1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 10 /* 11 * This allows printing both to /proc/sched_debug and 12 * to the console 13 */ 14 #define SEQ_printf(m, x...) \ 15 do { \ 16 if (m) \ 17 seq_printf(m, x); \ 18 else \ 19 pr_cont(x); \ 20 } while (0) 21 22 /* 23 * Ease the printing of nsec fields: 24 */ 25 static long long nsec_high(unsigned long long nsec) 26 { 27 if ((long long)nsec < 0) { 28 nsec = -nsec; 29 do_div(nsec, 1000000); 30 return -nsec; 31 } 32 do_div(nsec, 1000000); 33 34 return nsec; 35 } 36 37 static unsigned long nsec_low(unsigned long long nsec) 38 { 39 if ((long long)nsec < 0) 40 nsec = -nsec; 41 42 return do_div(nsec, 1000000); 43 } 44 45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 46 47 #define SCHED_FEAT(name, enabled) \ 48 #name , 49 50 static const char * const sched_feat_names[] = { 51 #include "features.h" 52 }; 53 54 #undef SCHED_FEAT 55 56 static int sched_feat_show(struct seq_file *m, void *v) 57 { 58 int i; 59 60 for (i = 0; i < __SCHED_FEAT_NR; i++) { 61 if (!(sysctl_sched_features & (1UL << i))) 62 seq_puts(m, "NO_"); 63 seq_printf(m, "%s ", sched_feat_names[i]); 64 } 65 seq_puts(m, "\n"); 66 67 return 0; 68 } 69 70 #ifdef CONFIG_JUMP_LABEL 71 72 #define jump_label_key__true STATIC_KEY_INIT_TRUE 73 #define jump_label_key__false STATIC_KEY_INIT_FALSE 74 75 #define SCHED_FEAT(name, enabled) \ 76 jump_label_key__##enabled , 77 78 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 79 #include "features.h" 80 }; 81 82 #undef SCHED_FEAT 83 84 static void sched_feat_disable(int i) 85 { 86 static_key_disable_cpuslocked(&sched_feat_keys[i]); 87 } 88 89 static void sched_feat_enable(int i) 90 { 91 static_key_enable_cpuslocked(&sched_feat_keys[i]); 92 } 93 #else 94 static void sched_feat_disable(int i) { }; 95 static void sched_feat_enable(int i) { }; 96 #endif /* CONFIG_JUMP_LABEL */ 97 98 static int sched_feat_set(char *cmp) 99 { 100 int i; 101 int neg = 0; 102 103 if (strncmp(cmp, "NO_", 3) == 0) { 104 neg = 1; 105 cmp += 3; 106 } 107 108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 109 if (i < 0) 110 return i; 111 112 if (neg) { 113 sysctl_sched_features &= ~(1UL << i); 114 sched_feat_disable(i); 115 } else { 116 sysctl_sched_features |= (1UL << i); 117 sched_feat_enable(i); 118 } 119 120 return 0; 121 } 122 123 static ssize_t 124 sched_feat_write(struct file *filp, const char __user *ubuf, 125 size_t cnt, loff_t *ppos) 126 { 127 char buf[64]; 128 char *cmp; 129 int ret; 130 struct inode *inode; 131 132 if (cnt > 63) 133 cnt = 63; 134 135 if (copy_from_user(&buf, ubuf, cnt)) 136 return -EFAULT; 137 138 buf[cnt] = 0; 139 cmp = strstrip(buf); 140 141 /* Ensure the static_key remains in a consistent state */ 142 inode = file_inode(filp); 143 cpus_read_lock(); 144 inode_lock(inode); 145 ret = sched_feat_set(cmp); 146 inode_unlock(inode); 147 cpus_read_unlock(); 148 if (ret < 0) 149 return ret; 150 151 *ppos += cnt; 152 153 return cnt; 154 } 155 156 static int sched_feat_open(struct inode *inode, struct file *filp) 157 { 158 return single_open(filp, sched_feat_show, NULL); 159 } 160 161 static const struct file_operations sched_feat_fops = { 162 .open = sched_feat_open, 163 .write = sched_feat_write, 164 .read = seq_read, 165 .llseek = seq_lseek, 166 .release = single_release, 167 }; 168 169 #ifdef CONFIG_SMP 170 171 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, 172 size_t cnt, loff_t *ppos) 173 { 174 char buf[16]; 175 unsigned int scaling; 176 177 if (cnt > 15) 178 cnt = 15; 179 180 if (copy_from_user(&buf, ubuf, cnt)) 181 return -EFAULT; 182 buf[cnt] = '\0'; 183 184 if (kstrtouint(buf, 10, &scaling)) 185 return -EINVAL; 186 187 if (scaling >= SCHED_TUNABLESCALING_END) 188 return -EINVAL; 189 190 sysctl_sched_tunable_scaling = scaling; 191 if (sched_update_scaling()) 192 return -EINVAL; 193 194 *ppos += cnt; 195 return cnt; 196 } 197 198 static int sched_scaling_show(struct seq_file *m, void *v) 199 { 200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); 201 return 0; 202 } 203 204 static int sched_scaling_open(struct inode *inode, struct file *filp) 205 { 206 return single_open(filp, sched_scaling_show, NULL); 207 } 208 209 static const struct file_operations sched_scaling_fops = { 210 .open = sched_scaling_open, 211 .write = sched_scaling_write, 212 .read = seq_read, 213 .llseek = seq_lseek, 214 .release = single_release, 215 }; 216 217 #endif /* SMP */ 218 219 #ifdef CONFIG_PREEMPT_DYNAMIC 220 221 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 222 size_t cnt, loff_t *ppos) 223 { 224 char buf[16]; 225 int mode; 226 227 if (cnt > 15) 228 cnt = 15; 229 230 if (copy_from_user(&buf, ubuf, cnt)) 231 return -EFAULT; 232 233 buf[cnt] = 0; 234 mode = sched_dynamic_mode(strstrip(buf)); 235 if (mode < 0) 236 return mode; 237 238 sched_dynamic_update(mode); 239 240 *ppos += cnt; 241 242 return cnt; 243 } 244 245 static int sched_dynamic_show(struct seq_file *m, void *v) 246 { 247 static const char * preempt_modes[] = { 248 "none", "voluntary", "full" 249 }; 250 int i; 251 252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 253 if (preempt_dynamic_mode == i) 254 seq_puts(m, "("); 255 seq_puts(m, preempt_modes[i]); 256 if (preempt_dynamic_mode == i) 257 seq_puts(m, ")"); 258 259 seq_puts(m, " "); 260 } 261 262 seq_puts(m, "\n"); 263 return 0; 264 } 265 266 static int sched_dynamic_open(struct inode *inode, struct file *filp) 267 { 268 return single_open(filp, sched_dynamic_show, NULL); 269 } 270 271 static const struct file_operations sched_dynamic_fops = { 272 .open = sched_dynamic_open, 273 .write = sched_dynamic_write, 274 .read = seq_read, 275 .llseek = seq_lseek, 276 .release = single_release, 277 }; 278 279 #endif /* CONFIG_PREEMPT_DYNAMIC */ 280 281 __read_mostly bool sched_debug_verbose; 282 283 #ifdef CONFIG_SMP 284 static struct dentry *sd_dentry; 285 286 287 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf, 288 size_t cnt, loff_t *ppos) 289 { 290 ssize_t result; 291 bool orig; 292 293 cpus_read_lock(); 294 mutex_lock(&sched_domains_mutex); 295 296 orig = sched_debug_verbose; 297 result = debugfs_write_file_bool(filp, ubuf, cnt, ppos); 298 299 if (sched_debug_verbose && !orig) 300 update_sched_domain_debugfs(); 301 else if (!sched_debug_verbose && orig) { 302 debugfs_remove(sd_dentry); 303 sd_dentry = NULL; 304 } 305 306 mutex_unlock(&sched_domains_mutex); 307 cpus_read_unlock(); 308 309 return result; 310 } 311 #else 312 #define sched_verbose_write debugfs_write_file_bool 313 #endif 314 315 static const struct file_operations sched_verbose_fops = { 316 .read = debugfs_read_file_bool, 317 .write = sched_verbose_write, 318 .open = simple_open, 319 .llseek = default_llseek, 320 }; 321 322 static const struct seq_operations sched_debug_sops; 323 324 static int sched_debug_open(struct inode *inode, struct file *filp) 325 { 326 return seq_open(filp, &sched_debug_sops); 327 } 328 329 static const struct file_operations sched_debug_fops = { 330 .open = sched_debug_open, 331 .read = seq_read, 332 .llseek = seq_lseek, 333 .release = seq_release, 334 }; 335 336 static struct dentry *debugfs_sched; 337 338 static __init int sched_init_debug(void) 339 { 340 struct dentry __maybe_unused *numa; 341 342 debugfs_sched = debugfs_create_dir("sched", NULL); 343 344 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); 345 debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops); 346 #ifdef CONFIG_PREEMPT_DYNAMIC 347 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); 348 #endif 349 350 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency); 351 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity); 352 debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity); 353 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity); 354 355 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); 356 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); 357 358 #ifdef CONFIG_SMP 359 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); 360 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); 361 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); 362 363 mutex_lock(&sched_domains_mutex); 364 update_sched_domain_debugfs(); 365 mutex_unlock(&sched_domains_mutex); 366 #endif 367 368 #ifdef CONFIG_NUMA_BALANCING 369 numa = debugfs_create_dir("numa_balancing", debugfs_sched); 370 371 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); 372 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); 373 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); 374 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); 375 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold); 376 #endif 377 378 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); 379 380 return 0; 381 } 382 late_initcall(sched_init_debug); 383 384 #ifdef CONFIG_SMP 385 386 static cpumask_var_t sd_sysctl_cpus; 387 388 static int sd_flags_show(struct seq_file *m, void *v) 389 { 390 unsigned long flags = *(unsigned int *)m->private; 391 int idx; 392 393 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 394 seq_puts(m, sd_flag_debug[idx].name); 395 seq_puts(m, " "); 396 } 397 seq_puts(m, "\n"); 398 399 return 0; 400 } 401 402 static int sd_flags_open(struct inode *inode, struct file *file) 403 { 404 return single_open(file, sd_flags_show, inode->i_private); 405 } 406 407 static const struct file_operations sd_flags_fops = { 408 .open = sd_flags_open, 409 .read = seq_read, 410 .llseek = seq_lseek, 411 .release = single_release, 412 }; 413 414 static void register_sd(struct sched_domain *sd, struct dentry *parent) 415 { 416 #define SDM(type, mode, member) \ 417 debugfs_create_##type(#member, mode, parent, &sd->member) 418 419 SDM(ulong, 0644, min_interval); 420 SDM(ulong, 0644, max_interval); 421 SDM(u64, 0644, max_newidle_lb_cost); 422 SDM(u32, 0644, busy_factor); 423 SDM(u32, 0644, imbalance_pct); 424 SDM(u32, 0644, cache_nice_tries); 425 SDM(str, 0444, name); 426 427 #undef SDM 428 429 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); 430 debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops); 431 } 432 433 void update_sched_domain_debugfs(void) 434 { 435 int cpu, i; 436 437 /* 438 * This can unfortunately be invoked before sched_debug_init() creates 439 * the debug directory. Don't touch sd_sysctl_cpus until then. 440 */ 441 if (!debugfs_sched) 442 return; 443 444 if (!sched_debug_verbose) 445 return; 446 447 if (!cpumask_available(sd_sysctl_cpus)) { 448 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 449 return; 450 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 451 } 452 453 if (!sd_dentry) { 454 sd_dentry = debugfs_create_dir("domains", debugfs_sched); 455 456 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */ 457 if (cpumask_empty(sd_sysctl_cpus)) 458 cpumask_copy(sd_sysctl_cpus, cpu_online_mask); 459 } 460 461 for_each_cpu(cpu, sd_sysctl_cpus) { 462 struct sched_domain *sd; 463 struct dentry *d_cpu; 464 char buf[32]; 465 466 snprintf(buf, sizeof(buf), "cpu%d", cpu); 467 debugfs_lookup_and_remove(buf, sd_dentry); 468 d_cpu = debugfs_create_dir(buf, sd_dentry); 469 470 i = 0; 471 for_each_domain(cpu, sd) { 472 struct dentry *d_sd; 473 474 snprintf(buf, sizeof(buf), "domain%d", i); 475 d_sd = debugfs_create_dir(buf, d_cpu); 476 477 register_sd(sd, d_sd); 478 i++; 479 } 480 481 __cpumask_clear_cpu(cpu, sd_sysctl_cpus); 482 } 483 } 484 485 void dirty_sched_domain_sysctl(int cpu) 486 { 487 if (cpumask_available(sd_sysctl_cpus)) 488 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 489 } 490 491 #endif /* CONFIG_SMP */ 492 493 #ifdef CONFIG_FAIR_GROUP_SCHED 494 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 495 { 496 struct sched_entity *se = tg->se[cpu]; 497 498 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 499 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \ 500 #F, (long long)schedstat_val(stats->F)) 501 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 502 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \ 503 #F, SPLIT_NS((long long)schedstat_val(stats->F))) 504 505 if (!se) 506 return; 507 508 PN(se->exec_start); 509 PN(se->vruntime); 510 PN(se->sum_exec_runtime); 511 512 if (schedstat_enabled()) { 513 struct sched_statistics *stats; 514 stats = __schedstats_from_se(se); 515 516 PN_SCHEDSTAT(wait_start); 517 PN_SCHEDSTAT(sleep_start); 518 PN_SCHEDSTAT(block_start); 519 PN_SCHEDSTAT(sleep_max); 520 PN_SCHEDSTAT(block_max); 521 PN_SCHEDSTAT(exec_max); 522 PN_SCHEDSTAT(slice_max); 523 PN_SCHEDSTAT(wait_max); 524 PN_SCHEDSTAT(wait_sum); 525 P_SCHEDSTAT(wait_count); 526 } 527 528 P(se->load.weight); 529 #ifdef CONFIG_SMP 530 P(se->avg.load_avg); 531 P(se->avg.util_avg); 532 P(se->avg.runnable_avg); 533 #endif 534 535 #undef PN_SCHEDSTAT 536 #undef PN 537 #undef P_SCHEDSTAT 538 #undef P 539 } 540 #endif 541 542 #ifdef CONFIG_CGROUP_SCHED 543 static DEFINE_SPINLOCK(sched_debug_lock); 544 static char group_path[PATH_MAX]; 545 546 static void task_group_path(struct task_group *tg, char *path, int plen) 547 { 548 if (autogroup_path(tg, path, plen)) 549 return; 550 551 cgroup_path(tg->css.cgroup, path, plen); 552 } 553 554 /* 555 * Only 1 SEQ_printf_task_group_path() caller can use the full length 556 * group_path[] for cgroup path. Other simultaneous callers will have 557 * to use a shorter stack buffer. A "..." suffix is appended at the end 558 * of the stack buffer so that it will show up in case the output length 559 * matches the given buffer size to indicate possible path name truncation. 560 */ 561 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 562 { \ 563 if (spin_trylock(&sched_debug_lock)) { \ 564 task_group_path(tg, group_path, sizeof(group_path)); \ 565 SEQ_printf(m, fmt, group_path); \ 566 spin_unlock(&sched_debug_lock); \ 567 } else { \ 568 char buf[128]; \ 569 char *bufend = buf + sizeof(buf) - 3; \ 570 task_group_path(tg, buf, bufend - buf); \ 571 strcpy(bufend - 1, "..."); \ 572 SEQ_printf(m, fmt, buf); \ 573 } \ 574 } 575 #endif 576 577 static void 578 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 579 { 580 if (task_current(rq, p)) 581 SEQ_printf(m, ">R"); 582 else 583 SEQ_printf(m, " %c", task_state_to_char(p)); 584 585 SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ", 586 p->comm, task_pid_nr(p), 587 SPLIT_NS(p->se.vruntime), 588 entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N', 589 SPLIT_NS(p->se.deadline), 590 SPLIT_NS(p->se.slice), 591 SPLIT_NS(p->se.sum_exec_runtime), 592 (long long)(p->nvcsw + p->nivcsw), 593 p->prio); 594 595 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld", 596 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)), 597 SPLIT_NS(p->se.sum_exec_runtime), 598 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)), 599 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime))); 600 601 #ifdef CONFIG_NUMA_BALANCING 602 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 603 #endif 604 #ifdef CONFIG_CGROUP_SCHED 605 SEQ_printf_task_group_path(m, task_group(p), " %s") 606 #endif 607 608 SEQ_printf(m, "\n"); 609 } 610 611 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 612 { 613 struct task_struct *g, *p; 614 615 SEQ_printf(m, "\n"); 616 SEQ_printf(m, "runnable tasks:\n"); 617 SEQ_printf(m, " S task PID tree-key switches prio" 618 " wait-time sum-exec sum-sleep\n"); 619 SEQ_printf(m, "-------------------------------------------------------" 620 "------------------------------------------------------\n"); 621 622 rcu_read_lock(); 623 for_each_process_thread(g, p) { 624 if (task_cpu(p) != rq_cpu) 625 continue; 626 627 print_task(m, rq, p); 628 } 629 rcu_read_unlock(); 630 } 631 632 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 633 { 634 s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, spread; 635 struct sched_entity *last, *first; 636 struct rq *rq = cpu_rq(cpu); 637 unsigned long flags; 638 639 #ifdef CONFIG_FAIR_GROUP_SCHED 640 SEQ_printf(m, "\n"); 641 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 642 #else 643 SEQ_printf(m, "\n"); 644 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 645 #endif 646 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 647 SPLIT_NS(cfs_rq->exec_clock)); 648 649 raw_spin_rq_lock_irqsave(rq, flags); 650 first = __pick_first_entity(cfs_rq); 651 if (first) 652 left_vruntime = first->vruntime; 653 last = __pick_last_entity(cfs_rq); 654 if (last) 655 right_vruntime = last->vruntime; 656 min_vruntime = cfs_rq->min_vruntime; 657 raw_spin_rq_unlock_irqrestore(rq, flags); 658 659 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime", 660 SPLIT_NS(left_vruntime)); 661 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 662 SPLIT_NS(min_vruntime)); 663 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime", 664 SPLIT_NS(avg_vruntime(cfs_rq))); 665 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime", 666 SPLIT_NS(right_vruntime)); 667 spread = right_vruntime - left_vruntime; 668 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread)); 669 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 670 cfs_rq->nr_spread_over); 671 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 672 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); 673 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running", 674 cfs_rq->idle_nr_running); 675 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", 676 cfs_rq->idle_h_nr_running); 677 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 678 #ifdef CONFIG_SMP 679 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 680 cfs_rq->avg.load_avg); 681 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 682 cfs_rq->avg.runnable_avg); 683 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 684 cfs_rq->avg.util_avg); 685 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 686 cfs_rq->avg.util_est.enqueued); 687 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 688 cfs_rq->removed.load_avg); 689 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 690 cfs_rq->removed.util_avg); 691 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 692 cfs_rq->removed.runnable_avg); 693 #ifdef CONFIG_FAIR_GROUP_SCHED 694 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 695 cfs_rq->tg_load_avg_contrib); 696 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 697 atomic_long_read(&cfs_rq->tg->load_avg)); 698 #endif 699 #endif 700 #ifdef CONFIG_CFS_BANDWIDTH 701 SEQ_printf(m, " .%-30s: %d\n", "throttled", 702 cfs_rq->throttled); 703 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 704 cfs_rq->throttle_count); 705 #endif 706 707 #ifdef CONFIG_FAIR_GROUP_SCHED 708 print_cfs_group_stats(m, cpu, cfs_rq->tg); 709 #endif 710 } 711 712 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 713 { 714 #ifdef CONFIG_RT_GROUP_SCHED 715 SEQ_printf(m, "\n"); 716 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 717 #else 718 SEQ_printf(m, "\n"); 719 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 720 #endif 721 722 #define P(x) \ 723 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 724 #define PU(x) \ 725 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 726 #define PN(x) \ 727 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 728 729 PU(rt_nr_running); 730 #ifdef CONFIG_SMP 731 PU(rt_nr_migratory); 732 #endif 733 P(rt_throttled); 734 PN(rt_time); 735 PN(rt_runtime); 736 737 #undef PN 738 #undef PU 739 #undef P 740 } 741 742 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 743 { 744 struct dl_bw *dl_bw; 745 746 SEQ_printf(m, "\n"); 747 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 748 749 #define PU(x) \ 750 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 751 752 PU(dl_nr_running); 753 #ifdef CONFIG_SMP 754 PU(dl_nr_migratory); 755 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 756 #else 757 dl_bw = &dl_rq->dl_bw; 758 #endif 759 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 760 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 761 762 #undef PU 763 } 764 765 static void print_cpu(struct seq_file *m, int cpu) 766 { 767 struct rq *rq = cpu_rq(cpu); 768 769 #ifdef CONFIG_X86 770 { 771 unsigned int freq = cpu_khz ? : 1; 772 773 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 774 cpu, freq / 1000, (freq % 1000)); 775 } 776 #else 777 SEQ_printf(m, "cpu#%d\n", cpu); 778 #endif 779 780 #define P(x) \ 781 do { \ 782 if (sizeof(rq->x) == 4) \ 783 SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \ 784 else \ 785 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 786 } while (0) 787 788 #define PN(x) \ 789 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 790 791 P(nr_running); 792 P(nr_switches); 793 P(nr_uninterruptible); 794 PN(next_balance); 795 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 796 PN(clock); 797 PN(clock_task); 798 #undef P 799 #undef PN 800 801 #ifdef CONFIG_SMP 802 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 803 P64(avg_idle); 804 P64(max_idle_balance_cost); 805 #undef P64 806 #endif 807 808 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 809 if (schedstat_enabled()) { 810 P(yld_count); 811 P(sched_count); 812 P(sched_goidle); 813 P(ttwu_count); 814 P(ttwu_local); 815 } 816 #undef P 817 818 print_cfs_stats(m, cpu); 819 print_rt_stats(m, cpu); 820 print_dl_stats(m, cpu); 821 822 print_rq(m, rq, cpu); 823 SEQ_printf(m, "\n"); 824 } 825 826 static const char *sched_tunable_scaling_names[] = { 827 "none", 828 "logarithmic", 829 "linear" 830 }; 831 832 static void sched_debug_header(struct seq_file *m) 833 { 834 u64 ktime, sched_clk, cpu_clk; 835 unsigned long flags; 836 837 local_irq_save(flags); 838 ktime = ktime_to_ns(ktime_get()); 839 sched_clk = sched_clock(); 840 cpu_clk = local_clock(); 841 local_irq_restore(flags); 842 843 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 844 init_utsname()->release, 845 (int)strcspn(init_utsname()->version, " "), 846 init_utsname()->version); 847 848 #define P(x) \ 849 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 850 #define PN(x) \ 851 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 852 PN(ktime); 853 PN(sched_clk); 854 PN(cpu_clk); 855 P(jiffies); 856 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 857 P(sched_clock_stable()); 858 #endif 859 #undef PN 860 #undef P 861 862 SEQ_printf(m, "\n"); 863 SEQ_printf(m, "sysctl_sched\n"); 864 865 #define P(x) \ 866 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 867 #define PN(x) \ 868 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 869 PN(sysctl_sched_latency); 870 PN(sysctl_sched_min_granularity); 871 PN(sysctl_sched_idle_min_granularity); 872 PN(sysctl_sched_wakeup_granularity); 873 P(sysctl_sched_child_runs_first); 874 P(sysctl_sched_features); 875 #undef PN 876 #undef P 877 878 SEQ_printf(m, " .%-40s: %d (%s)\n", 879 "sysctl_sched_tunable_scaling", 880 sysctl_sched_tunable_scaling, 881 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 882 SEQ_printf(m, "\n"); 883 } 884 885 static int sched_debug_show(struct seq_file *m, void *v) 886 { 887 int cpu = (unsigned long)(v - 2); 888 889 if (cpu != -1) 890 print_cpu(m, cpu); 891 else 892 sched_debug_header(m); 893 894 return 0; 895 } 896 897 void sysrq_sched_debug_show(void) 898 { 899 int cpu; 900 901 sched_debug_header(NULL); 902 for_each_online_cpu(cpu) { 903 /* 904 * Need to reset softlockup watchdogs on all CPUs, because 905 * another CPU might be blocked waiting for us to process 906 * an IPI or stop_machine. 907 */ 908 touch_nmi_watchdog(); 909 touch_all_softlockup_watchdogs(); 910 print_cpu(NULL, cpu); 911 } 912 } 913 914 /* 915 * This iterator needs some explanation. 916 * It returns 1 for the header position. 917 * This means 2 is CPU 0. 918 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 919 * to use cpumask_* to iterate over the CPUs. 920 */ 921 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 922 { 923 unsigned long n = *offset; 924 925 if (n == 0) 926 return (void *) 1; 927 928 n--; 929 930 if (n > 0) 931 n = cpumask_next(n - 1, cpu_online_mask); 932 else 933 n = cpumask_first(cpu_online_mask); 934 935 *offset = n + 1; 936 937 if (n < nr_cpu_ids) 938 return (void *)(unsigned long)(n + 2); 939 940 return NULL; 941 } 942 943 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 944 { 945 (*offset)++; 946 return sched_debug_start(file, offset); 947 } 948 949 static void sched_debug_stop(struct seq_file *file, void *data) 950 { 951 } 952 953 static const struct seq_operations sched_debug_sops = { 954 .start = sched_debug_start, 955 .next = sched_debug_next, 956 .stop = sched_debug_stop, 957 .show = sched_debug_show, 958 }; 959 960 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 961 #define __P(F) __PS(#F, F) 962 #define P(F) __PS(#F, p->F) 963 #define PM(F, M) __PS(#F, p->F & (M)) 964 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 965 #define __PN(F) __PSN(#F, F) 966 #define PN(F) __PSN(#F, p->F) 967 968 969 #ifdef CONFIG_NUMA_BALANCING 970 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 971 unsigned long tpf, unsigned long gsf, unsigned long gpf) 972 { 973 SEQ_printf(m, "numa_faults node=%d ", node); 974 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 975 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 976 } 977 #endif 978 979 980 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 981 { 982 #ifdef CONFIG_NUMA_BALANCING 983 if (p->mm) 984 P(mm->numa_scan_seq); 985 986 P(numa_pages_migrated); 987 P(numa_preferred_nid); 988 P(total_numa_faults); 989 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 990 task_node(p), task_numa_group_id(p)); 991 show_numa_stats(p, m); 992 #endif 993 } 994 995 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 996 struct seq_file *m) 997 { 998 unsigned long nr_switches; 999 1000 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 1001 get_nr_threads(p)); 1002 SEQ_printf(m, 1003 "---------------------------------------------------------" 1004 "----------\n"); 1005 1006 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F)) 1007 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F)) 1008 1009 PN(se.exec_start); 1010 PN(se.vruntime); 1011 PN(se.sum_exec_runtime); 1012 1013 nr_switches = p->nvcsw + p->nivcsw; 1014 1015 P(se.nr_migrations); 1016 1017 if (schedstat_enabled()) { 1018 u64 avg_atom, avg_per_cpu; 1019 1020 PN_SCHEDSTAT(sum_sleep_runtime); 1021 PN_SCHEDSTAT(sum_block_runtime); 1022 PN_SCHEDSTAT(wait_start); 1023 PN_SCHEDSTAT(sleep_start); 1024 PN_SCHEDSTAT(block_start); 1025 PN_SCHEDSTAT(sleep_max); 1026 PN_SCHEDSTAT(block_max); 1027 PN_SCHEDSTAT(exec_max); 1028 PN_SCHEDSTAT(slice_max); 1029 PN_SCHEDSTAT(wait_max); 1030 PN_SCHEDSTAT(wait_sum); 1031 P_SCHEDSTAT(wait_count); 1032 PN_SCHEDSTAT(iowait_sum); 1033 P_SCHEDSTAT(iowait_count); 1034 P_SCHEDSTAT(nr_migrations_cold); 1035 P_SCHEDSTAT(nr_failed_migrations_affine); 1036 P_SCHEDSTAT(nr_failed_migrations_running); 1037 P_SCHEDSTAT(nr_failed_migrations_hot); 1038 P_SCHEDSTAT(nr_forced_migrations); 1039 P_SCHEDSTAT(nr_wakeups); 1040 P_SCHEDSTAT(nr_wakeups_sync); 1041 P_SCHEDSTAT(nr_wakeups_migrate); 1042 P_SCHEDSTAT(nr_wakeups_local); 1043 P_SCHEDSTAT(nr_wakeups_remote); 1044 P_SCHEDSTAT(nr_wakeups_affine); 1045 P_SCHEDSTAT(nr_wakeups_affine_attempts); 1046 P_SCHEDSTAT(nr_wakeups_passive); 1047 P_SCHEDSTAT(nr_wakeups_idle); 1048 1049 avg_atom = p->se.sum_exec_runtime; 1050 if (nr_switches) 1051 avg_atom = div64_ul(avg_atom, nr_switches); 1052 else 1053 avg_atom = -1LL; 1054 1055 avg_per_cpu = p->se.sum_exec_runtime; 1056 if (p->se.nr_migrations) { 1057 avg_per_cpu = div64_u64(avg_per_cpu, 1058 p->se.nr_migrations); 1059 } else { 1060 avg_per_cpu = -1LL; 1061 } 1062 1063 __PN(avg_atom); 1064 __PN(avg_per_cpu); 1065 1066 #ifdef CONFIG_SCHED_CORE 1067 PN_SCHEDSTAT(core_forceidle_sum); 1068 #endif 1069 } 1070 1071 __P(nr_switches); 1072 __PS("nr_voluntary_switches", p->nvcsw); 1073 __PS("nr_involuntary_switches", p->nivcsw); 1074 1075 P(se.load.weight); 1076 #ifdef CONFIG_SMP 1077 P(se.avg.load_sum); 1078 P(se.avg.runnable_sum); 1079 P(se.avg.util_sum); 1080 P(se.avg.load_avg); 1081 P(se.avg.runnable_avg); 1082 P(se.avg.util_avg); 1083 P(se.avg.last_update_time); 1084 P(se.avg.util_est.ewma); 1085 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED); 1086 #endif 1087 #ifdef CONFIG_UCLAMP_TASK 1088 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1089 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1090 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1091 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1092 #endif 1093 P(policy); 1094 P(prio); 1095 if (task_has_dl_policy(p)) { 1096 P(dl.runtime); 1097 P(dl.deadline); 1098 } 1099 #undef PN_SCHEDSTAT 1100 #undef P_SCHEDSTAT 1101 1102 { 1103 unsigned int this_cpu = raw_smp_processor_id(); 1104 u64 t0, t1; 1105 1106 t0 = cpu_clock(this_cpu); 1107 t1 = cpu_clock(this_cpu); 1108 __PS("clock-delta", t1-t0); 1109 } 1110 1111 sched_show_numa(p, m); 1112 } 1113 1114 void proc_sched_set_task(struct task_struct *p) 1115 { 1116 #ifdef CONFIG_SCHEDSTATS 1117 memset(&p->stats, 0, sizeof(p->stats)); 1118 #endif 1119 } 1120 1121 void resched_latency_warn(int cpu, u64 latency) 1122 { 1123 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); 1124 1125 WARN(__ratelimit(&latency_check_ratelimit), 1126 "sched: CPU %d need_resched set for > %llu ns (%d ticks) " 1127 "without schedule\n", 1128 cpu, latency, cpu_rq(cpu)->ticks_without_resched); 1129 } 1130