1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 #ifdef smp_mb__before_atomic 94 void __smp_mb__before_atomic(void) 95 { 96 smp_mb__before_atomic(); 97 } 98 EXPORT_SYMBOL(__smp_mb__before_atomic); 99 #endif 100 101 #ifdef smp_mb__after_atomic 102 void __smp_mb__after_atomic(void) 103 { 104 smp_mb__after_atomic(); 105 } 106 EXPORT_SYMBOL(__smp_mb__after_atomic); 107 #endif 108 109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 110 { 111 unsigned long delta; 112 ktime_t soft, hard, now; 113 114 for (;;) { 115 if (hrtimer_active(period_timer)) 116 break; 117 118 now = hrtimer_cb_get_time(period_timer); 119 hrtimer_forward(period_timer, now, period); 120 121 soft = hrtimer_get_softexpires(period_timer); 122 hard = hrtimer_get_expires(period_timer); 123 delta = ktime_to_ns(ktime_sub(hard, soft)); 124 __hrtimer_start_range_ns(period_timer, soft, delta, 125 HRTIMER_MODE_ABS_PINNED, 0); 126 } 127 } 128 129 DEFINE_MUTEX(sched_domains_mutex); 130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 131 132 static void update_rq_clock_task(struct rq *rq, s64 delta); 133 134 void update_rq_clock(struct rq *rq) 135 { 136 s64 delta; 137 138 if (rq->skip_clock_update > 0) 139 return; 140 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 142 rq->clock += delta; 143 update_rq_clock_task(rq, delta); 144 } 145 146 /* 147 * Debugging: various feature bits 148 */ 149 150 #define SCHED_FEAT(name, enabled) \ 151 (1UL << __SCHED_FEAT_##name) * enabled | 152 153 const_debug unsigned int sysctl_sched_features = 154 #include "features.h" 155 0; 156 157 #undef SCHED_FEAT 158 159 #ifdef CONFIG_SCHED_DEBUG 160 #define SCHED_FEAT(name, enabled) \ 161 #name , 162 163 static const char * const sched_feat_names[] = { 164 #include "features.h" 165 }; 166 167 #undef SCHED_FEAT 168 169 static int sched_feat_show(struct seq_file *m, void *v) 170 { 171 int i; 172 173 for (i = 0; i < __SCHED_FEAT_NR; i++) { 174 if (!(sysctl_sched_features & (1UL << i))) 175 seq_puts(m, "NO_"); 176 seq_printf(m, "%s ", sched_feat_names[i]); 177 } 178 seq_puts(m, "\n"); 179 180 return 0; 181 } 182 183 #ifdef HAVE_JUMP_LABEL 184 185 #define jump_label_key__true STATIC_KEY_INIT_TRUE 186 #define jump_label_key__false STATIC_KEY_INIT_FALSE 187 188 #define SCHED_FEAT(name, enabled) \ 189 jump_label_key__##enabled , 190 191 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 192 #include "features.h" 193 }; 194 195 #undef SCHED_FEAT 196 197 static void sched_feat_disable(int i) 198 { 199 if (static_key_enabled(&sched_feat_keys[i])) 200 static_key_slow_dec(&sched_feat_keys[i]); 201 } 202 203 static void sched_feat_enable(int i) 204 { 205 if (!static_key_enabled(&sched_feat_keys[i])) 206 static_key_slow_inc(&sched_feat_keys[i]); 207 } 208 #else 209 static void sched_feat_disable(int i) { }; 210 static void sched_feat_enable(int i) { }; 211 #endif /* HAVE_JUMP_LABEL */ 212 213 static int sched_feat_set(char *cmp) 214 { 215 int i; 216 int neg = 0; 217 218 if (strncmp(cmp, "NO_", 3) == 0) { 219 neg = 1; 220 cmp += 3; 221 } 222 223 for (i = 0; i < __SCHED_FEAT_NR; i++) { 224 if (strcmp(cmp, sched_feat_names[i]) == 0) { 225 if (neg) { 226 sysctl_sched_features &= ~(1UL << i); 227 sched_feat_disable(i); 228 } else { 229 sysctl_sched_features |= (1UL << i); 230 sched_feat_enable(i); 231 } 232 break; 233 } 234 } 235 236 return i; 237 } 238 239 static ssize_t 240 sched_feat_write(struct file *filp, const char __user *ubuf, 241 size_t cnt, loff_t *ppos) 242 { 243 char buf[64]; 244 char *cmp; 245 int i; 246 247 if (cnt > 63) 248 cnt = 63; 249 250 if (copy_from_user(&buf, ubuf, cnt)) 251 return -EFAULT; 252 253 buf[cnt] = 0; 254 cmp = strstrip(buf); 255 256 i = sched_feat_set(cmp); 257 if (i == __SCHED_FEAT_NR) 258 return -EINVAL; 259 260 *ppos += cnt; 261 262 return cnt; 263 } 264 265 static int sched_feat_open(struct inode *inode, struct file *filp) 266 { 267 return single_open(filp, sched_feat_show, NULL); 268 } 269 270 static const struct file_operations sched_feat_fops = { 271 .open = sched_feat_open, 272 .write = sched_feat_write, 273 .read = seq_read, 274 .llseek = seq_lseek, 275 .release = single_release, 276 }; 277 278 static __init int sched_init_debug(void) 279 { 280 debugfs_create_file("sched_features", 0644, NULL, NULL, 281 &sched_feat_fops); 282 283 return 0; 284 } 285 late_initcall(sched_init_debug); 286 #endif /* CONFIG_SCHED_DEBUG */ 287 288 /* 289 * Number of tasks to iterate in a single balance run. 290 * Limited because this is done with IRQs disabled. 291 */ 292 const_debug unsigned int sysctl_sched_nr_migrate = 32; 293 294 /* 295 * period over which we average the RT time consumption, measured 296 * in ms. 297 * 298 * default: 1s 299 */ 300 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 301 302 /* 303 * period over which we measure -rt task cpu usage in us. 304 * default: 1s 305 */ 306 unsigned int sysctl_sched_rt_period = 1000000; 307 308 __read_mostly int scheduler_running; 309 310 /* 311 * part of the period that we allow rt tasks to run in us. 312 * default: 0.95s 313 */ 314 int sysctl_sched_rt_runtime = 950000; 315 316 /* 317 * __task_rq_lock - lock the rq @p resides on. 318 */ 319 static inline struct rq *__task_rq_lock(struct task_struct *p) 320 __acquires(rq->lock) 321 { 322 struct rq *rq; 323 324 lockdep_assert_held(&p->pi_lock); 325 326 for (;;) { 327 rq = task_rq(p); 328 raw_spin_lock(&rq->lock); 329 if (likely(rq == task_rq(p))) 330 return rq; 331 raw_spin_unlock(&rq->lock); 332 } 333 } 334 335 /* 336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 337 */ 338 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 339 __acquires(p->pi_lock) 340 __acquires(rq->lock) 341 { 342 struct rq *rq; 343 344 for (;;) { 345 raw_spin_lock_irqsave(&p->pi_lock, *flags); 346 rq = task_rq(p); 347 raw_spin_lock(&rq->lock); 348 if (likely(rq == task_rq(p))) 349 return rq; 350 raw_spin_unlock(&rq->lock); 351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 352 } 353 } 354 355 static void __task_rq_unlock(struct rq *rq) 356 __releases(rq->lock) 357 { 358 raw_spin_unlock(&rq->lock); 359 } 360 361 static inline void 362 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 363 __releases(rq->lock) 364 __releases(p->pi_lock) 365 { 366 raw_spin_unlock(&rq->lock); 367 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 368 } 369 370 /* 371 * this_rq_lock - lock this runqueue and disable interrupts. 372 */ 373 static struct rq *this_rq_lock(void) 374 __acquires(rq->lock) 375 { 376 struct rq *rq; 377 378 local_irq_disable(); 379 rq = this_rq(); 380 raw_spin_lock(&rq->lock); 381 382 return rq; 383 } 384 385 #ifdef CONFIG_SCHED_HRTICK 386 /* 387 * Use HR-timers to deliver accurate preemption points. 388 */ 389 390 static void hrtick_clear(struct rq *rq) 391 { 392 if (hrtimer_active(&rq->hrtick_timer)) 393 hrtimer_cancel(&rq->hrtick_timer); 394 } 395 396 /* 397 * High-resolution timer tick. 398 * Runs from hardirq context with interrupts disabled. 399 */ 400 static enum hrtimer_restart hrtick(struct hrtimer *timer) 401 { 402 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 403 404 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 405 406 raw_spin_lock(&rq->lock); 407 update_rq_clock(rq); 408 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 409 raw_spin_unlock(&rq->lock); 410 411 return HRTIMER_NORESTART; 412 } 413 414 #ifdef CONFIG_SMP 415 416 static int __hrtick_restart(struct rq *rq) 417 { 418 struct hrtimer *timer = &rq->hrtick_timer; 419 ktime_t time = hrtimer_get_softexpires(timer); 420 421 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 422 } 423 424 /* 425 * called from hardirq (IPI) context 426 */ 427 static void __hrtick_start(void *arg) 428 { 429 struct rq *rq = arg; 430 431 raw_spin_lock(&rq->lock); 432 __hrtick_restart(rq); 433 rq->hrtick_csd_pending = 0; 434 raw_spin_unlock(&rq->lock); 435 } 436 437 /* 438 * Called to set the hrtick timer state. 439 * 440 * called with rq->lock held and irqs disabled 441 */ 442 void hrtick_start(struct rq *rq, u64 delay) 443 { 444 struct hrtimer *timer = &rq->hrtick_timer; 445 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 446 447 hrtimer_set_expires(timer, time); 448 449 if (rq == this_rq()) { 450 __hrtick_restart(rq); 451 } else if (!rq->hrtick_csd_pending) { 452 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 453 rq->hrtick_csd_pending = 1; 454 } 455 } 456 457 static int 458 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 459 { 460 int cpu = (int)(long)hcpu; 461 462 switch (action) { 463 case CPU_UP_CANCELED: 464 case CPU_UP_CANCELED_FROZEN: 465 case CPU_DOWN_PREPARE: 466 case CPU_DOWN_PREPARE_FROZEN: 467 case CPU_DEAD: 468 case CPU_DEAD_FROZEN: 469 hrtick_clear(cpu_rq(cpu)); 470 return NOTIFY_OK; 471 } 472 473 return NOTIFY_DONE; 474 } 475 476 static __init void init_hrtick(void) 477 { 478 hotcpu_notifier(hotplug_hrtick, 0); 479 } 480 #else 481 /* 482 * Called to set the hrtick timer state. 483 * 484 * called with rq->lock held and irqs disabled 485 */ 486 void hrtick_start(struct rq *rq, u64 delay) 487 { 488 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 489 HRTIMER_MODE_REL_PINNED, 0); 490 } 491 492 static inline void init_hrtick(void) 493 { 494 } 495 #endif /* CONFIG_SMP */ 496 497 static void init_rq_hrtick(struct rq *rq) 498 { 499 #ifdef CONFIG_SMP 500 rq->hrtick_csd_pending = 0; 501 502 rq->hrtick_csd.flags = 0; 503 rq->hrtick_csd.func = __hrtick_start; 504 rq->hrtick_csd.info = rq; 505 #endif 506 507 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 508 rq->hrtick_timer.function = hrtick; 509 } 510 #else /* CONFIG_SCHED_HRTICK */ 511 static inline void hrtick_clear(struct rq *rq) 512 { 513 } 514 515 static inline void init_rq_hrtick(struct rq *rq) 516 { 517 } 518 519 static inline void init_hrtick(void) 520 { 521 } 522 #endif /* CONFIG_SCHED_HRTICK */ 523 524 /* 525 * resched_task - mark a task 'to be rescheduled now'. 526 * 527 * On UP this means the setting of the need_resched flag, on SMP it 528 * might also involve a cross-CPU call to trigger the scheduler on 529 * the target CPU. 530 */ 531 void resched_task(struct task_struct *p) 532 { 533 int cpu; 534 535 lockdep_assert_held(&task_rq(p)->lock); 536 537 if (test_tsk_need_resched(p)) 538 return; 539 540 set_tsk_need_resched(p); 541 542 cpu = task_cpu(p); 543 if (cpu == smp_processor_id()) { 544 set_preempt_need_resched(); 545 return; 546 } 547 548 /* NEED_RESCHED must be visible before we test polling */ 549 smp_mb(); 550 if (!tsk_is_polling(p)) 551 smp_send_reschedule(cpu); 552 } 553 554 void resched_cpu(int cpu) 555 { 556 struct rq *rq = cpu_rq(cpu); 557 unsigned long flags; 558 559 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 560 return; 561 resched_task(cpu_curr(cpu)); 562 raw_spin_unlock_irqrestore(&rq->lock, flags); 563 } 564 565 #ifdef CONFIG_SMP 566 #ifdef CONFIG_NO_HZ_COMMON 567 /* 568 * In the semi idle case, use the nearest busy cpu for migrating timers 569 * from an idle cpu. This is good for power-savings. 570 * 571 * We don't do similar optimization for completely idle system, as 572 * selecting an idle cpu will add more delays to the timers than intended 573 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 574 */ 575 int get_nohz_timer_target(int pinned) 576 { 577 int cpu = smp_processor_id(); 578 int i; 579 struct sched_domain *sd; 580 581 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 582 return cpu; 583 584 rcu_read_lock(); 585 for_each_domain(cpu, sd) { 586 for_each_cpu(i, sched_domain_span(sd)) { 587 if (!idle_cpu(i)) { 588 cpu = i; 589 goto unlock; 590 } 591 } 592 } 593 unlock: 594 rcu_read_unlock(); 595 return cpu; 596 } 597 /* 598 * When add_timer_on() enqueues a timer into the timer wheel of an 599 * idle CPU then this timer might expire before the next timer event 600 * which is scheduled to wake up that CPU. In case of a completely 601 * idle system the next event might even be infinite time into the 602 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 603 * leaves the inner idle loop so the newly added timer is taken into 604 * account when the CPU goes back to idle and evaluates the timer 605 * wheel for the next timer event. 606 */ 607 static void wake_up_idle_cpu(int cpu) 608 { 609 struct rq *rq = cpu_rq(cpu); 610 611 if (cpu == smp_processor_id()) 612 return; 613 614 /* 615 * This is safe, as this function is called with the timer 616 * wheel base lock of (cpu) held. When the CPU is on the way 617 * to idle and has not yet set rq->curr to idle then it will 618 * be serialized on the timer wheel base lock and take the new 619 * timer into account automatically. 620 */ 621 if (rq->curr != rq->idle) 622 return; 623 624 /* 625 * We can set TIF_RESCHED on the idle task of the other CPU 626 * lockless. The worst case is that the other CPU runs the 627 * idle task through an additional NOOP schedule() 628 */ 629 set_tsk_need_resched(rq->idle); 630 631 /* NEED_RESCHED must be visible before we test polling */ 632 smp_mb(); 633 if (!tsk_is_polling(rq->idle)) 634 smp_send_reschedule(cpu); 635 } 636 637 static bool wake_up_full_nohz_cpu(int cpu) 638 { 639 if (tick_nohz_full_cpu(cpu)) { 640 if (cpu != smp_processor_id() || 641 tick_nohz_tick_stopped()) 642 smp_send_reschedule(cpu); 643 return true; 644 } 645 646 return false; 647 } 648 649 void wake_up_nohz_cpu(int cpu) 650 { 651 if (!wake_up_full_nohz_cpu(cpu)) 652 wake_up_idle_cpu(cpu); 653 } 654 655 static inline bool got_nohz_idle_kick(void) 656 { 657 int cpu = smp_processor_id(); 658 659 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 660 return false; 661 662 if (idle_cpu(cpu) && !need_resched()) 663 return true; 664 665 /* 666 * We can't run Idle Load Balance on this CPU for this time so we 667 * cancel it and clear NOHZ_BALANCE_KICK 668 */ 669 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 670 return false; 671 } 672 673 #else /* CONFIG_NO_HZ_COMMON */ 674 675 static inline bool got_nohz_idle_kick(void) 676 { 677 return false; 678 } 679 680 #endif /* CONFIG_NO_HZ_COMMON */ 681 682 #ifdef CONFIG_NO_HZ_FULL 683 bool sched_can_stop_tick(void) 684 { 685 struct rq *rq; 686 687 rq = this_rq(); 688 689 /* Make sure rq->nr_running update is visible after the IPI */ 690 smp_rmb(); 691 692 /* More than one running task need preemption */ 693 if (rq->nr_running > 1) 694 return false; 695 696 return true; 697 } 698 #endif /* CONFIG_NO_HZ_FULL */ 699 700 void sched_avg_update(struct rq *rq) 701 { 702 s64 period = sched_avg_period(); 703 704 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 705 /* 706 * Inline assembly required to prevent the compiler 707 * optimising this loop into a divmod call. 708 * See __iter_div_u64_rem() for another example of this. 709 */ 710 asm("" : "+rm" (rq->age_stamp)); 711 rq->age_stamp += period; 712 rq->rt_avg /= 2; 713 } 714 } 715 716 #endif /* CONFIG_SMP */ 717 718 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 719 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 720 /* 721 * Iterate task_group tree rooted at *from, calling @down when first entering a 722 * node and @up when leaving it for the final time. 723 * 724 * Caller must hold rcu_lock or sufficient equivalent. 725 */ 726 int walk_tg_tree_from(struct task_group *from, 727 tg_visitor down, tg_visitor up, void *data) 728 { 729 struct task_group *parent, *child; 730 int ret; 731 732 parent = from; 733 734 down: 735 ret = (*down)(parent, data); 736 if (ret) 737 goto out; 738 list_for_each_entry_rcu(child, &parent->children, siblings) { 739 parent = child; 740 goto down; 741 742 up: 743 continue; 744 } 745 ret = (*up)(parent, data); 746 if (ret || parent == from) 747 goto out; 748 749 child = parent; 750 parent = parent->parent; 751 if (parent) 752 goto up; 753 out: 754 return ret; 755 } 756 757 int tg_nop(struct task_group *tg, void *data) 758 { 759 return 0; 760 } 761 #endif 762 763 static void set_load_weight(struct task_struct *p) 764 { 765 int prio = p->static_prio - MAX_RT_PRIO; 766 struct load_weight *load = &p->se.load; 767 768 /* 769 * SCHED_IDLE tasks get minimal weight: 770 */ 771 if (p->policy == SCHED_IDLE) { 772 load->weight = scale_load(WEIGHT_IDLEPRIO); 773 load->inv_weight = WMULT_IDLEPRIO; 774 return; 775 } 776 777 load->weight = scale_load(prio_to_weight[prio]); 778 load->inv_weight = prio_to_wmult[prio]; 779 } 780 781 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 782 { 783 update_rq_clock(rq); 784 sched_info_queued(rq, p); 785 p->sched_class->enqueue_task(rq, p, flags); 786 } 787 788 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 789 { 790 update_rq_clock(rq); 791 sched_info_dequeued(rq, p); 792 p->sched_class->dequeue_task(rq, p, flags); 793 } 794 795 void activate_task(struct rq *rq, struct task_struct *p, int flags) 796 { 797 if (task_contributes_to_load(p)) 798 rq->nr_uninterruptible--; 799 800 enqueue_task(rq, p, flags); 801 } 802 803 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 804 { 805 if (task_contributes_to_load(p)) 806 rq->nr_uninterruptible++; 807 808 dequeue_task(rq, p, flags); 809 } 810 811 static void update_rq_clock_task(struct rq *rq, s64 delta) 812 { 813 /* 814 * In theory, the compile should just see 0 here, and optimize out the call 815 * to sched_rt_avg_update. But I don't trust it... 816 */ 817 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 818 s64 steal = 0, irq_delta = 0; 819 #endif 820 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 821 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 822 823 /* 824 * Since irq_time is only updated on {soft,}irq_exit, we might run into 825 * this case when a previous update_rq_clock() happened inside a 826 * {soft,}irq region. 827 * 828 * When this happens, we stop ->clock_task and only update the 829 * prev_irq_time stamp to account for the part that fit, so that a next 830 * update will consume the rest. This ensures ->clock_task is 831 * monotonic. 832 * 833 * It does however cause some slight miss-attribution of {soft,}irq 834 * time, a more accurate solution would be to update the irq_time using 835 * the current rq->clock timestamp, except that would require using 836 * atomic ops. 837 */ 838 if (irq_delta > delta) 839 irq_delta = delta; 840 841 rq->prev_irq_time += irq_delta; 842 delta -= irq_delta; 843 #endif 844 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 845 if (static_key_false((¶virt_steal_rq_enabled))) { 846 steal = paravirt_steal_clock(cpu_of(rq)); 847 steal -= rq->prev_steal_time_rq; 848 849 if (unlikely(steal > delta)) 850 steal = delta; 851 852 rq->prev_steal_time_rq += steal; 853 delta -= steal; 854 } 855 #endif 856 857 rq->clock_task += delta; 858 859 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 860 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 861 sched_rt_avg_update(rq, irq_delta + steal); 862 #endif 863 } 864 865 void sched_set_stop_task(int cpu, struct task_struct *stop) 866 { 867 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 868 struct task_struct *old_stop = cpu_rq(cpu)->stop; 869 870 if (stop) { 871 /* 872 * Make it appear like a SCHED_FIFO task, its something 873 * userspace knows about and won't get confused about. 874 * 875 * Also, it will make PI more or less work without too 876 * much confusion -- but then, stop work should not 877 * rely on PI working anyway. 878 */ 879 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 880 881 stop->sched_class = &stop_sched_class; 882 } 883 884 cpu_rq(cpu)->stop = stop; 885 886 if (old_stop) { 887 /* 888 * Reset it back to a normal scheduling class so that 889 * it can die in pieces. 890 */ 891 old_stop->sched_class = &rt_sched_class; 892 } 893 } 894 895 /* 896 * __normal_prio - return the priority that is based on the static prio 897 */ 898 static inline int __normal_prio(struct task_struct *p) 899 { 900 return p->static_prio; 901 } 902 903 /* 904 * Calculate the expected normal priority: i.e. priority 905 * without taking RT-inheritance into account. Might be 906 * boosted by interactivity modifiers. Changes upon fork, 907 * setprio syscalls, and whenever the interactivity 908 * estimator recalculates. 909 */ 910 static inline int normal_prio(struct task_struct *p) 911 { 912 int prio; 913 914 if (task_has_dl_policy(p)) 915 prio = MAX_DL_PRIO-1; 916 else if (task_has_rt_policy(p)) 917 prio = MAX_RT_PRIO-1 - p->rt_priority; 918 else 919 prio = __normal_prio(p); 920 return prio; 921 } 922 923 /* 924 * Calculate the current priority, i.e. the priority 925 * taken into account by the scheduler. This value might 926 * be boosted by RT tasks, or might be boosted by 927 * interactivity modifiers. Will be RT if the task got 928 * RT-boosted. If not then it returns p->normal_prio. 929 */ 930 static int effective_prio(struct task_struct *p) 931 { 932 p->normal_prio = normal_prio(p); 933 /* 934 * If we are RT tasks or we were boosted to RT priority, 935 * keep the priority unchanged. Otherwise, update priority 936 * to the normal priority: 937 */ 938 if (!rt_prio(p->prio)) 939 return p->normal_prio; 940 return p->prio; 941 } 942 943 /** 944 * task_curr - is this task currently executing on a CPU? 945 * @p: the task in question. 946 * 947 * Return: 1 if the task is currently executing. 0 otherwise. 948 */ 949 inline int task_curr(const struct task_struct *p) 950 { 951 return cpu_curr(task_cpu(p)) == p; 952 } 953 954 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 955 const struct sched_class *prev_class, 956 int oldprio) 957 { 958 if (prev_class != p->sched_class) { 959 if (prev_class->switched_from) 960 prev_class->switched_from(rq, p); 961 p->sched_class->switched_to(rq, p); 962 } else if (oldprio != p->prio || dl_task(p)) 963 p->sched_class->prio_changed(rq, p, oldprio); 964 } 965 966 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 967 { 968 const struct sched_class *class; 969 970 if (p->sched_class == rq->curr->sched_class) { 971 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 972 } else { 973 for_each_class(class) { 974 if (class == rq->curr->sched_class) 975 break; 976 if (class == p->sched_class) { 977 resched_task(rq->curr); 978 break; 979 } 980 } 981 } 982 983 /* 984 * A queue event has occurred, and we're going to schedule. In 985 * this case, we can save a useless back to back clock update. 986 */ 987 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 988 rq->skip_clock_update = 1; 989 } 990 991 #ifdef CONFIG_SMP 992 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 993 { 994 #ifdef CONFIG_SCHED_DEBUG 995 /* 996 * We should never call set_task_cpu() on a blocked task, 997 * ttwu() will sort out the placement. 998 */ 999 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1000 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 1001 1002 #ifdef CONFIG_LOCKDEP 1003 /* 1004 * The caller should hold either p->pi_lock or rq->lock, when changing 1005 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1006 * 1007 * sched_move_task() holds both and thus holding either pins the cgroup, 1008 * see task_group(). 1009 * 1010 * Furthermore, all task_rq users should acquire both locks, see 1011 * task_rq_lock(). 1012 */ 1013 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1014 lockdep_is_held(&task_rq(p)->lock))); 1015 #endif 1016 #endif 1017 1018 trace_sched_migrate_task(p, new_cpu); 1019 1020 if (task_cpu(p) != new_cpu) { 1021 if (p->sched_class->migrate_task_rq) 1022 p->sched_class->migrate_task_rq(p, new_cpu); 1023 p->se.nr_migrations++; 1024 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1025 } 1026 1027 __set_task_cpu(p, new_cpu); 1028 } 1029 1030 static void __migrate_swap_task(struct task_struct *p, int cpu) 1031 { 1032 if (p->on_rq) { 1033 struct rq *src_rq, *dst_rq; 1034 1035 src_rq = task_rq(p); 1036 dst_rq = cpu_rq(cpu); 1037 1038 deactivate_task(src_rq, p, 0); 1039 set_task_cpu(p, cpu); 1040 activate_task(dst_rq, p, 0); 1041 check_preempt_curr(dst_rq, p, 0); 1042 } else { 1043 /* 1044 * Task isn't running anymore; make it appear like we migrated 1045 * it before it went to sleep. This means on wakeup we make the 1046 * previous cpu our targer instead of where it really is. 1047 */ 1048 p->wake_cpu = cpu; 1049 } 1050 } 1051 1052 struct migration_swap_arg { 1053 struct task_struct *src_task, *dst_task; 1054 int src_cpu, dst_cpu; 1055 }; 1056 1057 static int migrate_swap_stop(void *data) 1058 { 1059 struct migration_swap_arg *arg = data; 1060 struct rq *src_rq, *dst_rq; 1061 int ret = -EAGAIN; 1062 1063 src_rq = cpu_rq(arg->src_cpu); 1064 dst_rq = cpu_rq(arg->dst_cpu); 1065 1066 double_raw_lock(&arg->src_task->pi_lock, 1067 &arg->dst_task->pi_lock); 1068 double_rq_lock(src_rq, dst_rq); 1069 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1070 goto unlock; 1071 1072 if (task_cpu(arg->src_task) != arg->src_cpu) 1073 goto unlock; 1074 1075 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1076 goto unlock; 1077 1078 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1079 goto unlock; 1080 1081 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1082 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1083 1084 ret = 0; 1085 1086 unlock: 1087 double_rq_unlock(src_rq, dst_rq); 1088 raw_spin_unlock(&arg->dst_task->pi_lock); 1089 raw_spin_unlock(&arg->src_task->pi_lock); 1090 1091 return ret; 1092 } 1093 1094 /* 1095 * Cross migrate two tasks 1096 */ 1097 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1098 { 1099 struct migration_swap_arg arg; 1100 int ret = -EINVAL; 1101 1102 arg = (struct migration_swap_arg){ 1103 .src_task = cur, 1104 .src_cpu = task_cpu(cur), 1105 .dst_task = p, 1106 .dst_cpu = task_cpu(p), 1107 }; 1108 1109 if (arg.src_cpu == arg.dst_cpu) 1110 goto out; 1111 1112 /* 1113 * These three tests are all lockless; this is OK since all of them 1114 * will be re-checked with proper locks held further down the line. 1115 */ 1116 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1117 goto out; 1118 1119 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1120 goto out; 1121 1122 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1123 goto out; 1124 1125 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1126 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1127 1128 out: 1129 return ret; 1130 } 1131 1132 struct migration_arg { 1133 struct task_struct *task; 1134 int dest_cpu; 1135 }; 1136 1137 static int migration_cpu_stop(void *data); 1138 1139 /* 1140 * wait_task_inactive - wait for a thread to unschedule. 1141 * 1142 * If @match_state is nonzero, it's the @p->state value just checked and 1143 * not expected to change. If it changes, i.e. @p might have woken up, 1144 * then return zero. When we succeed in waiting for @p to be off its CPU, 1145 * we return a positive number (its total switch count). If a second call 1146 * a short while later returns the same number, the caller can be sure that 1147 * @p has remained unscheduled the whole time. 1148 * 1149 * The caller must ensure that the task *will* unschedule sometime soon, 1150 * else this function might spin for a *long* time. This function can't 1151 * be called with interrupts off, or it may introduce deadlock with 1152 * smp_call_function() if an IPI is sent by the same process we are 1153 * waiting to become inactive. 1154 */ 1155 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1156 { 1157 unsigned long flags; 1158 int running, on_rq; 1159 unsigned long ncsw; 1160 struct rq *rq; 1161 1162 for (;;) { 1163 /* 1164 * We do the initial early heuristics without holding 1165 * any task-queue locks at all. We'll only try to get 1166 * the runqueue lock when things look like they will 1167 * work out! 1168 */ 1169 rq = task_rq(p); 1170 1171 /* 1172 * If the task is actively running on another CPU 1173 * still, just relax and busy-wait without holding 1174 * any locks. 1175 * 1176 * NOTE! Since we don't hold any locks, it's not 1177 * even sure that "rq" stays as the right runqueue! 1178 * But we don't care, since "task_running()" will 1179 * return false if the runqueue has changed and p 1180 * is actually now running somewhere else! 1181 */ 1182 while (task_running(rq, p)) { 1183 if (match_state && unlikely(p->state != match_state)) 1184 return 0; 1185 cpu_relax(); 1186 } 1187 1188 /* 1189 * Ok, time to look more closely! We need the rq 1190 * lock now, to be *sure*. If we're wrong, we'll 1191 * just go back and repeat. 1192 */ 1193 rq = task_rq_lock(p, &flags); 1194 trace_sched_wait_task(p); 1195 running = task_running(rq, p); 1196 on_rq = p->on_rq; 1197 ncsw = 0; 1198 if (!match_state || p->state == match_state) 1199 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1200 task_rq_unlock(rq, p, &flags); 1201 1202 /* 1203 * If it changed from the expected state, bail out now. 1204 */ 1205 if (unlikely(!ncsw)) 1206 break; 1207 1208 /* 1209 * Was it really running after all now that we 1210 * checked with the proper locks actually held? 1211 * 1212 * Oops. Go back and try again.. 1213 */ 1214 if (unlikely(running)) { 1215 cpu_relax(); 1216 continue; 1217 } 1218 1219 /* 1220 * It's not enough that it's not actively running, 1221 * it must be off the runqueue _entirely_, and not 1222 * preempted! 1223 * 1224 * So if it was still runnable (but just not actively 1225 * running right now), it's preempted, and we should 1226 * yield - it could be a while. 1227 */ 1228 if (unlikely(on_rq)) { 1229 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1230 1231 set_current_state(TASK_UNINTERRUPTIBLE); 1232 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1233 continue; 1234 } 1235 1236 /* 1237 * Ahh, all good. It wasn't running, and it wasn't 1238 * runnable, which means that it will never become 1239 * running in the future either. We're all done! 1240 */ 1241 break; 1242 } 1243 1244 return ncsw; 1245 } 1246 1247 /*** 1248 * kick_process - kick a running thread to enter/exit the kernel 1249 * @p: the to-be-kicked thread 1250 * 1251 * Cause a process which is running on another CPU to enter 1252 * kernel-mode, without any delay. (to get signals handled.) 1253 * 1254 * NOTE: this function doesn't have to take the runqueue lock, 1255 * because all it wants to ensure is that the remote task enters 1256 * the kernel. If the IPI races and the task has been migrated 1257 * to another CPU then no harm is done and the purpose has been 1258 * achieved as well. 1259 */ 1260 void kick_process(struct task_struct *p) 1261 { 1262 int cpu; 1263 1264 preempt_disable(); 1265 cpu = task_cpu(p); 1266 if ((cpu != smp_processor_id()) && task_curr(p)) 1267 smp_send_reschedule(cpu); 1268 preempt_enable(); 1269 } 1270 EXPORT_SYMBOL_GPL(kick_process); 1271 #endif /* CONFIG_SMP */ 1272 1273 #ifdef CONFIG_SMP 1274 /* 1275 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1276 */ 1277 static int select_fallback_rq(int cpu, struct task_struct *p) 1278 { 1279 int nid = cpu_to_node(cpu); 1280 const struct cpumask *nodemask = NULL; 1281 enum { cpuset, possible, fail } state = cpuset; 1282 int dest_cpu; 1283 1284 /* 1285 * If the node that the cpu is on has been offlined, cpu_to_node() 1286 * will return -1. There is no cpu on the node, and we should 1287 * select the cpu on the other node. 1288 */ 1289 if (nid != -1) { 1290 nodemask = cpumask_of_node(nid); 1291 1292 /* Look for allowed, online CPU in same node. */ 1293 for_each_cpu(dest_cpu, nodemask) { 1294 if (!cpu_online(dest_cpu)) 1295 continue; 1296 if (!cpu_active(dest_cpu)) 1297 continue; 1298 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1299 return dest_cpu; 1300 } 1301 } 1302 1303 for (;;) { 1304 /* Any allowed, online CPU? */ 1305 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1306 if (!cpu_online(dest_cpu)) 1307 continue; 1308 if (!cpu_active(dest_cpu)) 1309 continue; 1310 goto out; 1311 } 1312 1313 switch (state) { 1314 case cpuset: 1315 /* No more Mr. Nice Guy. */ 1316 cpuset_cpus_allowed_fallback(p); 1317 state = possible; 1318 break; 1319 1320 case possible: 1321 do_set_cpus_allowed(p, cpu_possible_mask); 1322 state = fail; 1323 break; 1324 1325 case fail: 1326 BUG(); 1327 break; 1328 } 1329 } 1330 1331 out: 1332 if (state != cpuset) { 1333 /* 1334 * Don't tell them about moving exiting tasks or 1335 * kernel threads (both mm NULL), since they never 1336 * leave kernel. 1337 */ 1338 if (p->mm && printk_ratelimit()) { 1339 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1340 task_pid_nr(p), p->comm, cpu); 1341 } 1342 } 1343 1344 return dest_cpu; 1345 } 1346 1347 /* 1348 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1349 */ 1350 static inline 1351 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1352 { 1353 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1354 1355 /* 1356 * In order not to call set_task_cpu() on a blocking task we need 1357 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1358 * cpu. 1359 * 1360 * Since this is common to all placement strategies, this lives here. 1361 * 1362 * [ this allows ->select_task() to simply return task_cpu(p) and 1363 * not worry about this generic constraint ] 1364 */ 1365 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1366 !cpu_online(cpu))) 1367 cpu = select_fallback_rq(task_cpu(p), p); 1368 1369 return cpu; 1370 } 1371 1372 static void update_avg(u64 *avg, u64 sample) 1373 { 1374 s64 diff = sample - *avg; 1375 *avg += diff >> 3; 1376 } 1377 #endif 1378 1379 static void 1380 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1381 { 1382 #ifdef CONFIG_SCHEDSTATS 1383 struct rq *rq = this_rq(); 1384 1385 #ifdef CONFIG_SMP 1386 int this_cpu = smp_processor_id(); 1387 1388 if (cpu == this_cpu) { 1389 schedstat_inc(rq, ttwu_local); 1390 schedstat_inc(p, se.statistics.nr_wakeups_local); 1391 } else { 1392 struct sched_domain *sd; 1393 1394 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1395 rcu_read_lock(); 1396 for_each_domain(this_cpu, sd) { 1397 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1398 schedstat_inc(sd, ttwu_wake_remote); 1399 break; 1400 } 1401 } 1402 rcu_read_unlock(); 1403 } 1404 1405 if (wake_flags & WF_MIGRATED) 1406 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1407 1408 #endif /* CONFIG_SMP */ 1409 1410 schedstat_inc(rq, ttwu_count); 1411 schedstat_inc(p, se.statistics.nr_wakeups); 1412 1413 if (wake_flags & WF_SYNC) 1414 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1415 1416 #endif /* CONFIG_SCHEDSTATS */ 1417 } 1418 1419 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1420 { 1421 activate_task(rq, p, en_flags); 1422 p->on_rq = 1; 1423 1424 /* if a worker is waking up, notify workqueue */ 1425 if (p->flags & PF_WQ_WORKER) 1426 wq_worker_waking_up(p, cpu_of(rq)); 1427 } 1428 1429 /* 1430 * Mark the task runnable and perform wakeup-preemption. 1431 */ 1432 static void 1433 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1434 { 1435 check_preempt_curr(rq, p, wake_flags); 1436 trace_sched_wakeup(p, true); 1437 1438 p->state = TASK_RUNNING; 1439 #ifdef CONFIG_SMP 1440 if (p->sched_class->task_woken) 1441 p->sched_class->task_woken(rq, p); 1442 1443 if (rq->idle_stamp) { 1444 u64 delta = rq_clock(rq) - rq->idle_stamp; 1445 u64 max = 2*rq->max_idle_balance_cost; 1446 1447 update_avg(&rq->avg_idle, delta); 1448 1449 if (rq->avg_idle > max) 1450 rq->avg_idle = max; 1451 1452 rq->idle_stamp = 0; 1453 } 1454 #endif 1455 } 1456 1457 static void 1458 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1459 { 1460 #ifdef CONFIG_SMP 1461 if (p->sched_contributes_to_load) 1462 rq->nr_uninterruptible--; 1463 #endif 1464 1465 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1466 ttwu_do_wakeup(rq, p, wake_flags); 1467 } 1468 1469 /* 1470 * Called in case the task @p isn't fully descheduled from its runqueue, 1471 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1472 * since all we need to do is flip p->state to TASK_RUNNING, since 1473 * the task is still ->on_rq. 1474 */ 1475 static int ttwu_remote(struct task_struct *p, int wake_flags) 1476 { 1477 struct rq *rq; 1478 int ret = 0; 1479 1480 rq = __task_rq_lock(p); 1481 if (p->on_rq) { 1482 /* check_preempt_curr() may use rq clock */ 1483 update_rq_clock(rq); 1484 ttwu_do_wakeup(rq, p, wake_flags); 1485 ret = 1; 1486 } 1487 __task_rq_unlock(rq); 1488 1489 return ret; 1490 } 1491 1492 #ifdef CONFIG_SMP 1493 static void sched_ttwu_pending(void) 1494 { 1495 struct rq *rq = this_rq(); 1496 struct llist_node *llist = llist_del_all(&rq->wake_list); 1497 struct task_struct *p; 1498 1499 raw_spin_lock(&rq->lock); 1500 1501 while (llist) { 1502 p = llist_entry(llist, struct task_struct, wake_entry); 1503 llist = llist_next(llist); 1504 ttwu_do_activate(rq, p, 0); 1505 } 1506 1507 raw_spin_unlock(&rq->lock); 1508 } 1509 1510 void scheduler_ipi(void) 1511 { 1512 /* 1513 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1514 * TIF_NEED_RESCHED remotely (for the first time) will also send 1515 * this IPI. 1516 */ 1517 preempt_fold_need_resched(); 1518 1519 if (llist_empty(&this_rq()->wake_list) 1520 && !tick_nohz_full_cpu(smp_processor_id()) 1521 && !got_nohz_idle_kick()) 1522 return; 1523 1524 /* 1525 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1526 * traditionally all their work was done from the interrupt return 1527 * path. Now that we actually do some work, we need to make sure 1528 * we do call them. 1529 * 1530 * Some archs already do call them, luckily irq_enter/exit nest 1531 * properly. 1532 * 1533 * Arguably we should visit all archs and update all handlers, 1534 * however a fair share of IPIs are still resched only so this would 1535 * somewhat pessimize the simple resched case. 1536 */ 1537 irq_enter(); 1538 tick_nohz_full_check(); 1539 sched_ttwu_pending(); 1540 1541 /* 1542 * Check if someone kicked us for doing the nohz idle load balance. 1543 */ 1544 if (unlikely(got_nohz_idle_kick())) { 1545 this_rq()->idle_balance = 1; 1546 raise_softirq_irqoff(SCHED_SOFTIRQ); 1547 } 1548 irq_exit(); 1549 } 1550 1551 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1552 { 1553 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1554 smp_send_reschedule(cpu); 1555 } 1556 1557 bool cpus_share_cache(int this_cpu, int that_cpu) 1558 { 1559 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1560 } 1561 #endif /* CONFIG_SMP */ 1562 1563 static void ttwu_queue(struct task_struct *p, int cpu) 1564 { 1565 struct rq *rq = cpu_rq(cpu); 1566 1567 #if defined(CONFIG_SMP) 1568 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1569 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1570 ttwu_queue_remote(p, cpu); 1571 return; 1572 } 1573 #endif 1574 1575 raw_spin_lock(&rq->lock); 1576 ttwu_do_activate(rq, p, 0); 1577 raw_spin_unlock(&rq->lock); 1578 } 1579 1580 /** 1581 * try_to_wake_up - wake up a thread 1582 * @p: the thread to be awakened 1583 * @state: the mask of task states that can be woken 1584 * @wake_flags: wake modifier flags (WF_*) 1585 * 1586 * Put it on the run-queue if it's not already there. The "current" 1587 * thread is always on the run-queue (except when the actual 1588 * re-schedule is in progress), and as such you're allowed to do 1589 * the simpler "current->state = TASK_RUNNING" to mark yourself 1590 * runnable without the overhead of this. 1591 * 1592 * Return: %true if @p was woken up, %false if it was already running. 1593 * or @state didn't match @p's state. 1594 */ 1595 static int 1596 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1597 { 1598 unsigned long flags; 1599 int cpu, success = 0; 1600 1601 /* 1602 * If we are going to wake up a thread waiting for CONDITION we 1603 * need to ensure that CONDITION=1 done by the caller can not be 1604 * reordered with p->state check below. This pairs with mb() in 1605 * set_current_state() the waiting thread does. 1606 */ 1607 smp_mb__before_spinlock(); 1608 raw_spin_lock_irqsave(&p->pi_lock, flags); 1609 if (!(p->state & state)) 1610 goto out; 1611 1612 success = 1; /* we're going to change ->state */ 1613 cpu = task_cpu(p); 1614 1615 if (p->on_rq && ttwu_remote(p, wake_flags)) 1616 goto stat; 1617 1618 #ifdef CONFIG_SMP 1619 /* 1620 * If the owning (remote) cpu is still in the middle of schedule() with 1621 * this task as prev, wait until its done referencing the task. 1622 */ 1623 while (p->on_cpu) 1624 cpu_relax(); 1625 /* 1626 * Pairs with the smp_wmb() in finish_lock_switch(). 1627 */ 1628 smp_rmb(); 1629 1630 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1631 p->state = TASK_WAKING; 1632 1633 if (p->sched_class->task_waking) 1634 p->sched_class->task_waking(p); 1635 1636 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1637 if (task_cpu(p) != cpu) { 1638 wake_flags |= WF_MIGRATED; 1639 set_task_cpu(p, cpu); 1640 } 1641 #endif /* CONFIG_SMP */ 1642 1643 ttwu_queue(p, cpu); 1644 stat: 1645 ttwu_stat(p, cpu, wake_flags); 1646 out: 1647 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1648 1649 return success; 1650 } 1651 1652 /** 1653 * try_to_wake_up_local - try to wake up a local task with rq lock held 1654 * @p: the thread to be awakened 1655 * 1656 * Put @p on the run-queue if it's not already there. The caller must 1657 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1658 * the current task. 1659 */ 1660 static void try_to_wake_up_local(struct task_struct *p) 1661 { 1662 struct rq *rq = task_rq(p); 1663 1664 if (WARN_ON_ONCE(rq != this_rq()) || 1665 WARN_ON_ONCE(p == current)) 1666 return; 1667 1668 lockdep_assert_held(&rq->lock); 1669 1670 if (!raw_spin_trylock(&p->pi_lock)) { 1671 raw_spin_unlock(&rq->lock); 1672 raw_spin_lock(&p->pi_lock); 1673 raw_spin_lock(&rq->lock); 1674 } 1675 1676 if (!(p->state & TASK_NORMAL)) 1677 goto out; 1678 1679 if (!p->on_rq) 1680 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1681 1682 ttwu_do_wakeup(rq, p, 0); 1683 ttwu_stat(p, smp_processor_id(), 0); 1684 out: 1685 raw_spin_unlock(&p->pi_lock); 1686 } 1687 1688 /** 1689 * wake_up_process - Wake up a specific process 1690 * @p: The process to be woken up. 1691 * 1692 * Attempt to wake up the nominated process and move it to the set of runnable 1693 * processes. 1694 * 1695 * Return: 1 if the process was woken up, 0 if it was already running. 1696 * 1697 * It may be assumed that this function implies a write memory barrier before 1698 * changing the task state if and only if any tasks are woken up. 1699 */ 1700 int wake_up_process(struct task_struct *p) 1701 { 1702 WARN_ON(task_is_stopped_or_traced(p)); 1703 return try_to_wake_up(p, TASK_NORMAL, 0); 1704 } 1705 EXPORT_SYMBOL(wake_up_process); 1706 1707 int wake_up_state(struct task_struct *p, unsigned int state) 1708 { 1709 return try_to_wake_up(p, state, 0); 1710 } 1711 1712 /* 1713 * Perform scheduler related setup for a newly forked process p. 1714 * p is forked by current. 1715 * 1716 * __sched_fork() is basic setup used by init_idle() too: 1717 */ 1718 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1719 { 1720 p->on_rq = 0; 1721 1722 p->se.on_rq = 0; 1723 p->se.exec_start = 0; 1724 p->se.sum_exec_runtime = 0; 1725 p->se.prev_sum_exec_runtime = 0; 1726 p->se.nr_migrations = 0; 1727 p->se.vruntime = 0; 1728 INIT_LIST_HEAD(&p->se.group_node); 1729 1730 #ifdef CONFIG_SCHEDSTATS 1731 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1732 #endif 1733 1734 RB_CLEAR_NODE(&p->dl.rb_node); 1735 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1736 p->dl.dl_runtime = p->dl.runtime = 0; 1737 p->dl.dl_deadline = p->dl.deadline = 0; 1738 p->dl.dl_period = 0; 1739 p->dl.flags = 0; 1740 1741 INIT_LIST_HEAD(&p->rt.run_list); 1742 1743 #ifdef CONFIG_PREEMPT_NOTIFIERS 1744 INIT_HLIST_HEAD(&p->preempt_notifiers); 1745 #endif 1746 1747 #ifdef CONFIG_NUMA_BALANCING 1748 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1749 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1750 p->mm->numa_scan_seq = 0; 1751 } 1752 1753 if (clone_flags & CLONE_VM) 1754 p->numa_preferred_nid = current->numa_preferred_nid; 1755 else 1756 p->numa_preferred_nid = -1; 1757 1758 p->node_stamp = 0ULL; 1759 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1760 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1761 p->numa_work.next = &p->numa_work; 1762 p->numa_faults_memory = NULL; 1763 p->numa_faults_buffer_memory = NULL; 1764 p->last_task_numa_placement = 0; 1765 p->last_sum_exec_runtime = 0; 1766 1767 INIT_LIST_HEAD(&p->numa_entry); 1768 p->numa_group = NULL; 1769 #endif /* CONFIG_NUMA_BALANCING */ 1770 } 1771 1772 #ifdef CONFIG_NUMA_BALANCING 1773 #ifdef CONFIG_SCHED_DEBUG 1774 void set_numabalancing_state(bool enabled) 1775 { 1776 if (enabled) 1777 sched_feat_set("NUMA"); 1778 else 1779 sched_feat_set("NO_NUMA"); 1780 } 1781 #else 1782 __read_mostly bool numabalancing_enabled; 1783 1784 void set_numabalancing_state(bool enabled) 1785 { 1786 numabalancing_enabled = enabled; 1787 } 1788 #endif /* CONFIG_SCHED_DEBUG */ 1789 1790 #ifdef CONFIG_PROC_SYSCTL 1791 int sysctl_numa_balancing(struct ctl_table *table, int write, 1792 void __user *buffer, size_t *lenp, loff_t *ppos) 1793 { 1794 struct ctl_table t; 1795 int err; 1796 int state = numabalancing_enabled; 1797 1798 if (write && !capable(CAP_SYS_ADMIN)) 1799 return -EPERM; 1800 1801 t = *table; 1802 t.data = &state; 1803 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1804 if (err < 0) 1805 return err; 1806 if (write) 1807 set_numabalancing_state(state); 1808 return err; 1809 } 1810 #endif 1811 #endif 1812 1813 /* 1814 * fork()/clone()-time setup: 1815 */ 1816 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1817 { 1818 unsigned long flags; 1819 int cpu = get_cpu(); 1820 1821 __sched_fork(clone_flags, p); 1822 /* 1823 * We mark the process as running here. This guarantees that 1824 * nobody will actually run it, and a signal or other external 1825 * event cannot wake it up and insert it on the runqueue either. 1826 */ 1827 p->state = TASK_RUNNING; 1828 1829 /* 1830 * Make sure we do not leak PI boosting priority to the child. 1831 */ 1832 p->prio = current->normal_prio; 1833 1834 /* 1835 * Revert to default priority/policy on fork if requested. 1836 */ 1837 if (unlikely(p->sched_reset_on_fork)) { 1838 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1839 p->policy = SCHED_NORMAL; 1840 p->static_prio = NICE_TO_PRIO(0); 1841 p->rt_priority = 0; 1842 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1843 p->static_prio = NICE_TO_PRIO(0); 1844 1845 p->prio = p->normal_prio = __normal_prio(p); 1846 set_load_weight(p); 1847 1848 /* 1849 * We don't need the reset flag anymore after the fork. It has 1850 * fulfilled its duty: 1851 */ 1852 p->sched_reset_on_fork = 0; 1853 } 1854 1855 if (dl_prio(p->prio)) { 1856 put_cpu(); 1857 return -EAGAIN; 1858 } else if (rt_prio(p->prio)) { 1859 p->sched_class = &rt_sched_class; 1860 } else { 1861 p->sched_class = &fair_sched_class; 1862 } 1863 1864 if (p->sched_class->task_fork) 1865 p->sched_class->task_fork(p); 1866 1867 /* 1868 * The child is not yet in the pid-hash so no cgroup attach races, 1869 * and the cgroup is pinned to this child due to cgroup_fork() 1870 * is ran before sched_fork(). 1871 * 1872 * Silence PROVE_RCU. 1873 */ 1874 raw_spin_lock_irqsave(&p->pi_lock, flags); 1875 set_task_cpu(p, cpu); 1876 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1877 1878 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1879 if (likely(sched_info_on())) 1880 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1881 #endif 1882 #if defined(CONFIG_SMP) 1883 p->on_cpu = 0; 1884 #endif 1885 init_task_preempt_count(p); 1886 #ifdef CONFIG_SMP 1887 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1888 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1889 #endif 1890 1891 put_cpu(); 1892 return 0; 1893 } 1894 1895 unsigned long to_ratio(u64 period, u64 runtime) 1896 { 1897 if (runtime == RUNTIME_INF) 1898 return 1ULL << 20; 1899 1900 /* 1901 * Doing this here saves a lot of checks in all 1902 * the calling paths, and returning zero seems 1903 * safe for them anyway. 1904 */ 1905 if (period == 0) 1906 return 0; 1907 1908 return div64_u64(runtime << 20, period); 1909 } 1910 1911 #ifdef CONFIG_SMP 1912 inline struct dl_bw *dl_bw_of(int i) 1913 { 1914 return &cpu_rq(i)->rd->dl_bw; 1915 } 1916 1917 static inline int dl_bw_cpus(int i) 1918 { 1919 struct root_domain *rd = cpu_rq(i)->rd; 1920 int cpus = 0; 1921 1922 for_each_cpu_and(i, rd->span, cpu_active_mask) 1923 cpus++; 1924 1925 return cpus; 1926 } 1927 #else 1928 inline struct dl_bw *dl_bw_of(int i) 1929 { 1930 return &cpu_rq(i)->dl.dl_bw; 1931 } 1932 1933 static inline int dl_bw_cpus(int i) 1934 { 1935 return 1; 1936 } 1937 #endif 1938 1939 static inline 1940 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 1941 { 1942 dl_b->total_bw -= tsk_bw; 1943 } 1944 1945 static inline 1946 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 1947 { 1948 dl_b->total_bw += tsk_bw; 1949 } 1950 1951 static inline 1952 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 1953 { 1954 return dl_b->bw != -1 && 1955 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 1956 } 1957 1958 /* 1959 * We must be sure that accepting a new task (or allowing changing the 1960 * parameters of an existing one) is consistent with the bandwidth 1961 * constraints. If yes, this function also accordingly updates the currently 1962 * allocated bandwidth to reflect the new situation. 1963 * 1964 * This function is called while holding p's rq->lock. 1965 */ 1966 static int dl_overflow(struct task_struct *p, int policy, 1967 const struct sched_attr *attr) 1968 { 1969 1970 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1971 u64 period = attr->sched_period ?: attr->sched_deadline; 1972 u64 runtime = attr->sched_runtime; 1973 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 1974 int cpus, err = -1; 1975 1976 if (new_bw == p->dl.dl_bw) 1977 return 0; 1978 1979 /* 1980 * Either if a task, enters, leave, or stays -deadline but changes 1981 * its parameters, we may need to update accordingly the total 1982 * allocated bandwidth of the container. 1983 */ 1984 raw_spin_lock(&dl_b->lock); 1985 cpus = dl_bw_cpus(task_cpu(p)); 1986 if (dl_policy(policy) && !task_has_dl_policy(p) && 1987 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 1988 __dl_add(dl_b, new_bw); 1989 err = 0; 1990 } else if (dl_policy(policy) && task_has_dl_policy(p) && 1991 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 1992 __dl_clear(dl_b, p->dl.dl_bw); 1993 __dl_add(dl_b, new_bw); 1994 err = 0; 1995 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 1996 __dl_clear(dl_b, p->dl.dl_bw); 1997 err = 0; 1998 } 1999 raw_spin_unlock(&dl_b->lock); 2000 2001 return err; 2002 } 2003 2004 extern void init_dl_bw(struct dl_bw *dl_b); 2005 2006 /* 2007 * wake_up_new_task - wake up a newly created task for the first time. 2008 * 2009 * This function will do some initial scheduler statistics housekeeping 2010 * that must be done for every newly created context, then puts the task 2011 * on the runqueue and wakes it. 2012 */ 2013 void wake_up_new_task(struct task_struct *p) 2014 { 2015 unsigned long flags; 2016 struct rq *rq; 2017 2018 raw_spin_lock_irqsave(&p->pi_lock, flags); 2019 #ifdef CONFIG_SMP 2020 /* 2021 * Fork balancing, do it here and not earlier because: 2022 * - cpus_allowed can change in the fork path 2023 * - any previously selected cpu might disappear through hotplug 2024 */ 2025 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2026 #endif 2027 2028 /* Initialize new task's runnable average */ 2029 init_task_runnable_average(p); 2030 rq = __task_rq_lock(p); 2031 activate_task(rq, p, 0); 2032 p->on_rq = 1; 2033 trace_sched_wakeup_new(p, true); 2034 check_preempt_curr(rq, p, WF_FORK); 2035 #ifdef CONFIG_SMP 2036 if (p->sched_class->task_woken) 2037 p->sched_class->task_woken(rq, p); 2038 #endif 2039 task_rq_unlock(rq, p, &flags); 2040 } 2041 2042 #ifdef CONFIG_PREEMPT_NOTIFIERS 2043 2044 /** 2045 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2046 * @notifier: notifier struct to register 2047 */ 2048 void preempt_notifier_register(struct preempt_notifier *notifier) 2049 { 2050 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2051 } 2052 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2053 2054 /** 2055 * preempt_notifier_unregister - no longer interested in preemption notifications 2056 * @notifier: notifier struct to unregister 2057 * 2058 * This is safe to call from within a preemption notifier. 2059 */ 2060 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2061 { 2062 hlist_del(¬ifier->link); 2063 } 2064 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2065 2066 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2067 { 2068 struct preempt_notifier *notifier; 2069 2070 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2071 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2072 } 2073 2074 static void 2075 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2076 struct task_struct *next) 2077 { 2078 struct preempt_notifier *notifier; 2079 2080 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2081 notifier->ops->sched_out(notifier, next); 2082 } 2083 2084 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2085 2086 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2087 { 2088 } 2089 2090 static void 2091 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2092 struct task_struct *next) 2093 { 2094 } 2095 2096 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2097 2098 /** 2099 * prepare_task_switch - prepare to switch tasks 2100 * @rq: the runqueue preparing to switch 2101 * @prev: the current task that is being switched out 2102 * @next: the task we are going to switch to. 2103 * 2104 * This is called with the rq lock held and interrupts off. It must 2105 * be paired with a subsequent finish_task_switch after the context 2106 * switch. 2107 * 2108 * prepare_task_switch sets up locking and calls architecture specific 2109 * hooks. 2110 */ 2111 static inline void 2112 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2113 struct task_struct *next) 2114 { 2115 trace_sched_switch(prev, next); 2116 sched_info_switch(rq, prev, next); 2117 perf_event_task_sched_out(prev, next); 2118 fire_sched_out_preempt_notifiers(prev, next); 2119 prepare_lock_switch(rq, next); 2120 prepare_arch_switch(next); 2121 } 2122 2123 /** 2124 * finish_task_switch - clean up after a task-switch 2125 * @rq: runqueue associated with task-switch 2126 * @prev: the thread we just switched away from. 2127 * 2128 * finish_task_switch must be called after the context switch, paired 2129 * with a prepare_task_switch call before the context switch. 2130 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2131 * and do any other architecture-specific cleanup actions. 2132 * 2133 * Note that we may have delayed dropping an mm in context_switch(). If 2134 * so, we finish that here outside of the runqueue lock. (Doing it 2135 * with the lock held can cause deadlocks; see schedule() for 2136 * details.) 2137 */ 2138 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2139 __releases(rq->lock) 2140 { 2141 struct mm_struct *mm = rq->prev_mm; 2142 long prev_state; 2143 2144 rq->prev_mm = NULL; 2145 2146 /* 2147 * A task struct has one reference for the use as "current". 2148 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2149 * schedule one last time. The schedule call will never return, and 2150 * the scheduled task must drop that reference. 2151 * The test for TASK_DEAD must occur while the runqueue locks are 2152 * still held, otherwise prev could be scheduled on another cpu, die 2153 * there before we look at prev->state, and then the reference would 2154 * be dropped twice. 2155 * Manfred Spraul <manfred@colorfullife.com> 2156 */ 2157 prev_state = prev->state; 2158 vtime_task_switch(prev); 2159 finish_arch_switch(prev); 2160 perf_event_task_sched_in(prev, current); 2161 finish_lock_switch(rq, prev); 2162 finish_arch_post_lock_switch(); 2163 2164 fire_sched_in_preempt_notifiers(current); 2165 if (mm) 2166 mmdrop(mm); 2167 if (unlikely(prev_state == TASK_DEAD)) { 2168 if (prev->sched_class->task_dead) 2169 prev->sched_class->task_dead(prev); 2170 2171 /* 2172 * Remove function-return probe instances associated with this 2173 * task and put them back on the free list. 2174 */ 2175 kprobe_flush_task(prev); 2176 put_task_struct(prev); 2177 } 2178 2179 tick_nohz_task_switch(current); 2180 } 2181 2182 #ifdef CONFIG_SMP 2183 2184 /* rq->lock is NOT held, but preemption is disabled */ 2185 static inline void post_schedule(struct rq *rq) 2186 { 2187 if (rq->post_schedule) { 2188 unsigned long flags; 2189 2190 raw_spin_lock_irqsave(&rq->lock, flags); 2191 if (rq->curr->sched_class->post_schedule) 2192 rq->curr->sched_class->post_schedule(rq); 2193 raw_spin_unlock_irqrestore(&rq->lock, flags); 2194 2195 rq->post_schedule = 0; 2196 } 2197 } 2198 2199 #else 2200 2201 static inline void post_schedule(struct rq *rq) 2202 { 2203 } 2204 2205 #endif 2206 2207 /** 2208 * schedule_tail - first thing a freshly forked thread must call. 2209 * @prev: the thread we just switched away from. 2210 */ 2211 asmlinkage void schedule_tail(struct task_struct *prev) 2212 __releases(rq->lock) 2213 { 2214 struct rq *rq = this_rq(); 2215 2216 finish_task_switch(rq, prev); 2217 2218 /* 2219 * FIXME: do we need to worry about rq being invalidated by the 2220 * task_switch? 2221 */ 2222 post_schedule(rq); 2223 2224 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2225 /* In this case, finish_task_switch does not reenable preemption */ 2226 preempt_enable(); 2227 #endif 2228 if (current->set_child_tid) 2229 put_user(task_pid_vnr(current), current->set_child_tid); 2230 } 2231 2232 /* 2233 * context_switch - switch to the new MM and the new 2234 * thread's register state. 2235 */ 2236 static inline void 2237 context_switch(struct rq *rq, struct task_struct *prev, 2238 struct task_struct *next) 2239 { 2240 struct mm_struct *mm, *oldmm; 2241 2242 prepare_task_switch(rq, prev, next); 2243 2244 mm = next->mm; 2245 oldmm = prev->active_mm; 2246 /* 2247 * For paravirt, this is coupled with an exit in switch_to to 2248 * combine the page table reload and the switch backend into 2249 * one hypercall. 2250 */ 2251 arch_start_context_switch(prev); 2252 2253 if (!mm) { 2254 next->active_mm = oldmm; 2255 atomic_inc(&oldmm->mm_count); 2256 enter_lazy_tlb(oldmm, next); 2257 } else 2258 switch_mm(oldmm, mm, next); 2259 2260 if (!prev->mm) { 2261 prev->active_mm = NULL; 2262 rq->prev_mm = oldmm; 2263 } 2264 /* 2265 * Since the runqueue lock will be released by the next 2266 * task (which is an invalid locking op but in the case 2267 * of the scheduler it's an obvious special-case), so we 2268 * do an early lockdep release here: 2269 */ 2270 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2271 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2272 #endif 2273 2274 context_tracking_task_switch(prev, next); 2275 /* Here we just switch the register state and the stack. */ 2276 switch_to(prev, next, prev); 2277 2278 barrier(); 2279 /* 2280 * this_rq must be evaluated again because prev may have moved 2281 * CPUs since it called schedule(), thus the 'rq' on its stack 2282 * frame will be invalid. 2283 */ 2284 finish_task_switch(this_rq(), prev); 2285 } 2286 2287 /* 2288 * nr_running and nr_context_switches: 2289 * 2290 * externally visible scheduler statistics: current number of runnable 2291 * threads, total number of context switches performed since bootup. 2292 */ 2293 unsigned long nr_running(void) 2294 { 2295 unsigned long i, sum = 0; 2296 2297 for_each_online_cpu(i) 2298 sum += cpu_rq(i)->nr_running; 2299 2300 return sum; 2301 } 2302 2303 unsigned long long nr_context_switches(void) 2304 { 2305 int i; 2306 unsigned long long sum = 0; 2307 2308 for_each_possible_cpu(i) 2309 sum += cpu_rq(i)->nr_switches; 2310 2311 return sum; 2312 } 2313 2314 unsigned long nr_iowait(void) 2315 { 2316 unsigned long i, sum = 0; 2317 2318 for_each_possible_cpu(i) 2319 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2320 2321 return sum; 2322 } 2323 2324 unsigned long nr_iowait_cpu(int cpu) 2325 { 2326 struct rq *this = cpu_rq(cpu); 2327 return atomic_read(&this->nr_iowait); 2328 } 2329 2330 #ifdef CONFIG_SMP 2331 2332 /* 2333 * sched_exec - execve() is a valuable balancing opportunity, because at 2334 * this point the task has the smallest effective memory and cache footprint. 2335 */ 2336 void sched_exec(void) 2337 { 2338 struct task_struct *p = current; 2339 unsigned long flags; 2340 int dest_cpu; 2341 2342 raw_spin_lock_irqsave(&p->pi_lock, flags); 2343 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2344 if (dest_cpu == smp_processor_id()) 2345 goto unlock; 2346 2347 if (likely(cpu_active(dest_cpu))) { 2348 struct migration_arg arg = { p, dest_cpu }; 2349 2350 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2351 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2352 return; 2353 } 2354 unlock: 2355 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2356 } 2357 2358 #endif 2359 2360 DEFINE_PER_CPU(struct kernel_stat, kstat); 2361 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2362 2363 EXPORT_PER_CPU_SYMBOL(kstat); 2364 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2365 2366 /* 2367 * Return any ns on the sched_clock that have not yet been accounted in 2368 * @p in case that task is currently running. 2369 * 2370 * Called with task_rq_lock() held on @rq. 2371 */ 2372 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2373 { 2374 u64 ns = 0; 2375 2376 if (task_current(rq, p)) { 2377 update_rq_clock(rq); 2378 ns = rq_clock_task(rq) - p->se.exec_start; 2379 if ((s64)ns < 0) 2380 ns = 0; 2381 } 2382 2383 return ns; 2384 } 2385 2386 unsigned long long task_delta_exec(struct task_struct *p) 2387 { 2388 unsigned long flags; 2389 struct rq *rq; 2390 u64 ns = 0; 2391 2392 rq = task_rq_lock(p, &flags); 2393 ns = do_task_delta_exec(p, rq); 2394 task_rq_unlock(rq, p, &flags); 2395 2396 return ns; 2397 } 2398 2399 /* 2400 * Return accounted runtime for the task. 2401 * In case the task is currently running, return the runtime plus current's 2402 * pending runtime that have not been accounted yet. 2403 */ 2404 unsigned long long task_sched_runtime(struct task_struct *p) 2405 { 2406 unsigned long flags; 2407 struct rq *rq; 2408 u64 ns = 0; 2409 2410 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2411 /* 2412 * 64-bit doesn't need locks to atomically read a 64bit value. 2413 * So we have a optimization chance when the task's delta_exec is 0. 2414 * Reading ->on_cpu is racy, but this is ok. 2415 * 2416 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2417 * If we race with it entering cpu, unaccounted time is 0. This is 2418 * indistinguishable from the read occurring a few cycles earlier. 2419 */ 2420 if (!p->on_cpu) 2421 return p->se.sum_exec_runtime; 2422 #endif 2423 2424 rq = task_rq_lock(p, &flags); 2425 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2426 task_rq_unlock(rq, p, &flags); 2427 2428 return ns; 2429 } 2430 2431 /* 2432 * This function gets called by the timer code, with HZ frequency. 2433 * We call it with interrupts disabled. 2434 */ 2435 void scheduler_tick(void) 2436 { 2437 int cpu = smp_processor_id(); 2438 struct rq *rq = cpu_rq(cpu); 2439 struct task_struct *curr = rq->curr; 2440 2441 sched_clock_tick(); 2442 2443 raw_spin_lock(&rq->lock); 2444 update_rq_clock(rq); 2445 curr->sched_class->task_tick(rq, curr, 0); 2446 update_cpu_load_active(rq); 2447 raw_spin_unlock(&rq->lock); 2448 2449 perf_event_task_tick(); 2450 2451 #ifdef CONFIG_SMP 2452 rq->idle_balance = idle_cpu(cpu); 2453 trigger_load_balance(rq); 2454 #endif 2455 rq_last_tick_reset(rq); 2456 } 2457 2458 #ifdef CONFIG_NO_HZ_FULL 2459 /** 2460 * scheduler_tick_max_deferment 2461 * 2462 * Keep at least one tick per second when a single 2463 * active task is running because the scheduler doesn't 2464 * yet completely support full dynticks environment. 2465 * 2466 * This makes sure that uptime, CFS vruntime, load 2467 * balancing, etc... continue to move forward, even 2468 * with a very low granularity. 2469 * 2470 * Return: Maximum deferment in nanoseconds. 2471 */ 2472 u64 scheduler_tick_max_deferment(void) 2473 { 2474 struct rq *rq = this_rq(); 2475 unsigned long next, now = ACCESS_ONCE(jiffies); 2476 2477 next = rq->last_sched_tick + HZ; 2478 2479 if (time_before_eq(next, now)) 2480 return 0; 2481 2482 return jiffies_to_nsecs(next - now); 2483 } 2484 #endif 2485 2486 notrace unsigned long get_parent_ip(unsigned long addr) 2487 { 2488 if (in_lock_functions(addr)) { 2489 addr = CALLER_ADDR2; 2490 if (in_lock_functions(addr)) 2491 addr = CALLER_ADDR3; 2492 } 2493 return addr; 2494 } 2495 2496 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2497 defined(CONFIG_PREEMPT_TRACER)) 2498 2499 void __kprobes preempt_count_add(int val) 2500 { 2501 #ifdef CONFIG_DEBUG_PREEMPT 2502 /* 2503 * Underflow? 2504 */ 2505 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2506 return; 2507 #endif 2508 __preempt_count_add(val); 2509 #ifdef CONFIG_DEBUG_PREEMPT 2510 /* 2511 * Spinlock count overflowing soon? 2512 */ 2513 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2514 PREEMPT_MASK - 10); 2515 #endif 2516 if (preempt_count() == val) { 2517 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2518 #ifdef CONFIG_DEBUG_PREEMPT 2519 current->preempt_disable_ip = ip; 2520 #endif 2521 trace_preempt_off(CALLER_ADDR0, ip); 2522 } 2523 } 2524 EXPORT_SYMBOL(preempt_count_add); 2525 2526 void __kprobes preempt_count_sub(int val) 2527 { 2528 #ifdef CONFIG_DEBUG_PREEMPT 2529 /* 2530 * Underflow? 2531 */ 2532 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2533 return; 2534 /* 2535 * Is the spinlock portion underflowing? 2536 */ 2537 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2538 !(preempt_count() & PREEMPT_MASK))) 2539 return; 2540 #endif 2541 2542 if (preempt_count() == val) 2543 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2544 __preempt_count_sub(val); 2545 } 2546 EXPORT_SYMBOL(preempt_count_sub); 2547 2548 #endif 2549 2550 /* 2551 * Print scheduling while atomic bug: 2552 */ 2553 static noinline void __schedule_bug(struct task_struct *prev) 2554 { 2555 if (oops_in_progress) 2556 return; 2557 2558 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2559 prev->comm, prev->pid, preempt_count()); 2560 2561 debug_show_held_locks(prev); 2562 print_modules(); 2563 if (irqs_disabled()) 2564 print_irqtrace_events(prev); 2565 #ifdef CONFIG_DEBUG_PREEMPT 2566 if (in_atomic_preempt_off()) { 2567 pr_err("Preemption disabled at:"); 2568 print_ip_sym(current->preempt_disable_ip); 2569 pr_cont("\n"); 2570 } 2571 #endif 2572 dump_stack(); 2573 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2574 } 2575 2576 /* 2577 * Various schedule()-time debugging checks and statistics: 2578 */ 2579 static inline void schedule_debug(struct task_struct *prev) 2580 { 2581 /* 2582 * Test if we are atomic. Since do_exit() needs to call into 2583 * schedule() atomically, we ignore that path. Otherwise whine 2584 * if we are scheduling when we should not. 2585 */ 2586 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2587 __schedule_bug(prev); 2588 rcu_sleep_check(); 2589 2590 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2591 2592 schedstat_inc(this_rq(), sched_count); 2593 } 2594 2595 /* 2596 * Pick up the highest-prio task: 2597 */ 2598 static inline struct task_struct * 2599 pick_next_task(struct rq *rq, struct task_struct *prev) 2600 { 2601 const struct sched_class *class = &fair_sched_class; 2602 struct task_struct *p; 2603 2604 /* 2605 * Optimization: we know that if all tasks are in 2606 * the fair class we can call that function directly: 2607 */ 2608 if (likely(prev->sched_class == class && 2609 rq->nr_running == rq->cfs.h_nr_running)) { 2610 p = fair_sched_class.pick_next_task(rq, prev); 2611 if (likely(p && p != RETRY_TASK)) 2612 return p; 2613 } 2614 2615 again: 2616 for_each_class(class) { 2617 p = class->pick_next_task(rq, prev); 2618 if (p) { 2619 if (unlikely(p == RETRY_TASK)) 2620 goto again; 2621 return p; 2622 } 2623 } 2624 2625 BUG(); /* the idle class will always have a runnable task */ 2626 } 2627 2628 /* 2629 * __schedule() is the main scheduler function. 2630 * 2631 * The main means of driving the scheduler and thus entering this function are: 2632 * 2633 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2634 * 2635 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2636 * paths. For example, see arch/x86/entry_64.S. 2637 * 2638 * To drive preemption between tasks, the scheduler sets the flag in timer 2639 * interrupt handler scheduler_tick(). 2640 * 2641 * 3. Wakeups don't really cause entry into schedule(). They add a 2642 * task to the run-queue and that's it. 2643 * 2644 * Now, if the new task added to the run-queue preempts the current 2645 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2646 * called on the nearest possible occasion: 2647 * 2648 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2649 * 2650 * - in syscall or exception context, at the next outmost 2651 * preempt_enable(). (this might be as soon as the wake_up()'s 2652 * spin_unlock()!) 2653 * 2654 * - in IRQ context, return from interrupt-handler to 2655 * preemptible context 2656 * 2657 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2658 * then at the next: 2659 * 2660 * - cond_resched() call 2661 * - explicit schedule() call 2662 * - return from syscall or exception to user-space 2663 * - return from interrupt-handler to user-space 2664 */ 2665 static void __sched __schedule(void) 2666 { 2667 struct task_struct *prev, *next; 2668 unsigned long *switch_count; 2669 struct rq *rq; 2670 int cpu; 2671 2672 need_resched: 2673 preempt_disable(); 2674 cpu = smp_processor_id(); 2675 rq = cpu_rq(cpu); 2676 rcu_note_context_switch(cpu); 2677 prev = rq->curr; 2678 2679 schedule_debug(prev); 2680 2681 if (sched_feat(HRTICK)) 2682 hrtick_clear(rq); 2683 2684 /* 2685 * Make sure that signal_pending_state()->signal_pending() below 2686 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2687 * done by the caller to avoid the race with signal_wake_up(). 2688 */ 2689 smp_mb__before_spinlock(); 2690 raw_spin_lock_irq(&rq->lock); 2691 2692 switch_count = &prev->nivcsw; 2693 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2694 if (unlikely(signal_pending_state(prev->state, prev))) { 2695 prev->state = TASK_RUNNING; 2696 } else { 2697 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2698 prev->on_rq = 0; 2699 2700 /* 2701 * If a worker went to sleep, notify and ask workqueue 2702 * whether it wants to wake up a task to maintain 2703 * concurrency. 2704 */ 2705 if (prev->flags & PF_WQ_WORKER) { 2706 struct task_struct *to_wakeup; 2707 2708 to_wakeup = wq_worker_sleeping(prev, cpu); 2709 if (to_wakeup) 2710 try_to_wake_up_local(to_wakeup); 2711 } 2712 } 2713 switch_count = &prev->nvcsw; 2714 } 2715 2716 if (prev->on_rq || rq->skip_clock_update < 0) 2717 update_rq_clock(rq); 2718 2719 next = pick_next_task(rq, prev); 2720 clear_tsk_need_resched(prev); 2721 clear_preempt_need_resched(); 2722 rq->skip_clock_update = 0; 2723 2724 if (likely(prev != next)) { 2725 rq->nr_switches++; 2726 rq->curr = next; 2727 ++*switch_count; 2728 2729 context_switch(rq, prev, next); /* unlocks the rq */ 2730 /* 2731 * The context switch have flipped the stack from under us 2732 * and restored the local variables which were saved when 2733 * this task called schedule() in the past. prev == current 2734 * is still correct, but it can be moved to another cpu/rq. 2735 */ 2736 cpu = smp_processor_id(); 2737 rq = cpu_rq(cpu); 2738 } else 2739 raw_spin_unlock_irq(&rq->lock); 2740 2741 post_schedule(rq); 2742 2743 sched_preempt_enable_no_resched(); 2744 if (need_resched()) 2745 goto need_resched; 2746 } 2747 2748 static inline void sched_submit_work(struct task_struct *tsk) 2749 { 2750 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2751 return; 2752 /* 2753 * If we are going to sleep and we have plugged IO queued, 2754 * make sure to submit it to avoid deadlocks. 2755 */ 2756 if (blk_needs_flush_plug(tsk)) 2757 blk_schedule_flush_plug(tsk); 2758 } 2759 2760 asmlinkage void __sched schedule(void) 2761 { 2762 struct task_struct *tsk = current; 2763 2764 sched_submit_work(tsk); 2765 __schedule(); 2766 } 2767 EXPORT_SYMBOL(schedule); 2768 2769 #ifdef CONFIG_CONTEXT_TRACKING 2770 asmlinkage void __sched schedule_user(void) 2771 { 2772 /* 2773 * If we come here after a random call to set_need_resched(), 2774 * or we have been woken up remotely but the IPI has not yet arrived, 2775 * we haven't yet exited the RCU idle mode. Do it here manually until 2776 * we find a better solution. 2777 */ 2778 user_exit(); 2779 schedule(); 2780 user_enter(); 2781 } 2782 #endif 2783 2784 /** 2785 * schedule_preempt_disabled - called with preemption disabled 2786 * 2787 * Returns with preemption disabled. Note: preempt_count must be 1 2788 */ 2789 void __sched schedule_preempt_disabled(void) 2790 { 2791 sched_preempt_enable_no_resched(); 2792 schedule(); 2793 preempt_disable(); 2794 } 2795 2796 #ifdef CONFIG_PREEMPT 2797 /* 2798 * this is the entry point to schedule() from in-kernel preemption 2799 * off of preempt_enable. Kernel preemptions off return from interrupt 2800 * occur there and call schedule directly. 2801 */ 2802 asmlinkage void __sched notrace preempt_schedule(void) 2803 { 2804 /* 2805 * If there is a non-zero preempt_count or interrupts are disabled, 2806 * we do not want to preempt the current task. Just return.. 2807 */ 2808 if (likely(!preemptible())) 2809 return; 2810 2811 do { 2812 __preempt_count_add(PREEMPT_ACTIVE); 2813 __schedule(); 2814 __preempt_count_sub(PREEMPT_ACTIVE); 2815 2816 /* 2817 * Check again in case we missed a preemption opportunity 2818 * between schedule and now. 2819 */ 2820 barrier(); 2821 } while (need_resched()); 2822 } 2823 EXPORT_SYMBOL(preempt_schedule); 2824 #endif /* CONFIG_PREEMPT */ 2825 2826 /* 2827 * this is the entry point to schedule() from kernel preemption 2828 * off of irq context. 2829 * Note, that this is called and return with irqs disabled. This will 2830 * protect us against recursive calling from irq. 2831 */ 2832 asmlinkage void __sched preempt_schedule_irq(void) 2833 { 2834 enum ctx_state prev_state; 2835 2836 /* Catch callers which need to be fixed */ 2837 BUG_ON(preempt_count() || !irqs_disabled()); 2838 2839 prev_state = exception_enter(); 2840 2841 do { 2842 __preempt_count_add(PREEMPT_ACTIVE); 2843 local_irq_enable(); 2844 __schedule(); 2845 local_irq_disable(); 2846 __preempt_count_sub(PREEMPT_ACTIVE); 2847 2848 /* 2849 * Check again in case we missed a preemption opportunity 2850 * between schedule and now. 2851 */ 2852 barrier(); 2853 } while (need_resched()); 2854 2855 exception_exit(prev_state); 2856 } 2857 2858 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2859 void *key) 2860 { 2861 return try_to_wake_up(curr->private, mode, wake_flags); 2862 } 2863 EXPORT_SYMBOL(default_wake_function); 2864 2865 #ifdef CONFIG_RT_MUTEXES 2866 2867 /* 2868 * rt_mutex_setprio - set the current priority of a task 2869 * @p: task 2870 * @prio: prio value (kernel-internal form) 2871 * 2872 * This function changes the 'effective' priority of a task. It does 2873 * not touch ->normal_prio like __setscheduler(). 2874 * 2875 * Used by the rt_mutex code to implement priority inheritance 2876 * logic. Call site only calls if the priority of the task changed. 2877 */ 2878 void rt_mutex_setprio(struct task_struct *p, int prio) 2879 { 2880 int oldprio, on_rq, running, enqueue_flag = 0; 2881 struct rq *rq; 2882 const struct sched_class *prev_class; 2883 2884 BUG_ON(prio > MAX_PRIO); 2885 2886 rq = __task_rq_lock(p); 2887 2888 /* 2889 * Idle task boosting is a nono in general. There is one 2890 * exception, when PREEMPT_RT and NOHZ is active: 2891 * 2892 * The idle task calls get_next_timer_interrupt() and holds 2893 * the timer wheel base->lock on the CPU and another CPU wants 2894 * to access the timer (probably to cancel it). We can safely 2895 * ignore the boosting request, as the idle CPU runs this code 2896 * with interrupts disabled and will complete the lock 2897 * protected section without being interrupted. So there is no 2898 * real need to boost. 2899 */ 2900 if (unlikely(p == rq->idle)) { 2901 WARN_ON(p != rq->curr); 2902 WARN_ON(p->pi_blocked_on); 2903 goto out_unlock; 2904 } 2905 2906 trace_sched_pi_setprio(p, prio); 2907 p->pi_top_task = rt_mutex_get_top_task(p); 2908 oldprio = p->prio; 2909 prev_class = p->sched_class; 2910 on_rq = p->on_rq; 2911 running = task_current(rq, p); 2912 if (on_rq) 2913 dequeue_task(rq, p, 0); 2914 if (running) 2915 p->sched_class->put_prev_task(rq, p); 2916 2917 /* 2918 * Boosting condition are: 2919 * 1. -rt task is running and holds mutex A 2920 * --> -dl task blocks on mutex A 2921 * 2922 * 2. -dl task is running and holds mutex A 2923 * --> -dl task blocks on mutex A and could preempt the 2924 * running task 2925 */ 2926 if (dl_prio(prio)) { 2927 if (!dl_prio(p->normal_prio) || (p->pi_top_task && 2928 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) { 2929 p->dl.dl_boosted = 1; 2930 p->dl.dl_throttled = 0; 2931 enqueue_flag = ENQUEUE_REPLENISH; 2932 } else 2933 p->dl.dl_boosted = 0; 2934 p->sched_class = &dl_sched_class; 2935 } else if (rt_prio(prio)) { 2936 if (dl_prio(oldprio)) 2937 p->dl.dl_boosted = 0; 2938 if (oldprio < prio) 2939 enqueue_flag = ENQUEUE_HEAD; 2940 p->sched_class = &rt_sched_class; 2941 } else { 2942 if (dl_prio(oldprio)) 2943 p->dl.dl_boosted = 0; 2944 p->sched_class = &fair_sched_class; 2945 } 2946 2947 p->prio = prio; 2948 2949 if (running) 2950 p->sched_class->set_curr_task(rq); 2951 if (on_rq) 2952 enqueue_task(rq, p, enqueue_flag); 2953 2954 check_class_changed(rq, p, prev_class, oldprio); 2955 out_unlock: 2956 __task_rq_unlock(rq); 2957 } 2958 #endif 2959 2960 void set_user_nice(struct task_struct *p, long nice) 2961 { 2962 int old_prio, delta, on_rq; 2963 unsigned long flags; 2964 struct rq *rq; 2965 2966 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 2967 return; 2968 /* 2969 * We have to be careful, if called from sys_setpriority(), 2970 * the task might be in the middle of scheduling on another CPU. 2971 */ 2972 rq = task_rq_lock(p, &flags); 2973 /* 2974 * The RT priorities are set via sched_setscheduler(), but we still 2975 * allow the 'normal' nice value to be set - but as expected 2976 * it wont have any effect on scheduling until the task is 2977 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 2978 */ 2979 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2980 p->static_prio = NICE_TO_PRIO(nice); 2981 goto out_unlock; 2982 } 2983 on_rq = p->on_rq; 2984 if (on_rq) 2985 dequeue_task(rq, p, 0); 2986 2987 p->static_prio = NICE_TO_PRIO(nice); 2988 set_load_weight(p); 2989 old_prio = p->prio; 2990 p->prio = effective_prio(p); 2991 delta = p->prio - old_prio; 2992 2993 if (on_rq) { 2994 enqueue_task(rq, p, 0); 2995 /* 2996 * If the task increased its priority or is running and 2997 * lowered its priority, then reschedule its CPU: 2998 */ 2999 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3000 resched_task(rq->curr); 3001 } 3002 out_unlock: 3003 task_rq_unlock(rq, p, &flags); 3004 } 3005 EXPORT_SYMBOL(set_user_nice); 3006 3007 /* 3008 * can_nice - check if a task can reduce its nice value 3009 * @p: task 3010 * @nice: nice value 3011 */ 3012 int can_nice(const struct task_struct *p, const int nice) 3013 { 3014 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3015 int nice_rlim = 20 - nice; 3016 3017 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3018 capable(CAP_SYS_NICE)); 3019 } 3020 3021 #ifdef __ARCH_WANT_SYS_NICE 3022 3023 /* 3024 * sys_nice - change the priority of the current process. 3025 * @increment: priority increment 3026 * 3027 * sys_setpriority is a more generic, but much slower function that 3028 * does similar things. 3029 */ 3030 SYSCALL_DEFINE1(nice, int, increment) 3031 { 3032 long nice, retval; 3033 3034 /* 3035 * Setpriority might change our priority at the same moment. 3036 * We don't have to worry. Conceptually one call occurs first 3037 * and we have a single winner. 3038 */ 3039 if (increment < -40) 3040 increment = -40; 3041 if (increment > 40) 3042 increment = 40; 3043 3044 nice = task_nice(current) + increment; 3045 if (nice < MIN_NICE) 3046 nice = MIN_NICE; 3047 if (nice > MAX_NICE) 3048 nice = MAX_NICE; 3049 3050 if (increment < 0 && !can_nice(current, nice)) 3051 return -EPERM; 3052 3053 retval = security_task_setnice(current, nice); 3054 if (retval) 3055 return retval; 3056 3057 set_user_nice(current, nice); 3058 return 0; 3059 } 3060 3061 #endif 3062 3063 /** 3064 * task_prio - return the priority value of a given task. 3065 * @p: the task in question. 3066 * 3067 * Return: The priority value as seen by users in /proc. 3068 * RT tasks are offset by -200. Normal tasks are centered 3069 * around 0, value goes from -16 to +15. 3070 */ 3071 int task_prio(const struct task_struct *p) 3072 { 3073 return p->prio - MAX_RT_PRIO; 3074 } 3075 3076 /** 3077 * idle_cpu - is a given cpu idle currently? 3078 * @cpu: the processor in question. 3079 * 3080 * Return: 1 if the CPU is currently idle. 0 otherwise. 3081 */ 3082 int idle_cpu(int cpu) 3083 { 3084 struct rq *rq = cpu_rq(cpu); 3085 3086 if (rq->curr != rq->idle) 3087 return 0; 3088 3089 if (rq->nr_running) 3090 return 0; 3091 3092 #ifdef CONFIG_SMP 3093 if (!llist_empty(&rq->wake_list)) 3094 return 0; 3095 #endif 3096 3097 return 1; 3098 } 3099 3100 /** 3101 * idle_task - return the idle task for a given cpu. 3102 * @cpu: the processor in question. 3103 * 3104 * Return: The idle task for the cpu @cpu. 3105 */ 3106 struct task_struct *idle_task(int cpu) 3107 { 3108 return cpu_rq(cpu)->idle; 3109 } 3110 3111 /** 3112 * find_process_by_pid - find a process with a matching PID value. 3113 * @pid: the pid in question. 3114 * 3115 * The task of @pid, if found. %NULL otherwise. 3116 */ 3117 static struct task_struct *find_process_by_pid(pid_t pid) 3118 { 3119 return pid ? find_task_by_vpid(pid) : current; 3120 } 3121 3122 /* 3123 * This function initializes the sched_dl_entity of a newly becoming 3124 * SCHED_DEADLINE task. 3125 * 3126 * Only the static values are considered here, the actual runtime and the 3127 * absolute deadline will be properly calculated when the task is enqueued 3128 * for the first time with its new policy. 3129 */ 3130 static void 3131 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3132 { 3133 struct sched_dl_entity *dl_se = &p->dl; 3134 3135 init_dl_task_timer(dl_se); 3136 dl_se->dl_runtime = attr->sched_runtime; 3137 dl_se->dl_deadline = attr->sched_deadline; 3138 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3139 dl_se->flags = attr->sched_flags; 3140 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3141 dl_se->dl_throttled = 0; 3142 dl_se->dl_new = 1; 3143 } 3144 3145 static void __setscheduler_params(struct task_struct *p, 3146 const struct sched_attr *attr) 3147 { 3148 int policy = attr->sched_policy; 3149 3150 if (policy == -1) /* setparam */ 3151 policy = p->policy; 3152 3153 p->policy = policy; 3154 3155 if (dl_policy(policy)) 3156 __setparam_dl(p, attr); 3157 else if (fair_policy(policy)) 3158 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3159 3160 /* 3161 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3162 * !rt_policy. Always setting this ensures that things like 3163 * getparam()/getattr() don't report silly values for !rt tasks. 3164 */ 3165 p->rt_priority = attr->sched_priority; 3166 p->normal_prio = normal_prio(p); 3167 set_load_weight(p); 3168 } 3169 3170 /* Actually do priority change: must hold pi & rq lock. */ 3171 static void __setscheduler(struct rq *rq, struct task_struct *p, 3172 const struct sched_attr *attr) 3173 { 3174 __setscheduler_params(p, attr); 3175 3176 /* 3177 * If we get here, there was no pi waiters boosting the 3178 * task. It is safe to use the normal prio. 3179 */ 3180 p->prio = normal_prio(p); 3181 3182 if (dl_prio(p->prio)) 3183 p->sched_class = &dl_sched_class; 3184 else if (rt_prio(p->prio)) 3185 p->sched_class = &rt_sched_class; 3186 else 3187 p->sched_class = &fair_sched_class; 3188 } 3189 3190 static void 3191 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3192 { 3193 struct sched_dl_entity *dl_se = &p->dl; 3194 3195 attr->sched_priority = p->rt_priority; 3196 attr->sched_runtime = dl_se->dl_runtime; 3197 attr->sched_deadline = dl_se->dl_deadline; 3198 attr->sched_period = dl_se->dl_period; 3199 attr->sched_flags = dl_se->flags; 3200 } 3201 3202 /* 3203 * This function validates the new parameters of a -deadline task. 3204 * We ask for the deadline not being zero, and greater or equal 3205 * than the runtime, as well as the period of being zero or 3206 * greater than deadline. Furthermore, we have to be sure that 3207 * user parameters are above the internal resolution (1us); we 3208 * check sched_runtime only since it is always the smaller one. 3209 */ 3210 static bool 3211 __checkparam_dl(const struct sched_attr *attr) 3212 { 3213 return attr && attr->sched_deadline != 0 && 3214 (attr->sched_period == 0 || 3215 (s64)(attr->sched_period - attr->sched_deadline) >= 0) && 3216 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 && 3217 attr->sched_runtime >= (2 << (DL_SCALE - 1)); 3218 } 3219 3220 /* 3221 * check the target process has a UID that matches the current process's 3222 */ 3223 static bool check_same_owner(struct task_struct *p) 3224 { 3225 const struct cred *cred = current_cred(), *pcred; 3226 bool match; 3227 3228 rcu_read_lock(); 3229 pcred = __task_cred(p); 3230 match = (uid_eq(cred->euid, pcred->euid) || 3231 uid_eq(cred->euid, pcred->uid)); 3232 rcu_read_unlock(); 3233 return match; 3234 } 3235 3236 static int __sched_setscheduler(struct task_struct *p, 3237 const struct sched_attr *attr, 3238 bool user) 3239 { 3240 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3241 MAX_RT_PRIO - 1 - attr->sched_priority; 3242 int retval, oldprio, oldpolicy = -1, on_rq, running; 3243 int policy = attr->sched_policy; 3244 unsigned long flags; 3245 const struct sched_class *prev_class; 3246 struct rq *rq; 3247 int reset_on_fork; 3248 3249 /* may grab non-irq protected spin_locks */ 3250 BUG_ON(in_interrupt()); 3251 recheck: 3252 /* double check policy once rq lock held */ 3253 if (policy < 0) { 3254 reset_on_fork = p->sched_reset_on_fork; 3255 policy = oldpolicy = p->policy; 3256 } else { 3257 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3258 3259 if (policy != SCHED_DEADLINE && 3260 policy != SCHED_FIFO && policy != SCHED_RR && 3261 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3262 policy != SCHED_IDLE) 3263 return -EINVAL; 3264 } 3265 3266 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3267 return -EINVAL; 3268 3269 /* 3270 * Valid priorities for SCHED_FIFO and SCHED_RR are 3271 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3272 * SCHED_BATCH and SCHED_IDLE is 0. 3273 */ 3274 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3275 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3276 return -EINVAL; 3277 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3278 (rt_policy(policy) != (attr->sched_priority != 0))) 3279 return -EINVAL; 3280 3281 /* 3282 * Allow unprivileged RT tasks to decrease priority: 3283 */ 3284 if (user && !capable(CAP_SYS_NICE)) { 3285 if (fair_policy(policy)) { 3286 if (attr->sched_nice < task_nice(p) && 3287 !can_nice(p, attr->sched_nice)) 3288 return -EPERM; 3289 } 3290 3291 if (rt_policy(policy)) { 3292 unsigned long rlim_rtprio = 3293 task_rlimit(p, RLIMIT_RTPRIO); 3294 3295 /* can't set/change the rt policy */ 3296 if (policy != p->policy && !rlim_rtprio) 3297 return -EPERM; 3298 3299 /* can't increase priority */ 3300 if (attr->sched_priority > p->rt_priority && 3301 attr->sched_priority > rlim_rtprio) 3302 return -EPERM; 3303 } 3304 3305 /* 3306 * Can't set/change SCHED_DEADLINE policy at all for now 3307 * (safest behavior); in the future we would like to allow 3308 * unprivileged DL tasks to increase their relative deadline 3309 * or reduce their runtime (both ways reducing utilization) 3310 */ 3311 if (dl_policy(policy)) 3312 return -EPERM; 3313 3314 /* 3315 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3316 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3317 */ 3318 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3319 if (!can_nice(p, task_nice(p))) 3320 return -EPERM; 3321 } 3322 3323 /* can't change other user's priorities */ 3324 if (!check_same_owner(p)) 3325 return -EPERM; 3326 3327 /* Normal users shall not reset the sched_reset_on_fork flag */ 3328 if (p->sched_reset_on_fork && !reset_on_fork) 3329 return -EPERM; 3330 } 3331 3332 if (user) { 3333 retval = security_task_setscheduler(p); 3334 if (retval) 3335 return retval; 3336 } 3337 3338 /* 3339 * make sure no PI-waiters arrive (or leave) while we are 3340 * changing the priority of the task: 3341 * 3342 * To be able to change p->policy safely, the appropriate 3343 * runqueue lock must be held. 3344 */ 3345 rq = task_rq_lock(p, &flags); 3346 3347 /* 3348 * Changing the policy of the stop threads its a very bad idea 3349 */ 3350 if (p == rq->stop) { 3351 task_rq_unlock(rq, p, &flags); 3352 return -EINVAL; 3353 } 3354 3355 /* 3356 * If not changing anything there's no need to proceed further, 3357 * but store a possible modification of reset_on_fork. 3358 */ 3359 if (unlikely(policy == p->policy)) { 3360 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3361 goto change; 3362 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3363 goto change; 3364 if (dl_policy(policy)) 3365 goto change; 3366 3367 p->sched_reset_on_fork = reset_on_fork; 3368 task_rq_unlock(rq, p, &flags); 3369 return 0; 3370 } 3371 change: 3372 3373 if (user) { 3374 #ifdef CONFIG_RT_GROUP_SCHED 3375 /* 3376 * Do not allow realtime tasks into groups that have no runtime 3377 * assigned. 3378 */ 3379 if (rt_bandwidth_enabled() && rt_policy(policy) && 3380 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3381 !task_group_is_autogroup(task_group(p))) { 3382 task_rq_unlock(rq, p, &flags); 3383 return -EPERM; 3384 } 3385 #endif 3386 #ifdef CONFIG_SMP 3387 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3388 cpumask_t *span = rq->rd->span; 3389 3390 /* 3391 * Don't allow tasks with an affinity mask smaller than 3392 * the entire root_domain to become SCHED_DEADLINE. We 3393 * will also fail if there's no bandwidth available. 3394 */ 3395 if (!cpumask_subset(span, &p->cpus_allowed) || 3396 rq->rd->dl_bw.bw == 0) { 3397 task_rq_unlock(rq, p, &flags); 3398 return -EPERM; 3399 } 3400 } 3401 #endif 3402 } 3403 3404 /* recheck policy now with rq lock held */ 3405 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3406 policy = oldpolicy = -1; 3407 task_rq_unlock(rq, p, &flags); 3408 goto recheck; 3409 } 3410 3411 /* 3412 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3413 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3414 * is available. 3415 */ 3416 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3417 task_rq_unlock(rq, p, &flags); 3418 return -EBUSY; 3419 } 3420 3421 p->sched_reset_on_fork = reset_on_fork; 3422 oldprio = p->prio; 3423 3424 /* 3425 * Special case for priority boosted tasks. 3426 * 3427 * If the new priority is lower or equal (user space view) 3428 * than the current (boosted) priority, we just store the new 3429 * normal parameters and do not touch the scheduler class and 3430 * the runqueue. This will be done when the task deboost 3431 * itself. 3432 */ 3433 if (rt_mutex_check_prio(p, newprio)) { 3434 __setscheduler_params(p, attr); 3435 task_rq_unlock(rq, p, &flags); 3436 return 0; 3437 } 3438 3439 on_rq = p->on_rq; 3440 running = task_current(rq, p); 3441 if (on_rq) 3442 dequeue_task(rq, p, 0); 3443 if (running) 3444 p->sched_class->put_prev_task(rq, p); 3445 3446 prev_class = p->sched_class; 3447 __setscheduler(rq, p, attr); 3448 3449 if (running) 3450 p->sched_class->set_curr_task(rq); 3451 if (on_rq) { 3452 /* 3453 * We enqueue to tail when the priority of a task is 3454 * increased (user space view). 3455 */ 3456 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3457 } 3458 3459 check_class_changed(rq, p, prev_class, oldprio); 3460 task_rq_unlock(rq, p, &flags); 3461 3462 rt_mutex_adjust_pi(p); 3463 3464 return 0; 3465 } 3466 3467 static int _sched_setscheduler(struct task_struct *p, int policy, 3468 const struct sched_param *param, bool check) 3469 { 3470 struct sched_attr attr = { 3471 .sched_policy = policy, 3472 .sched_priority = param->sched_priority, 3473 .sched_nice = PRIO_TO_NICE(p->static_prio), 3474 }; 3475 3476 /* 3477 * Fixup the legacy SCHED_RESET_ON_FORK hack 3478 */ 3479 if (policy & SCHED_RESET_ON_FORK) { 3480 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3481 policy &= ~SCHED_RESET_ON_FORK; 3482 attr.sched_policy = policy; 3483 } 3484 3485 return __sched_setscheduler(p, &attr, check); 3486 } 3487 /** 3488 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3489 * @p: the task in question. 3490 * @policy: new policy. 3491 * @param: structure containing the new RT priority. 3492 * 3493 * Return: 0 on success. An error code otherwise. 3494 * 3495 * NOTE that the task may be already dead. 3496 */ 3497 int sched_setscheduler(struct task_struct *p, int policy, 3498 const struct sched_param *param) 3499 { 3500 return _sched_setscheduler(p, policy, param, true); 3501 } 3502 EXPORT_SYMBOL_GPL(sched_setscheduler); 3503 3504 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3505 { 3506 return __sched_setscheduler(p, attr, true); 3507 } 3508 EXPORT_SYMBOL_GPL(sched_setattr); 3509 3510 /** 3511 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3512 * @p: the task in question. 3513 * @policy: new policy. 3514 * @param: structure containing the new RT priority. 3515 * 3516 * Just like sched_setscheduler, only don't bother checking if the 3517 * current context has permission. For example, this is needed in 3518 * stop_machine(): we create temporary high priority worker threads, 3519 * but our caller might not have that capability. 3520 * 3521 * Return: 0 on success. An error code otherwise. 3522 */ 3523 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3524 const struct sched_param *param) 3525 { 3526 return _sched_setscheduler(p, policy, param, false); 3527 } 3528 3529 static int 3530 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3531 { 3532 struct sched_param lparam; 3533 struct task_struct *p; 3534 int retval; 3535 3536 if (!param || pid < 0) 3537 return -EINVAL; 3538 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3539 return -EFAULT; 3540 3541 rcu_read_lock(); 3542 retval = -ESRCH; 3543 p = find_process_by_pid(pid); 3544 if (p != NULL) 3545 retval = sched_setscheduler(p, policy, &lparam); 3546 rcu_read_unlock(); 3547 3548 return retval; 3549 } 3550 3551 /* 3552 * Mimics kernel/events/core.c perf_copy_attr(). 3553 */ 3554 static int sched_copy_attr(struct sched_attr __user *uattr, 3555 struct sched_attr *attr) 3556 { 3557 u32 size; 3558 int ret; 3559 3560 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3561 return -EFAULT; 3562 3563 /* 3564 * zero the full structure, so that a short copy will be nice. 3565 */ 3566 memset(attr, 0, sizeof(*attr)); 3567 3568 ret = get_user(size, &uattr->size); 3569 if (ret) 3570 return ret; 3571 3572 if (size > PAGE_SIZE) /* silly large */ 3573 goto err_size; 3574 3575 if (!size) /* abi compat */ 3576 size = SCHED_ATTR_SIZE_VER0; 3577 3578 if (size < SCHED_ATTR_SIZE_VER0) 3579 goto err_size; 3580 3581 /* 3582 * If we're handed a bigger struct than we know of, 3583 * ensure all the unknown bits are 0 - i.e. new 3584 * user-space does not rely on any kernel feature 3585 * extensions we dont know about yet. 3586 */ 3587 if (size > sizeof(*attr)) { 3588 unsigned char __user *addr; 3589 unsigned char __user *end; 3590 unsigned char val; 3591 3592 addr = (void __user *)uattr + sizeof(*attr); 3593 end = (void __user *)uattr + size; 3594 3595 for (; addr < end; addr++) { 3596 ret = get_user(val, addr); 3597 if (ret) 3598 return ret; 3599 if (val) 3600 goto err_size; 3601 } 3602 size = sizeof(*attr); 3603 } 3604 3605 ret = copy_from_user(attr, uattr, size); 3606 if (ret) 3607 return -EFAULT; 3608 3609 /* 3610 * XXX: do we want to be lenient like existing syscalls; or do we want 3611 * to be strict and return an error on out-of-bounds values? 3612 */ 3613 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3614 3615 out: 3616 return ret; 3617 3618 err_size: 3619 put_user(sizeof(*attr), &uattr->size); 3620 ret = -E2BIG; 3621 goto out; 3622 } 3623 3624 /** 3625 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3626 * @pid: the pid in question. 3627 * @policy: new policy. 3628 * @param: structure containing the new RT priority. 3629 * 3630 * Return: 0 on success. An error code otherwise. 3631 */ 3632 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3633 struct sched_param __user *, param) 3634 { 3635 /* negative values for policy are not valid */ 3636 if (policy < 0) 3637 return -EINVAL; 3638 3639 return do_sched_setscheduler(pid, policy, param); 3640 } 3641 3642 /** 3643 * sys_sched_setparam - set/change the RT priority of a thread 3644 * @pid: the pid in question. 3645 * @param: structure containing the new RT priority. 3646 * 3647 * Return: 0 on success. An error code otherwise. 3648 */ 3649 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3650 { 3651 return do_sched_setscheduler(pid, -1, param); 3652 } 3653 3654 /** 3655 * sys_sched_setattr - same as above, but with extended sched_attr 3656 * @pid: the pid in question. 3657 * @uattr: structure containing the extended parameters. 3658 */ 3659 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3660 unsigned int, flags) 3661 { 3662 struct sched_attr attr; 3663 struct task_struct *p; 3664 int retval; 3665 3666 if (!uattr || pid < 0 || flags) 3667 return -EINVAL; 3668 3669 if (sched_copy_attr(uattr, &attr)) 3670 return -EFAULT; 3671 3672 rcu_read_lock(); 3673 retval = -ESRCH; 3674 p = find_process_by_pid(pid); 3675 if (p != NULL) 3676 retval = sched_setattr(p, &attr); 3677 rcu_read_unlock(); 3678 3679 return retval; 3680 } 3681 3682 /** 3683 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3684 * @pid: the pid in question. 3685 * 3686 * Return: On success, the policy of the thread. Otherwise, a negative error 3687 * code. 3688 */ 3689 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3690 { 3691 struct task_struct *p; 3692 int retval; 3693 3694 if (pid < 0) 3695 return -EINVAL; 3696 3697 retval = -ESRCH; 3698 rcu_read_lock(); 3699 p = find_process_by_pid(pid); 3700 if (p) { 3701 retval = security_task_getscheduler(p); 3702 if (!retval) 3703 retval = p->policy 3704 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3705 } 3706 rcu_read_unlock(); 3707 return retval; 3708 } 3709 3710 /** 3711 * sys_sched_getparam - get the RT priority of a thread 3712 * @pid: the pid in question. 3713 * @param: structure containing the RT priority. 3714 * 3715 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3716 * code. 3717 */ 3718 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3719 { 3720 struct sched_param lp; 3721 struct task_struct *p; 3722 int retval; 3723 3724 if (!param || pid < 0) 3725 return -EINVAL; 3726 3727 rcu_read_lock(); 3728 p = find_process_by_pid(pid); 3729 retval = -ESRCH; 3730 if (!p) 3731 goto out_unlock; 3732 3733 retval = security_task_getscheduler(p); 3734 if (retval) 3735 goto out_unlock; 3736 3737 if (task_has_dl_policy(p)) { 3738 retval = -EINVAL; 3739 goto out_unlock; 3740 } 3741 lp.sched_priority = p->rt_priority; 3742 rcu_read_unlock(); 3743 3744 /* 3745 * This one might sleep, we cannot do it with a spinlock held ... 3746 */ 3747 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3748 3749 return retval; 3750 3751 out_unlock: 3752 rcu_read_unlock(); 3753 return retval; 3754 } 3755 3756 static int sched_read_attr(struct sched_attr __user *uattr, 3757 struct sched_attr *attr, 3758 unsigned int usize) 3759 { 3760 int ret; 3761 3762 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3763 return -EFAULT; 3764 3765 /* 3766 * If we're handed a smaller struct than we know of, 3767 * ensure all the unknown bits are 0 - i.e. old 3768 * user-space does not get uncomplete information. 3769 */ 3770 if (usize < sizeof(*attr)) { 3771 unsigned char *addr; 3772 unsigned char *end; 3773 3774 addr = (void *)attr + usize; 3775 end = (void *)attr + sizeof(*attr); 3776 3777 for (; addr < end; addr++) { 3778 if (*addr) 3779 goto err_size; 3780 } 3781 3782 attr->size = usize; 3783 } 3784 3785 ret = copy_to_user(uattr, attr, attr->size); 3786 if (ret) 3787 return -EFAULT; 3788 3789 out: 3790 return ret; 3791 3792 err_size: 3793 ret = -E2BIG; 3794 goto out; 3795 } 3796 3797 /** 3798 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3799 * @pid: the pid in question. 3800 * @uattr: structure containing the extended parameters. 3801 * @size: sizeof(attr) for fwd/bwd comp. 3802 */ 3803 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3804 unsigned int, size, unsigned int, flags) 3805 { 3806 struct sched_attr attr = { 3807 .size = sizeof(struct sched_attr), 3808 }; 3809 struct task_struct *p; 3810 int retval; 3811 3812 if (!uattr || pid < 0 || size > PAGE_SIZE || 3813 size < SCHED_ATTR_SIZE_VER0 || flags) 3814 return -EINVAL; 3815 3816 rcu_read_lock(); 3817 p = find_process_by_pid(pid); 3818 retval = -ESRCH; 3819 if (!p) 3820 goto out_unlock; 3821 3822 retval = security_task_getscheduler(p); 3823 if (retval) 3824 goto out_unlock; 3825 3826 attr.sched_policy = p->policy; 3827 if (p->sched_reset_on_fork) 3828 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3829 if (task_has_dl_policy(p)) 3830 __getparam_dl(p, &attr); 3831 else if (task_has_rt_policy(p)) 3832 attr.sched_priority = p->rt_priority; 3833 else 3834 attr.sched_nice = task_nice(p); 3835 3836 rcu_read_unlock(); 3837 3838 retval = sched_read_attr(uattr, &attr, size); 3839 return retval; 3840 3841 out_unlock: 3842 rcu_read_unlock(); 3843 return retval; 3844 } 3845 3846 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3847 { 3848 cpumask_var_t cpus_allowed, new_mask; 3849 struct task_struct *p; 3850 int retval; 3851 3852 rcu_read_lock(); 3853 3854 p = find_process_by_pid(pid); 3855 if (!p) { 3856 rcu_read_unlock(); 3857 return -ESRCH; 3858 } 3859 3860 /* Prevent p going away */ 3861 get_task_struct(p); 3862 rcu_read_unlock(); 3863 3864 if (p->flags & PF_NO_SETAFFINITY) { 3865 retval = -EINVAL; 3866 goto out_put_task; 3867 } 3868 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 3869 retval = -ENOMEM; 3870 goto out_put_task; 3871 } 3872 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 3873 retval = -ENOMEM; 3874 goto out_free_cpus_allowed; 3875 } 3876 retval = -EPERM; 3877 if (!check_same_owner(p)) { 3878 rcu_read_lock(); 3879 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 3880 rcu_read_unlock(); 3881 goto out_unlock; 3882 } 3883 rcu_read_unlock(); 3884 } 3885 3886 retval = security_task_setscheduler(p); 3887 if (retval) 3888 goto out_unlock; 3889 3890 3891 cpuset_cpus_allowed(p, cpus_allowed); 3892 cpumask_and(new_mask, in_mask, cpus_allowed); 3893 3894 /* 3895 * Since bandwidth control happens on root_domain basis, 3896 * if admission test is enabled, we only admit -deadline 3897 * tasks allowed to run on all the CPUs in the task's 3898 * root_domain. 3899 */ 3900 #ifdef CONFIG_SMP 3901 if (task_has_dl_policy(p)) { 3902 const struct cpumask *span = task_rq(p)->rd->span; 3903 3904 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) { 3905 retval = -EBUSY; 3906 goto out_unlock; 3907 } 3908 } 3909 #endif 3910 again: 3911 retval = set_cpus_allowed_ptr(p, new_mask); 3912 3913 if (!retval) { 3914 cpuset_cpus_allowed(p, cpus_allowed); 3915 if (!cpumask_subset(new_mask, cpus_allowed)) { 3916 /* 3917 * We must have raced with a concurrent cpuset 3918 * update. Just reset the cpus_allowed to the 3919 * cpuset's cpus_allowed 3920 */ 3921 cpumask_copy(new_mask, cpus_allowed); 3922 goto again; 3923 } 3924 } 3925 out_unlock: 3926 free_cpumask_var(new_mask); 3927 out_free_cpus_allowed: 3928 free_cpumask_var(cpus_allowed); 3929 out_put_task: 3930 put_task_struct(p); 3931 return retval; 3932 } 3933 3934 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 3935 struct cpumask *new_mask) 3936 { 3937 if (len < cpumask_size()) 3938 cpumask_clear(new_mask); 3939 else if (len > cpumask_size()) 3940 len = cpumask_size(); 3941 3942 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 3943 } 3944 3945 /** 3946 * sys_sched_setaffinity - set the cpu affinity of a process 3947 * @pid: pid of the process 3948 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 3949 * @user_mask_ptr: user-space pointer to the new cpu mask 3950 * 3951 * Return: 0 on success. An error code otherwise. 3952 */ 3953 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 3954 unsigned long __user *, user_mask_ptr) 3955 { 3956 cpumask_var_t new_mask; 3957 int retval; 3958 3959 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3960 return -ENOMEM; 3961 3962 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 3963 if (retval == 0) 3964 retval = sched_setaffinity(pid, new_mask); 3965 free_cpumask_var(new_mask); 3966 return retval; 3967 } 3968 3969 long sched_getaffinity(pid_t pid, struct cpumask *mask) 3970 { 3971 struct task_struct *p; 3972 unsigned long flags; 3973 int retval; 3974 3975 rcu_read_lock(); 3976 3977 retval = -ESRCH; 3978 p = find_process_by_pid(pid); 3979 if (!p) 3980 goto out_unlock; 3981 3982 retval = security_task_getscheduler(p); 3983 if (retval) 3984 goto out_unlock; 3985 3986 raw_spin_lock_irqsave(&p->pi_lock, flags); 3987 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 3988 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3989 3990 out_unlock: 3991 rcu_read_unlock(); 3992 3993 return retval; 3994 } 3995 3996 /** 3997 * sys_sched_getaffinity - get the cpu affinity of a process 3998 * @pid: pid of the process 3999 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4000 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4001 * 4002 * Return: 0 on success. An error code otherwise. 4003 */ 4004 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4005 unsigned long __user *, user_mask_ptr) 4006 { 4007 int ret; 4008 cpumask_var_t mask; 4009 4010 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4011 return -EINVAL; 4012 if (len & (sizeof(unsigned long)-1)) 4013 return -EINVAL; 4014 4015 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4016 return -ENOMEM; 4017 4018 ret = sched_getaffinity(pid, mask); 4019 if (ret == 0) { 4020 size_t retlen = min_t(size_t, len, cpumask_size()); 4021 4022 if (copy_to_user(user_mask_ptr, mask, retlen)) 4023 ret = -EFAULT; 4024 else 4025 ret = retlen; 4026 } 4027 free_cpumask_var(mask); 4028 4029 return ret; 4030 } 4031 4032 /** 4033 * sys_sched_yield - yield the current processor to other threads. 4034 * 4035 * This function yields the current CPU to other tasks. If there are no 4036 * other threads running on this CPU then this function will return. 4037 * 4038 * Return: 0. 4039 */ 4040 SYSCALL_DEFINE0(sched_yield) 4041 { 4042 struct rq *rq = this_rq_lock(); 4043 4044 schedstat_inc(rq, yld_count); 4045 current->sched_class->yield_task(rq); 4046 4047 /* 4048 * Since we are going to call schedule() anyway, there's 4049 * no need to preempt or enable interrupts: 4050 */ 4051 __release(rq->lock); 4052 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4053 do_raw_spin_unlock(&rq->lock); 4054 sched_preempt_enable_no_resched(); 4055 4056 schedule(); 4057 4058 return 0; 4059 } 4060 4061 static void __cond_resched(void) 4062 { 4063 __preempt_count_add(PREEMPT_ACTIVE); 4064 __schedule(); 4065 __preempt_count_sub(PREEMPT_ACTIVE); 4066 } 4067 4068 int __sched _cond_resched(void) 4069 { 4070 if (should_resched()) { 4071 __cond_resched(); 4072 return 1; 4073 } 4074 return 0; 4075 } 4076 EXPORT_SYMBOL(_cond_resched); 4077 4078 /* 4079 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4080 * call schedule, and on return reacquire the lock. 4081 * 4082 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4083 * operations here to prevent schedule() from being called twice (once via 4084 * spin_unlock(), once by hand). 4085 */ 4086 int __cond_resched_lock(spinlock_t *lock) 4087 { 4088 int resched = should_resched(); 4089 int ret = 0; 4090 4091 lockdep_assert_held(lock); 4092 4093 if (spin_needbreak(lock) || resched) { 4094 spin_unlock(lock); 4095 if (resched) 4096 __cond_resched(); 4097 else 4098 cpu_relax(); 4099 ret = 1; 4100 spin_lock(lock); 4101 } 4102 return ret; 4103 } 4104 EXPORT_SYMBOL(__cond_resched_lock); 4105 4106 int __sched __cond_resched_softirq(void) 4107 { 4108 BUG_ON(!in_softirq()); 4109 4110 if (should_resched()) { 4111 local_bh_enable(); 4112 __cond_resched(); 4113 local_bh_disable(); 4114 return 1; 4115 } 4116 return 0; 4117 } 4118 EXPORT_SYMBOL(__cond_resched_softirq); 4119 4120 /** 4121 * yield - yield the current processor to other threads. 4122 * 4123 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4124 * 4125 * The scheduler is at all times free to pick the calling task as the most 4126 * eligible task to run, if removing the yield() call from your code breaks 4127 * it, its already broken. 4128 * 4129 * Typical broken usage is: 4130 * 4131 * while (!event) 4132 * yield(); 4133 * 4134 * where one assumes that yield() will let 'the other' process run that will 4135 * make event true. If the current task is a SCHED_FIFO task that will never 4136 * happen. Never use yield() as a progress guarantee!! 4137 * 4138 * If you want to use yield() to wait for something, use wait_event(). 4139 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4140 * If you still want to use yield(), do not! 4141 */ 4142 void __sched yield(void) 4143 { 4144 set_current_state(TASK_RUNNING); 4145 sys_sched_yield(); 4146 } 4147 EXPORT_SYMBOL(yield); 4148 4149 /** 4150 * yield_to - yield the current processor to another thread in 4151 * your thread group, or accelerate that thread toward the 4152 * processor it's on. 4153 * @p: target task 4154 * @preempt: whether task preemption is allowed or not 4155 * 4156 * It's the caller's job to ensure that the target task struct 4157 * can't go away on us before we can do any checks. 4158 * 4159 * Return: 4160 * true (>0) if we indeed boosted the target task. 4161 * false (0) if we failed to boost the target. 4162 * -ESRCH if there's no task to yield to. 4163 */ 4164 bool __sched yield_to(struct task_struct *p, bool preempt) 4165 { 4166 struct task_struct *curr = current; 4167 struct rq *rq, *p_rq; 4168 unsigned long flags; 4169 int yielded = 0; 4170 4171 local_irq_save(flags); 4172 rq = this_rq(); 4173 4174 again: 4175 p_rq = task_rq(p); 4176 /* 4177 * If we're the only runnable task on the rq and target rq also 4178 * has only one task, there's absolutely no point in yielding. 4179 */ 4180 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4181 yielded = -ESRCH; 4182 goto out_irq; 4183 } 4184 4185 double_rq_lock(rq, p_rq); 4186 if (task_rq(p) != p_rq) { 4187 double_rq_unlock(rq, p_rq); 4188 goto again; 4189 } 4190 4191 if (!curr->sched_class->yield_to_task) 4192 goto out_unlock; 4193 4194 if (curr->sched_class != p->sched_class) 4195 goto out_unlock; 4196 4197 if (task_running(p_rq, p) || p->state) 4198 goto out_unlock; 4199 4200 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4201 if (yielded) { 4202 schedstat_inc(rq, yld_count); 4203 /* 4204 * Make p's CPU reschedule; pick_next_entity takes care of 4205 * fairness. 4206 */ 4207 if (preempt && rq != p_rq) 4208 resched_task(p_rq->curr); 4209 } 4210 4211 out_unlock: 4212 double_rq_unlock(rq, p_rq); 4213 out_irq: 4214 local_irq_restore(flags); 4215 4216 if (yielded > 0) 4217 schedule(); 4218 4219 return yielded; 4220 } 4221 EXPORT_SYMBOL_GPL(yield_to); 4222 4223 /* 4224 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4225 * that process accounting knows that this is a task in IO wait state. 4226 */ 4227 void __sched io_schedule(void) 4228 { 4229 struct rq *rq = raw_rq(); 4230 4231 delayacct_blkio_start(); 4232 atomic_inc(&rq->nr_iowait); 4233 blk_flush_plug(current); 4234 current->in_iowait = 1; 4235 schedule(); 4236 current->in_iowait = 0; 4237 atomic_dec(&rq->nr_iowait); 4238 delayacct_blkio_end(); 4239 } 4240 EXPORT_SYMBOL(io_schedule); 4241 4242 long __sched io_schedule_timeout(long timeout) 4243 { 4244 struct rq *rq = raw_rq(); 4245 long ret; 4246 4247 delayacct_blkio_start(); 4248 atomic_inc(&rq->nr_iowait); 4249 blk_flush_plug(current); 4250 current->in_iowait = 1; 4251 ret = schedule_timeout(timeout); 4252 current->in_iowait = 0; 4253 atomic_dec(&rq->nr_iowait); 4254 delayacct_blkio_end(); 4255 return ret; 4256 } 4257 4258 /** 4259 * sys_sched_get_priority_max - return maximum RT priority. 4260 * @policy: scheduling class. 4261 * 4262 * Return: On success, this syscall returns the maximum 4263 * rt_priority that can be used by a given scheduling class. 4264 * On failure, a negative error code is returned. 4265 */ 4266 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4267 { 4268 int ret = -EINVAL; 4269 4270 switch (policy) { 4271 case SCHED_FIFO: 4272 case SCHED_RR: 4273 ret = MAX_USER_RT_PRIO-1; 4274 break; 4275 case SCHED_DEADLINE: 4276 case SCHED_NORMAL: 4277 case SCHED_BATCH: 4278 case SCHED_IDLE: 4279 ret = 0; 4280 break; 4281 } 4282 return ret; 4283 } 4284 4285 /** 4286 * sys_sched_get_priority_min - return minimum RT priority. 4287 * @policy: scheduling class. 4288 * 4289 * Return: On success, this syscall returns the minimum 4290 * rt_priority that can be used by a given scheduling class. 4291 * On failure, a negative error code is returned. 4292 */ 4293 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4294 { 4295 int ret = -EINVAL; 4296 4297 switch (policy) { 4298 case SCHED_FIFO: 4299 case SCHED_RR: 4300 ret = 1; 4301 break; 4302 case SCHED_DEADLINE: 4303 case SCHED_NORMAL: 4304 case SCHED_BATCH: 4305 case SCHED_IDLE: 4306 ret = 0; 4307 } 4308 return ret; 4309 } 4310 4311 /** 4312 * sys_sched_rr_get_interval - return the default timeslice of a process. 4313 * @pid: pid of the process. 4314 * @interval: userspace pointer to the timeslice value. 4315 * 4316 * this syscall writes the default timeslice value of a given process 4317 * into the user-space timespec buffer. A value of '0' means infinity. 4318 * 4319 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4320 * an error code. 4321 */ 4322 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4323 struct timespec __user *, interval) 4324 { 4325 struct task_struct *p; 4326 unsigned int time_slice; 4327 unsigned long flags; 4328 struct rq *rq; 4329 int retval; 4330 struct timespec t; 4331 4332 if (pid < 0) 4333 return -EINVAL; 4334 4335 retval = -ESRCH; 4336 rcu_read_lock(); 4337 p = find_process_by_pid(pid); 4338 if (!p) 4339 goto out_unlock; 4340 4341 retval = security_task_getscheduler(p); 4342 if (retval) 4343 goto out_unlock; 4344 4345 rq = task_rq_lock(p, &flags); 4346 time_slice = 0; 4347 if (p->sched_class->get_rr_interval) 4348 time_slice = p->sched_class->get_rr_interval(rq, p); 4349 task_rq_unlock(rq, p, &flags); 4350 4351 rcu_read_unlock(); 4352 jiffies_to_timespec(time_slice, &t); 4353 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4354 return retval; 4355 4356 out_unlock: 4357 rcu_read_unlock(); 4358 return retval; 4359 } 4360 4361 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4362 4363 void sched_show_task(struct task_struct *p) 4364 { 4365 unsigned long free = 0; 4366 int ppid; 4367 unsigned state; 4368 4369 state = p->state ? __ffs(p->state) + 1 : 0; 4370 printk(KERN_INFO "%-15.15s %c", p->comm, 4371 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4372 #if BITS_PER_LONG == 32 4373 if (state == TASK_RUNNING) 4374 printk(KERN_CONT " running "); 4375 else 4376 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4377 #else 4378 if (state == TASK_RUNNING) 4379 printk(KERN_CONT " running task "); 4380 else 4381 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4382 #endif 4383 #ifdef CONFIG_DEBUG_STACK_USAGE 4384 free = stack_not_used(p); 4385 #endif 4386 rcu_read_lock(); 4387 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4388 rcu_read_unlock(); 4389 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4390 task_pid_nr(p), ppid, 4391 (unsigned long)task_thread_info(p)->flags); 4392 4393 print_worker_info(KERN_INFO, p); 4394 show_stack(p, NULL); 4395 } 4396 4397 void show_state_filter(unsigned long state_filter) 4398 { 4399 struct task_struct *g, *p; 4400 4401 #if BITS_PER_LONG == 32 4402 printk(KERN_INFO 4403 " task PC stack pid father\n"); 4404 #else 4405 printk(KERN_INFO 4406 " task PC stack pid father\n"); 4407 #endif 4408 rcu_read_lock(); 4409 do_each_thread(g, p) { 4410 /* 4411 * reset the NMI-timeout, listing all files on a slow 4412 * console might take a lot of time: 4413 */ 4414 touch_nmi_watchdog(); 4415 if (!state_filter || (p->state & state_filter)) 4416 sched_show_task(p); 4417 } while_each_thread(g, p); 4418 4419 touch_all_softlockup_watchdogs(); 4420 4421 #ifdef CONFIG_SCHED_DEBUG 4422 sysrq_sched_debug_show(); 4423 #endif 4424 rcu_read_unlock(); 4425 /* 4426 * Only show locks if all tasks are dumped: 4427 */ 4428 if (!state_filter) 4429 debug_show_all_locks(); 4430 } 4431 4432 void init_idle_bootup_task(struct task_struct *idle) 4433 { 4434 idle->sched_class = &idle_sched_class; 4435 } 4436 4437 /** 4438 * init_idle - set up an idle thread for a given CPU 4439 * @idle: task in question 4440 * @cpu: cpu the idle task belongs to 4441 * 4442 * NOTE: this function does not set the idle thread's NEED_RESCHED 4443 * flag, to make booting more robust. 4444 */ 4445 void init_idle(struct task_struct *idle, int cpu) 4446 { 4447 struct rq *rq = cpu_rq(cpu); 4448 unsigned long flags; 4449 4450 raw_spin_lock_irqsave(&rq->lock, flags); 4451 4452 __sched_fork(0, idle); 4453 idle->state = TASK_RUNNING; 4454 idle->se.exec_start = sched_clock(); 4455 4456 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4457 /* 4458 * We're having a chicken and egg problem, even though we are 4459 * holding rq->lock, the cpu isn't yet set to this cpu so the 4460 * lockdep check in task_group() will fail. 4461 * 4462 * Similar case to sched_fork(). / Alternatively we could 4463 * use task_rq_lock() here and obtain the other rq->lock. 4464 * 4465 * Silence PROVE_RCU 4466 */ 4467 rcu_read_lock(); 4468 __set_task_cpu(idle, cpu); 4469 rcu_read_unlock(); 4470 4471 rq->curr = rq->idle = idle; 4472 idle->on_rq = 1; 4473 #if defined(CONFIG_SMP) 4474 idle->on_cpu = 1; 4475 #endif 4476 raw_spin_unlock_irqrestore(&rq->lock, flags); 4477 4478 /* Set the preempt count _outside_ the spinlocks! */ 4479 init_idle_preempt_count(idle, cpu); 4480 4481 /* 4482 * The idle tasks have their own, simple scheduling class: 4483 */ 4484 idle->sched_class = &idle_sched_class; 4485 ftrace_graph_init_idle_task(idle, cpu); 4486 vtime_init_idle(idle, cpu); 4487 #if defined(CONFIG_SMP) 4488 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4489 #endif 4490 } 4491 4492 #ifdef CONFIG_SMP 4493 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4494 { 4495 if (p->sched_class && p->sched_class->set_cpus_allowed) 4496 p->sched_class->set_cpus_allowed(p, new_mask); 4497 4498 cpumask_copy(&p->cpus_allowed, new_mask); 4499 p->nr_cpus_allowed = cpumask_weight(new_mask); 4500 } 4501 4502 /* 4503 * This is how migration works: 4504 * 4505 * 1) we invoke migration_cpu_stop() on the target CPU using 4506 * stop_one_cpu(). 4507 * 2) stopper starts to run (implicitly forcing the migrated thread 4508 * off the CPU) 4509 * 3) it checks whether the migrated task is still in the wrong runqueue. 4510 * 4) if it's in the wrong runqueue then the migration thread removes 4511 * it and puts it into the right queue. 4512 * 5) stopper completes and stop_one_cpu() returns and the migration 4513 * is done. 4514 */ 4515 4516 /* 4517 * Change a given task's CPU affinity. Migrate the thread to a 4518 * proper CPU and schedule it away if the CPU it's executing on 4519 * is removed from the allowed bitmask. 4520 * 4521 * NOTE: the caller must have a valid reference to the task, the 4522 * task must not exit() & deallocate itself prematurely. The 4523 * call is not atomic; no spinlocks may be held. 4524 */ 4525 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4526 { 4527 unsigned long flags; 4528 struct rq *rq; 4529 unsigned int dest_cpu; 4530 int ret = 0; 4531 4532 rq = task_rq_lock(p, &flags); 4533 4534 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4535 goto out; 4536 4537 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4538 ret = -EINVAL; 4539 goto out; 4540 } 4541 4542 do_set_cpus_allowed(p, new_mask); 4543 4544 /* Can the task run on the task's current CPU? If so, we're done */ 4545 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4546 goto out; 4547 4548 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4549 if (p->on_rq) { 4550 struct migration_arg arg = { p, dest_cpu }; 4551 /* Need help from migration thread: drop lock and wait. */ 4552 task_rq_unlock(rq, p, &flags); 4553 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4554 tlb_migrate_finish(p->mm); 4555 return 0; 4556 } 4557 out: 4558 task_rq_unlock(rq, p, &flags); 4559 4560 return ret; 4561 } 4562 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4563 4564 /* 4565 * Move (not current) task off this cpu, onto dest cpu. We're doing 4566 * this because either it can't run here any more (set_cpus_allowed() 4567 * away from this CPU, or CPU going down), or because we're 4568 * attempting to rebalance this task on exec (sched_exec). 4569 * 4570 * So we race with normal scheduler movements, but that's OK, as long 4571 * as the task is no longer on this CPU. 4572 * 4573 * Returns non-zero if task was successfully migrated. 4574 */ 4575 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4576 { 4577 struct rq *rq_dest, *rq_src; 4578 int ret = 0; 4579 4580 if (unlikely(!cpu_active(dest_cpu))) 4581 return ret; 4582 4583 rq_src = cpu_rq(src_cpu); 4584 rq_dest = cpu_rq(dest_cpu); 4585 4586 raw_spin_lock(&p->pi_lock); 4587 double_rq_lock(rq_src, rq_dest); 4588 /* Already moved. */ 4589 if (task_cpu(p) != src_cpu) 4590 goto done; 4591 /* Affinity changed (again). */ 4592 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4593 goto fail; 4594 4595 /* 4596 * If we're not on a rq, the next wake-up will ensure we're 4597 * placed properly. 4598 */ 4599 if (p->on_rq) { 4600 dequeue_task(rq_src, p, 0); 4601 set_task_cpu(p, dest_cpu); 4602 enqueue_task(rq_dest, p, 0); 4603 check_preempt_curr(rq_dest, p, 0); 4604 } 4605 done: 4606 ret = 1; 4607 fail: 4608 double_rq_unlock(rq_src, rq_dest); 4609 raw_spin_unlock(&p->pi_lock); 4610 return ret; 4611 } 4612 4613 #ifdef CONFIG_NUMA_BALANCING 4614 /* Migrate current task p to target_cpu */ 4615 int migrate_task_to(struct task_struct *p, int target_cpu) 4616 { 4617 struct migration_arg arg = { p, target_cpu }; 4618 int curr_cpu = task_cpu(p); 4619 4620 if (curr_cpu == target_cpu) 4621 return 0; 4622 4623 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4624 return -EINVAL; 4625 4626 /* TODO: This is not properly updating schedstats */ 4627 4628 trace_sched_move_numa(p, curr_cpu, target_cpu); 4629 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4630 } 4631 4632 /* 4633 * Requeue a task on a given node and accurately track the number of NUMA 4634 * tasks on the runqueues 4635 */ 4636 void sched_setnuma(struct task_struct *p, int nid) 4637 { 4638 struct rq *rq; 4639 unsigned long flags; 4640 bool on_rq, running; 4641 4642 rq = task_rq_lock(p, &flags); 4643 on_rq = p->on_rq; 4644 running = task_current(rq, p); 4645 4646 if (on_rq) 4647 dequeue_task(rq, p, 0); 4648 if (running) 4649 p->sched_class->put_prev_task(rq, p); 4650 4651 p->numa_preferred_nid = nid; 4652 4653 if (running) 4654 p->sched_class->set_curr_task(rq); 4655 if (on_rq) 4656 enqueue_task(rq, p, 0); 4657 task_rq_unlock(rq, p, &flags); 4658 } 4659 #endif 4660 4661 /* 4662 * migration_cpu_stop - this will be executed by a highprio stopper thread 4663 * and performs thread migration by bumping thread off CPU then 4664 * 'pushing' onto another runqueue. 4665 */ 4666 static int migration_cpu_stop(void *data) 4667 { 4668 struct migration_arg *arg = data; 4669 4670 /* 4671 * The original target cpu might have gone down and we might 4672 * be on another cpu but it doesn't matter. 4673 */ 4674 local_irq_disable(); 4675 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4676 local_irq_enable(); 4677 return 0; 4678 } 4679 4680 #ifdef CONFIG_HOTPLUG_CPU 4681 4682 /* 4683 * Ensures that the idle task is using init_mm right before its cpu goes 4684 * offline. 4685 */ 4686 void idle_task_exit(void) 4687 { 4688 struct mm_struct *mm = current->active_mm; 4689 4690 BUG_ON(cpu_online(smp_processor_id())); 4691 4692 if (mm != &init_mm) { 4693 switch_mm(mm, &init_mm, current); 4694 finish_arch_post_lock_switch(); 4695 } 4696 mmdrop(mm); 4697 } 4698 4699 /* 4700 * Since this CPU is going 'away' for a while, fold any nr_active delta 4701 * we might have. Assumes we're called after migrate_tasks() so that the 4702 * nr_active count is stable. 4703 * 4704 * Also see the comment "Global load-average calculations". 4705 */ 4706 static void calc_load_migrate(struct rq *rq) 4707 { 4708 long delta = calc_load_fold_active(rq); 4709 if (delta) 4710 atomic_long_add(delta, &calc_load_tasks); 4711 } 4712 4713 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4714 { 4715 } 4716 4717 static const struct sched_class fake_sched_class = { 4718 .put_prev_task = put_prev_task_fake, 4719 }; 4720 4721 static struct task_struct fake_task = { 4722 /* 4723 * Avoid pull_{rt,dl}_task() 4724 */ 4725 .prio = MAX_PRIO + 1, 4726 .sched_class = &fake_sched_class, 4727 }; 4728 4729 /* 4730 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4731 * try_to_wake_up()->select_task_rq(). 4732 * 4733 * Called with rq->lock held even though we'er in stop_machine() and 4734 * there's no concurrency possible, we hold the required locks anyway 4735 * because of lock validation efforts. 4736 */ 4737 static void migrate_tasks(unsigned int dead_cpu) 4738 { 4739 struct rq *rq = cpu_rq(dead_cpu); 4740 struct task_struct *next, *stop = rq->stop; 4741 int dest_cpu; 4742 4743 /* 4744 * Fudge the rq selection such that the below task selection loop 4745 * doesn't get stuck on the currently eligible stop task. 4746 * 4747 * We're currently inside stop_machine() and the rq is either stuck 4748 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4749 * either way we should never end up calling schedule() until we're 4750 * done here. 4751 */ 4752 rq->stop = NULL; 4753 4754 /* 4755 * put_prev_task() and pick_next_task() sched 4756 * class method both need to have an up-to-date 4757 * value of rq->clock[_task] 4758 */ 4759 update_rq_clock(rq); 4760 4761 for ( ; ; ) { 4762 /* 4763 * There's this thread running, bail when that's the only 4764 * remaining thread. 4765 */ 4766 if (rq->nr_running == 1) 4767 break; 4768 4769 next = pick_next_task(rq, &fake_task); 4770 BUG_ON(!next); 4771 next->sched_class->put_prev_task(rq, next); 4772 4773 /* Find suitable destination for @next, with force if needed. */ 4774 dest_cpu = select_fallback_rq(dead_cpu, next); 4775 raw_spin_unlock(&rq->lock); 4776 4777 __migrate_task(next, dead_cpu, dest_cpu); 4778 4779 raw_spin_lock(&rq->lock); 4780 } 4781 4782 rq->stop = stop; 4783 } 4784 4785 #endif /* CONFIG_HOTPLUG_CPU */ 4786 4787 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4788 4789 static struct ctl_table sd_ctl_dir[] = { 4790 { 4791 .procname = "sched_domain", 4792 .mode = 0555, 4793 }, 4794 {} 4795 }; 4796 4797 static struct ctl_table sd_ctl_root[] = { 4798 { 4799 .procname = "kernel", 4800 .mode = 0555, 4801 .child = sd_ctl_dir, 4802 }, 4803 {} 4804 }; 4805 4806 static struct ctl_table *sd_alloc_ctl_entry(int n) 4807 { 4808 struct ctl_table *entry = 4809 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4810 4811 return entry; 4812 } 4813 4814 static void sd_free_ctl_entry(struct ctl_table **tablep) 4815 { 4816 struct ctl_table *entry; 4817 4818 /* 4819 * In the intermediate directories, both the child directory and 4820 * procname are dynamically allocated and could fail but the mode 4821 * will always be set. In the lowest directory the names are 4822 * static strings and all have proc handlers. 4823 */ 4824 for (entry = *tablep; entry->mode; entry++) { 4825 if (entry->child) 4826 sd_free_ctl_entry(&entry->child); 4827 if (entry->proc_handler == NULL) 4828 kfree(entry->procname); 4829 } 4830 4831 kfree(*tablep); 4832 *tablep = NULL; 4833 } 4834 4835 static int min_load_idx = 0; 4836 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4837 4838 static void 4839 set_table_entry(struct ctl_table *entry, 4840 const char *procname, void *data, int maxlen, 4841 umode_t mode, proc_handler *proc_handler, 4842 bool load_idx) 4843 { 4844 entry->procname = procname; 4845 entry->data = data; 4846 entry->maxlen = maxlen; 4847 entry->mode = mode; 4848 entry->proc_handler = proc_handler; 4849 4850 if (load_idx) { 4851 entry->extra1 = &min_load_idx; 4852 entry->extra2 = &max_load_idx; 4853 } 4854 } 4855 4856 static struct ctl_table * 4857 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4858 { 4859 struct ctl_table *table = sd_alloc_ctl_entry(14); 4860 4861 if (table == NULL) 4862 return NULL; 4863 4864 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4865 sizeof(long), 0644, proc_doulongvec_minmax, false); 4866 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4867 sizeof(long), 0644, proc_doulongvec_minmax, false); 4868 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4869 sizeof(int), 0644, proc_dointvec_minmax, true); 4870 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4871 sizeof(int), 0644, proc_dointvec_minmax, true); 4872 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4873 sizeof(int), 0644, proc_dointvec_minmax, true); 4874 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4875 sizeof(int), 0644, proc_dointvec_minmax, true); 4876 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4877 sizeof(int), 0644, proc_dointvec_minmax, true); 4878 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4879 sizeof(int), 0644, proc_dointvec_minmax, false); 4880 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4881 sizeof(int), 0644, proc_dointvec_minmax, false); 4882 set_table_entry(&table[9], "cache_nice_tries", 4883 &sd->cache_nice_tries, 4884 sizeof(int), 0644, proc_dointvec_minmax, false); 4885 set_table_entry(&table[10], "flags", &sd->flags, 4886 sizeof(int), 0644, proc_dointvec_minmax, false); 4887 set_table_entry(&table[11], "max_newidle_lb_cost", 4888 &sd->max_newidle_lb_cost, 4889 sizeof(long), 0644, proc_doulongvec_minmax, false); 4890 set_table_entry(&table[12], "name", sd->name, 4891 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 4892 /* &table[13] is terminator */ 4893 4894 return table; 4895 } 4896 4897 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 4898 { 4899 struct ctl_table *entry, *table; 4900 struct sched_domain *sd; 4901 int domain_num = 0, i; 4902 char buf[32]; 4903 4904 for_each_domain(cpu, sd) 4905 domain_num++; 4906 entry = table = sd_alloc_ctl_entry(domain_num + 1); 4907 if (table == NULL) 4908 return NULL; 4909 4910 i = 0; 4911 for_each_domain(cpu, sd) { 4912 snprintf(buf, 32, "domain%d", i); 4913 entry->procname = kstrdup(buf, GFP_KERNEL); 4914 entry->mode = 0555; 4915 entry->child = sd_alloc_ctl_domain_table(sd); 4916 entry++; 4917 i++; 4918 } 4919 return table; 4920 } 4921 4922 static struct ctl_table_header *sd_sysctl_header; 4923 static void register_sched_domain_sysctl(void) 4924 { 4925 int i, cpu_num = num_possible_cpus(); 4926 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 4927 char buf[32]; 4928 4929 WARN_ON(sd_ctl_dir[0].child); 4930 sd_ctl_dir[0].child = entry; 4931 4932 if (entry == NULL) 4933 return; 4934 4935 for_each_possible_cpu(i) { 4936 snprintf(buf, 32, "cpu%d", i); 4937 entry->procname = kstrdup(buf, GFP_KERNEL); 4938 entry->mode = 0555; 4939 entry->child = sd_alloc_ctl_cpu_table(i); 4940 entry++; 4941 } 4942 4943 WARN_ON(sd_sysctl_header); 4944 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 4945 } 4946 4947 /* may be called multiple times per register */ 4948 static void unregister_sched_domain_sysctl(void) 4949 { 4950 if (sd_sysctl_header) 4951 unregister_sysctl_table(sd_sysctl_header); 4952 sd_sysctl_header = NULL; 4953 if (sd_ctl_dir[0].child) 4954 sd_free_ctl_entry(&sd_ctl_dir[0].child); 4955 } 4956 #else 4957 static void register_sched_domain_sysctl(void) 4958 { 4959 } 4960 static void unregister_sched_domain_sysctl(void) 4961 { 4962 } 4963 #endif 4964 4965 static void set_rq_online(struct rq *rq) 4966 { 4967 if (!rq->online) { 4968 const struct sched_class *class; 4969 4970 cpumask_set_cpu(rq->cpu, rq->rd->online); 4971 rq->online = 1; 4972 4973 for_each_class(class) { 4974 if (class->rq_online) 4975 class->rq_online(rq); 4976 } 4977 } 4978 } 4979 4980 static void set_rq_offline(struct rq *rq) 4981 { 4982 if (rq->online) { 4983 const struct sched_class *class; 4984 4985 for_each_class(class) { 4986 if (class->rq_offline) 4987 class->rq_offline(rq); 4988 } 4989 4990 cpumask_clear_cpu(rq->cpu, rq->rd->online); 4991 rq->online = 0; 4992 } 4993 } 4994 4995 /* 4996 * migration_call - callback that gets triggered when a CPU is added. 4997 * Here we can start up the necessary migration thread for the new CPU. 4998 */ 4999 static int 5000 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5001 { 5002 int cpu = (long)hcpu; 5003 unsigned long flags; 5004 struct rq *rq = cpu_rq(cpu); 5005 5006 switch (action & ~CPU_TASKS_FROZEN) { 5007 5008 case CPU_UP_PREPARE: 5009 rq->calc_load_update = calc_load_update; 5010 break; 5011 5012 case CPU_ONLINE: 5013 /* Update our root-domain */ 5014 raw_spin_lock_irqsave(&rq->lock, flags); 5015 if (rq->rd) { 5016 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5017 5018 set_rq_online(rq); 5019 } 5020 raw_spin_unlock_irqrestore(&rq->lock, flags); 5021 break; 5022 5023 #ifdef CONFIG_HOTPLUG_CPU 5024 case CPU_DYING: 5025 sched_ttwu_pending(); 5026 /* Update our root-domain */ 5027 raw_spin_lock_irqsave(&rq->lock, flags); 5028 if (rq->rd) { 5029 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5030 set_rq_offline(rq); 5031 } 5032 migrate_tasks(cpu); 5033 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5034 raw_spin_unlock_irqrestore(&rq->lock, flags); 5035 break; 5036 5037 case CPU_DEAD: 5038 calc_load_migrate(rq); 5039 break; 5040 #endif 5041 } 5042 5043 update_max_interval(); 5044 5045 return NOTIFY_OK; 5046 } 5047 5048 /* 5049 * Register at high priority so that task migration (migrate_all_tasks) 5050 * happens before everything else. This has to be lower priority than 5051 * the notifier in the perf_event subsystem, though. 5052 */ 5053 static struct notifier_block migration_notifier = { 5054 .notifier_call = migration_call, 5055 .priority = CPU_PRI_MIGRATION, 5056 }; 5057 5058 static int sched_cpu_active(struct notifier_block *nfb, 5059 unsigned long action, void *hcpu) 5060 { 5061 switch (action & ~CPU_TASKS_FROZEN) { 5062 case CPU_STARTING: 5063 case CPU_DOWN_FAILED: 5064 set_cpu_active((long)hcpu, true); 5065 return NOTIFY_OK; 5066 default: 5067 return NOTIFY_DONE; 5068 } 5069 } 5070 5071 static int sched_cpu_inactive(struct notifier_block *nfb, 5072 unsigned long action, void *hcpu) 5073 { 5074 unsigned long flags; 5075 long cpu = (long)hcpu; 5076 5077 switch (action & ~CPU_TASKS_FROZEN) { 5078 case CPU_DOWN_PREPARE: 5079 set_cpu_active(cpu, false); 5080 5081 /* explicitly allow suspend */ 5082 if (!(action & CPU_TASKS_FROZEN)) { 5083 struct dl_bw *dl_b = dl_bw_of(cpu); 5084 bool overflow; 5085 int cpus; 5086 5087 raw_spin_lock_irqsave(&dl_b->lock, flags); 5088 cpus = dl_bw_cpus(cpu); 5089 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5090 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5091 5092 if (overflow) 5093 return notifier_from_errno(-EBUSY); 5094 } 5095 return NOTIFY_OK; 5096 } 5097 5098 return NOTIFY_DONE; 5099 } 5100 5101 static int __init migration_init(void) 5102 { 5103 void *cpu = (void *)(long)smp_processor_id(); 5104 int err; 5105 5106 /* Initialize migration for the boot CPU */ 5107 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5108 BUG_ON(err == NOTIFY_BAD); 5109 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5110 register_cpu_notifier(&migration_notifier); 5111 5112 /* Register cpu active notifiers */ 5113 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5114 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5115 5116 return 0; 5117 } 5118 early_initcall(migration_init); 5119 #endif 5120 5121 #ifdef CONFIG_SMP 5122 5123 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5124 5125 #ifdef CONFIG_SCHED_DEBUG 5126 5127 static __read_mostly int sched_debug_enabled; 5128 5129 static int __init sched_debug_setup(char *str) 5130 { 5131 sched_debug_enabled = 1; 5132 5133 return 0; 5134 } 5135 early_param("sched_debug", sched_debug_setup); 5136 5137 static inline bool sched_debug(void) 5138 { 5139 return sched_debug_enabled; 5140 } 5141 5142 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5143 struct cpumask *groupmask) 5144 { 5145 struct sched_group *group = sd->groups; 5146 char str[256]; 5147 5148 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5149 cpumask_clear(groupmask); 5150 5151 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5152 5153 if (!(sd->flags & SD_LOAD_BALANCE)) { 5154 printk("does not load-balance\n"); 5155 if (sd->parent) 5156 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5157 " has parent"); 5158 return -1; 5159 } 5160 5161 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5162 5163 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5164 printk(KERN_ERR "ERROR: domain->span does not contain " 5165 "CPU%d\n", cpu); 5166 } 5167 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5168 printk(KERN_ERR "ERROR: domain->groups does not contain" 5169 " CPU%d\n", cpu); 5170 } 5171 5172 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5173 do { 5174 if (!group) { 5175 printk("\n"); 5176 printk(KERN_ERR "ERROR: group is NULL\n"); 5177 break; 5178 } 5179 5180 /* 5181 * Even though we initialize ->power to something semi-sane, 5182 * we leave power_orig unset. This allows us to detect if 5183 * domain iteration is still funny without causing /0 traps. 5184 */ 5185 if (!group->sgp->power_orig) { 5186 printk(KERN_CONT "\n"); 5187 printk(KERN_ERR "ERROR: domain->cpu_power not " 5188 "set\n"); 5189 break; 5190 } 5191 5192 if (!cpumask_weight(sched_group_cpus(group))) { 5193 printk(KERN_CONT "\n"); 5194 printk(KERN_ERR "ERROR: empty group\n"); 5195 break; 5196 } 5197 5198 if (!(sd->flags & SD_OVERLAP) && 5199 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5200 printk(KERN_CONT "\n"); 5201 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5202 break; 5203 } 5204 5205 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5206 5207 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5208 5209 printk(KERN_CONT " %s", str); 5210 if (group->sgp->power != SCHED_POWER_SCALE) { 5211 printk(KERN_CONT " (cpu_power = %d)", 5212 group->sgp->power); 5213 } 5214 5215 group = group->next; 5216 } while (group != sd->groups); 5217 printk(KERN_CONT "\n"); 5218 5219 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5220 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5221 5222 if (sd->parent && 5223 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5224 printk(KERN_ERR "ERROR: parent span is not a superset " 5225 "of domain->span\n"); 5226 return 0; 5227 } 5228 5229 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5230 { 5231 int level = 0; 5232 5233 if (!sched_debug_enabled) 5234 return; 5235 5236 if (!sd) { 5237 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5238 return; 5239 } 5240 5241 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5242 5243 for (;;) { 5244 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5245 break; 5246 level++; 5247 sd = sd->parent; 5248 if (!sd) 5249 break; 5250 } 5251 } 5252 #else /* !CONFIG_SCHED_DEBUG */ 5253 # define sched_domain_debug(sd, cpu) do { } while (0) 5254 static inline bool sched_debug(void) 5255 { 5256 return false; 5257 } 5258 #endif /* CONFIG_SCHED_DEBUG */ 5259 5260 static int sd_degenerate(struct sched_domain *sd) 5261 { 5262 if (cpumask_weight(sched_domain_span(sd)) == 1) 5263 return 1; 5264 5265 /* Following flags need at least 2 groups */ 5266 if (sd->flags & (SD_LOAD_BALANCE | 5267 SD_BALANCE_NEWIDLE | 5268 SD_BALANCE_FORK | 5269 SD_BALANCE_EXEC | 5270 SD_SHARE_CPUPOWER | 5271 SD_SHARE_PKG_RESOURCES)) { 5272 if (sd->groups != sd->groups->next) 5273 return 0; 5274 } 5275 5276 /* Following flags don't use groups */ 5277 if (sd->flags & (SD_WAKE_AFFINE)) 5278 return 0; 5279 5280 return 1; 5281 } 5282 5283 static int 5284 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5285 { 5286 unsigned long cflags = sd->flags, pflags = parent->flags; 5287 5288 if (sd_degenerate(parent)) 5289 return 1; 5290 5291 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5292 return 0; 5293 5294 /* Flags needing groups don't count if only 1 group in parent */ 5295 if (parent->groups == parent->groups->next) { 5296 pflags &= ~(SD_LOAD_BALANCE | 5297 SD_BALANCE_NEWIDLE | 5298 SD_BALANCE_FORK | 5299 SD_BALANCE_EXEC | 5300 SD_SHARE_CPUPOWER | 5301 SD_SHARE_PKG_RESOURCES | 5302 SD_PREFER_SIBLING); 5303 if (nr_node_ids == 1) 5304 pflags &= ~SD_SERIALIZE; 5305 } 5306 if (~cflags & pflags) 5307 return 0; 5308 5309 return 1; 5310 } 5311 5312 static void free_rootdomain(struct rcu_head *rcu) 5313 { 5314 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5315 5316 cpupri_cleanup(&rd->cpupri); 5317 cpudl_cleanup(&rd->cpudl); 5318 free_cpumask_var(rd->dlo_mask); 5319 free_cpumask_var(rd->rto_mask); 5320 free_cpumask_var(rd->online); 5321 free_cpumask_var(rd->span); 5322 kfree(rd); 5323 } 5324 5325 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5326 { 5327 struct root_domain *old_rd = NULL; 5328 unsigned long flags; 5329 5330 raw_spin_lock_irqsave(&rq->lock, flags); 5331 5332 if (rq->rd) { 5333 old_rd = rq->rd; 5334 5335 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5336 set_rq_offline(rq); 5337 5338 cpumask_clear_cpu(rq->cpu, old_rd->span); 5339 5340 /* 5341 * If we dont want to free the old_rd yet then 5342 * set old_rd to NULL to skip the freeing later 5343 * in this function: 5344 */ 5345 if (!atomic_dec_and_test(&old_rd->refcount)) 5346 old_rd = NULL; 5347 } 5348 5349 atomic_inc(&rd->refcount); 5350 rq->rd = rd; 5351 5352 cpumask_set_cpu(rq->cpu, rd->span); 5353 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5354 set_rq_online(rq); 5355 5356 raw_spin_unlock_irqrestore(&rq->lock, flags); 5357 5358 if (old_rd) 5359 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5360 } 5361 5362 static int init_rootdomain(struct root_domain *rd) 5363 { 5364 memset(rd, 0, sizeof(*rd)); 5365 5366 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5367 goto out; 5368 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5369 goto free_span; 5370 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5371 goto free_online; 5372 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5373 goto free_dlo_mask; 5374 5375 init_dl_bw(&rd->dl_bw); 5376 if (cpudl_init(&rd->cpudl) != 0) 5377 goto free_dlo_mask; 5378 5379 if (cpupri_init(&rd->cpupri) != 0) 5380 goto free_rto_mask; 5381 return 0; 5382 5383 free_rto_mask: 5384 free_cpumask_var(rd->rto_mask); 5385 free_dlo_mask: 5386 free_cpumask_var(rd->dlo_mask); 5387 free_online: 5388 free_cpumask_var(rd->online); 5389 free_span: 5390 free_cpumask_var(rd->span); 5391 out: 5392 return -ENOMEM; 5393 } 5394 5395 /* 5396 * By default the system creates a single root-domain with all cpus as 5397 * members (mimicking the global state we have today). 5398 */ 5399 struct root_domain def_root_domain; 5400 5401 static void init_defrootdomain(void) 5402 { 5403 init_rootdomain(&def_root_domain); 5404 5405 atomic_set(&def_root_domain.refcount, 1); 5406 } 5407 5408 static struct root_domain *alloc_rootdomain(void) 5409 { 5410 struct root_domain *rd; 5411 5412 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5413 if (!rd) 5414 return NULL; 5415 5416 if (init_rootdomain(rd) != 0) { 5417 kfree(rd); 5418 return NULL; 5419 } 5420 5421 return rd; 5422 } 5423 5424 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5425 { 5426 struct sched_group *tmp, *first; 5427 5428 if (!sg) 5429 return; 5430 5431 first = sg; 5432 do { 5433 tmp = sg->next; 5434 5435 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5436 kfree(sg->sgp); 5437 5438 kfree(sg); 5439 sg = tmp; 5440 } while (sg != first); 5441 } 5442 5443 static void free_sched_domain(struct rcu_head *rcu) 5444 { 5445 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5446 5447 /* 5448 * If its an overlapping domain it has private groups, iterate and 5449 * nuke them all. 5450 */ 5451 if (sd->flags & SD_OVERLAP) { 5452 free_sched_groups(sd->groups, 1); 5453 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5454 kfree(sd->groups->sgp); 5455 kfree(sd->groups); 5456 } 5457 kfree(sd); 5458 } 5459 5460 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5461 { 5462 call_rcu(&sd->rcu, free_sched_domain); 5463 } 5464 5465 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5466 { 5467 for (; sd; sd = sd->parent) 5468 destroy_sched_domain(sd, cpu); 5469 } 5470 5471 /* 5472 * Keep a special pointer to the highest sched_domain that has 5473 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5474 * allows us to avoid some pointer chasing select_idle_sibling(). 5475 * 5476 * Also keep a unique ID per domain (we use the first cpu number in 5477 * the cpumask of the domain), this allows us to quickly tell if 5478 * two cpus are in the same cache domain, see cpus_share_cache(). 5479 */ 5480 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5481 DEFINE_PER_CPU(int, sd_llc_size); 5482 DEFINE_PER_CPU(int, sd_llc_id); 5483 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5484 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5485 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5486 5487 static void update_top_cache_domain(int cpu) 5488 { 5489 struct sched_domain *sd; 5490 struct sched_domain *busy_sd = NULL; 5491 int id = cpu; 5492 int size = 1; 5493 5494 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5495 if (sd) { 5496 id = cpumask_first(sched_domain_span(sd)); 5497 size = cpumask_weight(sched_domain_span(sd)); 5498 busy_sd = sd->parent; /* sd_busy */ 5499 } 5500 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5501 5502 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5503 per_cpu(sd_llc_size, cpu) = size; 5504 per_cpu(sd_llc_id, cpu) = id; 5505 5506 sd = lowest_flag_domain(cpu, SD_NUMA); 5507 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5508 5509 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5510 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5511 } 5512 5513 /* 5514 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5515 * hold the hotplug lock. 5516 */ 5517 static void 5518 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5519 { 5520 struct rq *rq = cpu_rq(cpu); 5521 struct sched_domain *tmp; 5522 5523 /* Remove the sched domains which do not contribute to scheduling. */ 5524 for (tmp = sd; tmp; ) { 5525 struct sched_domain *parent = tmp->parent; 5526 if (!parent) 5527 break; 5528 5529 if (sd_parent_degenerate(tmp, parent)) { 5530 tmp->parent = parent->parent; 5531 if (parent->parent) 5532 parent->parent->child = tmp; 5533 /* 5534 * Transfer SD_PREFER_SIBLING down in case of a 5535 * degenerate parent; the spans match for this 5536 * so the property transfers. 5537 */ 5538 if (parent->flags & SD_PREFER_SIBLING) 5539 tmp->flags |= SD_PREFER_SIBLING; 5540 destroy_sched_domain(parent, cpu); 5541 } else 5542 tmp = tmp->parent; 5543 } 5544 5545 if (sd && sd_degenerate(sd)) { 5546 tmp = sd; 5547 sd = sd->parent; 5548 destroy_sched_domain(tmp, cpu); 5549 if (sd) 5550 sd->child = NULL; 5551 } 5552 5553 sched_domain_debug(sd, cpu); 5554 5555 rq_attach_root(rq, rd); 5556 tmp = rq->sd; 5557 rcu_assign_pointer(rq->sd, sd); 5558 destroy_sched_domains(tmp, cpu); 5559 5560 update_top_cache_domain(cpu); 5561 } 5562 5563 /* cpus with isolated domains */ 5564 static cpumask_var_t cpu_isolated_map; 5565 5566 /* Setup the mask of cpus configured for isolated domains */ 5567 static int __init isolated_cpu_setup(char *str) 5568 { 5569 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5570 cpulist_parse(str, cpu_isolated_map); 5571 return 1; 5572 } 5573 5574 __setup("isolcpus=", isolated_cpu_setup); 5575 5576 static const struct cpumask *cpu_cpu_mask(int cpu) 5577 { 5578 return cpumask_of_node(cpu_to_node(cpu)); 5579 } 5580 5581 struct sd_data { 5582 struct sched_domain **__percpu sd; 5583 struct sched_group **__percpu sg; 5584 struct sched_group_power **__percpu sgp; 5585 }; 5586 5587 struct s_data { 5588 struct sched_domain ** __percpu sd; 5589 struct root_domain *rd; 5590 }; 5591 5592 enum s_alloc { 5593 sa_rootdomain, 5594 sa_sd, 5595 sa_sd_storage, 5596 sa_none, 5597 }; 5598 5599 struct sched_domain_topology_level; 5600 5601 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5602 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5603 5604 #define SDTL_OVERLAP 0x01 5605 5606 struct sched_domain_topology_level { 5607 sched_domain_init_f init; 5608 sched_domain_mask_f mask; 5609 int flags; 5610 int numa_level; 5611 struct sd_data data; 5612 }; 5613 5614 /* 5615 * Build an iteration mask that can exclude certain CPUs from the upwards 5616 * domain traversal. 5617 * 5618 * Asymmetric node setups can result in situations where the domain tree is of 5619 * unequal depth, make sure to skip domains that already cover the entire 5620 * range. 5621 * 5622 * In that case build_sched_domains() will have terminated the iteration early 5623 * and our sibling sd spans will be empty. Domains should always include the 5624 * cpu they're built on, so check that. 5625 * 5626 */ 5627 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5628 { 5629 const struct cpumask *span = sched_domain_span(sd); 5630 struct sd_data *sdd = sd->private; 5631 struct sched_domain *sibling; 5632 int i; 5633 5634 for_each_cpu(i, span) { 5635 sibling = *per_cpu_ptr(sdd->sd, i); 5636 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5637 continue; 5638 5639 cpumask_set_cpu(i, sched_group_mask(sg)); 5640 } 5641 } 5642 5643 /* 5644 * Return the canonical balance cpu for this group, this is the first cpu 5645 * of this group that's also in the iteration mask. 5646 */ 5647 int group_balance_cpu(struct sched_group *sg) 5648 { 5649 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5650 } 5651 5652 static int 5653 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5654 { 5655 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5656 const struct cpumask *span = sched_domain_span(sd); 5657 struct cpumask *covered = sched_domains_tmpmask; 5658 struct sd_data *sdd = sd->private; 5659 struct sched_domain *child; 5660 int i; 5661 5662 cpumask_clear(covered); 5663 5664 for_each_cpu(i, span) { 5665 struct cpumask *sg_span; 5666 5667 if (cpumask_test_cpu(i, covered)) 5668 continue; 5669 5670 child = *per_cpu_ptr(sdd->sd, i); 5671 5672 /* See the comment near build_group_mask(). */ 5673 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5674 continue; 5675 5676 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5677 GFP_KERNEL, cpu_to_node(cpu)); 5678 5679 if (!sg) 5680 goto fail; 5681 5682 sg_span = sched_group_cpus(sg); 5683 if (child->child) { 5684 child = child->child; 5685 cpumask_copy(sg_span, sched_domain_span(child)); 5686 } else 5687 cpumask_set_cpu(i, sg_span); 5688 5689 cpumask_or(covered, covered, sg_span); 5690 5691 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5692 if (atomic_inc_return(&sg->sgp->ref) == 1) 5693 build_group_mask(sd, sg); 5694 5695 /* 5696 * Initialize sgp->power such that even if we mess up the 5697 * domains and no possible iteration will get us here, we won't 5698 * die on a /0 trap. 5699 */ 5700 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5701 sg->sgp->power_orig = sg->sgp->power; 5702 5703 /* 5704 * Make sure the first group of this domain contains the 5705 * canonical balance cpu. Otherwise the sched_domain iteration 5706 * breaks. See update_sg_lb_stats(). 5707 */ 5708 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5709 group_balance_cpu(sg) == cpu) 5710 groups = sg; 5711 5712 if (!first) 5713 first = sg; 5714 if (last) 5715 last->next = sg; 5716 last = sg; 5717 last->next = first; 5718 } 5719 sd->groups = groups; 5720 5721 return 0; 5722 5723 fail: 5724 free_sched_groups(first, 0); 5725 5726 return -ENOMEM; 5727 } 5728 5729 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5730 { 5731 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5732 struct sched_domain *child = sd->child; 5733 5734 if (child) 5735 cpu = cpumask_first(sched_domain_span(child)); 5736 5737 if (sg) { 5738 *sg = *per_cpu_ptr(sdd->sg, cpu); 5739 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5740 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5741 } 5742 5743 return cpu; 5744 } 5745 5746 /* 5747 * build_sched_groups will build a circular linked list of the groups 5748 * covered by the given span, and will set each group's ->cpumask correctly, 5749 * and ->cpu_power to 0. 5750 * 5751 * Assumes the sched_domain tree is fully constructed 5752 */ 5753 static int 5754 build_sched_groups(struct sched_domain *sd, int cpu) 5755 { 5756 struct sched_group *first = NULL, *last = NULL; 5757 struct sd_data *sdd = sd->private; 5758 const struct cpumask *span = sched_domain_span(sd); 5759 struct cpumask *covered; 5760 int i; 5761 5762 get_group(cpu, sdd, &sd->groups); 5763 atomic_inc(&sd->groups->ref); 5764 5765 if (cpu != cpumask_first(span)) 5766 return 0; 5767 5768 lockdep_assert_held(&sched_domains_mutex); 5769 covered = sched_domains_tmpmask; 5770 5771 cpumask_clear(covered); 5772 5773 for_each_cpu(i, span) { 5774 struct sched_group *sg; 5775 int group, j; 5776 5777 if (cpumask_test_cpu(i, covered)) 5778 continue; 5779 5780 group = get_group(i, sdd, &sg); 5781 cpumask_clear(sched_group_cpus(sg)); 5782 sg->sgp->power = 0; 5783 cpumask_setall(sched_group_mask(sg)); 5784 5785 for_each_cpu(j, span) { 5786 if (get_group(j, sdd, NULL) != group) 5787 continue; 5788 5789 cpumask_set_cpu(j, covered); 5790 cpumask_set_cpu(j, sched_group_cpus(sg)); 5791 } 5792 5793 if (!first) 5794 first = sg; 5795 if (last) 5796 last->next = sg; 5797 last = sg; 5798 } 5799 last->next = first; 5800 5801 return 0; 5802 } 5803 5804 /* 5805 * Initialize sched groups cpu_power. 5806 * 5807 * cpu_power indicates the capacity of sched group, which is used while 5808 * distributing the load between different sched groups in a sched domain. 5809 * Typically cpu_power for all the groups in a sched domain will be same unless 5810 * there are asymmetries in the topology. If there are asymmetries, group 5811 * having more cpu_power will pickup more load compared to the group having 5812 * less cpu_power. 5813 */ 5814 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5815 { 5816 struct sched_group *sg = sd->groups; 5817 5818 WARN_ON(!sg); 5819 5820 do { 5821 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5822 sg = sg->next; 5823 } while (sg != sd->groups); 5824 5825 if (cpu != group_balance_cpu(sg)) 5826 return; 5827 5828 update_group_power(sd, cpu); 5829 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5830 } 5831 5832 int __weak arch_sd_sibling_asym_packing(void) 5833 { 5834 return 0*SD_ASYM_PACKING; 5835 } 5836 5837 /* 5838 * Initializers for schedule domains 5839 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5840 */ 5841 5842 #ifdef CONFIG_SCHED_DEBUG 5843 # define SD_INIT_NAME(sd, type) sd->name = #type 5844 #else 5845 # define SD_INIT_NAME(sd, type) do { } while (0) 5846 #endif 5847 5848 #define SD_INIT_FUNC(type) \ 5849 static noinline struct sched_domain * \ 5850 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5851 { \ 5852 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5853 *sd = SD_##type##_INIT; \ 5854 SD_INIT_NAME(sd, type); \ 5855 sd->private = &tl->data; \ 5856 return sd; \ 5857 } 5858 5859 SD_INIT_FUNC(CPU) 5860 #ifdef CONFIG_SCHED_SMT 5861 SD_INIT_FUNC(SIBLING) 5862 #endif 5863 #ifdef CONFIG_SCHED_MC 5864 SD_INIT_FUNC(MC) 5865 #endif 5866 #ifdef CONFIG_SCHED_BOOK 5867 SD_INIT_FUNC(BOOK) 5868 #endif 5869 5870 static int default_relax_domain_level = -1; 5871 int sched_domain_level_max; 5872 5873 static int __init setup_relax_domain_level(char *str) 5874 { 5875 if (kstrtoint(str, 0, &default_relax_domain_level)) 5876 pr_warn("Unable to set relax_domain_level\n"); 5877 5878 return 1; 5879 } 5880 __setup("relax_domain_level=", setup_relax_domain_level); 5881 5882 static void set_domain_attribute(struct sched_domain *sd, 5883 struct sched_domain_attr *attr) 5884 { 5885 int request; 5886 5887 if (!attr || attr->relax_domain_level < 0) { 5888 if (default_relax_domain_level < 0) 5889 return; 5890 else 5891 request = default_relax_domain_level; 5892 } else 5893 request = attr->relax_domain_level; 5894 if (request < sd->level) { 5895 /* turn off idle balance on this domain */ 5896 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5897 } else { 5898 /* turn on idle balance on this domain */ 5899 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5900 } 5901 } 5902 5903 static void __sdt_free(const struct cpumask *cpu_map); 5904 static int __sdt_alloc(const struct cpumask *cpu_map); 5905 5906 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5907 const struct cpumask *cpu_map) 5908 { 5909 switch (what) { 5910 case sa_rootdomain: 5911 if (!atomic_read(&d->rd->refcount)) 5912 free_rootdomain(&d->rd->rcu); /* fall through */ 5913 case sa_sd: 5914 free_percpu(d->sd); /* fall through */ 5915 case sa_sd_storage: 5916 __sdt_free(cpu_map); /* fall through */ 5917 case sa_none: 5918 break; 5919 } 5920 } 5921 5922 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5923 const struct cpumask *cpu_map) 5924 { 5925 memset(d, 0, sizeof(*d)); 5926 5927 if (__sdt_alloc(cpu_map)) 5928 return sa_sd_storage; 5929 d->sd = alloc_percpu(struct sched_domain *); 5930 if (!d->sd) 5931 return sa_sd_storage; 5932 d->rd = alloc_rootdomain(); 5933 if (!d->rd) 5934 return sa_sd; 5935 return sa_rootdomain; 5936 } 5937 5938 /* 5939 * NULL the sd_data elements we've used to build the sched_domain and 5940 * sched_group structure so that the subsequent __free_domain_allocs() 5941 * will not free the data we're using. 5942 */ 5943 static void claim_allocations(int cpu, struct sched_domain *sd) 5944 { 5945 struct sd_data *sdd = sd->private; 5946 5947 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 5948 *per_cpu_ptr(sdd->sd, cpu) = NULL; 5949 5950 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 5951 *per_cpu_ptr(sdd->sg, cpu) = NULL; 5952 5953 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 5954 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 5955 } 5956 5957 #ifdef CONFIG_SCHED_SMT 5958 static const struct cpumask *cpu_smt_mask(int cpu) 5959 { 5960 return topology_thread_cpumask(cpu); 5961 } 5962 #endif 5963 5964 /* 5965 * Topology list, bottom-up. 5966 */ 5967 static struct sched_domain_topology_level default_topology[] = { 5968 #ifdef CONFIG_SCHED_SMT 5969 { sd_init_SIBLING, cpu_smt_mask, }, 5970 #endif 5971 #ifdef CONFIG_SCHED_MC 5972 { sd_init_MC, cpu_coregroup_mask, }, 5973 #endif 5974 #ifdef CONFIG_SCHED_BOOK 5975 { sd_init_BOOK, cpu_book_mask, }, 5976 #endif 5977 { sd_init_CPU, cpu_cpu_mask, }, 5978 { NULL, }, 5979 }; 5980 5981 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 5982 5983 #define for_each_sd_topology(tl) \ 5984 for (tl = sched_domain_topology; tl->init; tl++) 5985 5986 #ifdef CONFIG_NUMA 5987 5988 static int sched_domains_numa_levels; 5989 static int *sched_domains_numa_distance; 5990 static struct cpumask ***sched_domains_numa_masks; 5991 static int sched_domains_curr_level; 5992 5993 static inline int sd_local_flags(int level) 5994 { 5995 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 5996 return 0; 5997 5998 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 5999 } 6000 6001 static struct sched_domain * 6002 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6003 { 6004 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6005 int level = tl->numa_level; 6006 int sd_weight = cpumask_weight( 6007 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6008 6009 *sd = (struct sched_domain){ 6010 .min_interval = sd_weight, 6011 .max_interval = 2*sd_weight, 6012 .busy_factor = 32, 6013 .imbalance_pct = 125, 6014 .cache_nice_tries = 2, 6015 .busy_idx = 3, 6016 .idle_idx = 2, 6017 .newidle_idx = 0, 6018 .wake_idx = 0, 6019 .forkexec_idx = 0, 6020 6021 .flags = 1*SD_LOAD_BALANCE 6022 | 1*SD_BALANCE_NEWIDLE 6023 | 0*SD_BALANCE_EXEC 6024 | 0*SD_BALANCE_FORK 6025 | 0*SD_BALANCE_WAKE 6026 | 0*SD_WAKE_AFFINE 6027 | 0*SD_SHARE_CPUPOWER 6028 | 0*SD_SHARE_PKG_RESOURCES 6029 | 1*SD_SERIALIZE 6030 | 0*SD_PREFER_SIBLING 6031 | 1*SD_NUMA 6032 | sd_local_flags(level) 6033 , 6034 .last_balance = jiffies, 6035 .balance_interval = sd_weight, 6036 }; 6037 SD_INIT_NAME(sd, NUMA); 6038 sd->private = &tl->data; 6039 6040 /* 6041 * Ugly hack to pass state to sd_numa_mask()... 6042 */ 6043 sched_domains_curr_level = tl->numa_level; 6044 6045 return sd; 6046 } 6047 6048 static const struct cpumask *sd_numa_mask(int cpu) 6049 { 6050 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6051 } 6052 6053 static void sched_numa_warn(const char *str) 6054 { 6055 static int done = false; 6056 int i,j; 6057 6058 if (done) 6059 return; 6060 6061 done = true; 6062 6063 printk(KERN_WARNING "ERROR: %s\n\n", str); 6064 6065 for (i = 0; i < nr_node_ids; i++) { 6066 printk(KERN_WARNING " "); 6067 for (j = 0; j < nr_node_ids; j++) 6068 printk(KERN_CONT "%02d ", node_distance(i,j)); 6069 printk(KERN_CONT "\n"); 6070 } 6071 printk(KERN_WARNING "\n"); 6072 } 6073 6074 static bool find_numa_distance(int distance) 6075 { 6076 int i; 6077 6078 if (distance == node_distance(0, 0)) 6079 return true; 6080 6081 for (i = 0; i < sched_domains_numa_levels; i++) { 6082 if (sched_domains_numa_distance[i] == distance) 6083 return true; 6084 } 6085 6086 return false; 6087 } 6088 6089 static void sched_init_numa(void) 6090 { 6091 int next_distance, curr_distance = node_distance(0, 0); 6092 struct sched_domain_topology_level *tl; 6093 int level = 0; 6094 int i, j, k; 6095 6096 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6097 if (!sched_domains_numa_distance) 6098 return; 6099 6100 /* 6101 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6102 * unique distances in the node_distance() table. 6103 * 6104 * Assumes node_distance(0,j) includes all distances in 6105 * node_distance(i,j) in order to avoid cubic time. 6106 */ 6107 next_distance = curr_distance; 6108 for (i = 0; i < nr_node_ids; i++) { 6109 for (j = 0; j < nr_node_ids; j++) { 6110 for (k = 0; k < nr_node_ids; k++) { 6111 int distance = node_distance(i, k); 6112 6113 if (distance > curr_distance && 6114 (distance < next_distance || 6115 next_distance == curr_distance)) 6116 next_distance = distance; 6117 6118 /* 6119 * While not a strong assumption it would be nice to know 6120 * about cases where if node A is connected to B, B is not 6121 * equally connected to A. 6122 */ 6123 if (sched_debug() && node_distance(k, i) != distance) 6124 sched_numa_warn("Node-distance not symmetric"); 6125 6126 if (sched_debug() && i && !find_numa_distance(distance)) 6127 sched_numa_warn("Node-0 not representative"); 6128 } 6129 if (next_distance != curr_distance) { 6130 sched_domains_numa_distance[level++] = next_distance; 6131 sched_domains_numa_levels = level; 6132 curr_distance = next_distance; 6133 } else break; 6134 } 6135 6136 /* 6137 * In case of sched_debug() we verify the above assumption. 6138 */ 6139 if (!sched_debug()) 6140 break; 6141 } 6142 /* 6143 * 'level' contains the number of unique distances, excluding the 6144 * identity distance node_distance(i,i). 6145 * 6146 * The sched_domains_numa_distance[] array includes the actual distance 6147 * numbers. 6148 */ 6149 6150 /* 6151 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6152 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6153 * the array will contain less then 'level' members. This could be 6154 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6155 * in other functions. 6156 * 6157 * We reset it to 'level' at the end of this function. 6158 */ 6159 sched_domains_numa_levels = 0; 6160 6161 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6162 if (!sched_domains_numa_masks) 6163 return; 6164 6165 /* 6166 * Now for each level, construct a mask per node which contains all 6167 * cpus of nodes that are that many hops away from us. 6168 */ 6169 for (i = 0; i < level; i++) { 6170 sched_domains_numa_masks[i] = 6171 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6172 if (!sched_domains_numa_masks[i]) 6173 return; 6174 6175 for (j = 0; j < nr_node_ids; j++) { 6176 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6177 if (!mask) 6178 return; 6179 6180 sched_domains_numa_masks[i][j] = mask; 6181 6182 for (k = 0; k < nr_node_ids; k++) { 6183 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6184 continue; 6185 6186 cpumask_or(mask, mask, cpumask_of_node(k)); 6187 } 6188 } 6189 } 6190 6191 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6192 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6193 if (!tl) 6194 return; 6195 6196 /* 6197 * Copy the default topology bits.. 6198 */ 6199 for (i = 0; default_topology[i].init; i++) 6200 tl[i] = default_topology[i]; 6201 6202 /* 6203 * .. and append 'j' levels of NUMA goodness. 6204 */ 6205 for (j = 0; j < level; i++, j++) { 6206 tl[i] = (struct sched_domain_topology_level){ 6207 .init = sd_numa_init, 6208 .mask = sd_numa_mask, 6209 .flags = SDTL_OVERLAP, 6210 .numa_level = j, 6211 }; 6212 } 6213 6214 sched_domain_topology = tl; 6215 6216 sched_domains_numa_levels = level; 6217 } 6218 6219 static void sched_domains_numa_masks_set(int cpu) 6220 { 6221 int i, j; 6222 int node = cpu_to_node(cpu); 6223 6224 for (i = 0; i < sched_domains_numa_levels; i++) { 6225 for (j = 0; j < nr_node_ids; j++) { 6226 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6227 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6228 } 6229 } 6230 } 6231 6232 static void sched_domains_numa_masks_clear(int cpu) 6233 { 6234 int i, j; 6235 for (i = 0; i < sched_domains_numa_levels; i++) { 6236 for (j = 0; j < nr_node_ids; j++) 6237 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6238 } 6239 } 6240 6241 /* 6242 * Update sched_domains_numa_masks[level][node] array when new cpus 6243 * are onlined. 6244 */ 6245 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6246 unsigned long action, 6247 void *hcpu) 6248 { 6249 int cpu = (long)hcpu; 6250 6251 switch (action & ~CPU_TASKS_FROZEN) { 6252 case CPU_ONLINE: 6253 sched_domains_numa_masks_set(cpu); 6254 break; 6255 6256 case CPU_DEAD: 6257 sched_domains_numa_masks_clear(cpu); 6258 break; 6259 6260 default: 6261 return NOTIFY_DONE; 6262 } 6263 6264 return NOTIFY_OK; 6265 } 6266 #else 6267 static inline void sched_init_numa(void) 6268 { 6269 } 6270 6271 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6272 unsigned long action, 6273 void *hcpu) 6274 { 6275 return 0; 6276 } 6277 #endif /* CONFIG_NUMA */ 6278 6279 static int __sdt_alloc(const struct cpumask *cpu_map) 6280 { 6281 struct sched_domain_topology_level *tl; 6282 int j; 6283 6284 for_each_sd_topology(tl) { 6285 struct sd_data *sdd = &tl->data; 6286 6287 sdd->sd = alloc_percpu(struct sched_domain *); 6288 if (!sdd->sd) 6289 return -ENOMEM; 6290 6291 sdd->sg = alloc_percpu(struct sched_group *); 6292 if (!sdd->sg) 6293 return -ENOMEM; 6294 6295 sdd->sgp = alloc_percpu(struct sched_group_power *); 6296 if (!sdd->sgp) 6297 return -ENOMEM; 6298 6299 for_each_cpu(j, cpu_map) { 6300 struct sched_domain *sd; 6301 struct sched_group *sg; 6302 struct sched_group_power *sgp; 6303 6304 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6305 GFP_KERNEL, cpu_to_node(j)); 6306 if (!sd) 6307 return -ENOMEM; 6308 6309 *per_cpu_ptr(sdd->sd, j) = sd; 6310 6311 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6312 GFP_KERNEL, cpu_to_node(j)); 6313 if (!sg) 6314 return -ENOMEM; 6315 6316 sg->next = sg; 6317 6318 *per_cpu_ptr(sdd->sg, j) = sg; 6319 6320 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6321 GFP_KERNEL, cpu_to_node(j)); 6322 if (!sgp) 6323 return -ENOMEM; 6324 6325 *per_cpu_ptr(sdd->sgp, j) = sgp; 6326 } 6327 } 6328 6329 return 0; 6330 } 6331 6332 static void __sdt_free(const struct cpumask *cpu_map) 6333 { 6334 struct sched_domain_topology_level *tl; 6335 int j; 6336 6337 for_each_sd_topology(tl) { 6338 struct sd_data *sdd = &tl->data; 6339 6340 for_each_cpu(j, cpu_map) { 6341 struct sched_domain *sd; 6342 6343 if (sdd->sd) { 6344 sd = *per_cpu_ptr(sdd->sd, j); 6345 if (sd && (sd->flags & SD_OVERLAP)) 6346 free_sched_groups(sd->groups, 0); 6347 kfree(*per_cpu_ptr(sdd->sd, j)); 6348 } 6349 6350 if (sdd->sg) 6351 kfree(*per_cpu_ptr(sdd->sg, j)); 6352 if (sdd->sgp) 6353 kfree(*per_cpu_ptr(sdd->sgp, j)); 6354 } 6355 free_percpu(sdd->sd); 6356 sdd->sd = NULL; 6357 free_percpu(sdd->sg); 6358 sdd->sg = NULL; 6359 free_percpu(sdd->sgp); 6360 sdd->sgp = NULL; 6361 } 6362 } 6363 6364 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6365 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6366 struct sched_domain *child, int cpu) 6367 { 6368 struct sched_domain *sd = tl->init(tl, cpu); 6369 if (!sd) 6370 return child; 6371 6372 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6373 if (child) { 6374 sd->level = child->level + 1; 6375 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6376 child->parent = sd; 6377 sd->child = child; 6378 } 6379 set_domain_attribute(sd, attr); 6380 6381 return sd; 6382 } 6383 6384 /* 6385 * Build sched domains for a given set of cpus and attach the sched domains 6386 * to the individual cpus 6387 */ 6388 static int build_sched_domains(const struct cpumask *cpu_map, 6389 struct sched_domain_attr *attr) 6390 { 6391 enum s_alloc alloc_state; 6392 struct sched_domain *sd; 6393 struct s_data d; 6394 int i, ret = -ENOMEM; 6395 6396 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6397 if (alloc_state != sa_rootdomain) 6398 goto error; 6399 6400 /* Set up domains for cpus specified by the cpu_map. */ 6401 for_each_cpu(i, cpu_map) { 6402 struct sched_domain_topology_level *tl; 6403 6404 sd = NULL; 6405 for_each_sd_topology(tl) { 6406 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6407 if (tl == sched_domain_topology) 6408 *per_cpu_ptr(d.sd, i) = sd; 6409 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6410 sd->flags |= SD_OVERLAP; 6411 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6412 break; 6413 } 6414 } 6415 6416 /* Build the groups for the domains */ 6417 for_each_cpu(i, cpu_map) { 6418 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6419 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6420 if (sd->flags & SD_OVERLAP) { 6421 if (build_overlap_sched_groups(sd, i)) 6422 goto error; 6423 } else { 6424 if (build_sched_groups(sd, i)) 6425 goto error; 6426 } 6427 } 6428 } 6429 6430 /* Calculate CPU power for physical packages and nodes */ 6431 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6432 if (!cpumask_test_cpu(i, cpu_map)) 6433 continue; 6434 6435 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6436 claim_allocations(i, sd); 6437 init_sched_groups_power(i, sd); 6438 } 6439 } 6440 6441 /* Attach the domains */ 6442 rcu_read_lock(); 6443 for_each_cpu(i, cpu_map) { 6444 sd = *per_cpu_ptr(d.sd, i); 6445 cpu_attach_domain(sd, d.rd, i); 6446 } 6447 rcu_read_unlock(); 6448 6449 ret = 0; 6450 error: 6451 __free_domain_allocs(&d, alloc_state, cpu_map); 6452 return ret; 6453 } 6454 6455 static cpumask_var_t *doms_cur; /* current sched domains */ 6456 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6457 static struct sched_domain_attr *dattr_cur; 6458 /* attribues of custom domains in 'doms_cur' */ 6459 6460 /* 6461 * Special case: If a kmalloc of a doms_cur partition (array of 6462 * cpumask) fails, then fallback to a single sched domain, 6463 * as determined by the single cpumask fallback_doms. 6464 */ 6465 static cpumask_var_t fallback_doms; 6466 6467 /* 6468 * arch_update_cpu_topology lets virtualized architectures update the 6469 * cpu core maps. It is supposed to return 1 if the topology changed 6470 * or 0 if it stayed the same. 6471 */ 6472 int __weak arch_update_cpu_topology(void) 6473 { 6474 return 0; 6475 } 6476 6477 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6478 { 6479 int i; 6480 cpumask_var_t *doms; 6481 6482 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6483 if (!doms) 6484 return NULL; 6485 for (i = 0; i < ndoms; i++) { 6486 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6487 free_sched_domains(doms, i); 6488 return NULL; 6489 } 6490 } 6491 return doms; 6492 } 6493 6494 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6495 { 6496 unsigned int i; 6497 for (i = 0; i < ndoms; i++) 6498 free_cpumask_var(doms[i]); 6499 kfree(doms); 6500 } 6501 6502 /* 6503 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6504 * For now this just excludes isolated cpus, but could be used to 6505 * exclude other special cases in the future. 6506 */ 6507 static int init_sched_domains(const struct cpumask *cpu_map) 6508 { 6509 int err; 6510 6511 arch_update_cpu_topology(); 6512 ndoms_cur = 1; 6513 doms_cur = alloc_sched_domains(ndoms_cur); 6514 if (!doms_cur) 6515 doms_cur = &fallback_doms; 6516 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6517 err = build_sched_domains(doms_cur[0], NULL); 6518 register_sched_domain_sysctl(); 6519 6520 return err; 6521 } 6522 6523 /* 6524 * Detach sched domains from a group of cpus specified in cpu_map 6525 * These cpus will now be attached to the NULL domain 6526 */ 6527 static void detach_destroy_domains(const struct cpumask *cpu_map) 6528 { 6529 int i; 6530 6531 rcu_read_lock(); 6532 for_each_cpu(i, cpu_map) 6533 cpu_attach_domain(NULL, &def_root_domain, i); 6534 rcu_read_unlock(); 6535 } 6536 6537 /* handle null as "default" */ 6538 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6539 struct sched_domain_attr *new, int idx_new) 6540 { 6541 struct sched_domain_attr tmp; 6542 6543 /* fast path */ 6544 if (!new && !cur) 6545 return 1; 6546 6547 tmp = SD_ATTR_INIT; 6548 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6549 new ? (new + idx_new) : &tmp, 6550 sizeof(struct sched_domain_attr)); 6551 } 6552 6553 /* 6554 * Partition sched domains as specified by the 'ndoms_new' 6555 * cpumasks in the array doms_new[] of cpumasks. This compares 6556 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6557 * It destroys each deleted domain and builds each new domain. 6558 * 6559 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6560 * The masks don't intersect (don't overlap.) We should setup one 6561 * sched domain for each mask. CPUs not in any of the cpumasks will 6562 * not be load balanced. If the same cpumask appears both in the 6563 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6564 * it as it is. 6565 * 6566 * The passed in 'doms_new' should be allocated using 6567 * alloc_sched_domains. This routine takes ownership of it and will 6568 * free_sched_domains it when done with it. If the caller failed the 6569 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6570 * and partition_sched_domains() will fallback to the single partition 6571 * 'fallback_doms', it also forces the domains to be rebuilt. 6572 * 6573 * If doms_new == NULL it will be replaced with cpu_online_mask. 6574 * ndoms_new == 0 is a special case for destroying existing domains, 6575 * and it will not create the default domain. 6576 * 6577 * Call with hotplug lock held 6578 */ 6579 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6580 struct sched_domain_attr *dattr_new) 6581 { 6582 int i, j, n; 6583 int new_topology; 6584 6585 mutex_lock(&sched_domains_mutex); 6586 6587 /* always unregister in case we don't destroy any domains */ 6588 unregister_sched_domain_sysctl(); 6589 6590 /* Let architecture update cpu core mappings. */ 6591 new_topology = arch_update_cpu_topology(); 6592 6593 n = doms_new ? ndoms_new : 0; 6594 6595 /* Destroy deleted domains */ 6596 for (i = 0; i < ndoms_cur; i++) { 6597 for (j = 0; j < n && !new_topology; j++) { 6598 if (cpumask_equal(doms_cur[i], doms_new[j]) 6599 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6600 goto match1; 6601 } 6602 /* no match - a current sched domain not in new doms_new[] */ 6603 detach_destroy_domains(doms_cur[i]); 6604 match1: 6605 ; 6606 } 6607 6608 n = ndoms_cur; 6609 if (doms_new == NULL) { 6610 n = 0; 6611 doms_new = &fallback_doms; 6612 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6613 WARN_ON_ONCE(dattr_new); 6614 } 6615 6616 /* Build new domains */ 6617 for (i = 0; i < ndoms_new; i++) { 6618 for (j = 0; j < n && !new_topology; j++) { 6619 if (cpumask_equal(doms_new[i], doms_cur[j]) 6620 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6621 goto match2; 6622 } 6623 /* no match - add a new doms_new */ 6624 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6625 match2: 6626 ; 6627 } 6628 6629 /* Remember the new sched domains */ 6630 if (doms_cur != &fallback_doms) 6631 free_sched_domains(doms_cur, ndoms_cur); 6632 kfree(dattr_cur); /* kfree(NULL) is safe */ 6633 doms_cur = doms_new; 6634 dattr_cur = dattr_new; 6635 ndoms_cur = ndoms_new; 6636 6637 register_sched_domain_sysctl(); 6638 6639 mutex_unlock(&sched_domains_mutex); 6640 } 6641 6642 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6643 6644 /* 6645 * Update cpusets according to cpu_active mask. If cpusets are 6646 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6647 * around partition_sched_domains(). 6648 * 6649 * If we come here as part of a suspend/resume, don't touch cpusets because we 6650 * want to restore it back to its original state upon resume anyway. 6651 */ 6652 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6653 void *hcpu) 6654 { 6655 switch (action) { 6656 case CPU_ONLINE_FROZEN: 6657 case CPU_DOWN_FAILED_FROZEN: 6658 6659 /* 6660 * num_cpus_frozen tracks how many CPUs are involved in suspend 6661 * resume sequence. As long as this is not the last online 6662 * operation in the resume sequence, just build a single sched 6663 * domain, ignoring cpusets. 6664 */ 6665 num_cpus_frozen--; 6666 if (likely(num_cpus_frozen)) { 6667 partition_sched_domains(1, NULL, NULL); 6668 break; 6669 } 6670 6671 /* 6672 * This is the last CPU online operation. So fall through and 6673 * restore the original sched domains by considering the 6674 * cpuset configurations. 6675 */ 6676 6677 case CPU_ONLINE: 6678 case CPU_DOWN_FAILED: 6679 cpuset_update_active_cpus(true); 6680 break; 6681 default: 6682 return NOTIFY_DONE; 6683 } 6684 return NOTIFY_OK; 6685 } 6686 6687 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6688 void *hcpu) 6689 { 6690 switch (action) { 6691 case CPU_DOWN_PREPARE: 6692 cpuset_update_active_cpus(false); 6693 break; 6694 case CPU_DOWN_PREPARE_FROZEN: 6695 num_cpus_frozen++; 6696 partition_sched_domains(1, NULL, NULL); 6697 break; 6698 default: 6699 return NOTIFY_DONE; 6700 } 6701 return NOTIFY_OK; 6702 } 6703 6704 void __init sched_init_smp(void) 6705 { 6706 cpumask_var_t non_isolated_cpus; 6707 6708 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6709 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6710 6711 sched_init_numa(); 6712 6713 /* 6714 * There's no userspace yet to cause hotplug operations; hence all the 6715 * cpu masks are stable and all blatant races in the below code cannot 6716 * happen. 6717 */ 6718 mutex_lock(&sched_domains_mutex); 6719 init_sched_domains(cpu_active_mask); 6720 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6721 if (cpumask_empty(non_isolated_cpus)) 6722 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6723 mutex_unlock(&sched_domains_mutex); 6724 6725 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6726 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6727 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6728 6729 init_hrtick(); 6730 6731 /* Move init over to a non-isolated CPU */ 6732 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6733 BUG(); 6734 sched_init_granularity(); 6735 free_cpumask_var(non_isolated_cpus); 6736 6737 init_sched_rt_class(); 6738 init_sched_dl_class(); 6739 } 6740 #else 6741 void __init sched_init_smp(void) 6742 { 6743 sched_init_granularity(); 6744 } 6745 #endif /* CONFIG_SMP */ 6746 6747 const_debug unsigned int sysctl_timer_migration = 1; 6748 6749 int in_sched_functions(unsigned long addr) 6750 { 6751 return in_lock_functions(addr) || 6752 (addr >= (unsigned long)__sched_text_start 6753 && addr < (unsigned long)__sched_text_end); 6754 } 6755 6756 #ifdef CONFIG_CGROUP_SCHED 6757 /* 6758 * Default task group. 6759 * Every task in system belongs to this group at bootup. 6760 */ 6761 struct task_group root_task_group; 6762 LIST_HEAD(task_groups); 6763 #endif 6764 6765 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6766 6767 void __init sched_init(void) 6768 { 6769 int i, j; 6770 unsigned long alloc_size = 0, ptr; 6771 6772 #ifdef CONFIG_FAIR_GROUP_SCHED 6773 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6774 #endif 6775 #ifdef CONFIG_RT_GROUP_SCHED 6776 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6777 #endif 6778 #ifdef CONFIG_CPUMASK_OFFSTACK 6779 alloc_size += num_possible_cpus() * cpumask_size(); 6780 #endif 6781 if (alloc_size) { 6782 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6783 6784 #ifdef CONFIG_FAIR_GROUP_SCHED 6785 root_task_group.se = (struct sched_entity **)ptr; 6786 ptr += nr_cpu_ids * sizeof(void **); 6787 6788 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6789 ptr += nr_cpu_ids * sizeof(void **); 6790 6791 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6792 #ifdef CONFIG_RT_GROUP_SCHED 6793 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6794 ptr += nr_cpu_ids * sizeof(void **); 6795 6796 root_task_group.rt_rq = (struct rt_rq **)ptr; 6797 ptr += nr_cpu_ids * sizeof(void **); 6798 6799 #endif /* CONFIG_RT_GROUP_SCHED */ 6800 #ifdef CONFIG_CPUMASK_OFFSTACK 6801 for_each_possible_cpu(i) { 6802 per_cpu(load_balance_mask, i) = (void *)ptr; 6803 ptr += cpumask_size(); 6804 } 6805 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6806 } 6807 6808 init_rt_bandwidth(&def_rt_bandwidth, 6809 global_rt_period(), global_rt_runtime()); 6810 init_dl_bandwidth(&def_dl_bandwidth, 6811 global_rt_period(), global_rt_runtime()); 6812 6813 #ifdef CONFIG_SMP 6814 init_defrootdomain(); 6815 #endif 6816 6817 #ifdef CONFIG_RT_GROUP_SCHED 6818 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6819 global_rt_period(), global_rt_runtime()); 6820 #endif /* CONFIG_RT_GROUP_SCHED */ 6821 6822 #ifdef CONFIG_CGROUP_SCHED 6823 list_add(&root_task_group.list, &task_groups); 6824 INIT_LIST_HEAD(&root_task_group.children); 6825 INIT_LIST_HEAD(&root_task_group.siblings); 6826 autogroup_init(&init_task); 6827 6828 #endif /* CONFIG_CGROUP_SCHED */ 6829 6830 for_each_possible_cpu(i) { 6831 struct rq *rq; 6832 6833 rq = cpu_rq(i); 6834 raw_spin_lock_init(&rq->lock); 6835 rq->nr_running = 0; 6836 rq->calc_load_active = 0; 6837 rq->calc_load_update = jiffies + LOAD_FREQ; 6838 init_cfs_rq(&rq->cfs); 6839 init_rt_rq(&rq->rt, rq); 6840 init_dl_rq(&rq->dl, rq); 6841 #ifdef CONFIG_FAIR_GROUP_SCHED 6842 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6843 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6844 /* 6845 * How much cpu bandwidth does root_task_group get? 6846 * 6847 * In case of task-groups formed thr' the cgroup filesystem, it 6848 * gets 100% of the cpu resources in the system. This overall 6849 * system cpu resource is divided among the tasks of 6850 * root_task_group and its child task-groups in a fair manner, 6851 * based on each entity's (task or task-group's) weight 6852 * (se->load.weight). 6853 * 6854 * In other words, if root_task_group has 10 tasks of weight 6855 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6856 * then A0's share of the cpu resource is: 6857 * 6858 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6859 * 6860 * We achieve this by letting root_task_group's tasks sit 6861 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6862 */ 6863 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6864 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6865 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6866 6867 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6868 #ifdef CONFIG_RT_GROUP_SCHED 6869 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6870 #endif 6871 6872 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6873 rq->cpu_load[j] = 0; 6874 6875 rq->last_load_update_tick = jiffies; 6876 6877 #ifdef CONFIG_SMP 6878 rq->sd = NULL; 6879 rq->rd = NULL; 6880 rq->cpu_power = SCHED_POWER_SCALE; 6881 rq->post_schedule = 0; 6882 rq->active_balance = 0; 6883 rq->next_balance = jiffies; 6884 rq->push_cpu = 0; 6885 rq->cpu = i; 6886 rq->online = 0; 6887 rq->idle_stamp = 0; 6888 rq->avg_idle = 2*sysctl_sched_migration_cost; 6889 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6890 6891 INIT_LIST_HEAD(&rq->cfs_tasks); 6892 6893 rq_attach_root(rq, &def_root_domain); 6894 #ifdef CONFIG_NO_HZ_COMMON 6895 rq->nohz_flags = 0; 6896 #endif 6897 #ifdef CONFIG_NO_HZ_FULL 6898 rq->last_sched_tick = 0; 6899 #endif 6900 #endif 6901 init_rq_hrtick(rq); 6902 atomic_set(&rq->nr_iowait, 0); 6903 } 6904 6905 set_load_weight(&init_task); 6906 6907 #ifdef CONFIG_PREEMPT_NOTIFIERS 6908 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6909 #endif 6910 6911 /* 6912 * The boot idle thread does lazy MMU switching as well: 6913 */ 6914 atomic_inc(&init_mm.mm_count); 6915 enter_lazy_tlb(&init_mm, current); 6916 6917 /* 6918 * Make us the idle thread. Technically, schedule() should not be 6919 * called from this thread, however somewhere below it might be, 6920 * but because we are the idle thread, we just pick up running again 6921 * when this runqueue becomes "idle". 6922 */ 6923 init_idle(current, smp_processor_id()); 6924 6925 calc_load_update = jiffies + LOAD_FREQ; 6926 6927 /* 6928 * During early bootup we pretend to be a normal task: 6929 */ 6930 current->sched_class = &fair_sched_class; 6931 6932 #ifdef CONFIG_SMP 6933 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6934 /* May be allocated at isolcpus cmdline parse time */ 6935 if (cpu_isolated_map == NULL) 6936 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6937 idle_thread_set_boot_cpu(); 6938 #endif 6939 init_sched_fair_class(); 6940 6941 scheduler_running = 1; 6942 } 6943 6944 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6945 static inline int preempt_count_equals(int preempt_offset) 6946 { 6947 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 6948 6949 return (nested == preempt_offset); 6950 } 6951 6952 void __might_sleep(const char *file, int line, int preempt_offset) 6953 { 6954 static unsigned long prev_jiffy; /* ratelimiting */ 6955 6956 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 6957 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6958 !is_idle_task(current)) || 6959 system_state != SYSTEM_RUNNING || oops_in_progress) 6960 return; 6961 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6962 return; 6963 prev_jiffy = jiffies; 6964 6965 printk(KERN_ERR 6966 "BUG: sleeping function called from invalid context at %s:%d\n", 6967 file, line); 6968 printk(KERN_ERR 6969 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6970 in_atomic(), irqs_disabled(), 6971 current->pid, current->comm); 6972 6973 debug_show_held_locks(current); 6974 if (irqs_disabled()) 6975 print_irqtrace_events(current); 6976 #ifdef CONFIG_DEBUG_PREEMPT 6977 if (!preempt_count_equals(preempt_offset)) { 6978 pr_err("Preemption disabled at:"); 6979 print_ip_sym(current->preempt_disable_ip); 6980 pr_cont("\n"); 6981 } 6982 #endif 6983 dump_stack(); 6984 } 6985 EXPORT_SYMBOL(__might_sleep); 6986 #endif 6987 6988 #ifdef CONFIG_MAGIC_SYSRQ 6989 static void normalize_task(struct rq *rq, struct task_struct *p) 6990 { 6991 const struct sched_class *prev_class = p->sched_class; 6992 struct sched_attr attr = { 6993 .sched_policy = SCHED_NORMAL, 6994 }; 6995 int old_prio = p->prio; 6996 int on_rq; 6997 6998 on_rq = p->on_rq; 6999 if (on_rq) 7000 dequeue_task(rq, p, 0); 7001 __setscheduler(rq, p, &attr); 7002 if (on_rq) { 7003 enqueue_task(rq, p, 0); 7004 resched_task(rq->curr); 7005 } 7006 7007 check_class_changed(rq, p, prev_class, old_prio); 7008 } 7009 7010 void normalize_rt_tasks(void) 7011 { 7012 struct task_struct *g, *p; 7013 unsigned long flags; 7014 struct rq *rq; 7015 7016 read_lock_irqsave(&tasklist_lock, flags); 7017 do_each_thread(g, p) { 7018 /* 7019 * Only normalize user tasks: 7020 */ 7021 if (!p->mm) 7022 continue; 7023 7024 p->se.exec_start = 0; 7025 #ifdef CONFIG_SCHEDSTATS 7026 p->se.statistics.wait_start = 0; 7027 p->se.statistics.sleep_start = 0; 7028 p->se.statistics.block_start = 0; 7029 #endif 7030 7031 if (!dl_task(p) && !rt_task(p)) { 7032 /* 7033 * Renice negative nice level userspace 7034 * tasks back to 0: 7035 */ 7036 if (task_nice(p) < 0 && p->mm) 7037 set_user_nice(p, 0); 7038 continue; 7039 } 7040 7041 raw_spin_lock(&p->pi_lock); 7042 rq = __task_rq_lock(p); 7043 7044 normalize_task(rq, p); 7045 7046 __task_rq_unlock(rq); 7047 raw_spin_unlock(&p->pi_lock); 7048 } while_each_thread(g, p); 7049 7050 read_unlock_irqrestore(&tasklist_lock, flags); 7051 } 7052 7053 #endif /* CONFIG_MAGIC_SYSRQ */ 7054 7055 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7056 /* 7057 * These functions are only useful for the IA64 MCA handling, or kdb. 7058 * 7059 * They can only be called when the whole system has been 7060 * stopped - every CPU needs to be quiescent, and no scheduling 7061 * activity can take place. Using them for anything else would 7062 * be a serious bug, and as a result, they aren't even visible 7063 * under any other configuration. 7064 */ 7065 7066 /** 7067 * curr_task - return the current task for a given cpu. 7068 * @cpu: the processor in question. 7069 * 7070 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7071 * 7072 * Return: The current task for @cpu. 7073 */ 7074 struct task_struct *curr_task(int cpu) 7075 { 7076 return cpu_curr(cpu); 7077 } 7078 7079 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7080 7081 #ifdef CONFIG_IA64 7082 /** 7083 * set_curr_task - set the current task for a given cpu. 7084 * @cpu: the processor in question. 7085 * @p: the task pointer to set. 7086 * 7087 * Description: This function must only be used when non-maskable interrupts 7088 * are serviced on a separate stack. It allows the architecture to switch the 7089 * notion of the current task on a cpu in a non-blocking manner. This function 7090 * must be called with all CPU's synchronized, and interrupts disabled, the 7091 * and caller must save the original value of the current task (see 7092 * curr_task() above) and restore that value before reenabling interrupts and 7093 * re-starting the system. 7094 * 7095 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7096 */ 7097 void set_curr_task(int cpu, struct task_struct *p) 7098 { 7099 cpu_curr(cpu) = p; 7100 } 7101 7102 #endif 7103 7104 #ifdef CONFIG_CGROUP_SCHED 7105 /* task_group_lock serializes the addition/removal of task groups */ 7106 static DEFINE_SPINLOCK(task_group_lock); 7107 7108 static void free_sched_group(struct task_group *tg) 7109 { 7110 free_fair_sched_group(tg); 7111 free_rt_sched_group(tg); 7112 autogroup_free(tg); 7113 kfree(tg); 7114 } 7115 7116 /* allocate runqueue etc for a new task group */ 7117 struct task_group *sched_create_group(struct task_group *parent) 7118 { 7119 struct task_group *tg; 7120 7121 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7122 if (!tg) 7123 return ERR_PTR(-ENOMEM); 7124 7125 if (!alloc_fair_sched_group(tg, parent)) 7126 goto err; 7127 7128 if (!alloc_rt_sched_group(tg, parent)) 7129 goto err; 7130 7131 return tg; 7132 7133 err: 7134 free_sched_group(tg); 7135 return ERR_PTR(-ENOMEM); 7136 } 7137 7138 void sched_online_group(struct task_group *tg, struct task_group *parent) 7139 { 7140 unsigned long flags; 7141 7142 spin_lock_irqsave(&task_group_lock, flags); 7143 list_add_rcu(&tg->list, &task_groups); 7144 7145 WARN_ON(!parent); /* root should already exist */ 7146 7147 tg->parent = parent; 7148 INIT_LIST_HEAD(&tg->children); 7149 list_add_rcu(&tg->siblings, &parent->children); 7150 spin_unlock_irqrestore(&task_group_lock, flags); 7151 } 7152 7153 /* rcu callback to free various structures associated with a task group */ 7154 static void free_sched_group_rcu(struct rcu_head *rhp) 7155 { 7156 /* now it should be safe to free those cfs_rqs */ 7157 free_sched_group(container_of(rhp, struct task_group, rcu)); 7158 } 7159 7160 /* Destroy runqueue etc associated with a task group */ 7161 void sched_destroy_group(struct task_group *tg) 7162 { 7163 /* wait for possible concurrent references to cfs_rqs complete */ 7164 call_rcu(&tg->rcu, free_sched_group_rcu); 7165 } 7166 7167 void sched_offline_group(struct task_group *tg) 7168 { 7169 unsigned long flags; 7170 int i; 7171 7172 /* end participation in shares distribution */ 7173 for_each_possible_cpu(i) 7174 unregister_fair_sched_group(tg, i); 7175 7176 spin_lock_irqsave(&task_group_lock, flags); 7177 list_del_rcu(&tg->list); 7178 list_del_rcu(&tg->siblings); 7179 spin_unlock_irqrestore(&task_group_lock, flags); 7180 } 7181 7182 /* change task's runqueue when it moves between groups. 7183 * The caller of this function should have put the task in its new group 7184 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7185 * reflect its new group. 7186 */ 7187 void sched_move_task(struct task_struct *tsk) 7188 { 7189 struct task_group *tg; 7190 int on_rq, running; 7191 unsigned long flags; 7192 struct rq *rq; 7193 7194 rq = task_rq_lock(tsk, &flags); 7195 7196 running = task_current(rq, tsk); 7197 on_rq = tsk->on_rq; 7198 7199 if (on_rq) 7200 dequeue_task(rq, tsk, 0); 7201 if (unlikely(running)) 7202 tsk->sched_class->put_prev_task(rq, tsk); 7203 7204 tg = container_of(task_css_check(tsk, cpu_cgrp_id, 7205 lockdep_is_held(&tsk->sighand->siglock)), 7206 struct task_group, css); 7207 tg = autogroup_task_group(tsk, tg); 7208 tsk->sched_task_group = tg; 7209 7210 #ifdef CONFIG_FAIR_GROUP_SCHED 7211 if (tsk->sched_class->task_move_group) 7212 tsk->sched_class->task_move_group(tsk, on_rq); 7213 else 7214 #endif 7215 set_task_rq(tsk, task_cpu(tsk)); 7216 7217 if (unlikely(running)) 7218 tsk->sched_class->set_curr_task(rq); 7219 if (on_rq) 7220 enqueue_task(rq, tsk, 0); 7221 7222 task_rq_unlock(rq, tsk, &flags); 7223 } 7224 #endif /* CONFIG_CGROUP_SCHED */ 7225 7226 #ifdef CONFIG_RT_GROUP_SCHED 7227 /* 7228 * Ensure that the real time constraints are schedulable. 7229 */ 7230 static DEFINE_MUTEX(rt_constraints_mutex); 7231 7232 /* Must be called with tasklist_lock held */ 7233 static inline int tg_has_rt_tasks(struct task_group *tg) 7234 { 7235 struct task_struct *g, *p; 7236 7237 do_each_thread(g, p) { 7238 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7239 return 1; 7240 } while_each_thread(g, p); 7241 7242 return 0; 7243 } 7244 7245 struct rt_schedulable_data { 7246 struct task_group *tg; 7247 u64 rt_period; 7248 u64 rt_runtime; 7249 }; 7250 7251 static int tg_rt_schedulable(struct task_group *tg, void *data) 7252 { 7253 struct rt_schedulable_data *d = data; 7254 struct task_group *child; 7255 unsigned long total, sum = 0; 7256 u64 period, runtime; 7257 7258 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7259 runtime = tg->rt_bandwidth.rt_runtime; 7260 7261 if (tg == d->tg) { 7262 period = d->rt_period; 7263 runtime = d->rt_runtime; 7264 } 7265 7266 /* 7267 * Cannot have more runtime than the period. 7268 */ 7269 if (runtime > period && runtime != RUNTIME_INF) 7270 return -EINVAL; 7271 7272 /* 7273 * Ensure we don't starve existing RT tasks. 7274 */ 7275 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7276 return -EBUSY; 7277 7278 total = to_ratio(period, runtime); 7279 7280 /* 7281 * Nobody can have more than the global setting allows. 7282 */ 7283 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7284 return -EINVAL; 7285 7286 /* 7287 * The sum of our children's runtime should not exceed our own. 7288 */ 7289 list_for_each_entry_rcu(child, &tg->children, siblings) { 7290 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7291 runtime = child->rt_bandwidth.rt_runtime; 7292 7293 if (child == d->tg) { 7294 period = d->rt_period; 7295 runtime = d->rt_runtime; 7296 } 7297 7298 sum += to_ratio(period, runtime); 7299 } 7300 7301 if (sum > total) 7302 return -EINVAL; 7303 7304 return 0; 7305 } 7306 7307 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7308 { 7309 int ret; 7310 7311 struct rt_schedulable_data data = { 7312 .tg = tg, 7313 .rt_period = period, 7314 .rt_runtime = runtime, 7315 }; 7316 7317 rcu_read_lock(); 7318 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7319 rcu_read_unlock(); 7320 7321 return ret; 7322 } 7323 7324 static int tg_set_rt_bandwidth(struct task_group *tg, 7325 u64 rt_period, u64 rt_runtime) 7326 { 7327 int i, err = 0; 7328 7329 mutex_lock(&rt_constraints_mutex); 7330 read_lock(&tasklist_lock); 7331 err = __rt_schedulable(tg, rt_period, rt_runtime); 7332 if (err) 7333 goto unlock; 7334 7335 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7336 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7337 tg->rt_bandwidth.rt_runtime = rt_runtime; 7338 7339 for_each_possible_cpu(i) { 7340 struct rt_rq *rt_rq = tg->rt_rq[i]; 7341 7342 raw_spin_lock(&rt_rq->rt_runtime_lock); 7343 rt_rq->rt_runtime = rt_runtime; 7344 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7345 } 7346 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7347 unlock: 7348 read_unlock(&tasklist_lock); 7349 mutex_unlock(&rt_constraints_mutex); 7350 7351 return err; 7352 } 7353 7354 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7355 { 7356 u64 rt_runtime, rt_period; 7357 7358 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7359 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7360 if (rt_runtime_us < 0) 7361 rt_runtime = RUNTIME_INF; 7362 7363 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7364 } 7365 7366 static long sched_group_rt_runtime(struct task_group *tg) 7367 { 7368 u64 rt_runtime_us; 7369 7370 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7371 return -1; 7372 7373 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7374 do_div(rt_runtime_us, NSEC_PER_USEC); 7375 return rt_runtime_us; 7376 } 7377 7378 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7379 { 7380 u64 rt_runtime, rt_period; 7381 7382 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7383 rt_runtime = tg->rt_bandwidth.rt_runtime; 7384 7385 if (rt_period == 0) 7386 return -EINVAL; 7387 7388 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7389 } 7390 7391 static long sched_group_rt_period(struct task_group *tg) 7392 { 7393 u64 rt_period_us; 7394 7395 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7396 do_div(rt_period_us, NSEC_PER_USEC); 7397 return rt_period_us; 7398 } 7399 #endif /* CONFIG_RT_GROUP_SCHED */ 7400 7401 #ifdef CONFIG_RT_GROUP_SCHED 7402 static int sched_rt_global_constraints(void) 7403 { 7404 int ret = 0; 7405 7406 mutex_lock(&rt_constraints_mutex); 7407 read_lock(&tasklist_lock); 7408 ret = __rt_schedulable(NULL, 0, 0); 7409 read_unlock(&tasklist_lock); 7410 mutex_unlock(&rt_constraints_mutex); 7411 7412 return ret; 7413 } 7414 7415 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7416 { 7417 /* Don't accept realtime tasks when there is no way for them to run */ 7418 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7419 return 0; 7420 7421 return 1; 7422 } 7423 7424 #else /* !CONFIG_RT_GROUP_SCHED */ 7425 static int sched_rt_global_constraints(void) 7426 { 7427 unsigned long flags; 7428 int i, ret = 0; 7429 7430 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7431 for_each_possible_cpu(i) { 7432 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7433 7434 raw_spin_lock(&rt_rq->rt_runtime_lock); 7435 rt_rq->rt_runtime = global_rt_runtime(); 7436 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7437 } 7438 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7439 7440 return ret; 7441 } 7442 #endif /* CONFIG_RT_GROUP_SCHED */ 7443 7444 static int sched_dl_global_constraints(void) 7445 { 7446 u64 runtime = global_rt_runtime(); 7447 u64 period = global_rt_period(); 7448 u64 new_bw = to_ratio(period, runtime); 7449 int cpu, ret = 0; 7450 unsigned long flags; 7451 7452 /* 7453 * Here we want to check the bandwidth not being set to some 7454 * value smaller than the currently allocated bandwidth in 7455 * any of the root_domains. 7456 * 7457 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7458 * cycling on root_domains... Discussion on different/better 7459 * solutions is welcome! 7460 */ 7461 for_each_possible_cpu(cpu) { 7462 struct dl_bw *dl_b = dl_bw_of(cpu); 7463 7464 raw_spin_lock_irqsave(&dl_b->lock, flags); 7465 if (new_bw < dl_b->total_bw) 7466 ret = -EBUSY; 7467 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7468 7469 if (ret) 7470 break; 7471 } 7472 7473 return ret; 7474 } 7475 7476 static void sched_dl_do_global(void) 7477 { 7478 u64 new_bw = -1; 7479 int cpu; 7480 unsigned long flags; 7481 7482 def_dl_bandwidth.dl_period = global_rt_period(); 7483 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7484 7485 if (global_rt_runtime() != RUNTIME_INF) 7486 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7487 7488 /* 7489 * FIXME: As above... 7490 */ 7491 for_each_possible_cpu(cpu) { 7492 struct dl_bw *dl_b = dl_bw_of(cpu); 7493 7494 raw_spin_lock_irqsave(&dl_b->lock, flags); 7495 dl_b->bw = new_bw; 7496 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7497 } 7498 } 7499 7500 static int sched_rt_global_validate(void) 7501 { 7502 if (sysctl_sched_rt_period <= 0) 7503 return -EINVAL; 7504 7505 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7506 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7507 return -EINVAL; 7508 7509 return 0; 7510 } 7511 7512 static void sched_rt_do_global(void) 7513 { 7514 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7515 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7516 } 7517 7518 int sched_rt_handler(struct ctl_table *table, int write, 7519 void __user *buffer, size_t *lenp, 7520 loff_t *ppos) 7521 { 7522 int old_period, old_runtime; 7523 static DEFINE_MUTEX(mutex); 7524 int ret; 7525 7526 mutex_lock(&mutex); 7527 old_period = sysctl_sched_rt_period; 7528 old_runtime = sysctl_sched_rt_runtime; 7529 7530 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7531 7532 if (!ret && write) { 7533 ret = sched_rt_global_validate(); 7534 if (ret) 7535 goto undo; 7536 7537 ret = sched_rt_global_constraints(); 7538 if (ret) 7539 goto undo; 7540 7541 ret = sched_dl_global_constraints(); 7542 if (ret) 7543 goto undo; 7544 7545 sched_rt_do_global(); 7546 sched_dl_do_global(); 7547 } 7548 if (0) { 7549 undo: 7550 sysctl_sched_rt_period = old_period; 7551 sysctl_sched_rt_runtime = old_runtime; 7552 } 7553 mutex_unlock(&mutex); 7554 7555 return ret; 7556 } 7557 7558 int sched_rr_handler(struct ctl_table *table, int write, 7559 void __user *buffer, size_t *lenp, 7560 loff_t *ppos) 7561 { 7562 int ret; 7563 static DEFINE_MUTEX(mutex); 7564 7565 mutex_lock(&mutex); 7566 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7567 /* make sure that internally we keep jiffies */ 7568 /* also, writing zero resets timeslice to default */ 7569 if (!ret && write) { 7570 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7571 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7572 } 7573 mutex_unlock(&mutex); 7574 return ret; 7575 } 7576 7577 #ifdef CONFIG_CGROUP_SCHED 7578 7579 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7580 { 7581 return css ? container_of(css, struct task_group, css) : NULL; 7582 } 7583 7584 static struct cgroup_subsys_state * 7585 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7586 { 7587 struct task_group *parent = css_tg(parent_css); 7588 struct task_group *tg; 7589 7590 if (!parent) { 7591 /* This is early initialization for the top cgroup */ 7592 return &root_task_group.css; 7593 } 7594 7595 tg = sched_create_group(parent); 7596 if (IS_ERR(tg)) 7597 return ERR_PTR(-ENOMEM); 7598 7599 return &tg->css; 7600 } 7601 7602 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7603 { 7604 struct task_group *tg = css_tg(css); 7605 struct task_group *parent = css_tg(css_parent(css)); 7606 7607 if (parent) 7608 sched_online_group(tg, parent); 7609 return 0; 7610 } 7611 7612 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7613 { 7614 struct task_group *tg = css_tg(css); 7615 7616 sched_destroy_group(tg); 7617 } 7618 7619 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7620 { 7621 struct task_group *tg = css_tg(css); 7622 7623 sched_offline_group(tg); 7624 } 7625 7626 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7627 struct cgroup_taskset *tset) 7628 { 7629 struct task_struct *task; 7630 7631 cgroup_taskset_for_each(task, tset) { 7632 #ifdef CONFIG_RT_GROUP_SCHED 7633 if (!sched_rt_can_attach(css_tg(css), task)) 7634 return -EINVAL; 7635 #else 7636 /* We don't support RT-tasks being in separate groups */ 7637 if (task->sched_class != &fair_sched_class) 7638 return -EINVAL; 7639 #endif 7640 } 7641 return 0; 7642 } 7643 7644 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 7645 struct cgroup_taskset *tset) 7646 { 7647 struct task_struct *task; 7648 7649 cgroup_taskset_for_each(task, tset) 7650 sched_move_task(task); 7651 } 7652 7653 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7654 struct cgroup_subsys_state *old_css, 7655 struct task_struct *task) 7656 { 7657 /* 7658 * cgroup_exit() is called in the copy_process() failure path. 7659 * Ignore this case since the task hasn't ran yet, this avoids 7660 * trying to poke a half freed task state from generic code. 7661 */ 7662 if (!(task->flags & PF_EXITING)) 7663 return; 7664 7665 sched_move_task(task); 7666 } 7667 7668 #ifdef CONFIG_FAIR_GROUP_SCHED 7669 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7670 struct cftype *cftype, u64 shareval) 7671 { 7672 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7673 } 7674 7675 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7676 struct cftype *cft) 7677 { 7678 struct task_group *tg = css_tg(css); 7679 7680 return (u64) scale_load_down(tg->shares); 7681 } 7682 7683 #ifdef CONFIG_CFS_BANDWIDTH 7684 static DEFINE_MUTEX(cfs_constraints_mutex); 7685 7686 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7687 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7688 7689 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7690 7691 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7692 { 7693 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7694 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7695 7696 if (tg == &root_task_group) 7697 return -EINVAL; 7698 7699 /* 7700 * Ensure we have at some amount of bandwidth every period. This is 7701 * to prevent reaching a state of large arrears when throttled via 7702 * entity_tick() resulting in prolonged exit starvation. 7703 */ 7704 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7705 return -EINVAL; 7706 7707 /* 7708 * Likewise, bound things on the otherside by preventing insane quota 7709 * periods. This also allows us to normalize in computing quota 7710 * feasibility. 7711 */ 7712 if (period > max_cfs_quota_period) 7713 return -EINVAL; 7714 7715 mutex_lock(&cfs_constraints_mutex); 7716 ret = __cfs_schedulable(tg, period, quota); 7717 if (ret) 7718 goto out_unlock; 7719 7720 runtime_enabled = quota != RUNTIME_INF; 7721 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7722 /* 7723 * If we need to toggle cfs_bandwidth_used, off->on must occur 7724 * before making related changes, and on->off must occur afterwards 7725 */ 7726 if (runtime_enabled && !runtime_was_enabled) 7727 cfs_bandwidth_usage_inc(); 7728 raw_spin_lock_irq(&cfs_b->lock); 7729 cfs_b->period = ns_to_ktime(period); 7730 cfs_b->quota = quota; 7731 7732 __refill_cfs_bandwidth_runtime(cfs_b); 7733 /* restart the period timer (if active) to handle new period expiry */ 7734 if (runtime_enabled && cfs_b->timer_active) { 7735 /* force a reprogram */ 7736 cfs_b->timer_active = 0; 7737 __start_cfs_bandwidth(cfs_b); 7738 } 7739 raw_spin_unlock_irq(&cfs_b->lock); 7740 7741 for_each_possible_cpu(i) { 7742 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7743 struct rq *rq = cfs_rq->rq; 7744 7745 raw_spin_lock_irq(&rq->lock); 7746 cfs_rq->runtime_enabled = runtime_enabled; 7747 cfs_rq->runtime_remaining = 0; 7748 7749 if (cfs_rq->throttled) 7750 unthrottle_cfs_rq(cfs_rq); 7751 raw_spin_unlock_irq(&rq->lock); 7752 } 7753 if (runtime_was_enabled && !runtime_enabled) 7754 cfs_bandwidth_usage_dec(); 7755 out_unlock: 7756 mutex_unlock(&cfs_constraints_mutex); 7757 7758 return ret; 7759 } 7760 7761 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7762 { 7763 u64 quota, period; 7764 7765 period = ktime_to_ns(tg->cfs_bandwidth.period); 7766 if (cfs_quota_us < 0) 7767 quota = RUNTIME_INF; 7768 else 7769 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7770 7771 return tg_set_cfs_bandwidth(tg, period, quota); 7772 } 7773 7774 long tg_get_cfs_quota(struct task_group *tg) 7775 { 7776 u64 quota_us; 7777 7778 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7779 return -1; 7780 7781 quota_us = tg->cfs_bandwidth.quota; 7782 do_div(quota_us, NSEC_PER_USEC); 7783 7784 return quota_us; 7785 } 7786 7787 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7788 { 7789 u64 quota, period; 7790 7791 period = (u64)cfs_period_us * NSEC_PER_USEC; 7792 quota = tg->cfs_bandwidth.quota; 7793 7794 return tg_set_cfs_bandwidth(tg, period, quota); 7795 } 7796 7797 long tg_get_cfs_period(struct task_group *tg) 7798 { 7799 u64 cfs_period_us; 7800 7801 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7802 do_div(cfs_period_us, NSEC_PER_USEC); 7803 7804 return cfs_period_us; 7805 } 7806 7807 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7808 struct cftype *cft) 7809 { 7810 return tg_get_cfs_quota(css_tg(css)); 7811 } 7812 7813 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7814 struct cftype *cftype, s64 cfs_quota_us) 7815 { 7816 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7817 } 7818 7819 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7820 struct cftype *cft) 7821 { 7822 return tg_get_cfs_period(css_tg(css)); 7823 } 7824 7825 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7826 struct cftype *cftype, u64 cfs_period_us) 7827 { 7828 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7829 } 7830 7831 struct cfs_schedulable_data { 7832 struct task_group *tg; 7833 u64 period, quota; 7834 }; 7835 7836 /* 7837 * normalize group quota/period to be quota/max_period 7838 * note: units are usecs 7839 */ 7840 static u64 normalize_cfs_quota(struct task_group *tg, 7841 struct cfs_schedulable_data *d) 7842 { 7843 u64 quota, period; 7844 7845 if (tg == d->tg) { 7846 period = d->period; 7847 quota = d->quota; 7848 } else { 7849 period = tg_get_cfs_period(tg); 7850 quota = tg_get_cfs_quota(tg); 7851 } 7852 7853 /* note: these should typically be equivalent */ 7854 if (quota == RUNTIME_INF || quota == -1) 7855 return RUNTIME_INF; 7856 7857 return to_ratio(period, quota); 7858 } 7859 7860 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7861 { 7862 struct cfs_schedulable_data *d = data; 7863 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7864 s64 quota = 0, parent_quota = -1; 7865 7866 if (!tg->parent) { 7867 quota = RUNTIME_INF; 7868 } else { 7869 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7870 7871 quota = normalize_cfs_quota(tg, d); 7872 parent_quota = parent_b->hierarchal_quota; 7873 7874 /* 7875 * ensure max(child_quota) <= parent_quota, inherit when no 7876 * limit is set 7877 */ 7878 if (quota == RUNTIME_INF) 7879 quota = parent_quota; 7880 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7881 return -EINVAL; 7882 } 7883 cfs_b->hierarchal_quota = quota; 7884 7885 return 0; 7886 } 7887 7888 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7889 { 7890 int ret; 7891 struct cfs_schedulable_data data = { 7892 .tg = tg, 7893 .period = period, 7894 .quota = quota, 7895 }; 7896 7897 if (quota != RUNTIME_INF) { 7898 do_div(data.period, NSEC_PER_USEC); 7899 do_div(data.quota, NSEC_PER_USEC); 7900 } 7901 7902 rcu_read_lock(); 7903 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7904 rcu_read_unlock(); 7905 7906 return ret; 7907 } 7908 7909 static int cpu_stats_show(struct seq_file *sf, void *v) 7910 { 7911 struct task_group *tg = css_tg(seq_css(sf)); 7912 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7913 7914 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7915 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7916 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7917 7918 return 0; 7919 } 7920 #endif /* CONFIG_CFS_BANDWIDTH */ 7921 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7922 7923 #ifdef CONFIG_RT_GROUP_SCHED 7924 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7925 struct cftype *cft, s64 val) 7926 { 7927 return sched_group_set_rt_runtime(css_tg(css), val); 7928 } 7929 7930 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7931 struct cftype *cft) 7932 { 7933 return sched_group_rt_runtime(css_tg(css)); 7934 } 7935 7936 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7937 struct cftype *cftype, u64 rt_period_us) 7938 { 7939 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7940 } 7941 7942 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7943 struct cftype *cft) 7944 { 7945 return sched_group_rt_period(css_tg(css)); 7946 } 7947 #endif /* CONFIG_RT_GROUP_SCHED */ 7948 7949 static struct cftype cpu_files[] = { 7950 #ifdef CONFIG_FAIR_GROUP_SCHED 7951 { 7952 .name = "shares", 7953 .read_u64 = cpu_shares_read_u64, 7954 .write_u64 = cpu_shares_write_u64, 7955 }, 7956 #endif 7957 #ifdef CONFIG_CFS_BANDWIDTH 7958 { 7959 .name = "cfs_quota_us", 7960 .read_s64 = cpu_cfs_quota_read_s64, 7961 .write_s64 = cpu_cfs_quota_write_s64, 7962 }, 7963 { 7964 .name = "cfs_period_us", 7965 .read_u64 = cpu_cfs_period_read_u64, 7966 .write_u64 = cpu_cfs_period_write_u64, 7967 }, 7968 { 7969 .name = "stat", 7970 .seq_show = cpu_stats_show, 7971 }, 7972 #endif 7973 #ifdef CONFIG_RT_GROUP_SCHED 7974 { 7975 .name = "rt_runtime_us", 7976 .read_s64 = cpu_rt_runtime_read, 7977 .write_s64 = cpu_rt_runtime_write, 7978 }, 7979 { 7980 .name = "rt_period_us", 7981 .read_u64 = cpu_rt_period_read_uint, 7982 .write_u64 = cpu_rt_period_write_uint, 7983 }, 7984 #endif 7985 { } /* terminate */ 7986 }; 7987 7988 struct cgroup_subsys cpu_cgrp_subsys = { 7989 .css_alloc = cpu_cgroup_css_alloc, 7990 .css_free = cpu_cgroup_css_free, 7991 .css_online = cpu_cgroup_css_online, 7992 .css_offline = cpu_cgroup_css_offline, 7993 .can_attach = cpu_cgroup_can_attach, 7994 .attach = cpu_cgroup_attach, 7995 .exit = cpu_cgroup_exit, 7996 .base_cftypes = cpu_files, 7997 .early_init = 1, 7998 }; 7999 8000 #endif /* CONFIG_CGROUP_SCHED */ 8001 8002 void dump_cpu_task(int cpu) 8003 { 8004 pr_info("Task dump for CPU %d:\n", cpu); 8005 sched_show_task(cpu_curr(cpu)); 8006 } 8007