if (p->prio < rq->curr->prio)
2022 			resched_curr(rq);
2023 	}
2024 }
2025 
2026 static void watchdog(struct rq *rq, struct task_struct *p)
2027 {
2028 	unsigned long soft, hard;
2029 
2030 	/* max may change after cur was read, this will be fixed next tick */
2031 	soft = task_rlimit(p, RLIMIT_RTTIME);
2032 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2033 
2034 	if (soft != RLIM_INFINITY) {
2035 		unsigned long next;
2036 
2037 		if (p->rt.watchdog_stamp != jiffies) {
2038 			p->rt.timeout++;
2039 			p->rt.watchdog_stamp = jiffies;
2040 		}
2041 
2042 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2043 		if (p->rt.timeout > next)
2044 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2045 	}
2046 }
2047 
2048 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2049 {
2050 	struct sched_rt_entity *rt_se = &p->rt;
2051 
2052 	update_curr_rt(rq);
2053 
2054 	watchdog(rq, p);
2055 
2056 	/*
2057 	 * RR tasks need a special form of timeslice management.
2058 	 * FIFO tasks have no timeslices.
2059 	 */
2060 	if (p->policy != SCHED_RR)
2061 		return;
2062 
2063 	if (--p->rt.time_slice)
2064 		return;
2065 
2066 	p->rt.time_slice = sched_rr_timeslice;
2067 
2068 	/*
2069 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2070 	 * the only element on the queue
2071 	 */
2072 	for_each_sched_rt_entity(rt_se) {
2073 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2074 			requeue_task_rt(rq, p, 0);
2075 			resched_curr(rq);
2076 			return;
2077 		}
2078 	}
2079 }
2080 
2081 static void set_curr_task_rt(struct rq *rq)
2082 {
2083 	struct task_struct *p = rq->curr;
2084 
2085 	p->se.exec_start = rq_clock_task(rq);
2086 
2087 	/* The running task is never eligible for pushing */
2088 	dequeue_pushable_task(rq, p);
2089 }
2090 
2091 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2092 {
2093 	/*
2094 	 * Time slice is 0 for SCHED_FIFO tasks
2095 	 */
2096 	if (task->policy == SCHED_RR)
2097 		return sched_rr_timeslice;
2098 	else
2099 		return 0;
2100 }
2101 
2102 const struct sched_class rt_sched_class = {
2103 	.next			= &fair_sched_class,
2104 	.enqueue_task		= enqueue_task_rt,
2105 	.dequeue_task		= dequeue_task_rt,
2106 	.yield_task		= yield_task_rt,
2107 
2108 	.check_preempt_curr	= check_preempt_curr_rt,
2109 
2110 	.pick_next_task		= pick_next_task_rt,
2111 	.put_prev_task		= put_prev_task_rt,
2112 
2113 #ifdef CONFIG_SMP
2114 	.select_task_rq		= select_task_rq_rt,
2115 
2116 	.set_cpus_allowed       = set_cpus_allowed_rt,
2117 	.rq_online              = rq_online_rt,
2118 	.rq_offline             = rq_offline_rt,
2119 	.post_schedule		= post_schedule_rt,
2120 	.task_woken		= task_woken_rt,
2121 	.switched_from		= switched_from_rt,
2122 #endif
2123 
2124 	.set_curr_task          = set_curr_task_rt,
2125 	.task_tick		= task_tick_rt,
2126 
2127 	.get_rr_interval	= get_rr_interval_rt,
2128 
2129 	.prio_changed		= prio_changed_rt,
2130 	.switched_to		= switched_to_rt,
2131 };
2132 
2133 #ifdef CONFIG_SCHED_DEBUG
2134 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2135 
2136 void print_rt_stats(struct seq_file *m, int cpu)
2137 {
2138 	rt_rq_iter_t iter;
2139 	struct rt_rq *rt_rq;
2140 
2141 	rcu_read_lock();
2142 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2143 		print_rt_rq(m, cpu, rt_rq);
2144 	rcu_read_unlock();
2145 }
2146 #endif /* CONFIG_SCHED_DEBUG */
2147