xref: /openbmc/linux/kernel/sched/core.c (revision f7f4e7fc6c517708738d1d1984b170e9475a130f)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/kthread.h>
11 #include <linux/nospec.h>
12 
13 #include <asm/switch_to.h>
14 #include <asm/tlb.h>
15 
16 #include "../workqueue_internal.h"
17 #include "../smpboot.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/sched.h>
21 
22 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
23 
24 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
25 /*
26  * Debugging: various feature bits
27  *
28  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
29  * sysctl_sched_features, defined in sched.h, to allow constants propagation
30  * at compile time and compiler optimization based on features default.
31  */
32 #define SCHED_FEAT(name, enabled)	\
33 	(1UL << __SCHED_FEAT_##name) * enabled |
34 const_debug unsigned int sysctl_sched_features =
35 #include "features.h"
36 	0;
37 #undef SCHED_FEAT
38 #endif
39 
40 /*
41  * Number of tasks to iterate in a single balance run.
42  * Limited because this is done with IRQs disabled.
43  */
44 const_debug unsigned int sysctl_sched_nr_migrate = 32;
45 
46 /*
47  * period over which we average the RT time consumption, measured
48  * in ms.
49  *
50  * default: 1s
51  */
52 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
53 
54 /*
55  * period over which we measure -rt task CPU usage in us.
56  * default: 1s
57  */
58 unsigned int sysctl_sched_rt_period = 1000000;
59 
60 __read_mostly int scheduler_running;
61 
62 /*
63  * part of the period that we allow rt tasks to run in us.
64  * default: 0.95s
65  */
66 int sysctl_sched_rt_runtime = 950000;
67 
68 /*
69  * __task_rq_lock - lock the rq @p resides on.
70  */
71 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
72 	__acquires(rq->lock)
73 {
74 	struct rq *rq;
75 
76 	lockdep_assert_held(&p->pi_lock);
77 
78 	for (;;) {
79 		rq = task_rq(p);
80 		raw_spin_lock(&rq->lock);
81 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
82 			rq_pin_lock(rq, rf);
83 			return rq;
84 		}
85 		raw_spin_unlock(&rq->lock);
86 
87 		while (unlikely(task_on_rq_migrating(p)))
88 			cpu_relax();
89 	}
90 }
91 
92 /*
93  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
94  */
95 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
96 	__acquires(p->pi_lock)
97 	__acquires(rq->lock)
98 {
99 	struct rq *rq;
100 
101 	for (;;) {
102 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
103 		rq = task_rq(p);
104 		raw_spin_lock(&rq->lock);
105 		/*
106 		 *	move_queued_task()		task_rq_lock()
107 		 *
108 		 *	ACQUIRE (rq->lock)
109 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
110 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
111 		 *	[S] ->cpu = new_cpu		[L] task_rq()
112 		 *					[L] ->on_rq
113 		 *	RELEASE (rq->lock)
114 		 *
115 		 * If we observe the old CPU in task_rq_lock, the acquire of
116 		 * the old rq->lock will fully serialize against the stores.
117 		 *
118 		 * If we observe the new CPU in task_rq_lock, the acquire will
119 		 * pair with the WMB to ensure we must then also see migrating.
120 		 */
121 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
122 			rq_pin_lock(rq, rf);
123 			return rq;
124 		}
125 		raw_spin_unlock(&rq->lock);
126 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
127 
128 		while (unlikely(task_on_rq_migrating(p)))
129 			cpu_relax();
130 	}
131 }
132 
133 /*
134  * RQ-clock updating methods:
135  */
136 
137 static void update_rq_clock_task(struct rq *rq, s64 delta)
138 {
139 /*
140  * In theory, the compile should just see 0 here, and optimize out the call
141  * to sched_rt_avg_update. But I don't trust it...
142  */
143 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
144 	s64 steal = 0, irq_delta = 0;
145 #endif
146 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
147 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
148 
149 	/*
150 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
151 	 * this case when a previous update_rq_clock() happened inside a
152 	 * {soft,}irq region.
153 	 *
154 	 * When this happens, we stop ->clock_task and only update the
155 	 * prev_irq_time stamp to account for the part that fit, so that a next
156 	 * update will consume the rest. This ensures ->clock_task is
157 	 * monotonic.
158 	 *
159 	 * It does however cause some slight miss-attribution of {soft,}irq
160 	 * time, a more accurate solution would be to update the irq_time using
161 	 * the current rq->clock timestamp, except that would require using
162 	 * atomic ops.
163 	 */
164 	if (irq_delta > delta)
165 		irq_delta = delta;
166 
167 	rq->prev_irq_time += irq_delta;
168 	delta -= irq_delta;
169 #endif
170 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
171 	if (static_key_false((&paravirt_steal_rq_enabled))) {
172 		steal = paravirt_steal_clock(cpu_of(rq));
173 		steal -= rq->prev_steal_time_rq;
174 
175 		if (unlikely(steal > delta))
176 			steal = delta;
177 
178 		rq->prev_steal_time_rq += steal;
179 		delta -= steal;
180 	}
181 #endif
182 
183 	rq->clock_task += delta;
184 
185 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
186 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
187 		sched_rt_avg_update(rq, irq_delta + steal);
188 #endif
189 }
190 
191 void update_rq_clock(struct rq *rq)
192 {
193 	s64 delta;
194 
195 	lockdep_assert_held(&rq->lock);
196 
197 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
198 		return;
199 
200 #ifdef CONFIG_SCHED_DEBUG
201 	if (sched_feat(WARN_DOUBLE_CLOCK))
202 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
203 	rq->clock_update_flags |= RQCF_UPDATED;
204 #endif
205 
206 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
207 	if (delta < 0)
208 		return;
209 	rq->clock += delta;
210 	update_rq_clock_task(rq, delta);
211 }
212 
213 
214 #ifdef CONFIG_SCHED_HRTICK
215 /*
216  * Use HR-timers to deliver accurate preemption points.
217  */
218 
219 static void hrtick_clear(struct rq *rq)
220 {
221 	if (hrtimer_active(&rq->hrtick_timer))
222 		hrtimer_cancel(&rq->hrtick_timer);
223 }
224 
225 /*
226  * High-resolution timer tick.
227  * Runs from hardirq context with interrupts disabled.
228  */
229 static enum hrtimer_restart hrtick(struct hrtimer *timer)
230 {
231 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
232 	struct rq_flags rf;
233 
234 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
235 
236 	rq_lock(rq, &rf);
237 	update_rq_clock(rq);
238 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
239 	rq_unlock(rq, &rf);
240 
241 	return HRTIMER_NORESTART;
242 }
243 
244 #ifdef CONFIG_SMP
245 
246 static void __hrtick_restart(struct rq *rq)
247 {
248 	struct hrtimer *timer = &rq->hrtick_timer;
249 
250 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
251 }
252 
253 /*
254  * called from hardirq (IPI) context
255  */
256 static void __hrtick_start(void *arg)
257 {
258 	struct rq *rq = arg;
259 	struct rq_flags rf;
260 
261 	rq_lock(rq, &rf);
262 	__hrtick_restart(rq);
263 	rq->hrtick_csd_pending = 0;
264 	rq_unlock(rq, &rf);
265 }
266 
267 /*
268  * Called to set the hrtick timer state.
269  *
270  * called with rq->lock held and irqs disabled
271  */
272 void hrtick_start(struct rq *rq, u64 delay)
273 {
274 	struct hrtimer *timer = &rq->hrtick_timer;
275 	ktime_t time;
276 	s64 delta;
277 
278 	/*
279 	 * Don't schedule slices shorter than 10000ns, that just
280 	 * doesn't make sense and can cause timer DoS.
281 	 */
282 	delta = max_t(s64, delay, 10000LL);
283 	time = ktime_add_ns(timer->base->get_time(), delta);
284 
285 	hrtimer_set_expires(timer, time);
286 
287 	if (rq == this_rq()) {
288 		__hrtick_restart(rq);
289 	} else if (!rq->hrtick_csd_pending) {
290 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
291 		rq->hrtick_csd_pending = 1;
292 	}
293 }
294 
295 #else
296 /*
297  * Called to set the hrtick timer state.
298  *
299  * called with rq->lock held and irqs disabled
300  */
301 void hrtick_start(struct rq *rq, u64 delay)
302 {
303 	/*
304 	 * Don't schedule slices shorter than 10000ns, that just
305 	 * doesn't make sense. Rely on vruntime for fairness.
306 	 */
307 	delay = max_t(u64, delay, 10000LL);
308 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
309 		      HRTIMER_MODE_REL_PINNED);
310 }
311 #endif /* CONFIG_SMP */
312 
313 static void hrtick_rq_init(struct rq *rq)
314 {
315 #ifdef CONFIG_SMP
316 	rq->hrtick_csd_pending = 0;
317 
318 	rq->hrtick_csd.flags = 0;
319 	rq->hrtick_csd.func = __hrtick_start;
320 	rq->hrtick_csd.info = rq;
321 #endif
322 
323 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
324 	rq->hrtick_timer.function = hrtick;
325 }
326 #else	/* CONFIG_SCHED_HRTICK */
327 static inline void hrtick_clear(struct rq *rq)
328 {
329 }
330 
331 static inline void hrtick_rq_init(struct rq *rq)
332 {
333 }
334 #endif	/* CONFIG_SCHED_HRTICK */
335 
336 /*
337  * cmpxchg based fetch_or, macro so it works for different integer types
338  */
339 #define fetch_or(ptr, mask)						\
340 	({								\
341 		typeof(ptr) _ptr = (ptr);				\
342 		typeof(mask) _mask = (mask);				\
343 		typeof(*_ptr) _old, _val = *_ptr;			\
344 									\
345 		for (;;) {						\
346 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
347 			if (_old == _val)				\
348 				break;					\
349 			_val = _old;					\
350 		}							\
351 	_old;								\
352 })
353 
354 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
355 /*
356  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
357  * this avoids any races wrt polling state changes and thereby avoids
358  * spurious IPIs.
359  */
360 static bool set_nr_and_not_polling(struct task_struct *p)
361 {
362 	struct thread_info *ti = task_thread_info(p);
363 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
364 }
365 
366 /*
367  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
368  *
369  * If this returns true, then the idle task promises to call
370  * sched_ttwu_pending() and reschedule soon.
371  */
372 static bool set_nr_if_polling(struct task_struct *p)
373 {
374 	struct thread_info *ti = task_thread_info(p);
375 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
376 
377 	for (;;) {
378 		if (!(val & _TIF_POLLING_NRFLAG))
379 			return false;
380 		if (val & _TIF_NEED_RESCHED)
381 			return true;
382 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
383 		if (old == val)
384 			break;
385 		val = old;
386 	}
387 	return true;
388 }
389 
390 #else
391 static bool set_nr_and_not_polling(struct task_struct *p)
392 {
393 	set_tsk_need_resched(p);
394 	return true;
395 }
396 
397 #ifdef CONFIG_SMP
398 static bool set_nr_if_polling(struct task_struct *p)
399 {
400 	return false;
401 }
402 #endif
403 #endif
404 
405 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
406 {
407 	struct wake_q_node *node = &task->wake_q;
408 
409 	/*
410 	 * Atomically grab the task, if ->wake_q is !nil already it means
411 	 * its already queued (either by us or someone else) and will get the
412 	 * wakeup due to that.
413 	 *
414 	 * This cmpxchg() implies a full barrier, which pairs with the write
415 	 * barrier implied by the wakeup in wake_up_q().
416 	 */
417 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
418 		return;
419 
420 	get_task_struct(task);
421 
422 	/*
423 	 * The head is context local, there can be no concurrency.
424 	 */
425 	*head->lastp = node;
426 	head->lastp = &node->next;
427 }
428 
429 void wake_up_q(struct wake_q_head *head)
430 {
431 	struct wake_q_node *node = head->first;
432 
433 	while (node != WAKE_Q_TAIL) {
434 		struct task_struct *task;
435 
436 		task = container_of(node, struct task_struct, wake_q);
437 		BUG_ON(!task);
438 		/* Task can safely be re-inserted now: */
439 		node = node->next;
440 		task->wake_q.next = NULL;
441 
442 		/*
443 		 * wake_up_process() implies a wmb() to pair with the queueing
444 		 * in wake_q_add() so as not to miss wakeups.
445 		 */
446 		wake_up_process(task);
447 		put_task_struct(task);
448 	}
449 }
450 
451 /*
452  * resched_curr - mark rq's current task 'to be rescheduled now'.
453  *
454  * On UP this means the setting of the need_resched flag, on SMP it
455  * might also involve a cross-CPU call to trigger the scheduler on
456  * the target CPU.
457  */
458 void resched_curr(struct rq *rq)
459 {
460 	struct task_struct *curr = rq->curr;
461 	int cpu;
462 
463 	lockdep_assert_held(&rq->lock);
464 
465 	if (test_tsk_need_resched(curr))
466 		return;
467 
468 	cpu = cpu_of(rq);
469 
470 	if (cpu == smp_processor_id()) {
471 		set_tsk_need_resched(curr);
472 		set_preempt_need_resched();
473 		return;
474 	}
475 
476 	if (set_nr_and_not_polling(curr))
477 		smp_send_reschedule(cpu);
478 	else
479 		trace_sched_wake_idle_without_ipi(cpu);
480 }
481 
482 void resched_cpu(int cpu)
483 {
484 	struct rq *rq = cpu_rq(cpu);
485 	unsigned long flags;
486 
487 	raw_spin_lock_irqsave(&rq->lock, flags);
488 	if (cpu_online(cpu) || cpu == smp_processor_id())
489 		resched_curr(rq);
490 	raw_spin_unlock_irqrestore(&rq->lock, flags);
491 }
492 
493 #ifdef CONFIG_SMP
494 #ifdef CONFIG_NO_HZ_COMMON
495 /*
496  * In the semi idle case, use the nearest busy CPU for migrating timers
497  * from an idle CPU.  This is good for power-savings.
498  *
499  * We don't do similar optimization for completely idle system, as
500  * selecting an idle CPU will add more delays to the timers than intended
501  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
502  */
503 int get_nohz_timer_target(void)
504 {
505 	int i, cpu = smp_processor_id();
506 	struct sched_domain *sd;
507 
508 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
509 		return cpu;
510 
511 	rcu_read_lock();
512 	for_each_domain(cpu, sd) {
513 		for_each_cpu(i, sched_domain_span(sd)) {
514 			if (cpu == i)
515 				continue;
516 
517 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
518 				cpu = i;
519 				goto unlock;
520 			}
521 		}
522 	}
523 
524 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
525 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
526 unlock:
527 	rcu_read_unlock();
528 	return cpu;
529 }
530 
531 /*
532  * When add_timer_on() enqueues a timer into the timer wheel of an
533  * idle CPU then this timer might expire before the next timer event
534  * which is scheduled to wake up that CPU. In case of a completely
535  * idle system the next event might even be infinite time into the
536  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
537  * leaves the inner idle loop so the newly added timer is taken into
538  * account when the CPU goes back to idle and evaluates the timer
539  * wheel for the next timer event.
540  */
541 static void wake_up_idle_cpu(int cpu)
542 {
543 	struct rq *rq = cpu_rq(cpu);
544 
545 	if (cpu == smp_processor_id())
546 		return;
547 
548 	if (set_nr_and_not_polling(rq->idle))
549 		smp_send_reschedule(cpu);
550 	else
551 		trace_sched_wake_idle_without_ipi(cpu);
552 }
553 
554 static bool wake_up_full_nohz_cpu(int cpu)
555 {
556 	/*
557 	 * We just need the target to call irq_exit() and re-evaluate
558 	 * the next tick. The nohz full kick at least implies that.
559 	 * If needed we can still optimize that later with an
560 	 * empty IRQ.
561 	 */
562 	if (cpu_is_offline(cpu))
563 		return true;  /* Don't try to wake offline CPUs. */
564 	if (tick_nohz_full_cpu(cpu)) {
565 		if (cpu != smp_processor_id() ||
566 		    tick_nohz_tick_stopped())
567 			tick_nohz_full_kick_cpu(cpu);
568 		return true;
569 	}
570 
571 	return false;
572 }
573 
574 /*
575  * Wake up the specified CPU.  If the CPU is going offline, it is the
576  * caller's responsibility to deal with the lost wakeup, for example,
577  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
578  */
579 void wake_up_nohz_cpu(int cpu)
580 {
581 	if (!wake_up_full_nohz_cpu(cpu))
582 		wake_up_idle_cpu(cpu);
583 }
584 
585 static inline bool got_nohz_idle_kick(void)
586 {
587 	int cpu = smp_processor_id();
588 
589 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
590 		return false;
591 
592 	if (idle_cpu(cpu) && !need_resched())
593 		return true;
594 
595 	/*
596 	 * We can't run Idle Load Balance on this CPU for this time so we
597 	 * cancel it and clear NOHZ_BALANCE_KICK
598 	 */
599 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
600 	return false;
601 }
602 
603 #else /* CONFIG_NO_HZ_COMMON */
604 
605 static inline bool got_nohz_idle_kick(void)
606 {
607 	return false;
608 }
609 
610 #endif /* CONFIG_NO_HZ_COMMON */
611 
612 #ifdef CONFIG_NO_HZ_FULL
613 bool sched_can_stop_tick(struct rq *rq)
614 {
615 	int fifo_nr_running;
616 
617 	/* Deadline tasks, even if single, need the tick */
618 	if (rq->dl.dl_nr_running)
619 		return false;
620 
621 	/*
622 	 * If there are more than one RR tasks, we need the tick to effect the
623 	 * actual RR behaviour.
624 	 */
625 	if (rq->rt.rr_nr_running) {
626 		if (rq->rt.rr_nr_running == 1)
627 			return true;
628 		else
629 			return false;
630 	}
631 
632 	/*
633 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
634 	 * forced preemption between FIFO tasks.
635 	 */
636 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
637 	if (fifo_nr_running)
638 		return true;
639 
640 	/*
641 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
642 	 * if there's more than one we need the tick for involuntary
643 	 * preemption.
644 	 */
645 	if (rq->nr_running > 1)
646 		return false;
647 
648 	return true;
649 }
650 #endif /* CONFIG_NO_HZ_FULL */
651 
652 void sched_avg_update(struct rq *rq)
653 {
654 	s64 period = sched_avg_period();
655 
656 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
657 		/*
658 		 * Inline assembly required to prevent the compiler
659 		 * optimising this loop into a divmod call.
660 		 * See __iter_div_u64_rem() for another example of this.
661 		 */
662 		asm("" : "+rm" (rq->age_stamp));
663 		rq->age_stamp += period;
664 		rq->rt_avg /= 2;
665 	}
666 }
667 
668 #endif /* CONFIG_SMP */
669 
670 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
671 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
672 /*
673  * Iterate task_group tree rooted at *from, calling @down when first entering a
674  * node and @up when leaving it for the final time.
675  *
676  * Caller must hold rcu_lock or sufficient equivalent.
677  */
678 int walk_tg_tree_from(struct task_group *from,
679 			     tg_visitor down, tg_visitor up, void *data)
680 {
681 	struct task_group *parent, *child;
682 	int ret;
683 
684 	parent = from;
685 
686 down:
687 	ret = (*down)(parent, data);
688 	if (ret)
689 		goto out;
690 	list_for_each_entry_rcu(child, &parent->children, siblings) {
691 		parent = child;
692 		goto down;
693 
694 up:
695 		continue;
696 	}
697 	ret = (*up)(parent, data);
698 	if (ret || parent == from)
699 		goto out;
700 
701 	child = parent;
702 	parent = parent->parent;
703 	if (parent)
704 		goto up;
705 out:
706 	return ret;
707 }
708 
709 int tg_nop(struct task_group *tg, void *data)
710 {
711 	return 0;
712 }
713 #endif
714 
715 static void set_load_weight(struct task_struct *p, bool update_load)
716 {
717 	int prio = p->static_prio - MAX_RT_PRIO;
718 	struct load_weight *load = &p->se.load;
719 
720 	/*
721 	 * SCHED_IDLE tasks get minimal weight:
722 	 */
723 	if (idle_policy(p->policy)) {
724 		load->weight = scale_load(WEIGHT_IDLEPRIO);
725 		load->inv_weight = WMULT_IDLEPRIO;
726 		return;
727 	}
728 
729 	/*
730 	 * SCHED_OTHER tasks have to update their load when changing their
731 	 * weight
732 	 */
733 	if (update_load && p->sched_class == &fair_sched_class) {
734 		reweight_task(p, prio);
735 	} else {
736 		load->weight = scale_load(sched_prio_to_weight[prio]);
737 		load->inv_weight = sched_prio_to_wmult[prio];
738 	}
739 }
740 
741 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
742 {
743 	if (!(flags & ENQUEUE_NOCLOCK))
744 		update_rq_clock(rq);
745 
746 	if (!(flags & ENQUEUE_RESTORE))
747 		sched_info_queued(rq, p);
748 
749 	p->sched_class->enqueue_task(rq, p, flags);
750 }
751 
752 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
753 {
754 	if (!(flags & DEQUEUE_NOCLOCK))
755 		update_rq_clock(rq);
756 
757 	if (!(flags & DEQUEUE_SAVE))
758 		sched_info_dequeued(rq, p);
759 
760 	p->sched_class->dequeue_task(rq, p, flags);
761 }
762 
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (task_contributes_to_load(p))
766 		rq->nr_uninterruptible--;
767 
768 	enqueue_task(rq, p, flags);
769 }
770 
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	if (task_contributes_to_load(p))
774 		rq->nr_uninterruptible++;
775 
776 	dequeue_task(rq, p, flags);
777 }
778 
779 /*
780  * __normal_prio - return the priority that is based on the static prio
781  */
782 static inline int __normal_prio(struct task_struct *p)
783 {
784 	return p->static_prio;
785 }
786 
787 /*
788  * Calculate the expected normal priority: i.e. priority
789  * without taking RT-inheritance into account. Might be
790  * boosted by interactivity modifiers. Changes upon fork,
791  * setprio syscalls, and whenever the interactivity
792  * estimator recalculates.
793  */
794 static inline int normal_prio(struct task_struct *p)
795 {
796 	int prio;
797 
798 	if (task_has_dl_policy(p))
799 		prio = MAX_DL_PRIO-1;
800 	else if (task_has_rt_policy(p))
801 		prio = MAX_RT_PRIO-1 - p->rt_priority;
802 	else
803 		prio = __normal_prio(p);
804 	return prio;
805 }
806 
807 /*
808  * Calculate the current priority, i.e. the priority
809  * taken into account by the scheduler. This value might
810  * be boosted by RT tasks, or might be boosted by
811  * interactivity modifiers. Will be RT if the task got
812  * RT-boosted. If not then it returns p->normal_prio.
813  */
814 static int effective_prio(struct task_struct *p)
815 {
816 	p->normal_prio = normal_prio(p);
817 	/*
818 	 * If we are RT tasks or we were boosted to RT priority,
819 	 * keep the priority unchanged. Otherwise, update priority
820 	 * to the normal priority:
821 	 */
822 	if (!rt_prio(p->prio))
823 		return p->normal_prio;
824 	return p->prio;
825 }
826 
827 /**
828  * task_curr - is this task currently executing on a CPU?
829  * @p: the task in question.
830  *
831  * Return: 1 if the task is currently executing. 0 otherwise.
832  */
833 inline int task_curr(const struct task_struct *p)
834 {
835 	return cpu_curr(task_cpu(p)) == p;
836 }
837 
838 /*
839  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
840  * use the balance_callback list if you want balancing.
841  *
842  * this means any call to check_class_changed() must be followed by a call to
843  * balance_callback().
844  */
845 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
846 				       const struct sched_class *prev_class,
847 				       int oldprio)
848 {
849 	if (prev_class != p->sched_class) {
850 		if (prev_class->switched_from)
851 			prev_class->switched_from(rq, p);
852 
853 		p->sched_class->switched_to(rq, p);
854 	} else if (oldprio != p->prio || dl_task(p))
855 		p->sched_class->prio_changed(rq, p, oldprio);
856 }
857 
858 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
859 {
860 	const struct sched_class *class;
861 
862 	if (p->sched_class == rq->curr->sched_class) {
863 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
864 	} else {
865 		for_each_class(class) {
866 			if (class == rq->curr->sched_class)
867 				break;
868 			if (class == p->sched_class) {
869 				resched_curr(rq);
870 				break;
871 			}
872 		}
873 	}
874 
875 	/*
876 	 * A queue event has occurred, and we're going to schedule.  In
877 	 * this case, we can save a useless back to back clock update.
878 	 */
879 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
880 		rq_clock_skip_update(rq);
881 }
882 
883 #ifdef CONFIG_SMP
884 
885 static inline bool is_per_cpu_kthread(struct task_struct *p)
886 {
887 	if (!(p->flags & PF_KTHREAD))
888 		return false;
889 
890 	if (p->nr_cpus_allowed != 1)
891 		return false;
892 
893 	return true;
894 }
895 
896 /*
897  * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
898  * __set_cpus_allowed_ptr() and select_fallback_rq().
899  */
900 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
901 {
902 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
903 		return false;
904 
905 	if (is_per_cpu_kthread(p))
906 		return cpu_online(cpu);
907 
908 	return cpu_active(cpu);
909 }
910 
911 /*
912  * This is how migration works:
913  *
914  * 1) we invoke migration_cpu_stop() on the target CPU using
915  *    stop_one_cpu().
916  * 2) stopper starts to run (implicitly forcing the migrated thread
917  *    off the CPU)
918  * 3) it checks whether the migrated task is still in the wrong runqueue.
919  * 4) if it's in the wrong runqueue then the migration thread removes
920  *    it and puts it into the right queue.
921  * 5) stopper completes and stop_one_cpu() returns and the migration
922  *    is done.
923  */
924 
925 /*
926  * move_queued_task - move a queued task to new rq.
927  *
928  * Returns (locked) new rq. Old rq's lock is released.
929  */
930 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
931 				   struct task_struct *p, int new_cpu)
932 {
933 	lockdep_assert_held(&rq->lock);
934 
935 	p->on_rq = TASK_ON_RQ_MIGRATING;
936 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
937 	set_task_cpu(p, new_cpu);
938 	rq_unlock(rq, rf);
939 
940 	rq = cpu_rq(new_cpu);
941 
942 	rq_lock(rq, rf);
943 	BUG_ON(task_cpu(p) != new_cpu);
944 	enqueue_task(rq, p, 0);
945 	p->on_rq = TASK_ON_RQ_QUEUED;
946 	check_preempt_curr(rq, p, 0);
947 
948 	return rq;
949 }
950 
951 struct migration_arg {
952 	struct task_struct *task;
953 	int dest_cpu;
954 };
955 
956 /*
957  * Move (not current) task off this CPU, onto the destination CPU. We're doing
958  * this because either it can't run here any more (set_cpus_allowed()
959  * away from this CPU, or CPU going down), or because we're
960  * attempting to rebalance this task on exec (sched_exec).
961  *
962  * So we race with normal scheduler movements, but that's OK, as long
963  * as the task is no longer on this CPU.
964  */
965 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
966 				 struct task_struct *p, int dest_cpu)
967 {
968 	/* Affinity changed (again). */
969 	if (!is_cpu_allowed(p, dest_cpu))
970 		return rq;
971 
972 	update_rq_clock(rq);
973 	rq = move_queued_task(rq, rf, p, dest_cpu);
974 
975 	return rq;
976 }
977 
978 /*
979  * migration_cpu_stop - this will be executed by a highprio stopper thread
980  * and performs thread migration by bumping thread off CPU then
981  * 'pushing' onto another runqueue.
982  */
983 static int migration_cpu_stop(void *data)
984 {
985 	struct migration_arg *arg = data;
986 	struct task_struct *p = arg->task;
987 	struct rq *rq = this_rq();
988 	struct rq_flags rf;
989 
990 	/*
991 	 * The original target CPU might have gone down and we might
992 	 * be on another CPU but it doesn't matter.
993 	 */
994 	local_irq_disable();
995 	/*
996 	 * We need to explicitly wake pending tasks before running
997 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
998 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
999 	 */
1000 	sched_ttwu_pending();
1001 
1002 	raw_spin_lock(&p->pi_lock);
1003 	rq_lock(rq, &rf);
1004 	/*
1005 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1006 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1007 	 * we're holding p->pi_lock.
1008 	 */
1009 	if (task_rq(p) == rq) {
1010 		if (task_on_rq_queued(p))
1011 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1012 		else
1013 			p->wake_cpu = arg->dest_cpu;
1014 	}
1015 	rq_unlock(rq, &rf);
1016 	raw_spin_unlock(&p->pi_lock);
1017 
1018 	local_irq_enable();
1019 	return 0;
1020 }
1021 
1022 /*
1023  * sched_class::set_cpus_allowed must do the below, but is not required to
1024  * actually call this function.
1025  */
1026 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1027 {
1028 	cpumask_copy(&p->cpus_allowed, new_mask);
1029 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1030 }
1031 
1032 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1033 {
1034 	struct rq *rq = task_rq(p);
1035 	bool queued, running;
1036 
1037 	lockdep_assert_held(&p->pi_lock);
1038 
1039 	queued = task_on_rq_queued(p);
1040 	running = task_current(rq, p);
1041 
1042 	if (queued) {
1043 		/*
1044 		 * Because __kthread_bind() calls this on blocked tasks without
1045 		 * holding rq->lock.
1046 		 */
1047 		lockdep_assert_held(&rq->lock);
1048 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1049 	}
1050 	if (running)
1051 		put_prev_task(rq, p);
1052 
1053 	p->sched_class->set_cpus_allowed(p, new_mask);
1054 
1055 	if (queued)
1056 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1057 	if (running)
1058 		set_curr_task(rq, p);
1059 }
1060 
1061 /*
1062  * Change a given task's CPU affinity. Migrate the thread to a
1063  * proper CPU and schedule it away if the CPU it's executing on
1064  * is removed from the allowed bitmask.
1065  *
1066  * NOTE: the caller must have a valid reference to the task, the
1067  * task must not exit() & deallocate itself prematurely. The
1068  * call is not atomic; no spinlocks may be held.
1069  */
1070 static int __set_cpus_allowed_ptr(struct task_struct *p,
1071 				  const struct cpumask *new_mask, bool check)
1072 {
1073 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1074 	unsigned int dest_cpu;
1075 	struct rq_flags rf;
1076 	struct rq *rq;
1077 	int ret = 0;
1078 
1079 	rq = task_rq_lock(p, &rf);
1080 	update_rq_clock(rq);
1081 
1082 	if (p->flags & PF_KTHREAD) {
1083 		/*
1084 		 * Kernel threads are allowed on online && !active CPUs
1085 		 */
1086 		cpu_valid_mask = cpu_online_mask;
1087 	}
1088 
1089 	/*
1090 	 * Must re-check here, to close a race against __kthread_bind(),
1091 	 * sched_setaffinity() is not guaranteed to observe the flag.
1092 	 */
1093 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1094 		ret = -EINVAL;
1095 		goto out;
1096 	}
1097 
1098 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1099 		goto out;
1100 
1101 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1102 		ret = -EINVAL;
1103 		goto out;
1104 	}
1105 
1106 	do_set_cpus_allowed(p, new_mask);
1107 
1108 	if (p->flags & PF_KTHREAD) {
1109 		/*
1110 		 * For kernel threads that do indeed end up on online &&
1111 		 * !active we want to ensure they are strict per-CPU threads.
1112 		 */
1113 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1114 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1115 			p->nr_cpus_allowed != 1);
1116 	}
1117 
1118 	/* Can the task run on the task's current CPU? If so, we're done */
1119 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1120 		goto out;
1121 
1122 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1123 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1124 		struct migration_arg arg = { p, dest_cpu };
1125 		/* Need help from migration thread: drop lock and wait. */
1126 		task_rq_unlock(rq, p, &rf);
1127 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1128 		tlb_migrate_finish(p->mm);
1129 		return 0;
1130 	} else if (task_on_rq_queued(p)) {
1131 		/*
1132 		 * OK, since we're going to drop the lock immediately
1133 		 * afterwards anyway.
1134 		 */
1135 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1136 	}
1137 out:
1138 	task_rq_unlock(rq, p, &rf);
1139 
1140 	return ret;
1141 }
1142 
1143 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1144 {
1145 	return __set_cpus_allowed_ptr(p, new_mask, false);
1146 }
1147 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1148 
1149 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1150 {
1151 #ifdef CONFIG_SCHED_DEBUG
1152 	/*
1153 	 * We should never call set_task_cpu() on a blocked task,
1154 	 * ttwu() will sort out the placement.
1155 	 */
1156 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1157 			!p->on_rq);
1158 
1159 	/*
1160 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1161 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1162 	 * time relying on p->on_rq.
1163 	 */
1164 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1165 		     p->sched_class == &fair_sched_class &&
1166 		     (p->on_rq && !task_on_rq_migrating(p)));
1167 
1168 #ifdef CONFIG_LOCKDEP
1169 	/*
1170 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1171 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1172 	 *
1173 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1174 	 * see task_group().
1175 	 *
1176 	 * Furthermore, all task_rq users should acquire both locks, see
1177 	 * task_rq_lock().
1178 	 */
1179 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1180 				      lockdep_is_held(&task_rq(p)->lock)));
1181 #endif
1182 	/*
1183 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1184 	 */
1185 	WARN_ON_ONCE(!cpu_online(new_cpu));
1186 #endif
1187 
1188 	trace_sched_migrate_task(p, new_cpu);
1189 
1190 	if (task_cpu(p) != new_cpu) {
1191 		if (p->sched_class->migrate_task_rq)
1192 			p->sched_class->migrate_task_rq(p);
1193 		p->se.nr_migrations++;
1194 		perf_event_task_migrate(p);
1195 	}
1196 
1197 	__set_task_cpu(p, new_cpu);
1198 }
1199 
1200 static void __migrate_swap_task(struct task_struct *p, int cpu)
1201 {
1202 	if (task_on_rq_queued(p)) {
1203 		struct rq *src_rq, *dst_rq;
1204 		struct rq_flags srf, drf;
1205 
1206 		src_rq = task_rq(p);
1207 		dst_rq = cpu_rq(cpu);
1208 
1209 		rq_pin_lock(src_rq, &srf);
1210 		rq_pin_lock(dst_rq, &drf);
1211 
1212 		p->on_rq = TASK_ON_RQ_MIGRATING;
1213 		deactivate_task(src_rq, p, 0);
1214 		set_task_cpu(p, cpu);
1215 		activate_task(dst_rq, p, 0);
1216 		p->on_rq = TASK_ON_RQ_QUEUED;
1217 		check_preempt_curr(dst_rq, p, 0);
1218 
1219 		rq_unpin_lock(dst_rq, &drf);
1220 		rq_unpin_lock(src_rq, &srf);
1221 
1222 	} else {
1223 		/*
1224 		 * Task isn't running anymore; make it appear like we migrated
1225 		 * it before it went to sleep. This means on wakeup we make the
1226 		 * previous CPU our target instead of where it really is.
1227 		 */
1228 		p->wake_cpu = cpu;
1229 	}
1230 }
1231 
1232 struct migration_swap_arg {
1233 	struct task_struct *src_task, *dst_task;
1234 	int src_cpu, dst_cpu;
1235 };
1236 
1237 static int migrate_swap_stop(void *data)
1238 {
1239 	struct migration_swap_arg *arg = data;
1240 	struct rq *src_rq, *dst_rq;
1241 	int ret = -EAGAIN;
1242 
1243 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1244 		return -EAGAIN;
1245 
1246 	src_rq = cpu_rq(arg->src_cpu);
1247 	dst_rq = cpu_rq(arg->dst_cpu);
1248 
1249 	double_raw_lock(&arg->src_task->pi_lock,
1250 			&arg->dst_task->pi_lock);
1251 	double_rq_lock(src_rq, dst_rq);
1252 
1253 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1254 		goto unlock;
1255 
1256 	if (task_cpu(arg->src_task) != arg->src_cpu)
1257 		goto unlock;
1258 
1259 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1260 		goto unlock;
1261 
1262 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1263 		goto unlock;
1264 
1265 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1266 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1267 
1268 	ret = 0;
1269 
1270 unlock:
1271 	double_rq_unlock(src_rq, dst_rq);
1272 	raw_spin_unlock(&arg->dst_task->pi_lock);
1273 	raw_spin_unlock(&arg->src_task->pi_lock);
1274 
1275 	return ret;
1276 }
1277 
1278 /*
1279  * Cross migrate two tasks
1280  */
1281 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1282 {
1283 	struct migration_swap_arg arg;
1284 	int ret = -EINVAL;
1285 
1286 	arg = (struct migration_swap_arg){
1287 		.src_task = cur,
1288 		.src_cpu = task_cpu(cur),
1289 		.dst_task = p,
1290 		.dst_cpu = task_cpu(p),
1291 	};
1292 
1293 	if (arg.src_cpu == arg.dst_cpu)
1294 		goto out;
1295 
1296 	/*
1297 	 * These three tests are all lockless; this is OK since all of them
1298 	 * will be re-checked with proper locks held further down the line.
1299 	 */
1300 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1301 		goto out;
1302 
1303 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1304 		goto out;
1305 
1306 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1307 		goto out;
1308 
1309 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1310 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1311 
1312 out:
1313 	return ret;
1314 }
1315 
1316 /*
1317  * wait_task_inactive - wait for a thread to unschedule.
1318  *
1319  * If @match_state is nonzero, it's the @p->state value just checked and
1320  * not expected to change.  If it changes, i.e. @p might have woken up,
1321  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1322  * we return a positive number (its total switch count).  If a second call
1323  * a short while later returns the same number, the caller can be sure that
1324  * @p has remained unscheduled the whole time.
1325  *
1326  * The caller must ensure that the task *will* unschedule sometime soon,
1327  * else this function might spin for a *long* time. This function can't
1328  * be called with interrupts off, or it may introduce deadlock with
1329  * smp_call_function() if an IPI is sent by the same process we are
1330  * waiting to become inactive.
1331  */
1332 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1333 {
1334 	int running, queued;
1335 	struct rq_flags rf;
1336 	unsigned long ncsw;
1337 	struct rq *rq;
1338 
1339 	for (;;) {
1340 		/*
1341 		 * We do the initial early heuristics without holding
1342 		 * any task-queue locks at all. We'll only try to get
1343 		 * the runqueue lock when things look like they will
1344 		 * work out!
1345 		 */
1346 		rq = task_rq(p);
1347 
1348 		/*
1349 		 * If the task is actively running on another CPU
1350 		 * still, just relax and busy-wait without holding
1351 		 * any locks.
1352 		 *
1353 		 * NOTE! Since we don't hold any locks, it's not
1354 		 * even sure that "rq" stays as the right runqueue!
1355 		 * But we don't care, since "task_running()" will
1356 		 * return false if the runqueue has changed and p
1357 		 * is actually now running somewhere else!
1358 		 */
1359 		while (task_running(rq, p)) {
1360 			if (match_state && unlikely(p->state != match_state))
1361 				return 0;
1362 			cpu_relax();
1363 		}
1364 
1365 		/*
1366 		 * Ok, time to look more closely! We need the rq
1367 		 * lock now, to be *sure*. If we're wrong, we'll
1368 		 * just go back and repeat.
1369 		 */
1370 		rq = task_rq_lock(p, &rf);
1371 		trace_sched_wait_task(p);
1372 		running = task_running(rq, p);
1373 		queued = task_on_rq_queued(p);
1374 		ncsw = 0;
1375 		if (!match_state || p->state == match_state)
1376 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1377 		task_rq_unlock(rq, p, &rf);
1378 
1379 		/*
1380 		 * If it changed from the expected state, bail out now.
1381 		 */
1382 		if (unlikely(!ncsw))
1383 			break;
1384 
1385 		/*
1386 		 * Was it really running after all now that we
1387 		 * checked with the proper locks actually held?
1388 		 *
1389 		 * Oops. Go back and try again..
1390 		 */
1391 		if (unlikely(running)) {
1392 			cpu_relax();
1393 			continue;
1394 		}
1395 
1396 		/*
1397 		 * It's not enough that it's not actively running,
1398 		 * it must be off the runqueue _entirely_, and not
1399 		 * preempted!
1400 		 *
1401 		 * So if it was still runnable (but just not actively
1402 		 * running right now), it's preempted, and we should
1403 		 * yield - it could be a while.
1404 		 */
1405 		if (unlikely(queued)) {
1406 			ktime_t to = NSEC_PER_SEC / HZ;
1407 
1408 			set_current_state(TASK_UNINTERRUPTIBLE);
1409 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1410 			continue;
1411 		}
1412 
1413 		/*
1414 		 * Ahh, all good. It wasn't running, and it wasn't
1415 		 * runnable, which means that it will never become
1416 		 * running in the future either. We're all done!
1417 		 */
1418 		break;
1419 	}
1420 
1421 	return ncsw;
1422 }
1423 
1424 /***
1425  * kick_process - kick a running thread to enter/exit the kernel
1426  * @p: the to-be-kicked thread
1427  *
1428  * Cause a process which is running on another CPU to enter
1429  * kernel-mode, without any delay. (to get signals handled.)
1430  *
1431  * NOTE: this function doesn't have to take the runqueue lock,
1432  * because all it wants to ensure is that the remote task enters
1433  * the kernel. If the IPI races and the task has been migrated
1434  * to another CPU then no harm is done and the purpose has been
1435  * achieved as well.
1436  */
1437 void kick_process(struct task_struct *p)
1438 {
1439 	int cpu;
1440 
1441 	preempt_disable();
1442 	cpu = task_cpu(p);
1443 	if ((cpu != smp_processor_id()) && task_curr(p))
1444 		smp_send_reschedule(cpu);
1445 	preempt_enable();
1446 }
1447 EXPORT_SYMBOL_GPL(kick_process);
1448 
1449 /*
1450  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1451  *
1452  * A few notes on cpu_active vs cpu_online:
1453  *
1454  *  - cpu_active must be a subset of cpu_online
1455  *
1456  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1457  *    see __set_cpus_allowed_ptr(). At this point the newly online
1458  *    CPU isn't yet part of the sched domains, and balancing will not
1459  *    see it.
1460  *
1461  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1462  *    avoid the load balancer to place new tasks on the to be removed
1463  *    CPU. Existing tasks will remain running there and will be taken
1464  *    off.
1465  *
1466  * This means that fallback selection must not select !active CPUs.
1467  * And can assume that any active CPU must be online. Conversely
1468  * select_task_rq() below may allow selection of !active CPUs in order
1469  * to satisfy the above rules.
1470  */
1471 static int select_fallback_rq(int cpu, struct task_struct *p)
1472 {
1473 	int nid = cpu_to_node(cpu);
1474 	const struct cpumask *nodemask = NULL;
1475 	enum { cpuset, possible, fail } state = cpuset;
1476 	int dest_cpu;
1477 
1478 	/*
1479 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1480 	 * will return -1. There is no CPU on the node, and we should
1481 	 * select the CPU on the other node.
1482 	 */
1483 	if (nid != -1) {
1484 		nodemask = cpumask_of_node(nid);
1485 
1486 		/* Look for allowed, online CPU in same node. */
1487 		for_each_cpu(dest_cpu, nodemask) {
1488 			if (!cpu_active(dest_cpu))
1489 				continue;
1490 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1491 				return dest_cpu;
1492 		}
1493 	}
1494 
1495 	for (;;) {
1496 		/* Any allowed, online CPU? */
1497 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1498 			if (!is_cpu_allowed(p, dest_cpu))
1499 				continue;
1500 
1501 			goto out;
1502 		}
1503 
1504 		/* No more Mr. Nice Guy. */
1505 		switch (state) {
1506 		case cpuset:
1507 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1508 				cpuset_cpus_allowed_fallback(p);
1509 				state = possible;
1510 				break;
1511 			}
1512 			/* Fall-through */
1513 		case possible:
1514 			do_set_cpus_allowed(p, cpu_possible_mask);
1515 			state = fail;
1516 			break;
1517 
1518 		case fail:
1519 			BUG();
1520 			break;
1521 		}
1522 	}
1523 
1524 out:
1525 	if (state != cpuset) {
1526 		/*
1527 		 * Don't tell them about moving exiting tasks or
1528 		 * kernel threads (both mm NULL), since they never
1529 		 * leave kernel.
1530 		 */
1531 		if (p->mm && printk_ratelimit()) {
1532 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1533 					task_pid_nr(p), p->comm, cpu);
1534 		}
1535 	}
1536 
1537 	return dest_cpu;
1538 }
1539 
1540 /*
1541  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1542  */
1543 static inline
1544 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1545 {
1546 	lockdep_assert_held(&p->pi_lock);
1547 
1548 	if (p->nr_cpus_allowed > 1)
1549 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1550 	else
1551 		cpu = cpumask_any(&p->cpus_allowed);
1552 
1553 	/*
1554 	 * In order not to call set_task_cpu() on a blocking task we need
1555 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1556 	 * CPU.
1557 	 *
1558 	 * Since this is common to all placement strategies, this lives here.
1559 	 *
1560 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1561 	 *   not worry about this generic constraint ]
1562 	 */
1563 	if (unlikely(!is_cpu_allowed(p, cpu)))
1564 		cpu = select_fallback_rq(task_cpu(p), p);
1565 
1566 	return cpu;
1567 }
1568 
1569 static void update_avg(u64 *avg, u64 sample)
1570 {
1571 	s64 diff = sample - *avg;
1572 	*avg += diff >> 3;
1573 }
1574 
1575 void sched_set_stop_task(int cpu, struct task_struct *stop)
1576 {
1577 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1578 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1579 
1580 	if (stop) {
1581 		/*
1582 		 * Make it appear like a SCHED_FIFO task, its something
1583 		 * userspace knows about and won't get confused about.
1584 		 *
1585 		 * Also, it will make PI more or less work without too
1586 		 * much confusion -- but then, stop work should not
1587 		 * rely on PI working anyway.
1588 		 */
1589 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1590 
1591 		stop->sched_class = &stop_sched_class;
1592 	}
1593 
1594 	cpu_rq(cpu)->stop = stop;
1595 
1596 	if (old_stop) {
1597 		/*
1598 		 * Reset it back to a normal scheduling class so that
1599 		 * it can die in pieces.
1600 		 */
1601 		old_stop->sched_class = &rt_sched_class;
1602 	}
1603 }
1604 
1605 #else
1606 
1607 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1608 					 const struct cpumask *new_mask, bool check)
1609 {
1610 	return set_cpus_allowed_ptr(p, new_mask);
1611 }
1612 
1613 #endif /* CONFIG_SMP */
1614 
1615 static void
1616 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1617 {
1618 	struct rq *rq;
1619 
1620 	if (!schedstat_enabled())
1621 		return;
1622 
1623 	rq = this_rq();
1624 
1625 #ifdef CONFIG_SMP
1626 	if (cpu == rq->cpu) {
1627 		__schedstat_inc(rq->ttwu_local);
1628 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1629 	} else {
1630 		struct sched_domain *sd;
1631 
1632 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1633 		rcu_read_lock();
1634 		for_each_domain(rq->cpu, sd) {
1635 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1636 				__schedstat_inc(sd->ttwu_wake_remote);
1637 				break;
1638 			}
1639 		}
1640 		rcu_read_unlock();
1641 	}
1642 
1643 	if (wake_flags & WF_MIGRATED)
1644 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1645 #endif /* CONFIG_SMP */
1646 
1647 	__schedstat_inc(rq->ttwu_count);
1648 	__schedstat_inc(p->se.statistics.nr_wakeups);
1649 
1650 	if (wake_flags & WF_SYNC)
1651 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1652 }
1653 
1654 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1655 {
1656 	activate_task(rq, p, en_flags);
1657 	p->on_rq = TASK_ON_RQ_QUEUED;
1658 
1659 	/* If a worker is waking up, notify the workqueue: */
1660 	if (p->flags & PF_WQ_WORKER)
1661 		wq_worker_waking_up(p, cpu_of(rq));
1662 }
1663 
1664 /*
1665  * Mark the task runnable and perform wakeup-preemption.
1666  */
1667 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1668 			   struct rq_flags *rf)
1669 {
1670 	check_preempt_curr(rq, p, wake_flags);
1671 	p->state = TASK_RUNNING;
1672 	trace_sched_wakeup(p);
1673 
1674 #ifdef CONFIG_SMP
1675 	if (p->sched_class->task_woken) {
1676 		/*
1677 		 * Our task @p is fully woken up and running; so its safe to
1678 		 * drop the rq->lock, hereafter rq is only used for statistics.
1679 		 */
1680 		rq_unpin_lock(rq, rf);
1681 		p->sched_class->task_woken(rq, p);
1682 		rq_repin_lock(rq, rf);
1683 	}
1684 
1685 	if (rq->idle_stamp) {
1686 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1687 		u64 max = 2*rq->max_idle_balance_cost;
1688 
1689 		update_avg(&rq->avg_idle, delta);
1690 
1691 		if (rq->avg_idle > max)
1692 			rq->avg_idle = max;
1693 
1694 		rq->idle_stamp = 0;
1695 	}
1696 #endif
1697 }
1698 
1699 static void
1700 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1701 		 struct rq_flags *rf)
1702 {
1703 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1704 
1705 	lockdep_assert_held(&rq->lock);
1706 
1707 #ifdef CONFIG_SMP
1708 	if (p->sched_contributes_to_load)
1709 		rq->nr_uninterruptible--;
1710 
1711 	if (wake_flags & WF_MIGRATED)
1712 		en_flags |= ENQUEUE_MIGRATED;
1713 #endif
1714 
1715 	ttwu_activate(rq, p, en_flags);
1716 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1717 }
1718 
1719 /*
1720  * Called in case the task @p isn't fully descheduled from its runqueue,
1721  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1722  * since all we need to do is flip p->state to TASK_RUNNING, since
1723  * the task is still ->on_rq.
1724  */
1725 static int ttwu_remote(struct task_struct *p, int wake_flags)
1726 {
1727 	struct rq_flags rf;
1728 	struct rq *rq;
1729 	int ret = 0;
1730 
1731 	rq = __task_rq_lock(p, &rf);
1732 	if (task_on_rq_queued(p)) {
1733 		/* check_preempt_curr() may use rq clock */
1734 		update_rq_clock(rq);
1735 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1736 		ret = 1;
1737 	}
1738 	__task_rq_unlock(rq, &rf);
1739 
1740 	return ret;
1741 }
1742 
1743 #ifdef CONFIG_SMP
1744 void sched_ttwu_pending(void)
1745 {
1746 	struct rq *rq = this_rq();
1747 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1748 	struct task_struct *p, *t;
1749 	struct rq_flags rf;
1750 
1751 	if (!llist)
1752 		return;
1753 
1754 	rq_lock_irqsave(rq, &rf);
1755 	update_rq_clock(rq);
1756 
1757 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1758 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1759 
1760 	rq_unlock_irqrestore(rq, &rf);
1761 }
1762 
1763 void scheduler_ipi(void)
1764 {
1765 	/*
1766 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1767 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1768 	 * this IPI.
1769 	 */
1770 	preempt_fold_need_resched();
1771 
1772 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1773 		return;
1774 
1775 	/*
1776 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1777 	 * traditionally all their work was done from the interrupt return
1778 	 * path. Now that we actually do some work, we need to make sure
1779 	 * we do call them.
1780 	 *
1781 	 * Some archs already do call them, luckily irq_enter/exit nest
1782 	 * properly.
1783 	 *
1784 	 * Arguably we should visit all archs and update all handlers,
1785 	 * however a fair share of IPIs are still resched only so this would
1786 	 * somewhat pessimize the simple resched case.
1787 	 */
1788 	irq_enter();
1789 	sched_ttwu_pending();
1790 
1791 	/*
1792 	 * Check if someone kicked us for doing the nohz idle load balance.
1793 	 */
1794 	if (unlikely(got_nohz_idle_kick())) {
1795 		this_rq()->idle_balance = 1;
1796 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1797 	}
1798 	irq_exit();
1799 }
1800 
1801 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1802 {
1803 	struct rq *rq = cpu_rq(cpu);
1804 
1805 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1806 
1807 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1808 		if (!set_nr_if_polling(rq->idle))
1809 			smp_send_reschedule(cpu);
1810 		else
1811 			trace_sched_wake_idle_without_ipi(cpu);
1812 	}
1813 }
1814 
1815 void wake_up_if_idle(int cpu)
1816 {
1817 	struct rq *rq = cpu_rq(cpu);
1818 	struct rq_flags rf;
1819 
1820 	rcu_read_lock();
1821 
1822 	if (!is_idle_task(rcu_dereference(rq->curr)))
1823 		goto out;
1824 
1825 	if (set_nr_if_polling(rq->idle)) {
1826 		trace_sched_wake_idle_without_ipi(cpu);
1827 	} else {
1828 		rq_lock_irqsave(rq, &rf);
1829 		if (is_idle_task(rq->curr))
1830 			smp_send_reschedule(cpu);
1831 		/* Else CPU is not idle, do nothing here: */
1832 		rq_unlock_irqrestore(rq, &rf);
1833 	}
1834 
1835 out:
1836 	rcu_read_unlock();
1837 }
1838 
1839 bool cpus_share_cache(int this_cpu, int that_cpu)
1840 {
1841 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1842 }
1843 #endif /* CONFIG_SMP */
1844 
1845 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1846 {
1847 	struct rq *rq = cpu_rq(cpu);
1848 	struct rq_flags rf;
1849 
1850 #if defined(CONFIG_SMP)
1851 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1852 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1853 		ttwu_queue_remote(p, cpu, wake_flags);
1854 		return;
1855 	}
1856 #endif
1857 
1858 	rq_lock(rq, &rf);
1859 	update_rq_clock(rq);
1860 	ttwu_do_activate(rq, p, wake_flags, &rf);
1861 	rq_unlock(rq, &rf);
1862 }
1863 
1864 /*
1865  * Notes on Program-Order guarantees on SMP systems.
1866  *
1867  *  MIGRATION
1868  *
1869  * The basic program-order guarantee on SMP systems is that when a task [t]
1870  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1871  * execution on its new CPU [c1].
1872  *
1873  * For migration (of runnable tasks) this is provided by the following means:
1874  *
1875  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1876  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1877  *     rq(c1)->lock (if not at the same time, then in that order).
1878  *  C) LOCK of the rq(c1)->lock scheduling in task
1879  *
1880  * Transitivity guarantees that B happens after A and C after B.
1881  * Note: we only require RCpc transitivity.
1882  * Note: the CPU doing B need not be c0 or c1
1883  *
1884  * Example:
1885  *
1886  *   CPU0            CPU1            CPU2
1887  *
1888  *   LOCK rq(0)->lock
1889  *   sched-out X
1890  *   sched-in Y
1891  *   UNLOCK rq(0)->lock
1892  *
1893  *                                   LOCK rq(0)->lock // orders against CPU0
1894  *                                   dequeue X
1895  *                                   UNLOCK rq(0)->lock
1896  *
1897  *                                   LOCK rq(1)->lock
1898  *                                   enqueue X
1899  *                                   UNLOCK rq(1)->lock
1900  *
1901  *                   LOCK rq(1)->lock // orders against CPU2
1902  *                   sched-out Z
1903  *                   sched-in X
1904  *                   UNLOCK rq(1)->lock
1905  *
1906  *
1907  *  BLOCKING -- aka. SLEEP + WAKEUP
1908  *
1909  * For blocking we (obviously) need to provide the same guarantee as for
1910  * migration. However the means are completely different as there is no lock
1911  * chain to provide order. Instead we do:
1912  *
1913  *   1) smp_store_release(X->on_cpu, 0)
1914  *   2) smp_cond_load_acquire(!X->on_cpu)
1915  *
1916  * Example:
1917  *
1918  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1919  *
1920  *   LOCK rq(0)->lock LOCK X->pi_lock
1921  *   dequeue X
1922  *   sched-out X
1923  *   smp_store_release(X->on_cpu, 0);
1924  *
1925  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1926  *                    X->state = WAKING
1927  *                    set_task_cpu(X,2)
1928  *
1929  *                    LOCK rq(2)->lock
1930  *                    enqueue X
1931  *                    X->state = RUNNING
1932  *                    UNLOCK rq(2)->lock
1933  *
1934  *                                          LOCK rq(2)->lock // orders against CPU1
1935  *                                          sched-out Z
1936  *                                          sched-in X
1937  *                                          UNLOCK rq(2)->lock
1938  *
1939  *                    UNLOCK X->pi_lock
1940  *   UNLOCK rq(0)->lock
1941  *
1942  *
1943  * However; for wakeups there is a second guarantee we must provide, namely we
1944  * must observe the state that lead to our wakeup. That is, not only must our
1945  * task observe its own prior state, it must also observe the stores prior to
1946  * its wakeup.
1947  *
1948  * This means that any means of doing remote wakeups must order the CPU doing
1949  * the wakeup against the CPU the task is going to end up running on. This,
1950  * however, is already required for the regular Program-Order guarantee above,
1951  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1952  *
1953  */
1954 
1955 /**
1956  * try_to_wake_up - wake up a thread
1957  * @p: the thread to be awakened
1958  * @state: the mask of task states that can be woken
1959  * @wake_flags: wake modifier flags (WF_*)
1960  *
1961  * If (@state & @p->state) @p->state = TASK_RUNNING.
1962  *
1963  * If the task was not queued/runnable, also place it back on a runqueue.
1964  *
1965  * Atomic against schedule() which would dequeue a task, also see
1966  * set_current_state().
1967  *
1968  * Return: %true if @p->state changes (an actual wakeup was done),
1969  *	   %false otherwise.
1970  */
1971 static int
1972 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1973 {
1974 	unsigned long flags;
1975 	int cpu, success = 0;
1976 
1977 	/*
1978 	 * If we are going to wake up a thread waiting for CONDITION we
1979 	 * need to ensure that CONDITION=1 done by the caller can not be
1980 	 * reordered with p->state check below. This pairs with mb() in
1981 	 * set_current_state() the waiting thread does.
1982 	 */
1983 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1984 	smp_mb__after_spinlock();
1985 	if (!(p->state & state))
1986 		goto out;
1987 
1988 	trace_sched_waking(p);
1989 
1990 	/* We're going to change ->state: */
1991 	success = 1;
1992 	cpu = task_cpu(p);
1993 
1994 	/*
1995 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1996 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1997 	 * in smp_cond_load_acquire() below.
1998 	 *
1999 	 * sched_ttwu_pending()                 try_to_wake_up()
2000 	 *   [S] p->on_rq = 1;                  [L] P->state
2001 	 *       UNLOCK rq->lock  -----.
2002 	 *                              \
2003 	 *				 +---   RMB
2004 	 * schedule()                   /
2005 	 *       LOCK rq->lock    -----'
2006 	 *       UNLOCK rq->lock
2007 	 *
2008 	 * [task p]
2009 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2010 	 *
2011 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2012 	 * last wakeup of our task and the schedule that got our task
2013 	 * current.
2014 	 */
2015 	smp_rmb();
2016 	if (p->on_rq && ttwu_remote(p, wake_flags))
2017 		goto stat;
2018 
2019 #ifdef CONFIG_SMP
2020 	/*
2021 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 	 * possible to, falsely, observe p->on_cpu == 0.
2023 	 *
2024 	 * One must be running (->on_cpu == 1) in order to remove oneself
2025 	 * from the runqueue.
2026 	 *
2027 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2028 	 *      UNLOCK rq->lock
2029 	 *			RMB
2030 	 *      LOCK   rq->lock
2031 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2032 	 *
2033 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 	 * from the consecutive calls to schedule(); the first switching to our
2035 	 * task, the second putting it to sleep.
2036 	 */
2037 	smp_rmb();
2038 
2039 	/*
2040 	 * If the owning (remote) CPU is still in the middle of schedule() with
2041 	 * this task as prev, wait until its done referencing the task.
2042 	 *
2043 	 * Pairs with the smp_store_release() in finish_task().
2044 	 *
2045 	 * This ensures that tasks getting woken will be fully ordered against
2046 	 * their previous state and preserve Program Order.
2047 	 */
2048 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2049 
2050 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 	p->state = TASK_WAKING;
2052 
2053 	if (p->in_iowait) {
2054 		delayacct_blkio_end(p);
2055 		atomic_dec(&task_rq(p)->nr_iowait);
2056 	}
2057 
2058 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2059 	if (task_cpu(p) != cpu) {
2060 		wake_flags |= WF_MIGRATED;
2061 		set_task_cpu(p, cpu);
2062 	}
2063 
2064 #else /* CONFIG_SMP */
2065 
2066 	if (p->in_iowait) {
2067 		delayacct_blkio_end(p);
2068 		atomic_dec(&task_rq(p)->nr_iowait);
2069 	}
2070 
2071 #endif /* CONFIG_SMP */
2072 
2073 	ttwu_queue(p, cpu, wake_flags);
2074 stat:
2075 	ttwu_stat(p, cpu, wake_flags);
2076 out:
2077 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2078 
2079 	return success;
2080 }
2081 
2082 /**
2083  * try_to_wake_up_local - try to wake up a local task with rq lock held
2084  * @p: the thread to be awakened
2085  * @rf: request-queue flags for pinning
2086  *
2087  * Put @p on the run-queue if it's not already there. The caller must
2088  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2089  * the current task.
2090  */
2091 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2092 {
2093 	struct rq *rq = task_rq(p);
2094 
2095 	if (WARN_ON_ONCE(rq != this_rq()) ||
2096 	    WARN_ON_ONCE(p == current))
2097 		return;
2098 
2099 	lockdep_assert_held(&rq->lock);
2100 
2101 	if (!raw_spin_trylock(&p->pi_lock)) {
2102 		/*
2103 		 * This is OK, because current is on_cpu, which avoids it being
2104 		 * picked for load-balance and preemption/IRQs are still
2105 		 * disabled avoiding further scheduler activity on it and we've
2106 		 * not yet picked a replacement task.
2107 		 */
2108 		rq_unlock(rq, rf);
2109 		raw_spin_lock(&p->pi_lock);
2110 		rq_relock(rq, rf);
2111 	}
2112 
2113 	if (!(p->state & TASK_NORMAL))
2114 		goto out;
2115 
2116 	trace_sched_waking(p);
2117 
2118 	if (!task_on_rq_queued(p)) {
2119 		if (p->in_iowait) {
2120 			delayacct_blkio_end(p);
2121 			atomic_dec(&rq->nr_iowait);
2122 		}
2123 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2124 	}
2125 
2126 	ttwu_do_wakeup(rq, p, 0, rf);
2127 	ttwu_stat(p, smp_processor_id(), 0);
2128 out:
2129 	raw_spin_unlock(&p->pi_lock);
2130 }
2131 
2132 /**
2133  * wake_up_process - Wake up a specific process
2134  * @p: The process to be woken up.
2135  *
2136  * Attempt to wake up the nominated process and move it to the set of runnable
2137  * processes.
2138  *
2139  * Return: 1 if the process was woken up, 0 if it was already running.
2140  *
2141  * It may be assumed that this function implies a write memory barrier before
2142  * changing the task state if and only if any tasks are woken up.
2143  */
2144 int wake_up_process(struct task_struct *p)
2145 {
2146 	return try_to_wake_up(p, TASK_NORMAL, 0);
2147 }
2148 EXPORT_SYMBOL(wake_up_process);
2149 
2150 int wake_up_state(struct task_struct *p, unsigned int state)
2151 {
2152 	return try_to_wake_up(p, state, 0);
2153 }
2154 
2155 /*
2156  * Perform scheduler related setup for a newly forked process p.
2157  * p is forked by current.
2158  *
2159  * __sched_fork() is basic setup used by init_idle() too:
2160  */
2161 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2162 {
2163 	p->on_rq			= 0;
2164 
2165 	p->se.on_rq			= 0;
2166 	p->se.exec_start		= 0;
2167 	p->se.sum_exec_runtime		= 0;
2168 	p->se.prev_sum_exec_runtime	= 0;
2169 	p->se.nr_migrations		= 0;
2170 	p->se.vruntime			= 0;
2171 	INIT_LIST_HEAD(&p->se.group_node);
2172 
2173 #ifdef CONFIG_FAIR_GROUP_SCHED
2174 	p->se.cfs_rq			= NULL;
2175 #endif
2176 
2177 #ifdef CONFIG_SCHEDSTATS
2178 	/* Even if schedstat is disabled, there should not be garbage */
2179 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2180 #endif
2181 
2182 	RB_CLEAR_NODE(&p->dl.rb_node);
2183 	init_dl_task_timer(&p->dl);
2184 	init_dl_inactive_task_timer(&p->dl);
2185 	__dl_clear_params(p);
2186 
2187 	INIT_LIST_HEAD(&p->rt.run_list);
2188 	p->rt.timeout		= 0;
2189 	p->rt.time_slice	= sched_rr_timeslice;
2190 	p->rt.on_rq		= 0;
2191 	p->rt.on_list		= 0;
2192 
2193 #ifdef CONFIG_PREEMPT_NOTIFIERS
2194 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2195 #endif
2196 
2197 	init_numa_balancing(clone_flags, p);
2198 }
2199 
2200 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2201 
2202 #ifdef CONFIG_NUMA_BALANCING
2203 
2204 void set_numabalancing_state(bool enabled)
2205 {
2206 	if (enabled)
2207 		static_branch_enable(&sched_numa_balancing);
2208 	else
2209 		static_branch_disable(&sched_numa_balancing);
2210 }
2211 
2212 #ifdef CONFIG_PROC_SYSCTL
2213 int sysctl_numa_balancing(struct ctl_table *table, int write,
2214 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2215 {
2216 	struct ctl_table t;
2217 	int err;
2218 	int state = static_branch_likely(&sched_numa_balancing);
2219 
2220 	if (write && !capable(CAP_SYS_ADMIN))
2221 		return -EPERM;
2222 
2223 	t = *table;
2224 	t.data = &state;
2225 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2226 	if (err < 0)
2227 		return err;
2228 	if (write)
2229 		set_numabalancing_state(state);
2230 	return err;
2231 }
2232 #endif
2233 #endif
2234 
2235 #ifdef CONFIG_SCHEDSTATS
2236 
2237 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2238 static bool __initdata __sched_schedstats = false;
2239 
2240 static void set_schedstats(bool enabled)
2241 {
2242 	if (enabled)
2243 		static_branch_enable(&sched_schedstats);
2244 	else
2245 		static_branch_disable(&sched_schedstats);
2246 }
2247 
2248 void force_schedstat_enabled(void)
2249 {
2250 	if (!schedstat_enabled()) {
2251 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2252 		static_branch_enable(&sched_schedstats);
2253 	}
2254 }
2255 
2256 static int __init setup_schedstats(char *str)
2257 {
2258 	int ret = 0;
2259 	if (!str)
2260 		goto out;
2261 
2262 	/*
2263 	 * This code is called before jump labels have been set up, so we can't
2264 	 * change the static branch directly just yet.  Instead set a temporary
2265 	 * variable so init_schedstats() can do it later.
2266 	 */
2267 	if (!strcmp(str, "enable")) {
2268 		__sched_schedstats = true;
2269 		ret = 1;
2270 	} else if (!strcmp(str, "disable")) {
2271 		__sched_schedstats = false;
2272 		ret = 1;
2273 	}
2274 out:
2275 	if (!ret)
2276 		pr_warn("Unable to parse schedstats=\n");
2277 
2278 	return ret;
2279 }
2280 __setup("schedstats=", setup_schedstats);
2281 
2282 static void __init init_schedstats(void)
2283 {
2284 	set_schedstats(__sched_schedstats);
2285 }
2286 
2287 #ifdef CONFIG_PROC_SYSCTL
2288 int sysctl_schedstats(struct ctl_table *table, int write,
2289 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2290 {
2291 	struct ctl_table t;
2292 	int err;
2293 	int state = static_branch_likely(&sched_schedstats);
2294 
2295 	if (write && !capable(CAP_SYS_ADMIN))
2296 		return -EPERM;
2297 
2298 	t = *table;
2299 	t.data = &state;
2300 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2301 	if (err < 0)
2302 		return err;
2303 	if (write)
2304 		set_schedstats(state);
2305 	return err;
2306 }
2307 #endif /* CONFIG_PROC_SYSCTL */
2308 #else  /* !CONFIG_SCHEDSTATS */
2309 static inline void init_schedstats(void) {}
2310 #endif /* CONFIG_SCHEDSTATS */
2311 
2312 /*
2313  * fork()/clone()-time setup:
2314  */
2315 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2316 {
2317 	unsigned long flags;
2318 	int cpu = get_cpu();
2319 
2320 	__sched_fork(clone_flags, p);
2321 	/*
2322 	 * We mark the process as NEW here. This guarantees that
2323 	 * nobody will actually run it, and a signal or other external
2324 	 * event cannot wake it up and insert it on the runqueue either.
2325 	 */
2326 	p->state = TASK_NEW;
2327 
2328 	/*
2329 	 * Make sure we do not leak PI boosting priority to the child.
2330 	 */
2331 	p->prio = current->normal_prio;
2332 
2333 	/*
2334 	 * Revert to default priority/policy on fork if requested.
2335 	 */
2336 	if (unlikely(p->sched_reset_on_fork)) {
2337 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2338 			p->policy = SCHED_NORMAL;
2339 			p->static_prio = NICE_TO_PRIO(0);
2340 			p->rt_priority = 0;
2341 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2342 			p->static_prio = NICE_TO_PRIO(0);
2343 
2344 		p->prio = p->normal_prio = __normal_prio(p);
2345 		set_load_weight(p, false);
2346 
2347 		/*
2348 		 * We don't need the reset flag anymore after the fork. It has
2349 		 * fulfilled its duty:
2350 		 */
2351 		p->sched_reset_on_fork = 0;
2352 	}
2353 
2354 	if (dl_prio(p->prio)) {
2355 		put_cpu();
2356 		return -EAGAIN;
2357 	} else if (rt_prio(p->prio)) {
2358 		p->sched_class = &rt_sched_class;
2359 	} else {
2360 		p->sched_class = &fair_sched_class;
2361 	}
2362 
2363 	init_entity_runnable_average(&p->se);
2364 
2365 	/*
2366 	 * The child is not yet in the pid-hash so no cgroup attach races,
2367 	 * and the cgroup is pinned to this child due to cgroup_fork()
2368 	 * is ran before sched_fork().
2369 	 *
2370 	 * Silence PROVE_RCU.
2371 	 */
2372 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2373 	/*
2374 	 * We're setting the CPU for the first time, we don't migrate,
2375 	 * so use __set_task_cpu().
2376 	 */
2377 	__set_task_cpu(p, cpu);
2378 	if (p->sched_class->task_fork)
2379 		p->sched_class->task_fork(p);
2380 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2381 
2382 #ifdef CONFIG_SCHED_INFO
2383 	if (likely(sched_info_on()))
2384 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2385 #endif
2386 #if defined(CONFIG_SMP)
2387 	p->on_cpu = 0;
2388 #endif
2389 	init_task_preempt_count(p);
2390 #ifdef CONFIG_SMP
2391 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2392 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2393 #endif
2394 
2395 	put_cpu();
2396 	return 0;
2397 }
2398 
2399 unsigned long to_ratio(u64 period, u64 runtime)
2400 {
2401 	if (runtime == RUNTIME_INF)
2402 		return BW_UNIT;
2403 
2404 	/*
2405 	 * Doing this here saves a lot of checks in all
2406 	 * the calling paths, and returning zero seems
2407 	 * safe for them anyway.
2408 	 */
2409 	if (period == 0)
2410 		return 0;
2411 
2412 	return div64_u64(runtime << BW_SHIFT, period);
2413 }
2414 
2415 /*
2416  * wake_up_new_task - wake up a newly created task for the first time.
2417  *
2418  * This function will do some initial scheduler statistics housekeeping
2419  * that must be done for every newly created context, then puts the task
2420  * on the runqueue and wakes it.
2421  */
2422 void wake_up_new_task(struct task_struct *p)
2423 {
2424 	struct rq_flags rf;
2425 	struct rq *rq;
2426 
2427 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2428 	p->state = TASK_RUNNING;
2429 #ifdef CONFIG_SMP
2430 	/*
2431 	 * Fork balancing, do it here and not earlier because:
2432 	 *  - cpus_allowed can change in the fork path
2433 	 *  - any previously selected CPU might disappear through hotplug
2434 	 *
2435 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2436 	 * as we're not fully set-up yet.
2437 	 */
2438 	p->recent_used_cpu = task_cpu(p);
2439 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2440 #endif
2441 	rq = __task_rq_lock(p, &rf);
2442 	update_rq_clock(rq);
2443 	post_init_entity_util_avg(&p->se);
2444 
2445 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2446 	p->on_rq = TASK_ON_RQ_QUEUED;
2447 	trace_sched_wakeup_new(p);
2448 	check_preempt_curr(rq, p, WF_FORK);
2449 #ifdef CONFIG_SMP
2450 	if (p->sched_class->task_woken) {
2451 		/*
2452 		 * Nothing relies on rq->lock after this, so its fine to
2453 		 * drop it.
2454 		 */
2455 		rq_unpin_lock(rq, &rf);
2456 		p->sched_class->task_woken(rq, p);
2457 		rq_repin_lock(rq, &rf);
2458 	}
2459 #endif
2460 	task_rq_unlock(rq, p, &rf);
2461 }
2462 
2463 #ifdef CONFIG_PREEMPT_NOTIFIERS
2464 
2465 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2466 
2467 void preempt_notifier_inc(void)
2468 {
2469 	static_branch_inc(&preempt_notifier_key);
2470 }
2471 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2472 
2473 void preempt_notifier_dec(void)
2474 {
2475 	static_branch_dec(&preempt_notifier_key);
2476 }
2477 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2478 
2479 /**
2480  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2481  * @notifier: notifier struct to register
2482  */
2483 void preempt_notifier_register(struct preempt_notifier *notifier)
2484 {
2485 	if (!static_branch_unlikely(&preempt_notifier_key))
2486 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2487 
2488 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2489 }
2490 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2491 
2492 /**
2493  * preempt_notifier_unregister - no longer interested in preemption notifications
2494  * @notifier: notifier struct to unregister
2495  *
2496  * This is *not* safe to call from within a preemption notifier.
2497  */
2498 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2499 {
2500 	hlist_del(&notifier->link);
2501 }
2502 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2503 
2504 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2505 {
2506 	struct preempt_notifier *notifier;
2507 
2508 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2509 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2510 }
2511 
2512 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513 {
2514 	if (static_branch_unlikely(&preempt_notifier_key))
2515 		__fire_sched_in_preempt_notifiers(curr);
2516 }
2517 
2518 static void
2519 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2520 				   struct task_struct *next)
2521 {
2522 	struct preempt_notifier *notifier;
2523 
2524 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2525 		notifier->ops->sched_out(notifier, next);
2526 }
2527 
2528 static __always_inline void
2529 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2530 				 struct task_struct *next)
2531 {
2532 	if (static_branch_unlikely(&preempt_notifier_key))
2533 		__fire_sched_out_preempt_notifiers(curr, next);
2534 }
2535 
2536 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2537 
2538 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2539 {
2540 }
2541 
2542 static inline void
2543 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2544 				 struct task_struct *next)
2545 {
2546 }
2547 
2548 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2549 
2550 static inline void prepare_task(struct task_struct *next)
2551 {
2552 #ifdef CONFIG_SMP
2553 	/*
2554 	 * Claim the task as running, we do this before switching to it
2555 	 * such that any running task will have this set.
2556 	 */
2557 	next->on_cpu = 1;
2558 #endif
2559 }
2560 
2561 static inline void finish_task(struct task_struct *prev)
2562 {
2563 #ifdef CONFIG_SMP
2564 	/*
2565 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2566 	 * We must ensure this doesn't happen until the switch is completely
2567 	 * finished.
2568 	 *
2569 	 * In particular, the load of prev->state in finish_task_switch() must
2570 	 * happen before this.
2571 	 *
2572 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2573 	 */
2574 	smp_store_release(&prev->on_cpu, 0);
2575 #endif
2576 }
2577 
2578 static inline void
2579 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2580 {
2581 	/*
2582 	 * Since the runqueue lock will be released by the next
2583 	 * task (which is an invalid locking op but in the case
2584 	 * of the scheduler it's an obvious special-case), so we
2585 	 * do an early lockdep release here:
2586 	 */
2587 	rq_unpin_lock(rq, rf);
2588 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2589 #ifdef CONFIG_DEBUG_SPINLOCK
2590 	/* this is a valid case when another task releases the spinlock */
2591 	rq->lock.owner = next;
2592 #endif
2593 }
2594 
2595 static inline void finish_lock_switch(struct rq *rq)
2596 {
2597 	/*
2598 	 * If we are tracking spinlock dependencies then we have to
2599 	 * fix up the runqueue lock - which gets 'carried over' from
2600 	 * prev into current:
2601 	 */
2602 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2603 	raw_spin_unlock_irq(&rq->lock);
2604 }
2605 
2606 /*
2607  * NOP if the arch has not defined these:
2608  */
2609 
2610 #ifndef prepare_arch_switch
2611 # define prepare_arch_switch(next)	do { } while (0)
2612 #endif
2613 
2614 #ifndef finish_arch_post_lock_switch
2615 # define finish_arch_post_lock_switch()	do { } while (0)
2616 #endif
2617 
2618 /**
2619  * prepare_task_switch - prepare to switch tasks
2620  * @rq: the runqueue preparing to switch
2621  * @prev: the current task that is being switched out
2622  * @next: the task we are going to switch to.
2623  *
2624  * This is called with the rq lock held and interrupts off. It must
2625  * be paired with a subsequent finish_task_switch after the context
2626  * switch.
2627  *
2628  * prepare_task_switch sets up locking and calls architecture specific
2629  * hooks.
2630  */
2631 static inline void
2632 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2633 		    struct task_struct *next)
2634 {
2635 	sched_info_switch(rq, prev, next);
2636 	perf_event_task_sched_out(prev, next);
2637 	fire_sched_out_preempt_notifiers(prev, next);
2638 	prepare_task(next);
2639 	prepare_arch_switch(next);
2640 }
2641 
2642 /**
2643  * finish_task_switch - clean up after a task-switch
2644  * @prev: the thread we just switched away from.
2645  *
2646  * finish_task_switch must be called after the context switch, paired
2647  * with a prepare_task_switch call before the context switch.
2648  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2649  * and do any other architecture-specific cleanup actions.
2650  *
2651  * Note that we may have delayed dropping an mm in context_switch(). If
2652  * so, we finish that here outside of the runqueue lock. (Doing it
2653  * with the lock held can cause deadlocks; see schedule() for
2654  * details.)
2655  *
2656  * The context switch have flipped the stack from under us and restored the
2657  * local variables which were saved when this task called schedule() in the
2658  * past. prev == current is still correct but we need to recalculate this_rq
2659  * because prev may have moved to another CPU.
2660  */
2661 static struct rq *finish_task_switch(struct task_struct *prev)
2662 	__releases(rq->lock)
2663 {
2664 	struct rq *rq = this_rq();
2665 	struct mm_struct *mm = rq->prev_mm;
2666 	long prev_state;
2667 
2668 	/*
2669 	 * The previous task will have left us with a preempt_count of 2
2670 	 * because it left us after:
2671 	 *
2672 	 *	schedule()
2673 	 *	  preempt_disable();			// 1
2674 	 *	  __schedule()
2675 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2676 	 *
2677 	 * Also, see FORK_PREEMPT_COUNT.
2678 	 */
2679 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2680 		      "corrupted preempt_count: %s/%d/0x%x\n",
2681 		      current->comm, current->pid, preempt_count()))
2682 		preempt_count_set(FORK_PREEMPT_COUNT);
2683 
2684 	rq->prev_mm = NULL;
2685 
2686 	/*
2687 	 * A task struct has one reference for the use as "current".
2688 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2689 	 * schedule one last time. The schedule call will never return, and
2690 	 * the scheduled task must drop that reference.
2691 	 *
2692 	 * We must observe prev->state before clearing prev->on_cpu (in
2693 	 * finish_task), otherwise a concurrent wakeup can get prev
2694 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2695 	 * transition, resulting in a double drop.
2696 	 */
2697 	prev_state = prev->state;
2698 	vtime_task_switch(prev);
2699 	perf_event_task_sched_in(prev, current);
2700 	finish_task(prev);
2701 	finish_lock_switch(rq);
2702 	finish_arch_post_lock_switch();
2703 
2704 	fire_sched_in_preempt_notifiers(current);
2705 	/*
2706 	 * When switching through a kernel thread, the loop in
2707 	 * membarrier_{private,global}_expedited() may have observed that
2708 	 * kernel thread and not issued an IPI. It is therefore possible to
2709 	 * schedule between user->kernel->user threads without passing though
2710 	 * switch_mm(). Membarrier requires a barrier after storing to
2711 	 * rq->curr, before returning to userspace, so provide them here:
2712 	 *
2713 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2714 	 *   provided by mmdrop(),
2715 	 * - a sync_core for SYNC_CORE.
2716 	 */
2717 	if (mm) {
2718 		membarrier_mm_sync_core_before_usermode(mm);
2719 		mmdrop(mm);
2720 	}
2721 	if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2722 		switch (prev_state) {
2723 		case TASK_DEAD:
2724 			if (prev->sched_class->task_dead)
2725 				prev->sched_class->task_dead(prev);
2726 
2727 			/*
2728 			 * Remove function-return probe instances associated with this
2729 			 * task and put them back on the free list.
2730 			 */
2731 			kprobe_flush_task(prev);
2732 
2733 			/* Task is done with its stack. */
2734 			put_task_stack(prev);
2735 
2736 			put_task_struct(prev);
2737 			break;
2738 
2739 		case TASK_PARKED:
2740 			kthread_park_complete(prev);
2741 			break;
2742 		}
2743 	}
2744 
2745 	tick_nohz_task_switch();
2746 	return rq;
2747 }
2748 
2749 #ifdef CONFIG_SMP
2750 
2751 /* rq->lock is NOT held, but preemption is disabled */
2752 static void __balance_callback(struct rq *rq)
2753 {
2754 	struct callback_head *head, *next;
2755 	void (*func)(struct rq *rq);
2756 	unsigned long flags;
2757 
2758 	raw_spin_lock_irqsave(&rq->lock, flags);
2759 	head = rq->balance_callback;
2760 	rq->balance_callback = NULL;
2761 	while (head) {
2762 		func = (void (*)(struct rq *))head->func;
2763 		next = head->next;
2764 		head->next = NULL;
2765 		head = next;
2766 
2767 		func(rq);
2768 	}
2769 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2770 }
2771 
2772 static inline void balance_callback(struct rq *rq)
2773 {
2774 	if (unlikely(rq->balance_callback))
2775 		__balance_callback(rq);
2776 }
2777 
2778 #else
2779 
2780 static inline void balance_callback(struct rq *rq)
2781 {
2782 }
2783 
2784 #endif
2785 
2786 /**
2787  * schedule_tail - first thing a freshly forked thread must call.
2788  * @prev: the thread we just switched away from.
2789  */
2790 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2791 	__releases(rq->lock)
2792 {
2793 	struct rq *rq;
2794 
2795 	/*
2796 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2797 	 * finish_task_switch() for details.
2798 	 *
2799 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2800 	 * and the preempt_enable() will end up enabling preemption (on
2801 	 * PREEMPT_COUNT kernels).
2802 	 */
2803 
2804 	rq = finish_task_switch(prev);
2805 	balance_callback(rq);
2806 	preempt_enable();
2807 
2808 	if (current->set_child_tid)
2809 		put_user(task_pid_vnr(current), current->set_child_tid);
2810 }
2811 
2812 /*
2813  * context_switch - switch to the new MM and the new thread's register state.
2814  */
2815 static __always_inline struct rq *
2816 context_switch(struct rq *rq, struct task_struct *prev,
2817 	       struct task_struct *next, struct rq_flags *rf)
2818 {
2819 	struct mm_struct *mm, *oldmm;
2820 
2821 	prepare_task_switch(rq, prev, next);
2822 
2823 	mm = next->mm;
2824 	oldmm = prev->active_mm;
2825 	/*
2826 	 * For paravirt, this is coupled with an exit in switch_to to
2827 	 * combine the page table reload and the switch backend into
2828 	 * one hypercall.
2829 	 */
2830 	arch_start_context_switch(prev);
2831 
2832 	/*
2833 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2834 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2835 	 * Both of these contain the full memory barrier required by
2836 	 * membarrier after storing to rq->curr, before returning to
2837 	 * user-space.
2838 	 */
2839 	if (!mm) {
2840 		next->active_mm = oldmm;
2841 		mmgrab(oldmm);
2842 		enter_lazy_tlb(oldmm, next);
2843 	} else
2844 		switch_mm_irqs_off(oldmm, mm, next);
2845 
2846 	if (!prev->mm) {
2847 		prev->active_mm = NULL;
2848 		rq->prev_mm = oldmm;
2849 	}
2850 
2851 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2852 
2853 	prepare_lock_switch(rq, next, rf);
2854 
2855 	/* Here we just switch the register state and the stack. */
2856 	switch_to(prev, next, prev);
2857 	barrier();
2858 
2859 	return finish_task_switch(prev);
2860 }
2861 
2862 /*
2863  * nr_running and nr_context_switches:
2864  *
2865  * externally visible scheduler statistics: current number of runnable
2866  * threads, total number of context switches performed since bootup.
2867  */
2868 unsigned long nr_running(void)
2869 {
2870 	unsigned long i, sum = 0;
2871 
2872 	for_each_online_cpu(i)
2873 		sum += cpu_rq(i)->nr_running;
2874 
2875 	return sum;
2876 }
2877 
2878 /*
2879  * Check if only the current task is running on the CPU.
2880  *
2881  * Caution: this function does not check that the caller has disabled
2882  * preemption, thus the result might have a time-of-check-to-time-of-use
2883  * race.  The caller is responsible to use it correctly, for example:
2884  *
2885  * - from a non-preemptable section (of course)
2886  *
2887  * - from a thread that is bound to a single CPU
2888  *
2889  * - in a loop with very short iterations (e.g. a polling loop)
2890  */
2891 bool single_task_running(void)
2892 {
2893 	return raw_rq()->nr_running == 1;
2894 }
2895 EXPORT_SYMBOL(single_task_running);
2896 
2897 unsigned long long nr_context_switches(void)
2898 {
2899 	int i;
2900 	unsigned long long sum = 0;
2901 
2902 	for_each_possible_cpu(i)
2903 		sum += cpu_rq(i)->nr_switches;
2904 
2905 	return sum;
2906 }
2907 
2908 /*
2909  * IO-wait accounting, and how its mostly bollocks (on SMP).
2910  *
2911  * The idea behind IO-wait account is to account the idle time that we could
2912  * have spend running if it were not for IO. That is, if we were to improve the
2913  * storage performance, we'd have a proportional reduction in IO-wait time.
2914  *
2915  * This all works nicely on UP, where, when a task blocks on IO, we account
2916  * idle time as IO-wait, because if the storage were faster, it could've been
2917  * running and we'd not be idle.
2918  *
2919  * This has been extended to SMP, by doing the same for each CPU. This however
2920  * is broken.
2921  *
2922  * Imagine for instance the case where two tasks block on one CPU, only the one
2923  * CPU will have IO-wait accounted, while the other has regular idle. Even
2924  * though, if the storage were faster, both could've ran at the same time,
2925  * utilising both CPUs.
2926  *
2927  * This means, that when looking globally, the current IO-wait accounting on
2928  * SMP is a lower bound, by reason of under accounting.
2929  *
2930  * Worse, since the numbers are provided per CPU, they are sometimes
2931  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2932  * associated with any one particular CPU, it can wake to another CPU than it
2933  * blocked on. This means the per CPU IO-wait number is meaningless.
2934  *
2935  * Task CPU affinities can make all that even more 'interesting'.
2936  */
2937 
2938 unsigned long nr_iowait(void)
2939 {
2940 	unsigned long i, sum = 0;
2941 
2942 	for_each_possible_cpu(i)
2943 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2944 
2945 	return sum;
2946 }
2947 
2948 /*
2949  * Consumers of these two interfaces, like for example the cpufreq menu
2950  * governor are using nonsensical data. Boosting frequency for a CPU that has
2951  * IO-wait which might not even end up running the task when it does become
2952  * runnable.
2953  */
2954 
2955 unsigned long nr_iowait_cpu(int cpu)
2956 {
2957 	struct rq *this = cpu_rq(cpu);
2958 	return atomic_read(&this->nr_iowait);
2959 }
2960 
2961 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2962 {
2963 	struct rq *rq = this_rq();
2964 	*nr_waiters = atomic_read(&rq->nr_iowait);
2965 	*load = rq->load.weight;
2966 }
2967 
2968 #ifdef CONFIG_SMP
2969 
2970 /*
2971  * sched_exec - execve() is a valuable balancing opportunity, because at
2972  * this point the task has the smallest effective memory and cache footprint.
2973  */
2974 void sched_exec(void)
2975 {
2976 	struct task_struct *p = current;
2977 	unsigned long flags;
2978 	int dest_cpu;
2979 
2980 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2981 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2982 	if (dest_cpu == smp_processor_id())
2983 		goto unlock;
2984 
2985 	if (likely(cpu_active(dest_cpu))) {
2986 		struct migration_arg arg = { p, dest_cpu };
2987 
2988 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2989 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2990 		return;
2991 	}
2992 unlock:
2993 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2994 }
2995 
2996 #endif
2997 
2998 DEFINE_PER_CPU(struct kernel_stat, kstat);
2999 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3000 
3001 EXPORT_PER_CPU_SYMBOL(kstat);
3002 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3003 
3004 /*
3005  * The function fair_sched_class.update_curr accesses the struct curr
3006  * and its field curr->exec_start; when called from task_sched_runtime(),
3007  * we observe a high rate of cache misses in practice.
3008  * Prefetching this data results in improved performance.
3009  */
3010 static inline void prefetch_curr_exec_start(struct task_struct *p)
3011 {
3012 #ifdef CONFIG_FAIR_GROUP_SCHED
3013 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3014 #else
3015 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3016 #endif
3017 	prefetch(curr);
3018 	prefetch(&curr->exec_start);
3019 }
3020 
3021 /*
3022  * Return accounted runtime for the task.
3023  * In case the task is currently running, return the runtime plus current's
3024  * pending runtime that have not been accounted yet.
3025  */
3026 unsigned long long task_sched_runtime(struct task_struct *p)
3027 {
3028 	struct rq_flags rf;
3029 	struct rq *rq;
3030 	u64 ns;
3031 
3032 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3033 	/*
3034 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3035 	 * So we have a optimization chance when the task's delta_exec is 0.
3036 	 * Reading ->on_cpu is racy, but this is ok.
3037 	 *
3038 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3039 	 * If we race with it entering CPU, unaccounted time is 0. This is
3040 	 * indistinguishable from the read occurring a few cycles earlier.
3041 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3042 	 * been accounted, so we're correct here as well.
3043 	 */
3044 	if (!p->on_cpu || !task_on_rq_queued(p))
3045 		return p->se.sum_exec_runtime;
3046 #endif
3047 
3048 	rq = task_rq_lock(p, &rf);
3049 	/*
3050 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3051 	 * project cycles that may never be accounted to this
3052 	 * thread, breaking clock_gettime().
3053 	 */
3054 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3055 		prefetch_curr_exec_start(p);
3056 		update_rq_clock(rq);
3057 		p->sched_class->update_curr(rq);
3058 	}
3059 	ns = p->se.sum_exec_runtime;
3060 	task_rq_unlock(rq, p, &rf);
3061 
3062 	return ns;
3063 }
3064 
3065 /*
3066  * This function gets called by the timer code, with HZ frequency.
3067  * We call it with interrupts disabled.
3068  */
3069 void scheduler_tick(void)
3070 {
3071 	int cpu = smp_processor_id();
3072 	struct rq *rq = cpu_rq(cpu);
3073 	struct task_struct *curr = rq->curr;
3074 	struct rq_flags rf;
3075 
3076 	sched_clock_tick();
3077 
3078 	rq_lock(rq, &rf);
3079 
3080 	update_rq_clock(rq);
3081 	curr->sched_class->task_tick(rq, curr, 0);
3082 	cpu_load_update_active(rq);
3083 	calc_global_load_tick(rq);
3084 
3085 	rq_unlock(rq, &rf);
3086 
3087 	perf_event_task_tick();
3088 
3089 #ifdef CONFIG_SMP
3090 	rq->idle_balance = idle_cpu(cpu);
3091 	trigger_load_balance(rq);
3092 #endif
3093 }
3094 
3095 #ifdef CONFIG_NO_HZ_FULL
3096 
3097 struct tick_work {
3098 	int			cpu;
3099 	struct delayed_work	work;
3100 };
3101 
3102 static struct tick_work __percpu *tick_work_cpu;
3103 
3104 static void sched_tick_remote(struct work_struct *work)
3105 {
3106 	struct delayed_work *dwork = to_delayed_work(work);
3107 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3108 	int cpu = twork->cpu;
3109 	struct rq *rq = cpu_rq(cpu);
3110 	struct rq_flags rf;
3111 
3112 	/*
3113 	 * Handle the tick only if it appears the remote CPU is running in full
3114 	 * dynticks mode. The check is racy by nature, but missing a tick or
3115 	 * having one too much is no big deal because the scheduler tick updates
3116 	 * statistics and checks timeslices in a time-independent way, regardless
3117 	 * of when exactly it is running.
3118 	 */
3119 	if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3120 		struct task_struct *curr;
3121 		u64 delta;
3122 
3123 		rq_lock_irq(rq, &rf);
3124 		update_rq_clock(rq);
3125 		curr = rq->curr;
3126 		delta = rq_clock_task(rq) - curr->se.exec_start;
3127 
3128 		/*
3129 		 * Make sure the next tick runs within a reasonable
3130 		 * amount of time.
3131 		 */
3132 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3133 		curr->sched_class->task_tick(rq, curr, 0);
3134 		rq_unlock_irq(rq, &rf);
3135 	}
3136 
3137 	/*
3138 	 * Run the remote tick once per second (1Hz). This arbitrary
3139 	 * frequency is large enough to avoid overload but short enough
3140 	 * to keep scheduler internal stats reasonably up to date.
3141 	 */
3142 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3143 }
3144 
3145 static void sched_tick_start(int cpu)
3146 {
3147 	struct tick_work *twork;
3148 
3149 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3150 		return;
3151 
3152 	WARN_ON_ONCE(!tick_work_cpu);
3153 
3154 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3155 	twork->cpu = cpu;
3156 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3157 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3158 }
3159 
3160 #ifdef CONFIG_HOTPLUG_CPU
3161 static void sched_tick_stop(int cpu)
3162 {
3163 	struct tick_work *twork;
3164 
3165 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3166 		return;
3167 
3168 	WARN_ON_ONCE(!tick_work_cpu);
3169 
3170 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3171 	cancel_delayed_work_sync(&twork->work);
3172 }
3173 #endif /* CONFIG_HOTPLUG_CPU */
3174 
3175 int __init sched_tick_offload_init(void)
3176 {
3177 	tick_work_cpu = alloc_percpu(struct tick_work);
3178 	BUG_ON(!tick_work_cpu);
3179 
3180 	return 0;
3181 }
3182 
3183 #else /* !CONFIG_NO_HZ_FULL */
3184 static inline void sched_tick_start(int cpu) { }
3185 static inline void sched_tick_stop(int cpu) { }
3186 #endif
3187 
3188 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3189 				defined(CONFIG_PREEMPT_TRACER))
3190 /*
3191  * If the value passed in is equal to the current preempt count
3192  * then we just disabled preemption. Start timing the latency.
3193  */
3194 static inline void preempt_latency_start(int val)
3195 {
3196 	if (preempt_count() == val) {
3197 		unsigned long ip = get_lock_parent_ip();
3198 #ifdef CONFIG_DEBUG_PREEMPT
3199 		current->preempt_disable_ip = ip;
3200 #endif
3201 		trace_preempt_off(CALLER_ADDR0, ip);
3202 	}
3203 }
3204 
3205 void preempt_count_add(int val)
3206 {
3207 #ifdef CONFIG_DEBUG_PREEMPT
3208 	/*
3209 	 * Underflow?
3210 	 */
3211 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3212 		return;
3213 #endif
3214 	__preempt_count_add(val);
3215 #ifdef CONFIG_DEBUG_PREEMPT
3216 	/*
3217 	 * Spinlock count overflowing soon?
3218 	 */
3219 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3220 				PREEMPT_MASK - 10);
3221 #endif
3222 	preempt_latency_start(val);
3223 }
3224 EXPORT_SYMBOL(preempt_count_add);
3225 NOKPROBE_SYMBOL(preempt_count_add);
3226 
3227 /*
3228  * If the value passed in equals to the current preempt count
3229  * then we just enabled preemption. Stop timing the latency.
3230  */
3231 static inline void preempt_latency_stop(int val)
3232 {
3233 	if (preempt_count() == val)
3234 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3235 }
3236 
3237 void preempt_count_sub(int val)
3238 {
3239 #ifdef CONFIG_DEBUG_PREEMPT
3240 	/*
3241 	 * Underflow?
3242 	 */
3243 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3244 		return;
3245 	/*
3246 	 * Is the spinlock portion underflowing?
3247 	 */
3248 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3249 			!(preempt_count() & PREEMPT_MASK)))
3250 		return;
3251 #endif
3252 
3253 	preempt_latency_stop(val);
3254 	__preempt_count_sub(val);
3255 }
3256 EXPORT_SYMBOL(preempt_count_sub);
3257 NOKPROBE_SYMBOL(preempt_count_sub);
3258 
3259 #else
3260 static inline void preempt_latency_start(int val) { }
3261 static inline void preempt_latency_stop(int val) { }
3262 #endif
3263 
3264 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3265 {
3266 #ifdef CONFIG_DEBUG_PREEMPT
3267 	return p->preempt_disable_ip;
3268 #else
3269 	return 0;
3270 #endif
3271 }
3272 
3273 /*
3274  * Print scheduling while atomic bug:
3275  */
3276 static noinline void __schedule_bug(struct task_struct *prev)
3277 {
3278 	/* Save this before calling printk(), since that will clobber it */
3279 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3280 
3281 	if (oops_in_progress)
3282 		return;
3283 
3284 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3285 		prev->comm, prev->pid, preempt_count());
3286 
3287 	debug_show_held_locks(prev);
3288 	print_modules();
3289 	if (irqs_disabled())
3290 		print_irqtrace_events(prev);
3291 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3292 	    && in_atomic_preempt_off()) {
3293 		pr_err("Preemption disabled at:");
3294 		print_ip_sym(preempt_disable_ip);
3295 		pr_cont("\n");
3296 	}
3297 	if (panic_on_warn)
3298 		panic("scheduling while atomic\n");
3299 
3300 	dump_stack();
3301 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3302 }
3303 
3304 /*
3305  * Various schedule()-time debugging checks and statistics:
3306  */
3307 static inline void schedule_debug(struct task_struct *prev)
3308 {
3309 #ifdef CONFIG_SCHED_STACK_END_CHECK
3310 	if (task_stack_end_corrupted(prev))
3311 		panic("corrupted stack end detected inside scheduler\n");
3312 #endif
3313 
3314 	if (unlikely(in_atomic_preempt_off())) {
3315 		__schedule_bug(prev);
3316 		preempt_count_set(PREEMPT_DISABLED);
3317 	}
3318 	rcu_sleep_check();
3319 
3320 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3321 
3322 	schedstat_inc(this_rq()->sched_count);
3323 }
3324 
3325 /*
3326  * Pick up the highest-prio task:
3327  */
3328 static inline struct task_struct *
3329 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3330 {
3331 	const struct sched_class *class;
3332 	struct task_struct *p;
3333 
3334 	/*
3335 	 * Optimization: we know that if all tasks are in the fair class we can
3336 	 * call that function directly, but only if the @prev task wasn't of a
3337 	 * higher scheduling class, because otherwise those loose the
3338 	 * opportunity to pull in more work from other CPUs.
3339 	 */
3340 	if (likely((prev->sched_class == &idle_sched_class ||
3341 		    prev->sched_class == &fair_sched_class) &&
3342 		   rq->nr_running == rq->cfs.h_nr_running)) {
3343 
3344 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3345 		if (unlikely(p == RETRY_TASK))
3346 			goto again;
3347 
3348 		/* Assumes fair_sched_class->next == idle_sched_class */
3349 		if (unlikely(!p))
3350 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3351 
3352 		return p;
3353 	}
3354 
3355 again:
3356 	for_each_class(class) {
3357 		p = class->pick_next_task(rq, prev, rf);
3358 		if (p) {
3359 			if (unlikely(p == RETRY_TASK))
3360 				goto again;
3361 			return p;
3362 		}
3363 	}
3364 
3365 	/* The idle class should always have a runnable task: */
3366 	BUG();
3367 }
3368 
3369 /*
3370  * __schedule() is the main scheduler function.
3371  *
3372  * The main means of driving the scheduler and thus entering this function are:
3373  *
3374  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3375  *
3376  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3377  *      paths. For example, see arch/x86/entry_64.S.
3378  *
3379  *      To drive preemption between tasks, the scheduler sets the flag in timer
3380  *      interrupt handler scheduler_tick().
3381  *
3382  *   3. Wakeups don't really cause entry into schedule(). They add a
3383  *      task to the run-queue and that's it.
3384  *
3385  *      Now, if the new task added to the run-queue preempts the current
3386  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3387  *      called on the nearest possible occasion:
3388  *
3389  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3390  *
3391  *         - in syscall or exception context, at the next outmost
3392  *           preempt_enable(). (this might be as soon as the wake_up()'s
3393  *           spin_unlock()!)
3394  *
3395  *         - in IRQ context, return from interrupt-handler to
3396  *           preemptible context
3397  *
3398  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3399  *         then at the next:
3400  *
3401  *          - cond_resched() call
3402  *          - explicit schedule() call
3403  *          - return from syscall or exception to user-space
3404  *          - return from interrupt-handler to user-space
3405  *
3406  * WARNING: must be called with preemption disabled!
3407  */
3408 static void __sched notrace __schedule(bool preempt)
3409 {
3410 	struct task_struct *prev, *next;
3411 	unsigned long *switch_count;
3412 	struct rq_flags rf;
3413 	struct rq *rq;
3414 	int cpu;
3415 
3416 	cpu = smp_processor_id();
3417 	rq = cpu_rq(cpu);
3418 	prev = rq->curr;
3419 
3420 	schedule_debug(prev);
3421 
3422 	if (sched_feat(HRTICK))
3423 		hrtick_clear(rq);
3424 
3425 	local_irq_disable();
3426 	rcu_note_context_switch(preempt);
3427 
3428 	/*
3429 	 * Make sure that signal_pending_state()->signal_pending() below
3430 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3431 	 * done by the caller to avoid the race with signal_wake_up().
3432 	 *
3433 	 * The membarrier system call requires a full memory barrier
3434 	 * after coming from user-space, before storing to rq->curr.
3435 	 */
3436 	rq_lock(rq, &rf);
3437 	smp_mb__after_spinlock();
3438 
3439 	/* Promote REQ to ACT */
3440 	rq->clock_update_flags <<= 1;
3441 	update_rq_clock(rq);
3442 
3443 	switch_count = &prev->nivcsw;
3444 	if (!preempt && prev->state) {
3445 		if (unlikely(signal_pending_state(prev->state, prev))) {
3446 			prev->state = TASK_RUNNING;
3447 		} else {
3448 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3449 			prev->on_rq = 0;
3450 
3451 			if (prev->in_iowait) {
3452 				atomic_inc(&rq->nr_iowait);
3453 				delayacct_blkio_start();
3454 			}
3455 
3456 			/*
3457 			 * If a worker went to sleep, notify and ask workqueue
3458 			 * whether it wants to wake up a task to maintain
3459 			 * concurrency.
3460 			 */
3461 			if (prev->flags & PF_WQ_WORKER) {
3462 				struct task_struct *to_wakeup;
3463 
3464 				to_wakeup = wq_worker_sleeping(prev);
3465 				if (to_wakeup)
3466 					try_to_wake_up_local(to_wakeup, &rf);
3467 			}
3468 		}
3469 		switch_count = &prev->nvcsw;
3470 	}
3471 
3472 	next = pick_next_task(rq, prev, &rf);
3473 	clear_tsk_need_resched(prev);
3474 	clear_preempt_need_resched();
3475 
3476 	if (likely(prev != next)) {
3477 		rq->nr_switches++;
3478 		rq->curr = next;
3479 		/*
3480 		 * The membarrier system call requires each architecture
3481 		 * to have a full memory barrier after updating
3482 		 * rq->curr, before returning to user-space.
3483 		 *
3484 		 * Here are the schemes providing that barrier on the
3485 		 * various architectures:
3486 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3487 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3488 		 * - finish_lock_switch() for weakly-ordered
3489 		 *   architectures where spin_unlock is a full barrier,
3490 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3491 		 *   is a RELEASE barrier),
3492 		 */
3493 		++*switch_count;
3494 
3495 		trace_sched_switch(preempt, prev, next);
3496 
3497 		/* Also unlocks the rq: */
3498 		rq = context_switch(rq, prev, next, &rf);
3499 	} else {
3500 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3501 		rq_unlock_irq(rq, &rf);
3502 	}
3503 
3504 	balance_callback(rq);
3505 }
3506 
3507 void __noreturn do_task_dead(void)
3508 {
3509 	/* Causes final put_task_struct in finish_task_switch(): */
3510 	set_special_state(TASK_DEAD);
3511 
3512 	/* Tell freezer to ignore us: */
3513 	current->flags |= PF_NOFREEZE;
3514 
3515 	__schedule(false);
3516 	BUG();
3517 
3518 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3519 	for (;;)
3520 		cpu_relax();
3521 }
3522 
3523 static inline void sched_submit_work(struct task_struct *tsk)
3524 {
3525 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3526 		return;
3527 	/*
3528 	 * If we are going to sleep and we have plugged IO queued,
3529 	 * make sure to submit it to avoid deadlocks.
3530 	 */
3531 	if (blk_needs_flush_plug(tsk))
3532 		blk_schedule_flush_plug(tsk);
3533 }
3534 
3535 asmlinkage __visible void __sched schedule(void)
3536 {
3537 	struct task_struct *tsk = current;
3538 
3539 	sched_submit_work(tsk);
3540 	do {
3541 		preempt_disable();
3542 		__schedule(false);
3543 		sched_preempt_enable_no_resched();
3544 	} while (need_resched());
3545 }
3546 EXPORT_SYMBOL(schedule);
3547 
3548 /*
3549  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3550  * state (have scheduled out non-voluntarily) by making sure that all
3551  * tasks have either left the run queue or have gone into user space.
3552  * As idle tasks do not do either, they must not ever be preempted
3553  * (schedule out non-voluntarily).
3554  *
3555  * schedule_idle() is similar to schedule_preempt_disable() except that it
3556  * never enables preemption because it does not call sched_submit_work().
3557  */
3558 void __sched schedule_idle(void)
3559 {
3560 	/*
3561 	 * As this skips calling sched_submit_work(), which the idle task does
3562 	 * regardless because that function is a nop when the task is in a
3563 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3564 	 * current task can be in any other state. Note, idle is always in the
3565 	 * TASK_RUNNING state.
3566 	 */
3567 	WARN_ON_ONCE(current->state);
3568 	do {
3569 		__schedule(false);
3570 	} while (need_resched());
3571 }
3572 
3573 #ifdef CONFIG_CONTEXT_TRACKING
3574 asmlinkage __visible void __sched schedule_user(void)
3575 {
3576 	/*
3577 	 * If we come here after a random call to set_need_resched(),
3578 	 * or we have been woken up remotely but the IPI has not yet arrived,
3579 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3580 	 * we find a better solution.
3581 	 *
3582 	 * NB: There are buggy callers of this function.  Ideally we
3583 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3584 	 * too frequently to make sense yet.
3585 	 */
3586 	enum ctx_state prev_state = exception_enter();
3587 	schedule();
3588 	exception_exit(prev_state);
3589 }
3590 #endif
3591 
3592 /**
3593  * schedule_preempt_disabled - called with preemption disabled
3594  *
3595  * Returns with preemption disabled. Note: preempt_count must be 1
3596  */
3597 void __sched schedule_preempt_disabled(void)
3598 {
3599 	sched_preempt_enable_no_resched();
3600 	schedule();
3601 	preempt_disable();
3602 }
3603 
3604 static void __sched notrace preempt_schedule_common(void)
3605 {
3606 	do {
3607 		/*
3608 		 * Because the function tracer can trace preempt_count_sub()
3609 		 * and it also uses preempt_enable/disable_notrace(), if
3610 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3611 		 * by the function tracer will call this function again and
3612 		 * cause infinite recursion.
3613 		 *
3614 		 * Preemption must be disabled here before the function
3615 		 * tracer can trace. Break up preempt_disable() into two
3616 		 * calls. One to disable preemption without fear of being
3617 		 * traced. The other to still record the preemption latency,
3618 		 * which can also be traced by the function tracer.
3619 		 */
3620 		preempt_disable_notrace();
3621 		preempt_latency_start(1);
3622 		__schedule(true);
3623 		preempt_latency_stop(1);
3624 		preempt_enable_no_resched_notrace();
3625 
3626 		/*
3627 		 * Check again in case we missed a preemption opportunity
3628 		 * between schedule and now.
3629 		 */
3630 	} while (need_resched());
3631 }
3632 
3633 #ifdef CONFIG_PREEMPT
3634 /*
3635  * this is the entry point to schedule() from in-kernel preemption
3636  * off of preempt_enable. Kernel preemptions off return from interrupt
3637  * occur there and call schedule directly.
3638  */
3639 asmlinkage __visible void __sched notrace preempt_schedule(void)
3640 {
3641 	/*
3642 	 * If there is a non-zero preempt_count or interrupts are disabled,
3643 	 * we do not want to preempt the current task. Just return..
3644 	 */
3645 	if (likely(!preemptible()))
3646 		return;
3647 
3648 	preempt_schedule_common();
3649 }
3650 NOKPROBE_SYMBOL(preempt_schedule);
3651 EXPORT_SYMBOL(preempt_schedule);
3652 
3653 /**
3654  * preempt_schedule_notrace - preempt_schedule called by tracing
3655  *
3656  * The tracing infrastructure uses preempt_enable_notrace to prevent
3657  * recursion and tracing preempt enabling caused by the tracing
3658  * infrastructure itself. But as tracing can happen in areas coming
3659  * from userspace or just about to enter userspace, a preempt enable
3660  * can occur before user_exit() is called. This will cause the scheduler
3661  * to be called when the system is still in usermode.
3662  *
3663  * To prevent this, the preempt_enable_notrace will use this function
3664  * instead of preempt_schedule() to exit user context if needed before
3665  * calling the scheduler.
3666  */
3667 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3668 {
3669 	enum ctx_state prev_ctx;
3670 
3671 	if (likely(!preemptible()))
3672 		return;
3673 
3674 	do {
3675 		/*
3676 		 * Because the function tracer can trace preempt_count_sub()
3677 		 * and it also uses preempt_enable/disable_notrace(), if
3678 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3679 		 * by the function tracer will call this function again and
3680 		 * cause infinite recursion.
3681 		 *
3682 		 * Preemption must be disabled here before the function
3683 		 * tracer can trace. Break up preempt_disable() into two
3684 		 * calls. One to disable preemption without fear of being
3685 		 * traced. The other to still record the preemption latency,
3686 		 * which can also be traced by the function tracer.
3687 		 */
3688 		preempt_disable_notrace();
3689 		preempt_latency_start(1);
3690 		/*
3691 		 * Needs preempt disabled in case user_exit() is traced
3692 		 * and the tracer calls preempt_enable_notrace() causing
3693 		 * an infinite recursion.
3694 		 */
3695 		prev_ctx = exception_enter();
3696 		__schedule(true);
3697 		exception_exit(prev_ctx);
3698 
3699 		preempt_latency_stop(1);
3700 		preempt_enable_no_resched_notrace();
3701 	} while (need_resched());
3702 }
3703 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3704 
3705 #endif /* CONFIG_PREEMPT */
3706 
3707 /*
3708  * this is the entry point to schedule() from kernel preemption
3709  * off of irq context.
3710  * Note, that this is called and return with irqs disabled. This will
3711  * protect us against recursive calling from irq.
3712  */
3713 asmlinkage __visible void __sched preempt_schedule_irq(void)
3714 {
3715 	enum ctx_state prev_state;
3716 
3717 	/* Catch callers which need to be fixed */
3718 	BUG_ON(preempt_count() || !irqs_disabled());
3719 
3720 	prev_state = exception_enter();
3721 
3722 	do {
3723 		preempt_disable();
3724 		local_irq_enable();
3725 		__schedule(true);
3726 		local_irq_disable();
3727 		sched_preempt_enable_no_resched();
3728 	} while (need_resched());
3729 
3730 	exception_exit(prev_state);
3731 }
3732 
3733 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3734 			  void *key)
3735 {
3736 	return try_to_wake_up(curr->private, mode, wake_flags);
3737 }
3738 EXPORT_SYMBOL(default_wake_function);
3739 
3740 #ifdef CONFIG_RT_MUTEXES
3741 
3742 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3743 {
3744 	if (pi_task)
3745 		prio = min(prio, pi_task->prio);
3746 
3747 	return prio;
3748 }
3749 
3750 static inline int rt_effective_prio(struct task_struct *p, int prio)
3751 {
3752 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3753 
3754 	return __rt_effective_prio(pi_task, prio);
3755 }
3756 
3757 /*
3758  * rt_mutex_setprio - set the current priority of a task
3759  * @p: task to boost
3760  * @pi_task: donor task
3761  *
3762  * This function changes the 'effective' priority of a task. It does
3763  * not touch ->normal_prio like __setscheduler().
3764  *
3765  * Used by the rt_mutex code to implement priority inheritance
3766  * logic. Call site only calls if the priority of the task changed.
3767  */
3768 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3769 {
3770 	int prio, oldprio, queued, running, queue_flag =
3771 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3772 	const struct sched_class *prev_class;
3773 	struct rq_flags rf;
3774 	struct rq *rq;
3775 
3776 	/* XXX used to be waiter->prio, not waiter->task->prio */
3777 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3778 
3779 	/*
3780 	 * If nothing changed; bail early.
3781 	 */
3782 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3783 		return;
3784 
3785 	rq = __task_rq_lock(p, &rf);
3786 	update_rq_clock(rq);
3787 	/*
3788 	 * Set under pi_lock && rq->lock, such that the value can be used under
3789 	 * either lock.
3790 	 *
3791 	 * Note that there is loads of tricky to make this pointer cache work
3792 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3793 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3794 	 * task is allowed to run again (and can exit). This ensures the pointer
3795 	 * points to a blocked task -- which guaratees the task is present.
3796 	 */
3797 	p->pi_top_task = pi_task;
3798 
3799 	/*
3800 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3801 	 */
3802 	if (prio == p->prio && !dl_prio(prio))
3803 		goto out_unlock;
3804 
3805 	/*
3806 	 * Idle task boosting is a nono in general. There is one
3807 	 * exception, when PREEMPT_RT and NOHZ is active:
3808 	 *
3809 	 * The idle task calls get_next_timer_interrupt() and holds
3810 	 * the timer wheel base->lock on the CPU and another CPU wants
3811 	 * to access the timer (probably to cancel it). We can safely
3812 	 * ignore the boosting request, as the idle CPU runs this code
3813 	 * with interrupts disabled and will complete the lock
3814 	 * protected section without being interrupted. So there is no
3815 	 * real need to boost.
3816 	 */
3817 	if (unlikely(p == rq->idle)) {
3818 		WARN_ON(p != rq->curr);
3819 		WARN_ON(p->pi_blocked_on);
3820 		goto out_unlock;
3821 	}
3822 
3823 	trace_sched_pi_setprio(p, pi_task);
3824 	oldprio = p->prio;
3825 
3826 	if (oldprio == prio)
3827 		queue_flag &= ~DEQUEUE_MOVE;
3828 
3829 	prev_class = p->sched_class;
3830 	queued = task_on_rq_queued(p);
3831 	running = task_current(rq, p);
3832 	if (queued)
3833 		dequeue_task(rq, p, queue_flag);
3834 	if (running)
3835 		put_prev_task(rq, p);
3836 
3837 	/*
3838 	 * Boosting condition are:
3839 	 * 1. -rt task is running and holds mutex A
3840 	 *      --> -dl task blocks on mutex A
3841 	 *
3842 	 * 2. -dl task is running and holds mutex A
3843 	 *      --> -dl task blocks on mutex A and could preempt the
3844 	 *          running task
3845 	 */
3846 	if (dl_prio(prio)) {
3847 		if (!dl_prio(p->normal_prio) ||
3848 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3849 			p->dl.dl_boosted = 1;
3850 			queue_flag |= ENQUEUE_REPLENISH;
3851 		} else
3852 			p->dl.dl_boosted = 0;
3853 		p->sched_class = &dl_sched_class;
3854 	} else if (rt_prio(prio)) {
3855 		if (dl_prio(oldprio))
3856 			p->dl.dl_boosted = 0;
3857 		if (oldprio < prio)
3858 			queue_flag |= ENQUEUE_HEAD;
3859 		p->sched_class = &rt_sched_class;
3860 	} else {
3861 		if (dl_prio(oldprio))
3862 			p->dl.dl_boosted = 0;
3863 		if (rt_prio(oldprio))
3864 			p->rt.timeout = 0;
3865 		p->sched_class = &fair_sched_class;
3866 	}
3867 
3868 	p->prio = prio;
3869 
3870 	if (queued)
3871 		enqueue_task(rq, p, queue_flag);
3872 	if (running)
3873 		set_curr_task(rq, p);
3874 
3875 	check_class_changed(rq, p, prev_class, oldprio);
3876 out_unlock:
3877 	/* Avoid rq from going away on us: */
3878 	preempt_disable();
3879 	__task_rq_unlock(rq, &rf);
3880 
3881 	balance_callback(rq);
3882 	preempt_enable();
3883 }
3884 #else
3885 static inline int rt_effective_prio(struct task_struct *p, int prio)
3886 {
3887 	return prio;
3888 }
3889 #endif
3890 
3891 void set_user_nice(struct task_struct *p, long nice)
3892 {
3893 	bool queued, running;
3894 	int old_prio, delta;
3895 	struct rq_flags rf;
3896 	struct rq *rq;
3897 
3898 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3899 		return;
3900 	/*
3901 	 * We have to be careful, if called from sys_setpriority(),
3902 	 * the task might be in the middle of scheduling on another CPU.
3903 	 */
3904 	rq = task_rq_lock(p, &rf);
3905 	update_rq_clock(rq);
3906 
3907 	/*
3908 	 * The RT priorities are set via sched_setscheduler(), but we still
3909 	 * allow the 'normal' nice value to be set - but as expected
3910 	 * it wont have any effect on scheduling until the task is
3911 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3912 	 */
3913 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3914 		p->static_prio = NICE_TO_PRIO(nice);
3915 		goto out_unlock;
3916 	}
3917 	queued = task_on_rq_queued(p);
3918 	running = task_current(rq, p);
3919 	if (queued)
3920 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3921 	if (running)
3922 		put_prev_task(rq, p);
3923 
3924 	p->static_prio = NICE_TO_PRIO(nice);
3925 	set_load_weight(p, true);
3926 	old_prio = p->prio;
3927 	p->prio = effective_prio(p);
3928 	delta = p->prio - old_prio;
3929 
3930 	if (queued) {
3931 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3932 		/*
3933 		 * If the task increased its priority or is running and
3934 		 * lowered its priority, then reschedule its CPU:
3935 		 */
3936 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3937 			resched_curr(rq);
3938 	}
3939 	if (running)
3940 		set_curr_task(rq, p);
3941 out_unlock:
3942 	task_rq_unlock(rq, p, &rf);
3943 }
3944 EXPORT_SYMBOL(set_user_nice);
3945 
3946 /*
3947  * can_nice - check if a task can reduce its nice value
3948  * @p: task
3949  * @nice: nice value
3950  */
3951 int can_nice(const struct task_struct *p, const int nice)
3952 {
3953 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3954 	int nice_rlim = nice_to_rlimit(nice);
3955 
3956 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3957 		capable(CAP_SYS_NICE));
3958 }
3959 
3960 #ifdef __ARCH_WANT_SYS_NICE
3961 
3962 /*
3963  * sys_nice - change the priority of the current process.
3964  * @increment: priority increment
3965  *
3966  * sys_setpriority is a more generic, but much slower function that
3967  * does similar things.
3968  */
3969 SYSCALL_DEFINE1(nice, int, increment)
3970 {
3971 	long nice, retval;
3972 
3973 	/*
3974 	 * Setpriority might change our priority at the same moment.
3975 	 * We don't have to worry. Conceptually one call occurs first
3976 	 * and we have a single winner.
3977 	 */
3978 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3979 	nice = task_nice(current) + increment;
3980 
3981 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3982 	if (increment < 0 && !can_nice(current, nice))
3983 		return -EPERM;
3984 
3985 	retval = security_task_setnice(current, nice);
3986 	if (retval)
3987 		return retval;
3988 
3989 	set_user_nice(current, nice);
3990 	return 0;
3991 }
3992 
3993 #endif
3994 
3995 /**
3996  * task_prio - return the priority value of a given task.
3997  * @p: the task in question.
3998  *
3999  * Return: The priority value as seen by users in /proc.
4000  * RT tasks are offset by -200. Normal tasks are centered
4001  * around 0, value goes from -16 to +15.
4002  */
4003 int task_prio(const struct task_struct *p)
4004 {
4005 	return p->prio - MAX_RT_PRIO;
4006 }
4007 
4008 /**
4009  * idle_cpu - is a given CPU idle currently?
4010  * @cpu: the processor in question.
4011  *
4012  * Return: 1 if the CPU is currently idle. 0 otherwise.
4013  */
4014 int idle_cpu(int cpu)
4015 {
4016 	struct rq *rq = cpu_rq(cpu);
4017 
4018 	if (rq->curr != rq->idle)
4019 		return 0;
4020 
4021 	if (rq->nr_running)
4022 		return 0;
4023 
4024 #ifdef CONFIG_SMP
4025 	if (!llist_empty(&rq->wake_list))
4026 		return 0;
4027 #endif
4028 
4029 	return 1;
4030 }
4031 
4032 /**
4033  * available_idle_cpu - is a given CPU idle for enqueuing work.
4034  * @cpu: the CPU in question.
4035  *
4036  * Return: 1 if the CPU is currently idle. 0 otherwise.
4037  */
4038 int available_idle_cpu(int cpu)
4039 {
4040 	if (!idle_cpu(cpu))
4041 		return 0;
4042 
4043 	if (vcpu_is_preempted(cpu))
4044 		return 0;
4045 
4046 	return 1;
4047 }
4048 
4049 /**
4050  * idle_task - return the idle task for a given CPU.
4051  * @cpu: the processor in question.
4052  *
4053  * Return: The idle task for the CPU @cpu.
4054  */
4055 struct task_struct *idle_task(int cpu)
4056 {
4057 	return cpu_rq(cpu)->idle;
4058 }
4059 
4060 /**
4061  * find_process_by_pid - find a process with a matching PID value.
4062  * @pid: the pid in question.
4063  *
4064  * The task of @pid, if found. %NULL otherwise.
4065  */
4066 static struct task_struct *find_process_by_pid(pid_t pid)
4067 {
4068 	return pid ? find_task_by_vpid(pid) : current;
4069 }
4070 
4071 /*
4072  * sched_setparam() passes in -1 for its policy, to let the functions
4073  * it calls know not to change it.
4074  */
4075 #define SETPARAM_POLICY	-1
4076 
4077 static void __setscheduler_params(struct task_struct *p,
4078 		const struct sched_attr *attr)
4079 {
4080 	int policy = attr->sched_policy;
4081 
4082 	if (policy == SETPARAM_POLICY)
4083 		policy = p->policy;
4084 
4085 	p->policy = policy;
4086 
4087 	if (dl_policy(policy))
4088 		__setparam_dl(p, attr);
4089 	else if (fair_policy(policy))
4090 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4091 
4092 	/*
4093 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4094 	 * !rt_policy. Always setting this ensures that things like
4095 	 * getparam()/getattr() don't report silly values for !rt tasks.
4096 	 */
4097 	p->rt_priority = attr->sched_priority;
4098 	p->normal_prio = normal_prio(p);
4099 	set_load_weight(p, true);
4100 }
4101 
4102 /* Actually do priority change: must hold pi & rq lock. */
4103 static void __setscheduler(struct rq *rq, struct task_struct *p,
4104 			   const struct sched_attr *attr, bool keep_boost)
4105 {
4106 	__setscheduler_params(p, attr);
4107 
4108 	/*
4109 	 * Keep a potential priority boosting if called from
4110 	 * sched_setscheduler().
4111 	 */
4112 	p->prio = normal_prio(p);
4113 	if (keep_boost)
4114 		p->prio = rt_effective_prio(p, p->prio);
4115 
4116 	if (dl_prio(p->prio))
4117 		p->sched_class = &dl_sched_class;
4118 	else if (rt_prio(p->prio))
4119 		p->sched_class = &rt_sched_class;
4120 	else
4121 		p->sched_class = &fair_sched_class;
4122 }
4123 
4124 /*
4125  * Check the target process has a UID that matches the current process's:
4126  */
4127 static bool check_same_owner(struct task_struct *p)
4128 {
4129 	const struct cred *cred = current_cred(), *pcred;
4130 	bool match;
4131 
4132 	rcu_read_lock();
4133 	pcred = __task_cred(p);
4134 	match = (uid_eq(cred->euid, pcred->euid) ||
4135 		 uid_eq(cred->euid, pcred->uid));
4136 	rcu_read_unlock();
4137 	return match;
4138 }
4139 
4140 static int __sched_setscheduler(struct task_struct *p,
4141 				const struct sched_attr *attr,
4142 				bool user, bool pi)
4143 {
4144 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4145 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4146 	int retval, oldprio, oldpolicy = -1, queued, running;
4147 	int new_effective_prio, policy = attr->sched_policy;
4148 	const struct sched_class *prev_class;
4149 	struct rq_flags rf;
4150 	int reset_on_fork;
4151 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4152 	struct rq *rq;
4153 
4154 	/* The pi code expects interrupts enabled */
4155 	BUG_ON(pi && in_interrupt());
4156 recheck:
4157 	/* Double check policy once rq lock held: */
4158 	if (policy < 0) {
4159 		reset_on_fork = p->sched_reset_on_fork;
4160 		policy = oldpolicy = p->policy;
4161 	} else {
4162 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4163 
4164 		if (!valid_policy(policy))
4165 			return -EINVAL;
4166 	}
4167 
4168 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4169 		return -EINVAL;
4170 
4171 	/*
4172 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4173 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4174 	 * SCHED_BATCH and SCHED_IDLE is 0.
4175 	 */
4176 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4177 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4178 		return -EINVAL;
4179 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4180 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4181 		return -EINVAL;
4182 
4183 	/*
4184 	 * Allow unprivileged RT tasks to decrease priority:
4185 	 */
4186 	if (user && !capable(CAP_SYS_NICE)) {
4187 		if (fair_policy(policy)) {
4188 			if (attr->sched_nice < task_nice(p) &&
4189 			    !can_nice(p, attr->sched_nice))
4190 				return -EPERM;
4191 		}
4192 
4193 		if (rt_policy(policy)) {
4194 			unsigned long rlim_rtprio =
4195 					task_rlimit(p, RLIMIT_RTPRIO);
4196 
4197 			/* Can't set/change the rt policy: */
4198 			if (policy != p->policy && !rlim_rtprio)
4199 				return -EPERM;
4200 
4201 			/* Can't increase priority: */
4202 			if (attr->sched_priority > p->rt_priority &&
4203 			    attr->sched_priority > rlim_rtprio)
4204 				return -EPERM;
4205 		}
4206 
4207 		 /*
4208 		  * Can't set/change SCHED_DEADLINE policy at all for now
4209 		  * (safest behavior); in the future we would like to allow
4210 		  * unprivileged DL tasks to increase their relative deadline
4211 		  * or reduce their runtime (both ways reducing utilization)
4212 		  */
4213 		if (dl_policy(policy))
4214 			return -EPERM;
4215 
4216 		/*
4217 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4218 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4219 		 */
4220 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4221 			if (!can_nice(p, task_nice(p)))
4222 				return -EPERM;
4223 		}
4224 
4225 		/* Can't change other user's priorities: */
4226 		if (!check_same_owner(p))
4227 			return -EPERM;
4228 
4229 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4230 		if (p->sched_reset_on_fork && !reset_on_fork)
4231 			return -EPERM;
4232 	}
4233 
4234 	if (user) {
4235 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4236 			return -EINVAL;
4237 
4238 		retval = security_task_setscheduler(p);
4239 		if (retval)
4240 			return retval;
4241 	}
4242 
4243 	/*
4244 	 * Make sure no PI-waiters arrive (or leave) while we are
4245 	 * changing the priority of the task:
4246 	 *
4247 	 * To be able to change p->policy safely, the appropriate
4248 	 * runqueue lock must be held.
4249 	 */
4250 	rq = task_rq_lock(p, &rf);
4251 	update_rq_clock(rq);
4252 
4253 	/*
4254 	 * Changing the policy of the stop threads its a very bad idea:
4255 	 */
4256 	if (p == rq->stop) {
4257 		task_rq_unlock(rq, p, &rf);
4258 		return -EINVAL;
4259 	}
4260 
4261 	/*
4262 	 * If not changing anything there's no need to proceed further,
4263 	 * but store a possible modification of reset_on_fork.
4264 	 */
4265 	if (unlikely(policy == p->policy)) {
4266 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4267 			goto change;
4268 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4269 			goto change;
4270 		if (dl_policy(policy) && dl_param_changed(p, attr))
4271 			goto change;
4272 
4273 		p->sched_reset_on_fork = reset_on_fork;
4274 		task_rq_unlock(rq, p, &rf);
4275 		return 0;
4276 	}
4277 change:
4278 
4279 	if (user) {
4280 #ifdef CONFIG_RT_GROUP_SCHED
4281 		/*
4282 		 * Do not allow realtime tasks into groups that have no runtime
4283 		 * assigned.
4284 		 */
4285 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4286 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4287 				!task_group_is_autogroup(task_group(p))) {
4288 			task_rq_unlock(rq, p, &rf);
4289 			return -EPERM;
4290 		}
4291 #endif
4292 #ifdef CONFIG_SMP
4293 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4294 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4295 			cpumask_t *span = rq->rd->span;
4296 
4297 			/*
4298 			 * Don't allow tasks with an affinity mask smaller than
4299 			 * the entire root_domain to become SCHED_DEADLINE. We
4300 			 * will also fail if there's no bandwidth available.
4301 			 */
4302 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4303 			    rq->rd->dl_bw.bw == 0) {
4304 				task_rq_unlock(rq, p, &rf);
4305 				return -EPERM;
4306 			}
4307 		}
4308 #endif
4309 	}
4310 
4311 	/* Re-check policy now with rq lock held: */
4312 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4313 		policy = oldpolicy = -1;
4314 		task_rq_unlock(rq, p, &rf);
4315 		goto recheck;
4316 	}
4317 
4318 	/*
4319 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4320 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4321 	 * is available.
4322 	 */
4323 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4324 		task_rq_unlock(rq, p, &rf);
4325 		return -EBUSY;
4326 	}
4327 
4328 	p->sched_reset_on_fork = reset_on_fork;
4329 	oldprio = p->prio;
4330 
4331 	if (pi) {
4332 		/*
4333 		 * Take priority boosted tasks into account. If the new
4334 		 * effective priority is unchanged, we just store the new
4335 		 * normal parameters and do not touch the scheduler class and
4336 		 * the runqueue. This will be done when the task deboost
4337 		 * itself.
4338 		 */
4339 		new_effective_prio = rt_effective_prio(p, newprio);
4340 		if (new_effective_prio == oldprio)
4341 			queue_flags &= ~DEQUEUE_MOVE;
4342 	}
4343 
4344 	queued = task_on_rq_queued(p);
4345 	running = task_current(rq, p);
4346 	if (queued)
4347 		dequeue_task(rq, p, queue_flags);
4348 	if (running)
4349 		put_prev_task(rq, p);
4350 
4351 	prev_class = p->sched_class;
4352 	__setscheduler(rq, p, attr, pi);
4353 
4354 	if (queued) {
4355 		/*
4356 		 * We enqueue to tail when the priority of a task is
4357 		 * increased (user space view).
4358 		 */
4359 		if (oldprio < p->prio)
4360 			queue_flags |= ENQUEUE_HEAD;
4361 
4362 		enqueue_task(rq, p, queue_flags);
4363 	}
4364 	if (running)
4365 		set_curr_task(rq, p);
4366 
4367 	check_class_changed(rq, p, prev_class, oldprio);
4368 
4369 	/* Avoid rq from going away on us: */
4370 	preempt_disable();
4371 	task_rq_unlock(rq, p, &rf);
4372 
4373 	if (pi)
4374 		rt_mutex_adjust_pi(p);
4375 
4376 	/* Run balance callbacks after we've adjusted the PI chain: */
4377 	balance_callback(rq);
4378 	preempt_enable();
4379 
4380 	return 0;
4381 }
4382 
4383 static int _sched_setscheduler(struct task_struct *p, int policy,
4384 			       const struct sched_param *param, bool check)
4385 {
4386 	struct sched_attr attr = {
4387 		.sched_policy   = policy,
4388 		.sched_priority = param->sched_priority,
4389 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4390 	};
4391 
4392 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4393 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4394 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4395 		policy &= ~SCHED_RESET_ON_FORK;
4396 		attr.sched_policy = policy;
4397 	}
4398 
4399 	return __sched_setscheduler(p, &attr, check, true);
4400 }
4401 /**
4402  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4403  * @p: the task in question.
4404  * @policy: new policy.
4405  * @param: structure containing the new RT priority.
4406  *
4407  * Return: 0 on success. An error code otherwise.
4408  *
4409  * NOTE that the task may be already dead.
4410  */
4411 int sched_setscheduler(struct task_struct *p, int policy,
4412 		       const struct sched_param *param)
4413 {
4414 	return _sched_setscheduler(p, policy, param, true);
4415 }
4416 EXPORT_SYMBOL_GPL(sched_setscheduler);
4417 
4418 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4419 {
4420 	return __sched_setscheduler(p, attr, true, true);
4421 }
4422 EXPORT_SYMBOL_GPL(sched_setattr);
4423 
4424 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4425 {
4426 	return __sched_setscheduler(p, attr, false, true);
4427 }
4428 
4429 /**
4430  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4431  * @p: the task in question.
4432  * @policy: new policy.
4433  * @param: structure containing the new RT priority.
4434  *
4435  * Just like sched_setscheduler, only don't bother checking if the
4436  * current context has permission.  For example, this is needed in
4437  * stop_machine(): we create temporary high priority worker threads,
4438  * but our caller might not have that capability.
4439  *
4440  * Return: 0 on success. An error code otherwise.
4441  */
4442 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4443 			       const struct sched_param *param)
4444 {
4445 	return _sched_setscheduler(p, policy, param, false);
4446 }
4447 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4448 
4449 static int
4450 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4451 {
4452 	struct sched_param lparam;
4453 	struct task_struct *p;
4454 	int retval;
4455 
4456 	if (!param || pid < 0)
4457 		return -EINVAL;
4458 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4459 		return -EFAULT;
4460 
4461 	rcu_read_lock();
4462 	retval = -ESRCH;
4463 	p = find_process_by_pid(pid);
4464 	if (p != NULL)
4465 		retval = sched_setscheduler(p, policy, &lparam);
4466 	rcu_read_unlock();
4467 
4468 	return retval;
4469 }
4470 
4471 /*
4472  * Mimics kernel/events/core.c perf_copy_attr().
4473  */
4474 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4475 {
4476 	u32 size;
4477 	int ret;
4478 
4479 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4480 		return -EFAULT;
4481 
4482 	/* Zero the full structure, so that a short copy will be nice: */
4483 	memset(attr, 0, sizeof(*attr));
4484 
4485 	ret = get_user(size, &uattr->size);
4486 	if (ret)
4487 		return ret;
4488 
4489 	/* Bail out on silly large: */
4490 	if (size > PAGE_SIZE)
4491 		goto err_size;
4492 
4493 	/* ABI compatibility quirk: */
4494 	if (!size)
4495 		size = SCHED_ATTR_SIZE_VER0;
4496 
4497 	if (size < SCHED_ATTR_SIZE_VER0)
4498 		goto err_size;
4499 
4500 	/*
4501 	 * If we're handed a bigger struct than we know of,
4502 	 * ensure all the unknown bits are 0 - i.e. new
4503 	 * user-space does not rely on any kernel feature
4504 	 * extensions we dont know about yet.
4505 	 */
4506 	if (size > sizeof(*attr)) {
4507 		unsigned char __user *addr;
4508 		unsigned char __user *end;
4509 		unsigned char val;
4510 
4511 		addr = (void __user *)uattr + sizeof(*attr);
4512 		end  = (void __user *)uattr + size;
4513 
4514 		for (; addr < end; addr++) {
4515 			ret = get_user(val, addr);
4516 			if (ret)
4517 				return ret;
4518 			if (val)
4519 				goto err_size;
4520 		}
4521 		size = sizeof(*attr);
4522 	}
4523 
4524 	ret = copy_from_user(attr, uattr, size);
4525 	if (ret)
4526 		return -EFAULT;
4527 
4528 	/*
4529 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4530 	 * to be strict and return an error on out-of-bounds values?
4531 	 */
4532 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4533 
4534 	return 0;
4535 
4536 err_size:
4537 	put_user(sizeof(*attr), &uattr->size);
4538 	return -E2BIG;
4539 }
4540 
4541 /**
4542  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4543  * @pid: the pid in question.
4544  * @policy: new policy.
4545  * @param: structure containing the new RT priority.
4546  *
4547  * Return: 0 on success. An error code otherwise.
4548  */
4549 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4550 {
4551 	if (policy < 0)
4552 		return -EINVAL;
4553 
4554 	return do_sched_setscheduler(pid, policy, param);
4555 }
4556 
4557 /**
4558  * sys_sched_setparam - set/change the RT priority of a thread
4559  * @pid: the pid in question.
4560  * @param: structure containing the new RT priority.
4561  *
4562  * Return: 0 on success. An error code otherwise.
4563  */
4564 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4565 {
4566 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4567 }
4568 
4569 /**
4570  * sys_sched_setattr - same as above, but with extended sched_attr
4571  * @pid: the pid in question.
4572  * @uattr: structure containing the extended parameters.
4573  * @flags: for future extension.
4574  */
4575 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4576 			       unsigned int, flags)
4577 {
4578 	struct sched_attr attr;
4579 	struct task_struct *p;
4580 	int retval;
4581 
4582 	if (!uattr || pid < 0 || flags)
4583 		return -EINVAL;
4584 
4585 	retval = sched_copy_attr(uattr, &attr);
4586 	if (retval)
4587 		return retval;
4588 
4589 	if ((int)attr.sched_policy < 0)
4590 		return -EINVAL;
4591 
4592 	rcu_read_lock();
4593 	retval = -ESRCH;
4594 	p = find_process_by_pid(pid);
4595 	if (p != NULL)
4596 		retval = sched_setattr(p, &attr);
4597 	rcu_read_unlock();
4598 
4599 	return retval;
4600 }
4601 
4602 /**
4603  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4604  * @pid: the pid in question.
4605  *
4606  * Return: On success, the policy of the thread. Otherwise, a negative error
4607  * code.
4608  */
4609 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4610 {
4611 	struct task_struct *p;
4612 	int retval;
4613 
4614 	if (pid < 0)
4615 		return -EINVAL;
4616 
4617 	retval = -ESRCH;
4618 	rcu_read_lock();
4619 	p = find_process_by_pid(pid);
4620 	if (p) {
4621 		retval = security_task_getscheduler(p);
4622 		if (!retval)
4623 			retval = p->policy
4624 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4625 	}
4626 	rcu_read_unlock();
4627 	return retval;
4628 }
4629 
4630 /**
4631  * sys_sched_getparam - get the RT priority of a thread
4632  * @pid: the pid in question.
4633  * @param: structure containing the RT priority.
4634  *
4635  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4636  * code.
4637  */
4638 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4639 {
4640 	struct sched_param lp = { .sched_priority = 0 };
4641 	struct task_struct *p;
4642 	int retval;
4643 
4644 	if (!param || pid < 0)
4645 		return -EINVAL;
4646 
4647 	rcu_read_lock();
4648 	p = find_process_by_pid(pid);
4649 	retval = -ESRCH;
4650 	if (!p)
4651 		goto out_unlock;
4652 
4653 	retval = security_task_getscheduler(p);
4654 	if (retval)
4655 		goto out_unlock;
4656 
4657 	if (task_has_rt_policy(p))
4658 		lp.sched_priority = p->rt_priority;
4659 	rcu_read_unlock();
4660 
4661 	/*
4662 	 * This one might sleep, we cannot do it with a spinlock held ...
4663 	 */
4664 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4665 
4666 	return retval;
4667 
4668 out_unlock:
4669 	rcu_read_unlock();
4670 	return retval;
4671 }
4672 
4673 static int sched_read_attr(struct sched_attr __user *uattr,
4674 			   struct sched_attr *attr,
4675 			   unsigned int usize)
4676 {
4677 	int ret;
4678 
4679 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4680 		return -EFAULT;
4681 
4682 	/*
4683 	 * If we're handed a smaller struct than we know of,
4684 	 * ensure all the unknown bits are 0 - i.e. old
4685 	 * user-space does not get uncomplete information.
4686 	 */
4687 	if (usize < sizeof(*attr)) {
4688 		unsigned char *addr;
4689 		unsigned char *end;
4690 
4691 		addr = (void *)attr + usize;
4692 		end  = (void *)attr + sizeof(*attr);
4693 
4694 		for (; addr < end; addr++) {
4695 			if (*addr)
4696 				return -EFBIG;
4697 		}
4698 
4699 		attr->size = usize;
4700 	}
4701 
4702 	ret = copy_to_user(uattr, attr, attr->size);
4703 	if (ret)
4704 		return -EFAULT;
4705 
4706 	return 0;
4707 }
4708 
4709 /**
4710  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4711  * @pid: the pid in question.
4712  * @uattr: structure containing the extended parameters.
4713  * @size: sizeof(attr) for fwd/bwd comp.
4714  * @flags: for future extension.
4715  */
4716 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4717 		unsigned int, size, unsigned int, flags)
4718 {
4719 	struct sched_attr attr = {
4720 		.size = sizeof(struct sched_attr),
4721 	};
4722 	struct task_struct *p;
4723 	int retval;
4724 
4725 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4726 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4727 		return -EINVAL;
4728 
4729 	rcu_read_lock();
4730 	p = find_process_by_pid(pid);
4731 	retval = -ESRCH;
4732 	if (!p)
4733 		goto out_unlock;
4734 
4735 	retval = security_task_getscheduler(p);
4736 	if (retval)
4737 		goto out_unlock;
4738 
4739 	attr.sched_policy = p->policy;
4740 	if (p->sched_reset_on_fork)
4741 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4742 	if (task_has_dl_policy(p))
4743 		__getparam_dl(p, &attr);
4744 	else if (task_has_rt_policy(p))
4745 		attr.sched_priority = p->rt_priority;
4746 	else
4747 		attr.sched_nice = task_nice(p);
4748 
4749 	rcu_read_unlock();
4750 
4751 	retval = sched_read_attr(uattr, &attr, size);
4752 	return retval;
4753 
4754 out_unlock:
4755 	rcu_read_unlock();
4756 	return retval;
4757 }
4758 
4759 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4760 {
4761 	cpumask_var_t cpus_allowed, new_mask;
4762 	struct task_struct *p;
4763 	int retval;
4764 
4765 	rcu_read_lock();
4766 
4767 	p = find_process_by_pid(pid);
4768 	if (!p) {
4769 		rcu_read_unlock();
4770 		return -ESRCH;
4771 	}
4772 
4773 	/* Prevent p going away */
4774 	get_task_struct(p);
4775 	rcu_read_unlock();
4776 
4777 	if (p->flags & PF_NO_SETAFFINITY) {
4778 		retval = -EINVAL;
4779 		goto out_put_task;
4780 	}
4781 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4782 		retval = -ENOMEM;
4783 		goto out_put_task;
4784 	}
4785 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4786 		retval = -ENOMEM;
4787 		goto out_free_cpus_allowed;
4788 	}
4789 	retval = -EPERM;
4790 	if (!check_same_owner(p)) {
4791 		rcu_read_lock();
4792 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4793 			rcu_read_unlock();
4794 			goto out_free_new_mask;
4795 		}
4796 		rcu_read_unlock();
4797 	}
4798 
4799 	retval = security_task_setscheduler(p);
4800 	if (retval)
4801 		goto out_free_new_mask;
4802 
4803 
4804 	cpuset_cpus_allowed(p, cpus_allowed);
4805 	cpumask_and(new_mask, in_mask, cpus_allowed);
4806 
4807 	/*
4808 	 * Since bandwidth control happens on root_domain basis,
4809 	 * if admission test is enabled, we only admit -deadline
4810 	 * tasks allowed to run on all the CPUs in the task's
4811 	 * root_domain.
4812 	 */
4813 #ifdef CONFIG_SMP
4814 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4815 		rcu_read_lock();
4816 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4817 			retval = -EBUSY;
4818 			rcu_read_unlock();
4819 			goto out_free_new_mask;
4820 		}
4821 		rcu_read_unlock();
4822 	}
4823 #endif
4824 again:
4825 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4826 
4827 	if (!retval) {
4828 		cpuset_cpus_allowed(p, cpus_allowed);
4829 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4830 			/*
4831 			 * We must have raced with a concurrent cpuset
4832 			 * update. Just reset the cpus_allowed to the
4833 			 * cpuset's cpus_allowed
4834 			 */
4835 			cpumask_copy(new_mask, cpus_allowed);
4836 			goto again;
4837 		}
4838 	}
4839 out_free_new_mask:
4840 	free_cpumask_var(new_mask);
4841 out_free_cpus_allowed:
4842 	free_cpumask_var(cpus_allowed);
4843 out_put_task:
4844 	put_task_struct(p);
4845 	return retval;
4846 }
4847 
4848 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4849 			     struct cpumask *new_mask)
4850 {
4851 	if (len < cpumask_size())
4852 		cpumask_clear(new_mask);
4853 	else if (len > cpumask_size())
4854 		len = cpumask_size();
4855 
4856 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4857 }
4858 
4859 /**
4860  * sys_sched_setaffinity - set the CPU affinity of a process
4861  * @pid: pid of the process
4862  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4863  * @user_mask_ptr: user-space pointer to the new CPU mask
4864  *
4865  * Return: 0 on success. An error code otherwise.
4866  */
4867 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4868 		unsigned long __user *, user_mask_ptr)
4869 {
4870 	cpumask_var_t new_mask;
4871 	int retval;
4872 
4873 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4874 		return -ENOMEM;
4875 
4876 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4877 	if (retval == 0)
4878 		retval = sched_setaffinity(pid, new_mask);
4879 	free_cpumask_var(new_mask);
4880 	return retval;
4881 }
4882 
4883 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4884 {
4885 	struct task_struct *p;
4886 	unsigned long flags;
4887 	int retval;
4888 
4889 	rcu_read_lock();
4890 
4891 	retval = -ESRCH;
4892 	p = find_process_by_pid(pid);
4893 	if (!p)
4894 		goto out_unlock;
4895 
4896 	retval = security_task_getscheduler(p);
4897 	if (retval)
4898 		goto out_unlock;
4899 
4900 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4901 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4902 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4903 
4904 out_unlock:
4905 	rcu_read_unlock();
4906 
4907 	return retval;
4908 }
4909 
4910 /**
4911  * sys_sched_getaffinity - get the CPU affinity of a process
4912  * @pid: pid of the process
4913  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4914  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4915  *
4916  * Return: size of CPU mask copied to user_mask_ptr on success. An
4917  * error code otherwise.
4918  */
4919 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4920 		unsigned long __user *, user_mask_ptr)
4921 {
4922 	int ret;
4923 	cpumask_var_t mask;
4924 
4925 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4926 		return -EINVAL;
4927 	if (len & (sizeof(unsigned long)-1))
4928 		return -EINVAL;
4929 
4930 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4931 		return -ENOMEM;
4932 
4933 	ret = sched_getaffinity(pid, mask);
4934 	if (ret == 0) {
4935 		unsigned int retlen = min(len, cpumask_size());
4936 
4937 		if (copy_to_user(user_mask_ptr, mask, retlen))
4938 			ret = -EFAULT;
4939 		else
4940 			ret = retlen;
4941 	}
4942 	free_cpumask_var(mask);
4943 
4944 	return ret;
4945 }
4946 
4947 /**
4948  * sys_sched_yield - yield the current processor to other threads.
4949  *
4950  * This function yields the current CPU to other tasks. If there are no
4951  * other threads running on this CPU then this function will return.
4952  *
4953  * Return: 0.
4954  */
4955 static void do_sched_yield(void)
4956 {
4957 	struct rq_flags rf;
4958 	struct rq *rq;
4959 
4960 	local_irq_disable();
4961 	rq = this_rq();
4962 	rq_lock(rq, &rf);
4963 
4964 	schedstat_inc(rq->yld_count);
4965 	current->sched_class->yield_task(rq);
4966 
4967 	/*
4968 	 * Since we are going to call schedule() anyway, there's
4969 	 * no need to preempt or enable interrupts:
4970 	 */
4971 	preempt_disable();
4972 	rq_unlock(rq, &rf);
4973 	sched_preempt_enable_no_resched();
4974 
4975 	schedule();
4976 }
4977 
4978 SYSCALL_DEFINE0(sched_yield)
4979 {
4980 	do_sched_yield();
4981 	return 0;
4982 }
4983 
4984 #ifndef CONFIG_PREEMPT
4985 int __sched _cond_resched(void)
4986 {
4987 	if (should_resched(0)) {
4988 		preempt_schedule_common();
4989 		return 1;
4990 	}
4991 	rcu_all_qs();
4992 	return 0;
4993 }
4994 EXPORT_SYMBOL(_cond_resched);
4995 #endif
4996 
4997 /*
4998  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4999  * call schedule, and on return reacquire the lock.
5000  *
5001  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5002  * operations here to prevent schedule() from being called twice (once via
5003  * spin_unlock(), once by hand).
5004  */
5005 int __cond_resched_lock(spinlock_t *lock)
5006 {
5007 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5008 	int ret = 0;
5009 
5010 	lockdep_assert_held(lock);
5011 
5012 	if (spin_needbreak(lock) || resched) {
5013 		spin_unlock(lock);
5014 		if (resched)
5015 			preempt_schedule_common();
5016 		else
5017 			cpu_relax();
5018 		ret = 1;
5019 		spin_lock(lock);
5020 	}
5021 	return ret;
5022 }
5023 EXPORT_SYMBOL(__cond_resched_lock);
5024 
5025 /**
5026  * yield - yield the current processor to other threads.
5027  *
5028  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5029  *
5030  * The scheduler is at all times free to pick the calling task as the most
5031  * eligible task to run, if removing the yield() call from your code breaks
5032  * it, its already broken.
5033  *
5034  * Typical broken usage is:
5035  *
5036  * while (!event)
5037  *	yield();
5038  *
5039  * where one assumes that yield() will let 'the other' process run that will
5040  * make event true. If the current task is a SCHED_FIFO task that will never
5041  * happen. Never use yield() as a progress guarantee!!
5042  *
5043  * If you want to use yield() to wait for something, use wait_event().
5044  * If you want to use yield() to be 'nice' for others, use cond_resched().
5045  * If you still want to use yield(), do not!
5046  */
5047 void __sched yield(void)
5048 {
5049 	set_current_state(TASK_RUNNING);
5050 	do_sched_yield();
5051 }
5052 EXPORT_SYMBOL(yield);
5053 
5054 /**
5055  * yield_to - yield the current processor to another thread in
5056  * your thread group, or accelerate that thread toward the
5057  * processor it's on.
5058  * @p: target task
5059  * @preempt: whether task preemption is allowed or not
5060  *
5061  * It's the caller's job to ensure that the target task struct
5062  * can't go away on us before we can do any checks.
5063  *
5064  * Return:
5065  *	true (>0) if we indeed boosted the target task.
5066  *	false (0) if we failed to boost the target.
5067  *	-ESRCH if there's no task to yield to.
5068  */
5069 int __sched yield_to(struct task_struct *p, bool preempt)
5070 {
5071 	struct task_struct *curr = current;
5072 	struct rq *rq, *p_rq;
5073 	unsigned long flags;
5074 	int yielded = 0;
5075 
5076 	local_irq_save(flags);
5077 	rq = this_rq();
5078 
5079 again:
5080 	p_rq = task_rq(p);
5081 	/*
5082 	 * If we're the only runnable task on the rq and target rq also
5083 	 * has only one task, there's absolutely no point in yielding.
5084 	 */
5085 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5086 		yielded = -ESRCH;
5087 		goto out_irq;
5088 	}
5089 
5090 	double_rq_lock(rq, p_rq);
5091 	if (task_rq(p) != p_rq) {
5092 		double_rq_unlock(rq, p_rq);
5093 		goto again;
5094 	}
5095 
5096 	if (!curr->sched_class->yield_to_task)
5097 		goto out_unlock;
5098 
5099 	if (curr->sched_class != p->sched_class)
5100 		goto out_unlock;
5101 
5102 	if (task_running(p_rq, p) || p->state)
5103 		goto out_unlock;
5104 
5105 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5106 	if (yielded) {
5107 		schedstat_inc(rq->yld_count);
5108 		/*
5109 		 * Make p's CPU reschedule; pick_next_entity takes care of
5110 		 * fairness.
5111 		 */
5112 		if (preempt && rq != p_rq)
5113 			resched_curr(p_rq);
5114 	}
5115 
5116 out_unlock:
5117 	double_rq_unlock(rq, p_rq);
5118 out_irq:
5119 	local_irq_restore(flags);
5120 
5121 	if (yielded > 0)
5122 		schedule();
5123 
5124 	return yielded;
5125 }
5126 EXPORT_SYMBOL_GPL(yield_to);
5127 
5128 int io_schedule_prepare(void)
5129 {
5130 	int old_iowait = current->in_iowait;
5131 
5132 	current->in_iowait = 1;
5133 	blk_schedule_flush_plug(current);
5134 
5135 	return old_iowait;
5136 }
5137 
5138 void io_schedule_finish(int token)
5139 {
5140 	current->in_iowait = token;
5141 }
5142 
5143 /*
5144  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5145  * that process accounting knows that this is a task in IO wait state.
5146  */
5147 long __sched io_schedule_timeout(long timeout)
5148 {
5149 	int token;
5150 	long ret;
5151 
5152 	token = io_schedule_prepare();
5153 	ret = schedule_timeout(timeout);
5154 	io_schedule_finish(token);
5155 
5156 	return ret;
5157 }
5158 EXPORT_SYMBOL(io_schedule_timeout);
5159 
5160 void io_schedule(void)
5161 {
5162 	int token;
5163 
5164 	token = io_schedule_prepare();
5165 	schedule();
5166 	io_schedule_finish(token);
5167 }
5168 EXPORT_SYMBOL(io_schedule);
5169 
5170 /**
5171  * sys_sched_get_priority_max - return maximum RT priority.
5172  * @policy: scheduling class.
5173  *
5174  * Return: On success, this syscall returns the maximum
5175  * rt_priority that can be used by a given scheduling class.
5176  * On failure, a negative error code is returned.
5177  */
5178 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5179 {
5180 	int ret = -EINVAL;
5181 
5182 	switch (policy) {
5183 	case SCHED_FIFO:
5184 	case SCHED_RR:
5185 		ret = MAX_USER_RT_PRIO-1;
5186 		break;
5187 	case SCHED_DEADLINE:
5188 	case SCHED_NORMAL:
5189 	case SCHED_BATCH:
5190 	case SCHED_IDLE:
5191 		ret = 0;
5192 		break;
5193 	}
5194 	return ret;
5195 }
5196 
5197 /**
5198  * sys_sched_get_priority_min - return minimum RT priority.
5199  * @policy: scheduling class.
5200  *
5201  * Return: On success, this syscall returns the minimum
5202  * rt_priority that can be used by a given scheduling class.
5203  * On failure, a negative error code is returned.
5204  */
5205 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5206 {
5207 	int ret = -EINVAL;
5208 
5209 	switch (policy) {
5210 	case SCHED_FIFO:
5211 	case SCHED_RR:
5212 		ret = 1;
5213 		break;
5214 	case SCHED_DEADLINE:
5215 	case SCHED_NORMAL:
5216 	case SCHED_BATCH:
5217 	case SCHED_IDLE:
5218 		ret = 0;
5219 	}
5220 	return ret;
5221 }
5222 
5223 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5224 {
5225 	struct task_struct *p;
5226 	unsigned int time_slice;
5227 	struct rq_flags rf;
5228 	struct rq *rq;
5229 	int retval;
5230 
5231 	if (pid < 0)
5232 		return -EINVAL;
5233 
5234 	retval = -ESRCH;
5235 	rcu_read_lock();
5236 	p = find_process_by_pid(pid);
5237 	if (!p)
5238 		goto out_unlock;
5239 
5240 	retval = security_task_getscheduler(p);
5241 	if (retval)
5242 		goto out_unlock;
5243 
5244 	rq = task_rq_lock(p, &rf);
5245 	time_slice = 0;
5246 	if (p->sched_class->get_rr_interval)
5247 		time_slice = p->sched_class->get_rr_interval(rq, p);
5248 	task_rq_unlock(rq, p, &rf);
5249 
5250 	rcu_read_unlock();
5251 	jiffies_to_timespec64(time_slice, t);
5252 	return 0;
5253 
5254 out_unlock:
5255 	rcu_read_unlock();
5256 	return retval;
5257 }
5258 
5259 /**
5260  * sys_sched_rr_get_interval - return the default timeslice of a process.
5261  * @pid: pid of the process.
5262  * @interval: userspace pointer to the timeslice value.
5263  *
5264  * this syscall writes the default timeslice value of a given process
5265  * into the user-space timespec buffer. A value of '0' means infinity.
5266  *
5267  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5268  * an error code.
5269  */
5270 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5271 		struct timespec __user *, interval)
5272 {
5273 	struct timespec64 t;
5274 	int retval = sched_rr_get_interval(pid, &t);
5275 
5276 	if (retval == 0)
5277 		retval = put_timespec64(&t, interval);
5278 
5279 	return retval;
5280 }
5281 
5282 #ifdef CONFIG_COMPAT
5283 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5284 		       compat_pid_t, pid,
5285 		       struct compat_timespec __user *, interval)
5286 {
5287 	struct timespec64 t;
5288 	int retval = sched_rr_get_interval(pid, &t);
5289 
5290 	if (retval == 0)
5291 		retval = compat_put_timespec64(&t, interval);
5292 	return retval;
5293 }
5294 #endif
5295 
5296 void sched_show_task(struct task_struct *p)
5297 {
5298 	unsigned long free = 0;
5299 	int ppid;
5300 
5301 	if (!try_get_task_stack(p))
5302 		return;
5303 
5304 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5305 
5306 	if (p->state == TASK_RUNNING)
5307 		printk(KERN_CONT "  running task    ");
5308 #ifdef CONFIG_DEBUG_STACK_USAGE
5309 	free = stack_not_used(p);
5310 #endif
5311 	ppid = 0;
5312 	rcu_read_lock();
5313 	if (pid_alive(p))
5314 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5315 	rcu_read_unlock();
5316 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5317 		task_pid_nr(p), ppid,
5318 		(unsigned long)task_thread_info(p)->flags);
5319 
5320 	print_worker_info(KERN_INFO, p);
5321 	show_stack(p, NULL);
5322 	put_task_stack(p);
5323 }
5324 EXPORT_SYMBOL_GPL(sched_show_task);
5325 
5326 static inline bool
5327 state_filter_match(unsigned long state_filter, struct task_struct *p)
5328 {
5329 	/* no filter, everything matches */
5330 	if (!state_filter)
5331 		return true;
5332 
5333 	/* filter, but doesn't match */
5334 	if (!(p->state & state_filter))
5335 		return false;
5336 
5337 	/*
5338 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5339 	 * TASK_KILLABLE).
5340 	 */
5341 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5342 		return false;
5343 
5344 	return true;
5345 }
5346 
5347 
5348 void show_state_filter(unsigned long state_filter)
5349 {
5350 	struct task_struct *g, *p;
5351 
5352 #if BITS_PER_LONG == 32
5353 	printk(KERN_INFO
5354 		"  task                PC stack   pid father\n");
5355 #else
5356 	printk(KERN_INFO
5357 		"  task                        PC stack   pid father\n");
5358 #endif
5359 	rcu_read_lock();
5360 	for_each_process_thread(g, p) {
5361 		/*
5362 		 * reset the NMI-timeout, listing all files on a slow
5363 		 * console might take a lot of time:
5364 		 * Also, reset softlockup watchdogs on all CPUs, because
5365 		 * another CPU might be blocked waiting for us to process
5366 		 * an IPI.
5367 		 */
5368 		touch_nmi_watchdog();
5369 		touch_all_softlockup_watchdogs();
5370 		if (state_filter_match(state_filter, p))
5371 			sched_show_task(p);
5372 	}
5373 
5374 #ifdef CONFIG_SCHED_DEBUG
5375 	if (!state_filter)
5376 		sysrq_sched_debug_show();
5377 #endif
5378 	rcu_read_unlock();
5379 	/*
5380 	 * Only show locks if all tasks are dumped:
5381 	 */
5382 	if (!state_filter)
5383 		debug_show_all_locks();
5384 }
5385 
5386 /**
5387  * init_idle - set up an idle thread for a given CPU
5388  * @idle: task in question
5389  * @cpu: CPU the idle task belongs to
5390  *
5391  * NOTE: this function does not set the idle thread's NEED_RESCHED
5392  * flag, to make booting more robust.
5393  */
5394 void init_idle(struct task_struct *idle, int cpu)
5395 {
5396 	struct rq *rq = cpu_rq(cpu);
5397 	unsigned long flags;
5398 
5399 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5400 	raw_spin_lock(&rq->lock);
5401 
5402 	__sched_fork(0, idle);
5403 	idle->state = TASK_RUNNING;
5404 	idle->se.exec_start = sched_clock();
5405 	idle->flags |= PF_IDLE;
5406 
5407 	kasan_unpoison_task_stack(idle);
5408 
5409 #ifdef CONFIG_SMP
5410 	/*
5411 	 * Its possible that init_idle() gets called multiple times on a task,
5412 	 * in that case do_set_cpus_allowed() will not do the right thing.
5413 	 *
5414 	 * And since this is boot we can forgo the serialization.
5415 	 */
5416 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5417 #endif
5418 	/*
5419 	 * We're having a chicken and egg problem, even though we are
5420 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5421 	 * lockdep check in task_group() will fail.
5422 	 *
5423 	 * Similar case to sched_fork(). / Alternatively we could
5424 	 * use task_rq_lock() here and obtain the other rq->lock.
5425 	 *
5426 	 * Silence PROVE_RCU
5427 	 */
5428 	rcu_read_lock();
5429 	__set_task_cpu(idle, cpu);
5430 	rcu_read_unlock();
5431 
5432 	rq->curr = rq->idle = idle;
5433 	idle->on_rq = TASK_ON_RQ_QUEUED;
5434 #ifdef CONFIG_SMP
5435 	idle->on_cpu = 1;
5436 #endif
5437 	raw_spin_unlock(&rq->lock);
5438 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5439 
5440 	/* Set the preempt count _outside_ the spinlocks! */
5441 	init_idle_preempt_count(idle, cpu);
5442 
5443 	/*
5444 	 * The idle tasks have their own, simple scheduling class:
5445 	 */
5446 	idle->sched_class = &idle_sched_class;
5447 	ftrace_graph_init_idle_task(idle, cpu);
5448 	vtime_init_idle(idle, cpu);
5449 #ifdef CONFIG_SMP
5450 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5451 #endif
5452 }
5453 
5454 #ifdef CONFIG_SMP
5455 
5456 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5457 			      const struct cpumask *trial)
5458 {
5459 	int ret = 1;
5460 
5461 	if (!cpumask_weight(cur))
5462 		return ret;
5463 
5464 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5465 
5466 	return ret;
5467 }
5468 
5469 int task_can_attach(struct task_struct *p,
5470 		    const struct cpumask *cs_cpus_allowed)
5471 {
5472 	int ret = 0;
5473 
5474 	/*
5475 	 * Kthreads which disallow setaffinity shouldn't be moved
5476 	 * to a new cpuset; we don't want to change their CPU
5477 	 * affinity and isolating such threads by their set of
5478 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5479 	 * applicable for such threads.  This prevents checking for
5480 	 * success of set_cpus_allowed_ptr() on all attached tasks
5481 	 * before cpus_allowed may be changed.
5482 	 */
5483 	if (p->flags & PF_NO_SETAFFINITY) {
5484 		ret = -EINVAL;
5485 		goto out;
5486 	}
5487 
5488 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5489 					      cs_cpus_allowed))
5490 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5491 
5492 out:
5493 	return ret;
5494 }
5495 
5496 bool sched_smp_initialized __read_mostly;
5497 
5498 #ifdef CONFIG_NUMA_BALANCING
5499 /* Migrate current task p to target_cpu */
5500 int migrate_task_to(struct task_struct *p, int target_cpu)
5501 {
5502 	struct migration_arg arg = { p, target_cpu };
5503 	int curr_cpu = task_cpu(p);
5504 
5505 	if (curr_cpu == target_cpu)
5506 		return 0;
5507 
5508 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5509 		return -EINVAL;
5510 
5511 	/* TODO: This is not properly updating schedstats */
5512 
5513 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5514 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5515 }
5516 
5517 /*
5518  * Requeue a task on a given node and accurately track the number of NUMA
5519  * tasks on the runqueues
5520  */
5521 void sched_setnuma(struct task_struct *p, int nid)
5522 {
5523 	bool queued, running;
5524 	struct rq_flags rf;
5525 	struct rq *rq;
5526 
5527 	rq = task_rq_lock(p, &rf);
5528 	queued = task_on_rq_queued(p);
5529 	running = task_current(rq, p);
5530 
5531 	if (queued)
5532 		dequeue_task(rq, p, DEQUEUE_SAVE);
5533 	if (running)
5534 		put_prev_task(rq, p);
5535 
5536 	p->numa_preferred_nid = nid;
5537 
5538 	if (queued)
5539 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5540 	if (running)
5541 		set_curr_task(rq, p);
5542 	task_rq_unlock(rq, p, &rf);
5543 }
5544 #endif /* CONFIG_NUMA_BALANCING */
5545 
5546 #ifdef CONFIG_HOTPLUG_CPU
5547 /*
5548  * Ensure that the idle task is using init_mm right before its CPU goes
5549  * offline.
5550  */
5551 void idle_task_exit(void)
5552 {
5553 	struct mm_struct *mm = current->active_mm;
5554 
5555 	BUG_ON(cpu_online(smp_processor_id()));
5556 
5557 	if (mm != &init_mm) {
5558 		switch_mm(mm, &init_mm, current);
5559 		current->active_mm = &init_mm;
5560 		finish_arch_post_lock_switch();
5561 	}
5562 	mmdrop(mm);
5563 }
5564 
5565 /*
5566  * Since this CPU is going 'away' for a while, fold any nr_active delta
5567  * we might have. Assumes we're called after migrate_tasks() so that the
5568  * nr_active count is stable. We need to take the teardown thread which
5569  * is calling this into account, so we hand in adjust = 1 to the load
5570  * calculation.
5571  *
5572  * Also see the comment "Global load-average calculations".
5573  */
5574 static void calc_load_migrate(struct rq *rq)
5575 {
5576 	long delta = calc_load_fold_active(rq, 1);
5577 	if (delta)
5578 		atomic_long_add(delta, &calc_load_tasks);
5579 }
5580 
5581 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5582 {
5583 }
5584 
5585 static const struct sched_class fake_sched_class = {
5586 	.put_prev_task = put_prev_task_fake,
5587 };
5588 
5589 static struct task_struct fake_task = {
5590 	/*
5591 	 * Avoid pull_{rt,dl}_task()
5592 	 */
5593 	.prio = MAX_PRIO + 1,
5594 	.sched_class = &fake_sched_class,
5595 };
5596 
5597 /*
5598  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5599  * try_to_wake_up()->select_task_rq().
5600  *
5601  * Called with rq->lock held even though we'er in stop_machine() and
5602  * there's no concurrency possible, we hold the required locks anyway
5603  * because of lock validation efforts.
5604  */
5605 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5606 {
5607 	struct rq *rq = dead_rq;
5608 	struct task_struct *next, *stop = rq->stop;
5609 	struct rq_flags orf = *rf;
5610 	int dest_cpu;
5611 
5612 	/*
5613 	 * Fudge the rq selection such that the below task selection loop
5614 	 * doesn't get stuck on the currently eligible stop task.
5615 	 *
5616 	 * We're currently inside stop_machine() and the rq is either stuck
5617 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5618 	 * either way we should never end up calling schedule() until we're
5619 	 * done here.
5620 	 */
5621 	rq->stop = NULL;
5622 
5623 	/*
5624 	 * put_prev_task() and pick_next_task() sched
5625 	 * class method both need to have an up-to-date
5626 	 * value of rq->clock[_task]
5627 	 */
5628 	update_rq_clock(rq);
5629 
5630 	for (;;) {
5631 		/*
5632 		 * There's this thread running, bail when that's the only
5633 		 * remaining thread:
5634 		 */
5635 		if (rq->nr_running == 1)
5636 			break;
5637 
5638 		/*
5639 		 * pick_next_task() assumes pinned rq->lock:
5640 		 */
5641 		next = pick_next_task(rq, &fake_task, rf);
5642 		BUG_ON(!next);
5643 		put_prev_task(rq, next);
5644 
5645 		/*
5646 		 * Rules for changing task_struct::cpus_allowed are holding
5647 		 * both pi_lock and rq->lock, such that holding either
5648 		 * stabilizes the mask.
5649 		 *
5650 		 * Drop rq->lock is not quite as disastrous as it usually is
5651 		 * because !cpu_active at this point, which means load-balance
5652 		 * will not interfere. Also, stop-machine.
5653 		 */
5654 		rq_unlock(rq, rf);
5655 		raw_spin_lock(&next->pi_lock);
5656 		rq_relock(rq, rf);
5657 
5658 		/*
5659 		 * Since we're inside stop-machine, _nothing_ should have
5660 		 * changed the task, WARN if weird stuff happened, because in
5661 		 * that case the above rq->lock drop is a fail too.
5662 		 */
5663 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5664 			raw_spin_unlock(&next->pi_lock);
5665 			continue;
5666 		}
5667 
5668 		/* Find suitable destination for @next, with force if needed. */
5669 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5670 		rq = __migrate_task(rq, rf, next, dest_cpu);
5671 		if (rq != dead_rq) {
5672 			rq_unlock(rq, rf);
5673 			rq = dead_rq;
5674 			*rf = orf;
5675 			rq_relock(rq, rf);
5676 		}
5677 		raw_spin_unlock(&next->pi_lock);
5678 	}
5679 
5680 	rq->stop = stop;
5681 }
5682 #endif /* CONFIG_HOTPLUG_CPU */
5683 
5684 void set_rq_online(struct rq *rq)
5685 {
5686 	if (!rq->online) {
5687 		const struct sched_class *class;
5688 
5689 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5690 		rq->online = 1;
5691 
5692 		for_each_class(class) {
5693 			if (class->rq_online)
5694 				class->rq_online(rq);
5695 		}
5696 	}
5697 }
5698 
5699 void set_rq_offline(struct rq *rq)
5700 {
5701 	if (rq->online) {
5702 		const struct sched_class *class;
5703 
5704 		for_each_class(class) {
5705 			if (class->rq_offline)
5706 				class->rq_offline(rq);
5707 		}
5708 
5709 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5710 		rq->online = 0;
5711 	}
5712 }
5713 
5714 static void set_cpu_rq_start_time(unsigned int cpu)
5715 {
5716 	struct rq *rq = cpu_rq(cpu);
5717 
5718 	rq->age_stamp = sched_clock_cpu(cpu);
5719 }
5720 
5721 /*
5722  * used to mark begin/end of suspend/resume:
5723  */
5724 static int num_cpus_frozen;
5725 
5726 /*
5727  * Update cpusets according to cpu_active mask.  If cpusets are
5728  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5729  * around partition_sched_domains().
5730  *
5731  * If we come here as part of a suspend/resume, don't touch cpusets because we
5732  * want to restore it back to its original state upon resume anyway.
5733  */
5734 static void cpuset_cpu_active(void)
5735 {
5736 	if (cpuhp_tasks_frozen) {
5737 		/*
5738 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5739 		 * resume sequence. As long as this is not the last online
5740 		 * operation in the resume sequence, just build a single sched
5741 		 * domain, ignoring cpusets.
5742 		 */
5743 		partition_sched_domains(1, NULL, NULL);
5744 		if (--num_cpus_frozen)
5745 			return;
5746 		/*
5747 		 * This is the last CPU online operation. So fall through and
5748 		 * restore the original sched domains by considering the
5749 		 * cpuset configurations.
5750 		 */
5751 		cpuset_force_rebuild();
5752 	}
5753 	cpuset_update_active_cpus();
5754 }
5755 
5756 static int cpuset_cpu_inactive(unsigned int cpu)
5757 {
5758 	if (!cpuhp_tasks_frozen) {
5759 		if (dl_cpu_busy(cpu))
5760 			return -EBUSY;
5761 		cpuset_update_active_cpus();
5762 	} else {
5763 		num_cpus_frozen++;
5764 		partition_sched_domains(1, NULL, NULL);
5765 	}
5766 	return 0;
5767 }
5768 
5769 int sched_cpu_activate(unsigned int cpu)
5770 {
5771 	struct rq *rq = cpu_rq(cpu);
5772 	struct rq_flags rf;
5773 
5774 	set_cpu_active(cpu, true);
5775 
5776 	if (sched_smp_initialized) {
5777 		sched_domains_numa_masks_set(cpu);
5778 		cpuset_cpu_active();
5779 	}
5780 
5781 	/*
5782 	 * Put the rq online, if not already. This happens:
5783 	 *
5784 	 * 1) In the early boot process, because we build the real domains
5785 	 *    after all CPUs have been brought up.
5786 	 *
5787 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5788 	 *    domains.
5789 	 */
5790 	rq_lock_irqsave(rq, &rf);
5791 	if (rq->rd) {
5792 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5793 		set_rq_online(rq);
5794 	}
5795 	rq_unlock_irqrestore(rq, &rf);
5796 
5797 	update_max_interval();
5798 
5799 	return 0;
5800 }
5801 
5802 int sched_cpu_deactivate(unsigned int cpu)
5803 {
5804 	int ret;
5805 
5806 	set_cpu_active(cpu, false);
5807 	/*
5808 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5809 	 * users of this state to go away such that all new such users will
5810 	 * observe it.
5811 	 *
5812 	 * Do sync before park smpboot threads to take care the rcu boost case.
5813 	 */
5814 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5815 
5816 	if (!sched_smp_initialized)
5817 		return 0;
5818 
5819 	ret = cpuset_cpu_inactive(cpu);
5820 	if (ret) {
5821 		set_cpu_active(cpu, true);
5822 		return ret;
5823 	}
5824 	sched_domains_numa_masks_clear(cpu);
5825 	return 0;
5826 }
5827 
5828 static void sched_rq_cpu_starting(unsigned int cpu)
5829 {
5830 	struct rq *rq = cpu_rq(cpu);
5831 
5832 	rq->calc_load_update = calc_load_update;
5833 	update_max_interval();
5834 }
5835 
5836 int sched_cpu_starting(unsigned int cpu)
5837 {
5838 	set_cpu_rq_start_time(cpu);
5839 	sched_rq_cpu_starting(cpu);
5840 	sched_tick_start(cpu);
5841 	return 0;
5842 }
5843 
5844 #ifdef CONFIG_HOTPLUG_CPU
5845 int sched_cpu_dying(unsigned int cpu)
5846 {
5847 	struct rq *rq = cpu_rq(cpu);
5848 	struct rq_flags rf;
5849 
5850 	/* Handle pending wakeups and then migrate everything off */
5851 	sched_ttwu_pending();
5852 	sched_tick_stop(cpu);
5853 
5854 	rq_lock_irqsave(rq, &rf);
5855 	if (rq->rd) {
5856 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5857 		set_rq_offline(rq);
5858 	}
5859 	migrate_tasks(rq, &rf);
5860 	BUG_ON(rq->nr_running != 1);
5861 	rq_unlock_irqrestore(rq, &rf);
5862 
5863 	calc_load_migrate(rq);
5864 	update_max_interval();
5865 	nohz_balance_exit_idle(rq);
5866 	hrtick_clear(rq);
5867 	return 0;
5868 }
5869 #endif
5870 
5871 #ifdef CONFIG_SCHED_SMT
5872 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5873 
5874 static void sched_init_smt(void)
5875 {
5876 	/*
5877 	 * We've enumerated all CPUs and will assume that if any CPU
5878 	 * has SMT siblings, CPU0 will too.
5879 	 */
5880 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5881 		static_branch_enable(&sched_smt_present);
5882 }
5883 #else
5884 static inline void sched_init_smt(void) { }
5885 #endif
5886 
5887 void __init sched_init_smp(void)
5888 {
5889 	sched_init_numa();
5890 
5891 	/*
5892 	 * There's no userspace yet to cause hotplug operations; hence all the
5893 	 * CPU masks are stable and all blatant races in the below code cannot
5894 	 * happen.
5895 	 */
5896 	mutex_lock(&sched_domains_mutex);
5897 	sched_init_domains(cpu_active_mask);
5898 	mutex_unlock(&sched_domains_mutex);
5899 
5900 	/* Move init over to a non-isolated CPU */
5901 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5902 		BUG();
5903 	sched_init_granularity();
5904 
5905 	init_sched_rt_class();
5906 	init_sched_dl_class();
5907 
5908 	sched_init_smt();
5909 
5910 	sched_smp_initialized = true;
5911 }
5912 
5913 static int __init migration_init(void)
5914 {
5915 	sched_rq_cpu_starting(smp_processor_id());
5916 	return 0;
5917 }
5918 early_initcall(migration_init);
5919 
5920 #else
5921 void __init sched_init_smp(void)
5922 {
5923 	sched_init_granularity();
5924 }
5925 #endif /* CONFIG_SMP */
5926 
5927 int in_sched_functions(unsigned long addr)
5928 {
5929 	return in_lock_functions(addr) ||
5930 		(addr >= (unsigned long)__sched_text_start
5931 		&& addr < (unsigned long)__sched_text_end);
5932 }
5933 
5934 #ifdef CONFIG_CGROUP_SCHED
5935 /*
5936  * Default task group.
5937  * Every task in system belongs to this group at bootup.
5938  */
5939 struct task_group root_task_group;
5940 LIST_HEAD(task_groups);
5941 
5942 /* Cacheline aligned slab cache for task_group */
5943 static struct kmem_cache *task_group_cache __read_mostly;
5944 #endif
5945 
5946 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5947 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5948 
5949 void __init sched_init(void)
5950 {
5951 	int i, j;
5952 	unsigned long alloc_size = 0, ptr;
5953 
5954 	sched_clock_init();
5955 	wait_bit_init();
5956 
5957 #ifdef CONFIG_FAIR_GROUP_SCHED
5958 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5959 #endif
5960 #ifdef CONFIG_RT_GROUP_SCHED
5961 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5962 #endif
5963 	if (alloc_size) {
5964 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5965 
5966 #ifdef CONFIG_FAIR_GROUP_SCHED
5967 		root_task_group.se = (struct sched_entity **)ptr;
5968 		ptr += nr_cpu_ids * sizeof(void **);
5969 
5970 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5971 		ptr += nr_cpu_ids * sizeof(void **);
5972 
5973 #endif /* CONFIG_FAIR_GROUP_SCHED */
5974 #ifdef CONFIG_RT_GROUP_SCHED
5975 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5976 		ptr += nr_cpu_ids * sizeof(void **);
5977 
5978 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5979 		ptr += nr_cpu_ids * sizeof(void **);
5980 
5981 #endif /* CONFIG_RT_GROUP_SCHED */
5982 	}
5983 #ifdef CONFIG_CPUMASK_OFFSTACK
5984 	for_each_possible_cpu(i) {
5985 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5986 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5987 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5988 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5989 	}
5990 #endif /* CONFIG_CPUMASK_OFFSTACK */
5991 
5992 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5993 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5994 
5995 #ifdef CONFIG_SMP
5996 	init_defrootdomain();
5997 #endif
5998 
5999 #ifdef CONFIG_RT_GROUP_SCHED
6000 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6001 			global_rt_period(), global_rt_runtime());
6002 #endif /* CONFIG_RT_GROUP_SCHED */
6003 
6004 #ifdef CONFIG_CGROUP_SCHED
6005 	task_group_cache = KMEM_CACHE(task_group, 0);
6006 
6007 	list_add(&root_task_group.list, &task_groups);
6008 	INIT_LIST_HEAD(&root_task_group.children);
6009 	INIT_LIST_HEAD(&root_task_group.siblings);
6010 	autogroup_init(&init_task);
6011 #endif /* CONFIG_CGROUP_SCHED */
6012 
6013 	for_each_possible_cpu(i) {
6014 		struct rq *rq;
6015 
6016 		rq = cpu_rq(i);
6017 		raw_spin_lock_init(&rq->lock);
6018 		rq->nr_running = 0;
6019 		rq->calc_load_active = 0;
6020 		rq->calc_load_update = jiffies + LOAD_FREQ;
6021 		init_cfs_rq(&rq->cfs);
6022 		init_rt_rq(&rq->rt);
6023 		init_dl_rq(&rq->dl);
6024 #ifdef CONFIG_FAIR_GROUP_SCHED
6025 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6026 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6027 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6028 		/*
6029 		 * How much CPU bandwidth does root_task_group get?
6030 		 *
6031 		 * In case of task-groups formed thr' the cgroup filesystem, it
6032 		 * gets 100% of the CPU resources in the system. This overall
6033 		 * system CPU resource is divided among the tasks of
6034 		 * root_task_group and its child task-groups in a fair manner,
6035 		 * based on each entity's (task or task-group's) weight
6036 		 * (se->load.weight).
6037 		 *
6038 		 * In other words, if root_task_group has 10 tasks of weight
6039 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6040 		 * then A0's share of the CPU resource is:
6041 		 *
6042 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6043 		 *
6044 		 * We achieve this by letting root_task_group's tasks sit
6045 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6046 		 */
6047 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6048 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6049 #endif /* CONFIG_FAIR_GROUP_SCHED */
6050 
6051 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6052 #ifdef CONFIG_RT_GROUP_SCHED
6053 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6054 #endif
6055 
6056 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6057 			rq->cpu_load[j] = 0;
6058 
6059 #ifdef CONFIG_SMP
6060 		rq->sd = NULL;
6061 		rq->rd = NULL;
6062 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6063 		rq->balance_callback = NULL;
6064 		rq->active_balance = 0;
6065 		rq->next_balance = jiffies;
6066 		rq->push_cpu = 0;
6067 		rq->cpu = i;
6068 		rq->online = 0;
6069 		rq->idle_stamp = 0;
6070 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6071 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6072 
6073 		INIT_LIST_HEAD(&rq->cfs_tasks);
6074 
6075 		rq_attach_root(rq, &def_root_domain);
6076 #ifdef CONFIG_NO_HZ_COMMON
6077 		rq->last_load_update_tick = jiffies;
6078 		rq->last_blocked_load_update_tick = jiffies;
6079 		atomic_set(&rq->nohz_flags, 0);
6080 #endif
6081 #endif /* CONFIG_SMP */
6082 		hrtick_rq_init(rq);
6083 		atomic_set(&rq->nr_iowait, 0);
6084 	}
6085 
6086 	set_load_weight(&init_task, false);
6087 
6088 	/*
6089 	 * The boot idle thread does lazy MMU switching as well:
6090 	 */
6091 	mmgrab(&init_mm);
6092 	enter_lazy_tlb(&init_mm, current);
6093 
6094 	/*
6095 	 * Make us the idle thread. Technically, schedule() should not be
6096 	 * called from this thread, however somewhere below it might be,
6097 	 * but because we are the idle thread, we just pick up running again
6098 	 * when this runqueue becomes "idle".
6099 	 */
6100 	init_idle(current, smp_processor_id());
6101 
6102 	calc_load_update = jiffies + LOAD_FREQ;
6103 
6104 #ifdef CONFIG_SMP
6105 	idle_thread_set_boot_cpu();
6106 	set_cpu_rq_start_time(smp_processor_id());
6107 #endif
6108 	init_sched_fair_class();
6109 
6110 	init_schedstats();
6111 
6112 	scheduler_running = 1;
6113 }
6114 
6115 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6116 static inline int preempt_count_equals(int preempt_offset)
6117 {
6118 	int nested = preempt_count() + rcu_preempt_depth();
6119 
6120 	return (nested == preempt_offset);
6121 }
6122 
6123 void __might_sleep(const char *file, int line, int preempt_offset)
6124 {
6125 	/*
6126 	 * Blocking primitives will set (and therefore destroy) current->state,
6127 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6128 	 * otherwise we will destroy state.
6129 	 */
6130 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6131 			"do not call blocking ops when !TASK_RUNNING; "
6132 			"state=%lx set at [<%p>] %pS\n",
6133 			current->state,
6134 			(void *)current->task_state_change,
6135 			(void *)current->task_state_change);
6136 
6137 	___might_sleep(file, line, preempt_offset);
6138 }
6139 EXPORT_SYMBOL(__might_sleep);
6140 
6141 void ___might_sleep(const char *file, int line, int preempt_offset)
6142 {
6143 	/* Ratelimiting timestamp: */
6144 	static unsigned long prev_jiffy;
6145 
6146 	unsigned long preempt_disable_ip;
6147 
6148 	/* WARN_ON_ONCE() by default, no rate limit required: */
6149 	rcu_sleep_check();
6150 
6151 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6152 	     !is_idle_task(current)) ||
6153 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6154 	    oops_in_progress)
6155 		return;
6156 
6157 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6158 		return;
6159 	prev_jiffy = jiffies;
6160 
6161 	/* Save this before calling printk(), since that will clobber it: */
6162 	preempt_disable_ip = get_preempt_disable_ip(current);
6163 
6164 	printk(KERN_ERR
6165 		"BUG: sleeping function called from invalid context at %s:%d\n",
6166 			file, line);
6167 	printk(KERN_ERR
6168 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6169 			in_atomic(), irqs_disabled(),
6170 			current->pid, current->comm);
6171 
6172 	if (task_stack_end_corrupted(current))
6173 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6174 
6175 	debug_show_held_locks(current);
6176 	if (irqs_disabled())
6177 		print_irqtrace_events(current);
6178 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6179 	    && !preempt_count_equals(preempt_offset)) {
6180 		pr_err("Preemption disabled at:");
6181 		print_ip_sym(preempt_disable_ip);
6182 		pr_cont("\n");
6183 	}
6184 	dump_stack();
6185 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6186 }
6187 EXPORT_SYMBOL(___might_sleep);
6188 #endif
6189 
6190 #ifdef CONFIG_MAGIC_SYSRQ
6191 void normalize_rt_tasks(void)
6192 {
6193 	struct task_struct *g, *p;
6194 	struct sched_attr attr = {
6195 		.sched_policy = SCHED_NORMAL,
6196 	};
6197 
6198 	read_lock(&tasklist_lock);
6199 	for_each_process_thread(g, p) {
6200 		/*
6201 		 * Only normalize user tasks:
6202 		 */
6203 		if (p->flags & PF_KTHREAD)
6204 			continue;
6205 
6206 		p->se.exec_start = 0;
6207 		schedstat_set(p->se.statistics.wait_start,  0);
6208 		schedstat_set(p->se.statistics.sleep_start, 0);
6209 		schedstat_set(p->se.statistics.block_start, 0);
6210 
6211 		if (!dl_task(p) && !rt_task(p)) {
6212 			/*
6213 			 * Renice negative nice level userspace
6214 			 * tasks back to 0:
6215 			 */
6216 			if (task_nice(p) < 0)
6217 				set_user_nice(p, 0);
6218 			continue;
6219 		}
6220 
6221 		__sched_setscheduler(p, &attr, false, false);
6222 	}
6223 	read_unlock(&tasklist_lock);
6224 }
6225 
6226 #endif /* CONFIG_MAGIC_SYSRQ */
6227 
6228 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6229 /*
6230  * These functions are only useful for the IA64 MCA handling, or kdb.
6231  *
6232  * They can only be called when the whole system has been
6233  * stopped - every CPU needs to be quiescent, and no scheduling
6234  * activity can take place. Using them for anything else would
6235  * be a serious bug, and as a result, they aren't even visible
6236  * under any other configuration.
6237  */
6238 
6239 /**
6240  * curr_task - return the current task for a given CPU.
6241  * @cpu: the processor in question.
6242  *
6243  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6244  *
6245  * Return: The current task for @cpu.
6246  */
6247 struct task_struct *curr_task(int cpu)
6248 {
6249 	return cpu_curr(cpu);
6250 }
6251 
6252 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6253 
6254 #ifdef CONFIG_IA64
6255 /**
6256  * set_curr_task - set the current task for a given CPU.
6257  * @cpu: the processor in question.
6258  * @p: the task pointer to set.
6259  *
6260  * Description: This function must only be used when non-maskable interrupts
6261  * are serviced on a separate stack. It allows the architecture to switch the
6262  * notion of the current task on a CPU in a non-blocking manner. This function
6263  * must be called with all CPU's synchronized, and interrupts disabled, the
6264  * and caller must save the original value of the current task (see
6265  * curr_task() above) and restore that value before reenabling interrupts and
6266  * re-starting the system.
6267  *
6268  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6269  */
6270 void ia64_set_curr_task(int cpu, struct task_struct *p)
6271 {
6272 	cpu_curr(cpu) = p;
6273 }
6274 
6275 #endif
6276 
6277 #ifdef CONFIG_CGROUP_SCHED
6278 /* task_group_lock serializes the addition/removal of task groups */
6279 static DEFINE_SPINLOCK(task_group_lock);
6280 
6281 static void sched_free_group(struct task_group *tg)
6282 {
6283 	free_fair_sched_group(tg);
6284 	free_rt_sched_group(tg);
6285 	autogroup_free(tg);
6286 	kmem_cache_free(task_group_cache, tg);
6287 }
6288 
6289 /* allocate runqueue etc for a new task group */
6290 struct task_group *sched_create_group(struct task_group *parent)
6291 {
6292 	struct task_group *tg;
6293 
6294 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6295 	if (!tg)
6296 		return ERR_PTR(-ENOMEM);
6297 
6298 	if (!alloc_fair_sched_group(tg, parent))
6299 		goto err;
6300 
6301 	if (!alloc_rt_sched_group(tg, parent))
6302 		goto err;
6303 
6304 	return tg;
6305 
6306 err:
6307 	sched_free_group(tg);
6308 	return ERR_PTR(-ENOMEM);
6309 }
6310 
6311 void sched_online_group(struct task_group *tg, struct task_group *parent)
6312 {
6313 	unsigned long flags;
6314 
6315 	spin_lock_irqsave(&task_group_lock, flags);
6316 	list_add_rcu(&tg->list, &task_groups);
6317 
6318 	/* Root should already exist: */
6319 	WARN_ON(!parent);
6320 
6321 	tg->parent = parent;
6322 	INIT_LIST_HEAD(&tg->children);
6323 	list_add_rcu(&tg->siblings, &parent->children);
6324 	spin_unlock_irqrestore(&task_group_lock, flags);
6325 
6326 	online_fair_sched_group(tg);
6327 }
6328 
6329 /* rcu callback to free various structures associated with a task group */
6330 static void sched_free_group_rcu(struct rcu_head *rhp)
6331 {
6332 	/* Now it should be safe to free those cfs_rqs: */
6333 	sched_free_group(container_of(rhp, struct task_group, rcu));
6334 }
6335 
6336 void sched_destroy_group(struct task_group *tg)
6337 {
6338 	/* Wait for possible concurrent references to cfs_rqs complete: */
6339 	call_rcu(&tg->rcu, sched_free_group_rcu);
6340 }
6341 
6342 void sched_offline_group(struct task_group *tg)
6343 {
6344 	unsigned long flags;
6345 
6346 	/* End participation in shares distribution: */
6347 	unregister_fair_sched_group(tg);
6348 
6349 	spin_lock_irqsave(&task_group_lock, flags);
6350 	list_del_rcu(&tg->list);
6351 	list_del_rcu(&tg->siblings);
6352 	spin_unlock_irqrestore(&task_group_lock, flags);
6353 }
6354 
6355 static void sched_change_group(struct task_struct *tsk, int type)
6356 {
6357 	struct task_group *tg;
6358 
6359 	/*
6360 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6361 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6362 	 * to prevent lockdep warnings.
6363 	 */
6364 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6365 			  struct task_group, css);
6366 	tg = autogroup_task_group(tsk, tg);
6367 	tsk->sched_task_group = tg;
6368 
6369 #ifdef CONFIG_FAIR_GROUP_SCHED
6370 	if (tsk->sched_class->task_change_group)
6371 		tsk->sched_class->task_change_group(tsk, type);
6372 	else
6373 #endif
6374 		set_task_rq(tsk, task_cpu(tsk));
6375 }
6376 
6377 /*
6378  * Change task's runqueue when it moves between groups.
6379  *
6380  * The caller of this function should have put the task in its new group by
6381  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6382  * its new group.
6383  */
6384 void sched_move_task(struct task_struct *tsk)
6385 {
6386 	int queued, running, queue_flags =
6387 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6388 	struct rq_flags rf;
6389 	struct rq *rq;
6390 
6391 	rq = task_rq_lock(tsk, &rf);
6392 	update_rq_clock(rq);
6393 
6394 	running = task_current(rq, tsk);
6395 	queued = task_on_rq_queued(tsk);
6396 
6397 	if (queued)
6398 		dequeue_task(rq, tsk, queue_flags);
6399 	if (running)
6400 		put_prev_task(rq, tsk);
6401 
6402 	sched_change_group(tsk, TASK_MOVE_GROUP);
6403 
6404 	if (queued)
6405 		enqueue_task(rq, tsk, queue_flags);
6406 	if (running)
6407 		set_curr_task(rq, tsk);
6408 
6409 	task_rq_unlock(rq, tsk, &rf);
6410 }
6411 
6412 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6413 {
6414 	return css ? container_of(css, struct task_group, css) : NULL;
6415 }
6416 
6417 static struct cgroup_subsys_state *
6418 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6419 {
6420 	struct task_group *parent = css_tg(parent_css);
6421 	struct task_group *tg;
6422 
6423 	if (!parent) {
6424 		/* This is early initialization for the top cgroup */
6425 		return &root_task_group.css;
6426 	}
6427 
6428 	tg = sched_create_group(parent);
6429 	if (IS_ERR(tg))
6430 		return ERR_PTR(-ENOMEM);
6431 
6432 	return &tg->css;
6433 }
6434 
6435 /* Expose task group only after completing cgroup initialization */
6436 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6437 {
6438 	struct task_group *tg = css_tg(css);
6439 	struct task_group *parent = css_tg(css->parent);
6440 
6441 	if (parent)
6442 		sched_online_group(tg, parent);
6443 	return 0;
6444 }
6445 
6446 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6447 {
6448 	struct task_group *tg = css_tg(css);
6449 
6450 	sched_offline_group(tg);
6451 }
6452 
6453 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6454 {
6455 	struct task_group *tg = css_tg(css);
6456 
6457 	/*
6458 	 * Relies on the RCU grace period between css_released() and this.
6459 	 */
6460 	sched_free_group(tg);
6461 }
6462 
6463 /*
6464  * This is called before wake_up_new_task(), therefore we really only
6465  * have to set its group bits, all the other stuff does not apply.
6466  */
6467 static void cpu_cgroup_fork(struct task_struct *task)
6468 {
6469 	struct rq_flags rf;
6470 	struct rq *rq;
6471 
6472 	rq = task_rq_lock(task, &rf);
6473 
6474 	update_rq_clock(rq);
6475 	sched_change_group(task, TASK_SET_GROUP);
6476 
6477 	task_rq_unlock(rq, task, &rf);
6478 }
6479 
6480 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6481 {
6482 	struct task_struct *task;
6483 	struct cgroup_subsys_state *css;
6484 	int ret = 0;
6485 
6486 	cgroup_taskset_for_each(task, css, tset) {
6487 #ifdef CONFIG_RT_GROUP_SCHED
6488 		if (!sched_rt_can_attach(css_tg(css), task))
6489 			return -EINVAL;
6490 #else
6491 		/* We don't support RT-tasks being in separate groups */
6492 		if (task->sched_class != &fair_sched_class)
6493 			return -EINVAL;
6494 #endif
6495 		/*
6496 		 * Serialize against wake_up_new_task() such that if its
6497 		 * running, we're sure to observe its full state.
6498 		 */
6499 		raw_spin_lock_irq(&task->pi_lock);
6500 		/*
6501 		 * Avoid calling sched_move_task() before wake_up_new_task()
6502 		 * has happened. This would lead to problems with PELT, due to
6503 		 * move wanting to detach+attach while we're not attached yet.
6504 		 */
6505 		if (task->state == TASK_NEW)
6506 			ret = -EINVAL;
6507 		raw_spin_unlock_irq(&task->pi_lock);
6508 
6509 		if (ret)
6510 			break;
6511 	}
6512 	return ret;
6513 }
6514 
6515 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6516 {
6517 	struct task_struct *task;
6518 	struct cgroup_subsys_state *css;
6519 
6520 	cgroup_taskset_for_each(task, css, tset)
6521 		sched_move_task(task);
6522 }
6523 
6524 #ifdef CONFIG_FAIR_GROUP_SCHED
6525 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6526 				struct cftype *cftype, u64 shareval)
6527 {
6528 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6529 }
6530 
6531 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6532 			       struct cftype *cft)
6533 {
6534 	struct task_group *tg = css_tg(css);
6535 
6536 	return (u64) scale_load_down(tg->shares);
6537 }
6538 
6539 #ifdef CONFIG_CFS_BANDWIDTH
6540 static DEFINE_MUTEX(cfs_constraints_mutex);
6541 
6542 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6543 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6544 
6545 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6546 
6547 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6548 {
6549 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6550 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6551 
6552 	if (tg == &root_task_group)
6553 		return -EINVAL;
6554 
6555 	/*
6556 	 * Ensure we have at some amount of bandwidth every period.  This is
6557 	 * to prevent reaching a state of large arrears when throttled via
6558 	 * entity_tick() resulting in prolonged exit starvation.
6559 	 */
6560 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6561 		return -EINVAL;
6562 
6563 	/*
6564 	 * Likewise, bound things on the otherside by preventing insane quota
6565 	 * periods.  This also allows us to normalize in computing quota
6566 	 * feasibility.
6567 	 */
6568 	if (period > max_cfs_quota_period)
6569 		return -EINVAL;
6570 
6571 	/*
6572 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6573 	 * unthrottle_offline_cfs_rqs().
6574 	 */
6575 	get_online_cpus();
6576 	mutex_lock(&cfs_constraints_mutex);
6577 	ret = __cfs_schedulable(tg, period, quota);
6578 	if (ret)
6579 		goto out_unlock;
6580 
6581 	runtime_enabled = quota != RUNTIME_INF;
6582 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6583 	/*
6584 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6585 	 * before making related changes, and on->off must occur afterwards
6586 	 */
6587 	if (runtime_enabled && !runtime_was_enabled)
6588 		cfs_bandwidth_usage_inc();
6589 	raw_spin_lock_irq(&cfs_b->lock);
6590 	cfs_b->period = ns_to_ktime(period);
6591 	cfs_b->quota = quota;
6592 
6593 	__refill_cfs_bandwidth_runtime(cfs_b);
6594 
6595 	/* Restart the period timer (if active) to handle new period expiry: */
6596 	if (runtime_enabled)
6597 		start_cfs_bandwidth(cfs_b);
6598 
6599 	raw_spin_unlock_irq(&cfs_b->lock);
6600 
6601 	for_each_online_cpu(i) {
6602 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6603 		struct rq *rq = cfs_rq->rq;
6604 		struct rq_flags rf;
6605 
6606 		rq_lock_irq(rq, &rf);
6607 		cfs_rq->runtime_enabled = runtime_enabled;
6608 		cfs_rq->runtime_remaining = 0;
6609 
6610 		if (cfs_rq->throttled)
6611 			unthrottle_cfs_rq(cfs_rq);
6612 		rq_unlock_irq(rq, &rf);
6613 	}
6614 	if (runtime_was_enabled && !runtime_enabled)
6615 		cfs_bandwidth_usage_dec();
6616 out_unlock:
6617 	mutex_unlock(&cfs_constraints_mutex);
6618 	put_online_cpus();
6619 
6620 	return ret;
6621 }
6622 
6623 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6624 {
6625 	u64 quota, period;
6626 
6627 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6628 	if (cfs_quota_us < 0)
6629 		quota = RUNTIME_INF;
6630 	else
6631 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6632 
6633 	return tg_set_cfs_bandwidth(tg, period, quota);
6634 }
6635 
6636 long tg_get_cfs_quota(struct task_group *tg)
6637 {
6638 	u64 quota_us;
6639 
6640 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6641 		return -1;
6642 
6643 	quota_us = tg->cfs_bandwidth.quota;
6644 	do_div(quota_us, NSEC_PER_USEC);
6645 
6646 	return quota_us;
6647 }
6648 
6649 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6650 {
6651 	u64 quota, period;
6652 
6653 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6654 	quota = tg->cfs_bandwidth.quota;
6655 
6656 	return tg_set_cfs_bandwidth(tg, period, quota);
6657 }
6658 
6659 long tg_get_cfs_period(struct task_group *tg)
6660 {
6661 	u64 cfs_period_us;
6662 
6663 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6664 	do_div(cfs_period_us, NSEC_PER_USEC);
6665 
6666 	return cfs_period_us;
6667 }
6668 
6669 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6670 				  struct cftype *cft)
6671 {
6672 	return tg_get_cfs_quota(css_tg(css));
6673 }
6674 
6675 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6676 				   struct cftype *cftype, s64 cfs_quota_us)
6677 {
6678 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6679 }
6680 
6681 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6682 				   struct cftype *cft)
6683 {
6684 	return tg_get_cfs_period(css_tg(css));
6685 }
6686 
6687 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6688 				    struct cftype *cftype, u64 cfs_period_us)
6689 {
6690 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6691 }
6692 
6693 struct cfs_schedulable_data {
6694 	struct task_group *tg;
6695 	u64 period, quota;
6696 };
6697 
6698 /*
6699  * normalize group quota/period to be quota/max_period
6700  * note: units are usecs
6701  */
6702 static u64 normalize_cfs_quota(struct task_group *tg,
6703 			       struct cfs_schedulable_data *d)
6704 {
6705 	u64 quota, period;
6706 
6707 	if (tg == d->tg) {
6708 		period = d->period;
6709 		quota = d->quota;
6710 	} else {
6711 		period = tg_get_cfs_period(tg);
6712 		quota = tg_get_cfs_quota(tg);
6713 	}
6714 
6715 	/* note: these should typically be equivalent */
6716 	if (quota == RUNTIME_INF || quota == -1)
6717 		return RUNTIME_INF;
6718 
6719 	return to_ratio(period, quota);
6720 }
6721 
6722 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6723 {
6724 	struct cfs_schedulable_data *d = data;
6725 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6726 	s64 quota = 0, parent_quota = -1;
6727 
6728 	if (!tg->parent) {
6729 		quota = RUNTIME_INF;
6730 	} else {
6731 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6732 
6733 		quota = normalize_cfs_quota(tg, d);
6734 		parent_quota = parent_b->hierarchical_quota;
6735 
6736 		/*
6737 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6738 		 * always take the min.  On cgroup1, only inherit when no
6739 		 * limit is set:
6740 		 */
6741 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6742 			quota = min(quota, parent_quota);
6743 		} else {
6744 			if (quota == RUNTIME_INF)
6745 				quota = parent_quota;
6746 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6747 				return -EINVAL;
6748 		}
6749 	}
6750 	cfs_b->hierarchical_quota = quota;
6751 
6752 	return 0;
6753 }
6754 
6755 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6756 {
6757 	int ret;
6758 	struct cfs_schedulable_data data = {
6759 		.tg = tg,
6760 		.period = period,
6761 		.quota = quota,
6762 	};
6763 
6764 	if (quota != RUNTIME_INF) {
6765 		do_div(data.period, NSEC_PER_USEC);
6766 		do_div(data.quota, NSEC_PER_USEC);
6767 	}
6768 
6769 	rcu_read_lock();
6770 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6771 	rcu_read_unlock();
6772 
6773 	return ret;
6774 }
6775 
6776 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6777 {
6778 	struct task_group *tg = css_tg(seq_css(sf));
6779 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6780 
6781 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6782 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6783 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6784 
6785 	return 0;
6786 }
6787 #endif /* CONFIG_CFS_BANDWIDTH */
6788 #endif /* CONFIG_FAIR_GROUP_SCHED */
6789 
6790 #ifdef CONFIG_RT_GROUP_SCHED
6791 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6792 				struct cftype *cft, s64 val)
6793 {
6794 	return sched_group_set_rt_runtime(css_tg(css), val);
6795 }
6796 
6797 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6798 			       struct cftype *cft)
6799 {
6800 	return sched_group_rt_runtime(css_tg(css));
6801 }
6802 
6803 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6804 				    struct cftype *cftype, u64 rt_period_us)
6805 {
6806 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6807 }
6808 
6809 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6810 				   struct cftype *cft)
6811 {
6812 	return sched_group_rt_period(css_tg(css));
6813 }
6814 #endif /* CONFIG_RT_GROUP_SCHED */
6815 
6816 static struct cftype cpu_legacy_files[] = {
6817 #ifdef CONFIG_FAIR_GROUP_SCHED
6818 	{
6819 		.name = "shares",
6820 		.read_u64 = cpu_shares_read_u64,
6821 		.write_u64 = cpu_shares_write_u64,
6822 	},
6823 #endif
6824 #ifdef CONFIG_CFS_BANDWIDTH
6825 	{
6826 		.name = "cfs_quota_us",
6827 		.read_s64 = cpu_cfs_quota_read_s64,
6828 		.write_s64 = cpu_cfs_quota_write_s64,
6829 	},
6830 	{
6831 		.name = "cfs_period_us",
6832 		.read_u64 = cpu_cfs_period_read_u64,
6833 		.write_u64 = cpu_cfs_period_write_u64,
6834 	},
6835 	{
6836 		.name = "stat",
6837 		.seq_show = cpu_cfs_stat_show,
6838 	},
6839 #endif
6840 #ifdef CONFIG_RT_GROUP_SCHED
6841 	{
6842 		.name = "rt_runtime_us",
6843 		.read_s64 = cpu_rt_runtime_read,
6844 		.write_s64 = cpu_rt_runtime_write,
6845 	},
6846 	{
6847 		.name = "rt_period_us",
6848 		.read_u64 = cpu_rt_period_read_uint,
6849 		.write_u64 = cpu_rt_period_write_uint,
6850 	},
6851 #endif
6852 	{ }	/* Terminate */
6853 };
6854 
6855 static int cpu_extra_stat_show(struct seq_file *sf,
6856 			       struct cgroup_subsys_state *css)
6857 {
6858 #ifdef CONFIG_CFS_BANDWIDTH
6859 	{
6860 		struct task_group *tg = css_tg(css);
6861 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6862 		u64 throttled_usec;
6863 
6864 		throttled_usec = cfs_b->throttled_time;
6865 		do_div(throttled_usec, NSEC_PER_USEC);
6866 
6867 		seq_printf(sf, "nr_periods %d\n"
6868 			   "nr_throttled %d\n"
6869 			   "throttled_usec %llu\n",
6870 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6871 			   throttled_usec);
6872 	}
6873 #endif
6874 	return 0;
6875 }
6876 
6877 #ifdef CONFIG_FAIR_GROUP_SCHED
6878 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6879 			       struct cftype *cft)
6880 {
6881 	struct task_group *tg = css_tg(css);
6882 	u64 weight = scale_load_down(tg->shares);
6883 
6884 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6885 }
6886 
6887 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6888 				struct cftype *cft, u64 weight)
6889 {
6890 	/*
6891 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6892 	 * values which are 1, 100 and 10000 respectively.  While it loses
6893 	 * a bit of range on both ends, it maps pretty well onto the shares
6894 	 * value used by scheduler and the round-trip conversions preserve
6895 	 * the original value over the entire range.
6896 	 */
6897 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6898 		return -ERANGE;
6899 
6900 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6901 
6902 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6903 }
6904 
6905 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6906 				    struct cftype *cft)
6907 {
6908 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6909 	int last_delta = INT_MAX;
6910 	int prio, delta;
6911 
6912 	/* find the closest nice value to the current weight */
6913 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6914 		delta = abs(sched_prio_to_weight[prio] - weight);
6915 		if (delta >= last_delta)
6916 			break;
6917 		last_delta = delta;
6918 	}
6919 
6920 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6921 }
6922 
6923 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6924 				     struct cftype *cft, s64 nice)
6925 {
6926 	unsigned long weight;
6927 	int idx;
6928 
6929 	if (nice < MIN_NICE || nice > MAX_NICE)
6930 		return -ERANGE;
6931 
6932 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6933 	idx = array_index_nospec(idx, 40);
6934 	weight = sched_prio_to_weight[idx];
6935 
6936 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6937 }
6938 #endif
6939 
6940 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6941 						  long period, long quota)
6942 {
6943 	if (quota < 0)
6944 		seq_puts(sf, "max");
6945 	else
6946 		seq_printf(sf, "%ld", quota);
6947 
6948 	seq_printf(sf, " %ld\n", period);
6949 }
6950 
6951 /* caller should put the current value in *@periodp before calling */
6952 static int __maybe_unused cpu_period_quota_parse(char *buf,
6953 						 u64 *periodp, u64 *quotap)
6954 {
6955 	char tok[21];	/* U64_MAX */
6956 
6957 	if (!sscanf(buf, "%s %llu", tok, periodp))
6958 		return -EINVAL;
6959 
6960 	*periodp *= NSEC_PER_USEC;
6961 
6962 	if (sscanf(tok, "%llu", quotap))
6963 		*quotap *= NSEC_PER_USEC;
6964 	else if (!strcmp(tok, "max"))
6965 		*quotap = RUNTIME_INF;
6966 	else
6967 		return -EINVAL;
6968 
6969 	return 0;
6970 }
6971 
6972 #ifdef CONFIG_CFS_BANDWIDTH
6973 static int cpu_max_show(struct seq_file *sf, void *v)
6974 {
6975 	struct task_group *tg = css_tg(seq_css(sf));
6976 
6977 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6978 	return 0;
6979 }
6980 
6981 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6982 			     char *buf, size_t nbytes, loff_t off)
6983 {
6984 	struct task_group *tg = css_tg(of_css(of));
6985 	u64 period = tg_get_cfs_period(tg);
6986 	u64 quota;
6987 	int ret;
6988 
6989 	ret = cpu_period_quota_parse(buf, &period, &quota);
6990 	if (!ret)
6991 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6992 	return ret ?: nbytes;
6993 }
6994 #endif
6995 
6996 static struct cftype cpu_files[] = {
6997 #ifdef CONFIG_FAIR_GROUP_SCHED
6998 	{
6999 		.name = "weight",
7000 		.flags = CFTYPE_NOT_ON_ROOT,
7001 		.read_u64 = cpu_weight_read_u64,
7002 		.write_u64 = cpu_weight_write_u64,
7003 	},
7004 	{
7005 		.name = "weight.nice",
7006 		.flags = CFTYPE_NOT_ON_ROOT,
7007 		.read_s64 = cpu_weight_nice_read_s64,
7008 		.write_s64 = cpu_weight_nice_write_s64,
7009 	},
7010 #endif
7011 #ifdef CONFIG_CFS_BANDWIDTH
7012 	{
7013 		.name = "max",
7014 		.flags = CFTYPE_NOT_ON_ROOT,
7015 		.seq_show = cpu_max_show,
7016 		.write = cpu_max_write,
7017 	},
7018 #endif
7019 	{ }	/* terminate */
7020 };
7021 
7022 struct cgroup_subsys cpu_cgrp_subsys = {
7023 	.css_alloc	= cpu_cgroup_css_alloc,
7024 	.css_online	= cpu_cgroup_css_online,
7025 	.css_released	= cpu_cgroup_css_released,
7026 	.css_free	= cpu_cgroup_css_free,
7027 	.css_extra_stat_show = cpu_extra_stat_show,
7028 	.fork		= cpu_cgroup_fork,
7029 	.can_attach	= cpu_cgroup_can_attach,
7030 	.attach		= cpu_cgroup_attach,
7031 	.legacy_cftypes	= cpu_legacy_files,
7032 	.dfl_cftypes	= cpu_files,
7033 	.early_init	= true,
7034 	.threaded	= true,
7035 };
7036 
7037 #endif	/* CONFIG_CGROUP_SCHED */
7038 
7039 void dump_cpu_task(int cpu)
7040 {
7041 	pr_info("Task dump for CPU %d:\n", cpu);
7042 	sched_show_task(cpu_curr(cpu));
7043 }
7044 
7045 /*
7046  * Nice levels are multiplicative, with a gentle 10% change for every
7047  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7048  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7049  * that remained on nice 0.
7050  *
7051  * The "10% effect" is relative and cumulative: from _any_ nice level,
7052  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7053  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7054  * If a task goes up by ~10% and another task goes down by ~10% then
7055  * the relative distance between them is ~25%.)
7056  */
7057 const int sched_prio_to_weight[40] = {
7058  /* -20 */     88761,     71755,     56483,     46273,     36291,
7059  /* -15 */     29154,     23254,     18705,     14949,     11916,
7060  /* -10 */      9548,      7620,      6100,      4904,      3906,
7061  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7062  /*   0 */      1024,       820,       655,       526,       423,
7063  /*   5 */       335,       272,       215,       172,       137,
7064  /*  10 */       110,        87,        70,        56,        45,
7065  /*  15 */        36,        29,        23,        18,        15,
7066 };
7067 
7068 /*
7069  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7070  *
7071  * In cases where the weight does not change often, we can use the
7072  * precalculated inverse to speed up arithmetics by turning divisions
7073  * into multiplications:
7074  */
7075 const u32 sched_prio_to_wmult[40] = {
7076  /* -20 */     48388,     59856,     76040,     92818,    118348,
7077  /* -15 */    147320,    184698,    229616,    287308,    360437,
7078  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7079  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7080  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7081  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7082  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7083  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7084 };
7085 
7086 #undef CREATE_TRACE_POINTS
7087