1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/kthread.h> 11 #include <linux/nospec.h> 12 13 #include <asm/switch_to.h> 14 #include <asm/tlb.h> 15 16 #include "../workqueue_internal.h" 17 #include "../smpboot.h" 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/sched.h> 21 22 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 23 24 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 25 /* 26 * Debugging: various feature bits 27 * 28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 29 * sysctl_sched_features, defined in sched.h, to allow constants propagation 30 * at compile time and compiler optimization based on features default. 31 */ 32 #define SCHED_FEAT(name, enabled) \ 33 (1UL << __SCHED_FEAT_##name) * enabled | 34 const_debug unsigned int sysctl_sched_features = 35 #include "features.h" 36 0; 37 #undef SCHED_FEAT 38 #endif 39 40 /* 41 * Number of tasks to iterate in a single balance run. 42 * Limited because this is done with IRQs disabled. 43 */ 44 const_debug unsigned int sysctl_sched_nr_migrate = 32; 45 46 /* 47 * period over which we average the RT time consumption, measured 48 * in ms. 49 * 50 * default: 1s 51 */ 52 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 53 54 /* 55 * period over which we measure -rt task CPU usage in us. 56 * default: 1s 57 */ 58 unsigned int sysctl_sched_rt_period = 1000000; 59 60 __read_mostly int scheduler_running; 61 62 /* 63 * part of the period that we allow rt tasks to run in us. 64 * default: 0.95s 65 */ 66 int sysctl_sched_rt_runtime = 950000; 67 68 /* 69 * __task_rq_lock - lock the rq @p resides on. 70 */ 71 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 72 __acquires(rq->lock) 73 { 74 struct rq *rq; 75 76 lockdep_assert_held(&p->pi_lock); 77 78 for (;;) { 79 rq = task_rq(p); 80 raw_spin_lock(&rq->lock); 81 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 82 rq_pin_lock(rq, rf); 83 return rq; 84 } 85 raw_spin_unlock(&rq->lock); 86 87 while (unlikely(task_on_rq_migrating(p))) 88 cpu_relax(); 89 } 90 } 91 92 /* 93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 94 */ 95 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 96 __acquires(p->pi_lock) 97 __acquires(rq->lock) 98 { 99 struct rq *rq; 100 101 for (;;) { 102 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 103 rq = task_rq(p); 104 raw_spin_lock(&rq->lock); 105 /* 106 * move_queued_task() task_rq_lock() 107 * 108 * ACQUIRE (rq->lock) 109 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 110 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 111 * [S] ->cpu = new_cpu [L] task_rq() 112 * [L] ->on_rq 113 * RELEASE (rq->lock) 114 * 115 * If we observe the old CPU in task_rq_lock, the acquire of 116 * the old rq->lock will fully serialize against the stores. 117 * 118 * If we observe the new CPU in task_rq_lock, the acquire will 119 * pair with the WMB to ensure we must then also see migrating. 120 */ 121 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 122 rq_pin_lock(rq, rf); 123 return rq; 124 } 125 raw_spin_unlock(&rq->lock); 126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 127 128 while (unlikely(task_on_rq_migrating(p))) 129 cpu_relax(); 130 } 131 } 132 133 /* 134 * RQ-clock updating methods: 135 */ 136 137 static void update_rq_clock_task(struct rq *rq, s64 delta) 138 { 139 /* 140 * In theory, the compile should just see 0 here, and optimize out the call 141 * to sched_rt_avg_update. But I don't trust it... 142 */ 143 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 144 s64 steal = 0, irq_delta = 0; 145 #endif 146 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 147 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 148 149 /* 150 * Since irq_time is only updated on {soft,}irq_exit, we might run into 151 * this case when a previous update_rq_clock() happened inside a 152 * {soft,}irq region. 153 * 154 * When this happens, we stop ->clock_task and only update the 155 * prev_irq_time stamp to account for the part that fit, so that a next 156 * update will consume the rest. This ensures ->clock_task is 157 * monotonic. 158 * 159 * It does however cause some slight miss-attribution of {soft,}irq 160 * time, a more accurate solution would be to update the irq_time using 161 * the current rq->clock timestamp, except that would require using 162 * atomic ops. 163 */ 164 if (irq_delta > delta) 165 irq_delta = delta; 166 167 rq->prev_irq_time += irq_delta; 168 delta -= irq_delta; 169 #endif 170 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 171 if (static_key_false((¶virt_steal_rq_enabled))) { 172 steal = paravirt_steal_clock(cpu_of(rq)); 173 steal -= rq->prev_steal_time_rq; 174 175 if (unlikely(steal > delta)) 176 steal = delta; 177 178 rq->prev_steal_time_rq += steal; 179 delta -= steal; 180 } 181 #endif 182 183 rq->clock_task += delta; 184 185 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 186 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 187 sched_rt_avg_update(rq, irq_delta + steal); 188 #endif 189 } 190 191 void update_rq_clock(struct rq *rq) 192 { 193 s64 delta; 194 195 lockdep_assert_held(&rq->lock); 196 197 if (rq->clock_update_flags & RQCF_ACT_SKIP) 198 return; 199 200 #ifdef CONFIG_SCHED_DEBUG 201 if (sched_feat(WARN_DOUBLE_CLOCK)) 202 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 203 rq->clock_update_flags |= RQCF_UPDATED; 204 #endif 205 206 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 207 if (delta < 0) 208 return; 209 rq->clock += delta; 210 update_rq_clock_task(rq, delta); 211 } 212 213 214 #ifdef CONFIG_SCHED_HRTICK 215 /* 216 * Use HR-timers to deliver accurate preemption points. 217 */ 218 219 static void hrtick_clear(struct rq *rq) 220 { 221 if (hrtimer_active(&rq->hrtick_timer)) 222 hrtimer_cancel(&rq->hrtick_timer); 223 } 224 225 /* 226 * High-resolution timer tick. 227 * Runs from hardirq context with interrupts disabled. 228 */ 229 static enum hrtimer_restart hrtick(struct hrtimer *timer) 230 { 231 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 232 struct rq_flags rf; 233 234 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 235 236 rq_lock(rq, &rf); 237 update_rq_clock(rq); 238 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 239 rq_unlock(rq, &rf); 240 241 return HRTIMER_NORESTART; 242 } 243 244 #ifdef CONFIG_SMP 245 246 static void __hrtick_restart(struct rq *rq) 247 { 248 struct hrtimer *timer = &rq->hrtick_timer; 249 250 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 251 } 252 253 /* 254 * called from hardirq (IPI) context 255 */ 256 static void __hrtick_start(void *arg) 257 { 258 struct rq *rq = arg; 259 struct rq_flags rf; 260 261 rq_lock(rq, &rf); 262 __hrtick_restart(rq); 263 rq->hrtick_csd_pending = 0; 264 rq_unlock(rq, &rf); 265 } 266 267 /* 268 * Called to set the hrtick timer state. 269 * 270 * called with rq->lock held and irqs disabled 271 */ 272 void hrtick_start(struct rq *rq, u64 delay) 273 { 274 struct hrtimer *timer = &rq->hrtick_timer; 275 ktime_t time; 276 s64 delta; 277 278 /* 279 * Don't schedule slices shorter than 10000ns, that just 280 * doesn't make sense and can cause timer DoS. 281 */ 282 delta = max_t(s64, delay, 10000LL); 283 time = ktime_add_ns(timer->base->get_time(), delta); 284 285 hrtimer_set_expires(timer, time); 286 287 if (rq == this_rq()) { 288 __hrtick_restart(rq); 289 } else if (!rq->hrtick_csd_pending) { 290 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 291 rq->hrtick_csd_pending = 1; 292 } 293 } 294 295 #else 296 /* 297 * Called to set the hrtick timer state. 298 * 299 * called with rq->lock held and irqs disabled 300 */ 301 void hrtick_start(struct rq *rq, u64 delay) 302 { 303 /* 304 * Don't schedule slices shorter than 10000ns, that just 305 * doesn't make sense. Rely on vruntime for fairness. 306 */ 307 delay = max_t(u64, delay, 10000LL); 308 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 309 HRTIMER_MODE_REL_PINNED); 310 } 311 #endif /* CONFIG_SMP */ 312 313 static void hrtick_rq_init(struct rq *rq) 314 { 315 #ifdef CONFIG_SMP 316 rq->hrtick_csd_pending = 0; 317 318 rq->hrtick_csd.flags = 0; 319 rq->hrtick_csd.func = __hrtick_start; 320 rq->hrtick_csd.info = rq; 321 #endif 322 323 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 324 rq->hrtick_timer.function = hrtick; 325 } 326 #else /* CONFIG_SCHED_HRTICK */ 327 static inline void hrtick_clear(struct rq *rq) 328 { 329 } 330 331 static inline void hrtick_rq_init(struct rq *rq) 332 { 333 } 334 #endif /* CONFIG_SCHED_HRTICK */ 335 336 /* 337 * cmpxchg based fetch_or, macro so it works for different integer types 338 */ 339 #define fetch_or(ptr, mask) \ 340 ({ \ 341 typeof(ptr) _ptr = (ptr); \ 342 typeof(mask) _mask = (mask); \ 343 typeof(*_ptr) _old, _val = *_ptr; \ 344 \ 345 for (;;) { \ 346 _old = cmpxchg(_ptr, _val, _val | _mask); \ 347 if (_old == _val) \ 348 break; \ 349 _val = _old; \ 350 } \ 351 _old; \ 352 }) 353 354 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 355 /* 356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 357 * this avoids any races wrt polling state changes and thereby avoids 358 * spurious IPIs. 359 */ 360 static bool set_nr_and_not_polling(struct task_struct *p) 361 { 362 struct thread_info *ti = task_thread_info(p); 363 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 364 } 365 366 /* 367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 368 * 369 * If this returns true, then the idle task promises to call 370 * sched_ttwu_pending() and reschedule soon. 371 */ 372 static bool set_nr_if_polling(struct task_struct *p) 373 { 374 struct thread_info *ti = task_thread_info(p); 375 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 376 377 for (;;) { 378 if (!(val & _TIF_POLLING_NRFLAG)) 379 return false; 380 if (val & _TIF_NEED_RESCHED) 381 return true; 382 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 383 if (old == val) 384 break; 385 val = old; 386 } 387 return true; 388 } 389 390 #else 391 static bool set_nr_and_not_polling(struct task_struct *p) 392 { 393 set_tsk_need_resched(p); 394 return true; 395 } 396 397 #ifdef CONFIG_SMP 398 static bool set_nr_if_polling(struct task_struct *p) 399 { 400 return false; 401 } 402 #endif 403 #endif 404 405 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 406 { 407 struct wake_q_node *node = &task->wake_q; 408 409 /* 410 * Atomically grab the task, if ->wake_q is !nil already it means 411 * its already queued (either by us or someone else) and will get the 412 * wakeup due to that. 413 * 414 * This cmpxchg() implies a full barrier, which pairs with the write 415 * barrier implied by the wakeup in wake_up_q(). 416 */ 417 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 418 return; 419 420 get_task_struct(task); 421 422 /* 423 * The head is context local, there can be no concurrency. 424 */ 425 *head->lastp = node; 426 head->lastp = &node->next; 427 } 428 429 void wake_up_q(struct wake_q_head *head) 430 { 431 struct wake_q_node *node = head->first; 432 433 while (node != WAKE_Q_TAIL) { 434 struct task_struct *task; 435 436 task = container_of(node, struct task_struct, wake_q); 437 BUG_ON(!task); 438 /* Task can safely be re-inserted now: */ 439 node = node->next; 440 task->wake_q.next = NULL; 441 442 /* 443 * wake_up_process() implies a wmb() to pair with the queueing 444 * in wake_q_add() so as not to miss wakeups. 445 */ 446 wake_up_process(task); 447 put_task_struct(task); 448 } 449 } 450 451 /* 452 * resched_curr - mark rq's current task 'to be rescheduled now'. 453 * 454 * On UP this means the setting of the need_resched flag, on SMP it 455 * might also involve a cross-CPU call to trigger the scheduler on 456 * the target CPU. 457 */ 458 void resched_curr(struct rq *rq) 459 { 460 struct task_struct *curr = rq->curr; 461 int cpu; 462 463 lockdep_assert_held(&rq->lock); 464 465 if (test_tsk_need_resched(curr)) 466 return; 467 468 cpu = cpu_of(rq); 469 470 if (cpu == smp_processor_id()) { 471 set_tsk_need_resched(curr); 472 set_preempt_need_resched(); 473 return; 474 } 475 476 if (set_nr_and_not_polling(curr)) 477 smp_send_reschedule(cpu); 478 else 479 trace_sched_wake_idle_without_ipi(cpu); 480 } 481 482 void resched_cpu(int cpu) 483 { 484 struct rq *rq = cpu_rq(cpu); 485 unsigned long flags; 486 487 raw_spin_lock_irqsave(&rq->lock, flags); 488 if (cpu_online(cpu) || cpu == smp_processor_id()) 489 resched_curr(rq); 490 raw_spin_unlock_irqrestore(&rq->lock, flags); 491 } 492 493 #ifdef CONFIG_SMP 494 #ifdef CONFIG_NO_HZ_COMMON 495 /* 496 * In the semi idle case, use the nearest busy CPU for migrating timers 497 * from an idle CPU. This is good for power-savings. 498 * 499 * We don't do similar optimization for completely idle system, as 500 * selecting an idle CPU will add more delays to the timers than intended 501 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 502 */ 503 int get_nohz_timer_target(void) 504 { 505 int i, cpu = smp_processor_id(); 506 struct sched_domain *sd; 507 508 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 509 return cpu; 510 511 rcu_read_lock(); 512 for_each_domain(cpu, sd) { 513 for_each_cpu(i, sched_domain_span(sd)) { 514 if (cpu == i) 515 continue; 516 517 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 518 cpu = i; 519 goto unlock; 520 } 521 } 522 } 523 524 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 525 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 526 unlock: 527 rcu_read_unlock(); 528 return cpu; 529 } 530 531 /* 532 * When add_timer_on() enqueues a timer into the timer wheel of an 533 * idle CPU then this timer might expire before the next timer event 534 * which is scheduled to wake up that CPU. In case of a completely 535 * idle system the next event might even be infinite time into the 536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 537 * leaves the inner idle loop so the newly added timer is taken into 538 * account when the CPU goes back to idle and evaluates the timer 539 * wheel for the next timer event. 540 */ 541 static void wake_up_idle_cpu(int cpu) 542 { 543 struct rq *rq = cpu_rq(cpu); 544 545 if (cpu == smp_processor_id()) 546 return; 547 548 if (set_nr_and_not_polling(rq->idle)) 549 smp_send_reschedule(cpu); 550 else 551 trace_sched_wake_idle_without_ipi(cpu); 552 } 553 554 static bool wake_up_full_nohz_cpu(int cpu) 555 { 556 /* 557 * We just need the target to call irq_exit() and re-evaluate 558 * the next tick. The nohz full kick at least implies that. 559 * If needed we can still optimize that later with an 560 * empty IRQ. 561 */ 562 if (cpu_is_offline(cpu)) 563 return true; /* Don't try to wake offline CPUs. */ 564 if (tick_nohz_full_cpu(cpu)) { 565 if (cpu != smp_processor_id() || 566 tick_nohz_tick_stopped()) 567 tick_nohz_full_kick_cpu(cpu); 568 return true; 569 } 570 571 return false; 572 } 573 574 /* 575 * Wake up the specified CPU. If the CPU is going offline, it is the 576 * caller's responsibility to deal with the lost wakeup, for example, 577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 578 */ 579 void wake_up_nohz_cpu(int cpu) 580 { 581 if (!wake_up_full_nohz_cpu(cpu)) 582 wake_up_idle_cpu(cpu); 583 } 584 585 static inline bool got_nohz_idle_kick(void) 586 { 587 int cpu = smp_processor_id(); 588 589 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 590 return false; 591 592 if (idle_cpu(cpu) && !need_resched()) 593 return true; 594 595 /* 596 * We can't run Idle Load Balance on this CPU for this time so we 597 * cancel it and clear NOHZ_BALANCE_KICK 598 */ 599 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 600 return false; 601 } 602 603 #else /* CONFIG_NO_HZ_COMMON */ 604 605 static inline bool got_nohz_idle_kick(void) 606 { 607 return false; 608 } 609 610 #endif /* CONFIG_NO_HZ_COMMON */ 611 612 #ifdef CONFIG_NO_HZ_FULL 613 bool sched_can_stop_tick(struct rq *rq) 614 { 615 int fifo_nr_running; 616 617 /* Deadline tasks, even if single, need the tick */ 618 if (rq->dl.dl_nr_running) 619 return false; 620 621 /* 622 * If there are more than one RR tasks, we need the tick to effect the 623 * actual RR behaviour. 624 */ 625 if (rq->rt.rr_nr_running) { 626 if (rq->rt.rr_nr_running == 1) 627 return true; 628 else 629 return false; 630 } 631 632 /* 633 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 634 * forced preemption between FIFO tasks. 635 */ 636 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 637 if (fifo_nr_running) 638 return true; 639 640 /* 641 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 642 * if there's more than one we need the tick for involuntary 643 * preemption. 644 */ 645 if (rq->nr_running > 1) 646 return false; 647 648 return true; 649 } 650 #endif /* CONFIG_NO_HZ_FULL */ 651 652 void sched_avg_update(struct rq *rq) 653 { 654 s64 period = sched_avg_period(); 655 656 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 657 /* 658 * Inline assembly required to prevent the compiler 659 * optimising this loop into a divmod call. 660 * See __iter_div_u64_rem() for another example of this. 661 */ 662 asm("" : "+rm" (rq->age_stamp)); 663 rq->age_stamp += period; 664 rq->rt_avg /= 2; 665 } 666 } 667 668 #endif /* CONFIG_SMP */ 669 670 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 671 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 672 /* 673 * Iterate task_group tree rooted at *from, calling @down when first entering a 674 * node and @up when leaving it for the final time. 675 * 676 * Caller must hold rcu_lock or sufficient equivalent. 677 */ 678 int walk_tg_tree_from(struct task_group *from, 679 tg_visitor down, tg_visitor up, void *data) 680 { 681 struct task_group *parent, *child; 682 int ret; 683 684 parent = from; 685 686 down: 687 ret = (*down)(parent, data); 688 if (ret) 689 goto out; 690 list_for_each_entry_rcu(child, &parent->children, siblings) { 691 parent = child; 692 goto down; 693 694 up: 695 continue; 696 } 697 ret = (*up)(parent, data); 698 if (ret || parent == from) 699 goto out; 700 701 child = parent; 702 parent = parent->parent; 703 if (parent) 704 goto up; 705 out: 706 return ret; 707 } 708 709 int tg_nop(struct task_group *tg, void *data) 710 { 711 return 0; 712 } 713 #endif 714 715 static void set_load_weight(struct task_struct *p, bool update_load) 716 { 717 int prio = p->static_prio - MAX_RT_PRIO; 718 struct load_weight *load = &p->se.load; 719 720 /* 721 * SCHED_IDLE tasks get minimal weight: 722 */ 723 if (idle_policy(p->policy)) { 724 load->weight = scale_load(WEIGHT_IDLEPRIO); 725 load->inv_weight = WMULT_IDLEPRIO; 726 return; 727 } 728 729 /* 730 * SCHED_OTHER tasks have to update their load when changing their 731 * weight 732 */ 733 if (update_load && p->sched_class == &fair_sched_class) { 734 reweight_task(p, prio); 735 } else { 736 load->weight = scale_load(sched_prio_to_weight[prio]); 737 load->inv_weight = sched_prio_to_wmult[prio]; 738 } 739 } 740 741 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 742 { 743 if (!(flags & ENQUEUE_NOCLOCK)) 744 update_rq_clock(rq); 745 746 if (!(flags & ENQUEUE_RESTORE)) 747 sched_info_queued(rq, p); 748 749 p->sched_class->enqueue_task(rq, p, flags); 750 } 751 752 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 753 { 754 if (!(flags & DEQUEUE_NOCLOCK)) 755 update_rq_clock(rq); 756 757 if (!(flags & DEQUEUE_SAVE)) 758 sched_info_dequeued(rq, p); 759 760 p->sched_class->dequeue_task(rq, p, flags); 761 } 762 763 void activate_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (task_contributes_to_load(p)) 766 rq->nr_uninterruptible--; 767 768 enqueue_task(rq, p, flags); 769 } 770 771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible++; 775 776 dequeue_task(rq, p, flags); 777 } 778 779 /* 780 * __normal_prio - return the priority that is based on the static prio 781 */ 782 static inline int __normal_prio(struct task_struct *p) 783 { 784 return p->static_prio; 785 } 786 787 /* 788 * Calculate the expected normal priority: i.e. priority 789 * without taking RT-inheritance into account. Might be 790 * boosted by interactivity modifiers. Changes upon fork, 791 * setprio syscalls, and whenever the interactivity 792 * estimator recalculates. 793 */ 794 static inline int normal_prio(struct task_struct *p) 795 { 796 int prio; 797 798 if (task_has_dl_policy(p)) 799 prio = MAX_DL_PRIO-1; 800 else if (task_has_rt_policy(p)) 801 prio = MAX_RT_PRIO-1 - p->rt_priority; 802 else 803 prio = __normal_prio(p); 804 return prio; 805 } 806 807 /* 808 * Calculate the current priority, i.e. the priority 809 * taken into account by the scheduler. This value might 810 * be boosted by RT tasks, or might be boosted by 811 * interactivity modifiers. Will be RT if the task got 812 * RT-boosted. If not then it returns p->normal_prio. 813 */ 814 static int effective_prio(struct task_struct *p) 815 { 816 p->normal_prio = normal_prio(p); 817 /* 818 * If we are RT tasks or we were boosted to RT priority, 819 * keep the priority unchanged. Otherwise, update priority 820 * to the normal priority: 821 */ 822 if (!rt_prio(p->prio)) 823 return p->normal_prio; 824 return p->prio; 825 } 826 827 /** 828 * task_curr - is this task currently executing on a CPU? 829 * @p: the task in question. 830 * 831 * Return: 1 if the task is currently executing. 0 otherwise. 832 */ 833 inline int task_curr(const struct task_struct *p) 834 { 835 return cpu_curr(task_cpu(p)) == p; 836 } 837 838 /* 839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 840 * use the balance_callback list if you want balancing. 841 * 842 * this means any call to check_class_changed() must be followed by a call to 843 * balance_callback(). 844 */ 845 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 846 const struct sched_class *prev_class, 847 int oldprio) 848 { 849 if (prev_class != p->sched_class) { 850 if (prev_class->switched_from) 851 prev_class->switched_from(rq, p); 852 853 p->sched_class->switched_to(rq, p); 854 } else if (oldprio != p->prio || dl_task(p)) 855 p->sched_class->prio_changed(rq, p, oldprio); 856 } 857 858 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 859 { 860 const struct sched_class *class; 861 862 if (p->sched_class == rq->curr->sched_class) { 863 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 864 } else { 865 for_each_class(class) { 866 if (class == rq->curr->sched_class) 867 break; 868 if (class == p->sched_class) { 869 resched_curr(rq); 870 break; 871 } 872 } 873 } 874 875 /* 876 * A queue event has occurred, and we're going to schedule. In 877 * this case, we can save a useless back to back clock update. 878 */ 879 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 880 rq_clock_skip_update(rq); 881 } 882 883 #ifdef CONFIG_SMP 884 885 static inline bool is_per_cpu_kthread(struct task_struct *p) 886 { 887 if (!(p->flags & PF_KTHREAD)) 888 return false; 889 890 if (p->nr_cpus_allowed != 1) 891 return false; 892 893 return true; 894 } 895 896 /* 897 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 898 * __set_cpus_allowed_ptr() and select_fallback_rq(). 899 */ 900 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 901 { 902 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 903 return false; 904 905 if (is_per_cpu_kthread(p)) 906 return cpu_online(cpu); 907 908 return cpu_active(cpu); 909 } 910 911 /* 912 * This is how migration works: 913 * 914 * 1) we invoke migration_cpu_stop() on the target CPU using 915 * stop_one_cpu(). 916 * 2) stopper starts to run (implicitly forcing the migrated thread 917 * off the CPU) 918 * 3) it checks whether the migrated task is still in the wrong runqueue. 919 * 4) if it's in the wrong runqueue then the migration thread removes 920 * it and puts it into the right queue. 921 * 5) stopper completes and stop_one_cpu() returns and the migration 922 * is done. 923 */ 924 925 /* 926 * move_queued_task - move a queued task to new rq. 927 * 928 * Returns (locked) new rq. Old rq's lock is released. 929 */ 930 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 931 struct task_struct *p, int new_cpu) 932 { 933 lockdep_assert_held(&rq->lock); 934 935 p->on_rq = TASK_ON_RQ_MIGRATING; 936 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 937 set_task_cpu(p, new_cpu); 938 rq_unlock(rq, rf); 939 940 rq = cpu_rq(new_cpu); 941 942 rq_lock(rq, rf); 943 BUG_ON(task_cpu(p) != new_cpu); 944 enqueue_task(rq, p, 0); 945 p->on_rq = TASK_ON_RQ_QUEUED; 946 check_preempt_curr(rq, p, 0); 947 948 return rq; 949 } 950 951 struct migration_arg { 952 struct task_struct *task; 953 int dest_cpu; 954 }; 955 956 /* 957 * Move (not current) task off this CPU, onto the destination CPU. We're doing 958 * this because either it can't run here any more (set_cpus_allowed() 959 * away from this CPU, or CPU going down), or because we're 960 * attempting to rebalance this task on exec (sched_exec). 961 * 962 * So we race with normal scheduler movements, but that's OK, as long 963 * as the task is no longer on this CPU. 964 */ 965 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 966 struct task_struct *p, int dest_cpu) 967 { 968 /* Affinity changed (again). */ 969 if (!is_cpu_allowed(p, dest_cpu)) 970 return rq; 971 972 update_rq_clock(rq); 973 rq = move_queued_task(rq, rf, p, dest_cpu); 974 975 return rq; 976 } 977 978 /* 979 * migration_cpu_stop - this will be executed by a highprio stopper thread 980 * and performs thread migration by bumping thread off CPU then 981 * 'pushing' onto another runqueue. 982 */ 983 static int migration_cpu_stop(void *data) 984 { 985 struct migration_arg *arg = data; 986 struct task_struct *p = arg->task; 987 struct rq *rq = this_rq(); 988 struct rq_flags rf; 989 990 /* 991 * The original target CPU might have gone down and we might 992 * be on another CPU but it doesn't matter. 993 */ 994 local_irq_disable(); 995 /* 996 * We need to explicitly wake pending tasks before running 997 * __migrate_task() such that we will not miss enforcing cpus_allowed 998 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 999 */ 1000 sched_ttwu_pending(); 1001 1002 raw_spin_lock(&p->pi_lock); 1003 rq_lock(rq, &rf); 1004 /* 1005 * If task_rq(p) != rq, it cannot be migrated here, because we're 1006 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1007 * we're holding p->pi_lock. 1008 */ 1009 if (task_rq(p) == rq) { 1010 if (task_on_rq_queued(p)) 1011 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1012 else 1013 p->wake_cpu = arg->dest_cpu; 1014 } 1015 rq_unlock(rq, &rf); 1016 raw_spin_unlock(&p->pi_lock); 1017 1018 local_irq_enable(); 1019 return 0; 1020 } 1021 1022 /* 1023 * sched_class::set_cpus_allowed must do the below, but is not required to 1024 * actually call this function. 1025 */ 1026 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1027 { 1028 cpumask_copy(&p->cpus_allowed, new_mask); 1029 p->nr_cpus_allowed = cpumask_weight(new_mask); 1030 } 1031 1032 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1033 { 1034 struct rq *rq = task_rq(p); 1035 bool queued, running; 1036 1037 lockdep_assert_held(&p->pi_lock); 1038 1039 queued = task_on_rq_queued(p); 1040 running = task_current(rq, p); 1041 1042 if (queued) { 1043 /* 1044 * Because __kthread_bind() calls this on blocked tasks without 1045 * holding rq->lock. 1046 */ 1047 lockdep_assert_held(&rq->lock); 1048 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1049 } 1050 if (running) 1051 put_prev_task(rq, p); 1052 1053 p->sched_class->set_cpus_allowed(p, new_mask); 1054 1055 if (queued) 1056 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1057 if (running) 1058 set_curr_task(rq, p); 1059 } 1060 1061 /* 1062 * Change a given task's CPU affinity. Migrate the thread to a 1063 * proper CPU and schedule it away if the CPU it's executing on 1064 * is removed from the allowed bitmask. 1065 * 1066 * NOTE: the caller must have a valid reference to the task, the 1067 * task must not exit() & deallocate itself prematurely. The 1068 * call is not atomic; no spinlocks may be held. 1069 */ 1070 static int __set_cpus_allowed_ptr(struct task_struct *p, 1071 const struct cpumask *new_mask, bool check) 1072 { 1073 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1074 unsigned int dest_cpu; 1075 struct rq_flags rf; 1076 struct rq *rq; 1077 int ret = 0; 1078 1079 rq = task_rq_lock(p, &rf); 1080 update_rq_clock(rq); 1081 1082 if (p->flags & PF_KTHREAD) { 1083 /* 1084 * Kernel threads are allowed on online && !active CPUs 1085 */ 1086 cpu_valid_mask = cpu_online_mask; 1087 } 1088 1089 /* 1090 * Must re-check here, to close a race against __kthread_bind(), 1091 * sched_setaffinity() is not guaranteed to observe the flag. 1092 */ 1093 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1094 ret = -EINVAL; 1095 goto out; 1096 } 1097 1098 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1099 goto out; 1100 1101 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1102 ret = -EINVAL; 1103 goto out; 1104 } 1105 1106 do_set_cpus_allowed(p, new_mask); 1107 1108 if (p->flags & PF_KTHREAD) { 1109 /* 1110 * For kernel threads that do indeed end up on online && 1111 * !active we want to ensure they are strict per-CPU threads. 1112 */ 1113 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1114 !cpumask_intersects(new_mask, cpu_active_mask) && 1115 p->nr_cpus_allowed != 1); 1116 } 1117 1118 /* Can the task run on the task's current CPU? If so, we're done */ 1119 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1120 goto out; 1121 1122 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1123 if (task_running(rq, p) || p->state == TASK_WAKING) { 1124 struct migration_arg arg = { p, dest_cpu }; 1125 /* Need help from migration thread: drop lock and wait. */ 1126 task_rq_unlock(rq, p, &rf); 1127 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1128 tlb_migrate_finish(p->mm); 1129 return 0; 1130 } else if (task_on_rq_queued(p)) { 1131 /* 1132 * OK, since we're going to drop the lock immediately 1133 * afterwards anyway. 1134 */ 1135 rq = move_queued_task(rq, &rf, p, dest_cpu); 1136 } 1137 out: 1138 task_rq_unlock(rq, p, &rf); 1139 1140 return ret; 1141 } 1142 1143 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1144 { 1145 return __set_cpus_allowed_ptr(p, new_mask, false); 1146 } 1147 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1148 1149 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1150 { 1151 #ifdef CONFIG_SCHED_DEBUG 1152 /* 1153 * We should never call set_task_cpu() on a blocked task, 1154 * ttwu() will sort out the placement. 1155 */ 1156 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1157 !p->on_rq); 1158 1159 /* 1160 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1161 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1162 * time relying on p->on_rq. 1163 */ 1164 WARN_ON_ONCE(p->state == TASK_RUNNING && 1165 p->sched_class == &fair_sched_class && 1166 (p->on_rq && !task_on_rq_migrating(p))); 1167 1168 #ifdef CONFIG_LOCKDEP 1169 /* 1170 * The caller should hold either p->pi_lock or rq->lock, when changing 1171 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1172 * 1173 * sched_move_task() holds both and thus holding either pins the cgroup, 1174 * see task_group(). 1175 * 1176 * Furthermore, all task_rq users should acquire both locks, see 1177 * task_rq_lock(). 1178 */ 1179 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1180 lockdep_is_held(&task_rq(p)->lock))); 1181 #endif 1182 /* 1183 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1184 */ 1185 WARN_ON_ONCE(!cpu_online(new_cpu)); 1186 #endif 1187 1188 trace_sched_migrate_task(p, new_cpu); 1189 1190 if (task_cpu(p) != new_cpu) { 1191 if (p->sched_class->migrate_task_rq) 1192 p->sched_class->migrate_task_rq(p); 1193 p->se.nr_migrations++; 1194 perf_event_task_migrate(p); 1195 } 1196 1197 __set_task_cpu(p, new_cpu); 1198 } 1199 1200 static void __migrate_swap_task(struct task_struct *p, int cpu) 1201 { 1202 if (task_on_rq_queued(p)) { 1203 struct rq *src_rq, *dst_rq; 1204 struct rq_flags srf, drf; 1205 1206 src_rq = task_rq(p); 1207 dst_rq = cpu_rq(cpu); 1208 1209 rq_pin_lock(src_rq, &srf); 1210 rq_pin_lock(dst_rq, &drf); 1211 1212 p->on_rq = TASK_ON_RQ_MIGRATING; 1213 deactivate_task(src_rq, p, 0); 1214 set_task_cpu(p, cpu); 1215 activate_task(dst_rq, p, 0); 1216 p->on_rq = TASK_ON_RQ_QUEUED; 1217 check_preempt_curr(dst_rq, p, 0); 1218 1219 rq_unpin_lock(dst_rq, &drf); 1220 rq_unpin_lock(src_rq, &srf); 1221 1222 } else { 1223 /* 1224 * Task isn't running anymore; make it appear like we migrated 1225 * it before it went to sleep. This means on wakeup we make the 1226 * previous CPU our target instead of where it really is. 1227 */ 1228 p->wake_cpu = cpu; 1229 } 1230 } 1231 1232 struct migration_swap_arg { 1233 struct task_struct *src_task, *dst_task; 1234 int src_cpu, dst_cpu; 1235 }; 1236 1237 static int migrate_swap_stop(void *data) 1238 { 1239 struct migration_swap_arg *arg = data; 1240 struct rq *src_rq, *dst_rq; 1241 int ret = -EAGAIN; 1242 1243 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1244 return -EAGAIN; 1245 1246 src_rq = cpu_rq(arg->src_cpu); 1247 dst_rq = cpu_rq(arg->dst_cpu); 1248 1249 double_raw_lock(&arg->src_task->pi_lock, 1250 &arg->dst_task->pi_lock); 1251 double_rq_lock(src_rq, dst_rq); 1252 1253 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1254 goto unlock; 1255 1256 if (task_cpu(arg->src_task) != arg->src_cpu) 1257 goto unlock; 1258 1259 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1260 goto unlock; 1261 1262 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1263 goto unlock; 1264 1265 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1266 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1267 1268 ret = 0; 1269 1270 unlock: 1271 double_rq_unlock(src_rq, dst_rq); 1272 raw_spin_unlock(&arg->dst_task->pi_lock); 1273 raw_spin_unlock(&arg->src_task->pi_lock); 1274 1275 return ret; 1276 } 1277 1278 /* 1279 * Cross migrate two tasks 1280 */ 1281 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1282 { 1283 struct migration_swap_arg arg; 1284 int ret = -EINVAL; 1285 1286 arg = (struct migration_swap_arg){ 1287 .src_task = cur, 1288 .src_cpu = task_cpu(cur), 1289 .dst_task = p, 1290 .dst_cpu = task_cpu(p), 1291 }; 1292 1293 if (arg.src_cpu == arg.dst_cpu) 1294 goto out; 1295 1296 /* 1297 * These three tests are all lockless; this is OK since all of them 1298 * will be re-checked with proper locks held further down the line. 1299 */ 1300 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1301 goto out; 1302 1303 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1304 goto out; 1305 1306 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1307 goto out; 1308 1309 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1310 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1311 1312 out: 1313 return ret; 1314 } 1315 1316 /* 1317 * wait_task_inactive - wait for a thread to unschedule. 1318 * 1319 * If @match_state is nonzero, it's the @p->state value just checked and 1320 * not expected to change. If it changes, i.e. @p might have woken up, 1321 * then return zero. When we succeed in waiting for @p to be off its CPU, 1322 * we return a positive number (its total switch count). If a second call 1323 * a short while later returns the same number, the caller can be sure that 1324 * @p has remained unscheduled the whole time. 1325 * 1326 * The caller must ensure that the task *will* unschedule sometime soon, 1327 * else this function might spin for a *long* time. This function can't 1328 * be called with interrupts off, or it may introduce deadlock with 1329 * smp_call_function() if an IPI is sent by the same process we are 1330 * waiting to become inactive. 1331 */ 1332 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1333 { 1334 int running, queued; 1335 struct rq_flags rf; 1336 unsigned long ncsw; 1337 struct rq *rq; 1338 1339 for (;;) { 1340 /* 1341 * We do the initial early heuristics without holding 1342 * any task-queue locks at all. We'll only try to get 1343 * the runqueue lock when things look like they will 1344 * work out! 1345 */ 1346 rq = task_rq(p); 1347 1348 /* 1349 * If the task is actively running on another CPU 1350 * still, just relax and busy-wait without holding 1351 * any locks. 1352 * 1353 * NOTE! Since we don't hold any locks, it's not 1354 * even sure that "rq" stays as the right runqueue! 1355 * But we don't care, since "task_running()" will 1356 * return false if the runqueue has changed and p 1357 * is actually now running somewhere else! 1358 */ 1359 while (task_running(rq, p)) { 1360 if (match_state && unlikely(p->state != match_state)) 1361 return 0; 1362 cpu_relax(); 1363 } 1364 1365 /* 1366 * Ok, time to look more closely! We need the rq 1367 * lock now, to be *sure*. If we're wrong, we'll 1368 * just go back and repeat. 1369 */ 1370 rq = task_rq_lock(p, &rf); 1371 trace_sched_wait_task(p); 1372 running = task_running(rq, p); 1373 queued = task_on_rq_queued(p); 1374 ncsw = 0; 1375 if (!match_state || p->state == match_state) 1376 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1377 task_rq_unlock(rq, p, &rf); 1378 1379 /* 1380 * If it changed from the expected state, bail out now. 1381 */ 1382 if (unlikely(!ncsw)) 1383 break; 1384 1385 /* 1386 * Was it really running after all now that we 1387 * checked with the proper locks actually held? 1388 * 1389 * Oops. Go back and try again.. 1390 */ 1391 if (unlikely(running)) { 1392 cpu_relax(); 1393 continue; 1394 } 1395 1396 /* 1397 * It's not enough that it's not actively running, 1398 * it must be off the runqueue _entirely_, and not 1399 * preempted! 1400 * 1401 * So if it was still runnable (but just not actively 1402 * running right now), it's preempted, and we should 1403 * yield - it could be a while. 1404 */ 1405 if (unlikely(queued)) { 1406 ktime_t to = NSEC_PER_SEC / HZ; 1407 1408 set_current_state(TASK_UNINTERRUPTIBLE); 1409 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1410 continue; 1411 } 1412 1413 /* 1414 * Ahh, all good. It wasn't running, and it wasn't 1415 * runnable, which means that it will never become 1416 * running in the future either. We're all done! 1417 */ 1418 break; 1419 } 1420 1421 return ncsw; 1422 } 1423 1424 /*** 1425 * kick_process - kick a running thread to enter/exit the kernel 1426 * @p: the to-be-kicked thread 1427 * 1428 * Cause a process which is running on another CPU to enter 1429 * kernel-mode, without any delay. (to get signals handled.) 1430 * 1431 * NOTE: this function doesn't have to take the runqueue lock, 1432 * because all it wants to ensure is that the remote task enters 1433 * the kernel. If the IPI races and the task has been migrated 1434 * to another CPU then no harm is done and the purpose has been 1435 * achieved as well. 1436 */ 1437 void kick_process(struct task_struct *p) 1438 { 1439 int cpu; 1440 1441 preempt_disable(); 1442 cpu = task_cpu(p); 1443 if ((cpu != smp_processor_id()) && task_curr(p)) 1444 smp_send_reschedule(cpu); 1445 preempt_enable(); 1446 } 1447 EXPORT_SYMBOL_GPL(kick_process); 1448 1449 /* 1450 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1451 * 1452 * A few notes on cpu_active vs cpu_online: 1453 * 1454 * - cpu_active must be a subset of cpu_online 1455 * 1456 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1457 * see __set_cpus_allowed_ptr(). At this point the newly online 1458 * CPU isn't yet part of the sched domains, and balancing will not 1459 * see it. 1460 * 1461 * - on CPU-down we clear cpu_active() to mask the sched domains and 1462 * avoid the load balancer to place new tasks on the to be removed 1463 * CPU. Existing tasks will remain running there and will be taken 1464 * off. 1465 * 1466 * This means that fallback selection must not select !active CPUs. 1467 * And can assume that any active CPU must be online. Conversely 1468 * select_task_rq() below may allow selection of !active CPUs in order 1469 * to satisfy the above rules. 1470 */ 1471 static int select_fallback_rq(int cpu, struct task_struct *p) 1472 { 1473 int nid = cpu_to_node(cpu); 1474 const struct cpumask *nodemask = NULL; 1475 enum { cpuset, possible, fail } state = cpuset; 1476 int dest_cpu; 1477 1478 /* 1479 * If the node that the CPU is on has been offlined, cpu_to_node() 1480 * will return -1. There is no CPU on the node, and we should 1481 * select the CPU on the other node. 1482 */ 1483 if (nid != -1) { 1484 nodemask = cpumask_of_node(nid); 1485 1486 /* Look for allowed, online CPU in same node. */ 1487 for_each_cpu(dest_cpu, nodemask) { 1488 if (!cpu_active(dest_cpu)) 1489 continue; 1490 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1491 return dest_cpu; 1492 } 1493 } 1494 1495 for (;;) { 1496 /* Any allowed, online CPU? */ 1497 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1498 if (!is_cpu_allowed(p, dest_cpu)) 1499 continue; 1500 1501 goto out; 1502 } 1503 1504 /* No more Mr. Nice Guy. */ 1505 switch (state) { 1506 case cpuset: 1507 if (IS_ENABLED(CONFIG_CPUSETS)) { 1508 cpuset_cpus_allowed_fallback(p); 1509 state = possible; 1510 break; 1511 } 1512 /* Fall-through */ 1513 case possible: 1514 do_set_cpus_allowed(p, cpu_possible_mask); 1515 state = fail; 1516 break; 1517 1518 case fail: 1519 BUG(); 1520 break; 1521 } 1522 } 1523 1524 out: 1525 if (state != cpuset) { 1526 /* 1527 * Don't tell them about moving exiting tasks or 1528 * kernel threads (both mm NULL), since they never 1529 * leave kernel. 1530 */ 1531 if (p->mm && printk_ratelimit()) { 1532 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1533 task_pid_nr(p), p->comm, cpu); 1534 } 1535 } 1536 1537 return dest_cpu; 1538 } 1539 1540 /* 1541 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1542 */ 1543 static inline 1544 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1545 { 1546 lockdep_assert_held(&p->pi_lock); 1547 1548 if (p->nr_cpus_allowed > 1) 1549 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1550 else 1551 cpu = cpumask_any(&p->cpus_allowed); 1552 1553 /* 1554 * In order not to call set_task_cpu() on a blocking task we need 1555 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1556 * CPU. 1557 * 1558 * Since this is common to all placement strategies, this lives here. 1559 * 1560 * [ this allows ->select_task() to simply return task_cpu(p) and 1561 * not worry about this generic constraint ] 1562 */ 1563 if (unlikely(!is_cpu_allowed(p, cpu))) 1564 cpu = select_fallback_rq(task_cpu(p), p); 1565 1566 return cpu; 1567 } 1568 1569 static void update_avg(u64 *avg, u64 sample) 1570 { 1571 s64 diff = sample - *avg; 1572 *avg += diff >> 3; 1573 } 1574 1575 void sched_set_stop_task(int cpu, struct task_struct *stop) 1576 { 1577 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1578 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1579 1580 if (stop) { 1581 /* 1582 * Make it appear like a SCHED_FIFO task, its something 1583 * userspace knows about and won't get confused about. 1584 * 1585 * Also, it will make PI more or less work without too 1586 * much confusion -- but then, stop work should not 1587 * rely on PI working anyway. 1588 */ 1589 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1590 1591 stop->sched_class = &stop_sched_class; 1592 } 1593 1594 cpu_rq(cpu)->stop = stop; 1595 1596 if (old_stop) { 1597 /* 1598 * Reset it back to a normal scheduling class so that 1599 * it can die in pieces. 1600 */ 1601 old_stop->sched_class = &rt_sched_class; 1602 } 1603 } 1604 1605 #else 1606 1607 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1608 const struct cpumask *new_mask, bool check) 1609 { 1610 return set_cpus_allowed_ptr(p, new_mask); 1611 } 1612 1613 #endif /* CONFIG_SMP */ 1614 1615 static void 1616 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1617 { 1618 struct rq *rq; 1619 1620 if (!schedstat_enabled()) 1621 return; 1622 1623 rq = this_rq(); 1624 1625 #ifdef CONFIG_SMP 1626 if (cpu == rq->cpu) { 1627 __schedstat_inc(rq->ttwu_local); 1628 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1629 } else { 1630 struct sched_domain *sd; 1631 1632 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1633 rcu_read_lock(); 1634 for_each_domain(rq->cpu, sd) { 1635 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1636 __schedstat_inc(sd->ttwu_wake_remote); 1637 break; 1638 } 1639 } 1640 rcu_read_unlock(); 1641 } 1642 1643 if (wake_flags & WF_MIGRATED) 1644 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1645 #endif /* CONFIG_SMP */ 1646 1647 __schedstat_inc(rq->ttwu_count); 1648 __schedstat_inc(p->se.statistics.nr_wakeups); 1649 1650 if (wake_flags & WF_SYNC) 1651 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1652 } 1653 1654 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1655 { 1656 activate_task(rq, p, en_flags); 1657 p->on_rq = TASK_ON_RQ_QUEUED; 1658 1659 /* If a worker is waking up, notify the workqueue: */ 1660 if (p->flags & PF_WQ_WORKER) 1661 wq_worker_waking_up(p, cpu_of(rq)); 1662 } 1663 1664 /* 1665 * Mark the task runnable and perform wakeup-preemption. 1666 */ 1667 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1668 struct rq_flags *rf) 1669 { 1670 check_preempt_curr(rq, p, wake_flags); 1671 p->state = TASK_RUNNING; 1672 trace_sched_wakeup(p); 1673 1674 #ifdef CONFIG_SMP 1675 if (p->sched_class->task_woken) { 1676 /* 1677 * Our task @p is fully woken up and running; so its safe to 1678 * drop the rq->lock, hereafter rq is only used for statistics. 1679 */ 1680 rq_unpin_lock(rq, rf); 1681 p->sched_class->task_woken(rq, p); 1682 rq_repin_lock(rq, rf); 1683 } 1684 1685 if (rq->idle_stamp) { 1686 u64 delta = rq_clock(rq) - rq->idle_stamp; 1687 u64 max = 2*rq->max_idle_balance_cost; 1688 1689 update_avg(&rq->avg_idle, delta); 1690 1691 if (rq->avg_idle > max) 1692 rq->avg_idle = max; 1693 1694 rq->idle_stamp = 0; 1695 } 1696 #endif 1697 } 1698 1699 static void 1700 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1701 struct rq_flags *rf) 1702 { 1703 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1704 1705 lockdep_assert_held(&rq->lock); 1706 1707 #ifdef CONFIG_SMP 1708 if (p->sched_contributes_to_load) 1709 rq->nr_uninterruptible--; 1710 1711 if (wake_flags & WF_MIGRATED) 1712 en_flags |= ENQUEUE_MIGRATED; 1713 #endif 1714 1715 ttwu_activate(rq, p, en_flags); 1716 ttwu_do_wakeup(rq, p, wake_flags, rf); 1717 } 1718 1719 /* 1720 * Called in case the task @p isn't fully descheduled from its runqueue, 1721 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1722 * since all we need to do is flip p->state to TASK_RUNNING, since 1723 * the task is still ->on_rq. 1724 */ 1725 static int ttwu_remote(struct task_struct *p, int wake_flags) 1726 { 1727 struct rq_flags rf; 1728 struct rq *rq; 1729 int ret = 0; 1730 1731 rq = __task_rq_lock(p, &rf); 1732 if (task_on_rq_queued(p)) { 1733 /* check_preempt_curr() may use rq clock */ 1734 update_rq_clock(rq); 1735 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1736 ret = 1; 1737 } 1738 __task_rq_unlock(rq, &rf); 1739 1740 return ret; 1741 } 1742 1743 #ifdef CONFIG_SMP 1744 void sched_ttwu_pending(void) 1745 { 1746 struct rq *rq = this_rq(); 1747 struct llist_node *llist = llist_del_all(&rq->wake_list); 1748 struct task_struct *p, *t; 1749 struct rq_flags rf; 1750 1751 if (!llist) 1752 return; 1753 1754 rq_lock_irqsave(rq, &rf); 1755 update_rq_clock(rq); 1756 1757 llist_for_each_entry_safe(p, t, llist, wake_entry) 1758 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1759 1760 rq_unlock_irqrestore(rq, &rf); 1761 } 1762 1763 void scheduler_ipi(void) 1764 { 1765 /* 1766 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1767 * TIF_NEED_RESCHED remotely (for the first time) will also send 1768 * this IPI. 1769 */ 1770 preempt_fold_need_resched(); 1771 1772 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1773 return; 1774 1775 /* 1776 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1777 * traditionally all their work was done from the interrupt return 1778 * path. Now that we actually do some work, we need to make sure 1779 * we do call them. 1780 * 1781 * Some archs already do call them, luckily irq_enter/exit nest 1782 * properly. 1783 * 1784 * Arguably we should visit all archs and update all handlers, 1785 * however a fair share of IPIs are still resched only so this would 1786 * somewhat pessimize the simple resched case. 1787 */ 1788 irq_enter(); 1789 sched_ttwu_pending(); 1790 1791 /* 1792 * Check if someone kicked us for doing the nohz idle load balance. 1793 */ 1794 if (unlikely(got_nohz_idle_kick())) { 1795 this_rq()->idle_balance = 1; 1796 raise_softirq_irqoff(SCHED_SOFTIRQ); 1797 } 1798 irq_exit(); 1799 } 1800 1801 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1802 { 1803 struct rq *rq = cpu_rq(cpu); 1804 1805 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1806 1807 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1808 if (!set_nr_if_polling(rq->idle)) 1809 smp_send_reschedule(cpu); 1810 else 1811 trace_sched_wake_idle_without_ipi(cpu); 1812 } 1813 } 1814 1815 void wake_up_if_idle(int cpu) 1816 { 1817 struct rq *rq = cpu_rq(cpu); 1818 struct rq_flags rf; 1819 1820 rcu_read_lock(); 1821 1822 if (!is_idle_task(rcu_dereference(rq->curr))) 1823 goto out; 1824 1825 if (set_nr_if_polling(rq->idle)) { 1826 trace_sched_wake_idle_without_ipi(cpu); 1827 } else { 1828 rq_lock_irqsave(rq, &rf); 1829 if (is_idle_task(rq->curr)) 1830 smp_send_reschedule(cpu); 1831 /* Else CPU is not idle, do nothing here: */ 1832 rq_unlock_irqrestore(rq, &rf); 1833 } 1834 1835 out: 1836 rcu_read_unlock(); 1837 } 1838 1839 bool cpus_share_cache(int this_cpu, int that_cpu) 1840 { 1841 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1842 } 1843 #endif /* CONFIG_SMP */ 1844 1845 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1846 { 1847 struct rq *rq = cpu_rq(cpu); 1848 struct rq_flags rf; 1849 1850 #if defined(CONFIG_SMP) 1851 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1852 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1853 ttwu_queue_remote(p, cpu, wake_flags); 1854 return; 1855 } 1856 #endif 1857 1858 rq_lock(rq, &rf); 1859 update_rq_clock(rq); 1860 ttwu_do_activate(rq, p, wake_flags, &rf); 1861 rq_unlock(rq, &rf); 1862 } 1863 1864 /* 1865 * Notes on Program-Order guarantees on SMP systems. 1866 * 1867 * MIGRATION 1868 * 1869 * The basic program-order guarantee on SMP systems is that when a task [t] 1870 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1871 * execution on its new CPU [c1]. 1872 * 1873 * For migration (of runnable tasks) this is provided by the following means: 1874 * 1875 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1876 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1877 * rq(c1)->lock (if not at the same time, then in that order). 1878 * C) LOCK of the rq(c1)->lock scheduling in task 1879 * 1880 * Transitivity guarantees that B happens after A and C after B. 1881 * Note: we only require RCpc transitivity. 1882 * Note: the CPU doing B need not be c0 or c1 1883 * 1884 * Example: 1885 * 1886 * CPU0 CPU1 CPU2 1887 * 1888 * LOCK rq(0)->lock 1889 * sched-out X 1890 * sched-in Y 1891 * UNLOCK rq(0)->lock 1892 * 1893 * LOCK rq(0)->lock // orders against CPU0 1894 * dequeue X 1895 * UNLOCK rq(0)->lock 1896 * 1897 * LOCK rq(1)->lock 1898 * enqueue X 1899 * UNLOCK rq(1)->lock 1900 * 1901 * LOCK rq(1)->lock // orders against CPU2 1902 * sched-out Z 1903 * sched-in X 1904 * UNLOCK rq(1)->lock 1905 * 1906 * 1907 * BLOCKING -- aka. SLEEP + WAKEUP 1908 * 1909 * For blocking we (obviously) need to provide the same guarantee as for 1910 * migration. However the means are completely different as there is no lock 1911 * chain to provide order. Instead we do: 1912 * 1913 * 1) smp_store_release(X->on_cpu, 0) 1914 * 2) smp_cond_load_acquire(!X->on_cpu) 1915 * 1916 * Example: 1917 * 1918 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1919 * 1920 * LOCK rq(0)->lock LOCK X->pi_lock 1921 * dequeue X 1922 * sched-out X 1923 * smp_store_release(X->on_cpu, 0); 1924 * 1925 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1926 * X->state = WAKING 1927 * set_task_cpu(X,2) 1928 * 1929 * LOCK rq(2)->lock 1930 * enqueue X 1931 * X->state = RUNNING 1932 * UNLOCK rq(2)->lock 1933 * 1934 * LOCK rq(2)->lock // orders against CPU1 1935 * sched-out Z 1936 * sched-in X 1937 * UNLOCK rq(2)->lock 1938 * 1939 * UNLOCK X->pi_lock 1940 * UNLOCK rq(0)->lock 1941 * 1942 * 1943 * However; for wakeups there is a second guarantee we must provide, namely we 1944 * must observe the state that lead to our wakeup. That is, not only must our 1945 * task observe its own prior state, it must also observe the stores prior to 1946 * its wakeup. 1947 * 1948 * This means that any means of doing remote wakeups must order the CPU doing 1949 * the wakeup against the CPU the task is going to end up running on. This, 1950 * however, is already required for the regular Program-Order guarantee above, 1951 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1952 * 1953 */ 1954 1955 /** 1956 * try_to_wake_up - wake up a thread 1957 * @p: the thread to be awakened 1958 * @state: the mask of task states that can be woken 1959 * @wake_flags: wake modifier flags (WF_*) 1960 * 1961 * If (@state & @p->state) @p->state = TASK_RUNNING. 1962 * 1963 * If the task was not queued/runnable, also place it back on a runqueue. 1964 * 1965 * Atomic against schedule() which would dequeue a task, also see 1966 * set_current_state(). 1967 * 1968 * Return: %true if @p->state changes (an actual wakeup was done), 1969 * %false otherwise. 1970 */ 1971 static int 1972 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1973 { 1974 unsigned long flags; 1975 int cpu, success = 0; 1976 1977 /* 1978 * If we are going to wake up a thread waiting for CONDITION we 1979 * need to ensure that CONDITION=1 done by the caller can not be 1980 * reordered with p->state check below. This pairs with mb() in 1981 * set_current_state() the waiting thread does. 1982 */ 1983 raw_spin_lock_irqsave(&p->pi_lock, flags); 1984 smp_mb__after_spinlock(); 1985 if (!(p->state & state)) 1986 goto out; 1987 1988 trace_sched_waking(p); 1989 1990 /* We're going to change ->state: */ 1991 success = 1; 1992 cpu = task_cpu(p); 1993 1994 /* 1995 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1996 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1997 * in smp_cond_load_acquire() below. 1998 * 1999 * sched_ttwu_pending() try_to_wake_up() 2000 * [S] p->on_rq = 1; [L] P->state 2001 * UNLOCK rq->lock -----. 2002 * \ 2003 * +--- RMB 2004 * schedule() / 2005 * LOCK rq->lock -----' 2006 * UNLOCK rq->lock 2007 * 2008 * [task p] 2009 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2010 * 2011 * Pairs with the UNLOCK+LOCK on rq->lock from the 2012 * last wakeup of our task and the schedule that got our task 2013 * current. 2014 */ 2015 smp_rmb(); 2016 if (p->on_rq && ttwu_remote(p, wake_flags)) 2017 goto stat; 2018 2019 #ifdef CONFIG_SMP 2020 /* 2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2022 * possible to, falsely, observe p->on_cpu == 0. 2023 * 2024 * One must be running (->on_cpu == 1) in order to remove oneself 2025 * from the runqueue. 2026 * 2027 * [S] ->on_cpu = 1; [L] ->on_rq 2028 * UNLOCK rq->lock 2029 * RMB 2030 * LOCK rq->lock 2031 * [S] ->on_rq = 0; [L] ->on_cpu 2032 * 2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2034 * from the consecutive calls to schedule(); the first switching to our 2035 * task, the second putting it to sleep. 2036 */ 2037 smp_rmb(); 2038 2039 /* 2040 * If the owning (remote) CPU is still in the middle of schedule() with 2041 * this task as prev, wait until its done referencing the task. 2042 * 2043 * Pairs with the smp_store_release() in finish_task(). 2044 * 2045 * This ensures that tasks getting woken will be fully ordered against 2046 * their previous state and preserve Program Order. 2047 */ 2048 smp_cond_load_acquire(&p->on_cpu, !VAL); 2049 2050 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2051 p->state = TASK_WAKING; 2052 2053 if (p->in_iowait) { 2054 delayacct_blkio_end(p); 2055 atomic_dec(&task_rq(p)->nr_iowait); 2056 } 2057 2058 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2059 if (task_cpu(p) != cpu) { 2060 wake_flags |= WF_MIGRATED; 2061 set_task_cpu(p, cpu); 2062 } 2063 2064 #else /* CONFIG_SMP */ 2065 2066 if (p->in_iowait) { 2067 delayacct_blkio_end(p); 2068 atomic_dec(&task_rq(p)->nr_iowait); 2069 } 2070 2071 #endif /* CONFIG_SMP */ 2072 2073 ttwu_queue(p, cpu, wake_flags); 2074 stat: 2075 ttwu_stat(p, cpu, wake_flags); 2076 out: 2077 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2078 2079 return success; 2080 } 2081 2082 /** 2083 * try_to_wake_up_local - try to wake up a local task with rq lock held 2084 * @p: the thread to be awakened 2085 * @rf: request-queue flags for pinning 2086 * 2087 * Put @p on the run-queue if it's not already there. The caller must 2088 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2089 * the current task. 2090 */ 2091 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2092 { 2093 struct rq *rq = task_rq(p); 2094 2095 if (WARN_ON_ONCE(rq != this_rq()) || 2096 WARN_ON_ONCE(p == current)) 2097 return; 2098 2099 lockdep_assert_held(&rq->lock); 2100 2101 if (!raw_spin_trylock(&p->pi_lock)) { 2102 /* 2103 * This is OK, because current is on_cpu, which avoids it being 2104 * picked for load-balance and preemption/IRQs are still 2105 * disabled avoiding further scheduler activity on it and we've 2106 * not yet picked a replacement task. 2107 */ 2108 rq_unlock(rq, rf); 2109 raw_spin_lock(&p->pi_lock); 2110 rq_relock(rq, rf); 2111 } 2112 2113 if (!(p->state & TASK_NORMAL)) 2114 goto out; 2115 2116 trace_sched_waking(p); 2117 2118 if (!task_on_rq_queued(p)) { 2119 if (p->in_iowait) { 2120 delayacct_blkio_end(p); 2121 atomic_dec(&rq->nr_iowait); 2122 } 2123 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2124 } 2125 2126 ttwu_do_wakeup(rq, p, 0, rf); 2127 ttwu_stat(p, smp_processor_id(), 0); 2128 out: 2129 raw_spin_unlock(&p->pi_lock); 2130 } 2131 2132 /** 2133 * wake_up_process - Wake up a specific process 2134 * @p: The process to be woken up. 2135 * 2136 * Attempt to wake up the nominated process and move it to the set of runnable 2137 * processes. 2138 * 2139 * Return: 1 if the process was woken up, 0 if it was already running. 2140 * 2141 * It may be assumed that this function implies a write memory barrier before 2142 * changing the task state if and only if any tasks are woken up. 2143 */ 2144 int wake_up_process(struct task_struct *p) 2145 { 2146 return try_to_wake_up(p, TASK_NORMAL, 0); 2147 } 2148 EXPORT_SYMBOL(wake_up_process); 2149 2150 int wake_up_state(struct task_struct *p, unsigned int state) 2151 { 2152 return try_to_wake_up(p, state, 0); 2153 } 2154 2155 /* 2156 * Perform scheduler related setup for a newly forked process p. 2157 * p is forked by current. 2158 * 2159 * __sched_fork() is basic setup used by init_idle() too: 2160 */ 2161 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2162 { 2163 p->on_rq = 0; 2164 2165 p->se.on_rq = 0; 2166 p->se.exec_start = 0; 2167 p->se.sum_exec_runtime = 0; 2168 p->se.prev_sum_exec_runtime = 0; 2169 p->se.nr_migrations = 0; 2170 p->se.vruntime = 0; 2171 INIT_LIST_HEAD(&p->se.group_node); 2172 2173 #ifdef CONFIG_FAIR_GROUP_SCHED 2174 p->se.cfs_rq = NULL; 2175 #endif 2176 2177 #ifdef CONFIG_SCHEDSTATS 2178 /* Even if schedstat is disabled, there should not be garbage */ 2179 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2180 #endif 2181 2182 RB_CLEAR_NODE(&p->dl.rb_node); 2183 init_dl_task_timer(&p->dl); 2184 init_dl_inactive_task_timer(&p->dl); 2185 __dl_clear_params(p); 2186 2187 INIT_LIST_HEAD(&p->rt.run_list); 2188 p->rt.timeout = 0; 2189 p->rt.time_slice = sched_rr_timeslice; 2190 p->rt.on_rq = 0; 2191 p->rt.on_list = 0; 2192 2193 #ifdef CONFIG_PREEMPT_NOTIFIERS 2194 INIT_HLIST_HEAD(&p->preempt_notifiers); 2195 #endif 2196 2197 init_numa_balancing(clone_flags, p); 2198 } 2199 2200 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2201 2202 #ifdef CONFIG_NUMA_BALANCING 2203 2204 void set_numabalancing_state(bool enabled) 2205 { 2206 if (enabled) 2207 static_branch_enable(&sched_numa_balancing); 2208 else 2209 static_branch_disable(&sched_numa_balancing); 2210 } 2211 2212 #ifdef CONFIG_PROC_SYSCTL 2213 int sysctl_numa_balancing(struct ctl_table *table, int write, 2214 void __user *buffer, size_t *lenp, loff_t *ppos) 2215 { 2216 struct ctl_table t; 2217 int err; 2218 int state = static_branch_likely(&sched_numa_balancing); 2219 2220 if (write && !capable(CAP_SYS_ADMIN)) 2221 return -EPERM; 2222 2223 t = *table; 2224 t.data = &state; 2225 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2226 if (err < 0) 2227 return err; 2228 if (write) 2229 set_numabalancing_state(state); 2230 return err; 2231 } 2232 #endif 2233 #endif 2234 2235 #ifdef CONFIG_SCHEDSTATS 2236 2237 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2238 static bool __initdata __sched_schedstats = false; 2239 2240 static void set_schedstats(bool enabled) 2241 { 2242 if (enabled) 2243 static_branch_enable(&sched_schedstats); 2244 else 2245 static_branch_disable(&sched_schedstats); 2246 } 2247 2248 void force_schedstat_enabled(void) 2249 { 2250 if (!schedstat_enabled()) { 2251 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2252 static_branch_enable(&sched_schedstats); 2253 } 2254 } 2255 2256 static int __init setup_schedstats(char *str) 2257 { 2258 int ret = 0; 2259 if (!str) 2260 goto out; 2261 2262 /* 2263 * This code is called before jump labels have been set up, so we can't 2264 * change the static branch directly just yet. Instead set a temporary 2265 * variable so init_schedstats() can do it later. 2266 */ 2267 if (!strcmp(str, "enable")) { 2268 __sched_schedstats = true; 2269 ret = 1; 2270 } else if (!strcmp(str, "disable")) { 2271 __sched_schedstats = false; 2272 ret = 1; 2273 } 2274 out: 2275 if (!ret) 2276 pr_warn("Unable to parse schedstats=\n"); 2277 2278 return ret; 2279 } 2280 __setup("schedstats=", setup_schedstats); 2281 2282 static void __init init_schedstats(void) 2283 { 2284 set_schedstats(__sched_schedstats); 2285 } 2286 2287 #ifdef CONFIG_PROC_SYSCTL 2288 int sysctl_schedstats(struct ctl_table *table, int write, 2289 void __user *buffer, size_t *lenp, loff_t *ppos) 2290 { 2291 struct ctl_table t; 2292 int err; 2293 int state = static_branch_likely(&sched_schedstats); 2294 2295 if (write && !capable(CAP_SYS_ADMIN)) 2296 return -EPERM; 2297 2298 t = *table; 2299 t.data = &state; 2300 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2301 if (err < 0) 2302 return err; 2303 if (write) 2304 set_schedstats(state); 2305 return err; 2306 } 2307 #endif /* CONFIG_PROC_SYSCTL */ 2308 #else /* !CONFIG_SCHEDSTATS */ 2309 static inline void init_schedstats(void) {} 2310 #endif /* CONFIG_SCHEDSTATS */ 2311 2312 /* 2313 * fork()/clone()-time setup: 2314 */ 2315 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2316 { 2317 unsigned long flags; 2318 int cpu = get_cpu(); 2319 2320 __sched_fork(clone_flags, p); 2321 /* 2322 * We mark the process as NEW here. This guarantees that 2323 * nobody will actually run it, and a signal or other external 2324 * event cannot wake it up and insert it on the runqueue either. 2325 */ 2326 p->state = TASK_NEW; 2327 2328 /* 2329 * Make sure we do not leak PI boosting priority to the child. 2330 */ 2331 p->prio = current->normal_prio; 2332 2333 /* 2334 * Revert to default priority/policy on fork if requested. 2335 */ 2336 if (unlikely(p->sched_reset_on_fork)) { 2337 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2338 p->policy = SCHED_NORMAL; 2339 p->static_prio = NICE_TO_PRIO(0); 2340 p->rt_priority = 0; 2341 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2342 p->static_prio = NICE_TO_PRIO(0); 2343 2344 p->prio = p->normal_prio = __normal_prio(p); 2345 set_load_weight(p, false); 2346 2347 /* 2348 * We don't need the reset flag anymore after the fork. It has 2349 * fulfilled its duty: 2350 */ 2351 p->sched_reset_on_fork = 0; 2352 } 2353 2354 if (dl_prio(p->prio)) { 2355 put_cpu(); 2356 return -EAGAIN; 2357 } else if (rt_prio(p->prio)) { 2358 p->sched_class = &rt_sched_class; 2359 } else { 2360 p->sched_class = &fair_sched_class; 2361 } 2362 2363 init_entity_runnable_average(&p->se); 2364 2365 /* 2366 * The child is not yet in the pid-hash so no cgroup attach races, 2367 * and the cgroup is pinned to this child due to cgroup_fork() 2368 * is ran before sched_fork(). 2369 * 2370 * Silence PROVE_RCU. 2371 */ 2372 raw_spin_lock_irqsave(&p->pi_lock, flags); 2373 /* 2374 * We're setting the CPU for the first time, we don't migrate, 2375 * so use __set_task_cpu(). 2376 */ 2377 __set_task_cpu(p, cpu); 2378 if (p->sched_class->task_fork) 2379 p->sched_class->task_fork(p); 2380 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2381 2382 #ifdef CONFIG_SCHED_INFO 2383 if (likely(sched_info_on())) 2384 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2385 #endif 2386 #if defined(CONFIG_SMP) 2387 p->on_cpu = 0; 2388 #endif 2389 init_task_preempt_count(p); 2390 #ifdef CONFIG_SMP 2391 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2392 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2393 #endif 2394 2395 put_cpu(); 2396 return 0; 2397 } 2398 2399 unsigned long to_ratio(u64 period, u64 runtime) 2400 { 2401 if (runtime == RUNTIME_INF) 2402 return BW_UNIT; 2403 2404 /* 2405 * Doing this here saves a lot of checks in all 2406 * the calling paths, and returning zero seems 2407 * safe for them anyway. 2408 */ 2409 if (period == 0) 2410 return 0; 2411 2412 return div64_u64(runtime << BW_SHIFT, period); 2413 } 2414 2415 /* 2416 * wake_up_new_task - wake up a newly created task for the first time. 2417 * 2418 * This function will do some initial scheduler statistics housekeeping 2419 * that must be done for every newly created context, then puts the task 2420 * on the runqueue and wakes it. 2421 */ 2422 void wake_up_new_task(struct task_struct *p) 2423 { 2424 struct rq_flags rf; 2425 struct rq *rq; 2426 2427 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2428 p->state = TASK_RUNNING; 2429 #ifdef CONFIG_SMP 2430 /* 2431 * Fork balancing, do it here and not earlier because: 2432 * - cpus_allowed can change in the fork path 2433 * - any previously selected CPU might disappear through hotplug 2434 * 2435 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2436 * as we're not fully set-up yet. 2437 */ 2438 p->recent_used_cpu = task_cpu(p); 2439 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2440 #endif 2441 rq = __task_rq_lock(p, &rf); 2442 update_rq_clock(rq); 2443 post_init_entity_util_avg(&p->se); 2444 2445 activate_task(rq, p, ENQUEUE_NOCLOCK); 2446 p->on_rq = TASK_ON_RQ_QUEUED; 2447 trace_sched_wakeup_new(p); 2448 check_preempt_curr(rq, p, WF_FORK); 2449 #ifdef CONFIG_SMP 2450 if (p->sched_class->task_woken) { 2451 /* 2452 * Nothing relies on rq->lock after this, so its fine to 2453 * drop it. 2454 */ 2455 rq_unpin_lock(rq, &rf); 2456 p->sched_class->task_woken(rq, p); 2457 rq_repin_lock(rq, &rf); 2458 } 2459 #endif 2460 task_rq_unlock(rq, p, &rf); 2461 } 2462 2463 #ifdef CONFIG_PREEMPT_NOTIFIERS 2464 2465 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2466 2467 void preempt_notifier_inc(void) 2468 { 2469 static_branch_inc(&preempt_notifier_key); 2470 } 2471 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2472 2473 void preempt_notifier_dec(void) 2474 { 2475 static_branch_dec(&preempt_notifier_key); 2476 } 2477 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2478 2479 /** 2480 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2481 * @notifier: notifier struct to register 2482 */ 2483 void preempt_notifier_register(struct preempt_notifier *notifier) 2484 { 2485 if (!static_branch_unlikely(&preempt_notifier_key)) 2486 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2487 2488 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2489 } 2490 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2491 2492 /** 2493 * preempt_notifier_unregister - no longer interested in preemption notifications 2494 * @notifier: notifier struct to unregister 2495 * 2496 * This is *not* safe to call from within a preemption notifier. 2497 */ 2498 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2499 { 2500 hlist_del(¬ifier->link); 2501 } 2502 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2503 2504 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2505 { 2506 struct preempt_notifier *notifier; 2507 2508 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2509 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2510 } 2511 2512 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2513 { 2514 if (static_branch_unlikely(&preempt_notifier_key)) 2515 __fire_sched_in_preempt_notifiers(curr); 2516 } 2517 2518 static void 2519 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2520 struct task_struct *next) 2521 { 2522 struct preempt_notifier *notifier; 2523 2524 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2525 notifier->ops->sched_out(notifier, next); 2526 } 2527 2528 static __always_inline void 2529 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2530 struct task_struct *next) 2531 { 2532 if (static_branch_unlikely(&preempt_notifier_key)) 2533 __fire_sched_out_preempt_notifiers(curr, next); 2534 } 2535 2536 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2537 2538 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2539 { 2540 } 2541 2542 static inline void 2543 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2544 struct task_struct *next) 2545 { 2546 } 2547 2548 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2549 2550 static inline void prepare_task(struct task_struct *next) 2551 { 2552 #ifdef CONFIG_SMP 2553 /* 2554 * Claim the task as running, we do this before switching to it 2555 * such that any running task will have this set. 2556 */ 2557 next->on_cpu = 1; 2558 #endif 2559 } 2560 2561 static inline void finish_task(struct task_struct *prev) 2562 { 2563 #ifdef CONFIG_SMP 2564 /* 2565 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2566 * We must ensure this doesn't happen until the switch is completely 2567 * finished. 2568 * 2569 * In particular, the load of prev->state in finish_task_switch() must 2570 * happen before this. 2571 * 2572 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2573 */ 2574 smp_store_release(&prev->on_cpu, 0); 2575 #endif 2576 } 2577 2578 static inline void 2579 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2580 { 2581 /* 2582 * Since the runqueue lock will be released by the next 2583 * task (which is an invalid locking op but in the case 2584 * of the scheduler it's an obvious special-case), so we 2585 * do an early lockdep release here: 2586 */ 2587 rq_unpin_lock(rq, rf); 2588 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2589 #ifdef CONFIG_DEBUG_SPINLOCK 2590 /* this is a valid case when another task releases the spinlock */ 2591 rq->lock.owner = next; 2592 #endif 2593 } 2594 2595 static inline void finish_lock_switch(struct rq *rq) 2596 { 2597 /* 2598 * If we are tracking spinlock dependencies then we have to 2599 * fix up the runqueue lock - which gets 'carried over' from 2600 * prev into current: 2601 */ 2602 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2603 raw_spin_unlock_irq(&rq->lock); 2604 } 2605 2606 /* 2607 * NOP if the arch has not defined these: 2608 */ 2609 2610 #ifndef prepare_arch_switch 2611 # define prepare_arch_switch(next) do { } while (0) 2612 #endif 2613 2614 #ifndef finish_arch_post_lock_switch 2615 # define finish_arch_post_lock_switch() do { } while (0) 2616 #endif 2617 2618 /** 2619 * prepare_task_switch - prepare to switch tasks 2620 * @rq: the runqueue preparing to switch 2621 * @prev: the current task that is being switched out 2622 * @next: the task we are going to switch to. 2623 * 2624 * This is called with the rq lock held and interrupts off. It must 2625 * be paired with a subsequent finish_task_switch after the context 2626 * switch. 2627 * 2628 * prepare_task_switch sets up locking and calls architecture specific 2629 * hooks. 2630 */ 2631 static inline void 2632 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2633 struct task_struct *next) 2634 { 2635 sched_info_switch(rq, prev, next); 2636 perf_event_task_sched_out(prev, next); 2637 fire_sched_out_preempt_notifiers(prev, next); 2638 prepare_task(next); 2639 prepare_arch_switch(next); 2640 } 2641 2642 /** 2643 * finish_task_switch - clean up after a task-switch 2644 * @prev: the thread we just switched away from. 2645 * 2646 * finish_task_switch must be called after the context switch, paired 2647 * with a prepare_task_switch call before the context switch. 2648 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2649 * and do any other architecture-specific cleanup actions. 2650 * 2651 * Note that we may have delayed dropping an mm in context_switch(). If 2652 * so, we finish that here outside of the runqueue lock. (Doing it 2653 * with the lock held can cause deadlocks; see schedule() for 2654 * details.) 2655 * 2656 * The context switch have flipped the stack from under us and restored the 2657 * local variables which were saved when this task called schedule() in the 2658 * past. prev == current is still correct but we need to recalculate this_rq 2659 * because prev may have moved to another CPU. 2660 */ 2661 static struct rq *finish_task_switch(struct task_struct *prev) 2662 __releases(rq->lock) 2663 { 2664 struct rq *rq = this_rq(); 2665 struct mm_struct *mm = rq->prev_mm; 2666 long prev_state; 2667 2668 /* 2669 * The previous task will have left us with a preempt_count of 2 2670 * because it left us after: 2671 * 2672 * schedule() 2673 * preempt_disable(); // 1 2674 * __schedule() 2675 * raw_spin_lock_irq(&rq->lock) // 2 2676 * 2677 * Also, see FORK_PREEMPT_COUNT. 2678 */ 2679 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2680 "corrupted preempt_count: %s/%d/0x%x\n", 2681 current->comm, current->pid, preempt_count())) 2682 preempt_count_set(FORK_PREEMPT_COUNT); 2683 2684 rq->prev_mm = NULL; 2685 2686 /* 2687 * A task struct has one reference for the use as "current". 2688 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2689 * schedule one last time. The schedule call will never return, and 2690 * the scheduled task must drop that reference. 2691 * 2692 * We must observe prev->state before clearing prev->on_cpu (in 2693 * finish_task), otherwise a concurrent wakeup can get prev 2694 * running on another CPU and we could rave with its RUNNING -> DEAD 2695 * transition, resulting in a double drop. 2696 */ 2697 prev_state = prev->state; 2698 vtime_task_switch(prev); 2699 perf_event_task_sched_in(prev, current); 2700 finish_task(prev); 2701 finish_lock_switch(rq); 2702 finish_arch_post_lock_switch(); 2703 2704 fire_sched_in_preempt_notifiers(current); 2705 /* 2706 * When switching through a kernel thread, the loop in 2707 * membarrier_{private,global}_expedited() may have observed that 2708 * kernel thread and not issued an IPI. It is therefore possible to 2709 * schedule between user->kernel->user threads without passing though 2710 * switch_mm(). Membarrier requires a barrier after storing to 2711 * rq->curr, before returning to userspace, so provide them here: 2712 * 2713 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2714 * provided by mmdrop(), 2715 * - a sync_core for SYNC_CORE. 2716 */ 2717 if (mm) { 2718 membarrier_mm_sync_core_before_usermode(mm); 2719 mmdrop(mm); 2720 } 2721 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) { 2722 switch (prev_state) { 2723 case TASK_DEAD: 2724 if (prev->sched_class->task_dead) 2725 prev->sched_class->task_dead(prev); 2726 2727 /* 2728 * Remove function-return probe instances associated with this 2729 * task and put them back on the free list. 2730 */ 2731 kprobe_flush_task(prev); 2732 2733 /* Task is done with its stack. */ 2734 put_task_stack(prev); 2735 2736 put_task_struct(prev); 2737 break; 2738 2739 case TASK_PARKED: 2740 kthread_park_complete(prev); 2741 break; 2742 } 2743 } 2744 2745 tick_nohz_task_switch(); 2746 return rq; 2747 } 2748 2749 #ifdef CONFIG_SMP 2750 2751 /* rq->lock is NOT held, but preemption is disabled */ 2752 static void __balance_callback(struct rq *rq) 2753 { 2754 struct callback_head *head, *next; 2755 void (*func)(struct rq *rq); 2756 unsigned long flags; 2757 2758 raw_spin_lock_irqsave(&rq->lock, flags); 2759 head = rq->balance_callback; 2760 rq->balance_callback = NULL; 2761 while (head) { 2762 func = (void (*)(struct rq *))head->func; 2763 next = head->next; 2764 head->next = NULL; 2765 head = next; 2766 2767 func(rq); 2768 } 2769 raw_spin_unlock_irqrestore(&rq->lock, flags); 2770 } 2771 2772 static inline void balance_callback(struct rq *rq) 2773 { 2774 if (unlikely(rq->balance_callback)) 2775 __balance_callback(rq); 2776 } 2777 2778 #else 2779 2780 static inline void balance_callback(struct rq *rq) 2781 { 2782 } 2783 2784 #endif 2785 2786 /** 2787 * schedule_tail - first thing a freshly forked thread must call. 2788 * @prev: the thread we just switched away from. 2789 */ 2790 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2791 __releases(rq->lock) 2792 { 2793 struct rq *rq; 2794 2795 /* 2796 * New tasks start with FORK_PREEMPT_COUNT, see there and 2797 * finish_task_switch() for details. 2798 * 2799 * finish_task_switch() will drop rq->lock() and lower preempt_count 2800 * and the preempt_enable() will end up enabling preemption (on 2801 * PREEMPT_COUNT kernels). 2802 */ 2803 2804 rq = finish_task_switch(prev); 2805 balance_callback(rq); 2806 preempt_enable(); 2807 2808 if (current->set_child_tid) 2809 put_user(task_pid_vnr(current), current->set_child_tid); 2810 } 2811 2812 /* 2813 * context_switch - switch to the new MM and the new thread's register state. 2814 */ 2815 static __always_inline struct rq * 2816 context_switch(struct rq *rq, struct task_struct *prev, 2817 struct task_struct *next, struct rq_flags *rf) 2818 { 2819 struct mm_struct *mm, *oldmm; 2820 2821 prepare_task_switch(rq, prev, next); 2822 2823 mm = next->mm; 2824 oldmm = prev->active_mm; 2825 /* 2826 * For paravirt, this is coupled with an exit in switch_to to 2827 * combine the page table reload and the switch backend into 2828 * one hypercall. 2829 */ 2830 arch_start_context_switch(prev); 2831 2832 /* 2833 * If mm is non-NULL, we pass through switch_mm(). If mm is 2834 * NULL, we will pass through mmdrop() in finish_task_switch(). 2835 * Both of these contain the full memory barrier required by 2836 * membarrier after storing to rq->curr, before returning to 2837 * user-space. 2838 */ 2839 if (!mm) { 2840 next->active_mm = oldmm; 2841 mmgrab(oldmm); 2842 enter_lazy_tlb(oldmm, next); 2843 } else 2844 switch_mm_irqs_off(oldmm, mm, next); 2845 2846 if (!prev->mm) { 2847 prev->active_mm = NULL; 2848 rq->prev_mm = oldmm; 2849 } 2850 2851 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2852 2853 prepare_lock_switch(rq, next, rf); 2854 2855 /* Here we just switch the register state and the stack. */ 2856 switch_to(prev, next, prev); 2857 barrier(); 2858 2859 return finish_task_switch(prev); 2860 } 2861 2862 /* 2863 * nr_running and nr_context_switches: 2864 * 2865 * externally visible scheduler statistics: current number of runnable 2866 * threads, total number of context switches performed since bootup. 2867 */ 2868 unsigned long nr_running(void) 2869 { 2870 unsigned long i, sum = 0; 2871 2872 for_each_online_cpu(i) 2873 sum += cpu_rq(i)->nr_running; 2874 2875 return sum; 2876 } 2877 2878 /* 2879 * Check if only the current task is running on the CPU. 2880 * 2881 * Caution: this function does not check that the caller has disabled 2882 * preemption, thus the result might have a time-of-check-to-time-of-use 2883 * race. The caller is responsible to use it correctly, for example: 2884 * 2885 * - from a non-preemptable section (of course) 2886 * 2887 * - from a thread that is bound to a single CPU 2888 * 2889 * - in a loop with very short iterations (e.g. a polling loop) 2890 */ 2891 bool single_task_running(void) 2892 { 2893 return raw_rq()->nr_running == 1; 2894 } 2895 EXPORT_SYMBOL(single_task_running); 2896 2897 unsigned long long nr_context_switches(void) 2898 { 2899 int i; 2900 unsigned long long sum = 0; 2901 2902 for_each_possible_cpu(i) 2903 sum += cpu_rq(i)->nr_switches; 2904 2905 return sum; 2906 } 2907 2908 /* 2909 * IO-wait accounting, and how its mostly bollocks (on SMP). 2910 * 2911 * The idea behind IO-wait account is to account the idle time that we could 2912 * have spend running if it were not for IO. That is, if we were to improve the 2913 * storage performance, we'd have a proportional reduction in IO-wait time. 2914 * 2915 * This all works nicely on UP, where, when a task blocks on IO, we account 2916 * idle time as IO-wait, because if the storage were faster, it could've been 2917 * running and we'd not be idle. 2918 * 2919 * This has been extended to SMP, by doing the same for each CPU. This however 2920 * is broken. 2921 * 2922 * Imagine for instance the case where two tasks block on one CPU, only the one 2923 * CPU will have IO-wait accounted, while the other has regular idle. Even 2924 * though, if the storage were faster, both could've ran at the same time, 2925 * utilising both CPUs. 2926 * 2927 * This means, that when looking globally, the current IO-wait accounting on 2928 * SMP is a lower bound, by reason of under accounting. 2929 * 2930 * Worse, since the numbers are provided per CPU, they are sometimes 2931 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2932 * associated with any one particular CPU, it can wake to another CPU than it 2933 * blocked on. This means the per CPU IO-wait number is meaningless. 2934 * 2935 * Task CPU affinities can make all that even more 'interesting'. 2936 */ 2937 2938 unsigned long nr_iowait(void) 2939 { 2940 unsigned long i, sum = 0; 2941 2942 for_each_possible_cpu(i) 2943 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2944 2945 return sum; 2946 } 2947 2948 /* 2949 * Consumers of these two interfaces, like for example the cpufreq menu 2950 * governor are using nonsensical data. Boosting frequency for a CPU that has 2951 * IO-wait which might not even end up running the task when it does become 2952 * runnable. 2953 */ 2954 2955 unsigned long nr_iowait_cpu(int cpu) 2956 { 2957 struct rq *this = cpu_rq(cpu); 2958 return atomic_read(&this->nr_iowait); 2959 } 2960 2961 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2962 { 2963 struct rq *rq = this_rq(); 2964 *nr_waiters = atomic_read(&rq->nr_iowait); 2965 *load = rq->load.weight; 2966 } 2967 2968 #ifdef CONFIG_SMP 2969 2970 /* 2971 * sched_exec - execve() is a valuable balancing opportunity, because at 2972 * this point the task has the smallest effective memory and cache footprint. 2973 */ 2974 void sched_exec(void) 2975 { 2976 struct task_struct *p = current; 2977 unsigned long flags; 2978 int dest_cpu; 2979 2980 raw_spin_lock_irqsave(&p->pi_lock, flags); 2981 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2982 if (dest_cpu == smp_processor_id()) 2983 goto unlock; 2984 2985 if (likely(cpu_active(dest_cpu))) { 2986 struct migration_arg arg = { p, dest_cpu }; 2987 2988 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2989 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2990 return; 2991 } 2992 unlock: 2993 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2994 } 2995 2996 #endif 2997 2998 DEFINE_PER_CPU(struct kernel_stat, kstat); 2999 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3000 3001 EXPORT_PER_CPU_SYMBOL(kstat); 3002 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3003 3004 /* 3005 * The function fair_sched_class.update_curr accesses the struct curr 3006 * and its field curr->exec_start; when called from task_sched_runtime(), 3007 * we observe a high rate of cache misses in practice. 3008 * Prefetching this data results in improved performance. 3009 */ 3010 static inline void prefetch_curr_exec_start(struct task_struct *p) 3011 { 3012 #ifdef CONFIG_FAIR_GROUP_SCHED 3013 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3014 #else 3015 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3016 #endif 3017 prefetch(curr); 3018 prefetch(&curr->exec_start); 3019 } 3020 3021 /* 3022 * Return accounted runtime for the task. 3023 * In case the task is currently running, return the runtime plus current's 3024 * pending runtime that have not been accounted yet. 3025 */ 3026 unsigned long long task_sched_runtime(struct task_struct *p) 3027 { 3028 struct rq_flags rf; 3029 struct rq *rq; 3030 u64 ns; 3031 3032 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3033 /* 3034 * 64-bit doesn't need locks to atomically read a 64-bit value. 3035 * So we have a optimization chance when the task's delta_exec is 0. 3036 * Reading ->on_cpu is racy, but this is ok. 3037 * 3038 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3039 * If we race with it entering CPU, unaccounted time is 0. This is 3040 * indistinguishable from the read occurring a few cycles earlier. 3041 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3042 * been accounted, so we're correct here as well. 3043 */ 3044 if (!p->on_cpu || !task_on_rq_queued(p)) 3045 return p->se.sum_exec_runtime; 3046 #endif 3047 3048 rq = task_rq_lock(p, &rf); 3049 /* 3050 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3051 * project cycles that may never be accounted to this 3052 * thread, breaking clock_gettime(). 3053 */ 3054 if (task_current(rq, p) && task_on_rq_queued(p)) { 3055 prefetch_curr_exec_start(p); 3056 update_rq_clock(rq); 3057 p->sched_class->update_curr(rq); 3058 } 3059 ns = p->se.sum_exec_runtime; 3060 task_rq_unlock(rq, p, &rf); 3061 3062 return ns; 3063 } 3064 3065 /* 3066 * This function gets called by the timer code, with HZ frequency. 3067 * We call it with interrupts disabled. 3068 */ 3069 void scheduler_tick(void) 3070 { 3071 int cpu = smp_processor_id(); 3072 struct rq *rq = cpu_rq(cpu); 3073 struct task_struct *curr = rq->curr; 3074 struct rq_flags rf; 3075 3076 sched_clock_tick(); 3077 3078 rq_lock(rq, &rf); 3079 3080 update_rq_clock(rq); 3081 curr->sched_class->task_tick(rq, curr, 0); 3082 cpu_load_update_active(rq); 3083 calc_global_load_tick(rq); 3084 3085 rq_unlock(rq, &rf); 3086 3087 perf_event_task_tick(); 3088 3089 #ifdef CONFIG_SMP 3090 rq->idle_balance = idle_cpu(cpu); 3091 trigger_load_balance(rq); 3092 #endif 3093 } 3094 3095 #ifdef CONFIG_NO_HZ_FULL 3096 3097 struct tick_work { 3098 int cpu; 3099 struct delayed_work work; 3100 }; 3101 3102 static struct tick_work __percpu *tick_work_cpu; 3103 3104 static void sched_tick_remote(struct work_struct *work) 3105 { 3106 struct delayed_work *dwork = to_delayed_work(work); 3107 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3108 int cpu = twork->cpu; 3109 struct rq *rq = cpu_rq(cpu); 3110 struct rq_flags rf; 3111 3112 /* 3113 * Handle the tick only if it appears the remote CPU is running in full 3114 * dynticks mode. The check is racy by nature, but missing a tick or 3115 * having one too much is no big deal because the scheduler tick updates 3116 * statistics and checks timeslices in a time-independent way, regardless 3117 * of when exactly it is running. 3118 */ 3119 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) { 3120 struct task_struct *curr; 3121 u64 delta; 3122 3123 rq_lock_irq(rq, &rf); 3124 update_rq_clock(rq); 3125 curr = rq->curr; 3126 delta = rq_clock_task(rq) - curr->se.exec_start; 3127 3128 /* 3129 * Make sure the next tick runs within a reasonable 3130 * amount of time. 3131 */ 3132 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3133 curr->sched_class->task_tick(rq, curr, 0); 3134 rq_unlock_irq(rq, &rf); 3135 } 3136 3137 /* 3138 * Run the remote tick once per second (1Hz). This arbitrary 3139 * frequency is large enough to avoid overload but short enough 3140 * to keep scheduler internal stats reasonably up to date. 3141 */ 3142 queue_delayed_work(system_unbound_wq, dwork, HZ); 3143 } 3144 3145 static void sched_tick_start(int cpu) 3146 { 3147 struct tick_work *twork; 3148 3149 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3150 return; 3151 3152 WARN_ON_ONCE(!tick_work_cpu); 3153 3154 twork = per_cpu_ptr(tick_work_cpu, cpu); 3155 twork->cpu = cpu; 3156 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3157 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3158 } 3159 3160 #ifdef CONFIG_HOTPLUG_CPU 3161 static void sched_tick_stop(int cpu) 3162 { 3163 struct tick_work *twork; 3164 3165 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3166 return; 3167 3168 WARN_ON_ONCE(!tick_work_cpu); 3169 3170 twork = per_cpu_ptr(tick_work_cpu, cpu); 3171 cancel_delayed_work_sync(&twork->work); 3172 } 3173 #endif /* CONFIG_HOTPLUG_CPU */ 3174 3175 int __init sched_tick_offload_init(void) 3176 { 3177 tick_work_cpu = alloc_percpu(struct tick_work); 3178 BUG_ON(!tick_work_cpu); 3179 3180 return 0; 3181 } 3182 3183 #else /* !CONFIG_NO_HZ_FULL */ 3184 static inline void sched_tick_start(int cpu) { } 3185 static inline void sched_tick_stop(int cpu) { } 3186 #endif 3187 3188 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3189 defined(CONFIG_PREEMPT_TRACER)) 3190 /* 3191 * If the value passed in is equal to the current preempt count 3192 * then we just disabled preemption. Start timing the latency. 3193 */ 3194 static inline void preempt_latency_start(int val) 3195 { 3196 if (preempt_count() == val) { 3197 unsigned long ip = get_lock_parent_ip(); 3198 #ifdef CONFIG_DEBUG_PREEMPT 3199 current->preempt_disable_ip = ip; 3200 #endif 3201 trace_preempt_off(CALLER_ADDR0, ip); 3202 } 3203 } 3204 3205 void preempt_count_add(int val) 3206 { 3207 #ifdef CONFIG_DEBUG_PREEMPT 3208 /* 3209 * Underflow? 3210 */ 3211 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3212 return; 3213 #endif 3214 __preempt_count_add(val); 3215 #ifdef CONFIG_DEBUG_PREEMPT 3216 /* 3217 * Spinlock count overflowing soon? 3218 */ 3219 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3220 PREEMPT_MASK - 10); 3221 #endif 3222 preempt_latency_start(val); 3223 } 3224 EXPORT_SYMBOL(preempt_count_add); 3225 NOKPROBE_SYMBOL(preempt_count_add); 3226 3227 /* 3228 * If the value passed in equals to the current preempt count 3229 * then we just enabled preemption. Stop timing the latency. 3230 */ 3231 static inline void preempt_latency_stop(int val) 3232 { 3233 if (preempt_count() == val) 3234 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3235 } 3236 3237 void preempt_count_sub(int val) 3238 { 3239 #ifdef CONFIG_DEBUG_PREEMPT 3240 /* 3241 * Underflow? 3242 */ 3243 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3244 return; 3245 /* 3246 * Is the spinlock portion underflowing? 3247 */ 3248 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3249 !(preempt_count() & PREEMPT_MASK))) 3250 return; 3251 #endif 3252 3253 preempt_latency_stop(val); 3254 __preempt_count_sub(val); 3255 } 3256 EXPORT_SYMBOL(preempt_count_sub); 3257 NOKPROBE_SYMBOL(preempt_count_sub); 3258 3259 #else 3260 static inline void preempt_latency_start(int val) { } 3261 static inline void preempt_latency_stop(int val) { } 3262 #endif 3263 3264 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3265 { 3266 #ifdef CONFIG_DEBUG_PREEMPT 3267 return p->preempt_disable_ip; 3268 #else 3269 return 0; 3270 #endif 3271 } 3272 3273 /* 3274 * Print scheduling while atomic bug: 3275 */ 3276 static noinline void __schedule_bug(struct task_struct *prev) 3277 { 3278 /* Save this before calling printk(), since that will clobber it */ 3279 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3280 3281 if (oops_in_progress) 3282 return; 3283 3284 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3285 prev->comm, prev->pid, preempt_count()); 3286 3287 debug_show_held_locks(prev); 3288 print_modules(); 3289 if (irqs_disabled()) 3290 print_irqtrace_events(prev); 3291 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3292 && in_atomic_preempt_off()) { 3293 pr_err("Preemption disabled at:"); 3294 print_ip_sym(preempt_disable_ip); 3295 pr_cont("\n"); 3296 } 3297 if (panic_on_warn) 3298 panic("scheduling while atomic\n"); 3299 3300 dump_stack(); 3301 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3302 } 3303 3304 /* 3305 * Various schedule()-time debugging checks and statistics: 3306 */ 3307 static inline void schedule_debug(struct task_struct *prev) 3308 { 3309 #ifdef CONFIG_SCHED_STACK_END_CHECK 3310 if (task_stack_end_corrupted(prev)) 3311 panic("corrupted stack end detected inside scheduler\n"); 3312 #endif 3313 3314 if (unlikely(in_atomic_preempt_off())) { 3315 __schedule_bug(prev); 3316 preempt_count_set(PREEMPT_DISABLED); 3317 } 3318 rcu_sleep_check(); 3319 3320 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3321 3322 schedstat_inc(this_rq()->sched_count); 3323 } 3324 3325 /* 3326 * Pick up the highest-prio task: 3327 */ 3328 static inline struct task_struct * 3329 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3330 { 3331 const struct sched_class *class; 3332 struct task_struct *p; 3333 3334 /* 3335 * Optimization: we know that if all tasks are in the fair class we can 3336 * call that function directly, but only if the @prev task wasn't of a 3337 * higher scheduling class, because otherwise those loose the 3338 * opportunity to pull in more work from other CPUs. 3339 */ 3340 if (likely((prev->sched_class == &idle_sched_class || 3341 prev->sched_class == &fair_sched_class) && 3342 rq->nr_running == rq->cfs.h_nr_running)) { 3343 3344 p = fair_sched_class.pick_next_task(rq, prev, rf); 3345 if (unlikely(p == RETRY_TASK)) 3346 goto again; 3347 3348 /* Assumes fair_sched_class->next == idle_sched_class */ 3349 if (unlikely(!p)) 3350 p = idle_sched_class.pick_next_task(rq, prev, rf); 3351 3352 return p; 3353 } 3354 3355 again: 3356 for_each_class(class) { 3357 p = class->pick_next_task(rq, prev, rf); 3358 if (p) { 3359 if (unlikely(p == RETRY_TASK)) 3360 goto again; 3361 return p; 3362 } 3363 } 3364 3365 /* The idle class should always have a runnable task: */ 3366 BUG(); 3367 } 3368 3369 /* 3370 * __schedule() is the main scheduler function. 3371 * 3372 * The main means of driving the scheduler and thus entering this function are: 3373 * 3374 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3375 * 3376 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3377 * paths. For example, see arch/x86/entry_64.S. 3378 * 3379 * To drive preemption between tasks, the scheduler sets the flag in timer 3380 * interrupt handler scheduler_tick(). 3381 * 3382 * 3. Wakeups don't really cause entry into schedule(). They add a 3383 * task to the run-queue and that's it. 3384 * 3385 * Now, if the new task added to the run-queue preempts the current 3386 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3387 * called on the nearest possible occasion: 3388 * 3389 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3390 * 3391 * - in syscall or exception context, at the next outmost 3392 * preempt_enable(). (this might be as soon as the wake_up()'s 3393 * spin_unlock()!) 3394 * 3395 * - in IRQ context, return from interrupt-handler to 3396 * preemptible context 3397 * 3398 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3399 * then at the next: 3400 * 3401 * - cond_resched() call 3402 * - explicit schedule() call 3403 * - return from syscall or exception to user-space 3404 * - return from interrupt-handler to user-space 3405 * 3406 * WARNING: must be called with preemption disabled! 3407 */ 3408 static void __sched notrace __schedule(bool preempt) 3409 { 3410 struct task_struct *prev, *next; 3411 unsigned long *switch_count; 3412 struct rq_flags rf; 3413 struct rq *rq; 3414 int cpu; 3415 3416 cpu = smp_processor_id(); 3417 rq = cpu_rq(cpu); 3418 prev = rq->curr; 3419 3420 schedule_debug(prev); 3421 3422 if (sched_feat(HRTICK)) 3423 hrtick_clear(rq); 3424 3425 local_irq_disable(); 3426 rcu_note_context_switch(preempt); 3427 3428 /* 3429 * Make sure that signal_pending_state()->signal_pending() below 3430 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3431 * done by the caller to avoid the race with signal_wake_up(). 3432 * 3433 * The membarrier system call requires a full memory barrier 3434 * after coming from user-space, before storing to rq->curr. 3435 */ 3436 rq_lock(rq, &rf); 3437 smp_mb__after_spinlock(); 3438 3439 /* Promote REQ to ACT */ 3440 rq->clock_update_flags <<= 1; 3441 update_rq_clock(rq); 3442 3443 switch_count = &prev->nivcsw; 3444 if (!preempt && prev->state) { 3445 if (unlikely(signal_pending_state(prev->state, prev))) { 3446 prev->state = TASK_RUNNING; 3447 } else { 3448 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3449 prev->on_rq = 0; 3450 3451 if (prev->in_iowait) { 3452 atomic_inc(&rq->nr_iowait); 3453 delayacct_blkio_start(); 3454 } 3455 3456 /* 3457 * If a worker went to sleep, notify and ask workqueue 3458 * whether it wants to wake up a task to maintain 3459 * concurrency. 3460 */ 3461 if (prev->flags & PF_WQ_WORKER) { 3462 struct task_struct *to_wakeup; 3463 3464 to_wakeup = wq_worker_sleeping(prev); 3465 if (to_wakeup) 3466 try_to_wake_up_local(to_wakeup, &rf); 3467 } 3468 } 3469 switch_count = &prev->nvcsw; 3470 } 3471 3472 next = pick_next_task(rq, prev, &rf); 3473 clear_tsk_need_resched(prev); 3474 clear_preempt_need_resched(); 3475 3476 if (likely(prev != next)) { 3477 rq->nr_switches++; 3478 rq->curr = next; 3479 /* 3480 * The membarrier system call requires each architecture 3481 * to have a full memory barrier after updating 3482 * rq->curr, before returning to user-space. 3483 * 3484 * Here are the schemes providing that barrier on the 3485 * various architectures: 3486 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3487 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3488 * - finish_lock_switch() for weakly-ordered 3489 * architectures where spin_unlock is a full barrier, 3490 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3491 * is a RELEASE barrier), 3492 */ 3493 ++*switch_count; 3494 3495 trace_sched_switch(preempt, prev, next); 3496 3497 /* Also unlocks the rq: */ 3498 rq = context_switch(rq, prev, next, &rf); 3499 } else { 3500 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3501 rq_unlock_irq(rq, &rf); 3502 } 3503 3504 balance_callback(rq); 3505 } 3506 3507 void __noreturn do_task_dead(void) 3508 { 3509 /* Causes final put_task_struct in finish_task_switch(): */ 3510 set_special_state(TASK_DEAD); 3511 3512 /* Tell freezer to ignore us: */ 3513 current->flags |= PF_NOFREEZE; 3514 3515 __schedule(false); 3516 BUG(); 3517 3518 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3519 for (;;) 3520 cpu_relax(); 3521 } 3522 3523 static inline void sched_submit_work(struct task_struct *tsk) 3524 { 3525 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3526 return; 3527 /* 3528 * If we are going to sleep and we have plugged IO queued, 3529 * make sure to submit it to avoid deadlocks. 3530 */ 3531 if (blk_needs_flush_plug(tsk)) 3532 blk_schedule_flush_plug(tsk); 3533 } 3534 3535 asmlinkage __visible void __sched schedule(void) 3536 { 3537 struct task_struct *tsk = current; 3538 3539 sched_submit_work(tsk); 3540 do { 3541 preempt_disable(); 3542 __schedule(false); 3543 sched_preempt_enable_no_resched(); 3544 } while (need_resched()); 3545 } 3546 EXPORT_SYMBOL(schedule); 3547 3548 /* 3549 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3550 * state (have scheduled out non-voluntarily) by making sure that all 3551 * tasks have either left the run queue or have gone into user space. 3552 * As idle tasks do not do either, they must not ever be preempted 3553 * (schedule out non-voluntarily). 3554 * 3555 * schedule_idle() is similar to schedule_preempt_disable() except that it 3556 * never enables preemption because it does not call sched_submit_work(). 3557 */ 3558 void __sched schedule_idle(void) 3559 { 3560 /* 3561 * As this skips calling sched_submit_work(), which the idle task does 3562 * regardless because that function is a nop when the task is in a 3563 * TASK_RUNNING state, make sure this isn't used someplace that the 3564 * current task can be in any other state. Note, idle is always in the 3565 * TASK_RUNNING state. 3566 */ 3567 WARN_ON_ONCE(current->state); 3568 do { 3569 __schedule(false); 3570 } while (need_resched()); 3571 } 3572 3573 #ifdef CONFIG_CONTEXT_TRACKING 3574 asmlinkage __visible void __sched schedule_user(void) 3575 { 3576 /* 3577 * If we come here after a random call to set_need_resched(), 3578 * or we have been woken up remotely but the IPI has not yet arrived, 3579 * we haven't yet exited the RCU idle mode. Do it here manually until 3580 * we find a better solution. 3581 * 3582 * NB: There are buggy callers of this function. Ideally we 3583 * should warn if prev_state != CONTEXT_USER, but that will trigger 3584 * too frequently to make sense yet. 3585 */ 3586 enum ctx_state prev_state = exception_enter(); 3587 schedule(); 3588 exception_exit(prev_state); 3589 } 3590 #endif 3591 3592 /** 3593 * schedule_preempt_disabled - called with preemption disabled 3594 * 3595 * Returns with preemption disabled. Note: preempt_count must be 1 3596 */ 3597 void __sched schedule_preempt_disabled(void) 3598 { 3599 sched_preempt_enable_no_resched(); 3600 schedule(); 3601 preempt_disable(); 3602 } 3603 3604 static void __sched notrace preempt_schedule_common(void) 3605 { 3606 do { 3607 /* 3608 * Because the function tracer can trace preempt_count_sub() 3609 * and it also uses preempt_enable/disable_notrace(), if 3610 * NEED_RESCHED is set, the preempt_enable_notrace() called 3611 * by the function tracer will call this function again and 3612 * cause infinite recursion. 3613 * 3614 * Preemption must be disabled here before the function 3615 * tracer can trace. Break up preempt_disable() into two 3616 * calls. One to disable preemption without fear of being 3617 * traced. The other to still record the preemption latency, 3618 * which can also be traced by the function tracer. 3619 */ 3620 preempt_disable_notrace(); 3621 preempt_latency_start(1); 3622 __schedule(true); 3623 preempt_latency_stop(1); 3624 preempt_enable_no_resched_notrace(); 3625 3626 /* 3627 * Check again in case we missed a preemption opportunity 3628 * between schedule and now. 3629 */ 3630 } while (need_resched()); 3631 } 3632 3633 #ifdef CONFIG_PREEMPT 3634 /* 3635 * this is the entry point to schedule() from in-kernel preemption 3636 * off of preempt_enable. Kernel preemptions off return from interrupt 3637 * occur there and call schedule directly. 3638 */ 3639 asmlinkage __visible void __sched notrace preempt_schedule(void) 3640 { 3641 /* 3642 * If there is a non-zero preempt_count or interrupts are disabled, 3643 * we do not want to preempt the current task. Just return.. 3644 */ 3645 if (likely(!preemptible())) 3646 return; 3647 3648 preempt_schedule_common(); 3649 } 3650 NOKPROBE_SYMBOL(preempt_schedule); 3651 EXPORT_SYMBOL(preempt_schedule); 3652 3653 /** 3654 * preempt_schedule_notrace - preempt_schedule called by tracing 3655 * 3656 * The tracing infrastructure uses preempt_enable_notrace to prevent 3657 * recursion and tracing preempt enabling caused by the tracing 3658 * infrastructure itself. But as tracing can happen in areas coming 3659 * from userspace or just about to enter userspace, a preempt enable 3660 * can occur before user_exit() is called. This will cause the scheduler 3661 * to be called when the system is still in usermode. 3662 * 3663 * To prevent this, the preempt_enable_notrace will use this function 3664 * instead of preempt_schedule() to exit user context if needed before 3665 * calling the scheduler. 3666 */ 3667 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3668 { 3669 enum ctx_state prev_ctx; 3670 3671 if (likely(!preemptible())) 3672 return; 3673 3674 do { 3675 /* 3676 * Because the function tracer can trace preempt_count_sub() 3677 * and it also uses preempt_enable/disable_notrace(), if 3678 * NEED_RESCHED is set, the preempt_enable_notrace() called 3679 * by the function tracer will call this function again and 3680 * cause infinite recursion. 3681 * 3682 * Preemption must be disabled here before the function 3683 * tracer can trace. Break up preempt_disable() into two 3684 * calls. One to disable preemption without fear of being 3685 * traced. The other to still record the preemption latency, 3686 * which can also be traced by the function tracer. 3687 */ 3688 preempt_disable_notrace(); 3689 preempt_latency_start(1); 3690 /* 3691 * Needs preempt disabled in case user_exit() is traced 3692 * and the tracer calls preempt_enable_notrace() causing 3693 * an infinite recursion. 3694 */ 3695 prev_ctx = exception_enter(); 3696 __schedule(true); 3697 exception_exit(prev_ctx); 3698 3699 preempt_latency_stop(1); 3700 preempt_enable_no_resched_notrace(); 3701 } while (need_resched()); 3702 } 3703 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3704 3705 #endif /* CONFIG_PREEMPT */ 3706 3707 /* 3708 * this is the entry point to schedule() from kernel preemption 3709 * off of irq context. 3710 * Note, that this is called and return with irqs disabled. This will 3711 * protect us against recursive calling from irq. 3712 */ 3713 asmlinkage __visible void __sched preempt_schedule_irq(void) 3714 { 3715 enum ctx_state prev_state; 3716 3717 /* Catch callers which need to be fixed */ 3718 BUG_ON(preempt_count() || !irqs_disabled()); 3719 3720 prev_state = exception_enter(); 3721 3722 do { 3723 preempt_disable(); 3724 local_irq_enable(); 3725 __schedule(true); 3726 local_irq_disable(); 3727 sched_preempt_enable_no_resched(); 3728 } while (need_resched()); 3729 3730 exception_exit(prev_state); 3731 } 3732 3733 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3734 void *key) 3735 { 3736 return try_to_wake_up(curr->private, mode, wake_flags); 3737 } 3738 EXPORT_SYMBOL(default_wake_function); 3739 3740 #ifdef CONFIG_RT_MUTEXES 3741 3742 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3743 { 3744 if (pi_task) 3745 prio = min(prio, pi_task->prio); 3746 3747 return prio; 3748 } 3749 3750 static inline int rt_effective_prio(struct task_struct *p, int prio) 3751 { 3752 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3753 3754 return __rt_effective_prio(pi_task, prio); 3755 } 3756 3757 /* 3758 * rt_mutex_setprio - set the current priority of a task 3759 * @p: task to boost 3760 * @pi_task: donor task 3761 * 3762 * This function changes the 'effective' priority of a task. It does 3763 * not touch ->normal_prio like __setscheduler(). 3764 * 3765 * Used by the rt_mutex code to implement priority inheritance 3766 * logic. Call site only calls if the priority of the task changed. 3767 */ 3768 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3769 { 3770 int prio, oldprio, queued, running, queue_flag = 3771 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3772 const struct sched_class *prev_class; 3773 struct rq_flags rf; 3774 struct rq *rq; 3775 3776 /* XXX used to be waiter->prio, not waiter->task->prio */ 3777 prio = __rt_effective_prio(pi_task, p->normal_prio); 3778 3779 /* 3780 * If nothing changed; bail early. 3781 */ 3782 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3783 return; 3784 3785 rq = __task_rq_lock(p, &rf); 3786 update_rq_clock(rq); 3787 /* 3788 * Set under pi_lock && rq->lock, such that the value can be used under 3789 * either lock. 3790 * 3791 * Note that there is loads of tricky to make this pointer cache work 3792 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3793 * ensure a task is de-boosted (pi_task is set to NULL) before the 3794 * task is allowed to run again (and can exit). This ensures the pointer 3795 * points to a blocked task -- which guaratees the task is present. 3796 */ 3797 p->pi_top_task = pi_task; 3798 3799 /* 3800 * For FIFO/RR we only need to set prio, if that matches we're done. 3801 */ 3802 if (prio == p->prio && !dl_prio(prio)) 3803 goto out_unlock; 3804 3805 /* 3806 * Idle task boosting is a nono in general. There is one 3807 * exception, when PREEMPT_RT and NOHZ is active: 3808 * 3809 * The idle task calls get_next_timer_interrupt() and holds 3810 * the timer wheel base->lock on the CPU and another CPU wants 3811 * to access the timer (probably to cancel it). We can safely 3812 * ignore the boosting request, as the idle CPU runs this code 3813 * with interrupts disabled and will complete the lock 3814 * protected section without being interrupted. So there is no 3815 * real need to boost. 3816 */ 3817 if (unlikely(p == rq->idle)) { 3818 WARN_ON(p != rq->curr); 3819 WARN_ON(p->pi_blocked_on); 3820 goto out_unlock; 3821 } 3822 3823 trace_sched_pi_setprio(p, pi_task); 3824 oldprio = p->prio; 3825 3826 if (oldprio == prio) 3827 queue_flag &= ~DEQUEUE_MOVE; 3828 3829 prev_class = p->sched_class; 3830 queued = task_on_rq_queued(p); 3831 running = task_current(rq, p); 3832 if (queued) 3833 dequeue_task(rq, p, queue_flag); 3834 if (running) 3835 put_prev_task(rq, p); 3836 3837 /* 3838 * Boosting condition are: 3839 * 1. -rt task is running and holds mutex A 3840 * --> -dl task blocks on mutex A 3841 * 3842 * 2. -dl task is running and holds mutex A 3843 * --> -dl task blocks on mutex A and could preempt the 3844 * running task 3845 */ 3846 if (dl_prio(prio)) { 3847 if (!dl_prio(p->normal_prio) || 3848 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3849 p->dl.dl_boosted = 1; 3850 queue_flag |= ENQUEUE_REPLENISH; 3851 } else 3852 p->dl.dl_boosted = 0; 3853 p->sched_class = &dl_sched_class; 3854 } else if (rt_prio(prio)) { 3855 if (dl_prio(oldprio)) 3856 p->dl.dl_boosted = 0; 3857 if (oldprio < prio) 3858 queue_flag |= ENQUEUE_HEAD; 3859 p->sched_class = &rt_sched_class; 3860 } else { 3861 if (dl_prio(oldprio)) 3862 p->dl.dl_boosted = 0; 3863 if (rt_prio(oldprio)) 3864 p->rt.timeout = 0; 3865 p->sched_class = &fair_sched_class; 3866 } 3867 3868 p->prio = prio; 3869 3870 if (queued) 3871 enqueue_task(rq, p, queue_flag); 3872 if (running) 3873 set_curr_task(rq, p); 3874 3875 check_class_changed(rq, p, prev_class, oldprio); 3876 out_unlock: 3877 /* Avoid rq from going away on us: */ 3878 preempt_disable(); 3879 __task_rq_unlock(rq, &rf); 3880 3881 balance_callback(rq); 3882 preempt_enable(); 3883 } 3884 #else 3885 static inline int rt_effective_prio(struct task_struct *p, int prio) 3886 { 3887 return prio; 3888 } 3889 #endif 3890 3891 void set_user_nice(struct task_struct *p, long nice) 3892 { 3893 bool queued, running; 3894 int old_prio, delta; 3895 struct rq_flags rf; 3896 struct rq *rq; 3897 3898 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3899 return; 3900 /* 3901 * We have to be careful, if called from sys_setpriority(), 3902 * the task might be in the middle of scheduling on another CPU. 3903 */ 3904 rq = task_rq_lock(p, &rf); 3905 update_rq_clock(rq); 3906 3907 /* 3908 * The RT priorities are set via sched_setscheduler(), but we still 3909 * allow the 'normal' nice value to be set - but as expected 3910 * it wont have any effect on scheduling until the task is 3911 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3912 */ 3913 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3914 p->static_prio = NICE_TO_PRIO(nice); 3915 goto out_unlock; 3916 } 3917 queued = task_on_rq_queued(p); 3918 running = task_current(rq, p); 3919 if (queued) 3920 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3921 if (running) 3922 put_prev_task(rq, p); 3923 3924 p->static_prio = NICE_TO_PRIO(nice); 3925 set_load_weight(p, true); 3926 old_prio = p->prio; 3927 p->prio = effective_prio(p); 3928 delta = p->prio - old_prio; 3929 3930 if (queued) { 3931 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3932 /* 3933 * If the task increased its priority or is running and 3934 * lowered its priority, then reschedule its CPU: 3935 */ 3936 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3937 resched_curr(rq); 3938 } 3939 if (running) 3940 set_curr_task(rq, p); 3941 out_unlock: 3942 task_rq_unlock(rq, p, &rf); 3943 } 3944 EXPORT_SYMBOL(set_user_nice); 3945 3946 /* 3947 * can_nice - check if a task can reduce its nice value 3948 * @p: task 3949 * @nice: nice value 3950 */ 3951 int can_nice(const struct task_struct *p, const int nice) 3952 { 3953 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3954 int nice_rlim = nice_to_rlimit(nice); 3955 3956 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3957 capable(CAP_SYS_NICE)); 3958 } 3959 3960 #ifdef __ARCH_WANT_SYS_NICE 3961 3962 /* 3963 * sys_nice - change the priority of the current process. 3964 * @increment: priority increment 3965 * 3966 * sys_setpriority is a more generic, but much slower function that 3967 * does similar things. 3968 */ 3969 SYSCALL_DEFINE1(nice, int, increment) 3970 { 3971 long nice, retval; 3972 3973 /* 3974 * Setpriority might change our priority at the same moment. 3975 * We don't have to worry. Conceptually one call occurs first 3976 * and we have a single winner. 3977 */ 3978 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3979 nice = task_nice(current) + increment; 3980 3981 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3982 if (increment < 0 && !can_nice(current, nice)) 3983 return -EPERM; 3984 3985 retval = security_task_setnice(current, nice); 3986 if (retval) 3987 return retval; 3988 3989 set_user_nice(current, nice); 3990 return 0; 3991 } 3992 3993 #endif 3994 3995 /** 3996 * task_prio - return the priority value of a given task. 3997 * @p: the task in question. 3998 * 3999 * Return: The priority value as seen by users in /proc. 4000 * RT tasks are offset by -200. Normal tasks are centered 4001 * around 0, value goes from -16 to +15. 4002 */ 4003 int task_prio(const struct task_struct *p) 4004 { 4005 return p->prio - MAX_RT_PRIO; 4006 } 4007 4008 /** 4009 * idle_cpu - is a given CPU idle currently? 4010 * @cpu: the processor in question. 4011 * 4012 * Return: 1 if the CPU is currently idle. 0 otherwise. 4013 */ 4014 int idle_cpu(int cpu) 4015 { 4016 struct rq *rq = cpu_rq(cpu); 4017 4018 if (rq->curr != rq->idle) 4019 return 0; 4020 4021 if (rq->nr_running) 4022 return 0; 4023 4024 #ifdef CONFIG_SMP 4025 if (!llist_empty(&rq->wake_list)) 4026 return 0; 4027 #endif 4028 4029 return 1; 4030 } 4031 4032 /** 4033 * available_idle_cpu - is a given CPU idle for enqueuing work. 4034 * @cpu: the CPU in question. 4035 * 4036 * Return: 1 if the CPU is currently idle. 0 otherwise. 4037 */ 4038 int available_idle_cpu(int cpu) 4039 { 4040 if (!idle_cpu(cpu)) 4041 return 0; 4042 4043 if (vcpu_is_preempted(cpu)) 4044 return 0; 4045 4046 return 1; 4047 } 4048 4049 /** 4050 * idle_task - return the idle task for a given CPU. 4051 * @cpu: the processor in question. 4052 * 4053 * Return: The idle task for the CPU @cpu. 4054 */ 4055 struct task_struct *idle_task(int cpu) 4056 { 4057 return cpu_rq(cpu)->idle; 4058 } 4059 4060 /** 4061 * find_process_by_pid - find a process with a matching PID value. 4062 * @pid: the pid in question. 4063 * 4064 * The task of @pid, if found. %NULL otherwise. 4065 */ 4066 static struct task_struct *find_process_by_pid(pid_t pid) 4067 { 4068 return pid ? find_task_by_vpid(pid) : current; 4069 } 4070 4071 /* 4072 * sched_setparam() passes in -1 for its policy, to let the functions 4073 * it calls know not to change it. 4074 */ 4075 #define SETPARAM_POLICY -1 4076 4077 static void __setscheduler_params(struct task_struct *p, 4078 const struct sched_attr *attr) 4079 { 4080 int policy = attr->sched_policy; 4081 4082 if (policy == SETPARAM_POLICY) 4083 policy = p->policy; 4084 4085 p->policy = policy; 4086 4087 if (dl_policy(policy)) 4088 __setparam_dl(p, attr); 4089 else if (fair_policy(policy)) 4090 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4091 4092 /* 4093 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4094 * !rt_policy. Always setting this ensures that things like 4095 * getparam()/getattr() don't report silly values for !rt tasks. 4096 */ 4097 p->rt_priority = attr->sched_priority; 4098 p->normal_prio = normal_prio(p); 4099 set_load_weight(p, true); 4100 } 4101 4102 /* Actually do priority change: must hold pi & rq lock. */ 4103 static void __setscheduler(struct rq *rq, struct task_struct *p, 4104 const struct sched_attr *attr, bool keep_boost) 4105 { 4106 __setscheduler_params(p, attr); 4107 4108 /* 4109 * Keep a potential priority boosting if called from 4110 * sched_setscheduler(). 4111 */ 4112 p->prio = normal_prio(p); 4113 if (keep_boost) 4114 p->prio = rt_effective_prio(p, p->prio); 4115 4116 if (dl_prio(p->prio)) 4117 p->sched_class = &dl_sched_class; 4118 else if (rt_prio(p->prio)) 4119 p->sched_class = &rt_sched_class; 4120 else 4121 p->sched_class = &fair_sched_class; 4122 } 4123 4124 /* 4125 * Check the target process has a UID that matches the current process's: 4126 */ 4127 static bool check_same_owner(struct task_struct *p) 4128 { 4129 const struct cred *cred = current_cred(), *pcred; 4130 bool match; 4131 4132 rcu_read_lock(); 4133 pcred = __task_cred(p); 4134 match = (uid_eq(cred->euid, pcred->euid) || 4135 uid_eq(cred->euid, pcred->uid)); 4136 rcu_read_unlock(); 4137 return match; 4138 } 4139 4140 static int __sched_setscheduler(struct task_struct *p, 4141 const struct sched_attr *attr, 4142 bool user, bool pi) 4143 { 4144 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4145 MAX_RT_PRIO - 1 - attr->sched_priority; 4146 int retval, oldprio, oldpolicy = -1, queued, running; 4147 int new_effective_prio, policy = attr->sched_policy; 4148 const struct sched_class *prev_class; 4149 struct rq_flags rf; 4150 int reset_on_fork; 4151 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4152 struct rq *rq; 4153 4154 /* The pi code expects interrupts enabled */ 4155 BUG_ON(pi && in_interrupt()); 4156 recheck: 4157 /* Double check policy once rq lock held: */ 4158 if (policy < 0) { 4159 reset_on_fork = p->sched_reset_on_fork; 4160 policy = oldpolicy = p->policy; 4161 } else { 4162 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4163 4164 if (!valid_policy(policy)) 4165 return -EINVAL; 4166 } 4167 4168 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4169 return -EINVAL; 4170 4171 /* 4172 * Valid priorities for SCHED_FIFO and SCHED_RR are 4173 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4174 * SCHED_BATCH and SCHED_IDLE is 0. 4175 */ 4176 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4177 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4178 return -EINVAL; 4179 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4180 (rt_policy(policy) != (attr->sched_priority != 0))) 4181 return -EINVAL; 4182 4183 /* 4184 * Allow unprivileged RT tasks to decrease priority: 4185 */ 4186 if (user && !capable(CAP_SYS_NICE)) { 4187 if (fair_policy(policy)) { 4188 if (attr->sched_nice < task_nice(p) && 4189 !can_nice(p, attr->sched_nice)) 4190 return -EPERM; 4191 } 4192 4193 if (rt_policy(policy)) { 4194 unsigned long rlim_rtprio = 4195 task_rlimit(p, RLIMIT_RTPRIO); 4196 4197 /* Can't set/change the rt policy: */ 4198 if (policy != p->policy && !rlim_rtprio) 4199 return -EPERM; 4200 4201 /* Can't increase priority: */ 4202 if (attr->sched_priority > p->rt_priority && 4203 attr->sched_priority > rlim_rtprio) 4204 return -EPERM; 4205 } 4206 4207 /* 4208 * Can't set/change SCHED_DEADLINE policy at all for now 4209 * (safest behavior); in the future we would like to allow 4210 * unprivileged DL tasks to increase their relative deadline 4211 * or reduce their runtime (both ways reducing utilization) 4212 */ 4213 if (dl_policy(policy)) 4214 return -EPERM; 4215 4216 /* 4217 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4218 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4219 */ 4220 if (idle_policy(p->policy) && !idle_policy(policy)) { 4221 if (!can_nice(p, task_nice(p))) 4222 return -EPERM; 4223 } 4224 4225 /* Can't change other user's priorities: */ 4226 if (!check_same_owner(p)) 4227 return -EPERM; 4228 4229 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4230 if (p->sched_reset_on_fork && !reset_on_fork) 4231 return -EPERM; 4232 } 4233 4234 if (user) { 4235 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4236 return -EINVAL; 4237 4238 retval = security_task_setscheduler(p); 4239 if (retval) 4240 return retval; 4241 } 4242 4243 /* 4244 * Make sure no PI-waiters arrive (or leave) while we are 4245 * changing the priority of the task: 4246 * 4247 * To be able to change p->policy safely, the appropriate 4248 * runqueue lock must be held. 4249 */ 4250 rq = task_rq_lock(p, &rf); 4251 update_rq_clock(rq); 4252 4253 /* 4254 * Changing the policy of the stop threads its a very bad idea: 4255 */ 4256 if (p == rq->stop) { 4257 task_rq_unlock(rq, p, &rf); 4258 return -EINVAL; 4259 } 4260 4261 /* 4262 * If not changing anything there's no need to proceed further, 4263 * but store a possible modification of reset_on_fork. 4264 */ 4265 if (unlikely(policy == p->policy)) { 4266 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4267 goto change; 4268 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4269 goto change; 4270 if (dl_policy(policy) && dl_param_changed(p, attr)) 4271 goto change; 4272 4273 p->sched_reset_on_fork = reset_on_fork; 4274 task_rq_unlock(rq, p, &rf); 4275 return 0; 4276 } 4277 change: 4278 4279 if (user) { 4280 #ifdef CONFIG_RT_GROUP_SCHED 4281 /* 4282 * Do not allow realtime tasks into groups that have no runtime 4283 * assigned. 4284 */ 4285 if (rt_bandwidth_enabled() && rt_policy(policy) && 4286 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4287 !task_group_is_autogroup(task_group(p))) { 4288 task_rq_unlock(rq, p, &rf); 4289 return -EPERM; 4290 } 4291 #endif 4292 #ifdef CONFIG_SMP 4293 if (dl_bandwidth_enabled() && dl_policy(policy) && 4294 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4295 cpumask_t *span = rq->rd->span; 4296 4297 /* 4298 * Don't allow tasks with an affinity mask smaller than 4299 * the entire root_domain to become SCHED_DEADLINE. We 4300 * will also fail if there's no bandwidth available. 4301 */ 4302 if (!cpumask_subset(span, &p->cpus_allowed) || 4303 rq->rd->dl_bw.bw == 0) { 4304 task_rq_unlock(rq, p, &rf); 4305 return -EPERM; 4306 } 4307 } 4308 #endif 4309 } 4310 4311 /* Re-check policy now with rq lock held: */ 4312 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4313 policy = oldpolicy = -1; 4314 task_rq_unlock(rq, p, &rf); 4315 goto recheck; 4316 } 4317 4318 /* 4319 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4320 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4321 * is available. 4322 */ 4323 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4324 task_rq_unlock(rq, p, &rf); 4325 return -EBUSY; 4326 } 4327 4328 p->sched_reset_on_fork = reset_on_fork; 4329 oldprio = p->prio; 4330 4331 if (pi) { 4332 /* 4333 * Take priority boosted tasks into account. If the new 4334 * effective priority is unchanged, we just store the new 4335 * normal parameters and do not touch the scheduler class and 4336 * the runqueue. This will be done when the task deboost 4337 * itself. 4338 */ 4339 new_effective_prio = rt_effective_prio(p, newprio); 4340 if (new_effective_prio == oldprio) 4341 queue_flags &= ~DEQUEUE_MOVE; 4342 } 4343 4344 queued = task_on_rq_queued(p); 4345 running = task_current(rq, p); 4346 if (queued) 4347 dequeue_task(rq, p, queue_flags); 4348 if (running) 4349 put_prev_task(rq, p); 4350 4351 prev_class = p->sched_class; 4352 __setscheduler(rq, p, attr, pi); 4353 4354 if (queued) { 4355 /* 4356 * We enqueue to tail when the priority of a task is 4357 * increased (user space view). 4358 */ 4359 if (oldprio < p->prio) 4360 queue_flags |= ENQUEUE_HEAD; 4361 4362 enqueue_task(rq, p, queue_flags); 4363 } 4364 if (running) 4365 set_curr_task(rq, p); 4366 4367 check_class_changed(rq, p, prev_class, oldprio); 4368 4369 /* Avoid rq from going away on us: */ 4370 preempt_disable(); 4371 task_rq_unlock(rq, p, &rf); 4372 4373 if (pi) 4374 rt_mutex_adjust_pi(p); 4375 4376 /* Run balance callbacks after we've adjusted the PI chain: */ 4377 balance_callback(rq); 4378 preempt_enable(); 4379 4380 return 0; 4381 } 4382 4383 static int _sched_setscheduler(struct task_struct *p, int policy, 4384 const struct sched_param *param, bool check) 4385 { 4386 struct sched_attr attr = { 4387 .sched_policy = policy, 4388 .sched_priority = param->sched_priority, 4389 .sched_nice = PRIO_TO_NICE(p->static_prio), 4390 }; 4391 4392 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4393 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4394 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4395 policy &= ~SCHED_RESET_ON_FORK; 4396 attr.sched_policy = policy; 4397 } 4398 4399 return __sched_setscheduler(p, &attr, check, true); 4400 } 4401 /** 4402 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4403 * @p: the task in question. 4404 * @policy: new policy. 4405 * @param: structure containing the new RT priority. 4406 * 4407 * Return: 0 on success. An error code otherwise. 4408 * 4409 * NOTE that the task may be already dead. 4410 */ 4411 int sched_setscheduler(struct task_struct *p, int policy, 4412 const struct sched_param *param) 4413 { 4414 return _sched_setscheduler(p, policy, param, true); 4415 } 4416 EXPORT_SYMBOL_GPL(sched_setscheduler); 4417 4418 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4419 { 4420 return __sched_setscheduler(p, attr, true, true); 4421 } 4422 EXPORT_SYMBOL_GPL(sched_setattr); 4423 4424 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4425 { 4426 return __sched_setscheduler(p, attr, false, true); 4427 } 4428 4429 /** 4430 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4431 * @p: the task in question. 4432 * @policy: new policy. 4433 * @param: structure containing the new RT priority. 4434 * 4435 * Just like sched_setscheduler, only don't bother checking if the 4436 * current context has permission. For example, this is needed in 4437 * stop_machine(): we create temporary high priority worker threads, 4438 * but our caller might not have that capability. 4439 * 4440 * Return: 0 on success. An error code otherwise. 4441 */ 4442 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4443 const struct sched_param *param) 4444 { 4445 return _sched_setscheduler(p, policy, param, false); 4446 } 4447 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4448 4449 static int 4450 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4451 { 4452 struct sched_param lparam; 4453 struct task_struct *p; 4454 int retval; 4455 4456 if (!param || pid < 0) 4457 return -EINVAL; 4458 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4459 return -EFAULT; 4460 4461 rcu_read_lock(); 4462 retval = -ESRCH; 4463 p = find_process_by_pid(pid); 4464 if (p != NULL) 4465 retval = sched_setscheduler(p, policy, &lparam); 4466 rcu_read_unlock(); 4467 4468 return retval; 4469 } 4470 4471 /* 4472 * Mimics kernel/events/core.c perf_copy_attr(). 4473 */ 4474 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4475 { 4476 u32 size; 4477 int ret; 4478 4479 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4480 return -EFAULT; 4481 4482 /* Zero the full structure, so that a short copy will be nice: */ 4483 memset(attr, 0, sizeof(*attr)); 4484 4485 ret = get_user(size, &uattr->size); 4486 if (ret) 4487 return ret; 4488 4489 /* Bail out on silly large: */ 4490 if (size > PAGE_SIZE) 4491 goto err_size; 4492 4493 /* ABI compatibility quirk: */ 4494 if (!size) 4495 size = SCHED_ATTR_SIZE_VER0; 4496 4497 if (size < SCHED_ATTR_SIZE_VER0) 4498 goto err_size; 4499 4500 /* 4501 * If we're handed a bigger struct than we know of, 4502 * ensure all the unknown bits are 0 - i.e. new 4503 * user-space does not rely on any kernel feature 4504 * extensions we dont know about yet. 4505 */ 4506 if (size > sizeof(*attr)) { 4507 unsigned char __user *addr; 4508 unsigned char __user *end; 4509 unsigned char val; 4510 4511 addr = (void __user *)uattr + sizeof(*attr); 4512 end = (void __user *)uattr + size; 4513 4514 for (; addr < end; addr++) { 4515 ret = get_user(val, addr); 4516 if (ret) 4517 return ret; 4518 if (val) 4519 goto err_size; 4520 } 4521 size = sizeof(*attr); 4522 } 4523 4524 ret = copy_from_user(attr, uattr, size); 4525 if (ret) 4526 return -EFAULT; 4527 4528 /* 4529 * XXX: Do we want to be lenient like existing syscalls; or do we want 4530 * to be strict and return an error on out-of-bounds values? 4531 */ 4532 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4533 4534 return 0; 4535 4536 err_size: 4537 put_user(sizeof(*attr), &uattr->size); 4538 return -E2BIG; 4539 } 4540 4541 /** 4542 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4543 * @pid: the pid in question. 4544 * @policy: new policy. 4545 * @param: structure containing the new RT priority. 4546 * 4547 * Return: 0 on success. An error code otherwise. 4548 */ 4549 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4550 { 4551 if (policy < 0) 4552 return -EINVAL; 4553 4554 return do_sched_setscheduler(pid, policy, param); 4555 } 4556 4557 /** 4558 * sys_sched_setparam - set/change the RT priority of a thread 4559 * @pid: the pid in question. 4560 * @param: structure containing the new RT priority. 4561 * 4562 * Return: 0 on success. An error code otherwise. 4563 */ 4564 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4565 { 4566 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4567 } 4568 4569 /** 4570 * sys_sched_setattr - same as above, but with extended sched_attr 4571 * @pid: the pid in question. 4572 * @uattr: structure containing the extended parameters. 4573 * @flags: for future extension. 4574 */ 4575 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4576 unsigned int, flags) 4577 { 4578 struct sched_attr attr; 4579 struct task_struct *p; 4580 int retval; 4581 4582 if (!uattr || pid < 0 || flags) 4583 return -EINVAL; 4584 4585 retval = sched_copy_attr(uattr, &attr); 4586 if (retval) 4587 return retval; 4588 4589 if ((int)attr.sched_policy < 0) 4590 return -EINVAL; 4591 4592 rcu_read_lock(); 4593 retval = -ESRCH; 4594 p = find_process_by_pid(pid); 4595 if (p != NULL) 4596 retval = sched_setattr(p, &attr); 4597 rcu_read_unlock(); 4598 4599 return retval; 4600 } 4601 4602 /** 4603 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4604 * @pid: the pid in question. 4605 * 4606 * Return: On success, the policy of the thread. Otherwise, a negative error 4607 * code. 4608 */ 4609 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4610 { 4611 struct task_struct *p; 4612 int retval; 4613 4614 if (pid < 0) 4615 return -EINVAL; 4616 4617 retval = -ESRCH; 4618 rcu_read_lock(); 4619 p = find_process_by_pid(pid); 4620 if (p) { 4621 retval = security_task_getscheduler(p); 4622 if (!retval) 4623 retval = p->policy 4624 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4625 } 4626 rcu_read_unlock(); 4627 return retval; 4628 } 4629 4630 /** 4631 * sys_sched_getparam - get the RT priority of a thread 4632 * @pid: the pid in question. 4633 * @param: structure containing the RT priority. 4634 * 4635 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4636 * code. 4637 */ 4638 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4639 { 4640 struct sched_param lp = { .sched_priority = 0 }; 4641 struct task_struct *p; 4642 int retval; 4643 4644 if (!param || pid < 0) 4645 return -EINVAL; 4646 4647 rcu_read_lock(); 4648 p = find_process_by_pid(pid); 4649 retval = -ESRCH; 4650 if (!p) 4651 goto out_unlock; 4652 4653 retval = security_task_getscheduler(p); 4654 if (retval) 4655 goto out_unlock; 4656 4657 if (task_has_rt_policy(p)) 4658 lp.sched_priority = p->rt_priority; 4659 rcu_read_unlock(); 4660 4661 /* 4662 * This one might sleep, we cannot do it with a spinlock held ... 4663 */ 4664 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4665 4666 return retval; 4667 4668 out_unlock: 4669 rcu_read_unlock(); 4670 return retval; 4671 } 4672 4673 static int sched_read_attr(struct sched_attr __user *uattr, 4674 struct sched_attr *attr, 4675 unsigned int usize) 4676 { 4677 int ret; 4678 4679 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4680 return -EFAULT; 4681 4682 /* 4683 * If we're handed a smaller struct than we know of, 4684 * ensure all the unknown bits are 0 - i.e. old 4685 * user-space does not get uncomplete information. 4686 */ 4687 if (usize < sizeof(*attr)) { 4688 unsigned char *addr; 4689 unsigned char *end; 4690 4691 addr = (void *)attr + usize; 4692 end = (void *)attr + sizeof(*attr); 4693 4694 for (; addr < end; addr++) { 4695 if (*addr) 4696 return -EFBIG; 4697 } 4698 4699 attr->size = usize; 4700 } 4701 4702 ret = copy_to_user(uattr, attr, attr->size); 4703 if (ret) 4704 return -EFAULT; 4705 4706 return 0; 4707 } 4708 4709 /** 4710 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4711 * @pid: the pid in question. 4712 * @uattr: structure containing the extended parameters. 4713 * @size: sizeof(attr) for fwd/bwd comp. 4714 * @flags: for future extension. 4715 */ 4716 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4717 unsigned int, size, unsigned int, flags) 4718 { 4719 struct sched_attr attr = { 4720 .size = sizeof(struct sched_attr), 4721 }; 4722 struct task_struct *p; 4723 int retval; 4724 4725 if (!uattr || pid < 0 || size > PAGE_SIZE || 4726 size < SCHED_ATTR_SIZE_VER0 || flags) 4727 return -EINVAL; 4728 4729 rcu_read_lock(); 4730 p = find_process_by_pid(pid); 4731 retval = -ESRCH; 4732 if (!p) 4733 goto out_unlock; 4734 4735 retval = security_task_getscheduler(p); 4736 if (retval) 4737 goto out_unlock; 4738 4739 attr.sched_policy = p->policy; 4740 if (p->sched_reset_on_fork) 4741 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4742 if (task_has_dl_policy(p)) 4743 __getparam_dl(p, &attr); 4744 else if (task_has_rt_policy(p)) 4745 attr.sched_priority = p->rt_priority; 4746 else 4747 attr.sched_nice = task_nice(p); 4748 4749 rcu_read_unlock(); 4750 4751 retval = sched_read_attr(uattr, &attr, size); 4752 return retval; 4753 4754 out_unlock: 4755 rcu_read_unlock(); 4756 return retval; 4757 } 4758 4759 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4760 { 4761 cpumask_var_t cpus_allowed, new_mask; 4762 struct task_struct *p; 4763 int retval; 4764 4765 rcu_read_lock(); 4766 4767 p = find_process_by_pid(pid); 4768 if (!p) { 4769 rcu_read_unlock(); 4770 return -ESRCH; 4771 } 4772 4773 /* Prevent p going away */ 4774 get_task_struct(p); 4775 rcu_read_unlock(); 4776 4777 if (p->flags & PF_NO_SETAFFINITY) { 4778 retval = -EINVAL; 4779 goto out_put_task; 4780 } 4781 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4782 retval = -ENOMEM; 4783 goto out_put_task; 4784 } 4785 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4786 retval = -ENOMEM; 4787 goto out_free_cpus_allowed; 4788 } 4789 retval = -EPERM; 4790 if (!check_same_owner(p)) { 4791 rcu_read_lock(); 4792 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4793 rcu_read_unlock(); 4794 goto out_free_new_mask; 4795 } 4796 rcu_read_unlock(); 4797 } 4798 4799 retval = security_task_setscheduler(p); 4800 if (retval) 4801 goto out_free_new_mask; 4802 4803 4804 cpuset_cpus_allowed(p, cpus_allowed); 4805 cpumask_and(new_mask, in_mask, cpus_allowed); 4806 4807 /* 4808 * Since bandwidth control happens on root_domain basis, 4809 * if admission test is enabled, we only admit -deadline 4810 * tasks allowed to run on all the CPUs in the task's 4811 * root_domain. 4812 */ 4813 #ifdef CONFIG_SMP 4814 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4815 rcu_read_lock(); 4816 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4817 retval = -EBUSY; 4818 rcu_read_unlock(); 4819 goto out_free_new_mask; 4820 } 4821 rcu_read_unlock(); 4822 } 4823 #endif 4824 again: 4825 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4826 4827 if (!retval) { 4828 cpuset_cpus_allowed(p, cpus_allowed); 4829 if (!cpumask_subset(new_mask, cpus_allowed)) { 4830 /* 4831 * We must have raced with a concurrent cpuset 4832 * update. Just reset the cpus_allowed to the 4833 * cpuset's cpus_allowed 4834 */ 4835 cpumask_copy(new_mask, cpus_allowed); 4836 goto again; 4837 } 4838 } 4839 out_free_new_mask: 4840 free_cpumask_var(new_mask); 4841 out_free_cpus_allowed: 4842 free_cpumask_var(cpus_allowed); 4843 out_put_task: 4844 put_task_struct(p); 4845 return retval; 4846 } 4847 4848 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4849 struct cpumask *new_mask) 4850 { 4851 if (len < cpumask_size()) 4852 cpumask_clear(new_mask); 4853 else if (len > cpumask_size()) 4854 len = cpumask_size(); 4855 4856 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4857 } 4858 4859 /** 4860 * sys_sched_setaffinity - set the CPU affinity of a process 4861 * @pid: pid of the process 4862 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4863 * @user_mask_ptr: user-space pointer to the new CPU mask 4864 * 4865 * Return: 0 on success. An error code otherwise. 4866 */ 4867 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4868 unsigned long __user *, user_mask_ptr) 4869 { 4870 cpumask_var_t new_mask; 4871 int retval; 4872 4873 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4874 return -ENOMEM; 4875 4876 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4877 if (retval == 0) 4878 retval = sched_setaffinity(pid, new_mask); 4879 free_cpumask_var(new_mask); 4880 return retval; 4881 } 4882 4883 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4884 { 4885 struct task_struct *p; 4886 unsigned long flags; 4887 int retval; 4888 4889 rcu_read_lock(); 4890 4891 retval = -ESRCH; 4892 p = find_process_by_pid(pid); 4893 if (!p) 4894 goto out_unlock; 4895 4896 retval = security_task_getscheduler(p); 4897 if (retval) 4898 goto out_unlock; 4899 4900 raw_spin_lock_irqsave(&p->pi_lock, flags); 4901 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4902 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4903 4904 out_unlock: 4905 rcu_read_unlock(); 4906 4907 return retval; 4908 } 4909 4910 /** 4911 * sys_sched_getaffinity - get the CPU affinity of a process 4912 * @pid: pid of the process 4913 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4914 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4915 * 4916 * Return: size of CPU mask copied to user_mask_ptr on success. An 4917 * error code otherwise. 4918 */ 4919 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4920 unsigned long __user *, user_mask_ptr) 4921 { 4922 int ret; 4923 cpumask_var_t mask; 4924 4925 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4926 return -EINVAL; 4927 if (len & (sizeof(unsigned long)-1)) 4928 return -EINVAL; 4929 4930 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4931 return -ENOMEM; 4932 4933 ret = sched_getaffinity(pid, mask); 4934 if (ret == 0) { 4935 unsigned int retlen = min(len, cpumask_size()); 4936 4937 if (copy_to_user(user_mask_ptr, mask, retlen)) 4938 ret = -EFAULT; 4939 else 4940 ret = retlen; 4941 } 4942 free_cpumask_var(mask); 4943 4944 return ret; 4945 } 4946 4947 /** 4948 * sys_sched_yield - yield the current processor to other threads. 4949 * 4950 * This function yields the current CPU to other tasks. If there are no 4951 * other threads running on this CPU then this function will return. 4952 * 4953 * Return: 0. 4954 */ 4955 static void do_sched_yield(void) 4956 { 4957 struct rq_flags rf; 4958 struct rq *rq; 4959 4960 local_irq_disable(); 4961 rq = this_rq(); 4962 rq_lock(rq, &rf); 4963 4964 schedstat_inc(rq->yld_count); 4965 current->sched_class->yield_task(rq); 4966 4967 /* 4968 * Since we are going to call schedule() anyway, there's 4969 * no need to preempt or enable interrupts: 4970 */ 4971 preempt_disable(); 4972 rq_unlock(rq, &rf); 4973 sched_preempt_enable_no_resched(); 4974 4975 schedule(); 4976 } 4977 4978 SYSCALL_DEFINE0(sched_yield) 4979 { 4980 do_sched_yield(); 4981 return 0; 4982 } 4983 4984 #ifndef CONFIG_PREEMPT 4985 int __sched _cond_resched(void) 4986 { 4987 if (should_resched(0)) { 4988 preempt_schedule_common(); 4989 return 1; 4990 } 4991 rcu_all_qs(); 4992 return 0; 4993 } 4994 EXPORT_SYMBOL(_cond_resched); 4995 #endif 4996 4997 /* 4998 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4999 * call schedule, and on return reacquire the lock. 5000 * 5001 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 5002 * operations here to prevent schedule() from being called twice (once via 5003 * spin_unlock(), once by hand). 5004 */ 5005 int __cond_resched_lock(spinlock_t *lock) 5006 { 5007 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5008 int ret = 0; 5009 5010 lockdep_assert_held(lock); 5011 5012 if (spin_needbreak(lock) || resched) { 5013 spin_unlock(lock); 5014 if (resched) 5015 preempt_schedule_common(); 5016 else 5017 cpu_relax(); 5018 ret = 1; 5019 spin_lock(lock); 5020 } 5021 return ret; 5022 } 5023 EXPORT_SYMBOL(__cond_resched_lock); 5024 5025 /** 5026 * yield - yield the current processor to other threads. 5027 * 5028 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5029 * 5030 * The scheduler is at all times free to pick the calling task as the most 5031 * eligible task to run, if removing the yield() call from your code breaks 5032 * it, its already broken. 5033 * 5034 * Typical broken usage is: 5035 * 5036 * while (!event) 5037 * yield(); 5038 * 5039 * where one assumes that yield() will let 'the other' process run that will 5040 * make event true. If the current task is a SCHED_FIFO task that will never 5041 * happen. Never use yield() as a progress guarantee!! 5042 * 5043 * If you want to use yield() to wait for something, use wait_event(). 5044 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5045 * If you still want to use yield(), do not! 5046 */ 5047 void __sched yield(void) 5048 { 5049 set_current_state(TASK_RUNNING); 5050 do_sched_yield(); 5051 } 5052 EXPORT_SYMBOL(yield); 5053 5054 /** 5055 * yield_to - yield the current processor to another thread in 5056 * your thread group, or accelerate that thread toward the 5057 * processor it's on. 5058 * @p: target task 5059 * @preempt: whether task preemption is allowed or not 5060 * 5061 * It's the caller's job to ensure that the target task struct 5062 * can't go away on us before we can do any checks. 5063 * 5064 * Return: 5065 * true (>0) if we indeed boosted the target task. 5066 * false (0) if we failed to boost the target. 5067 * -ESRCH if there's no task to yield to. 5068 */ 5069 int __sched yield_to(struct task_struct *p, bool preempt) 5070 { 5071 struct task_struct *curr = current; 5072 struct rq *rq, *p_rq; 5073 unsigned long flags; 5074 int yielded = 0; 5075 5076 local_irq_save(flags); 5077 rq = this_rq(); 5078 5079 again: 5080 p_rq = task_rq(p); 5081 /* 5082 * If we're the only runnable task on the rq and target rq also 5083 * has only one task, there's absolutely no point in yielding. 5084 */ 5085 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5086 yielded = -ESRCH; 5087 goto out_irq; 5088 } 5089 5090 double_rq_lock(rq, p_rq); 5091 if (task_rq(p) != p_rq) { 5092 double_rq_unlock(rq, p_rq); 5093 goto again; 5094 } 5095 5096 if (!curr->sched_class->yield_to_task) 5097 goto out_unlock; 5098 5099 if (curr->sched_class != p->sched_class) 5100 goto out_unlock; 5101 5102 if (task_running(p_rq, p) || p->state) 5103 goto out_unlock; 5104 5105 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5106 if (yielded) { 5107 schedstat_inc(rq->yld_count); 5108 /* 5109 * Make p's CPU reschedule; pick_next_entity takes care of 5110 * fairness. 5111 */ 5112 if (preempt && rq != p_rq) 5113 resched_curr(p_rq); 5114 } 5115 5116 out_unlock: 5117 double_rq_unlock(rq, p_rq); 5118 out_irq: 5119 local_irq_restore(flags); 5120 5121 if (yielded > 0) 5122 schedule(); 5123 5124 return yielded; 5125 } 5126 EXPORT_SYMBOL_GPL(yield_to); 5127 5128 int io_schedule_prepare(void) 5129 { 5130 int old_iowait = current->in_iowait; 5131 5132 current->in_iowait = 1; 5133 blk_schedule_flush_plug(current); 5134 5135 return old_iowait; 5136 } 5137 5138 void io_schedule_finish(int token) 5139 { 5140 current->in_iowait = token; 5141 } 5142 5143 /* 5144 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5145 * that process accounting knows that this is a task in IO wait state. 5146 */ 5147 long __sched io_schedule_timeout(long timeout) 5148 { 5149 int token; 5150 long ret; 5151 5152 token = io_schedule_prepare(); 5153 ret = schedule_timeout(timeout); 5154 io_schedule_finish(token); 5155 5156 return ret; 5157 } 5158 EXPORT_SYMBOL(io_schedule_timeout); 5159 5160 void io_schedule(void) 5161 { 5162 int token; 5163 5164 token = io_schedule_prepare(); 5165 schedule(); 5166 io_schedule_finish(token); 5167 } 5168 EXPORT_SYMBOL(io_schedule); 5169 5170 /** 5171 * sys_sched_get_priority_max - return maximum RT priority. 5172 * @policy: scheduling class. 5173 * 5174 * Return: On success, this syscall returns the maximum 5175 * rt_priority that can be used by a given scheduling class. 5176 * On failure, a negative error code is returned. 5177 */ 5178 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5179 { 5180 int ret = -EINVAL; 5181 5182 switch (policy) { 5183 case SCHED_FIFO: 5184 case SCHED_RR: 5185 ret = MAX_USER_RT_PRIO-1; 5186 break; 5187 case SCHED_DEADLINE: 5188 case SCHED_NORMAL: 5189 case SCHED_BATCH: 5190 case SCHED_IDLE: 5191 ret = 0; 5192 break; 5193 } 5194 return ret; 5195 } 5196 5197 /** 5198 * sys_sched_get_priority_min - return minimum RT priority. 5199 * @policy: scheduling class. 5200 * 5201 * Return: On success, this syscall returns the minimum 5202 * rt_priority that can be used by a given scheduling class. 5203 * On failure, a negative error code is returned. 5204 */ 5205 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5206 { 5207 int ret = -EINVAL; 5208 5209 switch (policy) { 5210 case SCHED_FIFO: 5211 case SCHED_RR: 5212 ret = 1; 5213 break; 5214 case SCHED_DEADLINE: 5215 case SCHED_NORMAL: 5216 case SCHED_BATCH: 5217 case SCHED_IDLE: 5218 ret = 0; 5219 } 5220 return ret; 5221 } 5222 5223 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5224 { 5225 struct task_struct *p; 5226 unsigned int time_slice; 5227 struct rq_flags rf; 5228 struct rq *rq; 5229 int retval; 5230 5231 if (pid < 0) 5232 return -EINVAL; 5233 5234 retval = -ESRCH; 5235 rcu_read_lock(); 5236 p = find_process_by_pid(pid); 5237 if (!p) 5238 goto out_unlock; 5239 5240 retval = security_task_getscheduler(p); 5241 if (retval) 5242 goto out_unlock; 5243 5244 rq = task_rq_lock(p, &rf); 5245 time_slice = 0; 5246 if (p->sched_class->get_rr_interval) 5247 time_slice = p->sched_class->get_rr_interval(rq, p); 5248 task_rq_unlock(rq, p, &rf); 5249 5250 rcu_read_unlock(); 5251 jiffies_to_timespec64(time_slice, t); 5252 return 0; 5253 5254 out_unlock: 5255 rcu_read_unlock(); 5256 return retval; 5257 } 5258 5259 /** 5260 * sys_sched_rr_get_interval - return the default timeslice of a process. 5261 * @pid: pid of the process. 5262 * @interval: userspace pointer to the timeslice value. 5263 * 5264 * this syscall writes the default timeslice value of a given process 5265 * into the user-space timespec buffer. A value of '0' means infinity. 5266 * 5267 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5268 * an error code. 5269 */ 5270 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5271 struct timespec __user *, interval) 5272 { 5273 struct timespec64 t; 5274 int retval = sched_rr_get_interval(pid, &t); 5275 5276 if (retval == 0) 5277 retval = put_timespec64(&t, interval); 5278 5279 return retval; 5280 } 5281 5282 #ifdef CONFIG_COMPAT 5283 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5284 compat_pid_t, pid, 5285 struct compat_timespec __user *, interval) 5286 { 5287 struct timespec64 t; 5288 int retval = sched_rr_get_interval(pid, &t); 5289 5290 if (retval == 0) 5291 retval = compat_put_timespec64(&t, interval); 5292 return retval; 5293 } 5294 #endif 5295 5296 void sched_show_task(struct task_struct *p) 5297 { 5298 unsigned long free = 0; 5299 int ppid; 5300 5301 if (!try_get_task_stack(p)) 5302 return; 5303 5304 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5305 5306 if (p->state == TASK_RUNNING) 5307 printk(KERN_CONT " running task "); 5308 #ifdef CONFIG_DEBUG_STACK_USAGE 5309 free = stack_not_used(p); 5310 #endif 5311 ppid = 0; 5312 rcu_read_lock(); 5313 if (pid_alive(p)) 5314 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5315 rcu_read_unlock(); 5316 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5317 task_pid_nr(p), ppid, 5318 (unsigned long)task_thread_info(p)->flags); 5319 5320 print_worker_info(KERN_INFO, p); 5321 show_stack(p, NULL); 5322 put_task_stack(p); 5323 } 5324 EXPORT_SYMBOL_GPL(sched_show_task); 5325 5326 static inline bool 5327 state_filter_match(unsigned long state_filter, struct task_struct *p) 5328 { 5329 /* no filter, everything matches */ 5330 if (!state_filter) 5331 return true; 5332 5333 /* filter, but doesn't match */ 5334 if (!(p->state & state_filter)) 5335 return false; 5336 5337 /* 5338 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5339 * TASK_KILLABLE). 5340 */ 5341 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5342 return false; 5343 5344 return true; 5345 } 5346 5347 5348 void show_state_filter(unsigned long state_filter) 5349 { 5350 struct task_struct *g, *p; 5351 5352 #if BITS_PER_LONG == 32 5353 printk(KERN_INFO 5354 " task PC stack pid father\n"); 5355 #else 5356 printk(KERN_INFO 5357 " task PC stack pid father\n"); 5358 #endif 5359 rcu_read_lock(); 5360 for_each_process_thread(g, p) { 5361 /* 5362 * reset the NMI-timeout, listing all files on a slow 5363 * console might take a lot of time: 5364 * Also, reset softlockup watchdogs on all CPUs, because 5365 * another CPU might be blocked waiting for us to process 5366 * an IPI. 5367 */ 5368 touch_nmi_watchdog(); 5369 touch_all_softlockup_watchdogs(); 5370 if (state_filter_match(state_filter, p)) 5371 sched_show_task(p); 5372 } 5373 5374 #ifdef CONFIG_SCHED_DEBUG 5375 if (!state_filter) 5376 sysrq_sched_debug_show(); 5377 #endif 5378 rcu_read_unlock(); 5379 /* 5380 * Only show locks if all tasks are dumped: 5381 */ 5382 if (!state_filter) 5383 debug_show_all_locks(); 5384 } 5385 5386 /** 5387 * init_idle - set up an idle thread for a given CPU 5388 * @idle: task in question 5389 * @cpu: CPU the idle task belongs to 5390 * 5391 * NOTE: this function does not set the idle thread's NEED_RESCHED 5392 * flag, to make booting more robust. 5393 */ 5394 void init_idle(struct task_struct *idle, int cpu) 5395 { 5396 struct rq *rq = cpu_rq(cpu); 5397 unsigned long flags; 5398 5399 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5400 raw_spin_lock(&rq->lock); 5401 5402 __sched_fork(0, idle); 5403 idle->state = TASK_RUNNING; 5404 idle->se.exec_start = sched_clock(); 5405 idle->flags |= PF_IDLE; 5406 5407 kasan_unpoison_task_stack(idle); 5408 5409 #ifdef CONFIG_SMP 5410 /* 5411 * Its possible that init_idle() gets called multiple times on a task, 5412 * in that case do_set_cpus_allowed() will not do the right thing. 5413 * 5414 * And since this is boot we can forgo the serialization. 5415 */ 5416 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5417 #endif 5418 /* 5419 * We're having a chicken and egg problem, even though we are 5420 * holding rq->lock, the CPU isn't yet set to this CPU so the 5421 * lockdep check in task_group() will fail. 5422 * 5423 * Similar case to sched_fork(). / Alternatively we could 5424 * use task_rq_lock() here and obtain the other rq->lock. 5425 * 5426 * Silence PROVE_RCU 5427 */ 5428 rcu_read_lock(); 5429 __set_task_cpu(idle, cpu); 5430 rcu_read_unlock(); 5431 5432 rq->curr = rq->idle = idle; 5433 idle->on_rq = TASK_ON_RQ_QUEUED; 5434 #ifdef CONFIG_SMP 5435 idle->on_cpu = 1; 5436 #endif 5437 raw_spin_unlock(&rq->lock); 5438 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5439 5440 /* Set the preempt count _outside_ the spinlocks! */ 5441 init_idle_preempt_count(idle, cpu); 5442 5443 /* 5444 * The idle tasks have their own, simple scheduling class: 5445 */ 5446 idle->sched_class = &idle_sched_class; 5447 ftrace_graph_init_idle_task(idle, cpu); 5448 vtime_init_idle(idle, cpu); 5449 #ifdef CONFIG_SMP 5450 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5451 #endif 5452 } 5453 5454 #ifdef CONFIG_SMP 5455 5456 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5457 const struct cpumask *trial) 5458 { 5459 int ret = 1; 5460 5461 if (!cpumask_weight(cur)) 5462 return ret; 5463 5464 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5465 5466 return ret; 5467 } 5468 5469 int task_can_attach(struct task_struct *p, 5470 const struct cpumask *cs_cpus_allowed) 5471 { 5472 int ret = 0; 5473 5474 /* 5475 * Kthreads which disallow setaffinity shouldn't be moved 5476 * to a new cpuset; we don't want to change their CPU 5477 * affinity and isolating such threads by their set of 5478 * allowed nodes is unnecessary. Thus, cpusets are not 5479 * applicable for such threads. This prevents checking for 5480 * success of set_cpus_allowed_ptr() on all attached tasks 5481 * before cpus_allowed may be changed. 5482 */ 5483 if (p->flags & PF_NO_SETAFFINITY) { 5484 ret = -EINVAL; 5485 goto out; 5486 } 5487 5488 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5489 cs_cpus_allowed)) 5490 ret = dl_task_can_attach(p, cs_cpus_allowed); 5491 5492 out: 5493 return ret; 5494 } 5495 5496 bool sched_smp_initialized __read_mostly; 5497 5498 #ifdef CONFIG_NUMA_BALANCING 5499 /* Migrate current task p to target_cpu */ 5500 int migrate_task_to(struct task_struct *p, int target_cpu) 5501 { 5502 struct migration_arg arg = { p, target_cpu }; 5503 int curr_cpu = task_cpu(p); 5504 5505 if (curr_cpu == target_cpu) 5506 return 0; 5507 5508 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5509 return -EINVAL; 5510 5511 /* TODO: This is not properly updating schedstats */ 5512 5513 trace_sched_move_numa(p, curr_cpu, target_cpu); 5514 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5515 } 5516 5517 /* 5518 * Requeue a task on a given node and accurately track the number of NUMA 5519 * tasks on the runqueues 5520 */ 5521 void sched_setnuma(struct task_struct *p, int nid) 5522 { 5523 bool queued, running; 5524 struct rq_flags rf; 5525 struct rq *rq; 5526 5527 rq = task_rq_lock(p, &rf); 5528 queued = task_on_rq_queued(p); 5529 running = task_current(rq, p); 5530 5531 if (queued) 5532 dequeue_task(rq, p, DEQUEUE_SAVE); 5533 if (running) 5534 put_prev_task(rq, p); 5535 5536 p->numa_preferred_nid = nid; 5537 5538 if (queued) 5539 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5540 if (running) 5541 set_curr_task(rq, p); 5542 task_rq_unlock(rq, p, &rf); 5543 } 5544 #endif /* CONFIG_NUMA_BALANCING */ 5545 5546 #ifdef CONFIG_HOTPLUG_CPU 5547 /* 5548 * Ensure that the idle task is using init_mm right before its CPU goes 5549 * offline. 5550 */ 5551 void idle_task_exit(void) 5552 { 5553 struct mm_struct *mm = current->active_mm; 5554 5555 BUG_ON(cpu_online(smp_processor_id())); 5556 5557 if (mm != &init_mm) { 5558 switch_mm(mm, &init_mm, current); 5559 current->active_mm = &init_mm; 5560 finish_arch_post_lock_switch(); 5561 } 5562 mmdrop(mm); 5563 } 5564 5565 /* 5566 * Since this CPU is going 'away' for a while, fold any nr_active delta 5567 * we might have. Assumes we're called after migrate_tasks() so that the 5568 * nr_active count is stable. We need to take the teardown thread which 5569 * is calling this into account, so we hand in adjust = 1 to the load 5570 * calculation. 5571 * 5572 * Also see the comment "Global load-average calculations". 5573 */ 5574 static void calc_load_migrate(struct rq *rq) 5575 { 5576 long delta = calc_load_fold_active(rq, 1); 5577 if (delta) 5578 atomic_long_add(delta, &calc_load_tasks); 5579 } 5580 5581 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5582 { 5583 } 5584 5585 static const struct sched_class fake_sched_class = { 5586 .put_prev_task = put_prev_task_fake, 5587 }; 5588 5589 static struct task_struct fake_task = { 5590 /* 5591 * Avoid pull_{rt,dl}_task() 5592 */ 5593 .prio = MAX_PRIO + 1, 5594 .sched_class = &fake_sched_class, 5595 }; 5596 5597 /* 5598 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5599 * try_to_wake_up()->select_task_rq(). 5600 * 5601 * Called with rq->lock held even though we'er in stop_machine() and 5602 * there's no concurrency possible, we hold the required locks anyway 5603 * because of lock validation efforts. 5604 */ 5605 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5606 { 5607 struct rq *rq = dead_rq; 5608 struct task_struct *next, *stop = rq->stop; 5609 struct rq_flags orf = *rf; 5610 int dest_cpu; 5611 5612 /* 5613 * Fudge the rq selection such that the below task selection loop 5614 * doesn't get stuck on the currently eligible stop task. 5615 * 5616 * We're currently inside stop_machine() and the rq is either stuck 5617 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5618 * either way we should never end up calling schedule() until we're 5619 * done here. 5620 */ 5621 rq->stop = NULL; 5622 5623 /* 5624 * put_prev_task() and pick_next_task() sched 5625 * class method both need to have an up-to-date 5626 * value of rq->clock[_task] 5627 */ 5628 update_rq_clock(rq); 5629 5630 for (;;) { 5631 /* 5632 * There's this thread running, bail when that's the only 5633 * remaining thread: 5634 */ 5635 if (rq->nr_running == 1) 5636 break; 5637 5638 /* 5639 * pick_next_task() assumes pinned rq->lock: 5640 */ 5641 next = pick_next_task(rq, &fake_task, rf); 5642 BUG_ON(!next); 5643 put_prev_task(rq, next); 5644 5645 /* 5646 * Rules for changing task_struct::cpus_allowed are holding 5647 * both pi_lock and rq->lock, such that holding either 5648 * stabilizes the mask. 5649 * 5650 * Drop rq->lock is not quite as disastrous as it usually is 5651 * because !cpu_active at this point, which means load-balance 5652 * will not interfere. Also, stop-machine. 5653 */ 5654 rq_unlock(rq, rf); 5655 raw_spin_lock(&next->pi_lock); 5656 rq_relock(rq, rf); 5657 5658 /* 5659 * Since we're inside stop-machine, _nothing_ should have 5660 * changed the task, WARN if weird stuff happened, because in 5661 * that case the above rq->lock drop is a fail too. 5662 */ 5663 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5664 raw_spin_unlock(&next->pi_lock); 5665 continue; 5666 } 5667 5668 /* Find suitable destination for @next, with force if needed. */ 5669 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5670 rq = __migrate_task(rq, rf, next, dest_cpu); 5671 if (rq != dead_rq) { 5672 rq_unlock(rq, rf); 5673 rq = dead_rq; 5674 *rf = orf; 5675 rq_relock(rq, rf); 5676 } 5677 raw_spin_unlock(&next->pi_lock); 5678 } 5679 5680 rq->stop = stop; 5681 } 5682 #endif /* CONFIG_HOTPLUG_CPU */ 5683 5684 void set_rq_online(struct rq *rq) 5685 { 5686 if (!rq->online) { 5687 const struct sched_class *class; 5688 5689 cpumask_set_cpu(rq->cpu, rq->rd->online); 5690 rq->online = 1; 5691 5692 for_each_class(class) { 5693 if (class->rq_online) 5694 class->rq_online(rq); 5695 } 5696 } 5697 } 5698 5699 void set_rq_offline(struct rq *rq) 5700 { 5701 if (rq->online) { 5702 const struct sched_class *class; 5703 5704 for_each_class(class) { 5705 if (class->rq_offline) 5706 class->rq_offline(rq); 5707 } 5708 5709 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5710 rq->online = 0; 5711 } 5712 } 5713 5714 static void set_cpu_rq_start_time(unsigned int cpu) 5715 { 5716 struct rq *rq = cpu_rq(cpu); 5717 5718 rq->age_stamp = sched_clock_cpu(cpu); 5719 } 5720 5721 /* 5722 * used to mark begin/end of suspend/resume: 5723 */ 5724 static int num_cpus_frozen; 5725 5726 /* 5727 * Update cpusets according to cpu_active mask. If cpusets are 5728 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5729 * around partition_sched_domains(). 5730 * 5731 * If we come here as part of a suspend/resume, don't touch cpusets because we 5732 * want to restore it back to its original state upon resume anyway. 5733 */ 5734 static void cpuset_cpu_active(void) 5735 { 5736 if (cpuhp_tasks_frozen) { 5737 /* 5738 * num_cpus_frozen tracks how many CPUs are involved in suspend 5739 * resume sequence. As long as this is not the last online 5740 * operation in the resume sequence, just build a single sched 5741 * domain, ignoring cpusets. 5742 */ 5743 partition_sched_domains(1, NULL, NULL); 5744 if (--num_cpus_frozen) 5745 return; 5746 /* 5747 * This is the last CPU online operation. So fall through and 5748 * restore the original sched domains by considering the 5749 * cpuset configurations. 5750 */ 5751 cpuset_force_rebuild(); 5752 } 5753 cpuset_update_active_cpus(); 5754 } 5755 5756 static int cpuset_cpu_inactive(unsigned int cpu) 5757 { 5758 if (!cpuhp_tasks_frozen) { 5759 if (dl_cpu_busy(cpu)) 5760 return -EBUSY; 5761 cpuset_update_active_cpus(); 5762 } else { 5763 num_cpus_frozen++; 5764 partition_sched_domains(1, NULL, NULL); 5765 } 5766 return 0; 5767 } 5768 5769 int sched_cpu_activate(unsigned int cpu) 5770 { 5771 struct rq *rq = cpu_rq(cpu); 5772 struct rq_flags rf; 5773 5774 set_cpu_active(cpu, true); 5775 5776 if (sched_smp_initialized) { 5777 sched_domains_numa_masks_set(cpu); 5778 cpuset_cpu_active(); 5779 } 5780 5781 /* 5782 * Put the rq online, if not already. This happens: 5783 * 5784 * 1) In the early boot process, because we build the real domains 5785 * after all CPUs have been brought up. 5786 * 5787 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5788 * domains. 5789 */ 5790 rq_lock_irqsave(rq, &rf); 5791 if (rq->rd) { 5792 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5793 set_rq_online(rq); 5794 } 5795 rq_unlock_irqrestore(rq, &rf); 5796 5797 update_max_interval(); 5798 5799 return 0; 5800 } 5801 5802 int sched_cpu_deactivate(unsigned int cpu) 5803 { 5804 int ret; 5805 5806 set_cpu_active(cpu, false); 5807 /* 5808 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5809 * users of this state to go away such that all new such users will 5810 * observe it. 5811 * 5812 * Do sync before park smpboot threads to take care the rcu boost case. 5813 */ 5814 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5815 5816 if (!sched_smp_initialized) 5817 return 0; 5818 5819 ret = cpuset_cpu_inactive(cpu); 5820 if (ret) { 5821 set_cpu_active(cpu, true); 5822 return ret; 5823 } 5824 sched_domains_numa_masks_clear(cpu); 5825 return 0; 5826 } 5827 5828 static void sched_rq_cpu_starting(unsigned int cpu) 5829 { 5830 struct rq *rq = cpu_rq(cpu); 5831 5832 rq->calc_load_update = calc_load_update; 5833 update_max_interval(); 5834 } 5835 5836 int sched_cpu_starting(unsigned int cpu) 5837 { 5838 set_cpu_rq_start_time(cpu); 5839 sched_rq_cpu_starting(cpu); 5840 sched_tick_start(cpu); 5841 return 0; 5842 } 5843 5844 #ifdef CONFIG_HOTPLUG_CPU 5845 int sched_cpu_dying(unsigned int cpu) 5846 { 5847 struct rq *rq = cpu_rq(cpu); 5848 struct rq_flags rf; 5849 5850 /* Handle pending wakeups and then migrate everything off */ 5851 sched_ttwu_pending(); 5852 sched_tick_stop(cpu); 5853 5854 rq_lock_irqsave(rq, &rf); 5855 if (rq->rd) { 5856 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5857 set_rq_offline(rq); 5858 } 5859 migrate_tasks(rq, &rf); 5860 BUG_ON(rq->nr_running != 1); 5861 rq_unlock_irqrestore(rq, &rf); 5862 5863 calc_load_migrate(rq); 5864 update_max_interval(); 5865 nohz_balance_exit_idle(rq); 5866 hrtick_clear(rq); 5867 return 0; 5868 } 5869 #endif 5870 5871 #ifdef CONFIG_SCHED_SMT 5872 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5873 5874 static void sched_init_smt(void) 5875 { 5876 /* 5877 * We've enumerated all CPUs and will assume that if any CPU 5878 * has SMT siblings, CPU0 will too. 5879 */ 5880 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5881 static_branch_enable(&sched_smt_present); 5882 } 5883 #else 5884 static inline void sched_init_smt(void) { } 5885 #endif 5886 5887 void __init sched_init_smp(void) 5888 { 5889 sched_init_numa(); 5890 5891 /* 5892 * There's no userspace yet to cause hotplug operations; hence all the 5893 * CPU masks are stable and all blatant races in the below code cannot 5894 * happen. 5895 */ 5896 mutex_lock(&sched_domains_mutex); 5897 sched_init_domains(cpu_active_mask); 5898 mutex_unlock(&sched_domains_mutex); 5899 5900 /* Move init over to a non-isolated CPU */ 5901 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5902 BUG(); 5903 sched_init_granularity(); 5904 5905 init_sched_rt_class(); 5906 init_sched_dl_class(); 5907 5908 sched_init_smt(); 5909 5910 sched_smp_initialized = true; 5911 } 5912 5913 static int __init migration_init(void) 5914 { 5915 sched_rq_cpu_starting(smp_processor_id()); 5916 return 0; 5917 } 5918 early_initcall(migration_init); 5919 5920 #else 5921 void __init sched_init_smp(void) 5922 { 5923 sched_init_granularity(); 5924 } 5925 #endif /* CONFIG_SMP */ 5926 5927 int in_sched_functions(unsigned long addr) 5928 { 5929 return in_lock_functions(addr) || 5930 (addr >= (unsigned long)__sched_text_start 5931 && addr < (unsigned long)__sched_text_end); 5932 } 5933 5934 #ifdef CONFIG_CGROUP_SCHED 5935 /* 5936 * Default task group. 5937 * Every task in system belongs to this group at bootup. 5938 */ 5939 struct task_group root_task_group; 5940 LIST_HEAD(task_groups); 5941 5942 /* Cacheline aligned slab cache for task_group */ 5943 static struct kmem_cache *task_group_cache __read_mostly; 5944 #endif 5945 5946 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5947 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5948 5949 void __init sched_init(void) 5950 { 5951 int i, j; 5952 unsigned long alloc_size = 0, ptr; 5953 5954 sched_clock_init(); 5955 wait_bit_init(); 5956 5957 #ifdef CONFIG_FAIR_GROUP_SCHED 5958 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5959 #endif 5960 #ifdef CONFIG_RT_GROUP_SCHED 5961 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5962 #endif 5963 if (alloc_size) { 5964 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5965 5966 #ifdef CONFIG_FAIR_GROUP_SCHED 5967 root_task_group.se = (struct sched_entity **)ptr; 5968 ptr += nr_cpu_ids * sizeof(void **); 5969 5970 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5971 ptr += nr_cpu_ids * sizeof(void **); 5972 5973 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5974 #ifdef CONFIG_RT_GROUP_SCHED 5975 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5976 ptr += nr_cpu_ids * sizeof(void **); 5977 5978 root_task_group.rt_rq = (struct rt_rq **)ptr; 5979 ptr += nr_cpu_ids * sizeof(void **); 5980 5981 #endif /* CONFIG_RT_GROUP_SCHED */ 5982 } 5983 #ifdef CONFIG_CPUMASK_OFFSTACK 5984 for_each_possible_cpu(i) { 5985 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5986 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5987 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5988 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5989 } 5990 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5991 5992 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5993 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5994 5995 #ifdef CONFIG_SMP 5996 init_defrootdomain(); 5997 #endif 5998 5999 #ifdef CONFIG_RT_GROUP_SCHED 6000 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6001 global_rt_period(), global_rt_runtime()); 6002 #endif /* CONFIG_RT_GROUP_SCHED */ 6003 6004 #ifdef CONFIG_CGROUP_SCHED 6005 task_group_cache = KMEM_CACHE(task_group, 0); 6006 6007 list_add(&root_task_group.list, &task_groups); 6008 INIT_LIST_HEAD(&root_task_group.children); 6009 INIT_LIST_HEAD(&root_task_group.siblings); 6010 autogroup_init(&init_task); 6011 #endif /* CONFIG_CGROUP_SCHED */ 6012 6013 for_each_possible_cpu(i) { 6014 struct rq *rq; 6015 6016 rq = cpu_rq(i); 6017 raw_spin_lock_init(&rq->lock); 6018 rq->nr_running = 0; 6019 rq->calc_load_active = 0; 6020 rq->calc_load_update = jiffies + LOAD_FREQ; 6021 init_cfs_rq(&rq->cfs); 6022 init_rt_rq(&rq->rt); 6023 init_dl_rq(&rq->dl); 6024 #ifdef CONFIG_FAIR_GROUP_SCHED 6025 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6026 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6027 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6028 /* 6029 * How much CPU bandwidth does root_task_group get? 6030 * 6031 * In case of task-groups formed thr' the cgroup filesystem, it 6032 * gets 100% of the CPU resources in the system. This overall 6033 * system CPU resource is divided among the tasks of 6034 * root_task_group and its child task-groups in a fair manner, 6035 * based on each entity's (task or task-group's) weight 6036 * (se->load.weight). 6037 * 6038 * In other words, if root_task_group has 10 tasks of weight 6039 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6040 * then A0's share of the CPU resource is: 6041 * 6042 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6043 * 6044 * We achieve this by letting root_task_group's tasks sit 6045 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6046 */ 6047 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6048 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6049 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6050 6051 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6052 #ifdef CONFIG_RT_GROUP_SCHED 6053 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6054 #endif 6055 6056 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6057 rq->cpu_load[j] = 0; 6058 6059 #ifdef CONFIG_SMP 6060 rq->sd = NULL; 6061 rq->rd = NULL; 6062 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6063 rq->balance_callback = NULL; 6064 rq->active_balance = 0; 6065 rq->next_balance = jiffies; 6066 rq->push_cpu = 0; 6067 rq->cpu = i; 6068 rq->online = 0; 6069 rq->idle_stamp = 0; 6070 rq->avg_idle = 2*sysctl_sched_migration_cost; 6071 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6072 6073 INIT_LIST_HEAD(&rq->cfs_tasks); 6074 6075 rq_attach_root(rq, &def_root_domain); 6076 #ifdef CONFIG_NO_HZ_COMMON 6077 rq->last_load_update_tick = jiffies; 6078 rq->last_blocked_load_update_tick = jiffies; 6079 atomic_set(&rq->nohz_flags, 0); 6080 #endif 6081 #endif /* CONFIG_SMP */ 6082 hrtick_rq_init(rq); 6083 atomic_set(&rq->nr_iowait, 0); 6084 } 6085 6086 set_load_weight(&init_task, false); 6087 6088 /* 6089 * The boot idle thread does lazy MMU switching as well: 6090 */ 6091 mmgrab(&init_mm); 6092 enter_lazy_tlb(&init_mm, current); 6093 6094 /* 6095 * Make us the idle thread. Technically, schedule() should not be 6096 * called from this thread, however somewhere below it might be, 6097 * but because we are the idle thread, we just pick up running again 6098 * when this runqueue becomes "idle". 6099 */ 6100 init_idle(current, smp_processor_id()); 6101 6102 calc_load_update = jiffies + LOAD_FREQ; 6103 6104 #ifdef CONFIG_SMP 6105 idle_thread_set_boot_cpu(); 6106 set_cpu_rq_start_time(smp_processor_id()); 6107 #endif 6108 init_sched_fair_class(); 6109 6110 init_schedstats(); 6111 6112 scheduler_running = 1; 6113 } 6114 6115 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6116 static inline int preempt_count_equals(int preempt_offset) 6117 { 6118 int nested = preempt_count() + rcu_preempt_depth(); 6119 6120 return (nested == preempt_offset); 6121 } 6122 6123 void __might_sleep(const char *file, int line, int preempt_offset) 6124 { 6125 /* 6126 * Blocking primitives will set (and therefore destroy) current->state, 6127 * since we will exit with TASK_RUNNING make sure we enter with it, 6128 * otherwise we will destroy state. 6129 */ 6130 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6131 "do not call blocking ops when !TASK_RUNNING; " 6132 "state=%lx set at [<%p>] %pS\n", 6133 current->state, 6134 (void *)current->task_state_change, 6135 (void *)current->task_state_change); 6136 6137 ___might_sleep(file, line, preempt_offset); 6138 } 6139 EXPORT_SYMBOL(__might_sleep); 6140 6141 void ___might_sleep(const char *file, int line, int preempt_offset) 6142 { 6143 /* Ratelimiting timestamp: */ 6144 static unsigned long prev_jiffy; 6145 6146 unsigned long preempt_disable_ip; 6147 6148 /* WARN_ON_ONCE() by default, no rate limit required: */ 6149 rcu_sleep_check(); 6150 6151 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6152 !is_idle_task(current)) || 6153 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6154 oops_in_progress) 6155 return; 6156 6157 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6158 return; 6159 prev_jiffy = jiffies; 6160 6161 /* Save this before calling printk(), since that will clobber it: */ 6162 preempt_disable_ip = get_preempt_disable_ip(current); 6163 6164 printk(KERN_ERR 6165 "BUG: sleeping function called from invalid context at %s:%d\n", 6166 file, line); 6167 printk(KERN_ERR 6168 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6169 in_atomic(), irqs_disabled(), 6170 current->pid, current->comm); 6171 6172 if (task_stack_end_corrupted(current)) 6173 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6174 6175 debug_show_held_locks(current); 6176 if (irqs_disabled()) 6177 print_irqtrace_events(current); 6178 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6179 && !preempt_count_equals(preempt_offset)) { 6180 pr_err("Preemption disabled at:"); 6181 print_ip_sym(preempt_disable_ip); 6182 pr_cont("\n"); 6183 } 6184 dump_stack(); 6185 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6186 } 6187 EXPORT_SYMBOL(___might_sleep); 6188 #endif 6189 6190 #ifdef CONFIG_MAGIC_SYSRQ 6191 void normalize_rt_tasks(void) 6192 { 6193 struct task_struct *g, *p; 6194 struct sched_attr attr = { 6195 .sched_policy = SCHED_NORMAL, 6196 }; 6197 6198 read_lock(&tasklist_lock); 6199 for_each_process_thread(g, p) { 6200 /* 6201 * Only normalize user tasks: 6202 */ 6203 if (p->flags & PF_KTHREAD) 6204 continue; 6205 6206 p->se.exec_start = 0; 6207 schedstat_set(p->se.statistics.wait_start, 0); 6208 schedstat_set(p->se.statistics.sleep_start, 0); 6209 schedstat_set(p->se.statistics.block_start, 0); 6210 6211 if (!dl_task(p) && !rt_task(p)) { 6212 /* 6213 * Renice negative nice level userspace 6214 * tasks back to 0: 6215 */ 6216 if (task_nice(p) < 0) 6217 set_user_nice(p, 0); 6218 continue; 6219 } 6220 6221 __sched_setscheduler(p, &attr, false, false); 6222 } 6223 read_unlock(&tasklist_lock); 6224 } 6225 6226 #endif /* CONFIG_MAGIC_SYSRQ */ 6227 6228 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6229 /* 6230 * These functions are only useful for the IA64 MCA handling, or kdb. 6231 * 6232 * They can only be called when the whole system has been 6233 * stopped - every CPU needs to be quiescent, and no scheduling 6234 * activity can take place. Using them for anything else would 6235 * be a serious bug, and as a result, they aren't even visible 6236 * under any other configuration. 6237 */ 6238 6239 /** 6240 * curr_task - return the current task for a given CPU. 6241 * @cpu: the processor in question. 6242 * 6243 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6244 * 6245 * Return: The current task for @cpu. 6246 */ 6247 struct task_struct *curr_task(int cpu) 6248 { 6249 return cpu_curr(cpu); 6250 } 6251 6252 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6253 6254 #ifdef CONFIG_IA64 6255 /** 6256 * set_curr_task - set the current task for a given CPU. 6257 * @cpu: the processor in question. 6258 * @p: the task pointer to set. 6259 * 6260 * Description: This function must only be used when non-maskable interrupts 6261 * are serviced on a separate stack. It allows the architecture to switch the 6262 * notion of the current task on a CPU in a non-blocking manner. This function 6263 * must be called with all CPU's synchronized, and interrupts disabled, the 6264 * and caller must save the original value of the current task (see 6265 * curr_task() above) and restore that value before reenabling interrupts and 6266 * re-starting the system. 6267 * 6268 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6269 */ 6270 void ia64_set_curr_task(int cpu, struct task_struct *p) 6271 { 6272 cpu_curr(cpu) = p; 6273 } 6274 6275 #endif 6276 6277 #ifdef CONFIG_CGROUP_SCHED 6278 /* task_group_lock serializes the addition/removal of task groups */ 6279 static DEFINE_SPINLOCK(task_group_lock); 6280 6281 static void sched_free_group(struct task_group *tg) 6282 { 6283 free_fair_sched_group(tg); 6284 free_rt_sched_group(tg); 6285 autogroup_free(tg); 6286 kmem_cache_free(task_group_cache, tg); 6287 } 6288 6289 /* allocate runqueue etc for a new task group */ 6290 struct task_group *sched_create_group(struct task_group *parent) 6291 { 6292 struct task_group *tg; 6293 6294 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6295 if (!tg) 6296 return ERR_PTR(-ENOMEM); 6297 6298 if (!alloc_fair_sched_group(tg, parent)) 6299 goto err; 6300 6301 if (!alloc_rt_sched_group(tg, parent)) 6302 goto err; 6303 6304 return tg; 6305 6306 err: 6307 sched_free_group(tg); 6308 return ERR_PTR(-ENOMEM); 6309 } 6310 6311 void sched_online_group(struct task_group *tg, struct task_group *parent) 6312 { 6313 unsigned long flags; 6314 6315 spin_lock_irqsave(&task_group_lock, flags); 6316 list_add_rcu(&tg->list, &task_groups); 6317 6318 /* Root should already exist: */ 6319 WARN_ON(!parent); 6320 6321 tg->parent = parent; 6322 INIT_LIST_HEAD(&tg->children); 6323 list_add_rcu(&tg->siblings, &parent->children); 6324 spin_unlock_irqrestore(&task_group_lock, flags); 6325 6326 online_fair_sched_group(tg); 6327 } 6328 6329 /* rcu callback to free various structures associated with a task group */ 6330 static void sched_free_group_rcu(struct rcu_head *rhp) 6331 { 6332 /* Now it should be safe to free those cfs_rqs: */ 6333 sched_free_group(container_of(rhp, struct task_group, rcu)); 6334 } 6335 6336 void sched_destroy_group(struct task_group *tg) 6337 { 6338 /* Wait for possible concurrent references to cfs_rqs complete: */ 6339 call_rcu(&tg->rcu, sched_free_group_rcu); 6340 } 6341 6342 void sched_offline_group(struct task_group *tg) 6343 { 6344 unsigned long flags; 6345 6346 /* End participation in shares distribution: */ 6347 unregister_fair_sched_group(tg); 6348 6349 spin_lock_irqsave(&task_group_lock, flags); 6350 list_del_rcu(&tg->list); 6351 list_del_rcu(&tg->siblings); 6352 spin_unlock_irqrestore(&task_group_lock, flags); 6353 } 6354 6355 static void sched_change_group(struct task_struct *tsk, int type) 6356 { 6357 struct task_group *tg; 6358 6359 /* 6360 * All callers are synchronized by task_rq_lock(); we do not use RCU 6361 * which is pointless here. Thus, we pass "true" to task_css_check() 6362 * to prevent lockdep warnings. 6363 */ 6364 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6365 struct task_group, css); 6366 tg = autogroup_task_group(tsk, tg); 6367 tsk->sched_task_group = tg; 6368 6369 #ifdef CONFIG_FAIR_GROUP_SCHED 6370 if (tsk->sched_class->task_change_group) 6371 tsk->sched_class->task_change_group(tsk, type); 6372 else 6373 #endif 6374 set_task_rq(tsk, task_cpu(tsk)); 6375 } 6376 6377 /* 6378 * Change task's runqueue when it moves between groups. 6379 * 6380 * The caller of this function should have put the task in its new group by 6381 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6382 * its new group. 6383 */ 6384 void sched_move_task(struct task_struct *tsk) 6385 { 6386 int queued, running, queue_flags = 6387 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6388 struct rq_flags rf; 6389 struct rq *rq; 6390 6391 rq = task_rq_lock(tsk, &rf); 6392 update_rq_clock(rq); 6393 6394 running = task_current(rq, tsk); 6395 queued = task_on_rq_queued(tsk); 6396 6397 if (queued) 6398 dequeue_task(rq, tsk, queue_flags); 6399 if (running) 6400 put_prev_task(rq, tsk); 6401 6402 sched_change_group(tsk, TASK_MOVE_GROUP); 6403 6404 if (queued) 6405 enqueue_task(rq, tsk, queue_flags); 6406 if (running) 6407 set_curr_task(rq, tsk); 6408 6409 task_rq_unlock(rq, tsk, &rf); 6410 } 6411 6412 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6413 { 6414 return css ? container_of(css, struct task_group, css) : NULL; 6415 } 6416 6417 static struct cgroup_subsys_state * 6418 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6419 { 6420 struct task_group *parent = css_tg(parent_css); 6421 struct task_group *tg; 6422 6423 if (!parent) { 6424 /* This is early initialization for the top cgroup */ 6425 return &root_task_group.css; 6426 } 6427 6428 tg = sched_create_group(parent); 6429 if (IS_ERR(tg)) 6430 return ERR_PTR(-ENOMEM); 6431 6432 return &tg->css; 6433 } 6434 6435 /* Expose task group only after completing cgroup initialization */ 6436 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6437 { 6438 struct task_group *tg = css_tg(css); 6439 struct task_group *parent = css_tg(css->parent); 6440 6441 if (parent) 6442 sched_online_group(tg, parent); 6443 return 0; 6444 } 6445 6446 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6447 { 6448 struct task_group *tg = css_tg(css); 6449 6450 sched_offline_group(tg); 6451 } 6452 6453 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6454 { 6455 struct task_group *tg = css_tg(css); 6456 6457 /* 6458 * Relies on the RCU grace period between css_released() and this. 6459 */ 6460 sched_free_group(tg); 6461 } 6462 6463 /* 6464 * This is called before wake_up_new_task(), therefore we really only 6465 * have to set its group bits, all the other stuff does not apply. 6466 */ 6467 static void cpu_cgroup_fork(struct task_struct *task) 6468 { 6469 struct rq_flags rf; 6470 struct rq *rq; 6471 6472 rq = task_rq_lock(task, &rf); 6473 6474 update_rq_clock(rq); 6475 sched_change_group(task, TASK_SET_GROUP); 6476 6477 task_rq_unlock(rq, task, &rf); 6478 } 6479 6480 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6481 { 6482 struct task_struct *task; 6483 struct cgroup_subsys_state *css; 6484 int ret = 0; 6485 6486 cgroup_taskset_for_each(task, css, tset) { 6487 #ifdef CONFIG_RT_GROUP_SCHED 6488 if (!sched_rt_can_attach(css_tg(css), task)) 6489 return -EINVAL; 6490 #else 6491 /* We don't support RT-tasks being in separate groups */ 6492 if (task->sched_class != &fair_sched_class) 6493 return -EINVAL; 6494 #endif 6495 /* 6496 * Serialize against wake_up_new_task() such that if its 6497 * running, we're sure to observe its full state. 6498 */ 6499 raw_spin_lock_irq(&task->pi_lock); 6500 /* 6501 * Avoid calling sched_move_task() before wake_up_new_task() 6502 * has happened. This would lead to problems with PELT, due to 6503 * move wanting to detach+attach while we're not attached yet. 6504 */ 6505 if (task->state == TASK_NEW) 6506 ret = -EINVAL; 6507 raw_spin_unlock_irq(&task->pi_lock); 6508 6509 if (ret) 6510 break; 6511 } 6512 return ret; 6513 } 6514 6515 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6516 { 6517 struct task_struct *task; 6518 struct cgroup_subsys_state *css; 6519 6520 cgroup_taskset_for_each(task, css, tset) 6521 sched_move_task(task); 6522 } 6523 6524 #ifdef CONFIG_FAIR_GROUP_SCHED 6525 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6526 struct cftype *cftype, u64 shareval) 6527 { 6528 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6529 } 6530 6531 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6532 struct cftype *cft) 6533 { 6534 struct task_group *tg = css_tg(css); 6535 6536 return (u64) scale_load_down(tg->shares); 6537 } 6538 6539 #ifdef CONFIG_CFS_BANDWIDTH 6540 static DEFINE_MUTEX(cfs_constraints_mutex); 6541 6542 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6543 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6544 6545 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6546 6547 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6548 { 6549 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6550 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6551 6552 if (tg == &root_task_group) 6553 return -EINVAL; 6554 6555 /* 6556 * Ensure we have at some amount of bandwidth every period. This is 6557 * to prevent reaching a state of large arrears when throttled via 6558 * entity_tick() resulting in prolonged exit starvation. 6559 */ 6560 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6561 return -EINVAL; 6562 6563 /* 6564 * Likewise, bound things on the otherside by preventing insane quota 6565 * periods. This also allows us to normalize in computing quota 6566 * feasibility. 6567 */ 6568 if (period > max_cfs_quota_period) 6569 return -EINVAL; 6570 6571 /* 6572 * Prevent race between setting of cfs_rq->runtime_enabled and 6573 * unthrottle_offline_cfs_rqs(). 6574 */ 6575 get_online_cpus(); 6576 mutex_lock(&cfs_constraints_mutex); 6577 ret = __cfs_schedulable(tg, period, quota); 6578 if (ret) 6579 goto out_unlock; 6580 6581 runtime_enabled = quota != RUNTIME_INF; 6582 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6583 /* 6584 * If we need to toggle cfs_bandwidth_used, off->on must occur 6585 * before making related changes, and on->off must occur afterwards 6586 */ 6587 if (runtime_enabled && !runtime_was_enabled) 6588 cfs_bandwidth_usage_inc(); 6589 raw_spin_lock_irq(&cfs_b->lock); 6590 cfs_b->period = ns_to_ktime(period); 6591 cfs_b->quota = quota; 6592 6593 __refill_cfs_bandwidth_runtime(cfs_b); 6594 6595 /* Restart the period timer (if active) to handle new period expiry: */ 6596 if (runtime_enabled) 6597 start_cfs_bandwidth(cfs_b); 6598 6599 raw_spin_unlock_irq(&cfs_b->lock); 6600 6601 for_each_online_cpu(i) { 6602 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6603 struct rq *rq = cfs_rq->rq; 6604 struct rq_flags rf; 6605 6606 rq_lock_irq(rq, &rf); 6607 cfs_rq->runtime_enabled = runtime_enabled; 6608 cfs_rq->runtime_remaining = 0; 6609 6610 if (cfs_rq->throttled) 6611 unthrottle_cfs_rq(cfs_rq); 6612 rq_unlock_irq(rq, &rf); 6613 } 6614 if (runtime_was_enabled && !runtime_enabled) 6615 cfs_bandwidth_usage_dec(); 6616 out_unlock: 6617 mutex_unlock(&cfs_constraints_mutex); 6618 put_online_cpus(); 6619 6620 return ret; 6621 } 6622 6623 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6624 { 6625 u64 quota, period; 6626 6627 period = ktime_to_ns(tg->cfs_bandwidth.period); 6628 if (cfs_quota_us < 0) 6629 quota = RUNTIME_INF; 6630 else 6631 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6632 6633 return tg_set_cfs_bandwidth(tg, period, quota); 6634 } 6635 6636 long tg_get_cfs_quota(struct task_group *tg) 6637 { 6638 u64 quota_us; 6639 6640 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6641 return -1; 6642 6643 quota_us = tg->cfs_bandwidth.quota; 6644 do_div(quota_us, NSEC_PER_USEC); 6645 6646 return quota_us; 6647 } 6648 6649 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6650 { 6651 u64 quota, period; 6652 6653 period = (u64)cfs_period_us * NSEC_PER_USEC; 6654 quota = tg->cfs_bandwidth.quota; 6655 6656 return tg_set_cfs_bandwidth(tg, period, quota); 6657 } 6658 6659 long tg_get_cfs_period(struct task_group *tg) 6660 { 6661 u64 cfs_period_us; 6662 6663 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6664 do_div(cfs_period_us, NSEC_PER_USEC); 6665 6666 return cfs_period_us; 6667 } 6668 6669 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6670 struct cftype *cft) 6671 { 6672 return tg_get_cfs_quota(css_tg(css)); 6673 } 6674 6675 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6676 struct cftype *cftype, s64 cfs_quota_us) 6677 { 6678 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6679 } 6680 6681 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6682 struct cftype *cft) 6683 { 6684 return tg_get_cfs_period(css_tg(css)); 6685 } 6686 6687 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6688 struct cftype *cftype, u64 cfs_period_us) 6689 { 6690 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6691 } 6692 6693 struct cfs_schedulable_data { 6694 struct task_group *tg; 6695 u64 period, quota; 6696 }; 6697 6698 /* 6699 * normalize group quota/period to be quota/max_period 6700 * note: units are usecs 6701 */ 6702 static u64 normalize_cfs_quota(struct task_group *tg, 6703 struct cfs_schedulable_data *d) 6704 { 6705 u64 quota, period; 6706 6707 if (tg == d->tg) { 6708 period = d->period; 6709 quota = d->quota; 6710 } else { 6711 period = tg_get_cfs_period(tg); 6712 quota = tg_get_cfs_quota(tg); 6713 } 6714 6715 /* note: these should typically be equivalent */ 6716 if (quota == RUNTIME_INF || quota == -1) 6717 return RUNTIME_INF; 6718 6719 return to_ratio(period, quota); 6720 } 6721 6722 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6723 { 6724 struct cfs_schedulable_data *d = data; 6725 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6726 s64 quota = 0, parent_quota = -1; 6727 6728 if (!tg->parent) { 6729 quota = RUNTIME_INF; 6730 } else { 6731 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6732 6733 quota = normalize_cfs_quota(tg, d); 6734 parent_quota = parent_b->hierarchical_quota; 6735 6736 /* 6737 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6738 * always take the min. On cgroup1, only inherit when no 6739 * limit is set: 6740 */ 6741 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6742 quota = min(quota, parent_quota); 6743 } else { 6744 if (quota == RUNTIME_INF) 6745 quota = parent_quota; 6746 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6747 return -EINVAL; 6748 } 6749 } 6750 cfs_b->hierarchical_quota = quota; 6751 6752 return 0; 6753 } 6754 6755 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6756 { 6757 int ret; 6758 struct cfs_schedulable_data data = { 6759 .tg = tg, 6760 .period = period, 6761 .quota = quota, 6762 }; 6763 6764 if (quota != RUNTIME_INF) { 6765 do_div(data.period, NSEC_PER_USEC); 6766 do_div(data.quota, NSEC_PER_USEC); 6767 } 6768 6769 rcu_read_lock(); 6770 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6771 rcu_read_unlock(); 6772 6773 return ret; 6774 } 6775 6776 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6777 { 6778 struct task_group *tg = css_tg(seq_css(sf)); 6779 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6780 6781 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6782 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6783 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6784 6785 return 0; 6786 } 6787 #endif /* CONFIG_CFS_BANDWIDTH */ 6788 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6789 6790 #ifdef CONFIG_RT_GROUP_SCHED 6791 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6792 struct cftype *cft, s64 val) 6793 { 6794 return sched_group_set_rt_runtime(css_tg(css), val); 6795 } 6796 6797 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6798 struct cftype *cft) 6799 { 6800 return sched_group_rt_runtime(css_tg(css)); 6801 } 6802 6803 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6804 struct cftype *cftype, u64 rt_period_us) 6805 { 6806 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6807 } 6808 6809 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6810 struct cftype *cft) 6811 { 6812 return sched_group_rt_period(css_tg(css)); 6813 } 6814 #endif /* CONFIG_RT_GROUP_SCHED */ 6815 6816 static struct cftype cpu_legacy_files[] = { 6817 #ifdef CONFIG_FAIR_GROUP_SCHED 6818 { 6819 .name = "shares", 6820 .read_u64 = cpu_shares_read_u64, 6821 .write_u64 = cpu_shares_write_u64, 6822 }, 6823 #endif 6824 #ifdef CONFIG_CFS_BANDWIDTH 6825 { 6826 .name = "cfs_quota_us", 6827 .read_s64 = cpu_cfs_quota_read_s64, 6828 .write_s64 = cpu_cfs_quota_write_s64, 6829 }, 6830 { 6831 .name = "cfs_period_us", 6832 .read_u64 = cpu_cfs_period_read_u64, 6833 .write_u64 = cpu_cfs_period_write_u64, 6834 }, 6835 { 6836 .name = "stat", 6837 .seq_show = cpu_cfs_stat_show, 6838 }, 6839 #endif 6840 #ifdef CONFIG_RT_GROUP_SCHED 6841 { 6842 .name = "rt_runtime_us", 6843 .read_s64 = cpu_rt_runtime_read, 6844 .write_s64 = cpu_rt_runtime_write, 6845 }, 6846 { 6847 .name = "rt_period_us", 6848 .read_u64 = cpu_rt_period_read_uint, 6849 .write_u64 = cpu_rt_period_write_uint, 6850 }, 6851 #endif 6852 { } /* Terminate */ 6853 }; 6854 6855 static int cpu_extra_stat_show(struct seq_file *sf, 6856 struct cgroup_subsys_state *css) 6857 { 6858 #ifdef CONFIG_CFS_BANDWIDTH 6859 { 6860 struct task_group *tg = css_tg(css); 6861 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6862 u64 throttled_usec; 6863 6864 throttled_usec = cfs_b->throttled_time; 6865 do_div(throttled_usec, NSEC_PER_USEC); 6866 6867 seq_printf(sf, "nr_periods %d\n" 6868 "nr_throttled %d\n" 6869 "throttled_usec %llu\n", 6870 cfs_b->nr_periods, cfs_b->nr_throttled, 6871 throttled_usec); 6872 } 6873 #endif 6874 return 0; 6875 } 6876 6877 #ifdef CONFIG_FAIR_GROUP_SCHED 6878 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6879 struct cftype *cft) 6880 { 6881 struct task_group *tg = css_tg(css); 6882 u64 weight = scale_load_down(tg->shares); 6883 6884 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6885 } 6886 6887 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6888 struct cftype *cft, u64 weight) 6889 { 6890 /* 6891 * cgroup weight knobs should use the common MIN, DFL and MAX 6892 * values which are 1, 100 and 10000 respectively. While it loses 6893 * a bit of range on both ends, it maps pretty well onto the shares 6894 * value used by scheduler and the round-trip conversions preserve 6895 * the original value over the entire range. 6896 */ 6897 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6898 return -ERANGE; 6899 6900 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6901 6902 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6903 } 6904 6905 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6906 struct cftype *cft) 6907 { 6908 unsigned long weight = scale_load_down(css_tg(css)->shares); 6909 int last_delta = INT_MAX; 6910 int prio, delta; 6911 6912 /* find the closest nice value to the current weight */ 6913 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6914 delta = abs(sched_prio_to_weight[prio] - weight); 6915 if (delta >= last_delta) 6916 break; 6917 last_delta = delta; 6918 } 6919 6920 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6921 } 6922 6923 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6924 struct cftype *cft, s64 nice) 6925 { 6926 unsigned long weight; 6927 int idx; 6928 6929 if (nice < MIN_NICE || nice > MAX_NICE) 6930 return -ERANGE; 6931 6932 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6933 idx = array_index_nospec(idx, 40); 6934 weight = sched_prio_to_weight[idx]; 6935 6936 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6937 } 6938 #endif 6939 6940 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6941 long period, long quota) 6942 { 6943 if (quota < 0) 6944 seq_puts(sf, "max"); 6945 else 6946 seq_printf(sf, "%ld", quota); 6947 6948 seq_printf(sf, " %ld\n", period); 6949 } 6950 6951 /* caller should put the current value in *@periodp before calling */ 6952 static int __maybe_unused cpu_period_quota_parse(char *buf, 6953 u64 *periodp, u64 *quotap) 6954 { 6955 char tok[21]; /* U64_MAX */ 6956 6957 if (!sscanf(buf, "%s %llu", tok, periodp)) 6958 return -EINVAL; 6959 6960 *periodp *= NSEC_PER_USEC; 6961 6962 if (sscanf(tok, "%llu", quotap)) 6963 *quotap *= NSEC_PER_USEC; 6964 else if (!strcmp(tok, "max")) 6965 *quotap = RUNTIME_INF; 6966 else 6967 return -EINVAL; 6968 6969 return 0; 6970 } 6971 6972 #ifdef CONFIG_CFS_BANDWIDTH 6973 static int cpu_max_show(struct seq_file *sf, void *v) 6974 { 6975 struct task_group *tg = css_tg(seq_css(sf)); 6976 6977 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6978 return 0; 6979 } 6980 6981 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6982 char *buf, size_t nbytes, loff_t off) 6983 { 6984 struct task_group *tg = css_tg(of_css(of)); 6985 u64 period = tg_get_cfs_period(tg); 6986 u64 quota; 6987 int ret; 6988 6989 ret = cpu_period_quota_parse(buf, &period, "a); 6990 if (!ret) 6991 ret = tg_set_cfs_bandwidth(tg, period, quota); 6992 return ret ?: nbytes; 6993 } 6994 #endif 6995 6996 static struct cftype cpu_files[] = { 6997 #ifdef CONFIG_FAIR_GROUP_SCHED 6998 { 6999 .name = "weight", 7000 .flags = CFTYPE_NOT_ON_ROOT, 7001 .read_u64 = cpu_weight_read_u64, 7002 .write_u64 = cpu_weight_write_u64, 7003 }, 7004 { 7005 .name = "weight.nice", 7006 .flags = CFTYPE_NOT_ON_ROOT, 7007 .read_s64 = cpu_weight_nice_read_s64, 7008 .write_s64 = cpu_weight_nice_write_s64, 7009 }, 7010 #endif 7011 #ifdef CONFIG_CFS_BANDWIDTH 7012 { 7013 .name = "max", 7014 .flags = CFTYPE_NOT_ON_ROOT, 7015 .seq_show = cpu_max_show, 7016 .write = cpu_max_write, 7017 }, 7018 #endif 7019 { } /* terminate */ 7020 }; 7021 7022 struct cgroup_subsys cpu_cgrp_subsys = { 7023 .css_alloc = cpu_cgroup_css_alloc, 7024 .css_online = cpu_cgroup_css_online, 7025 .css_released = cpu_cgroup_css_released, 7026 .css_free = cpu_cgroup_css_free, 7027 .css_extra_stat_show = cpu_extra_stat_show, 7028 .fork = cpu_cgroup_fork, 7029 .can_attach = cpu_cgroup_can_attach, 7030 .attach = cpu_cgroup_attach, 7031 .legacy_cftypes = cpu_legacy_files, 7032 .dfl_cftypes = cpu_files, 7033 .early_init = true, 7034 .threaded = true, 7035 }; 7036 7037 #endif /* CONFIG_CGROUP_SCHED */ 7038 7039 void dump_cpu_task(int cpu) 7040 { 7041 pr_info("Task dump for CPU %d:\n", cpu); 7042 sched_show_task(cpu_curr(cpu)); 7043 } 7044 7045 /* 7046 * Nice levels are multiplicative, with a gentle 10% change for every 7047 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7048 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7049 * that remained on nice 0. 7050 * 7051 * The "10% effect" is relative and cumulative: from _any_ nice level, 7052 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7053 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7054 * If a task goes up by ~10% and another task goes down by ~10% then 7055 * the relative distance between them is ~25%.) 7056 */ 7057 const int sched_prio_to_weight[40] = { 7058 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7059 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7060 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7061 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7062 /* 0 */ 1024, 820, 655, 526, 423, 7063 /* 5 */ 335, 272, 215, 172, 137, 7064 /* 10 */ 110, 87, 70, 56, 45, 7065 /* 15 */ 36, 29, 23, 18, 15, 7066 }; 7067 7068 /* 7069 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7070 * 7071 * In cases where the weight does not change often, we can use the 7072 * precalculated inverse to speed up arithmetics by turning divisions 7073 * into multiplications: 7074 */ 7075 const u32 sched_prio_to_wmult[40] = { 7076 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7077 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7078 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7079 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7080 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7081 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7082 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7083 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7084 }; 7085 7086 #undef CREATE_TRACE_POINTS 7087