xref: /openbmc/linux/kernel/sched/core.c (revision febdbfe8a91ce0d11939d4940b592eb0dba8d663)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
95 {
96 	smp_mb__before_atomic();
97 }
98 EXPORT_SYMBOL(__smp_mb__before_atomic);
99 #endif
100 
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
103 {
104 	smp_mb__after_atomic();
105 }
106 EXPORT_SYMBOL(__smp_mb__after_atomic);
107 #endif
108 
109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110 {
111 	unsigned long delta;
112 	ktime_t soft, hard, now;
113 
114 	for (;;) {
115 		if (hrtimer_active(period_timer))
116 			break;
117 
118 		now = hrtimer_cb_get_time(period_timer);
119 		hrtimer_forward(period_timer, now, period);
120 
121 		soft = hrtimer_get_softexpires(period_timer);
122 		hard = hrtimer_get_expires(period_timer);
123 		delta = ktime_to_ns(ktime_sub(hard, soft));
124 		__hrtimer_start_range_ns(period_timer, soft, delta,
125 					 HRTIMER_MODE_ABS_PINNED, 0);
126 	}
127 }
128 
129 DEFINE_MUTEX(sched_domains_mutex);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131 
132 static void update_rq_clock_task(struct rq *rq, s64 delta);
133 
134 void update_rq_clock(struct rq *rq)
135 {
136 	s64 delta;
137 
138 	if (rq->skip_clock_update > 0)
139 		return;
140 
141 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 	rq->clock += delta;
143 	update_rq_clock_task(rq, delta);
144 }
145 
146 /*
147  * Debugging: various feature bits
148  */
149 
150 #define SCHED_FEAT(name, enabled)	\
151 	(1UL << __SCHED_FEAT_##name) * enabled |
152 
153 const_debug unsigned int sysctl_sched_features =
154 #include "features.h"
155 	0;
156 
157 #undef SCHED_FEAT
158 
159 #ifdef CONFIG_SCHED_DEBUG
160 #define SCHED_FEAT(name, enabled)	\
161 	#name ,
162 
163 static const char * const sched_feat_names[] = {
164 #include "features.h"
165 };
166 
167 #undef SCHED_FEAT
168 
169 static int sched_feat_show(struct seq_file *m, void *v)
170 {
171 	int i;
172 
173 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
174 		if (!(sysctl_sched_features & (1UL << i)))
175 			seq_puts(m, "NO_");
176 		seq_printf(m, "%s ", sched_feat_names[i]);
177 	}
178 	seq_puts(m, "\n");
179 
180 	return 0;
181 }
182 
183 #ifdef HAVE_JUMP_LABEL
184 
185 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
186 #define jump_label_key__false STATIC_KEY_INIT_FALSE
187 
188 #define SCHED_FEAT(name, enabled)	\
189 	jump_label_key__##enabled ,
190 
191 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192 #include "features.h"
193 };
194 
195 #undef SCHED_FEAT
196 
197 static void sched_feat_disable(int i)
198 {
199 	if (static_key_enabled(&sched_feat_keys[i]))
200 		static_key_slow_dec(&sched_feat_keys[i]);
201 }
202 
203 static void sched_feat_enable(int i)
204 {
205 	if (!static_key_enabled(&sched_feat_keys[i]))
206 		static_key_slow_inc(&sched_feat_keys[i]);
207 }
208 #else
209 static void sched_feat_disable(int i) { };
210 static void sched_feat_enable(int i) { };
211 #endif /* HAVE_JUMP_LABEL */
212 
213 static int sched_feat_set(char *cmp)
214 {
215 	int i;
216 	int neg = 0;
217 
218 	if (strncmp(cmp, "NO_", 3) == 0) {
219 		neg = 1;
220 		cmp += 3;
221 	}
222 
223 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
224 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
225 			if (neg) {
226 				sysctl_sched_features &= ~(1UL << i);
227 				sched_feat_disable(i);
228 			} else {
229 				sysctl_sched_features |= (1UL << i);
230 				sched_feat_enable(i);
231 			}
232 			break;
233 		}
234 	}
235 
236 	return i;
237 }
238 
239 static ssize_t
240 sched_feat_write(struct file *filp, const char __user *ubuf,
241 		size_t cnt, loff_t *ppos)
242 {
243 	char buf[64];
244 	char *cmp;
245 	int i;
246 
247 	if (cnt > 63)
248 		cnt = 63;
249 
250 	if (copy_from_user(&buf, ubuf, cnt))
251 		return -EFAULT;
252 
253 	buf[cnt] = 0;
254 	cmp = strstrip(buf);
255 
256 	i = sched_feat_set(cmp);
257 	if (i == __SCHED_FEAT_NR)
258 		return -EINVAL;
259 
260 	*ppos += cnt;
261 
262 	return cnt;
263 }
264 
265 static int sched_feat_open(struct inode *inode, struct file *filp)
266 {
267 	return single_open(filp, sched_feat_show, NULL);
268 }
269 
270 static const struct file_operations sched_feat_fops = {
271 	.open		= sched_feat_open,
272 	.write		= sched_feat_write,
273 	.read		= seq_read,
274 	.llseek		= seq_lseek,
275 	.release	= single_release,
276 };
277 
278 static __init int sched_init_debug(void)
279 {
280 	debugfs_create_file("sched_features", 0644, NULL, NULL,
281 			&sched_feat_fops);
282 
283 	return 0;
284 }
285 late_initcall(sched_init_debug);
286 #endif /* CONFIG_SCHED_DEBUG */
287 
288 /*
289  * Number of tasks to iterate in a single balance run.
290  * Limited because this is done with IRQs disabled.
291  */
292 const_debug unsigned int sysctl_sched_nr_migrate = 32;
293 
294 /*
295  * period over which we average the RT time consumption, measured
296  * in ms.
297  *
298  * default: 1s
299  */
300 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301 
302 /*
303  * period over which we measure -rt task cpu usage in us.
304  * default: 1s
305  */
306 unsigned int sysctl_sched_rt_period = 1000000;
307 
308 __read_mostly int scheduler_running;
309 
310 /*
311  * part of the period that we allow rt tasks to run in us.
312  * default: 0.95s
313  */
314 int sysctl_sched_rt_runtime = 950000;
315 
316 /*
317  * __task_rq_lock - lock the rq @p resides on.
318  */
319 static inline struct rq *__task_rq_lock(struct task_struct *p)
320 	__acquires(rq->lock)
321 {
322 	struct rq *rq;
323 
324 	lockdep_assert_held(&p->pi_lock);
325 
326 	for (;;) {
327 		rq = task_rq(p);
328 		raw_spin_lock(&rq->lock);
329 		if (likely(rq == task_rq(p)))
330 			return rq;
331 		raw_spin_unlock(&rq->lock);
332 	}
333 }
334 
335 /*
336  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
337  */
338 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339 	__acquires(p->pi_lock)
340 	__acquires(rq->lock)
341 {
342 	struct rq *rq;
343 
344 	for (;;) {
345 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
346 		rq = task_rq(p);
347 		raw_spin_lock(&rq->lock);
348 		if (likely(rq == task_rq(p)))
349 			return rq;
350 		raw_spin_unlock(&rq->lock);
351 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352 	}
353 }
354 
355 static void __task_rq_unlock(struct rq *rq)
356 	__releases(rq->lock)
357 {
358 	raw_spin_unlock(&rq->lock);
359 }
360 
361 static inline void
362 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
363 	__releases(rq->lock)
364 	__releases(p->pi_lock)
365 {
366 	raw_spin_unlock(&rq->lock);
367 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
368 }
369 
370 /*
371  * this_rq_lock - lock this runqueue and disable interrupts.
372  */
373 static struct rq *this_rq_lock(void)
374 	__acquires(rq->lock)
375 {
376 	struct rq *rq;
377 
378 	local_irq_disable();
379 	rq = this_rq();
380 	raw_spin_lock(&rq->lock);
381 
382 	return rq;
383 }
384 
385 #ifdef CONFIG_SCHED_HRTICK
386 /*
387  * Use HR-timers to deliver accurate preemption points.
388  */
389 
390 static void hrtick_clear(struct rq *rq)
391 {
392 	if (hrtimer_active(&rq->hrtick_timer))
393 		hrtimer_cancel(&rq->hrtick_timer);
394 }
395 
396 /*
397  * High-resolution timer tick.
398  * Runs from hardirq context with interrupts disabled.
399  */
400 static enum hrtimer_restart hrtick(struct hrtimer *timer)
401 {
402 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403 
404 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405 
406 	raw_spin_lock(&rq->lock);
407 	update_rq_clock(rq);
408 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409 	raw_spin_unlock(&rq->lock);
410 
411 	return HRTIMER_NORESTART;
412 }
413 
414 #ifdef CONFIG_SMP
415 
416 static int __hrtick_restart(struct rq *rq)
417 {
418 	struct hrtimer *timer = &rq->hrtick_timer;
419 	ktime_t time = hrtimer_get_softexpires(timer);
420 
421 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422 }
423 
424 /*
425  * called from hardirq (IPI) context
426  */
427 static void __hrtick_start(void *arg)
428 {
429 	struct rq *rq = arg;
430 
431 	raw_spin_lock(&rq->lock);
432 	__hrtick_restart(rq);
433 	rq->hrtick_csd_pending = 0;
434 	raw_spin_unlock(&rq->lock);
435 }
436 
437 /*
438  * Called to set the hrtick timer state.
439  *
440  * called with rq->lock held and irqs disabled
441  */
442 void hrtick_start(struct rq *rq, u64 delay)
443 {
444 	struct hrtimer *timer = &rq->hrtick_timer;
445 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
446 
447 	hrtimer_set_expires(timer, time);
448 
449 	if (rq == this_rq()) {
450 		__hrtick_restart(rq);
451 	} else if (!rq->hrtick_csd_pending) {
452 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453 		rq->hrtick_csd_pending = 1;
454 	}
455 }
456 
457 static int
458 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459 {
460 	int cpu = (int)(long)hcpu;
461 
462 	switch (action) {
463 	case CPU_UP_CANCELED:
464 	case CPU_UP_CANCELED_FROZEN:
465 	case CPU_DOWN_PREPARE:
466 	case CPU_DOWN_PREPARE_FROZEN:
467 	case CPU_DEAD:
468 	case CPU_DEAD_FROZEN:
469 		hrtick_clear(cpu_rq(cpu));
470 		return NOTIFY_OK;
471 	}
472 
473 	return NOTIFY_DONE;
474 }
475 
476 static __init void init_hrtick(void)
477 {
478 	hotcpu_notifier(hotplug_hrtick, 0);
479 }
480 #else
481 /*
482  * Called to set the hrtick timer state.
483  *
484  * called with rq->lock held and irqs disabled
485  */
486 void hrtick_start(struct rq *rq, u64 delay)
487 {
488 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489 			HRTIMER_MODE_REL_PINNED, 0);
490 }
491 
492 static inline void init_hrtick(void)
493 {
494 }
495 #endif /* CONFIG_SMP */
496 
497 static void init_rq_hrtick(struct rq *rq)
498 {
499 #ifdef CONFIG_SMP
500 	rq->hrtick_csd_pending = 0;
501 
502 	rq->hrtick_csd.flags = 0;
503 	rq->hrtick_csd.func = __hrtick_start;
504 	rq->hrtick_csd.info = rq;
505 #endif
506 
507 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508 	rq->hrtick_timer.function = hrtick;
509 }
510 #else	/* CONFIG_SCHED_HRTICK */
511 static inline void hrtick_clear(struct rq *rq)
512 {
513 }
514 
515 static inline void init_rq_hrtick(struct rq *rq)
516 {
517 }
518 
519 static inline void init_hrtick(void)
520 {
521 }
522 #endif	/* CONFIG_SCHED_HRTICK */
523 
524 /*
525  * resched_task - mark a task 'to be rescheduled now'.
526  *
527  * On UP this means the setting of the need_resched flag, on SMP it
528  * might also involve a cross-CPU call to trigger the scheduler on
529  * the target CPU.
530  */
531 void resched_task(struct task_struct *p)
532 {
533 	int cpu;
534 
535 	lockdep_assert_held(&task_rq(p)->lock);
536 
537 	if (test_tsk_need_resched(p))
538 		return;
539 
540 	set_tsk_need_resched(p);
541 
542 	cpu = task_cpu(p);
543 	if (cpu == smp_processor_id()) {
544 		set_preempt_need_resched();
545 		return;
546 	}
547 
548 	/* NEED_RESCHED must be visible before we test polling */
549 	smp_mb();
550 	if (!tsk_is_polling(p))
551 		smp_send_reschedule(cpu);
552 }
553 
554 void resched_cpu(int cpu)
555 {
556 	struct rq *rq = cpu_rq(cpu);
557 	unsigned long flags;
558 
559 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
560 		return;
561 	resched_task(cpu_curr(cpu));
562 	raw_spin_unlock_irqrestore(&rq->lock, flags);
563 }
564 
565 #ifdef CONFIG_SMP
566 #ifdef CONFIG_NO_HZ_COMMON
567 /*
568  * In the semi idle case, use the nearest busy cpu for migrating timers
569  * from an idle cpu.  This is good for power-savings.
570  *
571  * We don't do similar optimization for completely idle system, as
572  * selecting an idle cpu will add more delays to the timers than intended
573  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
574  */
575 int get_nohz_timer_target(int pinned)
576 {
577 	int cpu = smp_processor_id();
578 	int i;
579 	struct sched_domain *sd;
580 
581 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
582 		return cpu;
583 
584 	rcu_read_lock();
585 	for_each_domain(cpu, sd) {
586 		for_each_cpu(i, sched_domain_span(sd)) {
587 			if (!idle_cpu(i)) {
588 				cpu = i;
589 				goto unlock;
590 			}
591 		}
592 	}
593 unlock:
594 	rcu_read_unlock();
595 	return cpu;
596 }
597 /*
598  * When add_timer_on() enqueues a timer into the timer wheel of an
599  * idle CPU then this timer might expire before the next timer event
600  * which is scheduled to wake up that CPU. In case of a completely
601  * idle system the next event might even be infinite time into the
602  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
603  * leaves the inner idle loop so the newly added timer is taken into
604  * account when the CPU goes back to idle and evaluates the timer
605  * wheel for the next timer event.
606  */
607 static void wake_up_idle_cpu(int cpu)
608 {
609 	struct rq *rq = cpu_rq(cpu);
610 
611 	if (cpu == smp_processor_id())
612 		return;
613 
614 	/*
615 	 * This is safe, as this function is called with the timer
616 	 * wheel base lock of (cpu) held. When the CPU is on the way
617 	 * to idle and has not yet set rq->curr to idle then it will
618 	 * be serialized on the timer wheel base lock and take the new
619 	 * timer into account automatically.
620 	 */
621 	if (rq->curr != rq->idle)
622 		return;
623 
624 	/*
625 	 * We can set TIF_RESCHED on the idle task of the other CPU
626 	 * lockless. The worst case is that the other CPU runs the
627 	 * idle task through an additional NOOP schedule()
628 	 */
629 	set_tsk_need_resched(rq->idle);
630 
631 	/* NEED_RESCHED must be visible before we test polling */
632 	smp_mb();
633 	if (!tsk_is_polling(rq->idle))
634 		smp_send_reschedule(cpu);
635 }
636 
637 static bool wake_up_full_nohz_cpu(int cpu)
638 {
639 	if (tick_nohz_full_cpu(cpu)) {
640 		if (cpu != smp_processor_id() ||
641 		    tick_nohz_tick_stopped())
642 			smp_send_reschedule(cpu);
643 		return true;
644 	}
645 
646 	return false;
647 }
648 
649 void wake_up_nohz_cpu(int cpu)
650 {
651 	if (!wake_up_full_nohz_cpu(cpu))
652 		wake_up_idle_cpu(cpu);
653 }
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	int cpu = smp_processor_id();
658 
659 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
660 		return false;
661 
662 	if (idle_cpu(cpu) && !need_resched())
663 		return true;
664 
665 	/*
666 	 * We can't run Idle Load Balance on this CPU for this time so we
667 	 * cancel it and clear NOHZ_BALANCE_KICK
668 	 */
669 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
670 	return false;
671 }
672 
673 #else /* CONFIG_NO_HZ_COMMON */
674 
675 static inline bool got_nohz_idle_kick(void)
676 {
677 	return false;
678 }
679 
680 #endif /* CONFIG_NO_HZ_COMMON */
681 
682 #ifdef CONFIG_NO_HZ_FULL
683 bool sched_can_stop_tick(void)
684 {
685        struct rq *rq;
686 
687        rq = this_rq();
688 
689        /* Make sure rq->nr_running update is visible after the IPI */
690        smp_rmb();
691 
692        /* More than one running task need preemption */
693        if (rq->nr_running > 1)
694                return false;
695 
696        return true;
697 }
698 #endif /* CONFIG_NO_HZ_FULL */
699 
700 void sched_avg_update(struct rq *rq)
701 {
702 	s64 period = sched_avg_period();
703 
704 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
705 		/*
706 		 * Inline assembly required to prevent the compiler
707 		 * optimising this loop into a divmod call.
708 		 * See __iter_div_u64_rem() for another example of this.
709 		 */
710 		asm("" : "+rm" (rq->age_stamp));
711 		rq->age_stamp += period;
712 		rq->rt_avg /= 2;
713 	}
714 }
715 
716 #endif /* CONFIG_SMP */
717 
718 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
719 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
720 /*
721  * Iterate task_group tree rooted at *from, calling @down when first entering a
722  * node and @up when leaving it for the final time.
723  *
724  * Caller must hold rcu_lock or sufficient equivalent.
725  */
726 int walk_tg_tree_from(struct task_group *from,
727 			     tg_visitor down, tg_visitor up, void *data)
728 {
729 	struct task_group *parent, *child;
730 	int ret;
731 
732 	parent = from;
733 
734 down:
735 	ret = (*down)(parent, data);
736 	if (ret)
737 		goto out;
738 	list_for_each_entry_rcu(child, &parent->children, siblings) {
739 		parent = child;
740 		goto down;
741 
742 up:
743 		continue;
744 	}
745 	ret = (*up)(parent, data);
746 	if (ret || parent == from)
747 		goto out;
748 
749 	child = parent;
750 	parent = parent->parent;
751 	if (parent)
752 		goto up;
753 out:
754 	return ret;
755 }
756 
757 int tg_nop(struct task_group *tg, void *data)
758 {
759 	return 0;
760 }
761 #endif
762 
763 static void set_load_weight(struct task_struct *p)
764 {
765 	int prio = p->static_prio - MAX_RT_PRIO;
766 	struct load_weight *load = &p->se.load;
767 
768 	/*
769 	 * SCHED_IDLE tasks get minimal weight:
770 	 */
771 	if (p->policy == SCHED_IDLE) {
772 		load->weight = scale_load(WEIGHT_IDLEPRIO);
773 		load->inv_weight = WMULT_IDLEPRIO;
774 		return;
775 	}
776 
777 	load->weight = scale_load(prio_to_weight[prio]);
778 	load->inv_weight = prio_to_wmult[prio];
779 }
780 
781 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
782 {
783 	update_rq_clock(rq);
784 	sched_info_queued(rq, p);
785 	p->sched_class->enqueue_task(rq, p, flags);
786 }
787 
788 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
789 {
790 	update_rq_clock(rq);
791 	sched_info_dequeued(rq, p);
792 	p->sched_class->dequeue_task(rq, p, flags);
793 }
794 
795 void activate_task(struct rq *rq, struct task_struct *p, int flags)
796 {
797 	if (task_contributes_to_load(p))
798 		rq->nr_uninterruptible--;
799 
800 	enqueue_task(rq, p, flags);
801 }
802 
803 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
804 {
805 	if (task_contributes_to_load(p))
806 		rq->nr_uninterruptible++;
807 
808 	dequeue_task(rq, p, flags);
809 }
810 
811 static void update_rq_clock_task(struct rq *rq, s64 delta)
812 {
813 /*
814  * In theory, the compile should just see 0 here, and optimize out the call
815  * to sched_rt_avg_update. But I don't trust it...
816  */
817 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
818 	s64 steal = 0, irq_delta = 0;
819 #endif
820 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
821 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
822 
823 	/*
824 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
825 	 * this case when a previous update_rq_clock() happened inside a
826 	 * {soft,}irq region.
827 	 *
828 	 * When this happens, we stop ->clock_task and only update the
829 	 * prev_irq_time stamp to account for the part that fit, so that a next
830 	 * update will consume the rest. This ensures ->clock_task is
831 	 * monotonic.
832 	 *
833 	 * It does however cause some slight miss-attribution of {soft,}irq
834 	 * time, a more accurate solution would be to update the irq_time using
835 	 * the current rq->clock timestamp, except that would require using
836 	 * atomic ops.
837 	 */
838 	if (irq_delta > delta)
839 		irq_delta = delta;
840 
841 	rq->prev_irq_time += irq_delta;
842 	delta -= irq_delta;
843 #endif
844 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
845 	if (static_key_false((&paravirt_steal_rq_enabled))) {
846 		steal = paravirt_steal_clock(cpu_of(rq));
847 		steal -= rq->prev_steal_time_rq;
848 
849 		if (unlikely(steal > delta))
850 			steal = delta;
851 
852 		rq->prev_steal_time_rq += steal;
853 		delta -= steal;
854 	}
855 #endif
856 
857 	rq->clock_task += delta;
858 
859 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
860 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
861 		sched_rt_avg_update(rq, irq_delta + steal);
862 #endif
863 }
864 
865 void sched_set_stop_task(int cpu, struct task_struct *stop)
866 {
867 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
868 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
869 
870 	if (stop) {
871 		/*
872 		 * Make it appear like a SCHED_FIFO task, its something
873 		 * userspace knows about and won't get confused about.
874 		 *
875 		 * Also, it will make PI more or less work without too
876 		 * much confusion -- but then, stop work should not
877 		 * rely on PI working anyway.
878 		 */
879 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
880 
881 		stop->sched_class = &stop_sched_class;
882 	}
883 
884 	cpu_rq(cpu)->stop = stop;
885 
886 	if (old_stop) {
887 		/*
888 		 * Reset it back to a normal scheduling class so that
889 		 * it can die in pieces.
890 		 */
891 		old_stop->sched_class = &rt_sched_class;
892 	}
893 }
894 
895 /*
896  * __normal_prio - return the priority that is based on the static prio
897  */
898 static inline int __normal_prio(struct task_struct *p)
899 {
900 	return p->static_prio;
901 }
902 
903 /*
904  * Calculate the expected normal priority: i.e. priority
905  * without taking RT-inheritance into account. Might be
906  * boosted by interactivity modifiers. Changes upon fork,
907  * setprio syscalls, and whenever the interactivity
908  * estimator recalculates.
909  */
910 static inline int normal_prio(struct task_struct *p)
911 {
912 	int prio;
913 
914 	if (task_has_dl_policy(p))
915 		prio = MAX_DL_PRIO-1;
916 	else if (task_has_rt_policy(p))
917 		prio = MAX_RT_PRIO-1 - p->rt_priority;
918 	else
919 		prio = __normal_prio(p);
920 	return prio;
921 }
922 
923 /*
924  * Calculate the current priority, i.e. the priority
925  * taken into account by the scheduler. This value might
926  * be boosted by RT tasks, or might be boosted by
927  * interactivity modifiers. Will be RT if the task got
928  * RT-boosted. If not then it returns p->normal_prio.
929  */
930 static int effective_prio(struct task_struct *p)
931 {
932 	p->normal_prio = normal_prio(p);
933 	/*
934 	 * If we are RT tasks or we were boosted to RT priority,
935 	 * keep the priority unchanged. Otherwise, update priority
936 	 * to the normal priority:
937 	 */
938 	if (!rt_prio(p->prio))
939 		return p->normal_prio;
940 	return p->prio;
941 }
942 
943 /**
944  * task_curr - is this task currently executing on a CPU?
945  * @p: the task in question.
946  *
947  * Return: 1 if the task is currently executing. 0 otherwise.
948  */
949 inline int task_curr(const struct task_struct *p)
950 {
951 	return cpu_curr(task_cpu(p)) == p;
952 }
953 
954 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
955 				       const struct sched_class *prev_class,
956 				       int oldprio)
957 {
958 	if (prev_class != p->sched_class) {
959 		if (prev_class->switched_from)
960 			prev_class->switched_from(rq, p);
961 		p->sched_class->switched_to(rq, p);
962 	} else if (oldprio != p->prio || dl_task(p))
963 		p->sched_class->prio_changed(rq, p, oldprio);
964 }
965 
966 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
967 {
968 	const struct sched_class *class;
969 
970 	if (p->sched_class == rq->curr->sched_class) {
971 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
972 	} else {
973 		for_each_class(class) {
974 			if (class == rq->curr->sched_class)
975 				break;
976 			if (class == p->sched_class) {
977 				resched_task(rq->curr);
978 				break;
979 			}
980 		}
981 	}
982 
983 	/*
984 	 * A queue event has occurred, and we're going to schedule.  In
985 	 * this case, we can save a useless back to back clock update.
986 	 */
987 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
988 		rq->skip_clock_update = 1;
989 }
990 
991 #ifdef CONFIG_SMP
992 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
993 {
994 #ifdef CONFIG_SCHED_DEBUG
995 	/*
996 	 * We should never call set_task_cpu() on a blocked task,
997 	 * ttwu() will sort out the placement.
998 	 */
999 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1000 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1001 
1002 #ifdef CONFIG_LOCKDEP
1003 	/*
1004 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1005 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1006 	 *
1007 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1008 	 * see task_group().
1009 	 *
1010 	 * Furthermore, all task_rq users should acquire both locks, see
1011 	 * task_rq_lock().
1012 	 */
1013 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1014 				      lockdep_is_held(&task_rq(p)->lock)));
1015 #endif
1016 #endif
1017 
1018 	trace_sched_migrate_task(p, new_cpu);
1019 
1020 	if (task_cpu(p) != new_cpu) {
1021 		if (p->sched_class->migrate_task_rq)
1022 			p->sched_class->migrate_task_rq(p, new_cpu);
1023 		p->se.nr_migrations++;
1024 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1025 	}
1026 
1027 	__set_task_cpu(p, new_cpu);
1028 }
1029 
1030 static void __migrate_swap_task(struct task_struct *p, int cpu)
1031 {
1032 	if (p->on_rq) {
1033 		struct rq *src_rq, *dst_rq;
1034 
1035 		src_rq = task_rq(p);
1036 		dst_rq = cpu_rq(cpu);
1037 
1038 		deactivate_task(src_rq, p, 0);
1039 		set_task_cpu(p, cpu);
1040 		activate_task(dst_rq, p, 0);
1041 		check_preempt_curr(dst_rq, p, 0);
1042 	} else {
1043 		/*
1044 		 * Task isn't running anymore; make it appear like we migrated
1045 		 * it before it went to sleep. This means on wakeup we make the
1046 		 * previous cpu our targer instead of where it really is.
1047 		 */
1048 		p->wake_cpu = cpu;
1049 	}
1050 }
1051 
1052 struct migration_swap_arg {
1053 	struct task_struct *src_task, *dst_task;
1054 	int src_cpu, dst_cpu;
1055 };
1056 
1057 static int migrate_swap_stop(void *data)
1058 {
1059 	struct migration_swap_arg *arg = data;
1060 	struct rq *src_rq, *dst_rq;
1061 	int ret = -EAGAIN;
1062 
1063 	src_rq = cpu_rq(arg->src_cpu);
1064 	dst_rq = cpu_rq(arg->dst_cpu);
1065 
1066 	double_raw_lock(&arg->src_task->pi_lock,
1067 			&arg->dst_task->pi_lock);
1068 	double_rq_lock(src_rq, dst_rq);
1069 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1070 		goto unlock;
1071 
1072 	if (task_cpu(arg->src_task) != arg->src_cpu)
1073 		goto unlock;
1074 
1075 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1076 		goto unlock;
1077 
1078 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1079 		goto unlock;
1080 
1081 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1082 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1083 
1084 	ret = 0;
1085 
1086 unlock:
1087 	double_rq_unlock(src_rq, dst_rq);
1088 	raw_spin_unlock(&arg->dst_task->pi_lock);
1089 	raw_spin_unlock(&arg->src_task->pi_lock);
1090 
1091 	return ret;
1092 }
1093 
1094 /*
1095  * Cross migrate two tasks
1096  */
1097 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1098 {
1099 	struct migration_swap_arg arg;
1100 	int ret = -EINVAL;
1101 
1102 	arg = (struct migration_swap_arg){
1103 		.src_task = cur,
1104 		.src_cpu = task_cpu(cur),
1105 		.dst_task = p,
1106 		.dst_cpu = task_cpu(p),
1107 	};
1108 
1109 	if (arg.src_cpu == arg.dst_cpu)
1110 		goto out;
1111 
1112 	/*
1113 	 * These three tests are all lockless; this is OK since all of them
1114 	 * will be re-checked with proper locks held further down the line.
1115 	 */
1116 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1117 		goto out;
1118 
1119 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1120 		goto out;
1121 
1122 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1123 		goto out;
1124 
1125 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1126 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1127 
1128 out:
1129 	return ret;
1130 }
1131 
1132 struct migration_arg {
1133 	struct task_struct *task;
1134 	int dest_cpu;
1135 };
1136 
1137 static int migration_cpu_stop(void *data);
1138 
1139 /*
1140  * wait_task_inactive - wait for a thread to unschedule.
1141  *
1142  * If @match_state is nonzero, it's the @p->state value just checked and
1143  * not expected to change.  If it changes, i.e. @p might have woken up,
1144  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1145  * we return a positive number (its total switch count).  If a second call
1146  * a short while later returns the same number, the caller can be sure that
1147  * @p has remained unscheduled the whole time.
1148  *
1149  * The caller must ensure that the task *will* unschedule sometime soon,
1150  * else this function might spin for a *long* time. This function can't
1151  * be called with interrupts off, or it may introduce deadlock with
1152  * smp_call_function() if an IPI is sent by the same process we are
1153  * waiting to become inactive.
1154  */
1155 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1156 {
1157 	unsigned long flags;
1158 	int running, on_rq;
1159 	unsigned long ncsw;
1160 	struct rq *rq;
1161 
1162 	for (;;) {
1163 		/*
1164 		 * We do the initial early heuristics without holding
1165 		 * any task-queue locks at all. We'll only try to get
1166 		 * the runqueue lock when things look like they will
1167 		 * work out!
1168 		 */
1169 		rq = task_rq(p);
1170 
1171 		/*
1172 		 * If the task is actively running on another CPU
1173 		 * still, just relax and busy-wait without holding
1174 		 * any locks.
1175 		 *
1176 		 * NOTE! Since we don't hold any locks, it's not
1177 		 * even sure that "rq" stays as the right runqueue!
1178 		 * But we don't care, since "task_running()" will
1179 		 * return false if the runqueue has changed and p
1180 		 * is actually now running somewhere else!
1181 		 */
1182 		while (task_running(rq, p)) {
1183 			if (match_state && unlikely(p->state != match_state))
1184 				return 0;
1185 			cpu_relax();
1186 		}
1187 
1188 		/*
1189 		 * Ok, time to look more closely! We need the rq
1190 		 * lock now, to be *sure*. If we're wrong, we'll
1191 		 * just go back and repeat.
1192 		 */
1193 		rq = task_rq_lock(p, &flags);
1194 		trace_sched_wait_task(p);
1195 		running = task_running(rq, p);
1196 		on_rq = p->on_rq;
1197 		ncsw = 0;
1198 		if (!match_state || p->state == match_state)
1199 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1200 		task_rq_unlock(rq, p, &flags);
1201 
1202 		/*
1203 		 * If it changed from the expected state, bail out now.
1204 		 */
1205 		if (unlikely(!ncsw))
1206 			break;
1207 
1208 		/*
1209 		 * Was it really running after all now that we
1210 		 * checked with the proper locks actually held?
1211 		 *
1212 		 * Oops. Go back and try again..
1213 		 */
1214 		if (unlikely(running)) {
1215 			cpu_relax();
1216 			continue;
1217 		}
1218 
1219 		/*
1220 		 * It's not enough that it's not actively running,
1221 		 * it must be off the runqueue _entirely_, and not
1222 		 * preempted!
1223 		 *
1224 		 * So if it was still runnable (but just not actively
1225 		 * running right now), it's preempted, and we should
1226 		 * yield - it could be a while.
1227 		 */
1228 		if (unlikely(on_rq)) {
1229 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1230 
1231 			set_current_state(TASK_UNINTERRUPTIBLE);
1232 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1233 			continue;
1234 		}
1235 
1236 		/*
1237 		 * Ahh, all good. It wasn't running, and it wasn't
1238 		 * runnable, which means that it will never become
1239 		 * running in the future either. We're all done!
1240 		 */
1241 		break;
1242 	}
1243 
1244 	return ncsw;
1245 }
1246 
1247 /***
1248  * kick_process - kick a running thread to enter/exit the kernel
1249  * @p: the to-be-kicked thread
1250  *
1251  * Cause a process which is running on another CPU to enter
1252  * kernel-mode, without any delay. (to get signals handled.)
1253  *
1254  * NOTE: this function doesn't have to take the runqueue lock,
1255  * because all it wants to ensure is that the remote task enters
1256  * the kernel. If the IPI races and the task has been migrated
1257  * to another CPU then no harm is done and the purpose has been
1258  * achieved as well.
1259  */
1260 void kick_process(struct task_struct *p)
1261 {
1262 	int cpu;
1263 
1264 	preempt_disable();
1265 	cpu = task_cpu(p);
1266 	if ((cpu != smp_processor_id()) && task_curr(p))
1267 		smp_send_reschedule(cpu);
1268 	preempt_enable();
1269 }
1270 EXPORT_SYMBOL_GPL(kick_process);
1271 #endif /* CONFIG_SMP */
1272 
1273 #ifdef CONFIG_SMP
1274 /*
1275  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1276  */
1277 static int select_fallback_rq(int cpu, struct task_struct *p)
1278 {
1279 	int nid = cpu_to_node(cpu);
1280 	const struct cpumask *nodemask = NULL;
1281 	enum { cpuset, possible, fail } state = cpuset;
1282 	int dest_cpu;
1283 
1284 	/*
1285 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1286 	 * will return -1. There is no cpu on the node, and we should
1287 	 * select the cpu on the other node.
1288 	 */
1289 	if (nid != -1) {
1290 		nodemask = cpumask_of_node(nid);
1291 
1292 		/* Look for allowed, online CPU in same node. */
1293 		for_each_cpu(dest_cpu, nodemask) {
1294 			if (!cpu_online(dest_cpu))
1295 				continue;
1296 			if (!cpu_active(dest_cpu))
1297 				continue;
1298 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1299 				return dest_cpu;
1300 		}
1301 	}
1302 
1303 	for (;;) {
1304 		/* Any allowed, online CPU? */
1305 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1306 			if (!cpu_online(dest_cpu))
1307 				continue;
1308 			if (!cpu_active(dest_cpu))
1309 				continue;
1310 			goto out;
1311 		}
1312 
1313 		switch (state) {
1314 		case cpuset:
1315 			/* No more Mr. Nice Guy. */
1316 			cpuset_cpus_allowed_fallback(p);
1317 			state = possible;
1318 			break;
1319 
1320 		case possible:
1321 			do_set_cpus_allowed(p, cpu_possible_mask);
1322 			state = fail;
1323 			break;
1324 
1325 		case fail:
1326 			BUG();
1327 			break;
1328 		}
1329 	}
1330 
1331 out:
1332 	if (state != cpuset) {
1333 		/*
1334 		 * Don't tell them about moving exiting tasks or
1335 		 * kernel threads (both mm NULL), since they never
1336 		 * leave kernel.
1337 		 */
1338 		if (p->mm && printk_ratelimit()) {
1339 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1340 					task_pid_nr(p), p->comm, cpu);
1341 		}
1342 	}
1343 
1344 	return dest_cpu;
1345 }
1346 
1347 /*
1348  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1349  */
1350 static inline
1351 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1352 {
1353 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1354 
1355 	/*
1356 	 * In order not to call set_task_cpu() on a blocking task we need
1357 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1358 	 * cpu.
1359 	 *
1360 	 * Since this is common to all placement strategies, this lives here.
1361 	 *
1362 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1363 	 *   not worry about this generic constraint ]
1364 	 */
1365 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1366 		     !cpu_online(cpu)))
1367 		cpu = select_fallback_rq(task_cpu(p), p);
1368 
1369 	return cpu;
1370 }
1371 
1372 static void update_avg(u64 *avg, u64 sample)
1373 {
1374 	s64 diff = sample - *avg;
1375 	*avg += diff >> 3;
1376 }
1377 #endif
1378 
1379 static void
1380 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1381 {
1382 #ifdef CONFIG_SCHEDSTATS
1383 	struct rq *rq = this_rq();
1384 
1385 #ifdef CONFIG_SMP
1386 	int this_cpu = smp_processor_id();
1387 
1388 	if (cpu == this_cpu) {
1389 		schedstat_inc(rq, ttwu_local);
1390 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1391 	} else {
1392 		struct sched_domain *sd;
1393 
1394 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1395 		rcu_read_lock();
1396 		for_each_domain(this_cpu, sd) {
1397 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1398 				schedstat_inc(sd, ttwu_wake_remote);
1399 				break;
1400 			}
1401 		}
1402 		rcu_read_unlock();
1403 	}
1404 
1405 	if (wake_flags & WF_MIGRATED)
1406 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1407 
1408 #endif /* CONFIG_SMP */
1409 
1410 	schedstat_inc(rq, ttwu_count);
1411 	schedstat_inc(p, se.statistics.nr_wakeups);
1412 
1413 	if (wake_flags & WF_SYNC)
1414 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1415 
1416 #endif /* CONFIG_SCHEDSTATS */
1417 }
1418 
1419 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1420 {
1421 	activate_task(rq, p, en_flags);
1422 	p->on_rq = 1;
1423 
1424 	/* if a worker is waking up, notify workqueue */
1425 	if (p->flags & PF_WQ_WORKER)
1426 		wq_worker_waking_up(p, cpu_of(rq));
1427 }
1428 
1429 /*
1430  * Mark the task runnable and perform wakeup-preemption.
1431  */
1432 static void
1433 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1434 {
1435 	check_preempt_curr(rq, p, wake_flags);
1436 	trace_sched_wakeup(p, true);
1437 
1438 	p->state = TASK_RUNNING;
1439 #ifdef CONFIG_SMP
1440 	if (p->sched_class->task_woken)
1441 		p->sched_class->task_woken(rq, p);
1442 
1443 	if (rq->idle_stamp) {
1444 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1445 		u64 max = 2*rq->max_idle_balance_cost;
1446 
1447 		update_avg(&rq->avg_idle, delta);
1448 
1449 		if (rq->avg_idle > max)
1450 			rq->avg_idle = max;
1451 
1452 		rq->idle_stamp = 0;
1453 	}
1454 #endif
1455 }
1456 
1457 static void
1458 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1459 {
1460 #ifdef CONFIG_SMP
1461 	if (p->sched_contributes_to_load)
1462 		rq->nr_uninterruptible--;
1463 #endif
1464 
1465 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1466 	ttwu_do_wakeup(rq, p, wake_flags);
1467 }
1468 
1469 /*
1470  * Called in case the task @p isn't fully descheduled from its runqueue,
1471  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1472  * since all we need to do is flip p->state to TASK_RUNNING, since
1473  * the task is still ->on_rq.
1474  */
1475 static int ttwu_remote(struct task_struct *p, int wake_flags)
1476 {
1477 	struct rq *rq;
1478 	int ret = 0;
1479 
1480 	rq = __task_rq_lock(p);
1481 	if (p->on_rq) {
1482 		/* check_preempt_curr() may use rq clock */
1483 		update_rq_clock(rq);
1484 		ttwu_do_wakeup(rq, p, wake_flags);
1485 		ret = 1;
1486 	}
1487 	__task_rq_unlock(rq);
1488 
1489 	return ret;
1490 }
1491 
1492 #ifdef CONFIG_SMP
1493 static void sched_ttwu_pending(void)
1494 {
1495 	struct rq *rq = this_rq();
1496 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1497 	struct task_struct *p;
1498 
1499 	raw_spin_lock(&rq->lock);
1500 
1501 	while (llist) {
1502 		p = llist_entry(llist, struct task_struct, wake_entry);
1503 		llist = llist_next(llist);
1504 		ttwu_do_activate(rq, p, 0);
1505 	}
1506 
1507 	raw_spin_unlock(&rq->lock);
1508 }
1509 
1510 void scheduler_ipi(void)
1511 {
1512 	/*
1513 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1514 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1515 	 * this IPI.
1516 	 */
1517 	preempt_fold_need_resched();
1518 
1519 	if (llist_empty(&this_rq()->wake_list)
1520 			&& !tick_nohz_full_cpu(smp_processor_id())
1521 			&& !got_nohz_idle_kick())
1522 		return;
1523 
1524 	/*
1525 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1526 	 * traditionally all their work was done from the interrupt return
1527 	 * path. Now that we actually do some work, we need to make sure
1528 	 * we do call them.
1529 	 *
1530 	 * Some archs already do call them, luckily irq_enter/exit nest
1531 	 * properly.
1532 	 *
1533 	 * Arguably we should visit all archs and update all handlers,
1534 	 * however a fair share of IPIs are still resched only so this would
1535 	 * somewhat pessimize the simple resched case.
1536 	 */
1537 	irq_enter();
1538 	tick_nohz_full_check();
1539 	sched_ttwu_pending();
1540 
1541 	/*
1542 	 * Check if someone kicked us for doing the nohz idle load balance.
1543 	 */
1544 	if (unlikely(got_nohz_idle_kick())) {
1545 		this_rq()->idle_balance = 1;
1546 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1547 	}
1548 	irq_exit();
1549 }
1550 
1551 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1552 {
1553 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1554 		smp_send_reschedule(cpu);
1555 }
1556 
1557 bool cpus_share_cache(int this_cpu, int that_cpu)
1558 {
1559 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1560 }
1561 #endif /* CONFIG_SMP */
1562 
1563 static void ttwu_queue(struct task_struct *p, int cpu)
1564 {
1565 	struct rq *rq = cpu_rq(cpu);
1566 
1567 #if defined(CONFIG_SMP)
1568 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1569 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1570 		ttwu_queue_remote(p, cpu);
1571 		return;
1572 	}
1573 #endif
1574 
1575 	raw_spin_lock(&rq->lock);
1576 	ttwu_do_activate(rq, p, 0);
1577 	raw_spin_unlock(&rq->lock);
1578 }
1579 
1580 /**
1581  * try_to_wake_up - wake up a thread
1582  * @p: the thread to be awakened
1583  * @state: the mask of task states that can be woken
1584  * @wake_flags: wake modifier flags (WF_*)
1585  *
1586  * Put it on the run-queue if it's not already there. The "current"
1587  * thread is always on the run-queue (except when the actual
1588  * re-schedule is in progress), and as such you're allowed to do
1589  * the simpler "current->state = TASK_RUNNING" to mark yourself
1590  * runnable without the overhead of this.
1591  *
1592  * Return: %true if @p was woken up, %false if it was already running.
1593  * or @state didn't match @p's state.
1594  */
1595 static int
1596 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1597 {
1598 	unsigned long flags;
1599 	int cpu, success = 0;
1600 
1601 	/*
1602 	 * If we are going to wake up a thread waiting for CONDITION we
1603 	 * need to ensure that CONDITION=1 done by the caller can not be
1604 	 * reordered with p->state check below. This pairs with mb() in
1605 	 * set_current_state() the waiting thread does.
1606 	 */
1607 	smp_mb__before_spinlock();
1608 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1609 	if (!(p->state & state))
1610 		goto out;
1611 
1612 	success = 1; /* we're going to change ->state */
1613 	cpu = task_cpu(p);
1614 
1615 	if (p->on_rq && ttwu_remote(p, wake_flags))
1616 		goto stat;
1617 
1618 #ifdef CONFIG_SMP
1619 	/*
1620 	 * If the owning (remote) cpu is still in the middle of schedule() with
1621 	 * this task as prev, wait until its done referencing the task.
1622 	 */
1623 	while (p->on_cpu)
1624 		cpu_relax();
1625 	/*
1626 	 * Pairs with the smp_wmb() in finish_lock_switch().
1627 	 */
1628 	smp_rmb();
1629 
1630 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1631 	p->state = TASK_WAKING;
1632 
1633 	if (p->sched_class->task_waking)
1634 		p->sched_class->task_waking(p);
1635 
1636 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1637 	if (task_cpu(p) != cpu) {
1638 		wake_flags |= WF_MIGRATED;
1639 		set_task_cpu(p, cpu);
1640 	}
1641 #endif /* CONFIG_SMP */
1642 
1643 	ttwu_queue(p, cpu);
1644 stat:
1645 	ttwu_stat(p, cpu, wake_flags);
1646 out:
1647 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1648 
1649 	return success;
1650 }
1651 
1652 /**
1653  * try_to_wake_up_local - try to wake up a local task with rq lock held
1654  * @p: the thread to be awakened
1655  *
1656  * Put @p on the run-queue if it's not already there. The caller must
1657  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1658  * the current task.
1659  */
1660 static void try_to_wake_up_local(struct task_struct *p)
1661 {
1662 	struct rq *rq = task_rq(p);
1663 
1664 	if (WARN_ON_ONCE(rq != this_rq()) ||
1665 	    WARN_ON_ONCE(p == current))
1666 		return;
1667 
1668 	lockdep_assert_held(&rq->lock);
1669 
1670 	if (!raw_spin_trylock(&p->pi_lock)) {
1671 		raw_spin_unlock(&rq->lock);
1672 		raw_spin_lock(&p->pi_lock);
1673 		raw_spin_lock(&rq->lock);
1674 	}
1675 
1676 	if (!(p->state & TASK_NORMAL))
1677 		goto out;
1678 
1679 	if (!p->on_rq)
1680 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1681 
1682 	ttwu_do_wakeup(rq, p, 0);
1683 	ttwu_stat(p, smp_processor_id(), 0);
1684 out:
1685 	raw_spin_unlock(&p->pi_lock);
1686 }
1687 
1688 /**
1689  * wake_up_process - Wake up a specific process
1690  * @p: The process to be woken up.
1691  *
1692  * Attempt to wake up the nominated process and move it to the set of runnable
1693  * processes.
1694  *
1695  * Return: 1 if the process was woken up, 0 if it was already running.
1696  *
1697  * It may be assumed that this function implies a write memory barrier before
1698  * changing the task state if and only if any tasks are woken up.
1699  */
1700 int wake_up_process(struct task_struct *p)
1701 {
1702 	WARN_ON(task_is_stopped_or_traced(p));
1703 	return try_to_wake_up(p, TASK_NORMAL, 0);
1704 }
1705 EXPORT_SYMBOL(wake_up_process);
1706 
1707 int wake_up_state(struct task_struct *p, unsigned int state)
1708 {
1709 	return try_to_wake_up(p, state, 0);
1710 }
1711 
1712 /*
1713  * Perform scheduler related setup for a newly forked process p.
1714  * p is forked by current.
1715  *
1716  * __sched_fork() is basic setup used by init_idle() too:
1717  */
1718 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1719 {
1720 	p->on_rq			= 0;
1721 
1722 	p->se.on_rq			= 0;
1723 	p->se.exec_start		= 0;
1724 	p->se.sum_exec_runtime		= 0;
1725 	p->se.prev_sum_exec_runtime	= 0;
1726 	p->se.nr_migrations		= 0;
1727 	p->se.vruntime			= 0;
1728 	INIT_LIST_HEAD(&p->se.group_node);
1729 
1730 #ifdef CONFIG_SCHEDSTATS
1731 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1732 #endif
1733 
1734 	RB_CLEAR_NODE(&p->dl.rb_node);
1735 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1736 	p->dl.dl_runtime = p->dl.runtime = 0;
1737 	p->dl.dl_deadline = p->dl.deadline = 0;
1738 	p->dl.dl_period = 0;
1739 	p->dl.flags = 0;
1740 
1741 	INIT_LIST_HEAD(&p->rt.run_list);
1742 
1743 #ifdef CONFIG_PREEMPT_NOTIFIERS
1744 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1745 #endif
1746 
1747 #ifdef CONFIG_NUMA_BALANCING
1748 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1749 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1750 		p->mm->numa_scan_seq = 0;
1751 	}
1752 
1753 	if (clone_flags & CLONE_VM)
1754 		p->numa_preferred_nid = current->numa_preferred_nid;
1755 	else
1756 		p->numa_preferred_nid = -1;
1757 
1758 	p->node_stamp = 0ULL;
1759 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1760 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1761 	p->numa_work.next = &p->numa_work;
1762 	p->numa_faults_memory = NULL;
1763 	p->numa_faults_buffer_memory = NULL;
1764 	p->last_task_numa_placement = 0;
1765 	p->last_sum_exec_runtime = 0;
1766 
1767 	INIT_LIST_HEAD(&p->numa_entry);
1768 	p->numa_group = NULL;
1769 #endif /* CONFIG_NUMA_BALANCING */
1770 }
1771 
1772 #ifdef CONFIG_NUMA_BALANCING
1773 #ifdef CONFIG_SCHED_DEBUG
1774 void set_numabalancing_state(bool enabled)
1775 {
1776 	if (enabled)
1777 		sched_feat_set("NUMA");
1778 	else
1779 		sched_feat_set("NO_NUMA");
1780 }
1781 #else
1782 __read_mostly bool numabalancing_enabled;
1783 
1784 void set_numabalancing_state(bool enabled)
1785 {
1786 	numabalancing_enabled = enabled;
1787 }
1788 #endif /* CONFIG_SCHED_DEBUG */
1789 
1790 #ifdef CONFIG_PROC_SYSCTL
1791 int sysctl_numa_balancing(struct ctl_table *table, int write,
1792 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1793 {
1794 	struct ctl_table t;
1795 	int err;
1796 	int state = numabalancing_enabled;
1797 
1798 	if (write && !capable(CAP_SYS_ADMIN))
1799 		return -EPERM;
1800 
1801 	t = *table;
1802 	t.data = &state;
1803 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1804 	if (err < 0)
1805 		return err;
1806 	if (write)
1807 		set_numabalancing_state(state);
1808 	return err;
1809 }
1810 #endif
1811 #endif
1812 
1813 /*
1814  * fork()/clone()-time setup:
1815  */
1816 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1817 {
1818 	unsigned long flags;
1819 	int cpu = get_cpu();
1820 
1821 	__sched_fork(clone_flags, p);
1822 	/*
1823 	 * We mark the process as running here. This guarantees that
1824 	 * nobody will actually run it, and a signal or other external
1825 	 * event cannot wake it up and insert it on the runqueue either.
1826 	 */
1827 	p->state = TASK_RUNNING;
1828 
1829 	/*
1830 	 * Make sure we do not leak PI boosting priority to the child.
1831 	 */
1832 	p->prio = current->normal_prio;
1833 
1834 	/*
1835 	 * Revert to default priority/policy on fork if requested.
1836 	 */
1837 	if (unlikely(p->sched_reset_on_fork)) {
1838 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1839 			p->policy = SCHED_NORMAL;
1840 			p->static_prio = NICE_TO_PRIO(0);
1841 			p->rt_priority = 0;
1842 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1843 			p->static_prio = NICE_TO_PRIO(0);
1844 
1845 		p->prio = p->normal_prio = __normal_prio(p);
1846 		set_load_weight(p);
1847 
1848 		/*
1849 		 * We don't need the reset flag anymore after the fork. It has
1850 		 * fulfilled its duty:
1851 		 */
1852 		p->sched_reset_on_fork = 0;
1853 	}
1854 
1855 	if (dl_prio(p->prio)) {
1856 		put_cpu();
1857 		return -EAGAIN;
1858 	} else if (rt_prio(p->prio)) {
1859 		p->sched_class = &rt_sched_class;
1860 	} else {
1861 		p->sched_class = &fair_sched_class;
1862 	}
1863 
1864 	if (p->sched_class->task_fork)
1865 		p->sched_class->task_fork(p);
1866 
1867 	/*
1868 	 * The child is not yet in the pid-hash so no cgroup attach races,
1869 	 * and the cgroup is pinned to this child due to cgroup_fork()
1870 	 * is ran before sched_fork().
1871 	 *
1872 	 * Silence PROVE_RCU.
1873 	 */
1874 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1875 	set_task_cpu(p, cpu);
1876 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1877 
1878 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1879 	if (likely(sched_info_on()))
1880 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1881 #endif
1882 #if defined(CONFIG_SMP)
1883 	p->on_cpu = 0;
1884 #endif
1885 	init_task_preempt_count(p);
1886 #ifdef CONFIG_SMP
1887 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1888 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1889 #endif
1890 
1891 	put_cpu();
1892 	return 0;
1893 }
1894 
1895 unsigned long to_ratio(u64 period, u64 runtime)
1896 {
1897 	if (runtime == RUNTIME_INF)
1898 		return 1ULL << 20;
1899 
1900 	/*
1901 	 * Doing this here saves a lot of checks in all
1902 	 * the calling paths, and returning zero seems
1903 	 * safe for them anyway.
1904 	 */
1905 	if (period == 0)
1906 		return 0;
1907 
1908 	return div64_u64(runtime << 20, period);
1909 }
1910 
1911 #ifdef CONFIG_SMP
1912 inline struct dl_bw *dl_bw_of(int i)
1913 {
1914 	return &cpu_rq(i)->rd->dl_bw;
1915 }
1916 
1917 static inline int dl_bw_cpus(int i)
1918 {
1919 	struct root_domain *rd = cpu_rq(i)->rd;
1920 	int cpus = 0;
1921 
1922 	for_each_cpu_and(i, rd->span, cpu_active_mask)
1923 		cpus++;
1924 
1925 	return cpus;
1926 }
1927 #else
1928 inline struct dl_bw *dl_bw_of(int i)
1929 {
1930 	return &cpu_rq(i)->dl.dl_bw;
1931 }
1932 
1933 static inline int dl_bw_cpus(int i)
1934 {
1935 	return 1;
1936 }
1937 #endif
1938 
1939 static inline
1940 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1941 {
1942 	dl_b->total_bw -= tsk_bw;
1943 }
1944 
1945 static inline
1946 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1947 {
1948 	dl_b->total_bw += tsk_bw;
1949 }
1950 
1951 static inline
1952 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1953 {
1954 	return dl_b->bw != -1 &&
1955 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1956 }
1957 
1958 /*
1959  * We must be sure that accepting a new task (or allowing changing the
1960  * parameters of an existing one) is consistent with the bandwidth
1961  * constraints. If yes, this function also accordingly updates the currently
1962  * allocated bandwidth to reflect the new situation.
1963  *
1964  * This function is called while holding p's rq->lock.
1965  */
1966 static int dl_overflow(struct task_struct *p, int policy,
1967 		       const struct sched_attr *attr)
1968 {
1969 
1970 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1971 	u64 period = attr->sched_period ?: attr->sched_deadline;
1972 	u64 runtime = attr->sched_runtime;
1973 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1974 	int cpus, err = -1;
1975 
1976 	if (new_bw == p->dl.dl_bw)
1977 		return 0;
1978 
1979 	/*
1980 	 * Either if a task, enters, leave, or stays -deadline but changes
1981 	 * its parameters, we may need to update accordingly the total
1982 	 * allocated bandwidth of the container.
1983 	 */
1984 	raw_spin_lock(&dl_b->lock);
1985 	cpus = dl_bw_cpus(task_cpu(p));
1986 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1987 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1988 		__dl_add(dl_b, new_bw);
1989 		err = 0;
1990 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1991 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1992 		__dl_clear(dl_b, p->dl.dl_bw);
1993 		__dl_add(dl_b, new_bw);
1994 		err = 0;
1995 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1996 		__dl_clear(dl_b, p->dl.dl_bw);
1997 		err = 0;
1998 	}
1999 	raw_spin_unlock(&dl_b->lock);
2000 
2001 	return err;
2002 }
2003 
2004 extern void init_dl_bw(struct dl_bw *dl_b);
2005 
2006 /*
2007  * wake_up_new_task - wake up a newly created task for the first time.
2008  *
2009  * This function will do some initial scheduler statistics housekeeping
2010  * that must be done for every newly created context, then puts the task
2011  * on the runqueue and wakes it.
2012  */
2013 void wake_up_new_task(struct task_struct *p)
2014 {
2015 	unsigned long flags;
2016 	struct rq *rq;
2017 
2018 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2019 #ifdef CONFIG_SMP
2020 	/*
2021 	 * Fork balancing, do it here and not earlier because:
2022 	 *  - cpus_allowed can change in the fork path
2023 	 *  - any previously selected cpu might disappear through hotplug
2024 	 */
2025 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2026 #endif
2027 
2028 	/* Initialize new task's runnable average */
2029 	init_task_runnable_average(p);
2030 	rq = __task_rq_lock(p);
2031 	activate_task(rq, p, 0);
2032 	p->on_rq = 1;
2033 	trace_sched_wakeup_new(p, true);
2034 	check_preempt_curr(rq, p, WF_FORK);
2035 #ifdef CONFIG_SMP
2036 	if (p->sched_class->task_woken)
2037 		p->sched_class->task_woken(rq, p);
2038 #endif
2039 	task_rq_unlock(rq, p, &flags);
2040 }
2041 
2042 #ifdef CONFIG_PREEMPT_NOTIFIERS
2043 
2044 /**
2045  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2046  * @notifier: notifier struct to register
2047  */
2048 void preempt_notifier_register(struct preempt_notifier *notifier)
2049 {
2050 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2051 }
2052 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2053 
2054 /**
2055  * preempt_notifier_unregister - no longer interested in preemption notifications
2056  * @notifier: notifier struct to unregister
2057  *
2058  * This is safe to call from within a preemption notifier.
2059  */
2060 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2061 {
2062 	hlist_del(&notifier->link);
2063 }
2064 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2065 
2066 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2067 {
2068 	struct preempt_notifier *notifier;
2069 
2070 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2071 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2072 }
2073 
2074 static void
2075 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 				 struct task_struct *next)
2077 {
2078 	struct preempt_notifier *notifier;
2079 
2080 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2081 		notifier->ops->sched_out(notifier, next);
2082 }
2083 
2084 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2085 
2086 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2087 {
2088 }
2089 
2090 static void
2091 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2092 				 struct task_struct *next)
2093 {
2094 }
2095 
2096 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2097 
2098 /**
2099  * prepare_task_switch - prepare to switch tasks
2100  * @rq: the runqueue preparing to switch
2101  * @prev: the current task that is being switched out
2102  * @next: the task we are going to switch to.
2103  *
2104  * This is called with the rq lock held and interrupts off. It must
2105  * be paired with a subsequent finish_task_switch after the context
2106  * switch.
2107  *
2108  * prepare_task_switch sets up locking and calls architecture specific
2109  * hooks.
2110  */
2111 static inline void
2112 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2113 		    struct task_struct *next)
2114 {
2115 	trace_sched_switch(prev, next);
2116 	sched_info_switch(rq, prev, next);
2117 	perf_event_task_sched_out(prev, next);
2118 	fire_sched_out_preempt_notifiers(prev, next);
2119 	prepare_lock_switch(rq, next);
2120 	prepare_arch_switch(next);
2121 }
2122 
2123 /**
2124  * finish_task_switch - clean up after a task-switch
2125  * @rq: runqueue associated with task-switch
2126  * @prev: the thread we just switched away from.
2127  *
2128  * finish_task_switch must be called after the context switch, paired
2129  * with a prepare_task_switch call before the context switch.
2130  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2131  * and do any other architecture-specific cleanup actions.
2132  *
2133  * Note that we may have delayed dropping an mm in context_switch(). If
2134  * so, we finish that here outside of the runqueue lock. (Doing it
2135  * with the lock held can cause deadlocks; see schedule() for
2136  * details.)
2137  */
2138 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2139 	__releases(rq->lock)
2140 {
2141 	struct mm_struct *mm = rq->prev_mm;
2142 	long prev_state;
2143 
2144 	rq->prev_mm = NULL;
2145 
2146 	/*
2147 	 * A task struct has one reference for the use as "current".
2148 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2149 	 * schedule one last time. The schedule call will never return, and
2150 	 * the scheduled task must drop that reference.
2151 	 * The test for TASK_DEAD must occur while the runqueue locks are
2152 	 * still held, otherwise prev could be scheduled on another cpu, die
2153 	 * there before we look at prev->state, and then the reference would
2154 	 * be dropped twice.
2155 	 *		Manfred Spraul <manfred@colorfullife.com>
2156 	 */
2157 	prev_state = prev->state;
2158 	vtime_task_switch(prev);
2159 	finish_arch_switch(prev);
2160 	perf_event_task_sched_in(prev, current);
2161 	finish_lock_switch(rq, prev);
2162 	finish_arch_post_lock_switch();
2163 
2164 	fire_sched_in_preempt_notifiers(current);
2165 	if (mm)
2166 		mmdrop(mm);
2167 	if (unlikely(prev_state == TASK_DEAD)) {
2168 		if (prev->sched_class->task_dead)
2169 			prev->sched_class->task_dead(prev);
2170 
2171 		/*
2172 		 * Remove function-return probe instances associated with this
2173 		 * task and put them back on the free list.
2174 		 */
2175 		kprobe_flush_task(prev);
2176 		put_task_struct(prev);
2177 	}
2178 
2179 	tick_nohz_task_switch(current);
2180 }
2181 
2182 #ifdef CONFIG_SMP
2183 
2184 /* rq->lock is NOT held, but preemption is disabled */
2185 static inline void post_schedule(struct rq *rq)
2186 {
2187 	if (rq->post_schedule) {
2188 		unsigned long flags;
2189 
2190 		raw_spin_lock_irqsave(&rq->lock, flags);
2191 		if (rq->curr->sched_class->post_schedule)
2192 			rq->curr->sched_class->post_schedule(rq);
2193 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2194 
2195 		rq->post_schedule = 0;
2196 	}
2197 }
2198 
2199 #else
2200 
2201 static inline void post_schedule(struct rq *rq)
2202 {
2203 }
2204 
2205 #endif
2206 
2207 /**
2208  * schedule_tail - first thing a freshly forked thread must call.
2209  * @prev: the thread we just switched away from.
2210  */
2211 asmlinkage void schedule_tail(struct task_struct *prev)
2212 	__releases(rq->lock)
2213 {
2214 	struct rq *rq = this_rq();
2215 
2216 	finish_task_switch(rq, prev);
2217 
2218 	/*
2219 	 * FIXME: do we need to worry about rq being invalidated by the
2220 	 * task_switch?
2221 	 */
2222 	post_schedule(rq);
2223 
2224 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2225 	/* In this case, finish_task_switch does not reenable preemption */
2226 	preempt_enable();
2227 #endif
2228 	if (current->set_child_tid)
2229 		put_user(task_pid_vnr(current), current->set_child_tid);
2230 }
2231 
2232 /*
2233  * context_switch - switch to the new MM and the new
2234  * thread's register state.
2235  */
2236 static inline void
2237 context_switch(struct rq *rq, struct task_struct *prev,
2238 	       struct task_struct *next)
2239 {
2240 	struct mm_struct *mm, *oldmm;
2241 
2242 	prepare_task_switch(rq, prev, next);
2243 
2244 	mm = next->mm;
2245 	oldmm = prev->active_mm;
2246 	/*
2247 	 * For paravirt, this is coupled with an exit in switch_to to
2248 	 * combine the page table reload and the switch backend into
2249 	 * one hypercall.
2250 	 */
2251 	arch_start_context_switch(prev);
2252 
2253 	if (!mm) {
2254 		next->active_mm = oldmm;
2255 		atomic_inc(&oldmm->mm_count);
2256 		enter_lazy_tlb(oldmm, next);
2257 	} else
2258 		switch_mm(oldmm, mm, next);
2259 
2260 	if (!prev->mm) {
2261 		prev->active_mm = NULL;
2262 		rq->prev_mm = oldmm;
2263 	}
2264 	/*
2265 	 * Since the runqueue lock will be released by the next
2266 	 * task (which is an invalid locking op but in the case
2267 	 * of the scheduler it's an obvious special-case), so we
2268 	 * do an early lockdep release here:
2269 	 */
2270 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2271 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2272 #endif
2273 
2274 	context_tracking_task_switch(prev, next);
2275 	/* Here we just switch the register state and the stack. */
2276 	switch_to(prev, next, prev);
2277 
2278 	barrier();
2279 	/*
2280 	 * this_rq must be evaluated again because prev may have moved
2281 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2282 	 * frame will be invalid.
2283 	 */
2284 	finish_task_switch(this_rq(), prev);
2285 }
2286 
2287 /*
2288  * nr_running and nr_context_switches:
2289  *
2290  * externally visible scheduler statistics: current number of runnable
2291  * threads, total number of context switches performed since bootup.
2292  */
2293 unsigned long nr_running(void)
2294 {
2295 	unsigned long i, sum = 0;
2296 
2297 	for_each_online_cpu(i)
2298 		sum += cpu_rq(i)->nr_running;
2299 
2300 	return sum;
2301 }
2302 
2303 unsigned long long nr_context_switches(void)
2304 {
2305 	int i;
2306 	unsigned long long sum = 0;
2307 
2308 	for_each_possible_cpu(i)
2309 		sum += cpu_rq(i)->nr_switches;
2310 
2311 	return sum;
2312 }
2313 
2314 unsigned long nr_iowait(void)
2315 {
2316 	unsigned long i, sum = 0;
2317 
2318 	for_each_possible_cpu(i)
2319 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2320 
2321 	return sum;
2322 }
2323 
2324 unsigned long nr_iowait_cpu(int cpu)
2325 {
2326 	struct rq *this = cpu_rq(cpu);
2327 	return atomic_read(&this->nr_iowait);
2328 }
2329 
2330 #ifdef CONFIG_SMP
2331 
2332 /*
2333  * sched_exec - execve() is a valuable balancing opportunity, because at
2334  * this point the task has the smallest effective memory and cache footprint.
2335  */
2336 void sched_exec(void)
2337 {
2338 	struct task_struct *p = current;
2339 	unsigned long flags;
2340 	int dest_cpu;
2341 
2342 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2343 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2344 	if (dest_cpu == smp_processor_id())
2345 		goto unlock;
2346 
2347 	if (likely(cpu_active(dest_cpu))) {
2348 		struct migration_arg arg = { p, dest_cpu };
2349 
2350 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2351 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2352 		return;
2353 	}
2354 unlock:
2355 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2356 }
2357 
2358 #endif
2359 
2360 DEFINE_PER_CPU(struct kernel_stat, kstat);
2361 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2362 
2363 EXPORT_PER_CPU_SYMBOL(kstat);
2364 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2365 
2366 /*
2367  * Return any ns on the sched_clock that have not yet been accounted in
2368  * @p in case that task is currently running.
2369  *
2370  * Called with task_rq_lock() held on @rq.
2371  */
2372 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2373 {
2374 	u64 ns = 0;
2375 
2376 	if (task_current(rq, p)) {
2377 		update_rq_clock(rq);
2378 		ns = rq_clock_task(rq) - p->se.exec_start;
2379 		if ((s64)ns < 0)
2380 			ns = 0;
2381 	}
2382 
2383 	return ns;
2384 }
2385 
2386 unsigned long long task_delta_exec(struct task_struct *p)
2387 {
2388 	unsigned long flags;
2389 	struct rq *rq;
2390 	u64 ns = 0;
2391 
2392 	rq = task_rq_lock(p, &flags);
2393 	ns = do_task_delta_exec(p, rq);
2394 	task_rq_unlock(rq, p, &flags);
2395 
2396 	return ns;
2397 }
2398 
2399 /*
2400  * Return accounted runtime for the task.
2401  * In case the task is currently running, return the runtime plus current's
2402  * pending runtime that have not been accounted yet.
2403  */
2404 unsigned long long task_sched_runtime(struct task_struct *p)
2405 {
2406 	unsigned long flags;
2407 	struct rq *rq;
2408 	u64 ns = 0;
2409 
2410 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2411 	/*
2412 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2413 	 * So we have a optimization chance when the task's delta_exec is 0.
2414 	 * Reading ->on_cpu is racy, but this is ok.
2415 	 *
2416 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2417 	 * If we race with it entering cpu, unaccounted time is 0. This is
2418 	 * indistinguishable from the read occurring a few cycles earlier.
2419 	 */
2420 	if (!p->on_cpu)
2421 		return p->se.sum_exec_runtime;
2422 #endif
2423 
2424 	rq = task_rq_lock(p, &flags);
2425 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2426 	task_rq_unlock(rq, p, &flags);
2427 
2428 	return ns;
2429 }
2430 
2431 /*
2432  * This function gets called by the timer code, with HZ frequency.
2433  * We call it with interrupts disabled.
2434  */
2435 void scheduler_tick(void)
2436 {
2437 	int cpu = smp_processor_id();
2438 	struct rq *rq = cpu_rq(cpu);
2439 	struct task_struct *curr = rq->curr;
2440 
2441 	sched_clock_tick();
2442 
2443 	raw_spin_lock(&rq->lock);
2444 	update_rq_clock(rq);
2445 	curr->sched_class->task_tick(rq, curr, 0);
2446 	update_cpu_load_active(rq);
2447 	raw_spin_unlock(&rq->lock);
2448 
2449 	perf_event_task_tick();
2450 
2451 #ifdef CONFIG_SMP
2452 	rq->idle_balance = idle_cpu(cpu);
2453 	trigger_load_balance(rq);
2454 #endif
2455 	rq_last_tick_reset(rq);
2456 }
2457 
2458 #ifdef CONFIG_NO_HZ_FULL
2459 /**
2460  * scheduler_tick_max_deferment
2461  *
2462  * Keep at least one tick per second when a single
2463  * active task is running because the scheduler doesn't
2464  * yet completely support full dynticks environment.
2465  *
2466  * This makes sure that uptime, CFS vruntime, load
2467  * balancing, etc... continue to move forward, even
2468  * with a very low granularity.
2469  *
2470  * Return: Maximum deferment in nanoseconds.
2471  */
2472 u64 scheduler_tick_max_deferment(void)
2473 {
2474 	struct rq *rq = this_rq();
2475 	unsigned long next, now = ACCESS_ONCE(jiffies);
2476 
2477 	next = rq->last_sched_tick + HZ;
2478 
2479 	if (time_before_eq(next, now))
2480 		return 0;
2481 
2482 	return jiffies_to_nsecs(next - now);
2483 }
2484 #endif
2485 
2486 notrace unsigned long get_parent_ip(unsigned long addr)
2487 {
2488 	if (in_lock_functions(addr)) {
2489 		addr = CALLER_ADDR2;
2490 		if (in_lock_functions(addr))
2491 			addr = CALLER_ADDR3;
2492 	}
2493 	return addr;
2494 }
2495 
2496 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2497 				defined(CONFIG_PREEMPT_TRACER))
2498 
2499 void __kprobes preempt_count_add(int val)
2500 {
2501 #ifdef CONFIG_DEBUG_PREEMPT
2502 	/*
2503 	 * Underflow?
2504 	 */
2505 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2506 		return;
2507 #endif
2508 	__preempt_count_add(val);
2509 #ifdef CONFIG_DEBUG_PREEMPT
2510 	/*
2511 	 * Spinlock count overflowing soon?
2512 	 */
2513 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2514 				PREEMPT_MASK - 10);
2515 #endif
2516 	if (preempt_count() == val) {
2517 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2518 #ifdef CONFIG_DEBUG_PREEMPT
2519 		current->preempt_disable_ip = ip;
2520 #endif
2521 		trace_preempt_off(CALLER_ADDR0, ip);
2522 	}
2523 }
2524 EXPORT_SYMBOL(preempt_count_add);
2525 
2526 void __kprobes preempt_count_sub(int val)
2527 {
2528 #ifdef CONFIG_DEBUG_PREEMPT
2529 	/*
2530 	 * Underflow?
2531 	 */
2532 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2533 		return;
2534 	/*
2535 	 * Is the spinlock portion underflowing?
2536 	 */
2537 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2538 			!(preempt_count() & PREEMPT_MASK)))
2539 		return;
2540 #endif
2541 
2542 	if (preempt_count() == val)
2543 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2544 	__preempt_count_sub(val);
2545 }
2546 EXPORT_SYMBOL(preempt_count_sub);
2547 
2548 #endif
2549 
2550 /*
2551  * Print scheduling while atomic bug:
2552  */
2553 static noinline void __schedule_bug(struct task_struct *prev)
2554 {
2555 	if (oops_in_progress)
2556 		return;
2557 
2558 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2559 		prev->comm, prev->pid, preempt_count());
2560 
2561 	debug_show_held_locks(prev);
2562 	print_modules();
2563 	if (irqs_disabled())
2564 		print_irqtrace_events(prev);
2565 #ifdef CONFIG_DEBUG_PREEMPT
2566 	if (in_atomic_preempt_off()) {
2567 		pr_err("Preemption disabled at:");
2568 		print_ip_sym(current->preempt_disable_ip);
2569 		pr_cont("\n");
2570 	}
2571 #endif
2572 	dump_stack();
2573 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2574 }
2575 
2576 /*
2577  * Various schedule()-time debugging checks and statistics:
2578  */
2579 static inline void schedule_debug(struct task_struct *prev)
2580 {
2581 	/*
2582 	 * Test if we are atomic. Since do_exit() needs to call into
2583 	 * schedule() atomically, we ignore that path. Otherwise whine
2584 	 * if we are scheduling when we should not.
2585 	 */
2586 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2587 		__schedule_bug(prev);
2588 	rcu_sleep_check();
2589 
2590 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2591 
2592 	schedstat_inc(this_rq(), sched_count);
2593 }
2594 
2595 /*
2596  * Pick up the highest-prio task:
2597  */
2598 static inline struct task_struct *
2599 pick_next_task(struct rq *rq, struct task_struct *prev)
2600 {
2601 	const struct sched_class *class = &fair_sched_class;
2602 	struct task_struct *p;
2603 
2604 	/*
2605 	 * Optimization: we know that if all tasks are in
2606 	 * the fair class we can call that function directly:
2607 	 */
2608 	if (likely(prev->sched_class == class &&
2609 		   rq->nr_running == rq->cfs.h_nr_running)) {
2610 		p = fair_sched_class.pick_next_task(rq, prev);
2611 		if (likely(p && p != RETRY_TASK))
2612 			return p;
2613 	}
2614 
2615 again:
2616 	for_each_class(class) {
2617 		p = class->pick_next_task(rq, prev);
2618 		if (p) {
2619 			if (unlikely(p == RETRY_TASK))
2620 				goto again;
2621 			return p;
2622 		}
2623 	}
2624 
2625 	BUG(); /* the idle class will always have a runnable task */
2626 }
2627 
2628 /*
2629  * __schedule() is the main scheduler function.
2630  *
2631  * The main means of driving the scheduler and thus entering this function are:
2632  *
2633  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2634  *
2635  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2636  *      paths. For example, see arch/x86/entry_64.S.
2637  *
2638  *      To drive preemption between tasks, the scheduler sets the flag in timer
2639  *      interrupt handler scheduler_tick().
2640  *
2641  *   3. Wakeups don't really cause entry into schedule(). They add a
2642  *      task to the run-queue and that's it.
2643  *
2644  *      Now, if the new task added to the run-queue preempts the current
2645  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2646  *      called on the nearest possible occasion:
2647  *
2648  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2649  *
2650  *         - in syscall or exception context, at the next outmost
2651  *           preempt_enable(). (this might be as soon as the wake_up()'s
2652  *           spin_unlock()!)
2653  *
2654  *         - in IRQ context, return from interrupt-handler to
2655  *           preemptible context
2656  *
2657  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2658  *         then at the next:
2659  *
2660  *          - cond_resched() call
2661  *          - explicit schedule() call
2662  *          - return from syscall or exception to user-space
2663  *          - return from interrupt-handler to user-space
2664  */
2665 static void __sched __schedule(void)
2666 {
2667 	struct task_struct *prev, *next;
2668 	unsigned long *switch_count;
2669 	struct rq *rq;
2670 	int cpu;
2671 
2672 need_resched:
2673 	preempt_disable();
2674 	cpu = smp_processor_id();
2675 	rq = cpu_rq(cpu);
2676 	rcu_note_context_switch(cpu);
2677 	prev = rq->curr;
2678 
2679 	schedule_debug(prev);
2680 
2681 	if (sched_feat(HRTICK))
2682 		hrtick_clear(rq);
2683 
2684 	/*
2685 	 * Make sure that signal_pending_state()->signal_pending() below
2686 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2687 	 * done by the caller to avoid the race with signal_wake_up().
2688 	 */
2689 	smp_mb__before_spinlock();
2690 	raw_spin_lock_irq(&rq->lock);
2691 
2692 	switch_count = &prev->nivcsw;
2693 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2694 		if (unlikely(signal_pending_state(prev->state, prev))) {
2695 			prev->state = TASK_RUNNING;
2696 		} else {
2697 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2698 			prev->on_rq = 0;
2699 
2700 			/*
2701 			 * If a worker went to sleep, notify and ask workqueue
2702 			 * whether it wants to wake up a task to maintain
2703 			 * concurrency.
2704 			 */
2705 			if (prev->flags & PF_WQ_WORKER) {
2706 				struct task_struct *to_wakeup;
2707 
2708 				to_wakeup = wq_worker_sleeping(prev, cpu);
2709 				if (to_wakeup)
2710 					try_to_wake_up_local(to_wakeup);
2711 			}
2712 		}
2713 		switch_count = &prev->nvcsw;
2714 	}
2715 
2716 	if (prev->on_rq || rq->skip_clock_update < 0)
2717 		update_rq_clock(rq);
2718 
2719 	next = pick_next_task(rq, prev);
2720 	clear_tsk_need_resched(prev);
2721 	clear_preempt_need_resched();
2722 	rq->skip_clock_update = 0;
2723 
2724 	if (likely(prev != next)) {
2725 		rq->nr_switches++;
2726 		rq->curr = next;
2727 		++*switch_count;
2728 
2729 		context_switch(rq, prev, next); /* unlocks the rq */
2730 		/*
2731 		 * The context switch have flipped the stack from under us
2732 		 * and restored the local variables which were saved when
2733 		 * this task called schedule() in the past. prev == current
2734 		 * is still correct, but it can be moved to another cpu/rq.
2735 		 */
2736 		cpu = smp_processor_id();
2737 		rq = cpu_rq(cpu);
2738 	} else
2739 		raw_spin_unlock_irq(&rq->lock);
2740 
2741 	post_schedule(rq);
2742 
2743 	sched_preempt_enable_no_resched();
2744 	if (need_resched())
2745 		goto need_resched;
2746 }
2747 
2748 static inline void sched_submit_work(struct task_struct *tsk)
2749 {
2750 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2751 		return;
2752 	/*
2753 	 * If we are going to sleep and we have plugged IO queued,
2754 	 * make sure to submit it to avoid deadlocks.
2755 	 */
2756 	if (blk_needs_flush_plug(tsk))
2757 		blk_schedule_flush_plug(tsk);
2758 }
2759 
2760 asmlinkage void __sched schedule(void)
2761 {
2762 	struct task_struct *tsk = current;
2763 
2764 	sched_submit_work(tsk);
2765 	__schedule();
2766 }
2767 EXPORT_SYMBOL(schedule);
2768 
2769 #ifdef CONFIG_CONTEXT_TRACKING
2770 asmlinkage void __sched schedule_user(void)
2771 {
2772 	/*
2773 	 * If we come here after a random call to set_need_resched(),
2774 	 * or we have been woken up remotely but the IPI has not yet arrived,
2775 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2776 	 * we find a better solution.
2777 	 */
2778 	user_exit();
2779 	schedule();
2780 	user_enter();
2781 }
2782 #endif
2783 
2784 /**
2785  * schedule_preempt_disabled - called with preemption disabled
2786  *
2787  * Returns with preemption disabled. Note: preempt_count must be 1
2788  */
2789 void __sched schedule_preempt_disabled(void)
2790 {
2791 	sched_preempt_enable_no_resched();
2792 	schedule();
2793 	preempt_disable();
2794 }
2795 
2796 #ifdef CONFIG_PREEMPT
2797 /*
2798  * this is the entry point to schedule() from in-kernel preemption
2799  * off of preempt_enable. Kernel preemptions off return from interrupt
2800  * occur there and call schedule directly.
2801  */
2802 asmlinkage void __sched notrace preempt_schedule(void)
2803 {
2804 	/*
2805 	 * If there is a non-zero preempt_count or interrupts are disabled,
2806 	 * we do not want to preempt the current task. Just return..
2807 	 */
2808 	if (likely(!preemptible()))
2809 		return;
2810 
2811 	do {
2812 		__preempt_count_add(PREEMPT_ACTIVE);
2813 		__schedule();
2814 		__preempt_count_sub(PREEMPT_ACTIVE);
2815 
2816 		/*
2817 		 * Check again in case we missed a preemption opportunity
2818 		 * between schedule and now.
2819 		 */
2820 		barrier();
2821 	} while (need_resched());
2822 }
2823 EXPORT_SYMBOL(preempt_schedule);
2824 #endif /* CONFIG_PREEMPT */
2825 
2826 /*
2827  * this is the entry point to schedule() from kernel preemption
2828  * off of irq context.
2829  * Note, that this is called and return with irqs disabled. This will
2830  * protect us against recursive calling from irq.
2831  */
2832 asmlinkage void __sched preempt_schedule_irq(void)
2833 {
2834 	enum ctx_state prev_state;
2835 
2836 	/* Catch callers which need to be fixed */
2837 	BUG_ON(preempt_count() || !irqs_disabled());
2838 
2839 	prev_state = exception_enter();
2840 
2841 	do {
2842 		__preempt_count_add(PREEMPT_ACTIVE);
2843 		local_irq_enable();
2844 		__schedule();
2845 		local_irq_disable();
2846 		__preempt_count_sub(PREEMPT_ACTIVE);
2847 
2848 		/*
2849 		 * Check again in case we missed a preemption opportunity
2850 		 * between schedule and now.
2851 		 */
2852 		barrier();
2853 	} while (need_resched());
2854 
2855 	exception_exit(prev_state);
2856 }
2857 
2858 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2859 			  void *key)
2860 {
2861 	return try_to_wake_up(curr->private, mode, wake_flags);
2862 }
2863 EXPORT_SYMBOL(default_wake_function);
2864 
2865 #ifdef CONFIG_RT_MUTEXES
2866 
2867 /*
2868  * rt_mutex_setprio - set the current priority of a task
2869  * @p: task
2870  * @prio: prio value (kernel-internal form)
2871  *
2872  * This function changes the 'effective' priority of a task. It does
2873  * not touch ->normal_prio like __setscheduler().
2874  *
2875  * Used by the rt_mutex code to implement priority inheritance
2876  * logic. Call site only calls if the priority of the task changed.
2877  */
2878 void rt_mutex_setprio(struct task_struct *p, int prio)
2879 {
2880 	int oldprio, on_rq, running, enqueue_flag = 0;
2881 	struct rq *rq;
2882 	const struct sched_class *prev_class;
2883 
2884 	BUG_ON(prio > MAX_PRIO);
2885 
2886 	rq = __task_rq_lock(p);
2887 
2888 	/*
2889 	 * Idle task boosting is a nono in general. There is one
2890 	 * exception, when PREEMPT_RT and NOHZ is active:
2891 	 *
2892 	 * The idle task calls get_next_timer_interrupt() and holds
2893 	 * the timer wheel base->lock on the CPU and another CPU wants
2894 	 * to access the timer (probably to cancel it). We can safely
2895 	 * ignore the boosting request, as the idle CPU runs this code
2896 	 * with interrupts disabled and will complete the lock
2897 	 * protected section without being interrupted. So there is no
2898 	 * real need to boost.
2899 	 */
2900 	if (unlikely(p == rq->idle)) {
2901 		WARN_ON(p != rq->curr);
2902 		WARN_ON(p->pi_blocked_on);
2903 		goto out_unlock;
2904 	}
2905 
2906 	trace_sched_pi_setprio(p, prio);
2907 	p->pi_top_task = rt_mutex_get_top_task(p);
2908 	oldprio = p->prio;
2909 	prev_class = p->sched_class;
2910 	on_rq = p->on_rq;
2911 	running = task_current(rq, p);
2912 	if (on_rq)
2913 		dequeue_task(rq, p, 0);
2914 	if (running)
2915 		p->sched_class->put_prev_task(rq, p);
2916 
2917 	/*
2918 	 * Boosting condition are:
2919 	 * 1. -rt task is running and holds mutex A
2920 	 *      --> -dl task blocks on mutex A
2921 	 *
2922 	 * 2. -dl task is running and holds mutex A
2923 	 *      --> -dl task blocks on mutex A and could preempt the
2924 	 *          running task
2925 	 */
2926 	if (dl_prio(prio)) {
2927 		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2928 			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2929 			p->dl.dl_boosted = 1;
2930 			p->dl.dl_throttled = 0;
2931 			enqueue_flag = ENQUEUE_REPLENISH;
2932 		} else
2933 			p->dl.dl_boosted = 0;
2934 		p->sched_class = &dl_sched_class;
2935 	} else if (rt_prio(prio)) {
2936 		if (dl_prio(oldprio))
2937 			p->dl.dl_boosted = 0;
2938 		if (oldprio < prio)
2939 			enqueue_flag = ENQUEUE_HEAD;
2940 		p->sched_class = &rt_sched_class;
2941 	} else {
2942 		if (dl_prio(oldprio))
2943 			p->dl.dl_boosted = 0;
2944 		p->sched_class = &fair_sched_class;
2945 	}
2946 
2947 	p->prio = prio;
2948 
2949 	if (running)
2950 		p->sched_class->set_curr_task(rq);
2951 	if (on_rq)
2952 		enqueue_task(rq, p, enqueue_flag);
2953 
2954 	check_class_changed(rq, p, prev_class, oldprio);
2955 out_unlock:
2956 	__task_rq_unlock(rq);
2957 }
2958 #endif
2959 
2960 void set_user_nice(struct task_struct *p, long nice)
2961 {
2962 	int old_prio, delta, on_rq;
2963 	unsigned long flags;
2964 	struct rq *rq;
2965 
2966 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2967 		return;
2968 	/*
2969 	 * We have to be careful, if called from sys_setpriority(),
2970 	 * the task might be in the middle of scheduling on another CPU.
2971 	 */
2972 	rq = task_rq_lock(p, &flags);
2973 	/*
2974 	 * The RT priorities are set via sched_setscheduler(), but we still
2975 	 * allow the 'normal' nice value to be set - but as expected
2976 	 * it wont have any effect on scheduling until the task is
2977 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2978 	 */
2979 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2980 		p->static_prio = NICE_TO_PRIO(nice);
2981 		goto out_unlock;
2982 	}
2983 	on_rq = p->on_rq;
2984 	if (on_rq)
2985 		dequeue_task(rq, p, 0);
2986 
2987 	p->static_prio = NICE_TO_PRIO(nice);
2988 	set_load_weight(p);
2989 	old_prio = p->prio;
2990 	p->prio = effective_prio(p);
2991 	delta = p->prio - old_prio;
2992 
2993 	if (on_rq) {
2994 		enqueue_task(rq, p, 0);
2995 		/*
2996 		 * If the task increased its priority or is running and
2997 		 * lowered its priority, then reschedule its CPU:
2998 		 */
2999 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3000 			resched_task(rq->curr);
3001 	}
3002 out_unlock:
3003 	task_rq_unlock(rq, p, &flags);
3004 }
3005 EXPORT_SYMBOL(set_user_nice);
3006 
3007 /*
3008  * can_nice - check if a task can reduce its nice value
3009  * @p: task
3010  * @nice: nice value
3011  */
3012 int can_nice(const struct task_struct *p, const int nice)
3013 {
3014 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3015 	int nice_rlim = 20 - nice;
3016 
3017 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3018 		capable(CAP_SYS_NICE));
3019 }
3020 
3021 #ifdef __ARCH_WANT_SYS_NICE
3022 
3023 /*
3024  * sys_nice - change the priority of the current process.
3025  * @increment: priority increment
3026  *
3027  * sys_setpriority is a more generic, but much slower function that
3028  * does similar things.
3029  */
3030 SYSCALL_DEFINE1(nice, int, increment)
3031 {
3032 	long nice, retval;
3033 
3034 	/*
3035 	 * Setpriority might change our priority at the same moment.
3036 	 * We don't have to worry. Conceptually one call occurs first
3037 	 * and we have a single winner.
3038 	 */
3039 	if (increment < -40)
3040 		increment = -40;
3041 	if (increment > 40)
3042 		increment = 40;
3043 
3044 	nice = task_nice(current) + increment;
3045 	if (nice < MIN_NICE)
3046 		nice = MIN_NICE;
3047 	if (nice > MAX_NICE)
3048 		nice = MAX_NICE;
3049 
3050 	if (increment < 0 && !can_nice(current, nice))
3051 		return -EPERM;
3052 
3053 	retval = security_task_setnice(current, nice);
3054 	if (retval)
3055 		return retval;
3056 
3057 	set_user_nice(current, nice);
3058 	return 0;
3059 }
3060 
3061 #endif
3062 
3063 /**
3064  * task_prio - return the priority value of a given task.
3065  * @p: the task in question.
3066  *
3067  * Return: The priority value as seen by users in /proc.
3068  * RT tasks are offset by -200. Normal tasks are centered
3069  * around 0, value goes from -16 to +15.
3070  */
3071 int task_prio(const struct task_struct *p)
3072 {
3073 	return p->prio - MAX_RT_PRIO;
3074 }
3075 
3076 /**
3077  * idle_cpu - is a given cpu idle currently?
3078  * @cpu: the processor in question.
3079  *
3080  * Return: 1 if the CPU is currently idle. 0 otherwise.
3081  */
3082 int idle_cpu(int cpu)
3083 {
3084 	struct rq *rq = cpu_rq(cpu);
3085 
3086 	if (rq->curr != rq->idle)
3087 		return 0;
3088 
3089 	if (rq->nr_running)
3090 		return 0;
3091 
3092 #ifdef CONFIG_SMP
3093 	if (!llist_empty(&rq->wake_list))
3094 		return 0;
3095 #endif
3096 
3097 	return 1;
3098 }
3099 
3100 /**
3101  * idle_task - return the idle task for a given cpu.
3102  * @cpu: the processor in question.
3103  *
3104  * Return: The idle task for the cpu @cpu.
3105  */
3106 struct task_struct *idle_task(int cpu)
3107 {
3108 	return cpu_rq(cpu)->idle;
3109 }
3110 
3111 /**
3112  * find_process_by_pid - find a process with a matching PID value.
3113  * @pid: the pid in question.
3114  *
3115  * The task of @pid, if found. %NULL otherwise.
3116  */
3117 static struct task_struct *find_process_by_pid(pid_t pid)
3118 {
3119 	return pid ? find_task_by_vpid(pid) : current;
3120 }
3121 
3122 /*
3123  * This function initializes the sched_dl_entity of a newly becoming
3124  * SCHED_DEADLINE task.
3125  *
3126  * Only the static values are considered here, the actual runtime and the
3127  * absolute deadline will be properly calculated when the task is enqueued
3128  * for the first time with its new policy.
3129  */
3130 static void
3131 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3132 {
3133 	struct sched_dl_entity *dl_se = &p->dl;
3134 
3135 	init_dl_task_timer(dl_se);
3136 	dl_se->dl_runtime = attr->sched_runtime;
3137 	dl_se->dl_deadline = attr->sched_deadline;
3138 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3139 	dl_se->flags = attr->sched_flags;
3140 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3141 	dl_se->dl_throttled = 0;
3142 	dl_se->dl_new = 1;
3143 }
3144 
3145 static void __setscheduler_params(struct task_struct *p,
3146 		const struct sched_attr *attr)
3147 {
3148 	int policy = attr->sched_policy;
3149 
3150 	if (policy == -1) /* setparam */
3151 		policy = p->policy;
3152 
3153 	p->policy = policy;
3154 
3155 	if (dl_policy(policy))
3156 		__setparam_dl(p, attr);
3157 	else if (fair_policy(policy))
3158 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3159 
3160 	/*
3161 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3162 	 * !rt_policy. Always setting this ensures that things like
3163 	 * getparam()/getattr() don't report silly values for !rt tasks.
3164 	 */
3165 	p->rt_priority = attr->sched_priority;
3166 	p->normal_prio = normal_prio(p);
3167 	set_load_weight(p);
3168 }
3169 
3170 /* Actually do priority change: must hold pi & rq lock. */
3171 static void __setscheduler(struct rq *rq, struct task_struct *p,
3172 			   const struct sched_attr *attr)
3173 {
3174 	__setscheduler_params(p, attr);
3175 
3176 	/*
3177 	 * If we get here, there was no pi waiters boosting the
3178 	 * task. It is safe to use the normal prio.
3179 	 */
3180 	p->prio = normal_prio(p);
3181 
3182 	if (dl_prio(p->prio))
3183 		p->sched_class = &dl_sched_class;
3184 	else if (rt_prio(p->prio))
3185 		p->sched_class = &rt_sched_class;
3186 	else
3187 		p->sched_class = &fair_sched_class;
3188 }
3189 
3190 static void
3191 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3192 {
3193 	struct sched_dl_entity *dl_se = &p->dl;
3194 
3195 	attr->sched_priority = p->rt_priority;
3196 	attr->sched_runtime = dl_se->dl_runtime;
3197 	attr->sched_deadline = dl_se->dl_deadline;
3198 	attr->sched_period = dl_se->dl_period;
3199 	attr->sched_flags = dl_se->flags;
3200 }
3201 
3202 /*
3203  * This function validates the new parameters of a -deadline task.
3204  * We ask for the deadline not being zero, and greater or equal
3205  * than the runtime, as well as the period of being zero or
3206  * greater than deadline. Furthermore, we have to be sure that
3207  * user parameters are above the internal resolution (1us); we
3208  * check sched_runtime only since it is always the smaller one.
3209  */
3210 static bool
3211 __checkparam_dl(const struct sched_attr *attr)
3212 {
3213 	return attr && attr->sched_deadline != 0 &&
3214 		(attr->sched_period == 0 ||
3215 		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3216 		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3217 		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3218 }
3219 
3220 /*
3221  * check the target process has a UID that matches the current process's
3222  */
3223 static bool check_same_owner(struct task_struct *p)
3224 {
3225 	const struct cred *cred = current_cred(), *pcred;
3226 	bool match;
3227 
3228 	rcu_read_lock();
3229 	pcred = __task_cred(p);
3230 	match = (uid_eq(cred->euid, pcred->euid) ||
3231 		 uid_eq(cred->euid, pcred->uid));
3232 	rcu_read_unlock();
3233 	return match;
3234 }
3235 
3236 static int __sched_setscheduler(struct task_struct *p,
3237 				const struct sched_attr *attr,
3238 				bool user)
3239 {
3240 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3241 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3242 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3243 	int policy = attr->sched_policy;
3244 	unsigned long flags;
3245 	const struct sched_class *prev_class;
3246 	struct rq *rq;
3247 	int reset_on_fork;
3248 
3249 	/* may grab non-irq protected spin_locks */
3250 	BUG_ON(in_interrupt());
3251 recheck:
3252 	/* double check policy once rq lock held */
3253 	if (policy < 0) {
3254 		reset_on_fork = p->sched_reset_on_fork;
3255 		policy = oldpolicy = p->policy;
3256 	} else {
3257 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3258 
3259 		if (policy != SCHED_DEADLINE &&
3260 				policy != SCHED_FIFO && policy != SCHED_RR &&
3261 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3262 				policy != SCHED_IDLE)
3263 			return -EINVAL;
3264 	}
3265 
3266 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3267 		return -EINVAL;
3268 
3269 	/*
3270 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3271 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3272 	 * SCHED_BATCH and SCHED_IDLE is 0.
3273 	 */
3274 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3275 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3276 		return -EINVAL;
3277 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3278 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3279 		return -EINVAL;
3280 
3281 	/*
3282 	 * Allow unprivileged RT tasks to decrease priority:
3283 	 */
3284 	if (user && !capable(CAP_SYS_NICE)) {
3285 		if (fair_policy(policy)) {
3286 			if (attr->sched_nice < task_nice(p) &&
3287 			    !can_nice(p, attr->sched_nice))
3288 				return -EPERM;
3289 		}
3290 
3291 		if (rt_policy(policy)) {
3292 			unsigned long rlim_rtprio =
3293 					task_rlimit(p, RLIMIT_RTPRIO);
3294 
3295 			/* can't set/change the rt policy */
3296 			if (policy != p->policy && !rlim_rtprio)
3297 				return -EPERM;
3298 
3299 			/* can't increase priority */
3300 			if (attr->sched_priority > p->rt_priority &&
3301 			    attr->sched_priority > rlim_rtprio)
3302 				return -EPERM;
3303 		}
3304 
3305 		 /*
3306 		  * Can't set/change SCHED_DEADLINE policy at all for now
3307 		  * (safest behavior); in the future we would like to allow
3308 		  * unprivileged DL tasks to increase their relative deadline
3309 		  * or reduce their runtime (both ways reducing utilization)
3310 		  */
3311 		if (dl_policy(policy))
3312 			return -EPERM;
3313 
3314 		/*
3315 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3316 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3317 		 */
3318 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3319 			if (!can_nice(p, task_nice(p)))
3320 				return -EPERM;
3321 		}
3322 
3323 		/* can't change other user's priorities */
3324 		if (!check_same_owner(p))
3325 			return -EPERM;
3326 
3327 		/* Normal users shall not reset the sched_reset_on_fork flag */
3328 		if (p->sched_reset_on_fork && !reset_on_fork)
3329 			return -EPERM;
3330 	}
3331 
3332 	if (user) {
3333 		retval = security_task_setscheduler(p);
3334 		if (retval)
3335 			return retval;
3336 	}
3337 
3338 	/*
3339 	 * make sure no PI-waiters arrive (or leave) while we are
3340 	 * changing the priority of the task:
3341 	 *
3342 	 * To be able to change p->policy safely, the appropriate
3343 	 * runqueue lock must be held.
3344 	 */
3345 	rq = task_rq_lock(p, &flags);
3346 
3347 	/*
3348 	 * Changing the policy of the stop threads its a very bad idea
3349 	 */
3350 	if (p == rq->stop) {
3351 		task_rq_unlock(rq, p, &flags);
3352 		return -EINVAL;
3353 	}
3354 
3355 	/*
3356 	 * If not changing anything there's no need to proceed further,
3357 	 * but store a possible modification of reset_on_fork.
3358 	 */
3359 	if (unlikely(policy == p->policy)) {
3360 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3361 			goto change;
3362 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3363 			goto change;
3364 		if (dl_policy(policy))
3365 			goto change;
3366 
3367 		p->sched_reset_on_fork = reset_on_fork;
3368 		task_rq_unlock(rq, p, &flags);
3369 		return 0;
3370 	}
3371 change:
3372 
3373 	if (user) {
3374 #ifdef CONFIG_RT_GROUP_SCHED
3375 		/*
3376 		 * Do not allow realtime tasks into groups that have no runtime
3377 		 * assigned.
3378 		 */
3379 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3380 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3381 				!task_group_is_autogroup(task_group(p))) {
3382 			task_rq_unlock(rq, p, &flags);
3383 			return -EPERM;
3384 		}
3385 #endif
3386 #ifdef CONFIG_SMP
3387 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3388 			cpumask_t *span = rq->rd->span;
3389 
3390 			/*
3391 			 * Don't allow tasks with an affinity mask smaller than
3392 			 * the entire root_domain to become SCHED_DEADLINE. We
3393 			 * will also fail if there's no bandwidth available.
3394 			 */
3395 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3396 			    rq->rd->dl_bw.bw == 0) {
3397 				task_rq_unlock(rq, p, &flags);
3398 				return -EPERM;
3399 			}
3400 		}
3401 #endif
3402 	}
3403 
3404 	/* recheck policy now with rq lock held */
3405 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3406 		policy = oldpolicy = -1;
3407 		task_rq_unlock(rq, p, &flags);
3408 		goto recheck;
3409 	}
3410 
3411 	/*
3412 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3413 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3414 	 * is available.
3415 	 */
3416 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3417 		task_rq_unlock(rq, p, &flags);
3418 		return -EBUSY;
3419 	}
3420 
3421 	p->sched_reset_on_fork = reset_on_fork;
3422 	oldprio = p->prio;
3423 
3424 	/*
3425 	 * Special case for priority boosted tasks.
3426 	 *
3427 	 * If the new priority is lower or equal (user space view)
3428 	 * than the current (boosted) priority, we just store the new
3429 	 * normal parameters and do not touch the scheduler class and
3430 	 * the runqueue. This will be done when the task deboost
3431 	 * itself.
3432 	 */
3433 	if (rt_mutex_check_prio(p, newprio)) {
3434 		__setscheduler_params(p, attr);
3435 		task_rq_unlock(rq, p, &flags);
3436 		return 0;
3437 	}
3438 
3439 	on_rq = p->on_rq;
3440 	running = task_current(rq, p);
3441 	if (on_rq)
3442 		dequeue_task(rq, p, 0);
3443 	if (running)
3444 		p->sched_class->put_prev_task(rq, p);
3445 
3446 	prev_class = p->sched_class;
3447 	__setscheduler(rq, p, attr);
3448 
3449 	if (running)
3450 		p->sched_class->set_curr_task(rq);
3451 	if (on_rq) {
3452 		/*
3453 		 * We enqueue to tail when the priority of a task is
3454 		 * increased (user space view).
3455 		 */
3456 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3457 	}
3458 
3459 	check_class_changed(rq, p, prev_class, oldprio);
3460 	task_rq_unlock(rq, p, &flags);
3461 
3462 	rt_mutex_adjust_pi(p);
3463 
3464 	return 0;
3465 }
3466 
3467 static int _sched_setscheduler(struct task_struct *p, int policy,
3468 			       const struct sched_param *param, bool check)
3469 {
3470 	struct sched_attr attr = {
3471 		.sched_policy   = policy,
3472 		.sched_priority = param->sched_priority,
3473 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3474 	};
3475 
3476 	/*
3477 	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3478 	 */
3479 	if (policy & SCHED_RESET_ON_FORK) {
3480 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3481 		policy &= ~SCHED_RESET_ON_FORK;
3482 		attr.sched_policy = policy;
3483 	}
3484 
3485 	return __sched_setscheduler(p, &attr, check);
3486 }
3487 /**
3488  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3489  * @p: the task in question.
3490  * @policy: new policy.
3491  * @param: structure containing the new RT priority.
3492  *
3493  * Return: 0 on success. An error code otherwise.
3494  *
3495  * NOTE that the task may be already dead.
3496  */
3497 int sched_setscheduler(struct task_struct *p, int policy,
3498 		       const struct sched_param *param)
3499 {
3500 	return _sched_setscheduler(p, policy, param, true);
3501 }
3502 EXPORT_SYMBOL_GPL(sched_setscheduler);
3503 
3504 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3505 {
3506 	return __sched_setscheduler(p, attr, true);
3507 }
3508 EXPORT_SYMBOL_GPL(sched_setattr);
3509 
3510 /**
3511  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3512  * @p: the task in question.
3513  * @policy: new policy.
3514  * @param: structure containing the new RT priority.
3515  *
3516  * Just like sched_setscheduler, only don't bother checking if the
3517  * current context has permission.  For example, this is needed in
3518  * stop_machine(): we create temporary high priority worker threads,
3519  * but our caller might not have that capability.
3520  *
3521  * Return: 0 on success. An error code otherwise.
3522  */
3523 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3524 			       const struct sched_param *param)
3525 {
3526 	return _sched_setscheduler(p, policy, param, false);
3527 }
3528 
3529 static int
3530 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3531 {
3532 	struct sched_param lparam;
3533 	struct task_struct *p;
3534 	int retval;
3535 
3536 	if (!param || pid < 0)
3537 		return -EINVAL;
3538 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3539 		return -EFAULT;
3540 
3541 	rcu_read_lock();
3542 	retval = -ESRCH;
3543 	p = find_process_by_pid(pid);
3544 	if (p != NULL)
3545 		retval = sched_setscheduler(p, policy, &lparam);
3546 	rcu_read_unlock();
3547 
3548 	return retval;
3549 }
3550 
3551 /*
3552  * Mimics kernel/events/core.c perf_copy_attr().
3553  */
3554 static int sched_copy_attr(struct sched_attr __user *uattr,
3555 			   struct sched_attr *attr)
3556 {
3557 	u32 size;
3558 	int ret;
3559 
3560 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3561 		return -EFAULT;
3562 
3563 	/*
3564 	 * zero the full structure, so that a short copy will be nice.
3565 	 */
3566 	memset(attr, 0, sizeof(*attr));
3567 
3568 	ret = get_user(size, &uattr->size);
3569 	if (ret)
3570 		return ret;
3571 
3572 	if (size > PAGE_SIZE)	/* silly large */
3573 		goto err_size;
3574 
3575 	if (!size)		/* abi compat */
3576 		size = SCHED_ATTR_SIZE_VER0;
3577 
3578 	if (size < SCHED_ATTR_SIZE_VER0)
3579 		goto err_size;
3580 
3581 	/*
3582 	 * If we're handed a bigger struct than we know of,
3583 	 * ensure all the unknown bits are 0 - i.e. new
3584 	 * user-space does not rely on any kernel feature
3585 	 * extensions we dont know about yet.
3586 	 */
3587 	if (size > sizeof(*attr)) {
3588 		unsigned char __user *addr;
3589 		unsigned char __user *end;
3590 		unsigned char val;
3591 
3592 		addr = (void __user *)uattr + sizeof(*attr);
3593 		end  = (void __user *)uattr + size;
3594 
3595 		for (; addr < end; addr++) {
3596 			ret = get_user(val, addr);
3597 			if (ret)
3598 				return ret;
3599 			if (val)
3600 				goto err_size;
3601 		}
3602 		size = sizeof(*attr);
3603 	}
3604 
3605 	ret = copy_from_user(attr, uattr, size);
3606 	if (ret)
3607 		return -EFAULT;
3608 
3609 	/*
3610 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3611 	 * to be strict and return an error on out-of-bounds values?
3612 	 */
3613 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3614 
3615 out:
3616 	return ret;
3617 
3618 err_size:
3619 	put_user(sizeof(*attr), &uattr->size);
3620 	ret = -E2BIG;
3621 	goto out;
3622 }
3623 
3624 /**
3625  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3626  * @pid: the pid in question.
3627  * @policy: new policy.
3628  * @param: structure containing the new RT priority.
3629  *
3630  * Return: 0 on success. An error code otherwise.
3631  */
3632 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3633 		struct sched_param __user *, param)
3634 {
3635 	/* negative values for policy are not valid */
3636 	if (policy < 0)
3637 		return -EINVAL;
3638 
3639 	return do_sched_setscheduler(pid, policy, param);
3640 }
3641 
3642 /**
3643  * sys_sched_setparam - set/change the RT priority of a thread
3644  * @pid: the pid in question.
3645  * @param: structure containing the new RT priority.
3646  *
3647  * Return: 0 on success. An error code otherwise.
3648  */
3649 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3650 {
3651 	return do_sched_setscheduler(pid, -1, param);
3652 }
3653 
3654 /**
3655  * sys_sched_setattr - same as above, but with extended sched_attr
3656  * @pid: the pid in question.
3657  * @uattr: structure containing the extended parameters.
3658  */
3659 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3660 			       unsigned int, flags)
3661 {
3662 	struct sched_attr attr;
3663 	struct task_struct *p;
3664 	int retval;
3665 
3666 	if (!uattr || pid < 0 || flags)
3667 		return -EINVAL;
3668 
3669 	if (sched_copy_attr(uattr, &attr))
3670 		return -EFAULT;
3671 
3672 	rcu_read_lock();
3673 	retval = -ESRCH;
3674 	p = find_process_by_pid(pid);
3675 	if (p != NULL)
3676 		retval = sched_setattr(p, &attr);
3677 	rcu_read_unlock();
3678 
3679 	return retval;
3680 }
3681 
3682 /**
3683  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3684  * @pid: the pid in question.
3685  *
3686  * Return: On success, the policy of the thread. Otherwise, a negative error
3687  * code.
3688  */
3689 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3690 {
3691 	struct task_struct *p;
3692 	int retval;
3693 
3694 	if (pid < 0)
3695 		return -EINVAL;
3696 
3697 	retval = -ESRCH;
3698 	rcu_read_lock();
3699 	p = find_process_by_pid(pid);
3700 	if (p) {
3701 		retval = security_task_getscheduler(p);
3702 		if (!retval)
3703 			retval = p->policy
3704 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3705 	}
3706 	rcu_read_unlock();
3707 	return retval;
3708 }
3709 
3710 /**
3711  * sys_sched_getparam - get the RT priority of a thread
3712  * @pid: the pid in question.
3713  * @param: structure containing the RT priority.
3714  *
3715  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3716  * code.
3717  */
3718 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3719 {
3720 	struct sched_param lp;
3721 	struct task_struct *p;
3722 	int retval;
3723 
3724 	if (!param || pid < 0)
3725 		return -EINVAL;
3726 
3727 	rcu_read_lock();
3728 	p = find_process_by_pid(pid);
3729 	retval = -ESRCH;
3730 	if (!p)
3731 		goto out_unlock;
3732 
3733 	retval = security_task_getscheduler(p);
3734 	if (retval)
3735 		goto out_unlock;
3736 
3737 	if (task_has_dl_policy(p)) {
3738 		retval = -EINVAL;
3739 		goto out_unlock;
3740 	}
3741 	lp.sched_priority = p->rt_priority;
3742 	rcu_read_unlock();
3743 
3744 	/*
3745 	 * This one might sleep, we cannot do it with a spinlock held ...
3746 	 */
3747 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3748 
3749 	return retval;
3750 
3751 out_unlock:
3752 	rcu_read_unlock();
3753 	return retval;
3754 }
3755 
3756 static int sched_read_attr(struct sched_attr __user *uattr,
3757 			   struct sched_attr *attr,
3758 			   unsigned int usize)
3759 {
3760 	int ret;
3761 
3762 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3763 		return -EFAULT;
3764 
3765 	/*
3766 	 * If we're handed a smaller struct than we know of,
3767 	 * ensure all the unknown bits are 0 - i.e. old
3768 	 * user-space does not get uncomplete information.
3769 	 */
3770 	if (usize < sizeof(*attr)) {
3771 		unsigned char *addr;
3772 		unsigned char *end;
3773 
3774 		addr = (void *)attr + usize;
3775 		end  = (void *)attr + sizeof(*attr);
3776 
3777 		for (; addr < end; addr++) {
3778 			if (*addr)
3779 				goto err_size;
3780 		}
3781 
3782 		attr->size = usize;
3783 	}
3784 
3785 	ret = copy_to_user(uattr, attr, attr->size);
3786 	if (ret)
3787 		return -EFAULT;
3788 
3789 out:
3790 	return ret;
3791 
3792 err_size:
3793 	ret = -E2BIG;
3794 	goto out;
3795 }
3796 
3797 /**
3798  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3799  * @pid: the pid in question.
3800  * @uattr: structure containing the extended parameters.
3801  * @size: sizeof(attr) for fwd/bwd comp.
3802  */
3803 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3804 		unsigned int, size, unsigned int, flags)
3805 {
3806 	struct sched_attr attr = {
3807 		.size = sizeof(struct sched_attr),
3808 	};
3809 	struct task_struct *p;
3810 	int retval;
3811 
3812 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3813 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3814 		return -EINVAL;
3815 
3816 	rcu_read_lock();
3817 	p = find_process_by_pid(pid);
3818 	retval = -ESRCH;
3819 	if (!p)
3820 		goto out_unlock;
3821 
3822 	retval = security_task_getscheduler(p);
3823 	if (retval)
3824 		goto out_unlock;
3825 
3826 	attr.sched_policy = p->policy;
3827 	if (p->sched_reset_on_fork)
3828 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3829 	if (task_has_dl_policy(p))
3830 		__getparam_dl(p, &attr);
3831 	else if (task_has_rt_policy(p))
3832 		attr.sched_priority = p->rt_priority;
3833 	else
3834 		attr.sched_nice = task_nice(p);
3835 
3836 	rcu_read_unlock();
3837 
3838 	retval = sched_read_attr(uattr, &attr, size);
3839 	return retval;
3840 
3841 out_unlock:
3842 	rcu_read_unlock();
3843 	return retval;
3844 }
3845 
3846 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3847 {
3848 	cpumask_var_t cpus_allowed, new_mask;
3849 	struct task_struct *p;
3850 	int retval;
3851 
3852 	rcu_read_lock();
3853 
3854 	p = find_process_by_pid(pid);
3855 	if (!p) {
3856 		rcu_read_unlock();
3857 		return -ESRCH;
3858 	}
3859 
3860 	/* Prevent p going away */
3861 	get_task_struct(p);
3862 	rcu_read_unlock();
3863 
3864 	if (p->flags & PF_NO_SETAFFINITY) {
3865 		retval = -EINVAL;
3866 		goto out_put_task;
3867 	}
3868 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3869 		retval = -ENOMEM;
3870 		goto out_put_task;
3871 	}
3872 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3873 		retval = -ENOMEM;
3874 		goto out_free_cpus_allowed;
3875 	}
3876 	retval = -EPERM;
3877 	if (!check_same_owner(p)) {
3878 		rcu_read_lock();
3879 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3880 			rcu_read_unlock();
3881 			goto out_unlock;
3882 		}
3883 		rcu_read_unlock();
3884 	}
3885 
3886 	retval = security_task_setscheduler(p);
3887 	if (retval)
3888 		goto out_unlock;
3889 
3890 
3891 	cpuset_cpus_allowed(p, cpus_allowed);
3892 	cpumask_and(new_mask, in_mask, cpus_allowed);
3893 
3894 	/*
3895 	 * Since bandwidth control happens on root_domain basis,
3896 	 * if admission test is enabled, we only admit -deadline
3897 	 * tasks allowed to run on all the CPUs in the task's
3898 	 * root_domain.
3899 	 */
3900 #ifdef CONFIG_SMP
3901 	if (task_has_dl_policy(p)) {
3902 		const struct cpumask *span = task_rq(p)->rd->span;
3903 
3904 		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3905 			retval = -EBUSY;
3906 			goto out_unlock;
3907 		}
3908 	}
3909 #endif
3910 again:
3911 	retval = set_cpus_allowed_ptr(p, new_mask);
3912 
3913 	if (!retval) {
3914 		cpuset_cpus_allowed(p, cpus_allowed);
3915 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3916 			/*
3917 			 * We must have raced with a concurrent cpuset
3918 			 * update. Just reset the cpus_allowed to the
3919 			 * cpuset's cpus_allowed
3920 			 */
3921 			cpumask_copy(new_mask, cpus_allowed);
3922 			goto again;
3923 		}
3924 	}
3925 out_unlock:
3926 	free_cpumask_var(new_mask);
3927 out_free_cpus_allowed:
3928 	free_cpumask_var(cpus_allowed);
3929 out_put_task:
3930 	put_task_struct(p);
3931 	return retval;
3932 }
3933 
3934 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3935 			     struct cpumask *new_mask)
3936 {
3937 	if (len < cpumask_size())
3938 		cpumask_clear(new_mask);
3939 	else if (len > cpumask_size())
3940 		len = cpumask_size();
3941 
3942 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3943 }
3944 
3945 /**
3946  * sys_sched_setaffinity - set the cpu affinity of a process
3947  * @pid: pid of the process
3948  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3949  * @user_mask_ptr: user-space pointer to the new cpu mask
3950  *
3951  * Return: 0 on success. An error code otherwise.
3952  */
3953 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3954 		unsigned long __user *, user_mask_ptr)
3955 {
3956 	cpumask_var_t new_mask;
3957 	int retval;
3958 
3959 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3960 		return -ENOMEM;
3961 
3962 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3963 	if (retval == 0)
3964 		retval = sched_setaffinity(pid, new_mask);
3965 	free_cpumask_var(new_mask);
3966 	return retval;
3967 }
3968 
3969 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3970 {
3971 	struct task_struct *p;
3972 	unsigned long flags;
3973 	int retval;
3974 
3975 	rcu_read_lock();
3976 
3977 	retval = -ESRCH;
3978 	p = find_process_by_pid(pid);
3979 	if (!p)
3980 		goto out_unlock;
3981 
3982 	retval = security_task_getscheduler(p);
3983 	if (retval)
3984 		goto out_unlock;
3985 
3986 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3987 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3988 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3989 
3990 out_unlock:
3991 	rcu_read_unlock();
3992 
3993 	return retval;
3994 }
3995 
3996 /**
3997  * sys_sched_getaffinity - get the cpu affinity of a process
3998  * @pid: pid of the process
3999  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4000  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4001  *
4002  * Return: 0 on success. An error code otherwise.
4003  */
4004 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4005 		unsigned long __user *, user_mask_ptr)
4006 {
4007 	int ret;
4008 	cpumask_var_t mask;
4009 
4010 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4011 		return -EINVAL;
4012 	if (len & (sizeof(unsigned long)-1))
4013 		return -EINVAL;
4014 
4015 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4016 		return -ENOMEM;
4017 
4018 	ret = sched_getaffinity(pid, mask);
4019 	if (ret == 0) {
4020 		size_t retlen = min_t(size_t, len, cpumask_size());
4021 
4022 		if (copy_to_user(user_mask_ptr, mask, retlen))
4023 			ret = -EFAULT;
4024 		else
4025 			ret = retlen;
4026 	}
4027 	free_cpumask_var(mask);
4028 
4029 	return ret;
4030 }
4031 
4032 /**
4033  * sys_sched_yield - yield the current processor to other threads.
4034  *
4035  * This function yields the current CPU to other tasks. If there are no
4036  * other threads running on this CPU then this function will return.
4037  *
4038  * Return: 0.
4039  */
4040 SYSCALL_DEFINE0(sched_yield)
4041 {
4042 	struct rq *rq = this_rq_lock();
4043 
4044 	schedstat_inc(rq, yld_count);
4045 	current->sched_class->yield_task(rq);
4046 
4047 	/*
4048 	 * Since we are going to call schedule() anyway, there's
4049 	 * no need to preempt or enable interrupts:
4050 	 */
4051 	__release(rq->lock);
4052 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4053 	do_raw_spin_unlock(&rq->lock);
4054 	sched_preempt_enable_no_resched();
4055 
4056 	schedule();
4057 
4058 	return 0;
4059 }
4060 
4061 static void __cond_resched(void)
4062 {
4063 	__preempt_count_add(PREEMPT_ACTIVE);
4064 	__schedule();
4065 	__preempt_count_sub(PREEMPT_ACTIVE);
4066 }
4067 
4068 int __sched _cond_resched(void)
4069 {
4070 	if (should_resched()) {
4071 		__cond_resched();
4072 		return 1;
4073 	}
4074 	return 0;
4075 }
4076 EXPORT_SYMBOL(_cond_resched);
4077 
4078 /*
4079  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4080  * call schedule, and on return reacquire the lock.
4081  *
4082  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4083  * operations here to prevent schedule() from being called twice (once via
4084  * spin_unlock(), once by hand).
4085  */
4086 int __cond_resched_lock(spinlock_t *lock)
4087 {
4088 	int resched = should_resched();
4089 	int ret = 0;
4090 
4091 	lockdep_assert_held(lock);
4092 
4093 	if (spin_needbreak(lock) || resched) {
4094 		spin_unlock(lock);
4095 		if (resched)
4096 			__cond_resched();
4097 		else
4098 			cpu_relax();
4099 		ret = 1;
4100 		spin_lock(lock);
4101 	}
4102 	return ret;
4103 }
4104 EXPORT_SYMBOL(__cond_resched_lock);
4105 
4106 int __sched __cond_resched_softirq(void)
4107 {
4108 	BUG_ON(!in_softirq());
4109 
4110 	if (should_resched()) {
4111 		local_bh_enable();
4112 		__cond_resched();
4113 		local_bh_disable();
4114 		return 1;
4115 	}
4116 	return 0;
4117 }
4118 EXPORT_SYMBOL(__cond_resched_softirq);
4119 
4120 /**
4121  * yield - yield the current processor to other threads.
4122  *
4123  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4124  *
4125  * The scheduler is at all times free to pick the calling task as the most
4126  * eligible task to run, if removing the yield() call from your code breaks
4127  * it, its already broken.
4128  *
4129  * Typical broken usage is:
4130  *
4131  * while (!event)
4132  * 	yield();
4133  *
4134  * where one assumes that yield() will let 'the other' process run that will
4135  * make event true. If the current task is a SCHED_FIFO task that will never
4136  * happen. Never use yield() as a progress guarantee!!
4137  *
4138  * If you want to use yield() to wait for something, use wait_event().
4139  * If you want to use yield() to be 'nice' for others, use cond_resched().
4140  * If you still want to use yield(), do not!
4141  */
4142 void __sched yield(void)
4143 {
4144 	set_current_state(TASK_RUNNING);
4145 	sys_sched_yield();
4146 }
4147 EXPORT_SYMBOL(yield);
4148 
4149 /**
4150  * yield_to - yield the current processor to another thread in
4151  * your thread group, or accelerate that thread toward the
4152  * processor it's on.
4153  * @p: target task
4154  * @preempt: whether task preemption is allowed or not
4155  *
4156  * It's the caller's job to ensure that the target task struct
4157  * can't go away on us before we can do any checks.
4158  *
4159  * Return:
4160  *	true (>0) if we indeed boosted the target task.
4161  *	false (0) if we failed to boost the target.
4162  *	-ESRCH if there's no task to yield to.
4163  */
4164 bool __sched yield_to(struct task_struct *p, bool preempt)
4165 {
4166 	struct task_struct *curr = current;
4167 	struct rq *rq, *p_rq;
4168 	unsigned long flags;
4169 	int yielded = 0;
4170 
4171 	local_irq_save(flags);
4172 	rq = this_rq();
4173 
4174 again:
4175 	p_rq = task_rq(p);
4176 	/*
4177 	 * If we're the only runnable task on the rq and target rq also
4178 	 * has only one task, there's absolutely no point in yielding.
4179 	 */
4180 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4181 		yielded = -ESRCH;
4182 		goto out_irq;
4183 	}
4184 
4185 	double_rq_lock(rq, p_rq);
4186 	if (task_rq(p) != p_rq) {
4187 		double_rq_unlock(rq, p_rq);
4188 		goto again;
4189 	}
4190 
4191 	if (!curr->sched_class->yield_to_task)
4192 		goto out_unlock;
4193 
4194 	if (curr->sched_class != p->sched_class)
4195 		goto out_unlock;
4196 
4197 	if (task_running(p_rq, p) || p->state)
4198 		goto out_unlock;
4199 
4200 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4201 	if (yielded) {
4202 		schedstat_inc(rq, yld_count);
4203 		/*
4204 		 * Make p's CPU reschedule; pick_next_entity takes care of
4205 		 * fairness.
4206 		 */
4207 		if (preempt && rq != p_rq)
4208 			resched_task(p_rq->curr);
4209 	}
4210 
4211 out_unlock:
4212 	double_rq_unlock(rq, p_rq);
4213 out_irq:
4214 	local_irq_restore(flags);
4215 
4216 	if (yielded > 0)
4217 		schedule();
4218 
4219 	return yielded;
4220 }
4221 EXPORT_SYMBOL_GPL(yield_to);
4222 
4223 /*
4224  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4225  * that process accounting knows that this is a task in IO wait state.
4226  */
4227 void __sched io_schedule(void)
4228 {
4229 	struct rq *rq = raw_rq();
4230 
4231 	delayacct_blkio_start();
4232 	atomic_inc(&rq->nr_iowait);
4233 	blk_flush_plug(current);
4234 	current->in_iowait = 1;
4235 	schedule();
4236 	current->in_iowait = 0;
4237 	atomic_dec(&rq->nr_iowait);
4238 	delayacct_blkio_end();
4239 }
4240 EXPORT_SYMBOL(io_schedule);
4241 
4242 long __sched io_schedule_timeout(long timeout)
4243 {
4244 	struct rq *rq = raw_rq();
4245 	long ret;
4246 
4247 	delayacct_blkio_start();
4248 	atomic_inc(&rq->nr_iowait);
4249 	blk_flush_plug(current);
4250 	current->in_iowait = 1;
4251 	ret = schedule_timeout(timeout);
4252 	current->in_iowait = 0;
4253 	atomic_dec(&rq->nr_iowait);
4254 	delayacct_blkio_end();
4255 	return ret;
4256 }
4257 
4258 /**
4259  * sys_sched_get_priority_max - return maximum RT priority.
4260  * @policy: scheduling class.
4261  *
4262  * Return: On success, this syscall returns the maximum
4263  * rt_priority that can be used by a given scheduling class.
4264  * On failure, a negative error code is returned.
4265  */
4266 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4267 {
4268 	int ret = -EINVAL;
4269 
4270 	switch (policy) {
4271 	case SCHED_FIFO:
4272 	case SCHED_RR:
4273 		ret = MAX_USER_RT_PRIO-1;
4274 		break;
4275 	case SCHED_DEADLINE:
4276 	case SCHED_NORMAL:
4277 	case SCHED_BATCH:
4278 	case SCHED_IDLE:
4279 		ret = 0;
4280 		break;
4281 	}
4282 	return ret;
4283 }
4284 
4285 /**
4286  * sys_sched_get_priority_min - return minimum RT priority.
4287  * @policy: scheduling class.
4288  *
4289  * Return: On success, this syscall returns the minimum
4290  * rt_priority that can be used by a given scheduling class.
4291  * On failure, a negative error code is returned.
4292  */
4293 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4294 {
4295 	int ret = -EINVAL;
4296 
4297 	switch (policy) {
4298 	case SCHED_FIFO:
4299 	case SCHED_RR:
4300 		ret = 1;
4301 		break;
4302 	case SCHED_DEADLINE:
4303 	case SCHED_NORMAL:
4304 	case SCHED_BATCH:
4305 	case SCHED_IDLE:
4306 		ret = 0;
4307 	}
4308 	return ret;
4309 }
4310 
4311 /**
4312  * sys_sched_rr_get_interval - return the default timeslice of a process.
4313  * @pid: pid of the process.
4314  * @interval: userspace pointer to the timeslice value.
4315  *
4316  * this syscall writes the default timeslice value of a given process
4317  * into the user-space timespec buffer. A value of '0' means infinity.
4318  *
4319  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4320  * an error code.
4321  */
4322 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4323 		struct timespec __user *, interval)
4324 {
4325 	struct task_struct *p;
4326 	unsigned int time_slice;
4327 	unsigned long flags;
4328 	struct rq *rq;
4329 	int retval;
4330 	struct timespec t;
4331 
4332 	if (pid < 0)
4333 		return -EINVAL;
4334 
4335 	retval = -ESRCH;
4336 	rcu_read_lock();
4337 	p = find_process_by_pid(pid);
4338 	if (!p)
4339 		goto out_unlock;
4340 
4341 	retval = security_task_getscheduler(p);
4342 	if (retval)
4343 		goto out_unlock;
4344 
4345 	rq = task_rq_lock(p, &flags);
4346 	time_slice = 0;
4347 	if (p->sched_class->get_rr_interval)
4348 		time_slice = p->sched_class->get_rr_interval(rq, p);
4349 	task_rq_unlock(rq, p, &flags);
4350 
4351 	rcu_read_unlock();
4352 	jiffies_to_timespec(time_slice, &t);
4353 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4354 	return retval;
4355 
4356 out_unlock:
4357 	rcu_read_unlock();
4358 	return retval;
4359 }
4360 
4361 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4362 
4363 void sched_show_task(struct task_struct *p)
4364 {
4365 	unsigned long free = 0;
4366 	int ppid;
4367 	unsigned state;
4368 
4369 	state = p->state ? __ffs(p->state) + 1 : 0;
4370 	printk(KERN_INFO "%-15.15s %c", p->comm,
4371 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4372 #if BITS_PER_LONG == 32
4373 	if (state == TASK_RUNNING)
4374 		printk(KERN_CONT " running  ");
4375 	else
4376 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4377 #else
4378 	if (state == TASK_RUNNING)
4379 		printk(KERN_CONT "  running task    ");
4380 	else
4381 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4382 #endif
4383 #ifdef CONFIG_DEBUG_STACK_USAGE
4384 	free = stack_not_used(p);
4385 #endif
4386 	rcu_read_lock();
4387 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4388 	rcu_read_unlock();
4389 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4390 		task_pid_nr(p), ppid,
4391 		(unsigned long)task_thread_info(p)->flags);
4392 
4393 	print_worker_info(KERN_INFO, p);
4394 	show_stack(p, NULL);
4395 }
4396 
4397 void show_state_filter(unsigned long state_filter)
4398 {
4399 	struct task_struct *g, *p;
4400 
4401 #if BITS_PER_LONG == 32
4402 	printk(KERN_INFO
4403 		"  task                PC stack   pid father\n");
4404 #else
4405 	printk(KERN_INFO
4406 		"  task                        PC stack   pid father\n");
4407 #endif
4408 	rcu_read_lock();
4409 	do_each_thread(g, p) {
4410 		/*
4411 		 * reset the NMI-timeout, listing all files on a slow
4412 		 * console might take a lot of time:
4413 		 */
4414 		touch_nmi_watchdog();
4415 		if (!state_filter || (p->state & state_filter))
4416 			sched_show_task(p);
4417 	} while_each_thread(g, p);
4418 
4419 	touch_all_softlockup_watchdogs();
4420 
4421 #ifdef CONFIG_SCHED_DEBUG
4422 	sysrq_sched_debug_show();
4423 #endif
4424 	rcu_read_unlock();
4425 	/*
4426 	 * Only show locks if all tasks are dumped:
4427 	 */
4428 	if (!state_filter)
4429 		debug_show_all_locks();
4430 }
4431 
4432 void init_idle_bootup_task(struct task_struct *idle)
4433 {
4434 	idle->sched_class = &idle_sched_class;
4435 }
4436 
4437 /**
4438  * init_idle - set up an idle thread for a given CPU
4439  * @idle: task in question
4440  * @cpu: cpu the idle task belongs to
4441  *
4442  * NOTE: this function does not set the idle thread's NEED_RESCHED
4443  * flag, to make booting more robust.
4444  */
4445 void init_idle(struct task_struct *idle, int cpu)
4446 {
4447 	struct rq *rq = cpu_rq(cpu);
4448 	unsigned long flags;
4449 
4450 	raw_spin_lock_irqsave(&rq->lock, flags);
4451 
4452 	__sched_fork(0, idle);
4453 	idle->state = TASK_RUNNING;
4454 	idle->se.exec_start = sched_clock();
4455 
4456 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4457 	/*
4458 	 * We're having a chicken and egg problem, even though we are
4459 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4460 	 * lockdep check in task_group() will fail.
4461 	 *
4462 	 * Similar case to sched_fork(). / Alternatively we could
4463 	 * use task_rq_lock() here and obtain the other rq->lock.
4464 	 *
4465 	 * Silence PROVE_RCU
4466 	 */
4467 	rcu_read_lock();
4468 	__set_task_cpu(idle, cpu);
4469 	rcu_read_unlock();
4470 
4471 	rq->curr = rq->idle = idle;
4472 	idle->on_rq = 1;
4473 #if defined(CONFIG_SMP)
4474 	idle->on_cpu = 1;
4475 #endif
4476 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4477 
4478 	/* Set the preempt count _outside_ the spinlocks! */
4479 	init_idle_preempt_count(idle, cpu);
4480 
4481 	/*
4482 	 * The idle tasks have their own, simple scheduling class:
4483 	 */
4484 	idle->sched_class = &idle_sched_class;
4485 	ftrace_graph_init_idle_task(idle, cpu);
4486 	vtime_init_idle(idle, cpu);
4487 #if defined(CONFIG_SMP)
4488 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4489 #endif
4490 }
4491 
4492 #ifdef CONFIG_SMP
4493 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4494 {
4495 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4496 		p->sched_class->set_cpus_allowed(p, new_mask);
4497 
4498 	cpumask_copy(&p->cpus_allowed, new_mask);
4499 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4500 }
4501 
4502 /*
4503  * This is how migration works:
4504  *
4505  * 1) we invoke migration_cpu_stop() on the target CPU using
4506  *    stop_one_cpu().
4507  * 2) stopper starts to run (implicitly forcing the migrated thread
4508  *    off the CPU)
4509  * 3) it checks whether the migrated task is still in the wrong runqueue.
4510  * 4) if it's in the wrong runqueue then the migration thread removes
4511  *    it and puts it into the right queue.
4512  * 5) stopper completes and stop_one_cpu() returns and the migration
4513  *    is done.
4514  */
4515 
4516 /*
4517  * Change a given task's CPU affinity. Migrate the thread to a
4518  * proper CPU and schedule it away if the CPU it's executing on
4519  * is removed from the allowed bitmask.
4520  *
4521  * NOTE: the caller must have a valid reference to the task, the
4522  * task must not exit() & deallocate itself prematurely. The
4523  * call is not atomic; no spinlocks may be held.
4524  */
4525 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4526 {
4527 	unsigned long flags;
4528 	struct rq *rq;
4529 	unsigned int dest_cpu;
4530 	int ret = 0;
4531 
4532 	rq = task_rq_lock(p, &flags);
4533 
4534 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4535 		goto out;
4536 
4537 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4538 		ret = -EINVAL;
4539 		goto out;
4540 	}
4541 
4542 	do_set_cpus_allowed(p, new_mask);
4543 
4544 	/* Can the task run on the task's current CPU? If so, we're done */
4545 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4546 		goto out;
4547 
4548 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4549 	if (p->on_rq) {
4550 		struct migration_arg arg = { p, dest_cpu };
4551 		/* Need help from migration thread: drop lock and wait. */
4552 		task_rq_unlock(rq, p, &flags);
4553 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4554 		tlb_migrate_finish(p->mm);
4555 		return 0;
4556 	}
4557 out:
4558 	task_rq_unlock(rq, p, &flags);
4559 
4560 	return ret;
4561 }
4562 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4563 
4564 /*
4565  * Move (not current) task off this cpu, onto dest cpu. We're doing
4566  * this because either it can't run here any more (set_cpus_allowed()
4567  * away from this CPU, or CPU going down), or because we're
4568  * attempting to rebalance this task on exec (sched_exec).
4569  *
4570  * So we race with normal scheduler movements, but that's OK, as long
4571  * as the task is no longer on this CPU.
4572  *
4573  * Returns non-zero if task was successfully migrated.
4574  */
4575 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4576 {
4577 	struct rq *rq_dest, *rq_src;
4578 	int ret = 0;
4579 
4580 	if (unlikely(!cpu_active(dest_cpu)))
4581 		return ret;
4582 
4583 	rq_src = cpu_rq(src_cpu);
4584 	rq_dest = cpu_rq(dest_cpu);
4585 
4586 	raw_spin_lock(&p->pi_lock);
4587 	double_rq_lock(rq_src, rq_dest);
4588 	/* Already moved. */
4589 	if (task_cpu(p) != src_cpu)
4590 		goto done;
4591 	/* Affinity changed (again). */
4592 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4593 		goto fail;
4594 
4595 	/*
4596 	 * If we're not on a rq, the next wake-up will ensure we're
4597 	 * placed properly.
4598 	 */
4599 	if (p->on_rq) {
4600 		dequeue_task(rq_src, p, 0);
4601 		set_task_cpu(p, dest_cpu);
4602 		enqueue_task(rq_dest, p, 0);
4603 		check_preempt_curr(rq_dest, p, 0);
4604 	}
4605 done:
4606 	ret = 1;
4607 fail:
4608 	double_rq_unlock(rq_src, rq_dest);
4609 	raw_spin_unlock(&p->pi_lock);
4610 	return ret;
4611 }
4612 
4613 #ifdef CONFIG_NUMA_BALANCING
4614 /* Migrate current task p to target_cpu */
4615 int migrate_task_to(struct task_struct *p, int target_cpu)
4616 {
4617 	struct migration_arg arg = { p, target_cpu };
4618 	int curr_cpu = task_cpu(p);
4619 
4620 	if (curr_cpu == target_cpu)
4621 		return 0;
4622 
4623 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4624 		return -EINVAL;
4625 
4626 	/* TODO: This is not properly updating schedstats */
4627 
4628 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4629 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4630 }
4631 
4632 /*
4633  * Requeue a task on a given node and accurately track the number of NUMA
4634  * tasks on the runqueues
4635  */
4636 void sched_setnuma(struct task_struct *p, int nid)
4637 {
4638 	struct rq *rq;
4639 	unsigned long flags;
4640 	bool on_rq, running;
4641 
4642 	rq = task_rq_lock(p, &flags);
4643 	on_rq = p->on_rq;
4644 	running = task_current(rq, p);
4645 
4646 	if (on_rq)
4647 		dequeue_task(rq, p, 0);
4648 	if (running)
4649 		p->sched_class->put_prev_task(rq, p);
4650 
4651 	p->numa_preferred_nid = nid;
4652 
4653 	if (running)
4654 		p->sched_class->set_curr_task(rq);
4655 	if (on_rq)
4656 		enqueue_task(rq, p, 0);
4657 	task_rq_unlock(rq, p, &flags);
4658 }
4659 #endif
4660 
4661 /*
4662  * migration_cpu_stop - this will be executed by a highprio stopper thread
4663  * and performs thread migration by bumping thread off CPU then
4664  * 'pushing' onto another runqueue.
4665  */
4666 static int migration_cpu_stop(void *data)
4667 {
4668 	struct migration_arg *arg = data;
4669 
4670 	/*
4671 	 * The original target cpu might have gone down and we might
4672 	 * be on another cpu but it doesn't matter.
4673 	 */
4674 	local_irq_disable();
4675 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4676 	local_irq_enable();
4677 	return 0;
4678 }
4679 
4680 #ifdef CONFIG_HOTPLUG_CPU
4681 
4682 /*
4683  * Ensures that the idle task is using init_mm right before its cpu goes
4684  * offline.
4685  */
4686 void idle_task_exit(void)
4687 {
4688 	struct mm_struct *mm = current->active_mm;
4689 
4690 	BUG_ON(cpu_online(smp_processor_id()));
4691 
4692 	if (mm != &init_mm) {
4693 		switch_mm(mm, &init_mm, current);
4694 		finish_arch_post_lock_switch();
4695 	}
4696 	mmdrop(mm);
4697 }
4698 
4699 /*
4700  * Since this CPU is going 'away' for a while, fold any nr_active delta
4701  * we might have. Assumes we're called after migrate_tasks() so that the
4702  * nr_active count is stable.
4703  *
4704  * Also see the comment "Global load-average calculations".
4705  */
4706 static void calc_load_migrate(struct rq *rq)
4707 {
4708 	long delta = calc_load_fold_active(rq);
4709 	if (delta)
4710 		atomic_long_add(delta, &calc_load_tasks);
4711 }
4712 
4713 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4714 {
4715 }
4716 
4717 static const struct sched_class fake_sched_class = {
4718 	.put_prev_task = put_prev_task_fake,
4719 };
4720 
4721 static struct task_struct fake_task = {
4722 	/*
4723 	 * Avoid pull_{rt,dl}_task()
4724 	 */
4725 	.prio = MAX_PRIO + 1,
4726 	.sched_class = &fake_sched_class,
4727 };
4728 
4729 /*
4730  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4731  * try_to_wake_up()->select_task_rq().
4732  *
4733  * Called with rq->lock held even though we'er in stop_machine() and
4734  * there's no concurrency possible, we hold the required locks anyway
4735  * because of lock validation efforts.
4736  */
4737 static void migrate_tasks(unsigned int dead_cpu)
4738 {
4739 	struct rq *rq = cpu_rq(dead_cpu);
4740 	struct task_struct *next, *stop = rq->stop;
4741 	int dest_cpu;
4742 
4743 	/*
4744 	 * Fudge the rq selection such that the below task selection loop
4745 	 * doesn't get stuck on the currently eligible stop task.
4746 	 *
4747 	 * We're currently inside stop_machine() and the rq is either stuck
4748 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4749 	 * either way we should never end up calling schedule() until we're
4750 	 * done here.
4751 	 */
4752 	rq->stop = NULL;
4753 
4754 	/*
4755 	 * put_prev_task() and pick_next_task() sched
4756 	 * class method both need to have an up-to-date
4757 	 * value of rq->clock[_task]
4758 	 */
4759 	update_rq_clock(rq);
4760 
4761 	for ( ; ; ) {
4762 		/*
4763 		 * There's this thread running, bail when that's the only
4764 		 * remaining thread.
4765 		 */
4766 		if (rq->nr_running == 1)
4767 			break;
4768 
4769 		next = pick_next_task(rq, &fake_task);
4770 		BUG_ON(!next);
4771 		next->sched_class->put_prev_task(rq, next);
4772 
4773 		/* Find suitable destination for @next, with force if needed. */
4774 		dest_cpu = select_fallback_rq(dead_cpu, next);
4775 		raw_spin_unlock(&rq->lock);
4776 
4777 		__migrate_task(next, dead_cpu, dest_cpu);
4778 
4779 		raw_spin_lock(&rq->lock);
4780 	}
4781 
4782 	rq->stop = stop;
4783 }
4784 
4785 #endif /* CONFIG_HOTPLUG_CPU */
4786 
4787 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4788 
4789 static struct ctl_table sd_ctl_dir[] = {
4790 	{
4791 		.procname	= "sched_domain",
4792 		.mode		= 0555,
4793 	},
4794 	{}
4795 };
4796 
4797 static struct ctl_table sd_ctl_root[] = {
4798 	{
4799 		.procname	= "kernel",
4800 		.mode		= 0555,
4801 		.child		= sd_ctl_dir,
4802 	},
4803 	{}
4804 };
4805 
4806 static struct ctl_table *sd_alloc_ctl_entry(int n)
4807 {
4808 	struct ctl_table *entry =
4809 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4810 
4811 	return entry;
4812 }
4813 
4814 static void sd_free_ctl_entry(struct ctl_table **tablep)
4815 {
4816 	struct ctl_table *entry;
4817 
4818 	/*
4819 	 * In the intermediate directories, both the child directory and
4820 	 * procname are dynamically allocated and could fail but the mode
4821 	 * will always be set. In the lowest directory the names are
4822 	 * static strings and all have proc handlers.
4823 	 */
4824 	for (entry = *tablep; entry->mode; entry++) {
4825 		if (entry->child)
4826 			sd_free_ctl_entry(&entry->child);
4827 		if (entry->proc_handler == NULL)
4828 			kfree(entry->procname);
4829 	}
4830 
4831 	kfree(*tablep);
4832 	*tablep = NULL;
4833 }
4834 
4835 static int min_load_idx = 0;
4836 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4837 
4838 static void
4839 set_table_entry(struct ctl_table *entry,
4840 		const char *procname, void *data, int maxlen,
4841 		umode_t mode, proc_handler *proc_handler,
4842 		bool load_idx)
4843 {
4844 	entry->procname = procname;
4845 	entry->data = data;
4846 	entry->maxlen = maxlen;
4847 	entry->mode = mode;
4848 	entry->proc_handler = proc_handler;
4849 
4850 	if (load_idx) {
4851 		entry->extra1 = &min_load_idx;
4852 		entry->extra2 = &max_load_idx;
4853 	}
4854 }
4855 
4856 static struct ctl_table *
4857 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4858 {
4859 	struct ctl_table *table = sd_alloc_ctl_entry(14);
4860 
4861 	if (table == NULL)
4862 		return NULL;
4863 
4864 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4865 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4866 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4867 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4868 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4869 		sizeof(int), 0644, proc_dointvec_minmax, true);
4870 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4871 		sizeof(int), 0644, proc_dointvec_minmax, true);
4872 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4873 		sizeof(int), 0644, proc_dointvec_minmax, true);
4874 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4875 		sizeof(int), 0644, proc_dointvec_minmax, true);
4876 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4877 		sizeof(int), 0644, proc_dointvec_minmax, true);
4878 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4879 		sizeof(int), 0644, proc_dointvec_minmax, false);
4880 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4881 		sizeof(int), 0644, proc_dointvec_minmax, false);
4882 	set_table_entry(&table[9], "cache_nice_tries",
4883 		&sd->cache_nice_tries,
4884 		sizeof(int), 0644, proc_dointvec_minmax, false);
4885 	set_table_entry(&table[10], "flags", &sd->flags,
4886 		sizeof(int), 0644, proc_dointvec_minmax, false);
4887 	set_table_entry(&table[11], "max_newidle_lb_cost",
4888 		&sd->max_newidle_lb_cost,
4889 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4890 	set_table_entry(&table[12], "name", sd->name,
4891 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4892 	/* &table[13] is terminator */
4893 
4894 	return table;
4895 }
4896 
4897 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4898 {
4899 	struct ctl_table *entry, *table;
4900 	struct sched_domain *sd;
4901 	int domain_num = 0, i;
4902 	char buf[32];
4903 
4904 	for_each_domain(cpu, sd)
4905 		domain_num++;
4906 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4907 	if (table == NULL)
4908 		return NULL;
4909 
4910 	i = 0;
4911 	for_each_domain(cpu, sd) {
4912 		snprintf(buf, 32, "domain%d", i);
4913 		entry->procname = kstrdup(buf, GFP_KERNEL);
4914 		entry->mode = 0555;
4915 		entry->child = sd_alloc_ctl_domain_table(sd);
4916 		entry++;
4917 		i++;
4918 	}
4919 	return table;
4920 }
4921 
4922 static struct ctl_table_header *sd_sysctl_header;
4923 static void register_sched_domain_sysctl(void)
4924 {
4925 	int i, cpu_num = num_possible_cpus();
4926 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4927 	char buf[32];
4928 
4929 	WARN_ON(sd_ctl_dir[0].child);
4930 	sd_ctl_dir[0].child = entry;
4931 
4932 	if (entry == NULL)
4933 		return;
4934 
4935 	for_each_possible_cpu(i) {
4936 		snprintf(buf, 32, "cpu%d", i);
4937 		entry->procname = kstrdup(buf, GFP_KERNEL);
4938 		entry->mode = 0555;
4939 		entry->child = sd_alloc_ctl_cpu_table(i);
4940 		entry++;
4941 	}
4942 
4943 	WARN_ON(sd_sysctl_header);
4944 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4945 }
4946 
4947 /* may be called multiple times per register */
4948 static void unregister_sched_domain_sysctl(void)
4949 {
4950 	if (sd_sysctl_header)
4951 		unregister_sysctl_table(sd_sysctl_header);
4952 	sd_sysctl_header = NULL;
4953 	if (sd_ctl_dir[0].child)
4954 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4955 }
4956 #else
4957 static void register_sched_domain_sysctl(void)
4958 {
4959 }
4960 static void unregister_sched_domain_sysctl(void)
4961 {
4962 }
4963 #endif
4964 
4965 static void set_rq_online(struct rq *rq)
4966 {
4967 	if (!rq->online) {
4968 		const struct sched_class *class;
4969 
4970 		cpumask_set_cpu(rq->cpu, rq->rd->online);
4971 		rq->online = 1;
4972 
4973 		for_each_class(class) {
4974 			if (class->rq_online)
4975 				class->rq_online(rq);
4976 		}
4977 	}
4978 }
4979 
4980 static void set_rq_offline(struct rq *rq)
4981 {
4982 	if (rq->online) {
4983 		const struct sched_class *class;
4984 
4985 		for_each_class(class) {
4986 			if (class->rq_offline)
4987 				class->rq_offline(rq);
4988 		}
4989 
4990 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4991 		rq->online = 0;
4992 	}
4993 }
4994 
4995 /*
4996  * migration_call - callback that gets triggered when a CPU is added.
4997  * Here we can start up the necessary migration thread for the new CPU.
4998  */
4999 static int
5000 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5001 {
5002 	int cpu = (long)hcpu;
5003 	unsigned long flags;
5004 	struct rq *rq = cpu_rq(cpu);
5005 
5006 	switch (action & ~CPU_TASKS_FROZEN) {
5007 
5008 	case CPU_UP_PREPARE:
5009 		rq->calc_load_update = calc_load_update;
5010 		break;
5011 
5012 	case CPU_ONLINE:
5013 		/* Update our root-domain */
5014 		raw_spin_lock_irqsave(&rq->lock, flags);
5015 		if (rq->rd) {
5016 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5017 
5018 			set_rq_online(rq);
5019 		}
5020 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5021 		break;
5022 
5023 #ifdef CONFIG_HOTPLUG_CPU
5024 	case CPU_DYING:
5025 		sched_ttwu_pending();
5026 		/* Update our root-domain */
5027 		raw_spin_lock_irqsave(&rq->lock, flags);
5028 		if (rq->rd) {
5029 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5030 			set_rq_offline(rq);
5031 		}
5032 		migrate_tasks(cpu);
5033 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5034 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5035 		break;
5036 
5037 	case CPU_DEAD:
5038 		calc_load_migrate(rq);
5039 		break;
5040 #endif
5041 	}
5042 
5043 	update_max_interval();
5044 
5045 	return NOTIFY_OK;
5046 }
5047 
5048 /*
5049  * Register at high priority so that task migration (migrate_all_tasks)
5050  * happens before everything else.  This has to be lower priority than
5051  * the notifier in the perf_event subsystem, though.
5052  */
5053 static struct notifier_block migration_notifier = {
5054 	.notifier_call = migration_call,
5055 	.priority = CPU_PRI_MIGRATION,
5056 };
5057 
5058 static int sched_cpu_active(struct notifier_block *nfb,
5059 				      unsigned long action, void *hcpu)
5060 {
5061 	switch (action & ~CPU_TASKS_FROZEN) {
5062 	case CPU_STARTING:
5063 	case CPU_DOWN_FAILED:
5064 		set_cpu_active((long)hcpu, true);
5065 		return NOTIFY_OK;
5066 	default:
5067 		return NOTIFY_DONE;
5068 	}
5069 }
5070 
5071 static int sched_cpu_inactive(struct notifier_block *nfb,
5072 					unsigned long action, void *hcpu)
5073 {
5074 	unsigned long flags;
5075 	long cpu = (long)hcpu;
5076 
5077 	switch (action & ~CPU_TASKS_FROZEN) {
5078 	case CPU_DOWN_PREPARE:
5079 		set_cpu_active(cpu, false);
5080 
5081 		/* explicitly allow suspend */
5082 		if (!(action & CPU_TASKS_FROZEN)) {
5083 			struct dl_bw *dl_b = dl_bw_of(cpu);
5084 			bool overflow;
5085 			int cpus;
5086 
5087 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5088 			cpus = dl_bw_cpus(cpu);
5089 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5090 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5091 
5092 			if (overflow)
5093 				return notifier_from_errno(-EBUSY);
5094 		}
5095 		return NOTIFY_OK;
5096 	}
5097 
5098 	return NOTIFY_DONE;
5099 }
5100 
5101 static int __init migration_init(void)
5102 {
5103 	void *cpu = (void *)(long)smp_processor_id();
5104 	int err;
5105 
5106 	/* Initialize migration for the boot CPU */
5107 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5108 	BUG_ON(err == NOTIFY_BAD);
5109 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5110 	register_cpu_notifier(&migration_notifier);
5111 
5112 	/* Register cpu active notifiers */
5113 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5114 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5115 
5116 	return 0;
5117 }
5118 early_initcall(migration_init);
5119 #endif
5120 
5121 #ifdef CONFIG_SMP
5122 
5123 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5124 
5125 #ifdef CONFIG_SCHED_DEBUG
5126 
5127 static __read_mostly int sched_debug_enabled;
5128 
5129 static int __init sched_debug_setup(char *str)
5130 {
5131 	sched_debug_enabled = 1;
5132 
5133 	return 0;
5134 }
5135 early_param("sched_debug", sched_debug_setup);
5136 
5137 static inline bool sched_debug(void)
5138 {
5139 	return sched_debug_enabled;
5140 }
5141 
5142 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5143 				  struct cpumask *groupmask)
5144 {
5145 	struct sched_group *group = sd->groups;
5146 	char str[256];
5147 
5148 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5149 	cpumask_clear(groupmask);
5150 
5151 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5152 
5153 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5154 		printk("does not load-balance\n");
5155 		if (sd->parent)
5156 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5157 					" has parent");
5158 		return -1;
5159 	}
5160 
5161 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5162 
5163 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5164 		printk(KERN_ERR "ERROR: domain->span does not contain "
5165 				"CPU%d\n", cpu);
5166 	}
5167 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5168 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5169 				" CPU%d\n", cpu);
5170 	}
5171 
5172 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5173 	do {
5174 		if (!group) {
5175 			printk("\n");
5176 			printk(KERN_ERR "ERROR: group is NULL\n");
5177 			break;
5178 		}
5179 
5180 		/*
5181 		 * Even though we initialize ->power to something semi-sane,
5182 		 * we leave power_orig unset. This allows us to detect if
5183 		 * domain iteration is still funny without causing /0 traps.
5184 		 */
5185 		if (!group->sgp->power_orig) {
5186 			printk(KERN_CONT "\n");
5187 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5188 					"set\n");
5189 			break;
5190 		}
5191 
5192 		if (!cpumask_weight(sched_group_cpus(group))) {
5193 			printk(KERN_CONT "\n");
5194 			printk(KERN_ERR "ERROR: empty group\n");
5195 			break;
5196 		}
5197 
5198 		if (!(sd->flags & SD_OVERLAP) &&
5199 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5200 			printk(KERN_CONT "\n");
5201 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5202 			break;
5203 		}
5204 
5205 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5206 
5207 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5208 
5209 		printk(KERN_CONT " %s", str);
5210 		if (group->sgp->power != SCHED_POWER_SCALE) {
5211 			printk(KERN_CONT " (cpu_power = %d)",
5212 				group->sgp->power);
5213 		}
5214 
5215 		group = group->next;
5216 	} while (group != sd->groups);
5217 	printk(KERN_CONT "\n");
5218 
5219 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5220 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5221 
5222 	if (sd->parent &&
5223 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5224 		printk(KERN_ERR "ERROR: parent span is not a superset "
5225 			"of domain->span\n");
5226 	return 0;
5227 }
5228 
5229 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5230 {
5231 	int level = 0;
5232 
5233 	if (!sched_debug_enabled)
5234 		return;
5235 
5236 	if (!sd) {
5237 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5238 		return;
5239 	}
5240 
5241 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5242 
5243 	for (;;) {
5244 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5245 			break;
5246 		level++;
5247 		sd = sd->parent;
5248 		if (!sd)
5249 			break;
5250 	}
5251 }
5252 #else /* !CONFIG_SCHED_DEBUG */
5253 # define sched_domain_debug(sd, cpu) do { } while (0)
5254 static inline bool sched_debug(void)
5255 {
5256 	return false;
5257 }
5258 #endif /* CONFIG_SCHED_DEBUG */
5259 
5260 static int sd_degenerate(struct sched_domain *sd)
5261 {
5262 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5263 		return 1;
5264 
5265 	/* Following flags need at least 2 groups */
5266 	if (sd->flags & (SD_LOAD_BALANCE |
5267 			 SD_BALANCE_NEWIDLE |
5268 			 SD_BALANCE_FORK |
5269 			 SD_BALANCE_EXEC |
5270 			 SD_SHARE_CPUPOWER |
5271 			 SD_SHARE_PKG_RESOURCES)) {
5272 		if (sd->groups != sd->groups->next)
5273 			return 0;
5274 	}
5275 
5276 	/* Following flags don't use groups */
5277 	if (sd->flags & (SD_WAKE_AFFINE))
5278 		return 0;
5279 
5280 	return 1;
5281 }
5282 
5283 static int
5284 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5285 {
5286 	unsigned long cflags = sd->flags, pflags = parent->flags;
5287 
5288 	if (sd_degenerate(parent))
5289 		return 1;
5290 
5291 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5292 		return 0;
5293 
5294 	/* Flags needing groups don't count if only 1 group in parent */
5295 	if (parent->groups == parent->groups->next) {
5296 		pflags &= ~(SD_LOAD_BALANCE |
5297 				SD_BALANCE_NEWIDLE |
5298 				SD_BALANCE_FORK |
5299 				SD_BALANCE_EXEC |
5300 				SD_SHARE_CPUPOWER |
5301 				SD_SHARE_PKG_RESOURCES |
5302 				SD_PREFER_SIBLING);
5303 		if (nr_node_ids == 1)
5304 			pflags &= ~SD_SERIALIZE;
5305 	}
5306 	if (~cflags & pflags)
5307 		return 0;
5308 
5309 	return 1;
5310 }
5311 
5312 static void free_rootdomain(struct rcu_head *rcu)
5313 {
5314 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5315 
5316 	cpupri_cleanup(&rd->cpupri);
5317 	cpudl_cleanup(&rd->cpudl);
5318 	free_cpumask_var(rd->dlo_mask);
5319 	free_cpumask_var(rd->rto_mask);
5320 	free_cpumask_var(rd->online);
5321 	free_cpumask_var(rd->span);
5322 	kfree(rd);
5323 }
5324 
5325 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5326 {
5327 	struct root_domain *old_rd = NULL;
5328 	unsigned long flags;
5329 
5330 	raw_spin_lock_irqsave(&rq->lock, flags);
5331 
5332 	if (rq->rd) {
5333 		old_rd = rq->rd;
5334 
5335 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5336 			set_rq_offline(rq);
5337 
5338 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5339 
5340 		/*
5341 		 * If we dont want to free the old_rd yet then
5342 		 * set old_rd to NULL to skip the freeing later
5343 		 * in this function:
5344 		 */
5345 		if (!atomic_dec_and_test(&old_rd->refcount))
5346 			old_rd = NULL;
5347 	}
5348 
5349 	atomic_inc(&rd->refcount);
5350 	rq->rd = rd;
5351 
5352 	cpumask_set_cpu(rq->cpu, rd->span);
5353 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5354 		set_rq_online(rq);
5355 
5356 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5357 
5358 	if (old_rd)
5359 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5360 }
5361 
5362 static int init_rootdomain(struct root_domain *rd)
5363 {
5364 	memset(rd, 0, sizeof(*rd));
5365 
5366 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5367 		goto out;
5368 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5369 		goto free_span;
5370 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5371 		goto free_online;
5372 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5373 		goto free_dlo_mask;
5374 
5375 	init_dl_bw(&rd->dl_bw);
5376 	if (cpudl_init(&rd->cpudl) != 0)
5377 		goto free_dlo_mask;
5378 
5379 	if (cpupri_init(&rd->cpupri) != 0)
5380 		goto free_rto_mask;
5381 	return 0;
5382 
5383 free_rto_mask:
5384 	free_cpumask_var(rd->rto_mask);
5385 free_dlo_mask:
5386 	free_cpumask_var(rd->dlo_mask);
5387 free_online:
5388 	free_cpumask_var(rd->online);
5389 free_span:
5390 	free_cpumask_var(rd->span);
5391 out:
5392 	return -ENOMEM;
5393 }
5394 
5395 /*
5396  * By default the system creates a single root-domain with all cpus as
5397  * members (mimicking the global state we have today).
5398  */
5399 struct root_domain def_root_domain;
5400 
5401 static void init_defrootdomain(void)
5402 {
5403 	init_rootdomain(&def_root_domain);
5404 
5405 	atomic_set(&def_root_domain.refcount, 1);
5406 }
5407 
5408 static struct root_domain *alloc_rootdomain(void)
5409 {
5410 	struct root_domain *rd;
5411 
5412 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5413 	if (!rd)
5414 		return NULL;
5415 
5416 	if (init_rootdomain(rd) != 0) {
5417 		kfree(rd);
5418 		return NULL;
5419 	}
5420 
5421 	return rd;
5422 }
5423 
5424 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5425 {
5426 	struct sched_group *tmp, *first;
5427 
5428 	if (!sg)
5429 		return;
5430 
5431 	first = sg;
5432 	do {
5433 		tmp = sg->next;
5434 
5435 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5436 			kfree(sg->sgp);
5437 
5438 		kfree(sg);
5439 		sg = tmp;
5440 	} while (sg != first);
5441 }
5442 
5443 static void free_sched_domain(struct rcu_head *rcu)
5444 {
5445 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5446 
5447 	/*
5448 	 * If its an overlapping domain it has private groups, iterate and
5449 	 * nuke them all.
5450 	 */
5451 	if (sd->flags & SD_OVERLAP) {
5452 		free_sched_groups(sd->groups, 1);
5453 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5454 		kfree(sd->groups->sgp);
5455 		kfree(sd->groups);
5456 	}
5457 	kfree(sd);
5458 }
5459 
5460 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5461 {
5462 	call_rcu(&sd->rcu, free_sched_domain);
5463 }
5464 
5465 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5466 {
5467 	for (; sd; sd = sd->parent)
5468 		destroy_sched_domain(sd, cpu);
5469 }
5470 
5471 /*
5472  * Keep a special pointer to the highest sched_domain that has
5473  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5474  * allows us to avoid some pointer chasing select_idle_sibling().
5475  *
5476  * Also keep a unique ID per domain (we use the first cpu number in
5477  * the cpumask of the domain), this allows us to quickly tell if
5478  * two cpus are in the same cache domain, see cpus_share_cache().
5479  */
5480 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5481 DEFINE_PER_CPU(int, sd_llc_size);
5482 DEFINE_PER_CPU(int, sd_llc_id);
5483 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5484 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5485 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5486 
5487 static void update_top_cache_domain(int cpu)
5488 {
5489 	struct sched_domain *sd;
5490 	struct sched_domain *busy_sd = NULL;
5491 	int id = cpu;
5492 	int size = 1;
5493 
5494 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5495 	if (sd) {
5496 		id = cpumask_first(sched_domain_span(sd));
5497 		size = cpumask_weight(sched_domain_span(sd));
5498 		busy_sd = sd->parent; /* sd_busy */
5499 	}
5500 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5501 
5502 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5503 	per_cpu(sd_llc_size, cpu) = size;
5504 	per_cpu(sd_llc_id, cpu) = id;
5505 
5506 	sd = lowest_flag_domain(cpu, SD_NUMA);
5507 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5508 
5509 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5510 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5511 }
5512 
5513 /*
5514  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5515  * hold the hotplug lock.
5516  */
5517 static void
5518 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5519 {
5520 	struct rq *rq = cpu_rq(cpu);
5521 	struct sched_domain *tmp;
5522 
5523 	/* Remove the sched domains which do not contribute to scheduling. */
5524 	for (tmp = sd; tmp; ) {
5525 		struct sched_domain *parent = tmp->parent;
5526 		if (!parent)
5527 			break;
5528 
5529 		if (sd_parent_degenerate(tmp, parent)) {
5530 			tmp->parent = parent->parent;
5531 			if (parent->parent)
5532 				parent->parent->child = tmp;
5533 			/*
5534 			 * Transfer SD_PREFER_SIBLING down in case of a
5535 			 * degenerate parent; the spans match for this
5536 			 * so the property transfers.
5537 			 */
5538 			if (parent->flags & SD_PREFER_SIBLING)
5539 				tmp->flags |= SD_PREFER_SIBLING;
5540 			destroy_sched_domain(parent, cpu);
5541 		} else
5542 			tmp = tmp->parent;
5543 	}
5544 
5545 	if (sd && sd_degenerate(sd)) {
5546 		tmp = sd;
5547 		sd = sd->parent;
5548 		destroy_sched_domain(tmp, cpu);
5549 		if (sd)
5550 			sd->child = NULL;
5551 	}
5552 
5553 	sched_domain_debug(sd, cpu);
5554 
5555 	rq_attach_root(rq, rd);
5556 	tmp = rq->sd;
5557 	rcu_assign_pointer(rq->sd, sd);
5558 	destroy_sched_domains(tmp, cpu);
5559 
5560 	update_top_cache_domain(cpu);
5561 }
5562 
5563 /* cpus with isolated domains */
5564 static cpumask_var_t cpu_isolated_map;
5565 
5566 /* Setup the mask of cpus configured for isolated domains */
5567 static int __init isolated_cpu_setup(char *str)
5568 {
5569 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5570 	cpulist_parse(str, cpu_isolated_map);
5571 	return 1;
5572 }
5573 
5574 __setup("isolcpus=", isolated_cpu_setup);
5575 
5576 static const struct cpumask *cpu_cpu_mask(int cpu)
5577 {
5578 	return cpumask_of_node(cpu_to_node(cpu));
5579 }
5580 
5581 struct sd_data {
5582 	struct sched_domain **__percpu sd;
5583 	struct sched_group **__percpu sg;
5584 	struct sched_group_power **__percpu sgp;
5585 };
5586 
5587 struct s_data {
5588 	struct sched_domain ** __percpu sd;
5589 	struct root_domain	*rd;
5590 };
5591 
5592 enum s_alloc {
5593 	sa_rootdomain,
5594 	sa_sd,
5595 	sa_sd_storage,
5596 	sa_none,
5597 };
5598 
5599 struct sched_domain_topology_level;
5600 
5601 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5602 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5603 
5604 #define SDTL_OVERLAP	0x01
5605 
5606 struct sched_domain_topology_level {
5607 	sched_domain_init_f init;
5608 	sched_domain_mask_f mask;
5609 	int		    flags;
5610 	int		    numa_level;
5611 	struct sd_data      data;
5612 };
5613 
5614 /*
5615  * Build an iteration mask that can exclude certain CPUs from the upwards
5616  * domain traversal.
5617  *
5618  * Asymmetric node setups can result in situations where the domain tree is of
5619  * unequal depth, make sure to skip domains that already cover the entire
5620  * range.
5621  *
5622  * In that case build_sched_domains() will have terminated the iteration early
5623  * and our sibling sd spans will be empty. Domains should always include the
5624  * cpu they're built on, so check that.
5625  *
5626  */
5627 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5628 {
5629 	const struct cpumask *span = sched_domain_span(sd);
5630 	struct sd_data *sdd = sd->private;
5631 	struct sched_domain *sibling;
5632 	int i;
5633 
5634 	for_each_cpu(i, span) {
5635 		sibling = *per_cpu_ptr(sdd->sd, i);
5636 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5637 			continue;
5638 
5639 		cpumask_set_cpu(i, sched_group_mask(sg));
5640 	}
5641 }
5642 
5643 /*
5644  * Return the canonical balance cpu for this group, this is the first cpu
5645  * of this group that's also in the iteration mask.
5646  */
5647 int group_balance_cpu(struct sched_group *sg)
5648 {
5649 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5650 }
5651 
5652 static int
5653 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5654 {
5655 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5656 	const struct cpumask *span = sched_domain_span(sd);
5657 	struct cpumask *covered = sched_domains_tmpmask;
5658 	struct sd_data *sdd = sd->private;
5659 	struct sched_domain *child;
5660 	int i;
5661 
5662 	cpumask_clear(covered);
5663 
5664 	for_each_cpu(i, span) {
5665 		struct cpumask *sg_span;
5666 
5667 		if (cpumask_test_cpu(i, covered))
5668 			continue;
5669 
5670 		child = *per_cpu_ptr(sdd->sd, i);
5671 
5672 		/* See the comment near build_group_mask(). */
5673 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5674 			continue;
5675 
5676 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5677 				GFP_KERNEL, cpu_to_node(cpu));
5678 
5679 		if (!sg)
5680 			goto fail;
5681 
5682 		sg_span = sched_group_cpus(sg);
5683 		if (child->child) {
5684 			child = child->child;
5685 			cpumask_copy(sg_span, sched_domain_span(child));
5686 		} else
5687 			cpumask_set_cpu(i, sg_span);
5688 
5689 		cpumask_or(covered, covered, sg_span);
5690 
5691 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5692 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5693 			build_group_mask(sd, sg);
5694 
5695 		/*
5696 		 * Initialize sgp->power such that even if we mess up the
5697 		 * domains and no possible iteration will get us here, we won't
5698 		 * die on a /0 trap.
5699 		 */
5700 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5701 		sg->sgp->power_orig = sg->sgp->power;
5702 
5703 		/*
5704 		 * Make sure the first group of this domain contains the
5705 		 * canonical balance cpu. Otherwise the sched_domain iteration
5706 		 * breaks. See update_sg_lb_stats().
5707 		 */
5708 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5709 		    group_balance_cpu(sg) == cpu)
5710 			groups = sg;
5711 
5712 		if (!first)
5713 			first = sg;
5714 		if (last)
5715 			last->next = sg;
5716 		last = sg;
5717 		last->next = first;
5718 	}
5719 	sd->groups = groups;
5720 
5721 	return 0;
5722 
5723 fail:
5724 	free_sched_groups(first, 0);
5725 
5726 	return -ENOMEM;
5727 }
5728 
5729 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5730 {
5731 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5732 	struct sched_domain *child = sd->child;
5733 
5734 	if (child)
5735 		cpu = cpumask_first(sched_domain_span(child));
5736 
5737 	if (sg) {
5738 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5739 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5740 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5741 	}
5742 
5743 	return cpu;
5744 }
5745 
5746 /*
5747  * build_sched_groups will build a circular linked list of the groups
5748  * covered by the given span, and will set each group's ->cpumask correctly,
5749  * and ->cpu_power to 0.
5750  *
5751  * Assumes the sched_domain tree is fully constructed
5752  */
5753 static int
5754 build_sched_groups(struct sched_domain *sd, int cpu)
5755 {
5756 	struct sched_group *first = NULL, *last = NULL;
5757 	struct sd_data *sdd = sd->private;
5758 	const struct cpumask *span = sched_domain_span(sd);
5759 	struct cpumask *covered;
5760 	int i;
5761 
5762 	get_group(cpu, sdd, &sd->groups);
5763 	atomic_inc(&sd->groups->ref);
5764 
5765 	if (cpu != cpumask_first(span))
5766 		return 0;
5767 
5768 	lockdep_assert_held(&sched_domains_mutex);
5769 	covered = sched_domains_tmpmask;
5770 
5771 	cpumask_clear(covered);
5772 
5773 	for_each_cpu(i, span) {
5774 		struct sched_group *sg;
5775 		int group, j;
5776 
5777 		if (cpumask_test_cpu(i, covered))
5778 			continue;
5779 
5780 		group = get_group(i, sdd, &sg);
5781 		cpumask_clear(sched_group_cpus(sg));
5782 		sg->sgp->power = 0;
5783 		cpumask_setall(sched_group_mask(sg));
5784 
5785 		for_each_cpu(j, span) {
5786 			if (get_group(j, sdd, NULL) != group)
5787 				continue;
5788 
5789 			cpumask_set_cpu(j, covered);
5790 			cpumask_set_cpu(j, sched_group_cpus(sg));
5791 		}
5792 
5793 		if (!first)
5794 			first = sg;
5795 		if (last)
5796 			last->next = sg;
5797 		last = sg;
5798 	}
5799 	last->next = first;
5800 
5801 	return 0;
5802 }
5803 
5804 /*
5805  * Initialize sched groups cpu_power.
5806  *
5807  * cpu_power indicates the capacity of sched group, which is used while
5808  * distributing the load between different sched groups in a sched domain.
5809  * Typically cpu_power for all the groups in a sched domain will be same unless
5810  * there are asymmetries in the topology. If there are asymmetries, group
5811  * having more cpu_power will pickup more load compared to the group having
5812  * less cpu_power.
5813  */
5814 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5815 {
5816 	struct sched_group *sg = sd->groups;
5817 
5818 	WARN_ON(!sg);
5819 
5820 	do {
5821 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5822 		sg = sg->next;
5823 	} while (sg != sd->groups);
5824 
5825 	if (cpu != group_balance_cpu(sg))
5826 		return;
5827 
5828 	update_group_power(sd, cpu);
5829 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5830 }
5831 
5832 int __weak arch_sd_sibling_asym_packing(void)
5833 {
5834        return 0*SD_ASYM_PACKING;
5835 }
5836 
5837 /*
5838  * Initializers for schedule domains
5839  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5840  */
5841 
5842 #ifdef CONFIG_SCHED_DEBUG
5843 # define SD_INIT_NAME(sd, type)		sd->name = #type
5844 #else
5845 # define SD_INIT_NAME(sd, type)		do { } while (0)
5846 #endif
5847 
5848 #define SD_INIT_FUNC(type)						\
5849 static noinline struct sched_domain *					\
5850 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5851 {									\
5852 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5853 	*sd = SD_##type##_INIT;						\
5854 	SD_INIT_NAME(sd, type);						\
5855 	sd->private = &tl->data;					\
5856 	return sd;							\
5857 }
5858 
5859 SD_INIT_FUNC(CPU)
5860 #ifdef CONFIG_SCHED_SMT
5861  SD_INIT_FUNC(SIBLING)
5862 #endif
5863 #ifdef CONFIG_SCHED_MC
5864  SD_INIT_FUNC(MC)
5865 #endif
5866 #ifdef CONFIG_SCHED_BOOK
5867  SD_INIT_FUNC(BOOK)
5868 #endif
5869 
5870 static int default_relax_domain_level = -1;
5871 int sched_domain_level_max;
5872 
5873 static int __init setup_relax_domain_level(char *str)
5874 {
5875 	if (kstrtoint(str, 0, &default_relax_domain_level))
5876 		pr_warn("Unable to set relax_domain_level\n");
5877 
5878 	return 1;
5879 }
5880 __setup("relax_domain_level=", setup_relax_domain_level);
5881 
5882 static void set_domain_attribute(struct sched_domain *sd,
5883 				 struct sched_domain_attr *attr)
5884 {
5885 	int request;
5886 
5887 	if (!attr || attr->relax_domain_level < 0) {
5888 		if (default_relax_domain_level < 0)
5889 			return;
5890 		else
5891 			request = default_relax_domain_level;
5892 	} else
5893 		request = attr->relax_domain_level;
5894 	if (request < sd->level) {
5895 		/* turn off idle balance on this domain */
5896 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5897 	} else {
5898 		/* turn on idle balance on this domain */
5899 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5900 	}
5901 }
5902 
5903 static void __sdt_free(const struct cpumask *cpu_map);
5904 static int __sdt_alloc(const struct cpumask *cpu_map);
5905 
5906 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5907 				 const struct cpumask *cpu_map)
5908 {
5909 	switch (what) {
5910 	case sa_rootdomain:
5911 		if (!atomic_read(&d->rd->refcount))
5912 			free_rootdomain(&d->rd->rcu); /* fall through */
5913 	case sa_sd:
5914 		free_percpu(d->sd); /* fall through */
5915 	case sa_sd_storage:
5916 		__sdt_free(cpu_map); /* fall through */
5917 	case sa_none:
5918 		break;
5919 	}
5920 }
5921 
5922 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5923 						   const struct cpumask *cpu_map)
5924 {
5925 	memset(d, 0, sizeof(*d));
5926 
5927 	if (__sdt_alloc(cpu_map))
5928 		return sa_sd_storage;
5929 	d->sd = alloc_percpu(struct sched_domain *);
5930 	if (!d->sd)
5931 		return sa_sd_storage;
5932 	d->rd = alloc_rootdomain();
5933 	if (!d->rd)
5934 		return sa_sd;
5935 	return sa_rootdomain;
5936 }
5937 
5938 /*
5939  * NULL the sd_data elements we've used to build the sched_domain and
5940  * sched_group structure so that the subsequent __free_domain_allocs()
5941  * will not free the data we're using.
5942  */
5943 static void claim_allocations(int cpu, struct sched_domain *sd)
5944 {
5945 	struct sd_data *sdd = sd->private;
5946 
5947 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5948 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5949 
5950 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5951 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5952 
5953 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5954 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5955 }
5956 
5957 #ifdef CONFIG_SCHED_SMT
5958 static const struct cpumask *cpu_smt_mask(int cpu)
5959 {
5960 	return topology_thread_cpumask(cpu);
5961 }
5962 #endif
5963 
5964 /*
5965  * Topology list, bottom-up.
5966  */
5967 static struct sched_domain_topology_level default_topology[] = {
5968 #ifdef CONFIG_SCHED_SMT
5969 	{ sd_init_SIBLING, cpu_smt_mask, },
5970 #endif
5971 #ifdef CONFIG_SCHED_MC
5972 	{ sd_init_MC, cpu_coregroup_mask, },
5973 #endif
5974 #ifdef CONFIG_SCHED_BOOK
5975 	{ sd_init_BOOK, cpu_book_mask, },
5976 #endif
5977 	{ sd_init_CPU, cpu_cpu_mask, },
5978 	{ NULL, },
5979 };
5980 
5981 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5982 
5983 #define for_each_sd_topology(tl)			\
5984 	for (tl = sched_domain_topology; tl->init; tl++)
5985 
5986 #ifdef CONFIG_NUMA
5987 
5988 static int sched_domains_numa_levels;
5989 static int *sched_domains_numa_distance;
5990 static struct cpumask ***sched_domains_numa_masks;
5991 static int sched_domains_curr_level;
5992 
5993 static inline int sd_local_flags(int level)
5994 {
5995 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5996 		return 0;
5997 
5998 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5999 }
6000 
6001 static struct sched_domain *
6002 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6003 {
6004 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6005 	int level = tl->numa_level;
6006 	int sd_weight = cpumask_weight(
6007 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6008 
6009 	*sd = (struct sched_domain){
6010 		.min_interval		= sd_weight,
6011 		.max_interval		= 2*sd_weight,
6012 		.busy_factor		= 32,
6013 		.imbalance_pct		= 125,
6014 		.cache_nice_tries	= 2,
6015 		.busy_idx		= 3,
6016 		.idle_idx		= 2,
6017 		.newidle_idx		= 0,
6018 		.wake_idx		= 0,
6019 		.forkexec_idx		= 0,
6020 
6021 		.flags			= 1*SD_LOAD_BALANCE
6022 					| 1*SD_BALANCE_NEWIDLE
6023 					| 0*SD_BALANCE_EXEC
6024 					| 0*SD_BALANCE_FORK
6025 					| 0*SD_BALANCE_WAKE
6026 					| 0*SD_WAKE_AFFINE
6027 					| 0*SD_SHARE_CPUPOWER
6028 					| 0*SD_SHARE_PKG_RESOURCES
6029 					| 1*SD_SERIALIZE
6030 					| 0*SD_PREFER_SIBLING
6031 					| 1*SD_NUMA
6032 					| sd_local_flags(level)
6033 					,
6034 		.last_balance		= jiffies,
6035 		.balance_interval	= sd_weight,
6036 	};
6037 	SD_INIT_NAME(sd, NUMA);
6038 	sd->private = &tl->data;
6039 
6040 	/*
6041 	 * Ugly hack to pass state to sd_numa_mask()...
6042 	 */
6043 	sched_domains_curr_level = tl->numa_level;
6044 
6045 	return sd;
6046 }
6047 
6048 static const struct cpumask *sd_numa_mask(int cpu)
6049 {
6050 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6051 }
6052 
6053 static void sched_numa_warn(const char *str)
6054 {
6055 	static int done = false;
6056 	int i,j;
6057 
6058 	if (done)
6059 		return;
6060 
6061 	done = true;
6062 
6063 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6064 
6065 	for (i = 0; i < nr_node_ids; i++) {
6066 		printk(KERN_WARNING "  ");
6067 		for (j = 0; j < nr_node_ids; j++)
6068 			printk(KERN_CONT "%02d ", node_distance(i,j));
6069 		printk(KERN_CONT "\n");
6070 	}
6071 	printk(KERN_WARNING "\n");
6072 }
6073 
6074 static bool find_numa_distance(int distance)
6075 {
6076 	int i;
6077 
6078 	if (distance == node_distance(0, 0))
6079 		return true;
6080 
6081 	for (i = 0; i < sched_domains_numa_levels; i++) {
6082 		if (sched_domains_numa_distance[i] == distance)
6083 			return true;
6084 	}
6085 
6086 	return false;
6087 }
6088 
6089 static void sched_init_numa(void)
6090 {
6091 	int next_distance, curr_distance = node_distance(0, 0);
6092 	struct sched_domain_topology_level *tl;
6093 	int level = 0;
6094 	int i, j, k;
6095 
6096 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6097 	if (!sched_domains_numa_distance)
6098 		return;
6099 
6100 	/*
6101 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6102 	 * unique distances in the node_distance() table.
6103 	 *
6104 	 * Assumes node_distance(0,j) includes all distances in
6105 	 * node_distance(i,j) in order to avoid cubic time.
6106 	 */
6107 	next_distance = curr_distance;
6108 	for (i = 0; i < nr_node_ids; i++) {
6109 		for (j = 0; j < nr_node_ids; j++) {
6110 			for (k = 0; k < nr_node_ids; k++) {
6111 				int distance = node_distance(i, k);
6112 
6113 				if (distance > curr_distance &&
6114 				    (distance < next_distance ||
6115 				     next_distance == curr_distance))
6116 					next_distance = distance;
6117 
6118 				/*
6119 				 * While not a strong assumption it would be nice to know
6120 				 * about cases where if node A is connected to B, B is not
6121 				 * equally connected to A.
6122 				 */
6123 				if (sched_debug() && node_distance(k, i) != distance)
6124 					sched_numa_warn("Node-distance not symmetric");
6125 
6126 				if (sched_debug() && i && !find_numa_distance(distance))
6127 					sched_numa_warn("Node-0 not representative");
6128 			}
6129 			if (next_distance != curr_distance) {
6130 				sched_domains_numa_distance[level++] = next_distance;
6131 				sched_domains_numa_levels = level;
6132 				curr_distance = next_distance;
6133 			} else break;
6134 		}
6135 
6136 		/*
6137 		 * In case of sched_debug() we verify the above assumption.
6138 		 */
6139 		if (!sched_debug())
6140 			break;
6141 	}
6142 	/*
6143 	 * 'level' contains the number of unique distances, excluding the
6144 	 * identity distance node_distance(i,i).
6145 	 *
6146 	 * The sched_domains_numa_distance[] array includes the actual distance
6147 	 * numbers.
6148 	 */
6149 
6150 	/*
6151 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6152 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6153 	 * the array will contain less then 'level' members. This could be
6154 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6155 	 * in other functions.
6156 	 *
6157 	 * We reset it to 'level' at the end of this function.
6158 	 */
6159 	sched_domains_numa_levels = 0;
6160 
6161 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6162 	if (!sched_domains_numa_masks)
6163 		return;
6164 
6165 	/*
6166 	 * Now for each level, construct a mask per node which contains all
6167 	 * cpus of nodes that are that many hops away from us.
6168 	 */
6169 	for (i = 0; i < level; i++) {
6170 		sched_domains_numa_masks[i] =
6171 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6172 		if (!sched_domains_numa_masks[i])
6173 			return;
6174 
6175 		for (j = 0; j < nr_node_ids; j++) {
6176 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6177 			if (!mask)
6178 				return;
6179 
6180 			sched_domains_numa_masks[i][j] = mask;
6181 
6182 			for (k = 0; k < nr_node_ids; k++) {
6183 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6184 					continue;
6185 
6186 				cpumask_or(mask, mask, cpumask_of_node(k));
6187 			}
6188 		}
6189 	}
6190 
6191 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6192 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6193 	if (!tl)
6194 		return;
6195 
6196 	/*
6197 	 * Copy the default topology bits..
6198 	 */
6199 	for (i = 0; default_topology[i].init; i++)
6200 		tl[i] = default_topology[i];
6201 
6202 	/*
6203 	 * .. and append 'j' levels of NUMA goodness.
6204 	 */
6205 	for (j = 0; j < level; i++, j++) {
6206 		tl[i] = (struct sched_domain_topology_level){
6207 			.init = sd_numa_init,
6208 			.mask = sd_numa_mask,
6209 			.flags = SDTL_OVERLAP,
6210 			.numa_level = j,
6211 		};
6212 	}
6213 
6214 	sched_domain_topology = tl;
6215 
6216 	sched_domains_numa_levels = level;
6217 }
6218 
6219 static void sched_domains_numa_masks_set(int cpu)
6220 {
6221 	int i, j;
6222 	int node = cpu_to_node(cpu);
6223 
6224 	for (i = 0; i < sched_domains_numa_levels; i++) {
6225 		for (j = 0; j < nr_node_ids; j++) {
6226 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6227 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6228 		}
6229 	}
6230 }
6231 
6232 static void sched_domains_numa_masks_clear(int cpu)
6233 {
6234 	int i, j;
6235 	for (i = 0; i < sched_domains_numa_levels; i++) {
6236 		for (j = 0; j < nr_node_ids; j++)
6237 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6238 	}
6239 }
6240 
6241 /*
6242  * Update sched_domains_numa_masks[level][node] array when new cpus
6243  * are onlined.
6244  */
6245 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6246 					   unsigned long action,
6247 					   void *hcpu)
6248 {
6249 	int cpu = (long)hcpu;
6250 
6251 	switch (action & ~CPU_TASKS_FROZEN) {
6252 	case CPU_ONLINE:
6253 		sched_domains_numa_masks_set(cpu);
6254 		break;
6255 
6256 	case CPU_DEAD:
6257 		sched_domains_numa_masks_clear(cpu);
6258 		break;
6259 
6260 	default:
6261 		return NOTIFY_DONE;
6262 	}
6263 
6264 	return NOTIFY_OK;
6265 }
6266 #else
6267 static inline void sched_init_numa(void)
6268 {
6269 }
6270 
6271 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6272 					   unsigned long action,
6273 					   void *hcpu)
6274 {
6275 	return 0;
6276 }
6277 #endif /* CONFIG_NUMA */
6278 
6279 static int __sdt_alloc(const struct cpumask *cpu_map)
6280 {
6281 	struct sched_domain_topology_level *tl;
6282 	int j;
6283 
6284 	for_each_sd_topology(tl) {
6285 		struct sd_data *sdd = &tl->data;
6286 
6287 		sdd->sd = alloc_percpu(struct sched_domain *);
6288 		if (!sdd->sd)
6289 			return -ENOMEM;
6290 
6291 		sdd->sg = alloc_percpu(struct sched_group *);
6292 		if (!sdd->sg)
6293 			return -ENOMEM;
6294 
6295 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6296 		if (!sdd->sgp)
6297 			return -ENOMEM;
6298 
6299 		for_each_cpu(j, cpu_map) {
6300 			struct sched_domain *sd;
6301 			struct sched_group *sg;
6302 			struct sched_group_power *sgp;
6303 
6304 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6305 					GFP_KERNEL, cpu_to_node(j));
6306 			if (!sd)
6307 				return -ENOMEM;
6308 
6309 			*per_cpu_ptr(sdd->sd, j) = sd;
6310 
6311 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6312 					GFP_KERNEL, cpu_to_node(j));
6313 			if (!sg)
6314 				return -ENOMEM;
6315 
6316 			sg->next = sg;
6317 
6318 			*per_cpu_ptr(sdd->sg, j) = sg;
6319 
6320 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6321 					GFP_KERNEL, cpu_to_node(j));
6322 			if (!sgp)
6323 				return -ENOMEM;
6324 
6325 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6326 		}
6327 	}
6328 
6329 	return 0;
6330 }
6331 
6332 static void __sdt_free(const struct cpumask *cpu_map)
6333 {
6334 	struct sched_domain_topology_level *tl;
6335 	int j;
6336 
6337 	for_each_sd_topology(tl) {
6338 		struct sd_data *sdd = &tl->data;
6339 
6340 		for_each_cpu(j, cpu_map) {
6341 			struct sched_domain *sd;
6342 
6343 			if (sdd->sd) {
6344 				sd = *per_cpu_ptr(sdd->sd, j);
6345 				if (sd && (sd->flags & SD_OVERLAP))
6346 					free_sched_groups(sd->groups, 0);
6347 				kfree(*per_cpu_ptr(sdd->sd, j));
6348 			}
6349 
6350 			if (sdd->sg)
6351 				kfree(*per_cpu_ptr(sdd->sg, j));
6352 			if (sdd->sgp)
6353 				kfree(*per_cpu_ptr(sdd->sgp, j));
6354 		}
6355 		free_percpu(sdd->sd);
6356 		sdd->sd = NULL;
6357 		free_percpu(sdd->sg);
6358 		sdd->sg = NULL;
6359 		free_percpu(sdd->sgp);
6360 		sdd->sgp = NULL;
6361 	}
6362 }
6363 
6364 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6365 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6366 		struct sched_domain *child, int cpu)
6367 {
6368 	struct sched_domain *sd = tl->init(tl, cpu);
6369 	if (!sd)
6370 		return child;
6371 
6372 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6373 	if (child) {
6374 		sd->level = child->level + 1;
6375 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6376 		child->parent = sd;
6377 		sd->child = child;
6378 	}
6379 	set_domain_attribute(sd, attr);
6380 
6381 	return sd;
6382 }
6383 
6384 /*
6385  * Build sched domains for a given set of cpus and attach the sched domains
6386  * to the individual cpus
6387  */
6388 static int build_sched_domains(const struct cpumask *cpu_map,
6389 			       struct sched_domain_attr *attr)
6390 {
6391 	enum s_alloc alloc_state;
6392 	struct sched_domain *sd;
6393 	struct s_data d;
6394 	int i, ret = -ENOMEM;
6395 
6396 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6397 	if (alloc_state != sa_rootdomain)
6398 		goto error;
6399 
6400 	/* Set up domains for cpus specified by the cpu_map. */
6401 	for_each_cpu(i, cpu_map) {
6402 		struct sched_domain_topology_level *tl;
6403 
6404 		sd = NULL;
6405 		for_each_sd_topology(tl) {
6406 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6407 			if (tl == sched_domain_topology)
6408 				*per_cpu_ptr(d.sd, i) = sd;
6409 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6410 				sd->flags |= SD_OVERLAP;
6411 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6412 				break;
6413 		}
6414 	}
6415 
6416 	/* Build the groups for the domains */
6417 	for_each_cpu(i, cpu_map) {
6418 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6419 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6420 			if (sd->flags & SD_OVERLAP) {
6421 				if (build_overlap_sched_groups(sd, i))
6422 					goto error;
6423 			} else {
6424 				if (build_sched_groups(sd, i))
6425 					goto error;
6426 			}
6427 		}
6428 	}
6429 
6430 	/* Calculate CPU power for physical packages and nodes */
6431 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6432 		if (!cpumask_test_cpu(i, cpu_map))
6433 			continue;
6434 
6435 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6436 			claim_allocations(i, sd);
6437 			init_sched_groups_power(i, sd);
6438 		}
6439 	}
6440 
6441 	/* Attach the domains */
6442 	rcu_read_lock();
6443 	for_each_cpu(i, cpu_map) {
6444 		sd = *per_cpu_ptr(d.sd, i);
6445 		cpu_attach_domain(sd, d.rd, i);
6446 	}
6447 	rcu_read_unlock();
6448 
6449 	ret = 0;
6450 error:
6451 	__free_domain_allocs(&d, alloc_state, cpu_map);
6452 	return ret;
6453 }
6454 
6455 static cpumask_var_t *doms_cur;	/* current sched domains */
6456 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6457 static struct sched_domain_attr *dattr_cur;
6458 				/* attribues of custom domains in 'doms_cur' */
6459 
6460 /*
6461  * Special case: If a kmalloc of a doms_cur partition (array of
6462  * cpumask) fails, then fallback to a single sched domain,
6463  * as determined by the single cpumask fallback_doms.
6464  */
6465 static cpumask_var_t fallback_doms;
6466 
6467 /*
6468  * arch_update_cpu_topology lets virtualized architectures update the
6469  * cpu core maps. It is supposed to return 1 if the topology changed
6470  * or 0 if it stayed the same.
6471  */
6472 int __weak arch_update_cpu_topology(void)
6473 {
6474 	return 0;
6475 }
6476 
6477 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6478 {
6479 	int i;
6480 	cpumask_var_t *doms;
6481 
6482 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6483 	if (!doms)
6484 		return NULL;
6485 	for (i = 0; i < ndoms; i++) {
6486 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6487 			free_sched_domains(doms, i);
6488 			return NULL;
6489 		}
6490 	}
6491 	return doms;
6492 }
6493 
6494 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6495 {
6496 	unsigned int i;
6497 	for (i = 0; i < ndoms; i++)
6498 		free_cpumask_var(doms[i]);
6499 	kfree(doms);
6500 }
6501 
6502 /*
6503  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6504  * For now this just excludes isolated cpus, but could be used to
6505  * exclude other special cases in the future.
6506  */
6507 static int init_sched_domains(const struct cpumask *cpu_map)
6508 {
6509 	int err;
6510 
6511 	arch_update_cpu_topology();
6512 	ndoms_cur = 1;
6513 	doms_cur = alloc_sched_domains(ndoms_cur);
6514 	if (!doms_cur)
6515 		doms_cur = &fallback_doms;
6516 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6517 	err = build_sched_domains(doms_cur[0], NULL);
6518 	register_sched_domain_sysctl();
6519 
6520 	return err;
6521 }
6522 
6523 /*
6524  * Detach sched domains from a group of cpus specified in cpu_map
6525  * These cpus will now be attached to the NULL domain
6526  */
6527 static void detach_destroy_domains(const struct cpumask *cpu_map)
6528 {
6529 	int i;
6530 
6531 	rcu_read_lock();
6532 	for_each_cpu(i, cpu_map)
6533 		cpu_attach_domain(NULL, &def_root_domain, i);
6534 	rcu_read_unlock();
6535 }
6536 
6537 /* handle null as "default" */
6538 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6539 			struct sched_domain_attr *new, int idx_new)
6540 {
6541 	struct sched_domain_attr tmp;
6542 
6543 	/* fast path */
6544 	if (!new && !cur)
6545 		return 1;
6546 
6547 	tmp = SD_ATTR_INIT;
6548 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6549 			new ? (new + idx_new) : &tmp,
6550 			sizeof(struct sched_domain_attr));
6551 }
6552 
6553 /*
6554  * Partition sched domains as specified by the 'ndoms_new'
6555  * cpumasks in the array doms_new[] of cpumasks. This compares
6556  * doms_new[] to the current sched domain partitioning, doms_cur[].
6557  * It destroys each deleted domain and builds each new domain.
6558  *
6559  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6560  * The masks don't intersect (don't overlap.) We should setup one
6561  * sched domain for each mask. CPUs not in any of the cpumasks will
6562  * not be load balanced. If the same cpumask appears both in the
6563  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6564  * it as it is.
6565  *
6566  * The passed in 'doms_new' should be allocated using
6567  * alloc_sched_domains.  This routine takes ownership of it and will
6568  * free_sched_domains it when done with it. If the caller failed the
6569  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6570  * and partition_sched_domains() will fallback to the single partition
6571  * 'fallback_doms', it also forces the domains to be rebuilt.
6572  *
6573  * If doms_new == NULL it will be replaced with cpu_online_mask.
6574  * ndoms_new == 0 is a special case for destroying existing domains,
6575  * and it will not create the default domain.
6576  *
6577  * Call with hotplug lock held
6578  */
6579 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6580 			     struct sched_domain_attr *dattr_new)
6581 {
6582 	int i, j, n;
6583 	int new_topology;
6584 
6585 	mutex_lock(&sched_domains_mutex);
6586 
6587 	/* always unregister in case we don't destroy any domains */
6588 	unregister_sched_domain_sysctl();
6589 
6590 	/* Let architecture update cpu core mappings. */
6591 	new_topology = arch_update_cpu_topology();
6592 
6593 	n = doms_new ? ndoms_new : 0;
6594 
6595 	/* Destroy deleted domains */
6596 	for (i = 0; i < ndoms_cur; i++) {
6597 		for (j = 0; j < n && !new_topology; j++) {
6598 			if (cpumask_equal(doms_cur[i], doms_new[j])
6599 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6600 				goto match1;
6601 		}
6602 		/* no match - a current sched domain not in new doms_new[] */
6603 		detach_destroy_domains(doms_cur[i]);
6604 match1:
6605 		;
6606 	}
6607 
6608 	n = ndoms_cur;
6609 	if (doms_new == NULL) {
6610 		n = 0;
6611 		doms_new = &fallback_doms;
6612 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6613 		WARN_ON_ONCE(dattr_new);
6614 	}
6615 
6616 	/* Build new domains */
6617 	for (i = 0; i < ndoms_new; i++) {
6618 		for (j = 0; j < n && !new_topology; j++) {
6619 			if (cpumask_equal(doms_new[i], doms_cur[j])
6620 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6621 				goto match2;
6622 		}
6623 		/* no match - add a new doms_new */
6624 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6625 match2:
6626 		;
6627 	}
6628 
6629 	/* Remember the new sched domains */
6630 	if (doms_cur != &fallback_doms)
6631 		free_sched_domains(doms_cur, ndoms_cur);
6632 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6633 	doms_cur = doms_new;
6634 	dattr_cur = dattr_new;
6635 	ndoms_cur = ndoms_new;
6636 
6637 	register_sched_domain_sysctl();
6638 
6639 	mutex_unlock(&sched_domains_mutex);
6640 }
6641 
6642 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6643 
6644 /*
6645  * Update cpusets according to cpu_active mask.  If cpusets are
6646  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6647  * around partition_sched_domains().
6648  *
6649  * If we come here as part of a suspend/resume, don't touch cpusets because we
6650  * want to restore it back to its original state upon resume anyway.
6651  */
6652 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6653 			     void *hcpu)
6654 {
6655 	switch (action) {
6656 	case CPU_ONLINE_FROZEN:
6657 	case CPU_DOWN_FAILED_FROZEN:
6658 
6659 		/*
6660 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6661 		 * resume sequence. As long as this is not the last online
6662 		 * operation in the resume sequence, just build a single sched
6663 		 * domain, ignoring cpusets.
6664 		 */
6665 		num_cpus_frozen--;
6666 		if (likely(num_cpus_frozen)) {
6667 			partition_sched_domains(1, NULL, NULL);
6668 			break;
6669 		}
6670 
6671 		/*
6672 		 * This is the last CPU online operation. So fall through and
6673 		 * restore the original sched domains by considering the
6674 		 * cpuset configurations.
6675 		 */
6676 
6677 	case CPU_ONLINE:
6678 	case CPU_DOWN_FAILED:
6679 		cpuset_update_active_cpus(true);
6680 		break;
6681 	default:
6682 		return NOTIFY_DONE;
6683 	}
6684 	return NOTIFY_OK;
6685 }
6686 
6687 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6688 			       void *hcpu)
6689 {
6690 	switch (action) {
6691 	case CPU_DOWN_PREPARE:
6692 		cpuset_update_active_cpus(false);
6693 		break;
6694 	case CPU_DOWN_PREPARE_FROZEN:
6695 		num_cpus_frozen++;
6696 		partition_sched_domains(1, NULL, NULL);
6697 		break;
6698 	default:
6699 		return NOTIFY_DONE;
6700 	}
6701 	return NOTIFY_OK;
6702 }
6703 
6704 void __init sched_init_smp(void)
6705 {
6706 	cpumask_var_t non_isolated_cpus;
6707 
6708 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6709 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6710 
6711 	sched_init_numa();
6712 
6713 	/*
6714 	 * There's no userspace yet to cause hotplug operations; hence all the
6715 	 * cpu masks are stable and all blatant races in the below code cannot
6716 	 * happen.
6717 	 */
6718 	mutex_lock(&sched_domains_mutex);
6719 	init_sched_domains(cpu_active_mask);
6720 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6721 	if (cpumask_empty(non_isolated_cpus))
6722 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6723 	mutex_unlock(&sched_domains_mutex);
6724 
6725 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6726 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6727 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6728 
6729 	init_hrtick();
6730 
6731 	/* Move init over to a non-isolated CPU */
6732 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6733 		BUG();
6734 	sched_init_granularity();
6735 	free_cpumask_var(non_isolated_cpus);
6736 
6737 	init_sched_rt_class();
6738 	init_sched_dl_class();
6739 }
6740 #else
6741 void __init sched_init_smp(void)
6742 {
6743 	sched_init_granularity();
6744 }
6745 #endif /* CONFIG_SMP */
6746 
6747 const_debug unsigned int sysctl_timer_migration = 1;
6748 
6749 int in_sched_functions(unsigned long addr)
6750 {
6751 	return in_lock_functions(addr) ||
6752 		(addr >= (unsigned long)__sched_text_start
6753 		&& addr < (unsigned long)__sched_text_end);
6754 }
6755 
6756 #ifdef CONFIG_CGROUP_SCHED
6757 /*
6758  * Default task group.
6759  * Every task in system belongs to this group at bootup.
6760  */
6761 struct task_group root_task_group;
6762 LIST_HEAD(task_groups);
6763 #endif
6764 
6765 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6766 
6767 void __init sched_init(void)
6768 {
6769 	int i, j;
6770 	unsigned long alloc_size = 0, ptr;
6771 
6772 #ifdef CONFIG_FAIR_GROUP_SCHED
6773 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6774 #endif
6775 #ifdef CONFIG_RT_GROUP_SCHED
6776 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6777 #endif
6778 #ifdef CONFIG_CPUMASK_OFFSTACK
6779 	alloc_size += num_possible_cpus() * cpumask_size();
6780 #endif
6781 	if (alloc_size) {
6782 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6783 
6784 #ifdef CONFIG_FAIR_GROUP_SCHED
6785 		root_task_group.se = (struct sched_entity **)ptr;
6786 		ptr += nr_cpu_ids * sizeof(void **);
6787 
6788 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6789 		ptr += nr_cpu_ids * sizeof(void **);
6790 
6791 #endif /* CONFIG_FAIR_GROUP_SCHED */
6792 #ifdef CONFIG_RT_GROUP_SCHED
6793 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6794 		ptr += nr_cpu_ids * sizeof(void **);
6795 
6796 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6797 		ptr += nr_cpu_ids * sizeof(void **);
6798 
6799 #endif /* CONFIG_RT_GROUP_SCHED */
6800 #ifdef CONFIG_CPUMASK_OFFSTACK
6801 		for_each_possible_cpu(i) {
6802 			per_cpu(load_balance_mask, i) = (void *)ptr;
6803 			ptr += cpumask_size();
6804 		}
6805 #endif /* CONFIG_CPUMASK_OFFSTACK */
6806 	}
6807 
6808 	init_rt_bandwidth(&def_rt_bandwidth,
6809 			global_rt_period(), global_rt_runtime());
6810 	init_dl_bandwidth(&def_dl_bandwidth,
6811 			global_rt_period(), global_rt_runtime());
6812 
6813 #ifdef CONFIG_SMP
6814 	init_defrootdomain();
6815 #endif
6816 
6817 #ifdef CONFIG_RT_GROUP_SCHED
6818 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6819 			global_rt_period(), global_rt_runtime());
6820 #endif /* CONFIG_RT_GROUP_SCHED */
6821 
6822 #ifdef CONFIG_CGROUP_SCHED
6823 	list_add(&root_task_group.list, &task_groups);
6824 	INIT_LIST_HEAD(&root_task_group.children);
6825 	INIT_LIST_HEAD(&root_task_group.siblings);
6826 	autogroup_init(&init_task);
6827 
6828 #endif /* CONFIG_CGROUP_SCHED */
6829 
6830 	for_each_possible_cpu(i) {
6831 		struct rq *rq;
6832 
6833 		rq = cpu_rq(i);
6834 		raw_spin_lock_init(&rq->lock);
6835 		rq->nr_running = 0;
6836 		rq->calc_load_active = 0;
6837 		rq->calc_load_update = jiffies + LOAD_FREQ;
6838 		init_cfs_rq(&rq->cfs);
6839 		init_rt_rq(&rq->rt, rq);
6840 		init_dl_rq(&rq->dl, rq);
6841 #ifdef CONFIG_FAIR_GROUP_SCHED
6842 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6843 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6844 		/*
6845 		 * How much cpu bandwidth does root_task_group get?
6846 		 *
6847 		 * In case of task-groups formed thr' the cgroup filesystem, it
6848 		 * gets 100% of the cpu resources in the system. This overall
6849 		 * system cpu resource is divided among the tasks of
6850 		 * root_task_group and its child task-groups in a fair manner,
6851 		 * based on each entity's (task or task-group's) weight
6852 		 * (se->load.weight).
6853 		 *
6854 		 * In other words, if root_task_group has 10 tasks of weight
6855 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6856 		 * then A0's share of the cpu resource is:
6857 		 *
6858 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6859 		 *
6860 		 * We achieve this by letting root_task_group's tasks sit
6861 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6862 		 */
6863 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6864 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6865 #endif /* CONFIG_FAIR_GROUP_SCHED */
6866 
6867 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6868 #ifdef CONFIG_RT_GROUP_SCHED
6869 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6870 #endif
6871 
6872 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6873 			rq->cpu_load[j] = 0;
6874 
6875 		rq->last_load_update_tick = jiffies;
6876 
6877 #ifdef CONFIG_SMP
6878 		rq->sd = NULL;
6879 		rq->rd = NULL;
6880 		rq->cpu_power = SCHED_POWER_SCALE;
6881 		rq->post_schedule = 0;
6882 		rq->active_balance = 0;
6883 		rq->next_balance = jiffies;
6884 		rq->push_cpu = 0;
6885 		rq->cpu = i;
6886 		rq->online = 0;
6887 		rq->idle_stamp = 0;
6888 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6889 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6890 
6891 		INIT_LIST_HEAD(&rq->cfs_tasks);
6892 
6893 		rq_attach_root(rq, &def_root_domain);
6894 #ifdef CONFIG_NO_HZ_COMMON
6895 		rq->nohz_flags = 0;
6896 #endif
6897 #ifdef CONFIG_NO_HZ_FULL
6898 		rq->last_sched_tick = 0;
6899 #endif
6900 #endif
6901 		init_rq_hrtick(rq);
6902 		atomic_set(&rq->nr_iowait, 0);
6903 	}
6904 
6905 	set_load_weight(&init_task);
6906 
6907 #ifdef CONFIG_PREEMPT_NOTIFIERS
6908 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6909 #endif
6910 
6911 	/*
6912 	 * The boot idle thread does lazy MMU switching as well:
6913 	 */
6914 	atomic_inc(&init_mm.mm_count);
6915 	enter_lazy_tlb(&init_mm, current);
6916 
6917 	/*
6918 	 * Make us the idle thread. Technically, schedule() should not be
6919 	 * called from this thread, however somewhere below it might be,
6920 	 * but because we are the idle thread, we just pick up running again
6921 	 * when this runqueue becomes "idle".
6922 	 */
6923 	init_idle(current, smp_processor_id());
6924 
6925 	calc_load_update = jiffies + LOAD_FREQ;
6926 
6927 	/*
6928 	 * During early bootup we pretend to be a normal task:
6929 	 */
6930 	current->sched_class = &fair_sched_class;
6931 
6932 #ifdef CONFIG_SMP
6933 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6934 	/* May be allocated at isolcpus cmdline parse time */
6935 	if (cpu_isolated_map == NULL)
6936 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6937 	idle_thread_set_boot_cpu();
6938 #endif
6939 	init_sched_fair_class();
6940 
6941 	scheduler_running = 1;
6942 }
6943 
6944 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6945 static inline int preempt_count_equals(int preempt_offset)
6946 {
6947 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6948 
6949 	return (nested == preempt_offset);
6950 }
6951 
6952 void __might_sleep(const char *file, int line, int preempt_offset)
6953 {
6954 	static unsigned long prev_jiffy;	/* ratelimiting */
6955 
6956 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6957 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6958 	     !is_idle_task(current)) ||
6959 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6960 		return;
6961 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6962 		return;
6963 	prev_jiffy = jiffies;
6964 
6965 	printk(KERN_ERR
6966 		"BUG: sleeping function called from invalid context at %s:%d\n",
6967 			file, line);
6968 	printk(KERN_ERR
6969 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6970 			in_atomic(), irqs_disabled(),
6971 			current->pid, current->comm);
6972 
6973 	debug_show_held_locks(current);
6974 	if (irqs_disabled())
6975 		print_irqtrace_events(current);
6976 #ifdef CONFIG_DEBUG_PREEMPT
6977 	if (!preempt_count_equals(preempt_offset)) {
6978 		pr_err("Preemption disabled at:");
6979 		print_ip_sym(current->preempt_disable_ip);
6980 		pr_cont("\n");
6981 	}
6982 #endif
6983 	dump_stack();
6984 }
6985 EXPORT_SYMBOL(__might_sleep);
6986 #endif
6987 
6988 #ifdef CONFIG_MAGIC_SYSRQ
6989 static void normalize_task(struct rq *rq, struct task_struct *p)
6990 {
6991 	const struct sched_class *prev_class = p->sched_class;
6992 	struct sched_attr attr = {
6993 		.sched_policy = SCHED_NORMAL,
6994 	};
6995 	int old_prio = p->prio;
6996 	int on_rq;
6997 
6998 	on_rq = p->on_rq;
6999 	if (on_rq)
7000 		dequeue_task(rq, p, 0);
7001 	__setscheduler(rq, p, &attr);
7002 	if (on_rq) {
7003 		enqueue_task(rq, p, 0);
7004 		resched_task(rq->curr);
7005 	}
7006 
7007 	check_class_changed(rq, p, prev_class, old_prio);
7008 }
7009 
7010 void normalize_rt_tasks(void)
7011 {
7012 	struct task_struct *g, *p;
7013 	unsigned long flags;
7014 	struct rq *rq;
7015 
7016 	read_lock_irqsave(&tasklist_lock, flags);
7017 	do_each_thread(g, p) {
7018 		/*
7019 		 * Only normalize user tasks:
7020 		 */
7021 		if (!p->mm)
7022 			continue;
7023 
7024 		p->se.exec_start		= 0;
7025 #ifdef CONFIG_SCHEDSTATS
7026 		p->se.statistics.wait_start	= 0;
7027 		p->se.statistics.sleep_start	= 0;
7028 		p->se.statistics.block_start	= 0;
7029 #endif
7030 
7031 		if (!dl_task(p) && !rt_task(p)) {
7032 			/*
7033 			 * Renice negative nice level userspace
7034 			 * tasks back to 0:
7035 			 */
7036 			if (task_nice(p) < 0 && p->mm)
7037 				set_user_nice(p, 0);
7038 			continue;
7039 		}
7040 
7041 		raw_spin_lock(&p->pi_lock);
7042 		rq = __task_rq_lock(p);
7043 
7044 		normalize_task(rq, p);
7045 
7046 		__task_rq_unlock(rq);
7047 		raw_spin_unlock(&p->pi_lock);
7048 	} while_each_thread(g, p);
7049 
7050 	read_unlock_irqrestore(&tasklist_lock, flags);
7051 }
7052 
7053 #endif /* CONFIG_MAGIC_SYSRQ */
7054 
7055 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7056 /*
7057  * These functions are only useful for the IA64 MCA handling, or kdb.
7058  *
7059  * They can only be called when the whole system has been
7060  * stopped - every CPU needs to be quiescent, and no scheduling
7061  * activity can take place. Using them for anything else would
7062  * be a serious bug, and as a result, they aren't even visible
7063  * under any other configuration.
7064  */
7065 
7066 /**
7067  * curr_task - return the current task for a given cpu.
7068  * @cpu: the processor in question.
7069  *
7070  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7071  *
7072  * Return: The current task for @cpu.
7073  */
7074 struct task_struct *curr_task(int cpu)
7075 {
7076 	return cpu_curr(cpu);
7077 }
7078 
7079 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7080 
7081 #ifdef CONFIG_IA64
7082 /**
7083  * set_curr_task - set the current task for a given cpu.
7084  * @cpu: the processor in question.
7085  * @p: the task pointer to set.
7086  *
7087  * Description: This function must only be used when non-maskable interrupts
7088  * are serviced on a separate stack. It allows the architecture to switch the
7089  * notion of the current task on a cpu in a non-blocking manner. This function
7090  * must be called with all CPU's synchronized, and interrupts disabled, the
7091  * and caller must save the original value of the current task (see
7092  * curr_task() above) and restore that value before reenabling interrupts and
7093  * re-starting the system.
7094  *
7095  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7096  */
7097 void set_curr_task(int cpu, struct task_struct *p)
7098 {
7099 	cpu_curr(cpu) = p;
7100 }
7101 
7102 #endif
7103 
7104 #ifdef CONFIG_CGROUP_SCHED
7105 /* task_group_lock serializes the addition/removal of task groups */
7106 static DEFINE_SPINLOCK(task_group_lock);
7107 
7108 static void free_sched_group(struct task_group *tg)
7109 {
7110 	free_fair_sched_group(tg);
7111 	free_rt_sched_group(tg);
7112 	autogroup_free(tg);
7113 	kfree(tg);
7114 }
7115 
7116 /* allocate runqueue etc for a new task group */
7117 struct task_group *sched_create_group(struct task_group *parent)
7118 {
7119 	struct task_group *tg;
7120 
7121 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7122 	if (!tg)
7123 		return ERR_PTR(-ENOMEM);
7124 
7125 	if (!alloc_fair_sched_group(tg, parent))
7126 		goto err;
7127 
7128 	if (!alloc_rt_sched_group(tg, parent))
7129 		goto err;
7130 
7131 	return tg;
7132 
7133 err:
7134 	free_sched_group(tg);
7135 	return ERR_PTR(-ENOMEM);
7136 }
7137 
7138 void sched_online_group(struct task_group *tg, struct task_group *parent)
7139 {
7140 	unsigned long flags;
7141 
7142 	spin_lock_irqsave(&task_group_lock, flags);
7143 	list_add_rcu(&tg->list, &task_groups);
7144 
7145 	WARN_ON(!parent); /* root should already exist */
7146 
7147 	tg->parent = parent;
7148 	INIT_LIST_HEAD(&tg->children);
7149 	list_add_rcu(&tg->siblings, &parent->children);
7150 	spin_unlock_irqrestore(&task_group_lock, flags);
7151 }
7152 
7153 /* rcu callback to free various structures associated with a task group */
7154 static void free_sched_group_rcu(struct rcu_head *rhp)
7155 {
7156 	/* now it should be safe to free those cfs_rqs */
7157 	free_sched_group(container_of(rhp, struct task_group, rcu));
7158 }
7159 
7160 /* Destroy runqueue etc associated with a task group */
7161 void sched_destroy_group(struct task_group *tg)
7162 {
7163 	/* wait for possible concurrent references to cfs_rqs complete */
7164 	call_rcu(&tg->rcu, free_sched_group_rcu);
7165 }
7166 
7167 void sched_offline_group(struct task_group *tg)
7168 {
7169 	unsigned long flags;
7170 	int i;
7171 
7172 	/* end participation in shares distribution */
7173 	for_each_possible_cpu(i)
7174 		unregister_fair_sched_group(tg, i);
7175 
7176 	spin_lock_irqsave(&task_group_lock, flags);
7177 	list_del_rcu(&tg->list);
7178 	list_del_rcu(&tg->siblings);
7179 	spin_unlock_irqrestore(&task_group_lock, flags);
7180 }
7181 
7182 /* change task's runqueue when it moves between groups.
7183  *	The caller of this function should have put the task in its new group
7184  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7185  *	reflect its new group.
7186  */
7187 void sched_move_task(struct task_struct *tsk)
7188 {
7189 	struct task_group *tg;
7190 	int on_rq, running;
7191 	unsigned long flags;
7192 	struct rq *rq;
7193 
7194 	rq = task_rq_lock(tsk, &flags);
7195 
7196 	running = task_current(rq, tsk);
7197 	on_rq = tsk->on_rq;
7198 
7199 	if (on_rq)
7200 		dequeue_task(rq, tsk, 0);
7201 	if (unlikely(running))
7202 		tsk->sched_class->put_prev_task(rq, tsk);
7203 
7204 	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7205 				lockdep_is_held(&tsk->sighand->siglock)),
7206 			  struct task_group, css);
7207 	tg = autogroup_task_group(tsk, tg);
7208 	tsk->sched_task_group = tg;
7209 
7210 #ifdef CONFIG_FAIR_GROUP_SCHED
7211 	if (tsk->sched_class->task_move_group)
7212 		tsk->sched_class->task_move_group(tsk, on_rq);
7213 	else
7214 #endif
7215 		set_task_rq(tsk, task_cpu(tsk));
7216 
7217 	if (unlikely(running))
7218 		tsk->sched_class->set_curr_task(rq);
7219 	if (on_rq)
7220 		enqueue_task(rq, tsk, 0);
7221 
7222 	task_rq_unlock(rq, tsk, &flags);
7223 }
7224 #endif /* CONFIG_CGROUP_SCHED */
7225 
7226 #ifdef CONFIG_RT_GROUP_SCHED
7227 /*
7228  * Ensure that the real time constraints are schedulable.
7229  */
7230 static DEFINE_MUTEX(rt_constraints_mutex);
7231 
7232 /* Must be called with tasklist_lock held */
7233 static inline int tg_has_rt_tasks(struct task_group *tg)
7234 {
7235 	struct task_struct *g, *p;
7236 
7237 	do_each_thread(g, p) {
7238 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7239 			return 1;
7240 	} while_each_thread(g, p);
7241 
7242 	return 0;
7243 }
7244 
7245 struct rt_schedulable_data {
7246 	struct task_group *tg;
7247 	u64 rt_period;
7248 	u64 rt_runtime;
7249 };
7250 
7251 static int tg_rt_schedulable(struct task_group *tg, void *data)
7252 {
7253 	struct rt_schedulable_data *d = data;
7254 	struct task_group *child;
7255 	unsigned long total, sum = 0;
7256 	u64 period, runtime;
7257 
7258 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7259 	runtime = tg->rt_bandwidth.rt_runtime;
7260 
7261 	if (tg == d->tg) {
7262 		period = d->rt_period;
7263 		runtime = d->rt_runtime;
7264 	}
7265 
7266 	/*
7267 	 * Cannot have more runtime than the period.
7268 	 */
7269 	if (runtime > period && runtime != RUNTIME_INF)
7270 		return -EINVAL;
7271 
7272 	/*
7273 	 * Ensure we don't starve existing RT tasks.
7274 	 */
7275 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7276 		return -EBUSY;
7277 
7278 	total = to_ratio(period, runtime);
7279 
7280 	/*
7281 	 * Nobody can have more than the global setting allows.
7282 	 */
7283 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7284 		return -EINVAL;
7285 
7286 	/*
7287 	 * The sum of our children's runtime should not exceed our own.
7288 	 */
7289 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7290 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7291 		runtime = child->rt_bandwidth.rt_runtime;
7292 
7293 		if (child == d->tg) {
7294 			period = d->rt_period;
7295 			runtime = d->rt_runtime;
7296 		}
7297 
7298 		sum += to_ratio(period, runtime);
7299 	}
7300 
7301 	if (sum > total)
7302 		return -EINVAL;
7303 
7304 	return 0;
7305 }
7306 
7307 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7308 {
7309 	int ret;
7310 
7311 	struct rt_schedulable_data data = {
7312 		.tg = tg,
7313 		.rt_period = period,
7314 		.rt_runtime = runtime,
7315 	};
7316 
7317 	rcu_read_lock();
7318 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7319 	rcu_read_unlock();
7320 
7321 	return ret;
7322 }
7323 
7324 static int tg_set_rt_bandwidth(struct task_group *tg,
7325 		u64 rt_period, u64 rt_runtime)
7326 {
7327 	int i, err = 0;
7328 
7329 	mutex_lock(&rt_constraints_mutex);
7330 	read_lock(&tasklist_lock);
7331 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7332 	if (err)
7333 		goto unlock;
7334 
7335 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7336 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7337 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7338 
7339 	for_each_possible_cpu(i) {
7340 		struct rt_rq *rt_rq = tg->rt_rq[i];
7341 
7342 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7343 		rt_rq->rt_runtime = rt_runtime;
7344 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7345 	}
7346 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7347 unlock:
7348 	read_unlock(&tasklist_lock);
7349 	mutex_unlock(&rt_constraints_mutex);
7350 
7351 	return err;
7352 }
7353 
7354 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7355 {
7356 	u64 rt_runtime, rt_period;
7357 
7358 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7359 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7360 	if (rt_runtime_us < 0)
7361 		rt_runtime = RUNTIME_INF;
7362 
7363 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7364 }
7365 
7366 static long sched_group_rt_runtime(struct task_group *tg)
7367 {
7368 	u64 rt_runtime_us;
7369 
7370 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7371 		return -1;
7372 
7373 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7374 	do_div(rt_runtime_us, NSEC_PER_USEC);
7375 	return rt_runtime_us;
7376 }
7377 
7378 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7379 {
7380 	u64 rt_runtime, rt_period;
7381 
7382 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7383 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7384 
7385 	if (rt_period == 0)
7386 		return -EINVAL;
7387 
7388 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7389 }
7390 
7391 static long sched_group_rt_period(struct task_group *tg)
7392 {
7393 	u64 rt_period_us;
7394 
7395 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7396 	do_div(rt_period_us, NSEC_PER_USEC);
7397 	return rt_period_us;
7398 }
7399 #endif /* CONFIG_RT_GROUP_SCHED */
7400 
7401 #ifdef CONFIG_RT_GROUP_SCHED
7402 static int sched_rt_global_constraints(void)
7403 {
7404 	int ret = 0;
7405 
7406 	mutex_lock(&rt_constraints_mutex);
7407 	read_lock(&tasklist_lock);
7408 	ret = __rt_schedulable(NULL, 0, 0);
7409 	read_unlock(&tasklist_lock);
7410 	mutex_unlock(&rt_constraints_mutex);
7411 
7412 	return ret;
7413 }
7414 
7415 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7416 {
7417 	/* Don't accept realtime tasks when there is no way for them to run */
7418 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7419 		return 0;
7420 
7421 	return 1;
7422 }
7423 
7424 #else /* !CONFIG_RT_GROUP_SCHED */
7425 static int sched_rt_global_constraints(void)
7426 {
7427 	unsigned long flags;
7428 	int i, ret = 0;
7429 
7430 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7431 	for_each_possible_cpu(i) {
7432 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7433 
7434 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7435 		rt_rq->rt_runtime = global_rt_runtime();
7436 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7437 	}
7438 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7439 
7440 	return ret;
7441 }
7442 #endif /* CONFIG_RT_GROUP_SCHED */
7443 
7444 static int sched_dl_global_constraints(void)
7445 {
7446 	u64 runtime = global_rt_runtime();
7447 	u64 period = global_rt_period();
7448 	u64 new_bw = to_ratio(period, runtime);
7449 	int cpu, ret = 0;
7450 	unsigned long flags;
7451 
7452 	/*
7453 	 * Here we want to check the bandwidth not being set to some
7454 	 * value smaller than the currently allocated bandwidth in
7455 	 * any of the root_domains.
7456 	 *
7457 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7458 	 * cycling on root_domains... Discussion on different/better
7459 	 * solutions is welcome!
7460 	 */
7461 	for_each_possible_cpu(cpu) {
7462 		struct dl_bw *dl_b = dl_bw_of(cpu);
7463 
7464 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7465 		if (new_bw < dl_b->total_bw)
7466 			ret = -EBUSY;
7467 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7468 
7469 		if (ret)
7470 			break;
7471 	}
7472 
7473 	return ret;
7474 }
7475 
7476 static void sched_dl_do_global(void)
7477 {
7478 	u64 new_bw = -1;
7479 	int cpu;
7480 	unsigned long flags;
7481 
7482 	def_dl_bandwidth.dl_period = global_rt_period();
7483 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7484 
7485 	if (global_rt_runtime() != RUNTIME_INF)
7486 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7487 
7488 	/*
7489 	 * FIXME: As above...
7490 	 */
7491 	for_each_possible_cpu(cpu) {
7492 		struct dl_bw *dl_b = dl_bw_of(cpu);
7493 
7494 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7495 		dl_b->bw = new_bw;
7496 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7497 	}
7498 }
7499 
7500 static int sched_rt_global_validate(void)
7501 {
7502 	if (sysctl_sched_rt_period <= 0)
7503 		return -EINVAL;
7504 
7505 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7506 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7507 		return -EINVAL;
7508 
7509 	return 0;
7510 }
7511 
7512 static void sched_rt_do_global(void)
7513 {
7514 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7515 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7516 }
7517 
7518 int sched_rt_handler(struct ctl_table *table, int write,
7519 		void __user *buffer, size_t *lenp,
7520 		loff_t *ppos)
7521 {
7522 	int old_period, old_runtime;
7523 	static DEFINE_MUTEX(mutex);
7524 	int ret;
7525 
7526 	mutex_lock(&mutex);
7527 	old_period = sysctl_sched_rt_period;
7528 	old_runtime = sysctl_sched_rt_runtime;
7529 
7530 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7531 
7532 	if (!ret && write) {
7533 		ret = sched_rt_global_validate();
7534 		if (ret)
7535 			goto undo;
7536 
7537 		ret = sched_rt_global_constraints();
7538 		if (ret)
7539 			goto undo;
7540 
7541 		ret = sched_dl_global_constraints();
7542 		if (ret)
7543 			goto undo;
7544 
7545 		sched_rt_do_global();
7546 		sched_dl_do_global();
7547 	}
7548 	if (0) {
7549 undo:
7550 		sysctl_sched_rt_period = old_period;
7551 		sysctl_sched_rt_runtime = old_runtime;
7552 	}
7553 	mutex_unlock(&mutex);
7554 
7555 	return ret;
7556 }
7557 
7558 int sched_rr_handler(struct ctl_table *table, int write,
7559 		void __user *buffer, size_t *lenp,
7560 		loff_t *ppos)
7561 {
7562 	int ret;
7563 	static DEFINE_MUTEX(mutex);
7564 
7565 	mutex_lock(&mutex);
7566 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7567 	/* make sure that internally we keep jiffies */
7568 	/* also, writing zero resets timeslice to default */
7569 	if (!ret && write) {
7570 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7571 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7572 	}
7573 	mutex_unlock(&mutex);
7574 	return ret;
7575 }
7576 
7577 #ifdef CONFIG_CGROUP_SCHED
7578 
7579 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7580 {
7581 	return css ? container_of(css, struct task_group, css) : NULL;
7582 }
7583 
7584 static struct cgroup_subsys_state *
7585 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7586 {
7587 	struct task_group *parent = css_tg(parent_css);
7588 	struct task_group *tg;
7589 
7590 	if (!parent) {
7591 		/* This is early initialization for the top cgroup */
7592 		return &root_task_group.css;
7593 	}
7594 
7595 	tg = sched_create_group(parent);
7596 	if (IS_ERR(tg))
7597 		return ERR_PTR(-ENOMEM);
7598 
7599 	return &tg->css;
7600 }
7601 
7602 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7603 {
7604 	struct task_group *tg = css_tg(css);
7605 	struct task_group *parent = css_tg(css_parent(css));
7606 
7607 	if (parent)
7608 		sched_online_group(tg, parent);
7609 	return 0;
7610 }
7611 
7612 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7613 {
7614 	struct task_group *tg = css_tg(css);
7615 
7616 	sched_destroy_group(tg);
7617 }
7618 
7619 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7620 {
7621 	struct task_group *tg = css_tg(css);
7622 
7623 	sched_offline_group(tg);
7624 }
7625 
7626 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7627 				 struct cgroup_taskset *tset)
7628 {
7629 	struct task_struct *task;
7630 
7631 	cgroup_taskset_for_each(task, tset) {
7632 #ifdef CONFIG_RT_GROUP_SCHED
7633 		if (!sched_rt_can_attach(css_tg(css), task))
7634 			return -EINVAL;
7635 #else
7636 		/* We don't support RT-tasks being in separate groups */
7637 		if (task->sched_class != &fair_sched_class)
7638 			return -EINVAL;
7639 #endif
7640 	}
7641 	return 0;
7642 }
7643 
7644 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7645 			      struct cgroup_taskset *tset)
7646 {
7647 	struct task_struct *task;
7648 
7649 	cgroup_taskset_for_each(task, tset)
7650 		sched_move_task(task);
7651 }
7652 
7653 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7654 			    struct cgroup_subsys_state *old_css,
7655 			    struct task_struct *task)
7656 {
7657 	/*
7658 	 * cgroup_exit() is called in the copy_process() failure path.
7659 	 * Ignore this case since the task hasn't ran yet, this avoids
7660 	 * trying to poke a half freed task state from generic code.
7661 	 */
7662 	if (!(task->flags & PF_EXITING))
7663 		return;
7664 
7665 	sched_move_task(task);
7666 }
7667 
7668 #ifdef CONFIG_FAIR_GROUP_SCHED
7669 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7670 				struct cftype *cftype, u64 shareval)
7671 {
7672 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7673 }
7674 
7675 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7676 			       struct cftype *cft)
7677 {
7678 	struct task_group *tg = css_tg(css);
7679 
7680 	return (u64) scale_load_down(tg->shares);
7681 }
7682 
7683 #ifdef CONFIG_CFS_BANDWIDTH
7684 static DEFINE_MUTEX(cfs_constraints_mutex);
7685 
7686 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7687 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7688 
7689 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7690 
7691 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7692 {
7693 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7694 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7695 
7696 	if (tg == &root_task_group)
7697 		return -EINVAL;
7698 
7699 	/*
7700 	 * Ensure we have at some amount of bandwidth every period.  This is
7701 	 * to prevent reaching a state of large arrears when throttled via
7702 	 * entity_tick() resulting in prolonged exit starvation.
7703 	 */
7704 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7705 		return -EINVAL;
7706 
7707 	/*
7708 	 * Likewise, bound things on the otherside by preventing insane quota
7709 	 * periods.  This also allows us to normalize in computing quota
7710 	 * feasibility.
7711 	 */
7712 	if (period > max_cfs_quota_period)
7713 		return -EINVAL;
7714 
7715 	mutex_lock(&cfs_constraints_mutex);
7716 	ret = __cfs_schedulable(tg, period, quota);
7717 	if (ret)
7718 		goto out_unlock;
7719 
7720 	runtime_enabled = quota != RUNTIME_INF;
7721 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7722 	/*
7723 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7724 	 * before making related changes, and on->off must occur afterwards
7725 	 */
7726 	if (runtime_enabled && !runtime_was_enabled)
7727 		cfs_bandwidth_usage_inc();
7728 	raw_spin_lock_irq(&cfs_b->lock);
7729 	cfs_b->period = ns_to_ktime(period);
7730 	cfs_b->quota = quota;
7731 
7732 	__refill_cfs_bandwidth_runtime(cfs_b);
7733 	/* restart the period timer (if active) to handle new period expiry */
7734 	if (runtime_enabled && cfs_b->timer_active) {
7735 		/* force a reprogram */
7736 		cfs_b->timer_active = 0;
7737 		__start_cfs_bandwidth(cfs_b);
7738 	}
7739 	raw_spin_unlock_irq(&cfs_b->lock);
7740 
7741 	for_each_possible_cpu(i) {
7742 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7743 		struct rq *rq = cfs_rq->rq;
7744 
7745 		raw_spin_lock_irq(&rq->lock);
7746 		cfs_rq->runtime_enabled = runtime_enabled;
7747 		cfs_rq->runtime_remaining = 0;
7748 
7749 		if (cfs_rq->throttled)
7750 			unthrottle_cfs_rq(cfs_rq);
7751 		raw_spin_unlock_irq(&rq->lock);
7752 	}
7753 	if (runtime_was_enabled && !runtime_enabled)
7754 		cfs_bandwidth_usage_dec();
7755 out_unlock:
7756 	mutex_unlock(&cfs_constraints_mutex);
7757 
7758 	return ret;
7759 }
7760 
7761 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7762 {
7763 	u64 quota, period;
7764 
7765 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7766 	if (cfs_quota_us < 0)
7767 		quota = RUNTIME_INF;
7768 	else
7769 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7770 
7771 	return tg_set_cfs_bandwidth(tg, period, quota);
7772 }
7773 
7774 long tg_get_cfs_quota(struct task_group *tg)
7775 {
7776 	u64 quota_us;
7777 
7778 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7779 		return -1;
7780 
7781 	quota_us = tg->cfs_bandwidth.quota;
7782 	do_div(quota_us, NSEC_PER_USEC);
7783 
7784 	return quota_us;
7785 }
7786 
7787 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7788 {
7789 	u64 quota, period;
7790 
7791 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7792 	quota = tg->cfs_bandwidth.quota;
7793 
7794 	return tg_set_cfs_bandwidth(tg, period, quota);
7795 }
7796 
7797 long tg_get_cfs_period(struct task_group *tg)
7798 {
7799 	u64 cfs_period_us;
7800 
7801 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7802 	do_div(cfs_period_us, NSEC_PER_USEC);
7803 
7804 	return cfs_period_us;
7805 }
7806 
7807 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7808 				  struct cftype *cft)
7809 {
7810 	return tg_get_cfs_quota(css_tg(css));
7811 }
7812 
7813 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7814 				   struct cftype *cftype, s64 cfs_quota_us)
7815 {
7816 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7817 }
7818 
7819 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7820 				   struct cftype *cft)
7821 {
7822 	return tg_get_cfs_period(css_tg(css));
7823 }
7824 
7825 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7826 				    struct cftype *cftype, u64 cfs_period_us)
7827 {
7828 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7829 }
7830 
7831 struct cfs_schedulable_data {
7832 	struct task_group *tg;
7833 	u64 period, quota;
7834 };
7835 
7836 /*
7837  * normalize group quota/period to be quota/max_period
7838  * note: units are usecs
7839  */
7840 static u64 normalize_cfs_quota(struct task_group *tg,
7841 			       struct cfs_schedulable_data *d)
7842 {
7843 	u64 quota, period;
7844 
7845 	if (tg == d->tg) {
7846 		period = d->period;
7847 		quota = d->quota;
7848 	} else {
7849 		period = tg_get_cfs_period(tg);
7850 		quota = tg_get_cfs_quota(tg);
7851 	}
7852 
7853 	/* note: these should typically be equivalent */
7854 	if (quota == RUNTIME_INF || quota == -1)
7855 		return RUNTIME_INF;
7856 
7857 	return to_ratio(period, quota);
7858 }
7859 
7860 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7861 {
7862 	struct cfs_schedulable_data *d = data;
7863 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7864 	s64 quota = 0, parent_quota = -1;
7865 
7866 	if (!tg->parent) {
7867 		quota = RUNTIME_INF;
7868 	} else {
7869 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7870 
7871 		quota = normalize_cfs_quota(tg, d);
7872 		parent_quota = parent_b->hierarchal_quota;
7873 
7874 		/*
7875 		 * ensure max(child_quota) <= parent_quota, inherit when no
7876 		 * limit is set
7877 		 */
7878 		if (quota == RUNTIME_INF)
7879 			quota = parent_quota;
7880 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7881 			return -EINVAL;
7882 	}
7883 	cfs_b->hierarchal_quota = quota;
7884 
7885 	return 0;
7886 }
7887 
7888 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7889 {
7890 	int ret;
7891 	struct cfs_schedulable_data data = {
7892 		.tg = tg,
7893 		.period = period,
7894 		.quota = quota,
7895 	};
7896 
7897 	if (quota != RUNTIME_INF) {
7898 		do_div(data.period, NSEC_PER_USEC);
7899 		do_div(data.quota, NSEC_PER_USEC);
7900 	}
7901 
7902 	rcu_read_lock();
7903 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7904 	rcu_read_unlock();
7905 
7906 	return ret;
7907 }
7908 
7909 static int cpu_stats_show(struct seq_file *sf, void *v)
7910 {
7911 	struct task_group *tg = css_tg(seq_css(sf));
7912 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7913 
7914 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7915 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7916 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7917 
7918 	return 0;
7919 }
7920 #endif /* CONFIG_CFS_BANDWIDTH */
7921 #endif /* CONFIG_FAIR_GROUP_SCHED */
7922 
7923 #ifdef CONFIG_RT_GROUP_SCHED
7924 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7925 				struct cftype *cft, s64 val)
7926 {
7927 	return sched_group_set_rt_runtime(css_tg(css), val);
7928 }
7929 
7930 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7931 			       struct cftype *cft)
7932 {
7933 	return sched_group_rt_runtime(css_tg(css));
7934 }
7935 
7936 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7937 				    struct cftype *cftype, u64 rt_period_us)
7938 {
7939 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7940 }
7941 
7942 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7943 				   struct cftype *cft)
7944 {
7945 	return sched_group_rt_period(css_tg(css));
7946 }
7947 #endif /* CONFIG_RT_GROUP_SCHED */
7948 
7949 static struct cftype cpu_files[] = {
7950 #ifdef CONFIG_FAIR_GROUP_SCHED
7951 	{
7952 		.name = "shares",
7953 		.read_u64 = cpu_shares_read_u64,
7954 		.write_u64 = cpu_shares_write_u64,
7955 	},
7956 #endif
7957 #ifdef CONFIG_CFS_BANDWIDTH
7958 	{
7959 		.name = "cfs_quota_us",
7960 		.read_s64 = cpu_cfs_quota_read_s64,
7961 		.write_s64 = cpu_cfs_quota_write_s64,
7962 	},
7963 	{
7964 		.name = "cfs_period_us",
7965 		.read_u64 = cpu_cfs_period_read_u64,
7966 		.write_u64 = cpu_cfs_period_write_u64,
7967 	},
7968 	{
7969 		.name = "stat",
7970 		.seq_show = cpu_stats_show,
7971 	},
7972 #endif
7973 #ifdef CONFIG_RT_GROUP_SCHED
7974 	{
7975 		.name = "rt_runtime_us",
7976 		.read_s64 = cpu_rt_runtime_read,
7977 		.write_s64 = cpu_rt_runtime_write,
7978 	},
7979 	{
7980 		.name = "rt_period_us",
7981 		.read_u64 = cpu_rt_period_read_uint,
7982 		.write_u64 = cpu_rt_period_write_uint,
7983 	},
7984 #endif
7985 	{ }	/* terminate */
7986 };
7987 
7988 struct cgroup_subsys cpu_cgrp_subsys = {
7989 	.css_alloc	= cpu_cgroup_css_alloc,
7990 	.css_free	= cpu_cgroup_css_free,
7991 	.css_online	= cpu_cgroup_css_online,
7992 	.css_offline	= cpu_cgroup_css_offline,
7993 	.can_attach	= cpu_cgroup_can_attach,
7994 	.attach		= cpu_cgroup_attach,
7995 	.exit		= cpu_cgroup_exit,
7996 	.base_cftypes	= cpu_files,
7997 	.early_init	= 1,
7998 };
7999 
8000 #endif	/* CONFIG_CGROUP_SCHED */
8001 
8002 void dump_cpu_task(int cpu)
8003 {
8004 	pr_info("Task dump for CPU %d:\n", cpu);
8005 	sched_show_task(cpu_curr(cpu));
8006 }
8007