1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 13 14 struct rt_bandwidth def_rt_bandwidth; 15 16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 17 { 18 struct rt_bandwidth *rt_b = 19 container_of(timer, struct rt_bandwidth, rt_period_timer); 20 ktime_t now; 21 int overrun; 22 int idle = 0; 23 24 for (;;) { 25 now = hrtimer_cb_get_time(timer); 26 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 27 28 if (!overrun) 29 break; 30 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 } 33 34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 35 } 36 37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 38 { 39 rt_b->rt_period = ns_to_ktime(period); 40 rt_b->rt_runtime = runtime; 41 42 raw_spin_lock_init(&rt_b->rt_runtime_lock); 43 44 hrtimer_init(&rt_b->rt_period_timer, 45 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 46 rt_b->rt_period_timer.function = sched_rt_period_timer; 47 } 48 49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 50 { 51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 52 return; 53 54 if (hrtimer_active(&rt_b->rt_period_timer)) 55 return; 56 57 raw_spin_lock(&rt_b->rt_runtime_lock); 58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); 59 raw_spin_unlock(&rt_b->rt_runtime_lock); 60 } 61 62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 63 { 64 struct rt_prio_array *array; 65 int i; 66 67 array = &rt_rq->active; 68 for (i = 0; i < MAX_RT_PRIO; i++) { 69 INIT_LIST_HEAD(array->queue + i); 70 __clear_bit(i, array->bitmap); 71 } 72 /* delimiter for bitsearch: */ 73 __set_bit(MAX_RT_PRIO, array->bitmap); 74 75 #if defined CONFIG_SMP 76 rt_rq->highest_prio.curr = MAX_RT_PRIO; 77 rt_rq->highest_prio.next = MAX_RT_PRIO; 78 rt_rq->rt_nr_migratory = 0; 79 rt_rq->overloaded = 0; 80 plist_head_init(&rt_rq->pushable_tasks); 81 #endif 82 /* We start is dequeued state, because no RT tasks are queued */ 83 rt_rq->rt_queued = 0; 84 85 rt_rq->rt_time = 0; 86 rt_rq->rt_throttled = 0; 87 rt_rq->rt_runtime = 0; 88 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 89 } 90 91 #ifdef CONFIG_RT_GROUP_SCHED 92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 93 { 94 hrtimer_cancel(&rt_b->rt_period_timer); 95 } 96 97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 98 99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 100 { 101 #ifdef CONFIG_SCHED_DEBUG 102 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 103 #endif 104 return container_of(rt_se, struct task_struct, rt); 105 } 106 107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 108 { 109 return rt_rq->rq; 110 } 111 112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 113 { 114 return rt_se->rt_rq; 115 } 116 117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 118 { 119 struct rt_rq *rt_rq = rt_se->rt_rq; 120 121 return rt_rq->rq; 122 } 123 124 void free_rt_sched_group(struct task_group *tg) 125 { 126 int i; 127 128 if (tg->rt_se) 129 destroy_rt_bandwidth(&tg->rt_bandwidth); 130 131 for_each_possible_cpu(i) { 132 if (tg->rt_rq) 133 kfree(tg->rt_rq[i]); 134 if (tg->rt_se) 135 kfree(tg->rt_se[i]); 136 } 137 138 kfree(tg->rt_rq); 139 kfree(tg->rt_se); 140 } 141 142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 143 struct sched_rt_entity *rt_se, int cpu, 144 struct sched_rt_entity *parent) 145 { 146 struct rq *rq = cpu_rq(cpu); 147 148 rt_rq->highest_prio.curr = MAX_RT_PRIO; 149 rt_rq->rt_nr_boosted = 0; 150 rt_rq->rq = rq; 151 rt_rq->tg = tg; 152 153 tg->rt_rq[cpu] = rt_rq; 154 tg->rt_se[cpu] = rt_se; 155 156 if (!rt_se) 157 return; 158 159 if (!parent) 160 rt_se->rt_rq = &rq->rt; 161 else 162 rt_se->rt_rq = parent->my_q; 163 164 rt_se->my_q = rt_rq; 165 rt_se->parent = parent; 166 INIT_LIST_HEAD(&rt_se->run_list); 167 } 168 169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 170 { 171 struct rt_rq *rt_rq; 172 struct sched_rt_entity *rt_se; 173 int i; 174 175 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 176 if (!tg->rt_rq) 177 goto err; 178 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 179 if (!tg->rt_se) 180 goto err; 181 182 init_rt_bandwidth(&tg->rt_bandwidth, 183 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 184 185 for_each_possible_cpu(i) { 186 rt_rq = kzalloc_node(sizeof(struct rt_rq), 187 GFP_KERNEL, cpu_to_node(i)); 188 if (!rt_rq) 189 goto err; 190 191 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 192 GFP_KERNEL, cpu_to_node(i)); 193 if (!rt_se) 194 goto err_free_rq; 195 196 init_rt_rq(rt_rq, cpu_rq(i)); 197 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 198 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 199 } 200 201 return 1; 202 203 err_free_rq: 204 kfree(rt_rq); 205 err: 206 return 0; 207 } 208 209 #else /* CONFIG_RT_GROUP_SCHED */ 210 211 #define rt_entity_is_task(rt_se) (1) 212 213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 214 { 215 return container_of(rt_se, struct task_struct, rt); 216 } 217 218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 219 { 220 return container_of(rt_rq, struct rq, rt); 221 } 222 223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 224 { 225 struct task_struct *p = rt_task_of(rt_se); 226 227 return task_rq(p); 228 } 229 230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 231 { 232 struct rq *rq = rq_of_rt_se(rt_se); 233 234 return &rq->rt; 235 } 236 237 void free_rt_sched_group(struct task_group *tg) { } 238 239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 240 { 241 return 1; 242 } 243 #endif /* CONFIG_RT_GROUP_SCHED */ 244 245 #ifdef CONFIG_SMP 246 247 static int pull_rt_task(struct rq *this_rq); 248 249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 250 { 251 /* Try to pull RT tasks here if we lower this rq's prio */ 252 return rq->rt.highest_prio.curr > prev->prio; 253 } 254 255 static inline int rt_overloaded(struct rq *rq) 256 { 257 return atomic_read(&rq->rd->rto_count); 258 } 259 260 static inline void rt_set_overload(struct rq *rq) 261 { 262 if (!rq->online) 263 return; 264 265 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 266 /* 267 * Make sure the mask is visible before we set 268 * the overload count. That is checked to determine 269 * if we should look at the mask. It would be a shame 270 * if we looked at the mask, but the mask was not 271 * updated yet. 272 * 273 * Matched by the barrier in pull_rt_task(). 274 */ 275 smp_wmb(); 276 atomic_inc(&rq->rd->rto_count); 277 } 278 279 static inline void rt_clear_overload(struct rq *rq) 280 { 281 if (!rq->online) 282 return; 283 284 /* the order here really doesn't matter */ 285 atomic_dec(&rq->rd->rto_count); 286 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 287 } 288 289 static void update_rt_migration(struct rt_rq *rt_rq) 290 { 291 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 292 if (!rt_rq->overloaded) { 293 rt_set_overload(rq_of_rt_rq(rt_rq)); 294 rt_rq->overloaded = 1; 295 } 296 } else if (rt_rq->overloaded) { 297 rt_clear_overload(rq_of_rt_rq(rt_rq)); 298 rt_rq->overloaded = 0; 299 } 300 } 301 302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 303 { 304 struct task_struct *p; 305 306 if (!rt_entity_is_task(rt_se)) 307 return; 308 309 p = rt_task_of(rt_se); 310 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 311 312 rt_rq->rt_nr_total++; 313 if (p->nr_cpus_allowed > 1) 314 rt_rq->rt_nr_migratory++; 315 316 update_rt_migration(rt_rq); 317 } 318 319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 320 { 321 struct task_struct *p; 322 323 if (!rt_entity_is_task(rt_se)) 324 return; 325 326 p = rt_task_of(rt_se); 327 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 328 329 rt_rq->rt_nr_total--; 330 if (p->nr_cpus_allowed > 1) 331 rt_rq->rt_nr_migratory--; 332 333 update_rt_migration(rt_rq); 334 } 335 336 static inline int has_pushable_tasks(struct rq *rq) 337 { 338 return !plist_head_empty(&rq->rt.pushable_tasks); 339 } 340 341 static inline void set_post_schedule(struct rq *rq) 342 { 343 /* 344 * We detect this state here so that we can avoid taking the RQ 345 * lock again later if there is no need to push 346 */ 347 rq->post_schedule = has_pushable_tasks(rq); 348 } 349 350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 351 { 352 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 353 plist_node_init(&p->pushable_tasks, p->prio); 354 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 355 356 /* Update the highest prio pushable task */ 357 if (p->prio < rq->rt.highest_prio.next) 358 rq->rt.highest_prio.next = p->prio; 359 } 360 361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 362 { 363 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 364 365 /* Update the new highest prio pushable task */ 366 if (has_pushable_tasks(rq)) { 367 p = plist_first_entry(&rq->rt.pushable_tasks, 368 struct task_struct, pushable_tasks); 369 rq->rt.highest_prio.next = p->prio; 370 } else 371 rq->rt.highest_prio.next = MAX_RT_PRIO; 372 } 373 374 #else 375 376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 377 { 378 } 379 380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 381 { 382 } 383 384 static inline 385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 386 { 387 } 388 389 static inline 390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 391 { 392 } 393 394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 395 { 396 return false; 397 } 398 399 static inline int pull_rt_task(struct rq *this_rq) 400 { 401 return 0; 402 } 403 404 static inline void set_post_schedule(struct rq *rq) 405 { 406 } 407 #endif /* CONFIG_SMP */ 408 409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 411 412 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 413 { 414 return !list_empty(&rt_se->run_list); 415 } 416 417 #ifdef CONFIG_RT_GROUP_SCHED 418 419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 420 { 421 if (!rt_rq->tg) 422 return RUNTIME_INF; 423 424 return rt_rq->rt_runtime; 425 } 426 427 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 428 { 429 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 430 } 431 432 typedef struct task_group *rt_rq_iter_t; 433 434 static inline struct task_group *next_task_group(struct task_group *tg) 435 { 436 do { 437 tg = list_entry_rcu(tg->list.next, 438 typeof(struct task_group), list); 439 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 440 441 if (&tg->list == &task_groups) 442 tg = NULL; 443 444 return tg; 445 } 446 447 #define for_each_rt_rq(rt_rq, iter, rq) \ 448 for (iter = container_of(&task_groups, typeof(*iter), list); \ 449 (iter = next_task_group(iter)) && \ 450 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 451 452 #define for_each_sched_rt_entity(rt_se) \ 453 for (; rt_se; rt_se = rt_se->parent) 454 455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 456 { 457 return rt_se->my_q; 458 } 459 460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); 461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 462 463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 464 { 465 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 466 struct sched_rt_entity *rt_se; 467 468 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 469 470 rt_se = rt_rq->tg->rt_se[cpu]; 471 472 if (rt_rq->rt_nr_running) { 473 if (!rt_se) 474 enqueue_top_rt_rq(rt_rq); 475 else if (!on_rt_rq(rt_se)) 476 enqueue_rt_entity(rt_se, false); 477 478 if (rt_rq->highest_prio.curr < curr->prio) 479 resched_task(curr); 480 } 481 } 482 483 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 484 { 485 struct sched_rt_entity *rt_se; 486 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 487 488 rt_se = rt_rq->tg->rt_se[cpu]; 489 490 if (!rt_se) 491 dequeue_top_rt_rq(rt_rq); 492 else if (on_rt_rq(rt_se)) 493 dequeue_rt_entity(rt_se); 494 } 495 496 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 497 { 498 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 499 } 500 501 static int rt_se_boosted(struct sched_rt_entity *rt_se) 502 { 503 struct rt_rq *rt_rq = group_rt_rq(rt_se); 504 struct task_struct *p; 505 506 if (rt_rq) 507 return !!rt_rq->rt_nr_boosted; 508 509 p = rt_task_of(rt_se); 510 return p->prio != p->normal_prio; 511 } 512 513 #ifdef CONFIG_SMP 514 static inline const struct cpumask *sched_rt_period_mask(void) 515 { 516 return this_rq()->rd->span; 517 } 518 #else 519 static inline const struct cpumask *sched_rt_period_mask(void) 520 { 521 return cpu_online_mask; 522 } 523 #endif 524 525 static inline 526 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 527 { 528 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 529 } 530 531 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 532 { 533 return &rt_rq->tg->rt_bandwidth; 534 } 535 536 #else /* !CONFIG_RT_GROUP_SCHED */ 537 538 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 539 { 540 return rt_rq->rt_runtime; 541 } 542 543 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 544 { 545 return ktime_to_ns(def_rt_bandwidth.rt_period); 546 } 547 548 typedef struct rt_rq *rt_rq_iter_t; 549 550 #define for_each_rt_rq(rt_rq, iter, rq) \ 551 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 552 553 #define for_each_sched_rt_entity(rt_se) \ 554 for (; rt_se; rt_se = NULL) 555 556 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 557 { 558 return NULL; 559 } 560 561 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 562 { 563 struct rq *rq = rq_of_rt_rq(rt_rq); 564 565 if (!rt_rq->rt_nr_running) 566 return; 567 568 enqueue_top_rt_rq(rt_rq); 569 resched_task(rq->curr); 570 } 571 572 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 573 { 574 dequeue_top_rt_rq(rt_rq); 575 } 576 577 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 578 { 579 return rt_rq->rt_throttled; 580 } 581 582 static inline const struct cpumask *sched_rt_period_mask(void) 583 { 584 return cpu_online_mask; 585 } 586 587 static inline 588 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 589 { 590 return &cpu_rq(cpu)->rt; 591 } 592 593 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 594 { 595 return &def_rt_bandwidth; 596 } 597 598 #endif /* CONFIG_RT_GROUP_SCHED */ 599 600 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 601 { 602 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 603 604 return (hrtimer_active(&rt_b->rt_period_timer) || 605 rt_rq->rt_time < rt_b->rt_runtime); 606 } 607 608 #ifdef CONFIG_SMP 609 /* 610 * We ran out of runtime, see if we can borrow some from our neighbours. 611 */ 612 static int do_balance_runtime(struct rt_rq *rt_rq) 613 { 614 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 615 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 616 int i, weight, more = 0; 617 u64 rt_period; 618 619 weight = cpumask_weight(rd->span); 620 621 raw_spin_lock(&rt_b->rt_runtime_lock); 622 rt_period = ktime_to_ns(rt_b->rt_period); 623 for_each_cpu(i, rd->span) { 624 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 625 s64 diff; 626 627 if (iter == rt_rq) 628 continue; 629 630 raw_spin_lock(&iter->rt_runtime_lock); 631 /* 632 * Either all rqs have inf runtime and there's nothing to steal 633 * or __disable_runtime() below sets a specific rq to inf to 634 * indicate its been disabled and disalow stealing. 635 */ 636 if (iter->rt_runtime == RUNTIME_INF) 637 goto next; 638 639 /* 640 * From runqueues with spare time, take 1/n part of their 641 * spare time, but no more than our period. 642 */ 643 diff = iter->rt_runtime - iter->rt_time; 644 if (diff > 0) { 645 diff = div_u64((u64)diff, weight); 646 if (rt_rq->rt_runtime + diff > rt_period) 647 diff = rt_period - rt_rq->rt_runtime; 648 iter->rt_runtime -= diff; 649 rt_rq->rt_runtime += diff; 650 more = 1; 651 if (rt_rq->rt_runtime == rt_period) { 652 raw_spin_unlock(&iter->rt_runtime_lock); 653 break; 654 } 655 } 656 next: 657 raw_spin_unlock(&iter->rt_runtime_lock); 658 } 659 raw_spin_unlock(&rt_b->rt_runtime_lock); 660 661 return more; 662 } 663 664 /* 665 * Ensure this RQ takes back all the runtime it lend to its neighbours. 666 */ 667 static void __disable_runtime(struct rq *rq) 668 { 669 struct root_domain *rd = rq->rd; 670 rt_rq_iter_t iter; 671 struct rt_rq *rt_rq; 672 673 if (unlikely(!scheduler_running)) 674 return; 675 676 for_each_rt_rq(rt_rq, iter, rq) { 677 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 678 s64 want; 679 int i; 680 681 raw_spin_lock(&rt_b->rt_runtime_lock); 682 raw_spin_lock(&rt_rq->rt_runtime_lock); 683 /* 684 * Either we're all inf and nobody needs to borrow, or we're 685 * already disabled and thus have nothing to do, or we have 686 * exactly the right amount of runtime to take out. 687 */ 688 if (rt_rq->rt_runtime == RUNTIME_INF || 689 rt_rq->rt_runtime == rt_b->rt_runtime) 690 goto balanced; 691 raw_spin_unlock(&rt_rq->rt_runtime_lock); 692 693 /* 694 * Calculate the difference between what we started out with 695 * and what we current have, that's the amount of runtime 696 * we lend and now have to reclaim. 697 */ 698 want = rt_b->rt_runtime - rt_rq->rt_runtime; 699 700 /* 701 * Greedy reclaim, take back as much as we can. 702 */ 703 for_each_cpu(i, rd->span) { 704 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 705 s64 diff; 706 707 /* 708 * Can't reclaim from ourselves or disabled runqueues. 709 */ 710 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 711 continue; 712 713 raw_spin_lock(&iter->rt_runtime_lock); 714 if (want > 0) { 715 diff = min_t(s64, iter->rt_runtime, want); 716 iter->rt_runtime -= diff; 717 want -= diff; 718 } else { 719 iter->rt_runtime -= want; 720 want -= want; 721 } 722 raw_spin_unlock(&iter->rt_runtime_lock); 723 724 if (!want) 725 break; 726 } 727 728 raw_spin_lock(&rt_rq->rt_runtime_lock); 729 /* 730 * We cannot be left wanting - that would mean some runtime 731 * leaked out of the system. 732 */ 733 BUG_ON(want); 734 balanced: 735 /* 736 * Disable all the borrow logic by pretending we have inf 737 * runtime - in which case borrowing doesn't make sense. 738 */ 739 rt_rq->rt_runtime = RUNTIME_INF; 740 rt_rq->rt_throttled = 0; 741 raw_spin_unlock(&rt_rq->rt_runtime_lock); 742 raw_spin_unlock(&rt_b->rt_runtime_lock); 743 } 744 } 745 746 static void __enable_runtime(struct rq *rq) 747 { 748 rt_rq_iter_t iter; 749 struct rt_rq *rt_rq; 750 751 if (unlikely(!scheduler_running)) 752 return; 753 754 /* 755 * Reset each runqueue's bandwidth settings 756 */ 757 for_each_rt_rq(rt_rq, iter, rq) { 758 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 759 760 raw_spin_lock(&rt_b->rt_runtime_lock); 761 raw_spin_lock(&rt_rq->rt_runtime_lock); 762 rt_rq->rt_runtime = rt_b->rt_runtime; 763 rt_rq->rt_time = 0; 764 rt_rq->rt_throttled = 0; 765 raw_spin_unlock(&rt_rq->rt_runtime_lock); 766 raw_spin_unlock(&rt_b->rt_runtime_lock); 767 } 768 } 769 770 static int balance_runtime(struct rt_rq *rt_rq) 771 { 772 int more = 0; 773 774 if (!sched_feat(RT_RUNTIME_SHARE)) 775 return more; 776 777 if (rt_rq->rt_time > rt_rq->rt_runtime) { 778 raw_spin_unlock(&rt_rq->rt_runtime_lock); 779 more = do_balance_runtime(rt_rq); 780 raw_spin_lock(&rt_rq->rt_runtime_lock); 781 } 782 783 return more; 784 } 785 #else /* !CONFIG_SMP */ 786 static inline int balance_runtime(struct rt_rq *rt_rq) 787 { 788 return 0; 789 } 790 #endif /* CONFIG_SMP */ 791 792 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 793 { 794 int i, idle = 1, throttled = 0; 795 const struct cpumask *span; 796 797 span = sched_rt_period_mask(); 798 #ifdef CONFIG_RT_GROUP_SCHED 799 /* 800 * FIXME: isolated CPUs should really leave the root task group, 801 * whether they are isolcpus or were isolated via cpusets, lest 802 * the timer run on a CPU which does not service all runqueues, 803 * potentially leaving other CPUs indefinitely throttled. If 804 * isolation is really required, the user will turn the throttle 805 * off to kill the perturbations it causes anyway. Meanwhile, 806 * this maintains functionality for boot and/or troubleshooting. 807 */ 808 if (rt_b == &root_task_group.rt_bandwidth) 809 span = cpu_online_mask; 810 #endif 811 for_each_cpu(i, span) { 812 int enqueue = 0; 813 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 814 struct rq *rq = rq_of_rt_rq(rt_rq); 815 816 raw_spin_lock(&rq->lock); 817 if (rt_rq->rt_time) { 818 u64 runtime; 819 820 raw_spin_lock(&rt_rq->rt_runtime_lock); 821 if (rt_rq->rt_throttled) 822 balance_runtime(rt_rq); 823 runtime = rt_rq->rt_runtime; 824 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 825 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 826 rt_rq->rt_throttled = 0; 827 enqueue = 1; 828 829 /* 830 * Force a clock update if the CPU was idle, 831 * lest wakeup -> unthrottle time accumulate. 832 */ 833 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 834 rq->skip_clock_update = -1; 835 } 836 if (rt_rq->rt_time || rt_rq->rt_nr_running) 837 idle = 0; 838 raw_spin_unlock(&rt_rq->rt_runtime_lock); 839 } else if (rt_rq->rt_nr_running) { 840 idle = 0; 841 if (!rt_rq_throttled(rt_rq)) 842 enqueue = 1; 843 } 844 if (rt_rq->rt_throttled) 845 throttled = 1; 846 847 if (enqueue) 848 sched_rt_rq_enqueue(rt_rq); 849 raw_spin_unlock(&rq->lock); 850 } 851 852 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 853 return 1; 854 855 return idle; 856 } 857 858 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 859 { 860 #ifdef CONFIG_RT_GROUP_SCHED 861 struct rt_rq *rt_rq = group_rt_rq(rt_se); 862 863 if (rt_rq) 864 return rt_rq->highest_prio.curr; 865 #endif 866 867 return rt_task_of(rt_se)->prio; 868 } 869 870 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 871 { 872 u64 runtime = sched_rt_runtime(rt_rq); 873 874 if (rt_rq->rt_throttled) 875 return rt_rq_throttled(rt_rq); 876 877 if (runtime >= sched_rt_period(rt_rq)) 878 return 0; 879 880 balance_runtime(rt_rq); 881 runtime = sched_rt_runtime(rt_rq); 882 if (runtime == RUNTIME_INF) 883 return 0; 884 885 if (rt_rq->rt_time > runtime) { 886 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 887 888 /* 889 * Don't actually throttle groups that have no runtime assigned 890 * but accrue some time due to boosting. 891 */ 892 if (likely(rt_b->rt_runtime)) { 893 static bool once = false; 894 895 rt_rq->rt_throttled = 1; 896 897 if (!once) { 898 once = true; 899 printk_sched("sched: RT throttling activated\n"); 900 } 901 } else { 902 /* 903 * In case we did anyway, make it go away, 904 * replenishment is a joke, since it will replenish us 905 * with exactly 0 ns. 906 */ 907 rt_rq->rt_time = 0; 908 } 909 910 if (rt_rq_throttled(rt_rq)) { 911 sched_rt_rq_dequeue(rt_rq); 912 return 1; 913 } 914 } 915 916 return 0; 917 } 918 919 /* 920 * Update the current task's runtime statistics. Skip current tasks that 921 * are not in our scheduling class. 922 */ 923 static void update_curr_rt(struct rq *rq) 924 { 925 struct task_struct *curr = rq->curr; 926 struct sched_rt_entity *rt_se = &curr->rt; 927 u64 delta_exec; 928 929 if (curr->sched_class != &rt_sched_class) 930 return; 931 932 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 933 if (unlikely((s64)delta_exec <= 0)) 934 return; 935 936 schedstat_set(curr->se.statistics.exec_max, 937 max(curr->se.statistics.exec_max, delta_exec)); 938 939 curr->se.sum_exec_runtime += delta_exec; 940 account_group_exec_runtime(curr, delta_exec); 941 942 curr->se.exec_start = rq_clock_task(rq); 943 cpuacct_charge(curr, delta_exec); 944 945 sched_rt_avg_update(rq, delta_exec); 946 947 if (!rt_bandwidth_enabled()) 948 return; 949 950 for_each_sched_rt_entity(rt_se) { 951 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 952 953 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 954 raw_spin_lock(&rt_rq->rt_runtime_lock); 955 rt_rq->rt_time += delta_exec; 956 if (sched_rt_runtime_exceeded(rt_rq)) 957 resched_task(curr); 958 raw_spin_unlock(&rt_rq->rt_runtime_lock); 959 } 960 } 961 } 962 963 static void 964 dequeue_top_rt_rq(struct rt_rq *rt_rq) 965 { 966 struct rq *rq = rq_of_rt_rq(rt_rq); 967 968 BUG_ON(&rq->rt != rt_rq); 969 970 if (!rt_rq->rt_queued) 971 return; 972 973 BUG_ON(!rq->nr_running); 974 975 sub_nr_running(rq, rt_rq->rt_nr_running); 976 rt_rq->rt_queued = 0; 977 } 978 979 static void 980 enqueue_top_rt_rq(struct rt_rq *rt_rq) 981 { 982 struct rq *rq = rq_of_rt_rq(rt_rq); 983 984 BUG_ON(&rq->rt != rt_rq); 985 986 if (rt_rq->rt_queued) 987 return; 988 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 989 return; 990 991 add_nr_running(rq, rt_rq->rt_nr_running); 992 rt_rq->rt_queued = 1; 993 } 994 995 #if defined CONFIG_SMP 996 997 static void 998 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 999 { 1000 struct rq *rq = rq_of_rt_rq(rt_rq); 1001 1002 #ifdef CONFIG_RT_GROUP_SCHED 1003 /* 1004 * Change rq's cpupri only if rt_rq is the top queue. 1005 */ 1006 if (&rq->rt != rt_rq) 1007 return; 1008 #endif 1009 if (rq->online && prio < prev_prio) 1010 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1011 } 1012 1013 static void 1014 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1015 { 1016 struct rq *rq = rq_of_rt_rq(rt_rq); 1017 1018 #ifdef CONFIG_RT_GROUP_SCHED 1019 /* 1020 * Change rq's cpupri only if rt_rq is the top queue. 1021 */ 1022 if (&rq->rt != rt_rq) 1023 return; 1024 #endif 1025 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1026 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1027 } 1028 1029 #else /* CONFIG_SMP */ 1030 1031 static inline 1032 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1033 static inline 1034 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1035 1036 #endif /* CONFIG_SMP */ 1037 1038 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1039 static void 1040 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1041 { 1042 int prev_prio = rt_rq->highest_prio.curr; 1043 1044 if (prio < prev_prio) 1045 rt_rq->highest_prio.curr = prio; 1046 1047 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1048 } 1049 1050 static void 1051 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1052 { 1053 int prev_prio = rt_rq->highest_prio.curr; 1054 1055 if (rt_rq->rt_nr_running) { 1056 1057 WARN_ON(prio < prev_prio); 1058 1059 /* 1060 * This may have been our highest task, and therefore 1061 * we may have some recomputation to do 1062 */ 1063 if (prio == prev_prio) { 1064 struct rt_prio_array *array = &rt_rq->active; 1065 1066 rt_rq->highest_prio.curr = 1067 sched_find_first_bit(array->bitmap); 1068 } 1069 1070 } else 1071 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1072 1073 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1074 } 1075 1076 #else 1077 1078 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1079 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1080 1081 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1082 1083 #ifdef CONFIG_RT_GROUP_SCHED 1084 1085 static void 1086 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1087 { 1088 if (rt_se_boosted(rt_se)) 1089 rt_rq->rt_nr_boosted++; 1090 1091 if (rt_rq->tg) 1092 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1093 } 1094 1095 static void 1096 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1097 { 1098 if (rt_se_boosted(rt_se)) 1099 rt_rq->rt_nr_boosted--; 1100 1101 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1102 } 1103 1104 #else /* CONFIG_RT_GROUP_SCHED */ 1105 1106 static void 1107 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1108 { 1109 start_rt_bandwidth(&def_rt_bandwidth); 1110 } 1111 1112 static inline 1113 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1114 1115 #endif /* CONFIG_RT_GROUP_SCHED */ 1116 1117 static inline 1118 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1119 { 1120 struct rt_rq *group_rq = group_rt_rq(rt_se); 1121 1122 if (group_rq) 1123 return group_rq->rt_nr_running; 1124 else 1125 return 1; 1126 } 1127 1128 static inline 1129 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1130 { 1131 int prio = rt_se_prio(rt_se); 1132 1133 WARN_ON(!rt_prio(prio)); 1134 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1135 1136 inc_rt_prio(rt_rq, prio); 1137 inc_rt_migration(rt_se, rt_rq); 1138 inc_rt_group(rt_se, rt_rq); 1139 } 1140 1141 static inline 1142 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1143 { 1144 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1145 WARN_ON(!rt_rq->rt_nr_running); 1146 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1147 1148 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1149 dec_rt_migration(rt_se, rt_rq); 1150 dec_rt_group(rt_se, rt_rq); 1151 } 1152 1153 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1154 { 1155 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1156 struct rt_prio_array *array = &rt_rq->active; 1157 struct rt_rq *group_rq = group_rt_rq(rt_se); 1158 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1159 1160 /* 1161 * Don't enqueue the group if its throttled, or when empty. 1162 * The latter is a consequence of the former when a child group 1163 * get throttled and the current group doesn't have any other 1164 * active members. 1165 */ 1166 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 1167 return; 1168 1169 if (head) 1170 list_add(&rt_se->run_list, queue); 1171 else 1172 list_add_tail(&rt_se->run_list, queue); 1173 __set_bit(rt_se_prio(rt_se), array->bitmap); 1174 1175 inc_rt_tasks(rt_se, rt_rq); 1176 } 1177 1178 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) 1179 { 1180 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1181 struct rt_prio_array *array = &rt_rq->active; 1182 1183 list_del_init(&rt_se->run_list); 1184 if (list_empty(array->queue + rt_se_prio(rt_se))) 1185 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1186 1187 dec_rt_tasks(rt_se, rt_rq); 1188 } 1189 1190 /* 1191 * Because the prio of an upper entry depends on the lower 1192 * entries, we must remove entries top - down. 1193 */ 1194 static void dequeue_rt_stack(struct sched_rt_entity *rt_se) 1195 { 1196 struct sched_rt_entity *back = NULL; 1197 1198 for_each_sched_rt_entity(rt_se) { 1199 rt_se->back = back; 1200 back = rt_se; 1201 } 1202 1203 dequeue_top_rt_rq(rt_rq_of_se(back)); 1204 1205 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1206 if (on_rt_rq(rt_se)) 1207 __dequeue_rt_entity(rt_se); 1208 } 1209 } 1210 1211 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1212 { 1213 struct rq *rq = rq_of_rt_se(rt_se); 1214 1215 dequeue_rt_stack(rt_se); 1216 for_each_sched_rt_entity(rt_se) 1217 __enqueue_rt_entity(rt_se, head); 1218 enqueue_top_rt_rq(&rq->rt); 1219 } 1220 1221 static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 1222 { 1223 struct rq *rq = rq_of_rt_se(rt_se); 1224 1225 dequeue_rt_stack(rt_se); 1226 1227 for_each_sched_rt_entity(rt_se) { 1228 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1229 1230 if (rt_rq && rt_rq->rt_nr_running) 1231 __enqueue_rt_entity(rt_se, false); 1232 } 1233 enqueue_top_rt_rq(&rq->rt); 1234 } 1235 1236 /* 1237 * Adding/removing a task to/from a priority array: 1238 */ 1239 static void 1240 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1241 { 1242 struct sched_rt_entity *rt_se = &p->rt; 1243 1244 if (flags & ENQUEUE_WAKEUP) 1245 rt_se->timeout = 0; 1246 1247 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); 1248 1249 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1250 enqueue_pushable_task(rq, p); 1251 } 1252 1253 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1254 { 1255 struct sched_rt_entity *rt_se = &p->rt; 1256 1257 update_curr_rt(rq); 1258 dequeue_rt_entity(rt_se); 1259 1260 dequeue_pushable_task(rq, p); 1261 } 1262 1263 /* 1264 * Put task to the head or the end of the run list without the overhead of 1265 * dequeue followed by enqueue. 1266 */ 1267 static void 1268 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1269 { 1270 if (on_rt_rq(rt_se)) { 1271 struct rt_prio_array *array = &rt_rq->active; 1272 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1273 1274 if (head) 1275 list_move(&rt_se->run_list, queue); 1276 else 1277 list_move_tail(&rt_se->run_list, queue); 1278 } 1279 } 1280 1281 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1282 { 1283 struct sched_rt_entity *rt_se = &p->rt; 1284 struct rt_rq *rt_rq; 1285 1286 for_each_sched_rt_entity(rt_se) { 1287 rt_rq = rt_rq_of_se(rt_se); 1288 requeue_rt_entity(rt_rq, rt_se, head); 1289 } 1290 } 1291 1292 static void yield_task_rt(struct rq *rq) 1293 { 1294 requeue_task_rt(rq, rq->curr, 0); 1295 } 1296 1297 #ifdef CONFIG_SMP 1298 static int find_lowest_rq(struct task_struct *task); 1299 1300 static int 1301 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1302 { 1303 struct task_struct *curr; 1304 struct rq *rq; 1305 1306 if (p->nr_cpus_allowed == 1) 1307 goto out; 1308 1309 /* For anything but wake ups, just return the task_cpu */ 1310 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1311 goto out; 1312 1313 rq = cpu_rq(cpu); 1314 1315 rcu_read_lock(); 1316 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 1317 1318 /* 1319 * If the current task on @p's runqueue is an RT task, then 1320 * try to see if we can wake this RT task up on another 1321 * runqueue. Otherwise simply start this RT task 1322 * on its current runqueue. 1323 * 1324 * We want to avoid overloading runqueues. If the woken 1325 * task is a higher priority, then it will stay on this CPU 1326 * and the lower prio task should be moved to another CPU. 1327 * Even though this will probably make the lower prio task 1328 * lose its cache, we do not want to bounce a higher task 1329 * around just because it gave up its CPU, perhaps for a 1330 * lock? 1331 * 1332 * For equal prio tasks, we just let the scheduler sort it out. 1333 * 1334 * Otherwise, just let it ride on the affined RQ and the 1335 * post-schedule router will push the preempted task away 1336 * 1337 * This test is optimistic, if we get it wrong the load-balancer 1338 * will have to sort it out. 1339 */ 1340 if (curr && unlikely(rt_task(curr)) && 1341 (curr->nr_cpus_allowed < 2 || 1342 curr->prio <= p->prio)) { 1343 int target = find_lowest_rq(p); 1344 1345 if (target != -1) 1346 cpu = target; 1347 } 1348 rcu_read_unlock(); 1349 1350 out: 1351 return cpu; 1352 } 1353 1354 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1355 { 1356 if (rq->curr->nr_cpus_allowed == 1) 1357 return; 1358 1359 if (p->nr_cpus_allowed != 1 1360 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1361 return; 1362 1363 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1364 return; 1365 1366 /* 1367 * There appears to be other cpus that can accept 1368 * current and none to run 'p', so lets reschedule 1369 * to try and push current away: 1370 */ 1371 requeue_task_rt(rq, p, 1); 1372 resched_task(rq->curr); 1373 } 1374 1375 #endif /* CONFIG_SMP */ 1376 1377 /* 1378 * Preempt the current task with a newly woken task if needed: 1379 */ 1380 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1381 { 1382 if (p->prio < rq->curr->prio) { 1383 resched_task(rq->curr); 1384 return; 1385 } 1386 1387 #ifdef CONFIG_SMP 1388 /* 1389 * If: 1390 * 1391 * - the newly woken task is of equal priority to the current task 1392 * - the newly woken task is non-migratable while current is migratable 1393 * - current will be preempted on the next reschedule 1394 * 1395 * we should check to see if current can readily move to a different 1396 * cpu. If so, we will reschedule to allow the push logic to try 1397 * to move current somewhere else, making room for our non-migratable 1398 * task. 1399 */ 1400 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1401 check_preempt_equal_prio(rq, p); 1402 #endif 1403 } 1404 1405 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1406 struct rt_rq *rt_rq) 1407 { 1408 struct rt_prio_array *array = &rt_rq->active; 1409 struct sched_rt_entity *next = NULL; 1410 struct list_head *queue; 1411 int idx; 1412 1413 idx = sched_find_first_bit(array->bitmap); 1414 BUG_ON(idx >= MAX_RT_PRIO); 1415 1416 queue = array->queue + idx; 1417 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1418 1419 return next; 1420 } 1421 1422 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1423 { 1424 struct sched_rt_entity *rt_se; 1425 struct task_struct *p; 1426 struct rt_rq *rt_rq = &rq->rt; 1427 1428 do { 1429 rt_se = pick_next_rt_entity(rq, rt_rq); 1430 BUG_ON(!rt_se); 1431 rt_rq = group_rt_rq(rt_se); 1432 } while (rt_rq); 1433 1434 p = rt_task_of(rt_se); 1435 p->se.exec_start = rq_clock_task(rq); 1436 1437 return p; 1438 } 1439 1440 static struct task_struct * 1441 pick_next_task_rt(struct rq *rq, struct task_struct *prev) 1442 { 1443 struct task_struct *p; 1444 struct rt_rq *rt_rq = &rq->rt; 1445 1446 if (need_pull_rt_task(rq, prev)) { 1447 pull_rt_task(rq); 1448 /* 1449 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1450 * means a dl or stop task can slip in, in which case we need 1451 * to re-start task selection. 1452 */ 1453 if (unlikely((rq->stop && rq->stop->on_rq) || 1454 rq->dl.dl_nr_running)) 1455 return RETRY_TASK; 1456 } 1457 1458 /* 1459 * We may dequeue prev's rt_rq in put_prev_task(). 1460 * So, we update time before rt_nr_running check. 1461 */ 1462 if (prev->sched_class == &rt_sched_class) 1463 update_curr_rt(rq); 1464 1465 if (!rt_rq->rt_queued) 1466 return NULL; 1467 1468 put_prev_task(rq, prev); 1469 1470 p = _pick_next_task_rt(rq); 1471 1472 /* The running task is never eligible for pushing */ 1473 if (p) 1474 dequeue_pushable_task(rq, p); 1475 1476 set_post_schedule(rq); 1477 1478 return p; 1479 } 1480 1481 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1482 { 1483 update_curr_rt(rq); 1484 1485 /* 1486 * The previous task needs to be made eligible for pushing 1487 * if it is still active 1488 */ 1489 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1490 enqueue_pushable_task(rq, p); 1491 } 1492 1493 #ifdef CONFIG_SMP 1494 1495 /* Only try algorithms three times */ 1496 #define RT_MAX_TRIES 3 1497 1498 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1499 { 1500 if (!task_running(rq, p) && 1501 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1502 return 1; 1503 return 0; 1504 } 1505 1506 /* 1507 * Return the highest pushable rq's task, which is suitable to be executed 1508 * on the cpu, NULL otherwise 1509 */ 1510 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1511 { 1512 struct plist_head *head = &rq->rt.pushable_tasks; 1513 struct task_struct *p; 1514 1515 if (!has_pushable_tasks(rq)) 1516 return NULL; 1517 1518 plist_for_each_entry(p, head, pushable_tasks) { 1519 if (pick_rt_task(rq, p, cpu)) 1520 return p; 1521 } 1522 1523 return NULL; 1524 } 1525 1526 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1527 1528 static int find_lowest_rq(struct task_struct *task) 1529 { 1530 struct sched_domain *sd; 1531 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); 1532 int this_cpu = smp_processor_id(); 1533 int cpu = task_cpu(task); 1534 1535 /* Make sure the mask is initialized first */ 1536 if (unlikely(!lowest_mask)) 1537 return -1; 1538 1539 if (task->nr_cpus_allowed == 1) 1540 return -1; /* No other targets possible */ 1541 1542 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1543 return -1; /* No targets found */ 1544 1545 /* 1546 * At this point we have built a mask of cpus representing the 1547 * lowest priority tasks in the system. Now we want to elect 1548 * the best one based on our affinity and topology. 1549 * 1550 * We prioritize the last cpu that the task executed on since 1551 * it is most likely cache-hot in that location. 1552 */ 1553 if (cpumask_test_cpu(cpu, lowest_mask)) 1554 return cpu; 1555 1556 /* 1557 * Otherwise, we consult the sched_domains span maps to figure 1558 * out which cpu is logically closest to our hot cache data. 1559 */ 1560 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1561 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1562 1563 rcu_read_lock(); 1564 for_each_domain(cpu, sd) { 1565 if (sd->flags & SD_WAKE_AFFINE) { 1566 int best_cpu; 1567 1568 /* 1569 * "this_cpu" is cheaper to preempt than a 1570 * remote processor. 1571 */ 1572 if (this_cpu != -1 && 1573 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1574 rcu_read_unlock(); 1575 return this_cpu; 1576 } 1577 1578 best_cpu = cpumask_first_and(lowest_mask, 1579 sched_domain_span(sd)); 1580 if (best_cpu < nr_cpu_ids) { 1581 rcu_read_unlock(); 1582 return best_cpu; 1583 } 1584 } 1585 } 1586 rcu_read_unlock(); 1587 1588 /* 1589 * And finally, if there were no matches within the domains 1590 * just give the caller *something* to work with from the compatible 1591 * locations. 1592 */ 1593 if (this_cpu != -1) 1594 return this_cpu; 1595 1596 cpu = cpumask_any(lowest_mask); 1597 if (cpu < nr_cpu_ids) 1598 return cpu; 1599 return -1; 1600 } 1601 1602 /* Will lock the rq it finds */ 1603 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1604 { 1605 struct rq *lowest_rq = NULL; 1606 int tries; 1607 int cpu; 1608 1609 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1610 cpu = find_lowest_rq(task); 1611 1612 if ((cpu == -1) || (cpu == rq->cpu)) 1613 break; 1614 1615 lowest_rq = cpu_rq(cpu); 1616 1617 /* if the prio of this runqueue changed, try again */ 1618 if (double_lock_balance(rq, lowest_rq)) { 1619 /* 1620 * We had to unlock the run queue. In 1621 * the mean time, task could have 1622 * migrated already or had its affinity changed. 1623 * Also make sure that it wasn't scheduled on its rq. 1624 */ 1625 if (unlikely(task_rq(task) != rq || 1626 !cpumask_test_cpu(lowest_rq->cpu, 1627 tsk_cpus_allowed(task)) || 1628 task_running(rq, task) || 1629 !task->on_rq)) { 1630 1631 double_unlock_balance(rq, lowest_rq); 1632 lowest_rq = NULL; 1633 break; 1634 } 1635 } 1636 1637 /* If this rq is still suitable use it. */ 1638 if (lowest_rq->rt.highest_prio.curr > task->prio) 1639 break; 1640 1641 /* try again */ 1642 double_unlock_balance(rq, lowest_rq); 1643 lowest_rq = NULL; 1644 } 1645 1646 return lowest_rq; 1647 } 1648 1649 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1650 { 1651 struct task_struct *p; 1652 1653 if (!has_pushable_tasks(rq)) 1654 return NULL; 1655 1656 p = plist_first_entry(&rq->rt.pushable_tasks, 1657 struct task_struct, pushable_tasks); 1658 1659 BUG_ON(rq->cpu != task_cpu(p)); 1660 BUG_ON(task_current(rq, p)); 1661 BUG_ON(p->nr_cpus_allowed <= 1); 1662 1663 BUG_ON(!p->on_rq); 1664 BUG_ON(!rt_task(p)); 1665 1666 return p; 1667 } 1668 1669 /* 1670 * If the current CPU has more than one RT task, see if the non 1671 * running task can migrate over to a CPU that is running a task 1672 * of lesser priority. 1673 */ 1674 static int push_rt_task(struct rq *rq) 1675 { 1676 struct task_struct *next_task; 1677 struct rq *lowest_rq; 1678 int ret = 0; 1679 1680 if (!rq->rt.overloaded) 1681 return 0; 1682 1683 next_task = pick_next_pushable_task(rq); 1684 if (!next_task) 1685 return 0; 1686 1687 retry: 1688 if (unlikely(next_task == rq->curr)) { 1689 WARN_ON(1); 1690 return 0; 1691 } 1692 1693 /* 1694 * It's possible that the next_task slipped in of 1695 * higher priority than current. If that's the case 1696 * just reschedule current. 1697 */ 1698 if (unlikely(next_task->prio < rq->curr->prio)) { 1699 resched_task(rq->curr); 1700 return 0; 1701 } 1702 1703 /* We might release rq lock */ 1704 get_task_struct(next_task); 1705 1706 /* find_lock_lowest_rq locks the rq if found */ 1707 lowest_rq = find_lock_lowest_rq(next_task, rq); 1708 if (!lowest_rq) { 1709 struct task_struct *task; 1710 /* 1711 * find_lock_lowest_rq releases rq->lock 1712 * so it is possible that next_task has migrated. 1713 * 1714 * We need to make sure that the task is still on the same 1715 * run-queue and is also still the next task eligible for 1716 * pushing. 1717 */ 1718 task = pick_next_pushable_task(rq); 1719 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1720 /* 1721 * The task hasn't migrated, and is still the next 1722 * eligible task, but we failed to find a run-queue 1723 * to push it to. Do not retry in this case, since 1724 * other cpus will pull from us when ready. 1725 */ 1726 goto out; 1727 } 1728 1729 if (!task) 1730 /* No more tasks, just exit */ 1731 goto out; 1732 1733 /* 1734 * Something has shifted, try again. 1735 */ 1736 put_task_struct(next_task); 1737 next_task = task; 1738 goto retry; 1739 } 1740 1741 deactivate_task(rq, next_task, 0); 1742 set_task_cpu(next_task, lowest_rq->cpu); 1743 activate_task(lowest_rq, next_task, 0); 1744 ret = 1; 1745 1746 resched_task(lowest_rq->curr); 1747 1748 double_unlock_balance(rq, lowest_rq); 1749 1750 out: 1751 put_task_struct(next_task); 1752 1753 return ret; 1754 } 1755 1756 static void push_rt_tasks(struct rq *rq) 1757 { 1758 /* push_rt_task will return true if it moved an RT */ 1759 while (push_rt_task(rq)) 1760 ; 1761 } 1762 1763 static int pull_rt_task(struct rq *this_rq) 1764 { 1765 int this_cpu = this_rq->cpu, ret = 0, cpu; 1766 struct task_struct *p; 1767 struct rq *src_rq; 1768 1769 if (likely(!rt_overloaded(this_rq))) 1770 return 0; 1771 1772 /* 1773 * Match the barrier from rt_set_overloaded; this guarantees that if we 1774 * see overloaded we must also see the rto_mask bit. 1775 */ 1776 smp_rmb(); 1777 1778 for_each_cpu(cpu, this_rq->rd->rto_mask) { 1779 if (this_cpu == cpu) 1780 continue; 1781 1782 src_rq = cpu_rq(cpu); 1783 1784 /* 1785 * Don't bother taking the src_rq->lock if the next highest 1786 * task is known to be lower-priority than our current task. 1787 * This may look racy, but if this value is about to go 1788 * logically higher, the src_rq will push this task away. 1789 * And if its going logically lower, we do not care 1790 */ 1791 if (src_rq->rt.highest_prio.next >= 1792 this_rq->rt.highest_prio.curr) 1793 continue; 1794 1795 /* 1796 * We can potentially drop this_rq's lock in 1797 * double_lock_balance, and another CPU could 1798 * alter this_rq 1799 */ 1800 double_lock_balance(this_rq, src_rq); 1801 1802 /* 1803 * We can pull only a task, which is pushable 1804 * on its rq, and no others. 1805 */ 1806 p = pick_highest_pushable_task(src_rq, this_cpu); 1807 1808 /* 1809 * Do we have an RT task that preempts 1810 * the to-be-scheduled task? 1811 */ 1812 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 1813 WARN_ON(p == src_rq->curr); 1814 WARN_ON(!p->on_rq); 1815 1816 /* 1817 * There's a chance that p is higher in priority 1818 * than what's currently running on its cpu. 1819 * This is just that p is wakeing up and hasn't 1820 * had a chance to schedule. We only pull 1821 * p if it is lower in priority than the 1822 * current task on the run queue 1823 */ 1824 if (p->prio < src_rq->curr->prio) 1825 goto skip; 1826 1827 ret = 1; 1828 1829 deactivate_task(src_rq, p, 0); 1830 set_task_cpu(p, this_cpu); 1831 activate_task(this_rq, p, 0); 1832 /* 1833 * We continue with the search, just in 1834 * case there's an even higher prio task 1835 * in another runqueue. (low likelihood 1836 * but possible) 1837 */ 1838 } 1839 skip: 1840 double_unlock_balance(this_rq, src_rq); 1841 } 1842 1843 return ret; 1844 } 1845 1846 static void post_schedule_rt(struct rq *rq) 1847 { 1848 push_rt_tasks(rq); 1849 } 1850 1851 /* 1852 * If we are not running and we are not going to reschedule soon, we should 1853 * try to push tasks away now 1854 */ 1855 static void task_woken_rt(struct rq *rq, struct task_struct *p) 1856 { 1857 if (!task_running(rq, p) && 1858 !test_tsk_need_resched(rq->curr) && 1859 has_pushable_tasks(rq) && 1860 p->nr_cpus_allowed > 1 && 1861 (dl_task(rq->curr) || rt_task(rq->curr)) && 1862 (rq->curr->nr_cpus_allowed < 2 || 1863 rq->curr->prio <= p->prio)) 1864 push_rt_tasks(rq); 1865 } 1866 1867 static void set_cpus_allowed_rt(struct task_struct *p, 1868 const struct cpumask *new_mask) 1869 { 1870 struct rq *rq; 1871 int weight; 1872 1873 BUG_ON(!rt_task(p)); 1874 1875 if (!p->on_rq) 1876 return; 1877 1878 weight = cpumask_weight(new_mask); 1879 1880 /* 1881 * Only update if the process changes its state from whether it 1882 * can migrate or not. 1883 */ 1884 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1885 return; 1886 1887 rq = task_rq(p); 1888 1889 /* 1890 * The process used to be able to migrate OR it can now migrate 1891 */ 1892 if (weight <= 1) { 1893 if (!task_current(rq, p)) 1894 dequeue_pushable_task(rq, p); 1895 BUG_ON(!rq->rt.rt_nr_migratory); 1896 rq->rt.rt_nr_migratory--; 1897 } else { 1898 if (!task_current(rq, p)) 1899 enqueue_pushable_task(rq, p); 1900 rq->rt.rt_nr_migratory++; 1901 } 1902 1903 update_rt_migration(&rq->rt); 1904 } 1905 1906 /* Assumes rq->lock is held */ 1907 static void rq_online_rt(struct rq *rq) 1908 { 1909 if (rq->rt.overloaded) 1910 rt_set_overload(rq); 1911 1912 __enable_runtime(rq); 1913 1914 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1915 } 1916 1917 /* Assumes rq->lock is held */ 1918 static void rq_offline_rt(struct rq *rq) 1919 { 1920 if (rq->rt.overloaded) 1921 rt_clear_overload(rq); 1922 1923 __disable_runtime(rq); 1924 1925 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 1926 } 1927 1928 /* 1929 * When switch from the rt queue, we bring ourselves to a position 1930 * that we might want to pull RT tasks from other runqueues. 1931 */ 1932 static void switched_from_rt(struct rq *rq, struct task_struct *p) 1933 { 1934 /* 1935 * If there are other RT tasks then we will reschedule 1936 * and the scheduling of the other RT tasks will handle 1937 * the balancing. But if we are the last RT task 1938 * we may need to handle the pulling of RT tasks 1939 * now. 1940 */ 1941 if (!p->on_rq || rq->rt.rt_nr_running) 1942 return; 1943 1944 if (pull_rt_task(rq)) 1945 resched_task(rq->curr); 1946 } 1947 1948 void __init init_sched_rt_class(void) 1949 { 1950 unsigned int i; 1951 1952 for_each_possible_cpu(i) { 1953 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 1954 GFP_KERNEL, cpu_to_node(i)); 1955 } 1956 } 1957 #endif /* CONFIG_SMP */ 1958 1959 /* 1960 * When switching a task to RT, we may overload the runqueue 1961 * with RT tasks. In this case we try to push them off to 1962 * other runqueues. 1963 */ 1964 static void switched_to_rt(struct rq *rq, struct task_struct *p) 1965 { 1966 int check_resched = 1; 1967 1968 /* 1969 * If we are already running, then there's nothing 1970 * that needs to be done. But if we are not running 1971 * we may need to preempt the current running task. 1972 * If that current running task is also an RT task 1973 * then see if we can move to another run queue. 1974 */ 1975 if (p->on_rq && rq->curr != p) { 1976 #ifdef CONFIG_SMP 1977 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded && 1978 /* Don't resched if we changed runqueues */ 1979 push_rt_task(rq) && rq != task_rq(p)) 1980 check_resched = 0; 1981 #endif /* CONFIG_SMP */ 1982 if (check_resched && p->prio < rq->curr->prio) 1983 resched_task(rq->curr); 1984 } 1985 } 1986 1987 /* 1988 * Priority of the task has changed. This may cause 1989 * us to initiate a push or pull. 1990 */ 1991 static void 1992 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 1993 { 1994 if (!p->on_rq) 1995 return; 1996 1997 if (rq->curr == p) { 1998 #ifdef CONFIG_SMP 1999 /* 2000 * If our priority decreases while running, we 2001 * may need to pull tasks to this runqueue. 2002 */ 2003 if (oldprio < p->prio) 2004 pull_rt_task(rq); 2005 /* 2006 * If there's a higher priority task waiting to run 2007 * then reschedule. Note, the above pull_rt_task 2008 * can release the rq lock and p could migrate. 2009 * Only reschedule if p is still on the same runqueue. 2010 */ 2011 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) 2012 resched_task(p); 2013 #else 2014 /* For UP simply resched on drop of prio */ 2015 if (oldprio < p->prio) 2016 resched_task(p); 2017 #endif /* CONFIG_SMP */ 2018 } else { 2019 /* 2020 * This task is not running, but if it is 2021 * greater than the current running task 2022 * then reschedule. 2023 */ 2024 if (p->prio < rq->curr->prio) 2025 resched_task(rq->curr); 2026 } 2027 } 2028 2029 static void watchdog(struct rq *rq, struct task_struct *p) 2030 { 2031 unsigned long soft, hard; 2032 2033 /* max may change after cur was read, this will be fixed next tick */ 2034 soft = task_rlimit(p, RLIMIT_RTTIME); 2035 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2036 2037 if (soft != RLIM_INFINITY) { 2038 unsigned long next; 2039 2040 if (p->rt.watchdog_stamp != jiffies) { 2041 p->rt.timeout++; 2042 p->rt.watchdog_stamp = jiffies; 2043 } 2044 2045 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2046 if (p->rt.timeout > next) 2047 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2048 } 2049 } 2050 2051 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2052 { 2053 struct sched_rt_entity *rt_se = &p->rt; 2054 2055 update_curr_rt(rq); 2056 2057 watchdog(rq, p); 2058 2059 /* 2060 * RR tasks need a special form of timeslice management. 2061 * FIFO tasks have no timeslices. 2062 */ 2063 if (p->policy != SCHED_RR) 2064 return; 2065 2066 if (--p->rt.time_slice) 2067 return; 2068 2069 p->rt.time_slice = sched_rr_timeslice; 2070 2071 /* 2072 * Requeue to the end of queue if we (and all of our ancestors) are not 2073 * the only element on the queue 2074 */ 2075 for_each_sched_rt_entity(rt_se) { 2076 if (rt_se->run_list.prev != rt_se->run_list.next) { 2077 requeue_task_rt(rq, p, 0); 2078 set_tsk_need_resched(p); 2079 return; 2080 } 2081 } 2082 } 2083 2084 static void set_curr_task_rt(struct rq *rq) 2085 { 2086 struct task_struct *p = rq->curr; 2087 2088 p->se.exec_start = rq_clock_task(rq); 2089 2090 /* The running task is never eligible for pushing */ 2091 dequeue_pushable_task(rq, p); 2092 } 2093 2094 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2095 { 2096 /* 2097 * Time slice is 0 for SCHED_FIFO tasks 2098 */ 2099 if (task->policy == SCHED_RR) 2100 return sched_rr_timeslice; 2101 else 2102 return 0; 2103 } 2104 2105 const struct sched_class rt_sched_class = { 2106 .next = &fair_sched_class, 2107 .enqueue_task = enqueue_task_rt, 2108 .dequeue_task = dequeue_task_rt, 2109 .yield_task = yield_task_rt, 2110 2111 .check_preempt_curr = check_preempt_curr_rt, 2112 2113 .pick_next_task = pick_next_task_rt, 2114 .put_prev_task = put_prev_task_rt, 2115 2116 #ifdef CONFIG_SMP 2117 .select_task_rq = select_task_rq_rt, 2118 2119 .set_cpus_allowed = set_cpus_allowed_rt, 2120 .rq_online = rq_online_rt, 2121 .rq_offline = rq_offline_rt, 2122 .post_schedule = post_schedule_rt, 2123 .task_woken = task_woken_rt, 2124 .switched_from = switched_from_rt, 2125 #endif 2126 2127 .set_curr_task = set_curr_task_rt, 2128 .task_tick = task_tick_rt, 2129 2130 .get_rr_interval = get_rr_interval_rt, 2131 2132 .prio_changed = prio_changed_rt, 2133 .switched_to = switched_to_rt, 2134 }; 2135 2136 #ifdef CONFIG_SCHED_DEBUG 2137 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2138 2139 void print_rt_stats(struct seq_file *m, int cpu) 2140 { 2141 rt_rq_iter_t iter; 2142 struct rt_rq *rt_rq; 2143 2144 rcu_read_lock(); 2145 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2146 print_rt_rq(m, cpu, rt_rq); 2147 rcu_read_unlock(); 2148 } 2149 #endif /* CONFIG_SCHED_DEBUG */ 2150