1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 10 /* 11 * This allows printing both to /proc/sched_debug and 12 * to the console 13 */ 14 #define SEQ_printf(m, x...) \ 15 do { \ 16 if (m) \ 17 seq_printf(m, x); \ 18 else \ 19 pr_cont(x); \ 20 } while (0) 21 22 /* 23 * Ease the printing of nsec fields: 24 */ 25 static long long nsec_high(unsigned long long nsec) 26 { 27 if ((long long)nsec < 0) { 28 nsec = -nsec; 29 do_div(nsec, 1000000); 30 return -nsec; 31 } 32 do_div(nsec, 1000000); 33 34 return nsec; 35 } 36 37 static unsigned long nsec_low(unsigned long long nsec) 38 { 39 if ((long long)nsec < 0) 40 nsec = -nsec; 41 42 return do_div(nsec, 1000000); 43 } 44 45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 46 47 #define SCHED_FEAT(name, enabled) \ 48 #name , 49 50 static const char * const sched_feat_names[] = { 51 #include "features.h" 52 }; 53 54 #undef SCHED_FEAT 55 56 static int sched_feat_show(struct seq_file *m, void *v) 57 { 58 int i; 59 60 for (i = 0; i < __SCHED_FEAT_NR; i++) { 61 if (!(sysctl_sched_features & (1UL << i))) 62 seq_puts(m, "NO_"); 63 seq_printf(m, "%s ", sched_feat_names[i]); 64 } 65 seq_puts(m, "\n"); 66 67 return 0; 68 } 69 70 #ifdef CONFIG_JUMP_LABEL 71 72 #define jump_label_key__true STATIC_KEY_INIT_TRUE 73 #define jump_label_key__false STATIC_KEY_INIT_FALSE 74 75 #define SCHED_FEAT(name, enabled) \ 76 jump_label_key__##enabled , 77 78 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 79 #include "features.h" 80 }; 81 82 #undef SCHED_FEAT 83 84 static void sched_feat_disable(int i) 85 { 86 static_key_disable_cpuslocked(&sched_feat_keys[i]); 87 } 88 89 static void sched_feat_enable(int i) 90 { 91 static_key_enable_cpuslocked(&sched_feat_keys[i]); 92 } 93 #else 94 static void sched_feat_disable(int i) { }; 95 static void sched_feat_enable(int i) { }; 96 #endif /* CONFIG_JUMP_LABEL */ 97 98 static int sched_feat_set(char *cmp) 99 { 100 int i; 101 int neg = 0; 102 103 if (strncmp(cmp, "NO_", 3) == 0) { 104 neg = 1; 105 cmp += 3; 106 } 107 108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 109 if (i < 0) 110 return i; 111 112 if (neg) { 113 sysctl_sched_features &= ~(1UL << i); 114 sched_feat_disable(i); 115 } else { 116 sysctl_sched_features |= (1UL << i); 117 sched_feat_enable(i); 118 } 119 120 return 0; 121 } 122 123 static ssize_t 124 sched_feat_write(struct file *filp, const char __user *ubuf, 125 size_t cnt, loff_t *ppos) 126 { 127 char buf[64]; 128 char *cmp; 129 int ret; 130 struct inode *inode; 131 132 if (cnt > 63) 133 cnt = 63; 134 135 if (copy_from_user(&buf, ubuf, cnt)) 136 return -EFAULT; 137 138 buf[cnt] = 0; 139 cmp = strstrip(buf); 140 141 /* Ensure the static_key remains in a consistent state */ 142 inode = file_inode(filp); 143 cpus_read_lock(); 144 inode_lock(inode); 145 ret = sched_feat_set(cmp); 146 inode_unlock(inode); 147 cpus_read_unlock(); 148 if (ret < 0) 149 return ret; 150 151 *ppos += cnt; 152 153 return cnt; 154 } 155 156 static int sched_feat_open(struct inode *inode, struct file *filp) 157 { 158 return single_open(filp, sched_feat_show, NULL); 159 } 160 161 static const struct file_operations sched_feat_fops = { 162 .open = sched_feat_open, 163 .write = sched_feat_write, 164 .read = seq_read, 165 .llseek = seq_lseek, 166 .release = single_release, 167 }; 168 169 #ifdef CONFIG_SMP 170 171 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, 172 size_t cnt, loff_t *ppos) 173 { 174 char buf[16]; 175 unsigned int scaling; 176 177 if (cnt > 15) 178 cnt = 15; 179 180 if (copy_from_user(&buf, ubuf, cnt)) 181 return -EFAULT; 182 buf[cnt] = '\0'; 183 184 if (kstrtouint(buf, 10, &scaling)) 185 return -EINVAL; 186 187 if (scaling >= SCHED_TUNABLESCALING_END) 188 return -EINVAL; 189 190 sysctl_sched_tunable_scaling = scaling; 191 if (sched_update_scaling()) 192 return -EINVAL; 193 194 *ppos += cnt; 195 return cnt; 196 } 197 198 static int sched_scaling_show(struct seq_file *m, void *v) 199 { 200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); 201 return 0; 202 } 203 204 static int sched_scaling_open(struct inode *inode, struct file *filp) 205 { 206 return single_open(filp, sched_scaling_show, NULL); 207 } 208 209 static const struct file_operations sched_scaling_fops = { 210 .open = sched_scaling_open, 211 .write = sched_scaling_write, 212 .read = seq_read, 213 .llseek = seq_lseek, 214 .release = single_release, 215 }; 216 217 #endif /* SMP */ 218 219 #ifdef CONFIG_PREEMPT_DYNAMIC 220 221 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 222 size_t cnt, loff_t *ppos) 223 { 224 char buf[16]; 225 int mode; 226 227 if (cnt > 15) 228 cnt = 15; 229 230 if (copy_from_user(&buf, ubuf, cnt)) 231 return -EFAULT; 232 233 buf[cnt] = 0; 234 mode = sched_dynamic_mode(strstrip(buf)); 235 if (mode < 0) 236 return mode; 237 238 sched_dynamic_update(mode); 239 240 *ppos += cnt; 241 242 return cnt; 243 } 244 245 static int sched_dynamic_show(struct seq_file *m, void *v) 246 { 247 static const char * preempt_modes[] = { 248 "none", "voluntary", "full" 249 }; 250 int i; 251 252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 253 if (preempt_dynamic_mode == i) 254 seq_puts(m, "("); 255 seq_puts(m, preempt_modes[i]); 256 if (preempt_dynamic_mode == i) 257 seq_puts(m, ")"); 258 259 seq_puts(m, " "); 260 } 261 262 seq_puts(m, "\n"); 263 return 0; 264 } 265 266 static int sched_dynamic_open(struct inode *inode, struct file *filp) 267 { 268 return single_open(filp, sched_dynamic_show, NULL); 269 } 270 271 static const struct file_operations sched_dynamic_fops = { 272 .open = sched_dynamic_open, 273 .write = sched_dynamic_write, 274 .read = seq_read, 275 .llseek = seq_lseek, 276 .release = single_release, 277 }; 278 279 #endif /* CONFIG_PREEMPT_DYNAMIC */ 280 281 __read_mostly bool sched_debug_verbose; 282 283 #ifdef CONFIG_SMP 284 static struct dentry *sd_dentry; 285 286 287 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf, 288 size_t cnt, loff_t *ppos) 289 { 290 ssize_t result; 291 bool orig; 292 293 cpus_read_lock(); 294 mutex_lock(&sched_domains_mutex); 295 296 orig = sched_debug_verbose; 297 result = debugfs_write_file_bool(filp, ubuf, cnt, ppos); 298 299 if (sched_debug_verbose && !orig) 300 update_sched_domain_debugfs(); 301 else if (!sched_debug_verbose && orig) { 302 debugfs_remove(sd_dentry); 303 sd_dentry = NULL; 304 } 305 306 mutex_unlock(&sched_domains_mutex); 307 cpus_read_unlock(); 308 309 return result; 310 } 311 #else 312 #define sched_verbose_write debugfs_write_file_bool 313 #endif 314 315 static const struct file_operations sched_verbose_fops = { 316 .read = debugfs_read_file_bool, 317 .write = sched_verbose_write, 318 .open = simple_open, 319 .llseek = default_llseek, 320 }; 321 322 static const struct seq_operations sched_debug_sops; 323 324 static int sched_debug_open(struct inode *inode, struct file *filp) 325 { 326 return seq_open(filp, &sched_debug_sops); 327 } 328 329 static const struct file_operations sched_debug_fops = { 330 .open = sched_debug_open, 331 .read = seq_read, 332 .llseek = seq_lseek, 333 .release = seq_release, 334 }; 335 336 static struct dentry *debugfs_sched; 337 338 static __init int sched_init_debug(void) 339 { 340 struct dentry __maybe_unused *numa; 341 342 debugfs_sched = debugfs_create_dir("sched", NULL); 343 344 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); 345 debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops); 346 #ifdef CONFIG_PREEMPT_DYNAMIC 347 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); 348 #endif 349 350 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency); 351 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity); 352 debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity); 353 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity); 354 355 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); 356 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); 357 358 #ifdef CONFIG_SMP 359 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); 360 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); 361 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); 362 363 mutex_lock(&sched_domains_mutex); 364 update_sched_domain_debugfs(); 365 mutex_unlock(&sched_domains_mutex); 366 #endif 367 368 #ifdef CONFIG_NUMA_BALANCING 369 numa = debugfs_create_dir("numa_balancing", debugfs_sched); 370 371 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); 372 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); 373 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); 374 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); 375 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold); 376 #endif 377 378 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); 379 380 return 0; 381 } 382 late_initcall(sched_init_debug); 383 384 #ifdef CONFIG_SMP 385 386 static cpumask_var_t sd_sysctl_cpus; 387 388 static int sd_flags_show(struct seq_file *m, void *v) 389 { 390 unsigned long flags = *(unsigned int *)m->private; 391 int idx; 392 393 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 394 seq_puts(m, sd_flag_debug[idx].name); 395 seq_puts(m, " "); 396 } 397 seq_puts(m, "\n"); 398 399 return 0; 400 } 401 402 static int sd_flags_open(struct inode *inode, struct file *file) 403 { 404 return single_open(file, sd_flags_show, inode->i_private); 405 } 406 407 static const struct file_operations sd_flags_fops = { 408 .open = sd_flags_open, 409 .read = seq_read, 410 .llseek = seq_lseek, 411 .release = single_release, 412 }; 413 414 static void register_sd(struct sched_domain *sd, struct dentry *parent) 415 { 416 #define SDM(type, mode, member) \ 417 debugfs_create_##type(#member, mode, parent, &sd->member) 418 419 SDM(ulong, 0644, min_interval); 420 SDM(ulong, 0644, max_interval); 421 SDM(u64, 0644, max_newidle_lb_cost); 422 SDM(u32, 0644, busy_factor); 423 SDM(u32, 0644, imbalance_pct); 424 SDM(u32, 0644, cache_nice_tries); 425 SDM(str, 0444, name); 426 427 #undef SDM 428 429 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); 430 debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops); 431 } 432 433 void update_sched_domain_debugfs(void) 434 { 435 int cpu, i; 436 437 /* 438 * This can unfortunately be invoked before sched_debug_init() creates 439 * the debug directory. Don't touch sd_sysctl_cpus until then. 440 */ 441 if (!debugfs_sched) 442 return; 443 444 if (!sched_debug_verbose) 445 return; 446 447 if (!cpumask_available(sd_sysctl_cpus)) { 448 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 449 return; 450 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 451 } 452 453 if (!sd_dentry) { 454 sd_dentry = debugfs_create_dir("domains", debugfs_sched); 455 456 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */ 457 if (cpumask_empty(sd_sysctl_cpus)) 458 cpumask_copy(sd_sysctl_cpus, cpu_online_mask); 459 } 460 461 for_each_cpu(cpu, sd_sysctl_cpus) { 462 struct sched_domain *sd; 463 struct dentry *d_cpu; 464 char buf[32]; 465 466 snprintf(buf, sizeof(buf), "cpu%d", cpu); 467 debugfs_lookup_and_remove(buf, sd_dentry); 468 d_cpu = debugfs_create_dir(buf, sd_dentry); 469 470 i = 0; 471 for_each_domain(cpu, sd) { 472 struct dentry *d_sd; 473 474 snprintf(buf, sizeof(buf), "domain%d", i); 475 d_sd = debugfs_create_dir(buf, d_cpu); 476 477 register_sd(sd, d_sd); 478 i++; 479 } 480 481 __cpumask_clear_cpu(cpu, sd_sysctl_cpus); 482 } 483 } 484 485 void dirty_sched_domain_sysctl(int cpu) 486 { 487 if (cpumask_available(sd_sysctl_cpus)) 488 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 489 } 490 491 #endif /* CONFIG_SMP */ 492 493 #ifdef CONFIG_FAIR_GROUP_SCHED 494 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 495 { 496 struct sched_entity *se = tg->se[cpu]; 497 498 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 499 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \ 500 #F, (long long)schedstat_val(stats->F)) 501 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 502 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \ 503 #F, SPLIT_NS((long long)schedstat_val(stats->F))) 504 505 if (!se) 506 return; 507 508 PN(se->exec_start); 509 PN(se->vruntime); 510 PN(se->sum_exec_runtime); 511 512 if (schedstat_enabled()) { 513 struct sched_statistics *stats; 514 stats = __schedstats_from_se(se); 515 516 PN_SCHEDSTAT(wait_start); 517 PN_SCHEDSTAT(sleep_start); 518 PN_SCHEDSTAT(block_start); 519 PN_SCHEDSTAT(sleep_max); 520 PN_SCHEDSTAT(block_max); 521 PN_SCHEDSTAT(exec_max); 522 PN_SCHEDSTAT(slice_max); 523 PN_SCHEDSTAT(wait_max); 524 PN_SCHEDSTAT(wait_sum); 525 P_SCHEDSTAT(wait_count); 526 } 527 528 P(se->load.weight); 529 #ifdef CONFIG_SMP 530 P(se->avg.load_avg); 531 P(se->avg.util_avg); 532 P(se->avg.runnable_avg); 533 #endif 534 535 #undef PN_SCHEDSTAT 536 #undef PN 537 #undef P_SCHEDSTAT 538 #undef P 539 } 540 #endif 541 542 #ifdef CONFIG_CGROUP_SCHED 543 static DEFINE_SPINLOCK(sched_debug_lock); 544 static char group_path[PATH_MAX]; 545 546 static void task_group_path(struct task_group *tg, char *path, int plen) 547 { 548 if (autogroup_path(tg, path, plen)) 549 return; 550 551 cgroup_path(tg->css.cgroup, path, plen); 552 } 553 554 /* 555 * Only 1 SEQ_printf_task_group_path() caller can use the full length 556 * group_path[] for cgroup path. Other simultaneous callers will have 557 * to use a shorter stack buffer. A "..." suffix is appended at the end 558 * of the stack buffer so that it will show up in case the output length 559 * matches the given buffer size to indicate possible path name truncation. 560 */ 561 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 562 { \ 563 if (spin_trylock(&sched_debug_lock)) { \ 564 task_group_path(tg, group_path, sizeof(group_path)); \ 565 SEQ_printf(m, fmt, group_path); \ 566 spin_unlock(&sched_debug_lock); \ 567 } else { \ 568 char buf[128]; \ 569 char *bufend = buf + sizeof(buf) - 3; \ 570 task_group_path(tg, buf, bufend - buf); \ 571 strcpy(bufend - 1, "..."); \ 572 SEQ_printf(m, fmt, buf); \ 573 } \ 574 } 575 #endif 576 577 static void 578 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 579 { 580 if (task_current(rq, p)) 581 SEQ_printf(m, ">R"); 582 else 583 SEQ_printf(m, " %c", task_state_to_char(p)); 584 585 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ", 586 p->comm, task_pid_nr(p), 587 SPLIT_NS(p->se.vruntime), 588 (long long)(p->nvcsw + p->nivcsw), 589 p->prio); 590 591 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld", 592 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)), 593 SPLIT_NS(p->se.sum_exec_runtime), 594 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)), 595 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime))); 596 597 #ifdef CONFIG_NUMA_BALANCING 598 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 599 #endif 600 #ifdef CONFIG_CGROUP_SCHED 601 SEQ_printf_task_group_path(m, task_group(p), " %s") 602 #endif 603 604 SEQ_printf(m, "\n"); 605 } 606 607 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 608 { 609 struct task_struct *g, *p; 610 611 SEQ_printf(m, "\n"); 612 SEQ_printf(m, "runnable tasks:\n"); 613 SEQ_printf(m, " S task PID tree-key switches prio" 614 " wait-time sum-exec sum-sleep\n"); 615 SEQ_printf(m, "-------------------------------------------------------" 616 "------------------------------------------------------\n"); 617 618 rcu_read_lock(); 619 for_each_process_thread(g, p) { 620 if (task_cpu(p) != rq_cpu) 621 continue; 622 623 print_task(m, rq, p); 624 } 625 rcu_read_unlock(); 626 } 627 628 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 629 { 630 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 631 spread, rq0_min_vruntime, spread0; 632 struct rq *rq = cpu_rq(cpu); 633 struct sched_entity *last; 634 unsigned long flags; 635 636 #ifdef CONFIG_FAIR_GROUP_SCHED 637 SEQ_printf(m, "\n"); 638 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 639 #else 640 SEQ_printf(m, "\n"); 641 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 642 #endif 643 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 644 SPLIT_NS(cfs_rq->exec_clock)); 645 646 raw_spin_rq_lock_irqsave(rq, flags); 647 if (rb_first_cached(&cfs_rq->tasks_timeline)) 648 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 649 last = __pick_last_entity(cfs_rq); 650 if (last) 651 max_vruntime = last->vruntime; 652 min_vruntime = cfs_rq->min_vruntime; 653 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 654 raw_spin_rq_unlock_irqrestore(rq, flags); 655 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 656 SPLIT_NS(MIN_vruntime)); 657 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 658 SPLIT_NS(min_vruntime)); 659 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 660 SPLIT_NS(max_vruntime)); 661 spread = max_vruntime - MIN_vruntime; 662 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 663 SPLIT_NS(spread)); 664 spread0 = min_vruntime - rq0_min_vruntime; 665 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 666 SPLIT_NS(spread0)); 667 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 668 cfs_rq->nr_spread_over); 669 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 670 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); 671 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running", 672 cfs_rq->idle_nr_running); 673 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", 674 cfs_rq->idle_h_nr_running); 675 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 676 #ifdef CONFIG_SMP 677 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 678 cfs_rq->avg.load_avg); 679 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 680 cfs_rq->avg.runnable_avg); 681 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 682 cfs_rq->avg.util_avg); 683 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 684 cfs_rq->avg.util_est.enqueued); 685 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 686 cfs_rq->removed.load_avg); 687 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 688 cfs_rq->removed.util_avg); 689 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 690 cfs_rq->removed.runnable_avg); 691 #ifdef CONFIG_FAIR_GROUP_SCHED 692 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 693 cfs_rq->tg_load_avg_contrib); 694 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 695 atomic_long_read(&cfs_rq->tg->load_avg)); 696 #endif 697 #endif 698 #ifdef CONFIG_CFS_BANDWIDTH 699 SEQ_printf(m, " .%-30s: %d\n", "throttled", 700 cfs_rq->throttled); 701 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 702 cfs_rq->throttle_count); 703 #endif 704 705 #ifdef CONFIG_FAIR_GROUP_SCHED 706 print_cfs_group_stats(m, cpu, cfs_rq->tg); 707 #endif 708 } 709 710 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 711 { 712 #ifdef CONFIG_RT_GROUP_SCHED 713 SEQ_printf(m, "\n"); 714 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 715 #else 716 SEQ_printf(m, "\n"); 717 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 718 #endif 719 720 #define P(x) \ 721 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 722 #define PU(x) \ 723 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 724 #define PN(x) \ 725 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 726 727 PU(rt_nr_running); 728 #ifdef CONFIG_SMP 729 PU(rt_nr_migratory); 730 #endif 731 P(rt_throttled); 732 PN(rt_time); 733 PN(rt_runtime); 734 735 #undef PN 736 #undef PU 737 #undef P 738 } 739 740 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 741 { 742 struct dl_bw *dl_bw; 743 744 SEQ_printf(m, "\n"); 745 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 746 747 #define PU(x) \ 748 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 749 750 PU(dl_nr_running); 751 #ifdef CONFIG_SMP 752 PU(dl_nr_migratory); 753 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 754 #else 755 dl_bw = &dl_rq->dl_bw; 756 #endif 757 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 758 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 759 760 #undef PU 761 } 762 763 static void print_cpu(struct seq_file *m, int cpu) 764 { 765 struct rq *rq = cpu_rq(cpu); 766 767 #ifdef CONFIG_X86 768 { 769 unsigned int freq = cpu_khz ? : 1; 770 771 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 772 cpu, freq / 1000, (freq % 1000)); 773 } 774 #else 775 SEQ_printf(m, "cpu#%d\n", cpu); 776 #endif 777 778 #define P(x) \ 779 do { \ 780 if (sizeof(rq->x) == 4) \ 781 SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \ 782 else \ 783 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 784 } while (0) 785 786 #define PN(x) \ 787 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 788 789 P(nr_running); 790 P(nr_switches); 791 P(nr_uninterruptible); 792 PN(next_balance); 793 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 794 PN(clock); 795 PN(clock_task); 796 #undef P 797 #undef PN 798 799 #ifdef CONFIG_SMP 800 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 801 P64(avg_idle); 802 P64(max_idle_balance_cost); 803 #undef P64 804 #endif 805 806 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 807 if (schedstat_enabled()) { 808 P(yld_count); 809 P(sched_count); 810 P(sched_goidle); 811 P(ttwu_count); 812 P(ttwu_local); 813 } 814 #undef P 815 816 print_cfs_stats(m, cpu); 817 print_rt_stats(m, cpu); 818 print_dl_stats(m, cpu); 819 820 print_rq(m, rq, cpu); 821 SEQ_printf(m, "\n"); 822 } 823 824 static const char *sched_tunable_scaling_names[] = { 825 "none", 826 "logarithmic", 827 "linear" 828 }; 829 830 static void sched_debug_header(struct seq_file *m) 831 { 832 u64 ktime, sched_clk, cpu_clk; 833 unsigned long flags; 834 835 local_irq_save(flags); 836 ktime = ktime_to_ns(ktime_get()); 837 sched_clk = sched_clock(); 838 cpu_clk = local_clock(); 839 local_irq_restore(flags); 840 841 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 842 init_utsname()->release, 843 (int)strcspn(init_utsname()->version, " "), 844 init_utsname()->version); 845 846 #define P(x) \ 847 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 848 #define PN(x) \ 849 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 850 PN(ktime); 851 PN(sched_clk); 852 PN(cpu_clk); 853 P(jiffies); 854 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 855 P(sched_clock_stable()); 856 #endif 857 #undef PN 858 #undef P 859 860 SEQ_printf(m, "\n"); 861 SEQ_printf(m, "sysctl_sched\n"); 862 863 #define P(x) \ 864 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 865 #define PN(x) \ 866 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 867 PN(sysctl_sched_latency); 868 PN(sysctl_sched_min_granularity); 869 PN(sysctl_sched_idle_min_granularity); 870 PN(sysctl_sched_wakeup_granularity); 871 P(sysctl_sched_child_runs_first); 872 P(sysctl_sched_features); 873 #undef PN 874 #undef P 875 876 SEQ_printf(m, " .%-40s: %d (%s)\n", 877 "sysctl_sched_tunable_scaling", 878 sysctl_sched_tunable_scaling, 879 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 880 SEQ_printf(m, "\n"); 881 } 882 883 static int sched_debug_show(struct seq_file *m, void *v) 884 { 885 int cpu = (unsigned long)(v - 2); 886 887 if (cpu != -1) 888 print_cpu(m, cpu); 889 else 890 sched_debug_header(m); 891 892 return 0; 893 } 894 895 void sysrq_sched_debug_show(void) 896 { 897 int cpu; 898 899 sched_debug_header(NULL); 900 for_each_online_cpu(cpu) { 901 /* 902 * Need to reset softlockup watchdogs on all CPUs, because 903 * another CPU might be blocked waiting for us to process 904 * an IPI or stop_machine. 905 */ 906 touch_nmi_watchdog(); 907 touch_all_softlockup_watchdogs(); 908 print_cpu(NULL, cpu); 909 } 910 } 911 912 /* 913 * This iterator needs some explanation. 914 * It returns 1 for the header position. 915 * This means 2 is CPU 0. 916 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 917 * to use cpumask_* to iterate over the CPUs. 918 */ 919 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 920 { 921 unsigned long n = *offset; 922 923 if (n == 0) 924 return (void *) 1; 925 926 n--; 927 928 if (n > 0) 929 n = cpumask_next(n - 1, cpu_online_mask); 930 else 931 n = cpumask_first(cpu_online_mask); 932 933 *offset = n + 1; 934 935 if (n < nr_cpu_ids) 936 return (void *)(unsigned long)(n + 2); 937 938 return NULL; 939 } 940 941 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 942 { 943 (*offset)++; 944 return sched_debug_start(file, offset); 945 } 946 947 static void sched_debug_stop(struct seq_file *file, void *data) 948 { 949 } 950 951 static const struct seq_operations sched_debug_sops = { 952 .start = sched_debug_start, 953 .next = sched_debug_next, 954 .stop = sched_debug_stop, 955 .show = sched_debug_show, 956 }; 957 958 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 959 #define __P(F) __PS(#F, F) 960 #define P(F) __PS(#F, p->F) 961 #define PM(F, M) __PS(#F, p->F & (M)) 962 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 963 #define __PN(F) __PSN(#F, F) 964 #define PN(F) __PSN(#F, p->F) 965 966 967 #ifdef CONFIG_NUMA_BALANCING 968 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 969 unsigned long tpf, unsigned long gsf, unsigned long gpf) 970 { 971 SEQ_printf(m, "numa_faults node=%d ", node); 972 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 973 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 974 } 975 #endif 976 977 978 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 979 { 980 #ifdef CONFIG_NUMA_BALANCING 981 if (p->mm) 982 P(mm->numa_scan_seq); 983 984 P(numa_pages_migrated); 985 P(numa_preferred_nid); 986 P(total_numa_faults); 987 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 988 task_node(p), task_numa_group_id(p)); 989 show_numa_stats(p, m); 990 #endif 991 } 992 993 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 994 struct seq_file *m) 995 { 996 unsigned long nr_switches; 997 998 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 999 get_nr_threads(p)); 1000 SEQ_printf(m, 1001 "---------------------------------------------------------" 1002 "----------\n"); 1003 1004 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F)) 1005 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F)) 1006 1007 PN(se.exec_start); 1008 PN(se.vruntime); 1009 PN(se.sum_exec_runtime); 1010 1011 nr_switches = p->nvcsw + p->nivcsw; 1012 1013 P(se.nr_migrations); 1014 1015 if (schedstat_enabled()) { 1016 u64 avg_atom, avg_per_cpu; 1017 1018 PN_SCHEDSTAT(sum_sleep_runtime); 1019 PN_SCHEDSTAT(sum_block_runtime); 1020 PN_SCHEDSTAT(wait_start); 1021 PN_SCHEDSTAT(sleep_start); 1022 PN_SCHEDSTAT(block_start); 1023 PN_SCHEDSTAT(sleep_max); 1024 PN_SCHEDSTAT(block_max); 1025 PN_SCHEDSTAT(exec_max); 1026 PN_SCHEDSTAT(slice_max); 1027 PN_SCHEDSTAT(wait_max); 1028 PN_SCHEDSTAT(wait_sum); 1029 P_SCHEDSTAT(wait_count); 1030 PN_SCHEDSTAT(iowait_sum); 1031 P_SCHEDSTAT(iowait_count); 1032 P_SCHEDSTAT(nr_migrations_cold); 1033 P_SCHEDSTAT(nr_failed_migrations_affine); 1034 P_SCHEDSTAT(nr_failed_migrations_running); 1035 P_SCHEDSTAT(nr_failed_migrations_hot); 1036 P_SCHEDSTAT(nr_forced_migrations); 1037 P_SCHEDSTAT(nr_wakeups); 1038 P_SCHEDSTAT(nr_wakeups_sync); 1039 P_SCHEDSTAT(nr_wakeups_migrate); 1040 P_SCHEDSTAT(nr_wakeups_local); 1041 P_SCHEDSTAT(nr_wakeups_remote); 1042 P_SCHEDSTAT(nr_wakeups_affine); 1043 P_SCHEDSTAT(nr_wakeups_affine_attempts); 1044 P_SCHEDSTAT(nr_wakeups_passive); 1045 P_SCHEDSTAT(nr_wakeups_idle); 1046 1047 avg_atom = p->se.sum_exec_runtime; 1048 if (nr_switches) 1049 avg_atom = div64_ul(avg_atom, nr_switches); 1050 else 1051 avg_atom = -1LL; 1052 1053 avg_per_cpu = p->se.sum_exec_runtime; 1054 if (p->se.nr_migrations) { 1055 avg_per_cpu = div64_u64(avg_per_cpu, 1056 p->se.nr_migrations); 1057 } else { 1058 avg_per_cpu = -1LL; 1059 } 1060 1061 __PN(avg_atom); 1062 __PN(avg_per_cpu); 1063 1064 #ifdef CONFIG_SCHED_CORE 1065 PN_SCHEDSTAT(core_forceidle_sum); 1066 #endif 1067 } 1068 1069 __P(nr_switches); 1070 __PS("nr_voluntary_switches", p->nvcsw); 1071 __PS("nr_involuntary_switches", p->nivcsw); 1072 1073 P(se.load.weight); 1074 #ifdef CONFIG_SMP 1075 P(se.avg.load_sum); 1076 P(se.avg.runnable_sum); 1077 P(se.avg.util_sum); 1078 P(se.avg.load_avg); 1079 P(se.avg.runnable_avg); 1080 P(se.avg.util_avg); 1081 P(se.avg.last_update_time); 1082 P(se.avg.util_est.ewma); 1083 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED); 1084 #endif 1085 #ifdef CONFIG_UCLAMP_TASK 1086 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1087 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1088 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1089 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1090 #endif 1091 P(policy); 1092 P(prio); 1093 if (task_has_dl_policy(p)) { 1094 P(dl.runtime); 1095 P(dl.deadline); 1096 } 1097 #undef PN_SCHEDSTAT 1098 #undef P_SCHEDSTAT 1099 1100 { 1101 unsigned int this_cpu = raw_smp_processor_id(); 1102 u64 t0, t1; 1103 1104 t0 = cpu_clock(this_cpu); 1105 t1 = cpu_clock(this_cpu); 1106 __PS("clock-delta", t1-t0); 1107 } 1108 1109 sched_show_numa(p, m); 1110 } 1111 1112 void proc_sched_set_task(struct task_struct *p) 1113 { 1114 #ifdef CONFIG_SCHEDSTATS 1115 memset(&p->stats, 0, sizeof(p->stats)); 1116 #endif 1117 } 1118 1119 void resched_latency_warn(int cpu, u64 latency) 1120 { 1121 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); 1122 1123 WARN(__ratelimit(&latency_check_ratelimit), 1124 "sched: CPU %d need_resched set for > %llu ns (%d ticks) " 1125 "without schedule\n", 1126 cpu, latency, cpu_rq(cpu)->ticks_without_resched); 1127 } 1128