xref: /openbmc/linux/kernel/sched/rt.c (revision 0b07939cbfdd05bed0c5ec01b8b25493e6ecd34c)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 
14 struct rt_bandwidth def_rt_bandwidth;
15 
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 	struct rt_bandwidth *rt_b =
19 		container_of(timer, struct rt_bandwidth, rt_period_timer);
20 	ktime_t now;
21 	int overrun;
22 	int idle = 0;
23 
24 	for (;;) {
25 		now = hrtimer_cb_get_time(timer);
26 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27 
28 		if (!overrun)
29 			break;
30 
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 	}
33 
34 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36 
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 	rt_b->rt_period = ns_to_ktime(period);
40 	rt_b->rt_runtime = runtime;
41 
42 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
43 
44 	hrtimer_init(&rt_b->rt_period_timer,
45 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 	rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48 
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 		return;
53 
54 	if (hrtimer_active(&rt_b->rt_period_timer))
55 		return;
56 
57 	raw_spin_lock(&rt_b->rt_runtime_lock);
58 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 	raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61 
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 	struct rt_prio_array *array;
65 	int i;
66 
67 	array = &rt_rq->active;
68 	for (i = 0; i < MAX_RT_PRIO; i++) {
69 		INIT_LIST_HEAD(array->queue + i);
70 		__clear_bit(i, array->bitmap);
71 	}
72 	/* delimiter for bitsearch: */
73 	__set_bit(MAX_RT_PRIO, array->bitmap);
74 
75 #if defined CONFIG_SMP
76 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 	rt_rq->highest_prio.next = MAX_RT_PRIO;
78 	rt_rq->rt_nr_migratory = 0;
79 	rt_rq->overloaded = 0;
80 	plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82 	/* We start is dequeued state, because no RT tasks are queued */
83 	rt_rq->rt_queued = 0;
84 
85 	rt_rq->rt_time = 0;
86 	rt_rq->rt_throttled = 0;
87 	rt_rq->rt_runtime = 0;
88 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89 }
90 
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93 {
94 	hrtimer_cancel(&rt_b->rt_period_timer);
95 }
96 
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98 
99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100 {
101 #ifdef CONFIG_SCHED_DEBUG
102 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103 #endif
104 	return container_of(rt_se, struct task_struct, rt);
105 }
106 
107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108 {
109 	return rt_rq->rq;
110 }
111 
112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113 {
114 	return rt_se->rt_rq;
115 }
116 
117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118 {
119 	struct rt_rq *rt_rq = rt_se->rt_rq;
120 
121 	return rt_rq->rq;
122 }
123 
124 void free_rt_sched_group(struct task_group *tg)
125 {
126 	int i;
127 
128 	if (tg->rt_se)
129 		destroy_rt_bandwidth(&tg->rt_bandwidth);
130 
131 	for_each_possible_cpu(i) {
132 		if (tg->rt_rq)
133 			kfree(tg->rt_rq[i]);
134 		if (tg->rt_se)
135 			kfree(tg->rt_se[i]);
136 	}
137 
138 	kfree(tg->rt_rq);
139 	kfree(tg->rt_se);
140 }
141 
142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143 		struct sched_rt_entity *rt_se, int cpu,
144 		struct sched_rt_entity *parent)
145 {
146 	struct rq *rq = cpu_rq(cpu);
147 
148 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
149 	rt_rq->rt_nr_boosted = 0;
150 	rt_rq->rq = rq;
151 	rt_rq->tg = tg;
152 
153 	tg->rt_rq[cpu] = rt_rq;
154 	tg->rt_se[cpu] = rt_se;
155 
156 	if (!rt_se)
157 		return;
158 
159 	if (!parent)
160 		rt_se->rt_rq = &rq->rt;
161 	else
162 		rt_se->rt_rq = parent->my_q;
163 
164 	rt_se->my_q = rt_rq;
165 	rt_se->parent = parent;
166 	INIT_LIST_HEAD(&rt_se->run_list);
167 }
168 
169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170 {
171 	struct rt_rq *rt_rq;
172 	struct sched_rt_entity *rt_se;
173 	int i;
174 
175 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176 	if (!tg->rt_rq)
177 		goto err;
178 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179 	if (!tg->rt_se)
180 		goto err;
181 
182 	init_rt_bandwidth(&tg->rt_bandwidth,
183 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184 
185 	for_each_possible_cpu(i) {
186 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
187 				     GFP_KERNEL, cpu_to_node(i));
188 		if (!rt_rq)
189 			goto err;
190 
191 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192 				     GFP_KERNEL, cpu_to_node(i));
193 		if (!rt_se)
194 			goto err_free_rq;
195 
196 		init_rt_rq(rt_rq, cpu_rq(i));
197 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199 	}
200 
201 	return 1;
202 
203 err_free_rq:
204 	kfree(rt_rq);
205 err:
206 	return 0;
207 }
208 
209 #else /* CONFIG_RT_GROUP_SCHED */
210 
211 #define rt_entity_is_task(rt_se) (1)
212 
213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214 {
215 	return container_of(rt_se, struct task_struct, rt);
216 }
217 
218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219 {
220 	return container_of(rt_rq, struct rq, rt);
221 }
222 
223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 {
225 	struct task_struct *p = rt_task_of(rt_se);
226 
227 	return task_rq(p);
228 }
229 
230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231 {
232 	struct rq *rq = rq_of_rt_se(rt_se);
233 
234 	return &rq->rt;
235 }
236 
237 void free_rt_sched_group(struct task_group *tg) { }
238 
239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240 {
241 	return 1;
242 }
243 #endif /* CONFIG_RT_GROUP_SCHED */
244 
245 #ifdef CONFIG_SMP
246 
247 static int pull_rt_task(struct rq *this_rq);
248 
249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250 {
251 	/* Try to pull RT tasks here if we lower this rq's prio */
252 	return rq->rt.highest_prio.curr > prev->prio;
253 }
254 
255 static inline int rt_overloaded(struct rq *rq)
256 {
257 	return atomic_read(&rq->rd->rto_count);
258 }
259 
260 static inline void rt_set_overload(struct rq *rq)
261 {
262 	if (!rq->online)
263 		return;
264 
265 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
266 	/*
267 	 * Make sure the mask is visible before we set
268 	 * the overload count. That is checked to determine
269 	 * if we should look at the mask. It would be a shame
270 	 * if we looked at the mask, but the mask was not
271 	 * updated yet.
272 	 *
273 	 * Matched by the barrier in pull_rt_task().
274 	 */
275 	smp_wmb();
276 	atomic_inc(&rq->rd->rto_count);
277 }
278 
279 static inline void rt_clear_overload(struct rq *rq)
280 {
281 	if (!rq->online)
282 		return;
283 
284 	/* the order here really doesn't matter */
285 	atomic_dec(&rq->rd->rto_count);
286 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
287 }
288 
289 static void update_rt_migration(struct rt_rq *rt_rq)
290 {
291 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 		if (!rt_rq->overloaded) {
293 			rt_set_overload(rq_of_rt_rq(rt_rq));
294 			rt_rq->overloaded = 1;
295 		}
296 	} else if (rt_rq->overloaded) {
297 		rt_clear_overload(rq_of_rt_rq(rt_rq));
298 		rt_rq->overloaded = 0;
299 	}
300 }
301 
302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303 {
304 	struct task_struct *p;
305 
306 	if (!rt_entity_is_task(rt_se))
307 		return;
308 
309 	p = rt_task_of(rt_se);
310 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311 
312 	rt_rq->rt_nr_total++;
313 	if (p->nr_cpus_allowed > 1)
314 		rt_rq->rt_nr_migratory++;
315 
316 	update_rt_migration(rt_rq);
317 }
318 
319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 {
321 	struct task_struct *p;
322 
323 	if (!rt_entity_is_task(rt_se))
324 		return;
325 
326 	p = rt_task_of(rt_se);
327 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328 
329 	rt_rq->rt_nr_total--;
330 	if (p->nr_cpus_allowed > 1)
331 		rt_rq->rt_nr_migratory--;
332 
333 	update_rt_migration(rt_rq);
334 }
335 
336 static inline int has_pushable_tasks(struct rq *rq)
337 {
338 	return !plist_head_empty(&rq->rt.pushable_tasks);
339 }
340 
341 static inline void set_post_schedule(struct rq *rq)
342 {
343 	/*
344 	 * We detect this state here so that we can avoid taking the RQ
345 	 * lock again later if there is no need to push
346 	 */
347 	rq->post_schedule = has_pushable_tasks(rq);
348 }
349 
350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351 {
352 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353 	plist_node_init(&p->pushable_tasks, p->prio);
354 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355 
356 	/* Update the highest prio pushable task */
357 	if (p->prio < rq->rt.highest_prio.next)
358 		rq->rt.highest_prio.next = p->prio;
359 }
360 
361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
364 
365 	/* Update the new highest prio pushable task */
366 	if (has_pushable_tasks(rq)) {
367 		p = plist_first_entry(&rq->rt.pushable_tasks,
368 				      struct task_struct, pushable_tasks);
369 		rq->rt.highest_prio.next = p->prio;
370 	} else
371 		rq->rt.highest_prio.next = MAX_RT_PRIO;
372 }
373 
374 #else
375 
376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 }
379 
380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381 {
382 }
383 
384 static inline
385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386 {
387 }
388 
389 static inline
390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391 {
392 }
393 
394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395 {
396 	return false;
397 }
398 
399 static inline int pull_rt_task(struct rq *this_rq)
400 {
401 	return 0;
402 }
403 
404 static inline void set_post_schedule(struct rq *rq)
405 {
406 }
407 #endif /* CONFIG_SMP */
408 
409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411 
412 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413 {
414 	return !list_empty(&rt_se->run_list);
415 }
416 
417 #ifdef CONFIG_RT_GROUP_SCHED
418 
419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
420 {
421 	if (!rt_rq->tg)
422 		return RUNTIME_INF;
423 
424 	return rt_rq->rt_runtime;
425 }
426 
427 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428 {
429 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
430 }
431 
432 typedef struct task_group *rt_rq_iter_t;
433 
434 static inline struct task_group *next_task_group(struct task_group *tg)
435 {
436 	do {
437 		tg = list_entry_rcu(tg->list.next,
438 			typeof(struct task_group), list);
439 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440 
441 	if (&tg->list == &task_groups)
442 		tg = NULL;
443 
444 	return tg;
445 }
446 
447 #define for_each_rt_rq(rt_rq, iter, rq)					\
448 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
449 		(iter = next_task_group(iter)) &&			\
450 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
451 
452 #define for_each_sched_rt_entity(rt_se) \
453 	for (; rt_se; rt_se = rt_se->parent)
454 
455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456 {
457 	return rt_se->my_q;
458 }
459 
460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462 
463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
464 {
465 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466 	struct sched_rt_entity *rt_se;
467 
468 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
469 
470 	rt_se = rt_rq->tg->rt_se[cpu];
471 
472 	if (rt_rq->rt_nr_running) {
473 		if (!rt_se)
474 			enqueue_top_rt_rq(rt_rq);
475 		else if (!on_rt_rq(rt_se))
476 			enqueue_rt_entity(rt_se, false);
477 
478 		if (rt_rq->highest_prio.curr < curr->prio)
479 			resched_task(curr);
480 	}
481 }
482 
483 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
484 {
485 	struct sched_rt_entity *rt_se;
486 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
487 
488 	rt_se = rt_rq->tg->rt_se[cpu];
489 
490 	if (!rt_se)
491 		dequeue_top_rt_rq(rt_rq);
492 	else if (on_rt_rq(rt_se))
493 		dequeue_rt_entity(rt_se);
494 }
495 
496 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
497 {
498 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
499 }
500 
501 static int rt_se_boosted(struct sched_rt_entity *rt_se)
502 {
503 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
504 	struct task_struct *p;
505 
506 	if (rt_rq)
507 		return !!rt_rq->rt_nr_boosted;
508 
509 	p = rt_task_of(rt_se);
510 	return p->prio != p->normal_prio;
511 }
512 
513 #ifdef CONFIG_SMP
514 static inline const struct cpumask *sched_rt_period_mask(void)
515 {
516 	return this_rq()->rd->span;
517 }
518 #else
519 static inline const struct cpumask *sched_rt_period_mask(void)
520 {
521 	return cpu_online_mask;
522 }
523 #endif
524 
525 static inline
526 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
527 {
528 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
529 }
530 
531 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
532 {
533 	return &rt_rq->tg->rt_bandwidth;
534 }
535 
536 #else /* !CONFIG_RT_GROUP_SCHED */
537 
538 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
539 {
540 	return rt_rq->rt_runtime;
541 }
542 
543 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
544 {
545 	return ktime_to_ns(def_rt_bandwidth.rt_period);
546 }
547 
548 typedef struct rt_rq *rt_rq_iter_t;
549 
550 #define for_each_rt_rq(rt_rq, iter, rq) \
551 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
552 
553 #define for_each_sched_rt_entity(rt_se) \
554 	for (; rt_se; rt_se = NULL)
555 
556 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
557 {
558 	return NULL;
559 }
560 
561 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
562 {
563 	struct rq *rq = rq_of_rt_rq(rt_rq);
564 
565 	if (!rt_rq->rt_nr_running)
566 		return;
567 
568 	enqueue_top_rt_rq(rt_rq);
569 	resched_task(rq->curr);
570 }
571 
572 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
573 {
574 	dequeue_top_rt_rq(rt_rq);
575 }
576 
577 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
578 {
579 	return rt_rq->rt_throttled;
580 }
581 
582 static inline const struct cpumask *sched_rt_period_mask(void)
583 {
584 	return cpu_online_mask;
585 }
586 
587 static inline
588 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
589 {
590 	return &cpu_rq(cpu)->rt;
591 }
592 
593 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
594 {
595 	return &def_rt_bandwidth;
596 }
597 
598 #endif /* CONFIG_RT_GROUP_SCHED */
599 
600 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
601 {
602 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
603 
604 	return (hrtimer_active(&rt_b->rt_period_timer) ||
605 		rt_rq->rt_time < rt_b->rt_runtime);
606 }
607 
608 #ifdef CONFIG_SMP
609 /*
610  * We ran out of runtime, see if we can borrow some from our neighbours.
611  */
612 static int do_balance_runtime(struct rt_rq *rt_rq)
613 {
614 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
615 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
616 	int i, weight, more = 0;
617 	u64 rt_period;
618 
619 	weight = cpumask_weight(rd->span);
620 
621 	raw_spin_lock(&rt_b->rt_runtime_lock);
622 	rt_period = ktime_to_ns(rt_b->rt_period);
623 	for_each_cpu(i, rd->span) {
624 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
625 		s64 diff;
626 
627 		if (iter == rt_rq)
628 			continue;
629 
630 		raw_spin_lock(&iter->rt_runtime_lock);
631 		/*
632 		 * Either all rqs have inf runtime and there's nothing to steal
633 		 * or __disable_runtime() below sets a specific rq to inf to
634 		 * indicate its been disabled and disalow stealing.
635 		 */
636 		if (iter->rt_runtime == RUNTIME_INF)
637 			goto next;
638 
639 		/*
640 		 * From runqueues with spare time, take 1/n part of their
641 		 * spare time, but no more than our period.
642 		 */
643 		diff = iter->rt_runtime - iter->rt_time;
644 		if (diff > 0) {
645 			diff = div_u64((u64)diff, weight);
646 			if (rt_rq->rt_runtime + diff > rt_period)
647 				diff = rt_period - rt_rq->rt_runtime;
648 			iter->rt_runtime -= diff;
649 			rt_rq->rt_runtime += diff;
650 			more = 1;
651 			if (rt_rq->rt_runtime == rt_period) {
652 				raw_spin_unlock(&iter->rt_runtime_lock);
653 				break;
654 			}
655 		}
656 next:
657 		raw_spin_unlock(&iter->rt_runtime_lock);
658 	}
659 	raw_spin_unlock(&rt_b->rt_runtime_lock);
660 
661 	return more;
662 }
663 
664 /*
665  * Ensure this RQ takes back all the runtime it lend to its neighbours.
666  */
667 static void __disable_runtime(struct rq *rq)
668 {
669 	struct root_domain *rd = rq->rd;
670 	rt_rq_iter_t iter;
671 	struct rt_rq *rt_rq;
672 
673 	if (unlikely(!scheduler_running))
674 		return;
675 
676 	for_each_rt_rq(rt_rq, iter, rq) {
677 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
678 		s64 want;
679 		int i;
680 
681 		raw_spin_lock(&rt_b->rt_runtime_lock);
682 		raw_spin_lock(&rt_rq->rt_runtime_lock);
683 		/*
684 		 * Either we're all inf and nobody needs to borrow, or we're
685 		 * already disabled and thus have nothing to do, or we have
686 		 * exactly the right amount of runtime to take out.
687 		 */
688 		if (rt_rq->rt_runtime == RUNTIME_INF ||
689 				rt_rq->rt_runtime == rt_b->rt_runtime)
690 			goto balanced;
691 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
692 
693 		/*
694 		 * Calculate the difference between what we started out with
695 		 * and what we current have, that's the amount of runtime
696 		 * we lend and now have to reclaim.
697 		 */
698 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
699 
700 		/*
701 		 * Greedy reclaim, take back as much as we can.
702 		 */
703 		for_each_cpu(i, rd->span) {
704 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705 			s64 diff;
706 
707 			/*
708 			 * Can't reclaim from ourselves or disabled runqueues.
709 			 */
710 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
711 				continue;
712 
713 			raw_spin_lock(&iter->rt_runtime_lock);
714 			if (want > 0) {
715 				diff = min_t(s64, iter->rt_runtime, want);
716 				iter->rt_runtime -= diff;
717 				want -= diff;
718 			} else {
719 				iter->rt_runtime -= want;
720 				want -= want;
721 			}
722 			raw_spin_unlock(&iter->rt_runtime_lock);
723 
724 			if (!want)
725 				break;
726 		}
727 
728 		raw_spin_lock(&rt_rq->rt_runtime_lock);
729 		/*
730 		 * We cannot be left wanting - that would mean some runtime
731 		 * leaked out of the system.
732 		 */
733 		BUG_ON(want);
734 balanced:
735 		/*
736 		 * Disable all the borrow logic by pretending we have inf
737 		 * runtime - in which case borrowing doesn't make sense.
738 		 */
739 		rt_rq->rt_runtime = RUNTIME_INF;
740 		rt_rq->rt_throttled = 0;
741 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
742 		raw_spin_unlock(&rt_b->rt_runtime_lock);
743 	}
744 }
745 
746 static void __enable_runtime(struct rq *rq)
747 {
748 	rt_rq_iter_t iter;
749 	struct rt_rq *rt_rq;
750 
751 	if (unlikely(!scheduler_running))
752 		return;
753 
754 	/*
755 	 * Reset each runqueue's bandwidth settings
756 	 */
757 	for_each_rt_rq(rt_rq, iter, rq) {
758 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
759 
760 		raw_spin_lock(&rt_b->rt_runtime_lock);
761 		raw_spin_lock(&rt_rq->rt_runtime_lock);
762 		rt_rq->rt_runtime = rt_b->rt_runtime;
763 		rt_rq->rt_time = 0;
764 		rt_rq->rt_throttled = 0;
765 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
766 		raw_spin_unlock(&rt_b->rt_runtime_lock);
767 	}
768 }
769 
770 static int balance_runtime(struct rt_rq *rt_rq)
771 {
772 	int more = 0;
773 
774 	if (!sched_feat(RT_RUNTIME_SHARE))
775 		return more;
776 
777 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
778 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
779 		more = do_balance_runtime(rt_rq);
780 		raw_spin_lock(&rt_rq->rt_runtime_lock);
781 	}
782 
783 	return more;
784 }
785 #else /* !CONFIG_SMP */
786 static inline int balance_runtime(struct rt_rq *rt_rq)
787 {
788 	return 0;
789 }
790 #endif /* CONFIG_SMP */
791 
792 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
793 {
794 	int i, idle = 1, throttled = 0;
795 	const struct cpumask *span;
796 
797 	span = sched_rt_period_mask();
798 #ifdef CONFIG_RT_GROUP_SCHED
799 	/*
800 	 * FIXME: isolated CPUs should really leave the root task group,
801 	 * whether they are isolcpus or were isolated via cpusets, lest
802 	 * the timer run on a CPU which does not service all runqueues,
803 	 * potentially leaving other CPUs indefinitely throttled.  If
804 	 * isolation is really required, the user will turn the throttle
805 	 * off to kill the perturbations it causes anyway.  Meanwhile,
806 	 * this maintains functionality for boot and/or troubleshooting.
807 	 */
808 	if (rt_b == &root_task_group.rt_bandwidth)
809 		span = cpu_online_mask;
810 #endif
811 	for_each_cpu(i, span) {
812 		int enqueue = 0;
813 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
814 		struct rq *rq = rq_of_rt_rq(rt_rq);
815 
816 		raw_spin_lock(&rq->lock);
817 		if (rt_rq->rt_time) {
818 			u64 runtime;
819 
820 			raw_spin_lock(&rt_rq->rt_runtime_lock);
821 			if (rt_rq->rt_throttled)
822 				balance_runtime(rt_rq);
823 			runtime = rt_rq->rt_runtime;
824 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
825 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
826 				rt_rq->rt_throttled = 0;
827 				enqueue = 1;
828 
829 				/*
830 				 * Force a clock update if the CPU was idle,
831 				 * lest wakeup -> unthrottle time accumulate.
832 				 */
833 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
834 					rq->skip_clock_update = -1;
835 			}
836 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
837 				idle = 0;
838 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
839 		} else if (rt_rq->rt_nr_running) {
840 			idle = 0;
841 			if (!rt_rq_throttled(rt_rq))
842 				enqueue = 1;
843 		}
844 		if (rt_rq->rt_throttled)
845 			throttled = 1;
846 
847 		if (enqueue)
848 			sched_rt_rq_enqueue(rt_rq);
849 		raw_spin_unlock(&rq->lock);
850 	}
851 
852 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
853 		return 1;
854 
855 	return idle;
856 }
857 
858 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
859 {
860 #ifdef CONFIG_RT_GROUP_SCHED
861 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
862 
863 	if (rt_rq)
864 		return rt_rq->highest_prio.curr;
865 #endif
866 
867 	return rt_task_of(rt_se)->prio;
868 }
869 
870 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
871 {
872 	u64 runtime = sched_rt_runtime(rt_rq);
873 
874 	if (rt_rq->rt_throttled)
875 		return rt_rq_throttled(rt_rq);
876 
877 	if (runtime >= sched_rt_period(rt_rq))
878 		return 0;
879 
880 	balance_runtime(rt_rq);
881 	runtime = sched_rt_runtime(rt_rq);
882 	if (runtime == RUNTIME_INF)
883 		return 0;
884 
885 	if (rt_rq->rt_time > runtime) {
886 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
887 
888 		/*
889 		 * Don't actually throttle groups that have no runtime assigned
890 		 * but accrue some time due to boosting.
891 		 */
892 		if (likely(rt_b->rt_runtime)) {
893 			static bool once = false;
894 
895 			rt_rq->rt_throttled = 1;
896 
897 			if (!once) {
898 				once = true;
899 				printk_sched("sched: RT throttling activated\n");
900 			}
901 		} else {
902 			/*
903 			 * In case we did anyway, make it go away,
904 			 * replenishment is a joke, since it will replenish us
905 			 * with exactly 0 ns.
906 			 */
907 			rt_rq->rt_time = 0;
908 		}
909 
910 		if (rt_rq_throttled(rt_rq)) {
911 			sched_rt_rq_dequeue(rt_rq);
912 			return 1;
913 		}
914 	}
915 
916 	return 0;
917 }
918 
919 /*
920  * Update the current task's runtime statistics. Skip current tasks that
921  * are not in our scheduling class.
922  */
923 static void update_curr_rt(struct rq *rq)
924 {
925 	struct task_struct *curr = rq->curr;
926 	struct sched_rt_entity *rt_se = &curr->rt;
927 	u64 delta_exec;
928 
929 	if (curr->sched_class != &rt_sched_class)
930 		return;
931 
932 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
933 	if (unlikely((s64)delta_exec <= 0))
934 		return;
935 
936 	schedstat_set(curr->se.statistics.exec_max,
937 		      max(curr->se.statistics.exec_max, delta_exec));
938 
939 	curr->se.sum_exec_runtime += delta_exec;
940 	account_group_exec_runtime(curr, delta_exec);
941 
942 	curr->se.exec_start = rq_clock_task(rq);
943 	cpuacct_charge(curr, delta_exec);
944 
945 	sched_rt_avg_update(rq, delta_exec);
946 
947 	if (!rt_bandwidth_enabled())
948 		return;
949 
950 	for_each_sched_rt_entity(rt_se) {
951 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
952 
953 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
954 			raw_spin_lock(&rt_rq->rt_runtime_lock);
955 			rt_rq->rt_time += delta_exec;
956 			if (sched_rt_runtime_exceeded(rt_rq))
957 				resched_task(curr);
958 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
959 		}
960 	}
961 }
962 
963 static void
964 dequeue_top_rt_rq(struct rt_rq *rt_rq)
965 {
966 	struct rq *rq = rq_of_rt_rq(rt_rq);
967 
968 	BUG_ON(&rq->rt != rt_rq);
969 
970 	if (!rt_rq->rt_queued)
971 		return;
972 
973 	BUG_ON(!rq->nr_running);
974 
975 	sub_nr_running(rq, rt_rq->rt_nr_running);
976 	rt_rq->rt_queued = 0;
977 }
978 
979 static void
980 enqueue_top_rt_rq(struct rt_rq *rt_rq)
981 {
982 	struct rq *rq = rq_of_rt_rq(rt_rq);
983 
984 	BUG_ON(&rq->rt != rt_rq);
985 
986 	if (rt_rq->rt_queued)
987 		return;
988 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
989 		return;
990 
991 	add_nr_running(rq, rt_rq->rt_nr_running);
992 	rt_rq->rt_queued = 1;
993 }
994 
995 #if defined CONFIG_SMP
996 
997 static void
998 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
999 {
1000 	struct rq *rq = rq_of_rt_rq(rt_rq);
1001 
1002 #ifdef CONFIG_RT_GROUP_SCHED
1003 	/*
1004 	 * Change rq's cpupri only if rt_rq is the top queue.
1005 	 */
1006 	if (&rq->rt != rt_rq)
1007 		return;
1008 #endif
1009 	if (rq->online && prio < prev_prio)
1010 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1011 }
1012 
1013 static void
1014 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1015 {
1016 	struct rq *rq = rq_of_rt_rq(rt_rq);
1017 
1018 #ifdef CONFIG_RT_GROUP_SCHED
1019 	/*
1020 	 * Change rq's cpupri only if rt_rq is the top queue.
1021 	 */
1022 	if (&rq->rt != rt_rq)
1023 		return;
1024 #endif
1025 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1026 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1027 }
1028 
1029 #else /* CONFIG_SMP */
1030 
1031 static inline
1032 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1033 static inline
1034 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1035 
1036 #endif /* CONFIG_SMP */
1037 
1038 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1039 static void
1040 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1041 {
1042 	int prev_prio = rt_rq->highest_prio.curr;
1043 
1044 	if (prio < prev_prio)
1045 		rt_rq->highest_prio.curr = prio;
1046 
1047 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1048 }
1049 
1050 static void
1051 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1052 {
1053 	int prev_prio = rt_rq->highest_prio.curr;
1054 
1055 	if (rt_rq->rt_nr_running) {
1056 
1057 		WARN_ON(prio < prev_prio);
1058 
1059 		/*
1060 		 * This may have been our highest task, and therefore
1061 		 * we may have some recomputation to do
1062 		 */
1063 		if (prio == prev_prio) {
1064 			struct rt_prio_array *array = &rt_rq->active;
1065 
1066 			rt_rq->highest_prio.curr =
1067 				sched_find_first_bit(array->bitmap);
1068 		}
1069 
1070 	} else
1071 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1072 
1073 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1074 }
1075 
1076 #else
1077 
1078 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1079 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1080 
1081 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1082 
1083 #ifdef CONFIG_RT_GROUP_SCHED
1084 
1085 static void
1086 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1087 {
1088 	if (rt_se_boosted(rt_se))
1089 		rt_rq->rt_nr_boosted++;
1090 
1091 	if (rt_rq->tg)
1092 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1093 }
1094 
1095 static void
1096 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1097 {
1098 	if (rt_se_boosted(rt_se))
1099 		rt_rq->rt_nr_boosted--;
1100 
1101 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1102 }
1103 
1104 #else /* CONFIG_RT_GROUP_SCHED */
1105 
1106 static void
1107 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1108 {
1109 	start_rt_bandwidth(&def_rt_bandwidth);
1110 }
1111 
1112 static inline
1113 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1114 
1115 #endif /* CONFIG_RT_GROUP_SCHED */
1116 
1117 static inline
1118 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1119 {
1120 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1121 
1122 	if (group_rq)
1123 		return group_rq->rt_nr_running;
1124 	else
1125 		return 1;
1126 }
1127 
1128 static inline
1129 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1130 {
1131 	int prio = rt_se_prio(rt_se);
1132 
1133 	WARN_ON(!rt_prio(prio));
1134 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1135 
1136 	inc_rt_prio(rt_rq, prio);
1137 	inc_rt_migration(rt_se, rt_rq);
1138 	inc_rt_group(rt_se, rt_rq);
1139 }
1140 
1141 static inline
1142 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1143 {
1144 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1145 	WARN_ON(!rt_rq->rt_nr_running);
1146 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1147 
1148 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1149 	dec_rt_migration(rt_se, rt_rq);
1150 	dec_rt_group(rt_se, rt_rq);
1151 }
1152 
1153 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1154 {
1155 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1156 	struct rt_prio_array *array = &rt_rq->active;
1157 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1158 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1159 
1160 	/*
1161 	 * Don't enqueue the group if its throttled, or when empty.
1162 	 * The latter is a consequence of the former when a child group
1163 	 * get throttled and the current group doesn't have any other
1164 	 * active members.
1165 	 */
1166 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1167 		return;
1168 
1169 	if (head)
1170 		list_add(&rt_se->run_list, queue);
1171 	else
1172 		list_add_tail(&rt_se->run_list, queue);
1173 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1174 
1175 	inc_rt_tasks(rt_se, rt_rq);
1176 }
1177 
1178 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1179 {
1180 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1181 	struct rt_prio_array *array = &rt_rq->active;
1182 
1183 	list_del_init(&rt_se->run_list);
1184 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1185 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1186 
1187 	dec_rt_tasks(rt_se, rt_rq);
1188 }
1189 
1190 /*
1191  * Because the prio of an upper entry depends on the lower
1192  * entries, we must remove entries top - down.
1193  */
1194 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1195 {
1196 	struct sched_rt_entity *back = NULL;
1197 
1198 	for_each_sched_rt_entity(rt_se) {
1199 		rt_se->back = back;
1200 		back = rt_se;
1201 	}
1202 
1203 	dequeue_top_rt_rq(rt_rq_of_se(back));
1204 
1205 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1206 		if (on_rt_rq(rt_se))
1207 			__dequeue_rt_entity(rt_se);
1208 	}
1209 }
1210 
1211 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1212 {
1213 	struct rq *rq = rq_of_rt_se(rt_se);
1214 
1215 	dequeue_rt_stack(rt_se);
1216 	for_each_sched_rt_entity(rt_se)
1217 		__enqueue_rt_entity(rt_se, head);
1218 	enqueue_top_rt_rq(&rq->rt);
1219 }
1220 
1221 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1222 {
1223 	struct rq *rq = rq_of_rt_se(rt_se);
1224 
1225 	dequeue_rt_stack(rt_se);
1226 
1227 	for_each_sched_rt_entity(rt_se) {
1228 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1229 
1230 		if (rt_rq && rt_rq->rt_nr_running)
1231 			__enqueue_rt_entity(rt_se, false);
1232 	}
1233 	enqueue_top_rt_rq(&rq->rt);
1234 }
1235 
1236 /*
1237  * Adding/removing a task to/from a priority array:
1238  */
1239 static void
1240 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1241 {
1242 	struct sched_rt_entity *rt_se = &p->rt;
1243 
1244 	if (flags & ENQUEUE_WAKEUP)
1245 		rt_se->timeout = 0;
1246 
1247 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1248 
1249 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1250 		enqueue_pushable_task(rq, p);
1251 }
1252 
1253 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1254 {
1255 	struct sched_rt_entity *rt_se = &p->rt;
1256 
1257 	update_curr_rt(rq);
1258 	dequeue_rt_entity(rt_se);
1259 
1260 	dequeue_pushable_task(rq, p);
1261 }
1262 
1263 /*
1264  * Put task to the head or the end of the run list without the overhead of
1265  * dequeue followed by enqueue.
1266  */
1267 static void
1268 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1269 {
1270 	if (on_rt_rq(rt_se)) {
1271 		struct rt_prio_array *array = &rt_rq->active;
1272 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1273 
1274 		if (head)
1275 			list_move(&rt_se->run_list, queue);
1276 		else
1277 			list_move_tail(&rt_se->run_list, queue);
1278 	}
1279 }
1280 
1281 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1282 {
1283 	struct sched_rt_entity *rt_se = &p->rt;
1284 	struct rt_rq *rt_rq;
1285 
1286 	for_each_sched_rt_entity(rt_se) {
1287 		rt_rq = rt_rq_of_se(rt_se);
1288 		requeue_rt_entity(rt_rq, rt_se, head);
1289 	}
1290 }
1291 
1292 static void yield_task_rt(struct rq *rq)
1293 {
1294 	requeue_task_rt(rq, rq->curr, 0);
1295 }
1296 
1297 #ifdef CONFIG_SMP
1298 static int find_lowest_rq(struct task_struct *task);
1299 
1300 static int
1301 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1302 {
1303 	struct task_struct *curr;
1304 	struct rq *rq;
1305 
1306 	if (p->nr_cpus_allowed == 1)
1307 		goto out;
1308 
1309 	/* For anything but wake ups, just return the task_cpu */
1310 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1311 		goto out;
1312 
1313 	rq = cpu_rq(cpu);
1314 
1315 	rcu_read_lock();
1316 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1317 
1318 	/*
1319 	 * If the current task on @p's runqueue is an RT task, then
1320 	 * try to see if we can wake this RT task up on another
1321 	 * runqueue. Otherwise simply start this RT task
1322 	 * on its current runqueue.
1323 	 *
1324 	 * We want to avoid overloading runqueues. If the woken
1325 	 * task is a higher priority, then it will stay on this CPU
1326 	 * and the lower prio task should be moved to another CPU.
1327 	 * Even though this will probably make the lower prio task
1328 	 * lose its cache, we do not want to bounce a higher task
1329 	 * around just because it gave up its CPU, perhaps for a
1330 	 * lock?
1331 	 *
1332 	 * For equal prio tasks, we just let the scheduler sort it out.
1333 	 *
1334 	 * Otherwise, just let it ride on the affined RQ and the
1335 	 * post-schedule router will push the preempted task away
1336 	 *
1337 	 * This test is optimistic, if we get it wrong the load-balancer
1338 	 * will have to sort it out.
1339 	 */
1340 	if (curr && unlikely(rt_task(curr)) &&
1341 	    (curr->nr_cpus_allowed < 2 ||
1342 	     curr->prio <= p->prio)) {
1343 		int target = find_lowest_rq(p);
1344 
1345 		if (target != -1)
1346 			cpu = target;
1347 	}
1348 	rcu_read_unlock();
1349 
1350 out:
1351 	return cpu;
1352 }
1353 
1354 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1355 {
1356 	if (rq->curr->nr_cpus_allowed == 1)
1357 		return;
1358 
1359 	if (p->nr_cpus_allowed != 1
1360 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1361 		return;
1362 
1363 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1364 		return;
1365 
1366 	/*
1367 	 * There appears to be other cpus that can accept
1368 	 * current and none to run 'p', so lets reschedule
1369 	 * to try and push current away:
1370 	 */
1371 	requeue_task_rt(rq, p, 1);
1372 	resched_task(rq->curr);
1373 }
1374 
1375 #endif /* CONFIG_SMP */
1376 
1377 /*
1378  * Preempt the current task with a newly woken task if needed:
1379  */
1380 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1381 {
1382 	if (p->prio < rq->curr->prio) {
1383 		resched_task(rq->curr);
1384 		return;
1385 	}
1386 
1387 #ifdef CONFIG_SMP
1388 	/*
1389 	 * If:
1390 	 *
1391 	 * - the newly woken task is of equal priority to the current task
1392 	 * - the newly woken task is non-migratable while current is migratable
1393 	 * - current will be preempted on the next reschedule
1394 	 *
1395 	 * we should check to see if current can readily move to a different
1396 	 * cpu.  If so, we will reschedule to allow the push logic to try
1397 	 * to move current somewhere else, making room for our non-migratable
1398 	 * task.
1399 	 */
1400 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1401 		check_preempt_equal_prio(rq, p);
1402 #endif
1403 }
1404 
1405 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1406 						   struct rt_rq *rt_rq)
1407 {
1408 	struct rt_prio_array *array = &rt_rq->active;
1409 	struct sched_rt_entity *next = NULL;
1410 	struct list_head *queue;
1411 	int idx;
1412 
1413 	idx = sched_find_first_bit(array->bitmap);
1414 	BUG_ON(idx >= MAX_RT_PRIO);
1415 
1416 	queue = array->queue + idx;
1417 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1418 
1419 	return next;
1420 }
1421 
1422 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1423 {
1424 	struct sched_rt_entity *rt_se;
1425 	struct task_struct *p;
1426 	struct rt_rq *rt_rq  = &rq->rt;
1427 
1428 	do {
1429 		rt_se = pick_next_rt_entity(rq, rt_rq);
1430 		BUG_ON(!rt_se);
1431 		rt_rq = group_rt_rq(rt_se);
1432 	} while (rt_rq);
1433 
1434 	p = rt_task_of(rt_se);
1435 	p->se.exec_start = rq_clock_task(rq);
1436 
1437 	return p;
1438 }
1439 
1440 static struct task_struct *
1441 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1442 {
1443 	struct task_struct *p;
1444 	struct rt_rq *rt_rq = &rq->rt;
1445 
1446 	if (need_pull_rt_task(rq, prev)) {
1447 		pull_rt_task(rq);
1448 		/*
1449 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1450 		 * means a dl or stop task can slip in, in which case we need
1451 		 * to re-start task selection.
1452 		 */
1453 		if (unlikely((rq->stop && rq->stop->on_rq) ||
1454 			     rq->dl.dl_nr_running))
1455 			return RETRY_TASK;
1456 	}
1457 
1458 	/*
1459 	 * We may dequeue prev's rt_rq in put_prev_task().
1460 	 * So, we update time before rt_nr_running check.
1461 	 */
1462 	if (prev->sched_class == &rt_sched_class)
1463 		update_curr_rt(rq);
1464 
1465 	if (!rt_rq->rt_queued)
1466 		return NULL;
1467 
1468 	put_prev_task(rq, prev);
1469 
1470 	p = _pick_next_task_rt(rq);
1471 
1472 	/* The running task is never eligible for pushing */
1473 	if (p)
1474 		dequeue_pushable_task(rq, p);
1475 
1476 	set_post_schedule(rq);
1477 
1478 	return p;
1479 }
1480 
1481 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1482 {
1483 	update_curr_rt(rq);
1484 
1485 	/*
1486 	 * The previous task needs to be made eligible for pushing
1487 	 * if it is still active
1488 	 */
1489 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1490 		enqueue_pushable_task(rq, p);
1491 }
1492 
1493 #ifdef CONFIG_SMP
1494 
1495 /* Only try algorithms three times */
1496 #define RT_MAX_TRIES 3
1497 
1498 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1499 {
1500 	if (!task_running(rq, p) &&
1501 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1502 		return 1;
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Return the highest pushable rq's task, which is suitable to be executed
1508  * on the cpu, NULL otherwise
1509  */
1510 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1511 {
1512 	struct plist_head *head = &rq->rt.pushable_tasks;
1513 	struct task_struct *p;
1514 
1515 	if (!has_pushable_tasks(rq))
1516 		return NULL;
1517 
1518 	plist_for_each_entry(p, head, pushable_tasks) {
1519 		if (pick_rt_task(rq, p, cpu))
1520 			return p;
1521 	}
1522 
1523 	return NULL;
1524 }
1525 
1526 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1527 
1528 static int find_lowest_rq(struct task_struct *task)
1529 {
1530 	struct sched_domain *sd;
1531 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1532 	int this_cpu = smp_processor_id();
1533 	int cpu      = task_cpu(task);
1534 
1535 	/* Make sure the mask is initialized first */
1536 	if (unlikely(!lowest_mask))
1537 		return -1;
1538 
1539 	if (task->nr_cpus_allowed == 1)
1540 		return -1; /* No other targets possible */
1541 
1542 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1543 		return -1; /* No targets found */
1544 
1545 	/*
1546 	 * At this point we have built a mask of cpus representing the
1547 	 * lowest priority tasks in the system.  Now we want to elect
1548 	 * the best one based on our affinity and topology.
1549 	 *
1550 	 * We prioritize the last cpu that the task executed on since
1551 	 * it is most likely cache-hot in that location.
1552 	 */
1553 	if (cpumask_test_cpu(cpu, lowest_mask))
1554 		return cpu;
1555 
1556 	/*
1557 	 * Otherwise, we consult the sched_domains span maps to figure
1558 	 * out which cpu is logically closest to our hot cache data.
1559 	 */
1560 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1561 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1562 
1563 	rcu_read_lock();
1564 	for_each_domain(cpu, sd) {
1565 		if (sd->flags & SD_WAKE_AFFINE) {
1566 			int best_cpu;
1567 
1568 			/*
1569 			 * "this_cpu" is cheaper to preempt than a
1570 			 * remote processor.
1571 			 */
1572 			if (this_cpu != -1 &&
1573 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1574 				rcu_read_unlock();
1575 				return this_cpu;
1576 			}
1577 
1578 			best_cpu = cpumask_first_and(lowest_mask,
1579 						     sched_domain_span(sd));
1580 			if (best_cpu < nr_cpu_ids) {
1581 				rcu_read_unlock();
1582 				return best_cpu;
1583 			}
1584 		}
1585 	}
1586 	rcu_read_unlock();
1587 
1588 	/*
1589 	 * And finally, if there were no matches within the domains
1590 	 * just give the caller *something* to work with from the compatible
1591 	 * locations.
1592 	 */
1593 	if (this_cpu != -1)
1594 		return this_cpu;
1595 
1596 	cpu = cpumask_any(lowest_mask);
1597 	if (cpu < nr_cpu_ids)
1598 		return cpu;
1599 	return -1;
1600 }
1601 
1602 /* Will lock the rq it finds */
1603 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1604 {
1605 	struct rq *lowest_rq = NULL;
1606 	int tries;
1607 	int cpu;
1608 
1609 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1610 		cpu = find_lowest_rq(task);
1611 
1612 		if ((cpu == -1) || (cpu == rq->cpu))
1613 			break;
1614 
1615 		lowest_rq = cpu_rq(cpu);
1616 
1617 		/* if the prio of this runqueue changed, try again */
1618 		if (double_lock_balance(rq, lowest_rq)) {
1619 			/*
1620 			 * We had to unlock the run queue. In
1621 			 * the mean time, task could have
1622 			 * migrated already or had its affinity changed.
1623 			 * Also make sure that it wasn't scheduled on its rq.
1624 			 */
1625 			if (unlikely(task_rq(task) != rq ||
1626 				     !cpumask_test_cpu(lowest_rq->cpu,
1627 						       tsk_cpus_allowed(task)) ||
1628 				     task_running(rq, task) ||
1629 				     !task->on_rq)) {
1630 
1631 				double_unlock_balance(rq, lowest_rq);
1632 				lowest_rq = NULL;
1633 				break;
1634 			}
1635 		}
1636 
1637 		/* If this rq is still suitable use it. */
1638 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1639 			break;
1640 
1641 		/* try again */
1642 		double_unlock_balance(rq, lowest_rq);
1643 		lowest_rq = NULL;
1644 	}
1645 
1646 	return lowest_rq;
1647 }
1648 
1649 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1650 {
1651 	struct task_struct *p;
1652 
1653 	if (!has_pushable_tasks(rq))
1654 		return NULL;
1655 
1656 	p = plist_first_entry(&rq->rt.pushable_tasks,
1657 			      struct task_struct, pushable_tasks);
1658 
1659 	BUG_ON(rq->cpu != task_cpu(p));
1660 	BUG_ON(task_current(rq, p));
1661 	BUG_ON(p->nr_cpus_allowed <= 1);
1662 
1663 	BUG_ON(!p->on_rq);
1664 	BUG_ON(!rt_task(p));
1665 
1666 	return p;
1667 }
1668 
1669 /*
1670  * If the current CPU has more than one RT task, see if the non
1671  * running task can migrate over to a CPU that is running a task
1672  * of lesser priority.
1673  */
1674 static int push_rt_task(struct rq *rq)
1675 {
1676 	struct task_struct *next_task;
1677 	struct rq *lowest_rq;
1678 	int ret = 0;
1679 
1680 	if (!rq->rt.overloaded)
1681 		return 0;
1682 
1683 	next_task = pick_next_pushable_task(rq);
1684 	if (!next_task)
1685 		return 0;
1686 
1687 retry:
1688 	if (unlikely(next_task == rq->curr)) {
1689 		WARN_ON(1);
1690 		return 0;
1691 	}
1692 
1693 	/*
1694 	 * It's possible that the next_task slipped in of
1695 	 * higher priority than current. If that's the case
1696 	 * just reschedule current.
1697 	 */
1698 	if (unlikely(next_task->prio < rq->curr->prio)) {
1699 		resched_task(rq->curr);
1700 		return 0;
1701 	}
1702 
1703 	/* We might release rq lock */
1704 	get_task_struct(next_task);
1705 
1706 	/* find_lock_lowest_rq locks the rq if found */
1707 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1708 	if (!lowest_rq) {
1709 		struct task_struct *task;
1710 		/*
1711 		 * find_lock_lowest_rq releases rq->lock
1712 		 * so it is possible that next_task has migrated.
1713 		 *
1714 		 * We need to make sure that the task is still on the same
1715 		 * run-queue and is also still the next task eligible for
1716 		 * pushing.
1717 		 */
1718 		task = pick_next_pushable_task(rq);
1719 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1720 			/*
1721 			 * The task hasn't migrated, and is still the next
1722 			 * eligible task, but we failed to find a run-queue
1723 			 * to push it to.  Do not retry in this case, since
1724 			 * other cpus will pull from us when ready.
1725 			 */
1726 			goto out;
1727 		}
1728 
1729 		if (!task)
1730 			/* No more tasks, just exit */
1731 			goto out;
1732 
1733 		/*
1734 		 * Something has shifted, try again.
1735 		 */
1736 		put_task_struct(next_task);
1737 		next_task = task;
1738 		goto retry;
1739 	}
1740 
1741 	deactivate_task(rq, next_task, 0);
1742 	set_task_cpu(next_task, lowest_rq->cpu);
1743 	activate_task(lowest_rq, next_task, 0);
1744 	ret = 1;
1745 
1746 	resched_task(lowest_rq->curr);
1747 
1748 	double_unlock_balance(rq, lowest_rq);
1749 
1750 out:
1751 	put_task_struct(next_task);
1752 
1753 	return ret;
1754 }
1755 
1756 static void push_rt_tasks(struct rq *rq)
1757 {
1758 	/* push_rt_task will return true if it moved an RT */
1759 	while (push_rt_task(rq))
1760 		;
1761 }
1762 
1763 static int pull_rt_task(struct rq *this_rq)
1764 {
1765 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1766 	struct task_struct *p;
1767 	struct rq *src_rq;
1768 
1769 	if (likely(!rt_overloaded(this_rq)))
1770 		return 0;
1771 
1772 	/*
1773 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1774 	 * see overloaded we must also see the rto_mask bit.
1775 	 */
1776 	smp_rmb();
1777 
1778 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1779 		if (this_cpu == cpu)
1780 			continue;
1781 
1782 		src_rq = cpu_rq(cpu);
1783 
1784 		/*
1785 		 * Don't bother taking the src_rq->lock if the next highest
1786 		 * task is known to be lower-priority than our current task.
1787 		 * This may look racy, but if this value is about to go
1788 		 * logically higher, the src_rq will push this task away.
1789 		 * And if its going logically lower, we do not care
1790 		 */
1791 		if (src_rq->rt.highest_prio.next >=
1792 		    this_rq->rt.highest_prio.curr)
1793 			continue;
1794 
1795 		/*
1796 		 * We can potentially drop this_rq's lock in
1797 		 * double_lock_balance, and another CPU could
1798 		 * alter this_rq
1799 		 */
1800 		double_lock_balance(this_rq, src_rq);
1801 
1802 		/*
1803 		 * We can pull only a task, which is pushable
1804 		 * on its rq, and no others.
1805 		 */
1806 		p = pick_highest_pushable_task(src_rq, this_cpu);
1807 
1808 		/*
1809 		 * Do we have an RT task that preempts
1810 		 * the to-be-scheduled task?
1811 		 */
1812 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1813 			WARN_ON(p == src_rq->curr);
1814 			WARN_ON(!p->on_rq);
1815 
1816 			/*
1817 			 * There's a chance that p is higher in priority
1818 			 * than what's currently running on its cpu.
1819 			 * This is just that p is wakeing up and hasn't
1820 			 * had a chance to schedule. We only pull
1821 			 * p if it is lower in priority than the
1822 			 * current task on the run queue
1823 			 */
1824 			if (p->prio < src_rq->curr->prio)
1825 				goto skip;
1826 
1827 			ret = 1;
1828 
1829 			deactivate_task(src_rq, p, 0);
1830 			set_task_cpu(p, this_cpu);
1831 			activate_task(this_rq, p, 0);
1832 			/*
1833 			 * We continue with the search, just in
1834 			 * case there's an even higher prio task
1835 			 * in another runqueue. (low likelihood
1836 			 * but possible)
1837 			 */
1838 		}
1839 skip:
1840 		double_unlock_balance(this_rq, src_rq);
1841 	}
1842 
1843 	return ret;
1844 }
1845 
1846 static void post_schedule_rt(struct rq *rq)
1847 {
1848 	push_rt_tasks(rq);
1849 }
1850 
1851 /*
1852  * If we are not running and we are not going to reschedule soon, we should
1853  * try to push tasks away now
1854  */
1855 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1856 {
1857 	if (!task_running(rq, p) &&
1858 	    !test_tsk_need_resched(rq->curr) &&
1859 	    has_pushable_tasks(rq) &&
1860 	    p->nr_cpus_allowed > 1 &&
1861 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1862 	    (rq->curr->nr_cpus_allowed < 2 ||
1863 	     rq->curr->prio <= p->prio))
1864 		push_rt_tasks(rq);
1865 }
1866 
1867 static void set_cpus_allowed_rt(struct task_struct *p,
1868 				const struct cpumask *new_mask)
1869 {
1870 	struct rq *rq;
1871 	int weight;
1872 
1873 	BUG_ON(!rt_task(p));
1874 
1875 	if (!p->on_rq)
1876 		return;
1877 
1878 	weight = cpumask_weight(new_mask);
1879 
1880 	/*
1881 	 * Only update if the process changes its state from whether it
1882 	 * can migrate or not.
1883 	 */
1884 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1885 		return;
1886 
1887 	rq = task_rq(p);
1888 
1889 	/*
1890 	 * The process used to be able to migrate OR it can now migrate
1891 	 */
1892 	if (weight <= 1) {
1893 		if (!task_current(rq, p))
1894 			dequeue_pushable_task(rq, p);
1895 		BUG_ON(!rq->rt.rt_nr_migratory);
1896 		rq->rt.rt_nr_migratory--;
1897 	} else {
1898 		if (!task_current(rq, p))
1899 			enqueue_pushable_task(rq, p);
1900 		rq->rt.rt_nr_migratory++;
1901 	}
1902 
1903 	update_rt_migration(&rq->rt);
1904 }
1905 
1906 /* Assumes rq->lock is held */
1907 static void rq_online_rt(struct rq *rq)
1908 {
1909 	if (rq->rt.overloaded)
1910 		rt_set_overload(rq);
1911 
1912 	__enable_runtime(rq);
1913 
1914 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1915 }
1916 
1917 /* Assumes rq->lock is held */
1918 static void rq_offline_rt(struct rq *rq)
1919 {
1920 	if (rq->rt.overloaded)
1921 		rt_clear_overload(rq);
1922 
1923 	__disable_runtime(rq);
1924 
1925 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1926 }
1927 
1928 /*
1929  * When switch from the rt queue, we bring ourselves to a position
1930  * that we might want to pull RT tasks from other runqueues.
1931  */
1932 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1933 {
1934 	/*
1935 	 * If there are other RT tasks then we will reschedule
1936 	 * and the scheduling of the other RT tasks will handle
1937 	 * the balancing. But if we are the last RT task
1938 	 * we may need to handle the pulling of RT tasks
1939 	 * now.
1940 	 */
1941 	if (!p->on_rq || rq->rt.rt_nr_running)
1942 		return;
1943 
1944 	if (pull_rt_task(rq))
1945 		resched_task(rq->curr);
1946 }
1947 
1948 void __init init_sched_rt_class(void)
1949 {
1950 	unsigned int i;
1951 
1952 	for_each_possible_cpu(i) {
1953 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1954 					GFP_KERNEL, cpu_to_node(i));
1955 	}
1956 }
1957 #endif /* CONFIG_SMP */
1958 
1959 /*
1960  * When switching a task to RT, we may overload the runqueue
1961  * with RT tasks. In this case we try to push them off to
1962  * other runqueues.
1963  */
1964 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1965 {
1966 	int check_resched = 1;
1967 
1968 	/*
1969 	 * If we are already running, then there's nothing
1970 	 * that needs to be done. But if we are not running
1971 	 * we may need to preempt the current running task.
1972 	 * If that current running task is also an RT task
1973 	 * then see if we can move to another run queue.
1974 	 */
1975 	if (p->on_rq && rq->curr != p) {
1976 #ifdef CONFIG_SMP
1977 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1978 		    /* Don't resched if we changed runqueues */
1979 		    push_rt_task(rq) && rq != task_rq(p))
1980 			check_resched = 0;
1981 #endif /* CONFIG_SMP */
1982 		if (check_resched && p->prio < rq->curr->prio)
1983 			resched_task(rq->curr);
1984 	}
1985 }
1986 
1987 /*
1988  * Priority of the task has changed. This may cause
1989  * us to initiate a push or pull.
1990  */
1991 static void
1992 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1993 {
1994 	if (!p->on_rq)
1995 		return;
1996 
1997 	if (rq->curr == p) {
1998 #ifdef CONFIG_SMP
1999 		/*
2000 		 * If our priority decreases while running, we
2001 		 * may need to pull tasks to this runqueue.
2002 		 */
2003 		if (oldprio < p->prio)
2004 			pull_rt_task(rq);
2005 		/*
2006 		 * If there's a higher priority task waiting to run
2007 		 * then reschedule. Note, the above pull_rt_task
2008 		 * can release the rq lock and p could migrate.
2009 		 * Only reschedule if p is still on the same runqueue.
2010 		 */
2011 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2012 			resched_task(p);
2013 #else
2014 		/* For UP simply resched on drop of prio */
2015 		if (oldprio < p->prio)
2016 			resched_task(p);
2017 #endif /* CONFIG_SMP */
2018 	} else {
2019 		/*
2020 		 * This task is not running, but if it is
2021 		 * greater than the current running task
2022 		 * then reschedule.
2023 		 */
2024 		if (p->prio < rq->curr->prio)
2025 			resched_task(rq->curr);
2026 	}
2027 }
2028 
2029 static void watchdog(struct rq *rq, struct task_struct *p)
2030 {
2031 	unsigned long soft, hard;
2032 
2033 	/* max may change after cur was read, this will be fixed next tick */
2034 	soft = task_rlimit(p, RLIMIT_RTTIME);
2035 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2036 
2037 	if (soft != RLIM_INFINITY) {
2038 		unsigned long next;
2039 
2040 		if (p->rt.watchdog_stamp != jiffies) {
2041 			p->rt.timeout++;
2042 			p->rt.watchdog_stamp = jiffies;
2043 		}
2044 
2045 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2046 		if (p->rt.timeout > next)
2047 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2048 	}
2049 }
2050 
2051 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2052 {
2053 	struct sched_rt_entity *rt_se = &p->rt;
2054 
2055 	update_curr_rt(rq);
2056 
2057 	watchdog(rq, p);
2058 
2059 	/*
2060 	 * RR tasks need a special form of timeslice management.
2061 	 * FIFO tasks have no timeslices.
2062 	 */
2063 	if (p->policy != SCHED_RR)
2064 		return;
2065 
2066 	if (--p->rt.time_slice)
2067 		return;
2068 
2069 	p->rt.time_slice = sched_rr_timeslice;
2070 
2071 	/*
2072 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2073 	 * the only element on the queue
2074 	 */
2075 	for_each_sched_rt_entity(rt_se) {
2076 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2077 			requeue_task_rt(rq, p, 0);
2078 			set_tsk_need_resched(p);
2079 			return;
2080 		}
2081 	}
2082 }
2083 
2084 static void set_curr_task_rt(struct rq *rq)
2085 {
2086 	struct task_struct *p = rq->curr;
2087 
2088 	p->se.exec_start = rq_clock_task(rq);
2089 
2090 	/* The running task is never eligible for pushing */
2091 	dequeue_pushable_task(rq, p);
2092 }
2093 
2094 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2095 {
2096 	/*
2097 	 * Time slice is 0 for SCHED_FIFO tasks
2098 	 */
2099 	if (task->policy == SCHED_RR)
2100 		return sched_rr_timeslice;
2101 	else
2102 		return 0;
2103 }
2104 
2105 const struct sched_class rt_sched_class = {
2106 	.next			= &fair_sched_class,
2107 	.enqueue_task		= enqueue_task_rt,
2108 	.dequeue_task		= dequeue_task_rt,
2109 	.yield_task		= yield_task_rt,
2110 
2111 	.check_preempt_curr	= check_preempt_curr_rt,
2112 
2113 	.pick_next_task		= pick_next_task_rt,
2114 	.put_prev_task		= put_prev_task_rt,
2115 
2116 #ifdef CONFIG_SMP
2117 	.select_task_rq		= select_task_rq_rt,
2118 
2119 	.set_cpus_allowed       = set_cpus_allowed_rt,
2120 	.rq_online              = rq_online_rt,
2121 	.rq_offline             = rq_offline_rt,
2122 	.post_schedule		= post_schedule_rt,
2123 	.task_woken		= task_woken_rt,
2124 	.switched_from		= switched_from_rt,
2125 #endif
2126 
2127 	.set_curr_task          = set_curr_task_rt,
2128 	.task_tick		= task_tick_rt,
2129 
2130 	.get_rr_interval	= get_rr_interval_rt,
2131 
2132 	.prio_changed		= prio_changed_rt,
2133 	.switched_to		= switched_to_rt,
2134 };
2135 
2136 #ifdef CONFIG_SCHED_DEBUG
2137 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2138 
2139 void print_rt_stats(struct seq_file *m, int cpu)
2140 {
2141 	rt_rq_iter_t iter;
2142 	struct rt_rq *rt_rq;
2143 
2144 	rcu_read_lock();
2145 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2146 		print_rt_rq(m, cpu, rt_rq);
2147 	rcu_read_unlock();
2148 }
2149 #endif /* CONFIG_SCHED_DEBUG */
2150