xref: /openbmc/linux/kernel/sched/core.c (revision c5b2803840817115e9b568d5054e5007ae36176b)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	if (static_key_enabled(&sched_feat_keys[i]))
168 		static_key_slow_dec(&sched_feat_keys[i]);
169 }
170 
171 static void sched_feat_enable(int i)
172 {
173 	if (!static_key_enabled(&sched_feat_keys[i]))
174 		static_key_slow_inc(&sched_feat_keys[i]);
175 }
176 #else
177 static void sched_feat_disable(int i) { };
178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
180 
181 static int sched_feat_set(char *cmp)
182 {
183 	int i;
184 	int neg = 0;
185 
186 	if (strncmp(cmp, "NO_", 3) == 0) {
187 		neg = 1;
188 		cmp += 3;
189 	}
190 
191 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 			if (neg) {
194 				sysctl_sched_features &= ~(1UL << i);
195 				sched_feat_disable(i);
196 			} else {
197 				sysctl_sched_features |= (1UL << i);
198 				sched_feat_enable(i);
199 			}
200 			break;
201 		}
202 	}
203 
204 	return i;
205 }
206 
207 static ssize_t
208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 		size_t cnt, loff_t *ppos)
210 {
211 	char buf[64];
212 	char *cmp;
213 	int i;
214 	struct inode *inode;
215 
216 	if (cnt > 63)
217 		cnt = 63;
218 
219 	if (copy_from_user(&buf, ubuf, cnt))
220 		return -EFAULT;
221 
222 	buf[cnt] = 0;
223 	cmp = strstrip(buf);
224 
225 	/* Ensure the static_key remains in a consistent state */
226 	inode = file_inode(filp);
227 	mutex_lock(&inode->i_mutex);
228 	i = sched_feat_set(cmp);
229 	mutex_unlock(&inode->i_mutex);
230 	if (i == __SCHED_FEAT_NR)
231 		return -EINVAL;
232 
233 	*ppos += cnt;
234 
235 	return cnt;
236 }
237 
238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 	return single_open(filp, sched_feat_show, NULL);
241 }
242 
243 static const struct file_operations sched_feat_fops = {
244 	.open		= sched_feat_open,
245 	.write		= sched_feat_write,
246 	.read		= seq_read,
247 	.llseek		= seq_lseek,
248 	.release	= single_release,
249 };
250 
251 static __init int sched_init_debug(void)
252 {
253 	debugfs_create_file("sched_features", 0644, NULL, NULL,
254 			&sched_feat_fops);
255 
256 	return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260 
261 /*
262  * Number of tasks to iterate in a single balance run.
263  * Limited because this is done with IRQs disabled.
264  */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266 
267 /*
268  * period over which we average the RT time consumption, measured
269  * in ms.
270  *
271  * default: 1s
272  */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274 
275 /*
276  * period over which we measure -rt task cpu usage in us.
277  * default: 1s
278  */
279 unsigned int sysctl_sched_rt_period = 1000000;
280 
281 __read_mostly int scheduler_running;
282 
283 /*
284  * part of the period that we allow rt tasks to run in us.
285  * default: 0.95s
286  */
287 int sysctl_sched_rt_runtime = 950000;
288 
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
291 
292 /*
293  * this_rq_lock - lock this runqueue and disable interrupts.
294  */
295 static struct rq *this_rq_lock(void)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	local_irq_disable();
301 	rq = this_rq();
302 	raw_spin_lock(&rq->lock);
303 
304 	return rq;
305 }
306 
307 #ifdef CONFIG_SCHED_HRTICK
308 /*
309  * Use HR-timers to deliver accurate preemption points.
310  */
311 
312 static void hrtick_clear(struct rq *rq)
313 {
314 	if (hrtimer_active(&rq->hrtick_timer))
315 		hrtimer_cancel(&rq->hrtick_timer);
316 }
317 
318 /*
319  * High-resolution timer tick.
320  * Runs from hardirq context with interrupts disabled.
321  */
322 static enum hrtimer_restart hrtick(struct hrtimer *timer)
323 {
324 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325 
326 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327 
328 	raw_spin_lock(&rq->lock);
329 	update_rq_clock(rq);
330 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 	raw_spin_unlock(&rq->lock);
332 
333 	return HRTIMER_NORESTART;
334 }
335 
336 #ifdef CONFIG_SMP
337 
338 static void __hrtick_restart(struct rq *rq)
339 {
340 	struct hrtimer *timer = &rq->hrtick_timer;
341 
342 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
343 }
344 
345 /*
346  * called from hardirq (IPI) context
347  */
348 static void __hrtick_start(void *arg)
349 {
350 	struct rq *rq = arg;
351 
352 	raw_spin_lock(&rq->lock);
353 	__hrtick_restart(rq);
354 	rq->hrtick_csd_pending = 0;
355 	raw_spin_unlock(&rq->lock);
356 }
357 
358 /*
359  * Called to set the hrtick timer state.
360  *
361  * called with rq->lock held and irqs disabled
362  */
363 void hrtick_start(struct rq *rq, u64 delay)
364 {
365 	struct hrtimer *timer = &rq->hrtick_timer;
366 	ktime_t time;
367 	s64 delta;
368 
369 	/*
370 	 * Don't schedule slices shorter than 10000ns, that just
371 	 * doesn't make sense and can cause timer DoS.
372 	 */
373 	delta = max_t(s64, delay, 10000LL);
374 	time = ktime_add_ns(timer->base->get_time(), delta);
375 
376 	hrtimer_set_expires(timer, time);
377 
378 	if (rq == this_rq()) {
379 		__hrtick_restart(rq);
380 	} else if (!rq->hrtick_csd_pending) {
381 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 		rq->hrtick_csd_pending = 1;
383 	}
384 }
385 
386 static int
387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388 {
389 	int cpu = (int)(long)hcpu;
390 
391 	switch (action) {
392 	case CPU_UP_CANCELED:
393 	case CPU_UP_CANCELED_FROZEN:
394 	case CPU_DOWN_PREPARE:
395 	case CPU_DOWN_PREPARE_FROZEN:
396 	case CPU_DEAD:
397 	case CPU_DEAD_FROZEN:
398 		hrtick_clear(cpu_rq(cpu));
399 		return NOTIFY_OK;
400 	}
401 
402 	return NOTIFY_DONE;
403 }
404 
405 static __init void init_hrtick(void)
406 {
407 	hotcpu_notifier(hotplug_hrtick, 0);
408 }
409 #else
410 /*
411  * Called to set the hrtick timer state.
412  *
413  * called with rq->lock held and irqs disabled
414  */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 	/*
418 	 * Don't schedule slices shorter than 10000ns, that just
419 	 * doesn't make sense. Rely on vruntime for fairness.
420 	 */
421 	delay = max_t(u64, delay, 10000LL);
422 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 		      HRTIMER_MODE_REL_PINNED);
424 }
425 
426 static inline void init_hrtick(void)
427 {
428 }
429 #endif /* CONFIG_SMP */
430 
431 static void init_rq_hrtick(struct rq *rq)
432 {
433 #ifdef CONFIG_SMP
434 	rq->hrtick_csd_pending = 0;
435 
436 	rq->hrtick_csd.flags = 0;
437 	rq->hrtick_csd.func = __hrtick_start;
438 	rq->hrtick_csd.info = rq;
439 #endif
440 
441 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 	rq->hrtick_timer.function = hrtick;
443 }
444 #else	/* CONFIG_SCHED_HRTICK */
445 static inline void hrtick_clear(struct rq *rq)
446 {
447 }
448 
449 static inline void init_rq_hrtick(struct rq *rq)
450 {
451 }
452 
453 static inline void init_hrtick(void)
454 {
455 }
456 #endif	/* CONFIG_SCHED_HRTICK */
457 
458 /*
459  * cmpxchg based fetch_or, macro so it works for different integer types
460  */
461 #define fetch_or(ptr, val)						\
462 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
463  	for (;;) {							\
464  		__old = cmpxchg((ptr), __val, __val | (val));		\
465  		if (__old == __val)					\
466  			break;						\
467  		__val = __old;						\
468  	}								\
469  	__old;								\
470 })
471 
472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 /*
474  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475  * this avoids any races wrt polling state changes and thereby avoids
476  * spurious IPIs.
477  */
478 static bool set_nr_and_not_polling(struct task_struct *p)
479 {
480 	struct thread_info *ti = task_thread_info(p);
481 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482 }
483 
484 /*
485  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486  *
487  * If this returns true, then the idle task promises to call
488  * sched_ttwu_pending() and reschedule soon.
489  */
490 static bool set_nr_if_polling(struct task_struct *p)
491 {
492 	struct thread_info *ti = task_thread_info(p);
493 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494 
495 	for (;;) {
496 		if (!(val & _TIF_POLLING_NRFLAG))
497 			return false;
498 		if (val & _TIF_NEED_RESCHED)
499 			return true;
500 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 		if (old == val)
502 			break;
503 		val = old;
504 	}
505 	return true;
506 }
507 
508 #else
509 static bool set_nr_and_not_polling(struct task_struct *p)
510 {
511 	set_tsk_need_resched(p);
512 	return true;
513 }
514 
515 #ifdef CONFIG_SMP
516 static bool set_nr_if_polling(struct task_struct *p)
517 {
518 	return false;
519 }
520 #endif
521 #endif
522 
523 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524 {
525 	struct wake_q_node *node = &task->wake_q;
526 
527 	/*
528 	 * Atomically grab the task, if ->wake_q is !nil already it means
529 	 * its already queued (either by us or someone else) and will get the
530 	 * wakeup due to that.
531 	 *
532 	 * This cmpxchg() implies a full barrier, which pairs with the write
533 	 * barrier implied by the wakeup in wake_up_list().
534 	 */
535 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 		return;
537 
538 	get_task_struct(task);
539 
540 	/*
541 	 * The head is context local, there can be no concurrency.
542 	 */
543 	*head->lastp = node;
544 	head->lastp = &node->next;
545 }
546 
547 void wake_up_q(struct wake_q_head *head)
548 {
549 	struct wake_q_node *node = head->first;
550 
551 	while (node != WAKE_Q_TAIL) {
552 		struct task_struct *task;
553 
554 		task = container_of(node, struct task_struct, wake_q);
555 		BUG_ON(!task);
556 		/* task can safely be re-inserted now */
557 		node = node->next;
558 		task->wake_q.next = NULL;
559 
560 		/*
561 		 * wake_up_process() implies a wmb() to pair with the queueing
562 		 * in wake_q_add() so as not to miss wakeups.
563 		 */
564 		wake_up_process(task);
565 		put_task_struct(task);
566 	}
567 }
568 
569 /*
570  * resched_curr - mark rq's current task 'to be rescheduled now'.
571  *
572  * On UP this means the setting of the need_resched flag, on SMP it
573  * might also involve a cross-CPU call to trigger the scheduler on
574  * the target CPU.
575  */
576 void resched_curr(struct rq *rq)
577 {
578 	struct task_struct *curr = rq->curr;
579 	int cpu;
580 
581 	lockdep_assert_held(&rq->lock);
582 
583 	if (test_tsk_need_resched(curr))
584 		return;
585 
586 	cpu = cpu_of(rq);
587 
588 	if (cpu == smp_processor_id()) {
589 		set_tsk_need_resched(curr);
590 		set_preempt_need_resched();
591 		return;
592 	}
593 
594 	if (set_nr_and_not_polling(curr))
595 		smp_send_reschedule(cpu);
596 	else
597 		trace_sched_wake_idle_without_ipi(cpu);
598 }
599 
600 void resched_cpu(int cpu)
601 {
602 	struct rq *rq = cpu_rq(cpu);
603 	unsigned long flags;
604 
605 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
606 		return;
607 	resched_curr(rq);
608 	raw_spin_unlock_irqrestore(&rq->lock, flags);
609 }
610 
611 #ifdef CONFIG_SMP
612 #ifdef CONFIG_NO_HZ_COMMON
613 /*
614  * In the semi idle case, use the nearest busy cpu for migrating timers
615  * from an idle cpu.  This is good for power-savings.
616  *
617  * We don't do similar optimization for completely idle system, as
618  * selecting an idle cpu will add more delays to the timers than intended
619  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620  */
621 int get_nohz_timer_target(void)
622 {
623 	int i, cpu = smp_processor_id();
624 	struct sched_domain *sd;
625 
626 	if (!idle_cpu(cpu))
627 		return cpu;
628 
629 	rcu_read_lock();
630 	for_each_domain(cpu, sd) {
631 		for_each_cpu(i, sched_domain_span(sd)) {
632 			if (!idle_cpu(i)) {
633 				cpu = i;
634 				goto unlock;
635 			}
636 		}
637 	}
638 unlock:
639 	rcu_read_unlock();
640 	return cpu;
641 }
642 /*
643  * When add_timer_on() enqueues a timer into the timer wheel of an
644  * idle CPU then this timer might expire before the next timer event
645  * which is scheduled to wake up that CPU. In case of a completely
646  * idle system the next event might even be infinite time into the
647  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648  * leaves the inner idle loop so the newly added timer is taken into
649  * account when the CPU goes back to idle and evaluates the timer
650  * wheel for the next timer event.
651  */
652 static void wake_up_idle_cpu(int cpu)
653 {
654 	struct rq *rq = cpu_rq(cpu);
655 
656 	if (cpu == smp_processor_id())
657 		return;
658 
659 	if (set_nr_and_not_polling(rq->idle))
660 		smp_send_reschedule(cpu);
661 	else
662 		trace_sched_wake_idle_without_ipi(cpu);
663 }
664 
665 static bool wake_up_full_nohz_cpu(int cpu)
666 {
667 	/*
668 	 * We just need the target to call irq_exit() and re-evaluate
669 	 * the next tick. The nohz full kick at least implies that.
670 	 * If needed we can still optimize that later with an
671 	 * empty IRQ.
672 	 */
673 	if (tick_nohz_full_cpu(cpu)) {
674 		if (cpu != smp_processor_id() ||
675 		    tick_nohz_tick_stopped())
676 			tick_nohz_full_kick_cpu(cpu);
677 		return true;
678 	}
679 
680 	return false;
681 }
682 
683 void wake_up_nohz_cpu(int cpu)
684 {
685 	if (!wake_up_full_nohz_cpu(cpu))
686 		wake_up_idle_cpu(cpu);
687 }
688 
689 static inline bool got_nohz_idle_kick(void)
690 {
691 	int cpu = smp_processor_id();
692 
693 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
694 		return false;
695 
696 	if (idle_cpu(cpu) && !need_resched())
697 		return true;
698 
699 	/*
700 	 * We can't run Idle Load Balance on this CPU for this time so we
701 	 * cancel it and clear NOHZ_BALANCE_KICK
702 	 */
703 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
704 	return false;
705 }
706 
707 #else /* CONFIG_NO_HZ_COMMON */
708 
709 static inline bool got_nohz_idle_kick(void)
710 {
711 	return false;
712 }
713 
714 #endif /* CONFIG_NO_HZ_COMMON */
715 
716 #ifdef CONFIG_NO_HZ_FULL
717 bool sched_can_stop_tick(void)
718 {
719 	/*
720 	 * FIFO realtime policy runs the highest priority task. Other runnable
721 	 * tasks are of a lower priority. The scheduler tick does nothing.
722 	 */
723 	if (current->policy == SCHED_FIFO)
724 		return true;
725 
726 	/*
727 	 * Round-robin realtime tasks time slice with other tasks at the same
728 	 * realtime priority. Is this task the only one at this priority?
729 	 */
730 	if (current->policy == SCHED_RR) {
731 		struct sched_rt_entity *rt_se = &current->rt;
732 
733 		return rt_se->run_list.prev == rt_se->run_list.next;
734 	}
735 
736 	/*
737 	 * More than one running task need preemption.
738 	 * nr_running update is assumed to be visible
739 	 * after IPI is sent from wakers.
740 	 */
741 	if (this_rq()->nr_running > 1)
742 		return false;
743 
744 	return true;
745 }
746 #endif /* CONFIG_NO_HZ_FULL */
747 
748 void sched_avg_update(struct rq *rq)
749 {
750 	s64 period = sched_avg_period();
751 
752 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 		/*
754 		 * Inline assembly required to prevent the compiler
755 		 * optimising this loop into a divmod call.
756 		 * See __iter_div_u64_rem() for another example of this.
757 		 */
758 		asm("" : "+rm" (rq->age_stamp));
759 		rq->age_stamp += period;
760 		rq->rt_avg /= 2;
761 	}
762 }
763 
764 #endif /* CONFIG_SMP */
765 
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768 /*
769  * Iterate task_group tree rooted at *from, calling @down when first entering a
770  * node and @up when leaving it for the final time.
771  *
772  * Caller must hold rcu_lock or sufficient equivalent.
773  */
774 int walk_tg_tree_from(struct task_group *from,
775 			     tg_visitor down, tg_visitor up, void *data)
776 {
777 	struct task_group *parent, *child;
778 	int ret;
779 
780 	parent = from;
781 
782 down:
783 	ret = (*down)(parent, data);
784 	if (ret)
785 		goto out;
786 	list_for_each_entry_rcu(child, &parent->children, siblings) {
787 		parent = child;
788 		goto down;
789 
790 up:
791 		continue;
792 	}
793 	ret = (*up)(parent, data);
794 	if (ret || parent == from)
795 		goto out;
796 
797 	child = parent;
798 	parent = parent->parent;
799 	if (parent)
800 		goto up;
801 out:
802 	return ret;
803 }
804 
805 int tg_nop(struct task_group *tg, void *data)
806 {
807 	return 0;
808 }
809 #endif
810 
811 static void set_load_weight(struct task_struct *p)
812 {
813 	int prio = p->static_prio - MAX_RT_PRIO;
814 	struct load_weight *load = &p->se.load;
815 
816 	/*
817 	 * SCHED_IDLE tasks get minimal weight:
818 	 */
819 	if (p->policy == SCHED_IDLE) {
820 		load->weight = scale_load(WEIGHT_IDLEPRIO);
821 		load->inv_weight = WMULT_IDLEPRIO;
822 		return;
823 	}
824 
825 	load->weight = scale_load(prio_to_weight[prio]);
826 	load->inv_weight = prio_to_wmult[prio];
827 }
828 
829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830 {
831 	update_rq_clock(rq);
832 	sched_info_queued(rq, p);
833 	p->sched_class->enqueue_task(rq, p, flags);
834 }
835 
836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837 {
838 	update_rq_clock(rq);
839 	sched_info_dequeued(rq, p);
840 	p->sched_class->dequeue_task(rq, p, flags);
841 }
842 
843 void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 {
845 	if (task_contributes_to_load(p))
846 		rq->nr_uninterruptible--;
847 
848 	enqueue_task(rq, p, flags);
849 }
850 
851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 {
853 	if (task_contributes_to_load(p))
854 		rq->nr_uninterruptible++;
855 
856 	dequeue_task(rq, p, flags);
857 }
858 
859 static void update_rq_clock_task(struct rq *rq, s64 delta)
860 {
861 /*
862  * In theory, the compile should just see 0 here, and optimize out the call
863  * to sched_rt_avg_update. But I don't trust it...
864  */
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 	s64 steal = 0, irq_delta = 0;
867 #endif
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870 
871 	/*
872 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 	 * this case when a previous update_rq_clock() happened inside a
874 	 * {soft,}irq region.
875 	 *
876 	 * When this happens, we stop ->clock_task and only update the
877 	 * prev_irq_time stamp to account for the part that fit, so that a next
878 	 * update will consume the rest. This ensures ->clock_task is
879 	 * monotonic.
880 	 *
881 	 * It does however cause some slight miss-attribution of {soft,}irq
882 	 * time, a more accurate solution would be to update the irq_time using
883 	 * the current rq->clock timestamp, except that would require using
884 	 * atomic ops.
885 	 */
886 	if (irq_delta > delta)
887 		irq_delta = delta;
888 
889 	rq->prev_irq_time += irq_delta;
890 	delta -= irq_delta;
891 #endif
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 	if (static_key_false((&paravirt_steal_rq_enabled))) {
894 		steal = paravirt_steal_clock(cpu_of(rq));
895 		steal -= rq->prev_steal_time_rq;
896 
897 		if (unlikely(steal > delta))
898 			steal = delta;
899 
900 		rq->prev_steal_time_rq += steal;
901 		delta -= steal;
902 	}
903 #endif
904 
905 	rq->clock_task += delta;
906 
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 		sched_rt_avg_update(rq, irq_delta + steal);
910 #endif
911 }
912 
913 void sched_set_stop_task(int cpu, struct task_struct *stop)
914 {
915 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
917 
918 	if (stop) {
919 		/*
920 		 * Make it appear like a SCHED_FIFO task, its something
921 		 * userspace knows about and won't get confused about.
922 		 *
923 		 * Also, it will make PI more or less work without too
924 		 * much confusion -- but then, stop work should not
925 		 * rely on PI working anyway.
926 		 */
927 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928 
929 		stop->sched_class = &stop_sched_class;
930 	}
931 
932 	cpu_rq(cpu)->stop = stop;
933 
934 	if (old_stop) {
935 		/*
936 		 * Reset it back to a normal scheduling class so that
937 		 * it can die in pieces.
938 		 */
939 		old_stop->sched_class = &rt_sched_class;
940 	}
941 }
942 
943 /*
944  * __normal_prio - return the priority that is based on the static prio
945  */
946 static inline int __normal_prio(struct task_struct *p)
947 {
948 	return p->static_prio;
949 }
950 
951 /*
952  * Calculate the expected normal priority: i.e. priority
953  * without taking RT-inheritance into account. Might be
954  * boosted by interactivity modifiers. Changes upon fork,
955  * setprio syscalls, and whenever the interactivity
956  * estimator recalculates.
957  */
958 static inline int normal_prio(struct task_struct *p)
959 {
960 	int prio;
961 
962 	if (task_has_dl_policy(p))
963 		prio = MAX_DL_PRIO-1;
964 	else if (task_has_rt_policy(p))
965 		prio = MAX_RT_PRIO-1 - p->rt_priority;
966 	else
967 		prio = __normal_prio(p);
968 	return prio;
969 }
970 
971 /*
972  * Calculate the current priority, i.e. the priority
973  * taken into account by the scheduler. This value might
974  * be boosted by RT tasks, or might be boosted by
975  * interactivity modifiers. Will be RT if the task got
976  * RT-boosted. If not then it returns p->normal_prio.
977  */
978 static int effective_prio(struct task_struct *p)
979 {
980 	p->normal_prio = normal_prio(p);
981 	/*
982 	 * If we are RT tasks or we were boosted to RT priority,
983 	 * keep the priority unchanged. Otherwise, update priority
984 	 * to the normal priority:
985 	 */
986 	if (!rt_prio(p->prio))
987 		return p->normal_prio;
988 	return p->prio;
989 }
990 
991 /**
992  * task_curr - is this task currently executing on a CPU?
993  * @p: the task in question.
994  *
995  * Return: 1 if the task is currently executing. 0 otherwise.
996  */
997 inline int task_curr(const struct task_struct *p)
998 {
999 	return cpu_curr(task_cpu(p)) == p;
1000 }
1001 
1002 /*
1003  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004  * use the balance_callback list if you want balancing.
1005  *
1006  * this means any call to check_class_changed() must be followed by a call to
1007  * balance_callback().
1008  */
1009 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 				       const struct sched_class *prev_class,
1011 				       int oldprio)
1012 {
1013 	if (prev_class != p->sched_class) {
1014 		if (prev_class->switched_from)
1015 			prev_class->switched_from(rq, p);
1016 
1017 		p->sched_class->switched_to(rq, p);
1018 	} else if (oldprio != p->prio || dl_task(p))
1019 		p->sched_class->prio_changed(rq, p, oldprio);
1020 }
1021 
1022 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1023 {
1024 	const struct sched_class *class;
1025 
1026 	if (p->sched_class == rq->curr->sched_class) {
1027 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1028 	} else {
1029 		for_each_class(class) {
1030 			if (class == rq->curr->sched_class)
1031 				break;
1032 			if (class == p->sched_class) {
1033 				resched_curr(rq);
1034 				break;
1035 			}
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * A queue event has occurred, and we're going to schedule.  In
1041 	 * this case, we can save a useless back to back clock update.
1042 	 */
1043 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1044 		rq_clock_skip_update(rq, true);
1045 }
1046 
1047 #ifdef CONFIG_SMP
1048 /*
1049  * This is how migration works:
1050  *
1051  * 1) we invoke migration_cpu_stop() on the target CPU using
1052  *    stop_one_cpu().
1053  * 2) stopper starts to run (implicitly forcing the migrated thread
1054  *    off the CPU)
1055  * 3) it checks whether the migrated task is still in the wrong runqueue.
1056  * 4) if it's in the wrong runqueue then the migration thread removes
1057  *    it and puts it into the right queue.
1058  * 5) stopper completes and stop_one_cpu() returns and the migration
1059  *    is done.
1060  */
1061 
1062 /*
1063  * move_queued_task - move a queued task to new rq.
1064  *
1065  * Returns (locked) new rq. Old rq's lock is released.
1066  */
1067 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1068 {
1069 	lockdep_assert_held(&rq->lock);
1070 
1071 	dequeue_task(rq, p, 0);
1072 	p->on_rq = TASK_ON_RQ_MIGRATING;
1073 	set_task_cpu(p, new_cpu);
1074 	raw_spin_unlock(&rq->lock);
1075 
1076 	rq = cpu_rq(new_cpu);
1077 
1078 	raw_spin_lock(&rq->lock);
1079 	BUG_ON(task_cpu(p) != new_cpu);
1080 	p->on_rq = TASK_ON_RQ_QUEUED;
1081 	enqueue_task(rq, p, 0);
1082 	check_preempt_curr(rq, p, 0);
1083 
1084 	return rq;
1085 }
1086 
1087 struct migration_arg {
1088 	struct task_struct *task;
1089 	int dest_cpu;
1090 };
1091 
1092 /*
1093  * Move (not current) task off this cpu, onto dest cpu. We're doing
1094  * this because either it can't run here any more (set_cpus_allowed()
1095  * away from this CPU, or CPU going down), or because we're
1096  * attempting to rebalance this task on exec (sched_exec).
1097  *
1098  * So we race with normal scheduler movements, but that's OK, as long
1099  * as the task is no longer on this CPU.
1100  */
1101 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1102 {
1103 	if (unlikely(!cpu_active(dest_cpu)))
1104 		return rq;
1105 
1106 	/* Affinity changed (again). */
1107 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1108 		return rq;
1109 
1110 	rq = move_queued_task(rq, p, dest_cpu);
1111 
1112 	return rq;
1113 }
1114 
1115 /*
1116  * migration_cpu_stop - this will be executed by a highprio stopper thread
1117  * and performs thread migration by bumping thread off CPU then
1118  * 'pushing' onto another runqueue.
1119  */
1120 static int migration_cpu_stop(void *data)
1121 {
1122 	struct migration_arg *arg = data;
1123 	struct task_struct *p = arg->task;
1124 	struct rq *rq = this_rq();
1125 
1126 	/*
1127 	 * The original target cpu might have gone down and we might
1128 	 * be on another cpu but it doesn't matter.
1129 	 */
1130 	local_irq_disable();
1131 	/*
1132 	 * We need to explicitly wake pending tasks before running
1133 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1135 	 */
1136 	sched_ttwu_pending();
1137 
1138 	raw_spin_lock(&p->pi_lock);
1139 	raw_spin_lock(&rq->lock);
1140 	/*
1141 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 	 * we're holding p->pi_lock.
1144 	 */
1145 	if (task_rq(p) == rq && task_on_rq_queued(p))
1146 		rq = __migrate_task(rq, p, arg->dest_cpu);
1147 	raw_spin_unlock(&rq->lock);
1148 	raw_spin_unlock(&p->pi_lock);
1149 
1150 	local_irq_enable();
1151 	return 0;
1152 }
1153 
1154 /*
1155  * sched_class::set_cpus_allowed must do the below, but is not required to
1156  * actually call this function.
1157  */
1158 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1159 {
1160 	cpumask_copy(&p->cpus_allowed, new_mask);
1161 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1162 }
1163 
1164 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1165 {
1166 	lockdep_assert_held(&p->pi_lock);
1167 	p->sched_class->set_cpus_allowed(p, new_mask);
1168 }
1169 
1170 /*
1171  * Change a given task's CPU affinity. Migrate the thread to a
1172  * proper CPU and schedule it away if the CPU it's executing on
1173  * is removed from the allowed bitmask.
1174  *
1175  * NOTE: the caller must have a valid reference to the task, the
1176  * task must not exit() & deallocate itself prematurely. The
1177  * call is not atomic; no spinlocks may be held.
1178  */
1179 static int __set_cpus_allowed_ptr(struct task_struct *p,
1180 				  const struct cpumask *new_mask, bool check)
1181 {
1182 	unsigned long flags;
1183 	struct rq *rq;
1184 	unsigned int dest_cpu;
1185 	int ret = 0;
1186 
1187 	rq = task_rq_lock(p, &flags);
1188 
1189 	/*
1190 	 * Must re-check here, to close a race against __kthread_bind(),
1191 	 * sched_setaffinity() is not guaranteed to observe the flag.
1192 	 */
1193 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1194 		ret = -EINVAL;
1195 		goto out;
1196 	}
1197 
1198 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1199 		goto out;
1200 
1201 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1202 		ret = -EINVAL;
1203 		goto out;
1204 	}
1205 
1206 	do_set_cpus_allowed(p, new_mask);
1207 
1208 	/* Can the task run on the task's current CPU? If so, we're done */
1209 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1210 		goto out;
1211 
1212 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1213 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1214 		struct migration_arg arg = { p, dest_cpu };
1215 		/* Need help from migration thread: drop lock and wait. */
1216 		task_rq_unlock(rq, p, &flags);
1217 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1218 		tlb_migrate_finish(p->mm);
1219 		return 0;
1220 	} else if (task_on_rq_queued(p)) {
1221 		/*
1222 		 * OK, since we're going to drop the lock immediately
1223 		 * afterwards anyway.
1224 		 */
1225 		lockdep_unpin_lock(&rq->lock);
1226 		rq = move_queued_task(rq, p, dest_cpu);
1227 		lockdep_pin_lock(&rq->lock);
1228 	}
1229 out:
1230 	task_rq_unlock(rq, p, &flags);
1231 
1232 	return ret;
1233 }
1234 
1235 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1236 {
1237 	return __set_cpus_allowed_ptr(p, new_mask, false);
1238 }
1239 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1240 
1241 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1242 {
1243 #ifdef CONFIG_SCHED_DEBUG
1244 	/*
1245 	 * We should never call set_task_cpu() on a blocked task,
1246 	 * ttwu() will sort out the placement.
1247 	 */
1248 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1249 			!p->on_rq);
1250 
1251 #ifdef CONFIG_LOCKDEP
1252 	/*
1253 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1254 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1255 	 *
1256 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1257 	 * see task_group().
1258 	 *
1259 	 * Furthermore, all task_rq users should acquire both locks, see
1260 	 * task_rq_lock().
1261 	 */
1262 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1263 				      lockdep_is_held(&task_rq(p)->lock)));
1264 #endif
1265 #endif
1266 
1267 	trace_sched_migrate_task(p, new_cpu);
1268 
1269 	if (task_cpu(p) != new_cpu) {
1270 		if (p->sched_class->migrate_task_rq)
1271 			p->sched_class->migrate_task_rq(p, new_cpu);
1272 		p->se.nr_migrations++;
1273 		perf_event_task_migrate(p);
1274 	}
1275 
1276 	__set_task_cpu(p, new_cpu);
1277 }
1278 
1279 static void __migrate_swap_task(struct task_struct *p, int cpu)
1280 {
1281 	if (task_on_rq_queued(p)) {
1282 		struct rq *src_rq, *dst_rq;
1283 
1284 		src_rq = task_rq(p);
1285 		dst_rq = cpu_rq(cpu);
1286 
1287 		deactivate_task(src_rq, p, 0);
1288 		set_task_cpu(p, cpu);
1289 		activate_task(dst_rq, p, 0);
1290 		check_preempt_curr(dst_rq, p, 0);
1291 	} else {
1292 		/*
1293 		 * Task isn't running anymore; make it appear like we migrated
1294 		 * it before it went to sleep. This means on wakeup we make the
1295 		 * previous cpu our targer instead of where it really is.
1296 		 */
1297 		p->wake_cpu = cpu;
1298 	}
1299 }
1300 
1301 struct migration_swap_arg {
1302 	struct task_struct *src_task, *dst_task;
1303 	int src_cpu, dst_cpu;
1304 };
1305 
1306 static int migrate_swap_stop(void *data)
1307 {
1308 	struct migration_swap_arg *arg = data;
1309 	struct rq *src_rq, *dst_rq;
1310 	int ret = -EAGAIN;
1311 
1312 	src_rq = cpu_rq(arg->src_cpu);
1313 	dst_rq = cpu_rq(arg->dst_cpu);
1314 
1315 	double_raw_lock(&arg->src_task->pi_lock,
1316 			&arg->dst_task->pi_lock);
1317 	double_rq_lock(src_rq, dst_rq);
1318 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1319 		goto unlock;
1320 
1321 	if (task_cpu(arg->src_task) != arg->src_cpu)
1322 		goto unlock;
1323 
1324 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1325 		goto unlock;
1326 
1327 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1328 		goto unlock;
1329 
1330 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1331 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1332 
1333 	ret = 0;
1334 
1335 unlock:
1336 	double_rq_unlock(src_rq, dst_rq);
1337 	raw_spin_unlock(&arg->dst_task->pi_lock);
1338 	raw_spin_unlock(&arg->src_task->pi_lock);
1339 
1340 	return ret;
1341 }
1342 
1343 /*
1344  * Cross migrate two tasks
1345  */
1346 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1347 {
1348 	struct migration_swap_arg arg;
1349 	int ret = -EINVAL;
1350 
1351 	arg = (struct migration_swap_arg){
1352 		.src_task = cur,
1353 		.src_cpu = task_cpu(cur),
1354 		.dst_task = p,
1355 		.dst_cpu = task_cpu(p),
1356 	};
1357 
1358 	if (arg.src_cpu == arg.dst_cpu)
1359 		goto out;
1360 
1361 	/*
1362 	 * These three tests are all lockless; this is OK since all of them
1363 	 * will be re-checked with proper locks held further down the line.
1364 	 */
1365 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1366 		goto out;
1367 
1368 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1369 		goto out;
1370 
1371 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1372 		goto out;
1373 
1374 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1375 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1376 
1377 out:
1378 	return ret;
1379 }
1380 
1381 /*
1382  * wait_task_inactive - wait for a thread to unschedule.
1383  *
1384  * If @match_state is nonzero, it's the @p->state value just checked and
1385  * not expected to change.  If it changes, i.e. @p might have woken up,
1386  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1387  * we return a positive number (its total switch count).  If a second call
1388  * a short while later returns the same number, the caller can be sure that
1389  * @p has remained unscheduled the whole time.
1390  *
1391  * The caller must ensure that the task *will* unschedule sometime soon,
1392  * else this function might spin for a *long* time. This function can't
1393  * be called with interrupts off, or it may introduce deadlock with
1394  * smp_call_function() if an IPI is sent by the same process we are
1395  * waiting to become inactive.
1396  */
1397 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1398 {
1399 	unsigned long flags;
1400 	int running, queued;
1401 	unsigned long ncsw;
1402 	struct rq *rq;
1403 
1404 	for (;;) {
1405 		/*
1406 		 * We do the initial early heuristics without holding
1407 		 * any task-queue locks at all. We'll only try to get
1408 		 * the runqueue lock when things look like they will
1409 		 * work out!
1410 		 */
1411 		rq = task_rq(p);
1412 
1413 		/*
1414 		 * If the task is actively running on another CPU
1415 		 * still, just relax and busy-wait without holding
1416 		 * any locks.
1417 		 *
1418 		 * NOTE! Since we don't hold any locks, it's not
1419 		 * even sure that "rq" stays as the right runqueue!
1420 		 * But we don't care, since "task_running()" will
1421 		 * return false if the runqueue has changed and p
1422 		 * is actually now running somewhere else!
1423 		 */
1424 		while (task_running(rq, p)) {
1425 			if (match_state && unlikely(p->state != match_state))
1426 				return 0;
1427 			cpu_relax();
1428 		}
1429 
1430 		/*
1431 		 * Ok, time to look more closely! We need the rq
1432 		 * lock now, to be *sure*. If we're wrong, we'll
1433 		 * just go back and repeat.
1434 		 */
1435 		rq = task_rq_lock(p, &flags);
1436 		trace_sched_wait_task(p);
1437 		running = task_running(rq, p);
1438 		queued = task_on_rq_queued(p);
1439 		ncsw = 0;
1440 		if (!match_state || p->state == match_state)
1441 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1442 		task_rq_unlock(rq, p, &flags);
1443 
1444 		/*
1445 		 * If it changed from the expected state, bail out now.
1446 		 */
1447 		if (unlikely(!ncsw))
1448 			break;
1449 
1450 		/*
1451 		 * Was it really running after all now that we
1452 		 * checked with the proper locks actually held?
1453 		 *
1454 		 * Oops. Go back and try again..
1455 		 */
1456 		if (unlikely(running)) {
1457 			cpu_relax();
1458 			continue;
1459 		}
1460 
1461 		/*
1462 		 * It's not enough that it's not actively running,
1463 		 * it must be off the runqueue _entirely_, and not
1464 		 * preempted!
1465 		 *
1466 		 * So if it was still runnable (but just not actively
1467 		 * running right now), it's preempted, and we should
1468 		 * yield - it could be a while.
1469 		 */
1470 		if (unlikely(queued)) {
1471 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1472 
1473 			set_current_state(TASK_UNINTERRUPTIBLE);
1474 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1475 			continue;
1476 		}
1477 
1478 		/*
1479 		 * Ahh, all good. It wasn't running, and it wasn't
1480 		 * runnable, which means that it will never become
1481 		 * running in the future either. We're all done!
1482 		 */
1483 		break;
1484 	}
1485 
1486 	return ncsw;
1487 }
1488 
1489 /***
1490  * kick_process - kick a running thread to enter/exit the kernel
1491  * @p: the to-be-kicked thread
1492  *
1493  * Cause a process which is running on another CPU to enter
1494  * kernel-mode, without any delay. (to get signals handled.)
1495  *
1496  * NOTE: this function doesn't have to take the runqueue lock,
1497  * because all it wants to ensure is that the remote task enters
1498  * the kernel. If the IPI races and the task has been migrated
1499  * to another CPU then no harm is done and the purpose has been
1500  * achieved as well.
1501  */
1502 void kick_process(struct task_struct *p)
1503 {
1504 	int cpu;
1505 
1506 	preempt_disable();
1507 	cpu = task_cpu(p);
1508 	if ((cpu != smp_processor_id()) && task_curr(p))
1509 		smp_send_reschedule(cpu);
1510 	preempt_enable();
1511 }
1512 EXPORT_SYMBOL_GPL(kick_process);
1513 
1514 /*
1515  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1516  */
1517 static int select_fallback_rq(int cpu, struct task_struct *p)
1518 {
1519 	int nid = cpu_to_node(cpu);
1520 	const struct cpumask *nodemask = NULL;
1521 	enum { cpuset, possible, fail } state = cpuset;
1522 	int dest_cpu;
1523 
1524 	/*
1525 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1526 	 * will return -1. There is no cpu on the node, and we should
1527 	 * select the cpu on the other node.
1528 	 */
1529 	if (nid != -1) {
1530 		nodemask = cpumask_of_node(nid);
1531 
1532 		/* Look for allowed, online CPU in same node. */
1533 		for_each_cpu(dest_cpu, nodemask) {
1534 			if (!cpu_online(dest_cpu))
1535 				continue;
1536 			if (!cpu_active(dest_cpu))
1537 				continue;
1538 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1539 				return dest_cpu;
1540 		}
1541 	}
1542 
1543 	for (;;) {
1544 		/* Any allowed, online CPU? */
1545 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1546 			if (!cpu_online(dest_cpu))
1547 				continue;
1548 			if (!cpu_active(dest_cpu))
1549 				continue;
1550 			goto out;
1551 		}
1552 
1553 		switch (state) {
1554 		case cpuset:
1555 			/* No more Mr. Nice Guy. */
1556 			cpuset_cpus_allowed_fallback(p);
1557 			state = possible;
1558 			break;
1559 
1560 		case possible:
1561 			do_set_cpus_allowed(p, cpu_possible_mask);
1562 			state = fail;
1563 			break;
1564 
1565 		case fail:
1566 			BUG();
1567 			break;
1568 		}
1569 	}
1570 
1571 out:
1572 	if (state != cpuset) {
1573 		/*
1574 		 * Don't tell them about moving exiting tasks or
1575 		 * kernel threads (both mm NULL), since they never
1576 		 * leave kernel.
1577 		 */
1578 		if (p->mm && printk_ratelimit()) {
1579 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1580 					task_pid_nr(p), p->comm, cpu);
1581 		}
1582 	}
1583 
1584 	return dest_cpu;
1585 }
1586 
1587 /*
1588  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1589  */
1590 static inline
1591 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1592 {
1593 	lockdep_assert_held(&p->pi_lock);
1594 
1595 	if (p->nr_cpus_allowed > 1)
1596 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1597 
1598 	/*
1599 	 * In order not to call set_task_cpu() on a blocking task we need
1600 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1601 	 * cpu.
1602 	 *
1603 	 * Since this is common to all placement strategies, this lives here.
1604 	 *
1605 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1606 	 *   not worry about this generic constraint ]
1607 	 */
1608 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1609 		     !cpu_online(cpu)))
1610 		cpu = select_fallback_rq(task_cpu(p), p);
1611 
1612 	return cpu;
1613 }
1614 
1615 static void update_avg(u64 *avg, u64 sample)
1616 {
1617 	s64 diff = sample - *avg;
1618 	*avg += diff >> 3;
1619 }
1620 
1621 #else
1622 
1623 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1624 					 const struct cpumask *new_mask, bool check)
1625 {
1626 	return set_cpus_allowed_ptr(p, new_mask);
1627 }
1628 
1629 #endif /* CONFIG_SMP */
1630 
1631 static void
1632 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1633 {
1634 #ifdef CONFIG_SCHEDSTATS
1635 	struct rq *rq = this_rq();
1636 
1637 #ifdef CONFIG_SMP
1638 	int this_cpu = smp_processor_id();
1639 
1640 	if (cpu == this_cpu) {
1641 		schedstat_inc(rq, ttwu_local);
1642 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1643 	} else {
1644 		struct sched_domain *sd;
1645 
1646 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1647 		rcu_read_lock();
1648 		for_each_domain(this_cpu, sd) {
1649 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1650 				schedstat_inc(sd, ttwu_wake_remote);
1651 				break;
1652 			}
1653 		}
1654 		rcu_read_unlock();
1655 	}
1656 
1657 	if (wake_flags & WF_MIGRATED)
1658 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1659 
1660 #endif /* CONFIG_SMP */
1661 
1662 	schedstat_inc(rq, ttwu_count);
1663 	schedstat_inc(p, se.statistics.nr_wakeups);
1664 
1665 	if (wake_flags & WF_SYNC)
1666 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1667 
1668 #endif /* CONFIG_SCHEDSTATS */
1669 }
1670 
1671 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1672 {
1673 	activate_task(rq, p, en_flags);
1674 	p->on_rq = TASK_ON_RQ_QUEUED;
1675 
1676 	/* if a worker is waking up, notify workqueue */
1677 	if (p->flags & PF_WQ_WORKER)
1678 		wq_worker_waking_up(p, cpu_of(rq));
1679 }
1680 
1681 /*
1682  * Mark the task runnable and perform wakeup-preemption.
1683  */
1684 static void
1685 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1686 {
1687 	check_preempt_curr(rq, p, wake_flags);
1688 	p->state = TASK_RUNNING;
1689 	trace_sched_wakeup(p);
1690 
1691 #ifdef CONFIG_SMP
1692 	if (p->sched_class->task_woken) {
1693 		/*
1694 		 * Our task @p is fully woken up and running; so its safe to
1695 		 * drop the rq->lock, hereafter rq is only used for statistics.
1696 		 */
1697 		lockdep_unpin_lock(&rq->lock);
1698 		p->sched_class->task_woken(rq, p);
1699 		lockdep_pin_lock(&rq->lock);
1700 	}
1701 
1702 	if (rq->idle_stamp) {
1703 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1704 		u64 max = 2*rq->max_idle_balance_cost;
1705 
1706 		update_avg(&rq->avg_idle, delta);
1707 
1708 		if (rq->avg_idle > max)
1709 			rq->avg_idle = max;
1710 
1711 		rq->idle_stamp = 0;
1712 	}
1713 #endif
1714 }
1715 
1716 static void
1717 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1718 {
1719 	lockdep_assert_held(&rq->lock);
1720 
1721 #ifdef CONFIG_SMP
1722 	if (p->sched_contributes_to_load)
1723 		rq->nr_uninterruptible--;
1724 #endif
1725 
1726 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1727 	ttwu_do_wakeup(rq, p, wake_flags);
1728 }
1729 
1730 /*
1731  * Called in case the task @p isn't fully descheduled from its runqueue,
1732  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1733  * since all we need to do is flip p->state to TASK_RUNNING, since
1734  * the task is still ->on_rq.
1735  */
1736 static int ttwu_remote(struct task_struct *p, int wake_flags)
1737 {
1738 	struct rq *rq;
1739 	int ret = 0;
1740 
1741 	rq = __task_rq_lock(p);
1742 	if (task_on_rq_queued(p)) {
1743 		/* check_preempt_curr() may use rq clock */
1744 		update_rq_clock(rq);
1745 		ttwu_do_wakeup(rq, p, wake_flags);
1746 		ret = 1;
1747 	}
1748 	__task_rq_unlock(rq);
1749 
1750 	return ret;
1751 }
1752 
1753 #ifdef CONFIG_SMP
1754 void sched_ttwu_pending(void)
1755 {
1756 	struct rq *rq = this_rq();
1757 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1758 	struct task_struct *p;
1759 	unsigned long flags;
1760 
1761 	if (!llist)
1762 		return;
1763 
1764 	raw_spin_lock_irqsave(&rq->lock, flags);
1765 	lockdep_pin_lock(&rq->lock);
1766 
1767 	while (llist) {
1768 		p = llist_entry(llist, struct task_struct, wake_entry);
1769 		llist = llist_next(llist);
1770 		ttwu_do_activate(rq, p, 0);
1771 	}
1772 
1773 	lockdep_unpin_lock(&rq->lock);
1774 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1775 }
1776 
1777 void scheduler_ipi(void)
1778 {
1779 	/*
1780 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1781 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1782 	 * this IPI.
1783 	 */
1784 	preempt_fold_need_resched();
1785 
1786 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1787 		return;
1788 
1789 	/*
1790 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1791 	 * traditionally all their work was done from the interrupt return
1792 	 * path. Now that we actually do some work, we need to make sure
1793 	 * we do call them.
1794 	 *
1795 	 * Some archs already do call them, luckily irq_enter/exit nest
1796 	 * properly.
1797 	 *
1798 	 * Arguably we should visit all archs and update all handlers,
1799 	 * however a fair share of IPIs are still resched only so this would
1800 	 * somewhat pessimize the simple resched case.
1801 	 */
1802 	irq_enter();
1803 	sched_ttwu_pending();
1804 
1805 	/*
1806 	 * Check if someone kicked us for doing the nohz idle load balance.
1807 	 */
1808 	if (unlikely(got_nohz_idle_kick())) {
1809 		this_rq()->idle_balance = 1;
1810 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1811 	}
1812 	irq_exit();
1813 }
1814 
1815 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1816 {
1817 	struct rq *rq = cpu_rq(cpu);
1818 
1819 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1820 		if (!set_nr_if_polling(rq->idle))
1821 			smp_send_reschedule(cpu);
1822 		else
1823 			trace_sched_wake_idle_without_ipi(cpu);
1824 	}
1825 }
1826 
1827 void wake_up_if_idle(int cpu)
1828 {
1829 	struct rq *rq = cpu_rq(cpu);
1830 	unsigned long flags;
1831 
1832 	rcu_read_lock();
1833 
1834 	if (!is_idle_task(rcu_dereference(rq->curr)))
1835 		goto out;
1836 
1837 	if (set_nr_if_polling(rq->idle)) {
1838 		trace_sched_wake_idle_without_ipi(cpu);
1839 	} else {
1840 		raw_spin_lock_irqsave(&rq->lock, flags);
1841 		if (is_idle_task(rq->curr))
1842 			smp_send_reschedule(cpu);
1843 		/* Else cpu is not in idle, do nothing here */
1844 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1845 	}
1846 
1847 out:
1848 	rcu_read_unlock();
1849 }
1850 
1851 bool cpus_share_cache(int this_cpu, int that_cpu)
1852 {
1853 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1854 }
1855 #endif /* CONFIG_SMP */
1856 
1857 static void ttwu_queue(struct task_struct *p, int cpu)
1858 {
1859 	struct rq *rq = cpu_rq(cpu);
1860 
1861 #if defined(CONFIG_SMP)
1862 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1863 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1864 		ttwu_queue_remote(p, cpu);
1865 		return;
1866 	}
1867 #endif
1868 
1869 	raw_spin_lock(&rq->lock);
1870 	lockdep_pin_lock(&rq->lock);
1871 	ttwu_do_activate(rq, p, 0);
1872 	lockdep_unpin_lock(&rq->lock);
1873 	raw_spin_unlock(&rq->lock);
1874 }
1875 
1876 /**
1877  * try_to_wake_up - wake up a thread
1878  * @p: the thread to be awakened
1879  * @state: the mask of task states that can be woken
1880  * @wake_flags: wake modifier flags (WF_*)
1881  *
1882  * Put it on the run-queue if it's not already there. The "current"
1883  * thread is always on the run-queue (except when the actual
1884  * re-schedule is in progress), and as such you're allowed to do
1885  * the simpler "current->state = TASK_RUNNING" to mark yourself
1886  * runnable without the overhead of this.
1887  *
1888  * Return: %true if @p was woken up, %false if it was already running.
1889  * or @state didn't match @p's state.
1890  */
1891 static int
1892 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1893 {
1894 	unsigned long flags;
1895 	int cpu, success = 0;
1896 
1897 	/*
1898 	 * If we are going to wake up a thread waiting for CONDITION we
1899 	 * need to ensure that CONDITION=1 done by the caller can not be
1900 	 * reordered with p->state check below. This pairs with mb() in
1901 	 * set_current_state() the waiting thread does.
1902 	 */
1903 	smp_mb__before_spinlock();
1904 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1905 	if (!(p->state & state))
1906 		goto out;
1907 
1908 	trace_sched_waking(p);
1909 
1910 	success = 1; /* we're going to change ->state */
1911 	cpu = task_cpu(p);
1912 
1913 	if (p->on_rq && ttwu_remote(p, wake_flags))
1914 		goto stat;
1915 
1916 #ifdef CONFIG_SMP
1917 	/*
1918 	 * If the owning (remote) cpu is still in the middle of schedule() with
1919 	 * this task as prev, wait until its done referencing the task.
1920 	 */
1921 	while (p->on_cpu)
1922 		cpu_relax();
1923 	/*
1924 	 * Pairs with the smp_wmb() in finish_lock_switch().
1925 	 */
1926 	smp_rmb();
1927 
1928 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1929 	p->state = TASK_WAKING;
1930 
1931 	if (p->sched_class->task_waking)
1932 		p->sched_class->task_waking(p);
1933 
1934 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1935 	if (task_cpu(p) != cpu) {
1936 		wake_flags |= WF_MIGRATED;
1937 		set_task_cpu(p, cpu);
1938 	}
1939 #endif /* CONFIG_SMP */
1940 
1941 	ttwu_queue(p, cpu);
1942 stat:
1943 	ttwu_stat(p, cpu, wake_flags);
1944 out:
1945 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1946 
1947 	return success;
1948 }
1949 
1950 /**
1951  * try_to_wake_up_local - try to wake up a local task with rq lock held
1952  * @p: the thread to be awakened
1953  *
1954  * Put @p on the run-queue if it's not already there. The caller must
1955  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1956  * the current task.
1957  */
1958 static void try_to_wake_up_local(struct task_struct *p)
1959 {
1960 	struct rq *rq = task_rq(p);
1961 
1962 	if (WARN_ON_ONCE(rq != this_rq()) ||
1963 	    WARN_ON_ONCE(p == current))
1964 		return;
1965 
1966 	lockdep_assert_held(&rq->lock);
1967 
1968 	if (!raw_spin_trylock(&p->pi_lock)) {
1969 		/*
1970 		 * This is OK, because current is on_cpu, which avoids it being
1971 		 * picked for load-balance and preemption/IRQs are still
1972 		 * disabled avoiding further scheduler activity on it and we've
1973 		 * not yet picked a replacement task.
1974 		 */
1975 		lockdep_unpin_lock(&rq->lock);
1976 		raw_spin_unlock(&rq->lock);
1977 		raw_spin_lock(&p->pi_lock);
1978 		raw_spin_lock(&rq->lock);
1979 		lockdep_pin_lock(&rq->lock);
1980 	}
1981 
1982 	if (!(p->state & TASK_NORMAL))
1983 		goto out;
1984 
1985 	trace_sched_waking(p);
1986 
1987 	if (!task_on_rq_queued(p))
1988 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1989 
1990 	ttwu_do_wakeup(rq, p, 0);
1991 	ttwu_stat(p, smp_processor_id(), 0);
1992 out:
1993 	raw_spin_unlock(&p->pi_lock);
1994 }
1995 
1996 /**
1997  * wake_up_process - Wake up a specific process
1998  * @p: The process to be woken up.
1999  *
2000  * Attempt to wake up the nominated process and move it to the set of runnable
2001  * processes.
2002  *
2003  * Return: 1 if the process was woken up, 0 if it was already running.
2004  *
2005  * It may be assumed that this function implies a write memory barrier before
2006  * changing the task state if and only if any tasks are woken up.
2007  */
2008 int wake_up_process(struct task_struct *p)
2009 {
2010 	WARN_ON(task_is_stopped_or_traced(p));
2011 	return try_to_wake_up(p, TASK_NORMAL, 0);
2012 }
2013 EXPORT_SYMBOL(wake_up_process);
2014 
2015 int wake_up_state(struct task_struct *p, unsigned int state)
2016 {
2017 	return try_to_wake_up(p, state, 0);
2018 }
2019 
2020 /*
2021  * This function clears the sched_dl_entity static params.
2022  */
2023 void __dl_clear_params(struct task_struct *p)
2024 {
2025 	struct sched_dl_entity *dl_se = &p->dl;
2026 
2027 	dl_se->dl_runtime = 0;
2028 	dl_se->dl_deadline = 0;
2029 	dl_se->dl_period = 0;
2030 	dl_se->flags = 0;
2031 	dl_se->dl_bw = 0;
2032 
2033 	dl_se->dl_throttled = 0;
2034 	dl_se->dl_new = 1;
2035 	dl_se->dl_yielded = 0;
2036 }
2037 
2038 /*
2039  * Perform scheduler related setup for a newly forked process p.
2040  * p is forked by current.
2041  *
2042  * __sched_fork() is basic setup used by init_idle() too:
2043  */
2044 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2045 {
2046 	p->on_rq			= 0;
2047 
2048 	p->se.on_rq			= 0;
2049 	p->se.exec_start		= 0;
2050 	p->se.sum_exec_runtime		= 0;
2051 	p->se.prev_sum_exec_runtime	= 0;
2052 	p->se.nr_migrations		= 0;
2053 	p->se.vruntime			= 0;
2054 	INIT_LIST_HEAD(&p->se.group_node);
2055 
2056 #ifdef CONFIG_SCHEDSTATS
2057 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2058 #endif
2059 
2060 	RB_CLEAR_NODE(&p->dl.rb_node);
2061 	init_dl_task_timer(&p->dl);
2062 	__dl_clear_params(p);
2063 
2064 	INIT_LIST_HEAD(&p->rt.run_list);
2065 
2066 #ifdef CONFIG_PREEMPT_NOTIFIERS
2067 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2068 #endif
2069 
2070 #ifdef CONFIG_NUMA_BALANCING
2071 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2072 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2073 		p->mm->numa_scan_seq = 0;
2074 	}
2075 
2076 	if (clone_flags & CLONE_VM)
2077 		p->numa_preferred_nid = current->numa_preferred_nid;
2078 	else
2079 		p->numa_preferred_nid = -1;
2080 
2081 	p->node_stamp = 0ULL;
2082 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2083 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2084 	p->numa_work.next = &p->numa_work;
2085 	p->numa_faults = NULL;
2086 	p->last_task_numa_placement = 0;
2087 	p->last_sum_exec_runtime = 0;
2088 
2089 	p->numa_group = NULL;
2090 #endif /* CONFIG_NUMA_BALANCING */
2091 }
2092 
2093 #ifdef CONFIG_NUMA_BALANCING
2094 #ifdef CONFIG_SCHED_DEBUG
2095 void set_numabalancing_state(bool enabled)
2096 {
2097 	if (enabled)
2098 		sched_feat_set("NUMA");
2099 	else
2100 		sched_feat_set("NO_NUMA");
2101 }
2102 #else
2103 __read_mostly bool numabalancing_enabled;
2104 
2105 void set_numabalancing_state(bool enabled)
2106 {
2107 	numabalancing_enabled = enabled;
2108 }
2109 #endif /* CONFIG_SCHED_DEBUG */
2110 
2111 #ifdef CONFIG_PROC_SYSCTL
2112 int sysctl_numa_balancing(struct ctl_table *table, int write,
2113 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2114 {
2115 	struct ctl_table t;
2116 	int err;
2117 	int state = numabalancing_enabled;
2118 
2119 	if (write && !capable(CAP_SYS_ADMIN))
2120 		return -EPERM;
2121 
2122 	t = *table;
2123 	t.data = &state;
2124 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2125 	if (err < 0)
2126 		return err;
2127 	if (write)
2128 		set_numabalancing_state(state);
2129 	return err;
2130 }
2131 #endif
2132 #endif
2133 
2134 /*
2135  * fork()/clone()-time setup:
2136  */
2137 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2138 {
2139 	unsigned long flags;
2140 	int cpu = get_cpu();
2141 
2142 	__sched_fork(clone_flags, p);
2143 	/*
2144 	 * We mark the process as running here. This guarantees that
2145 	 * nobody will actually run it, and a signal or other external
2146 	 * event cannot wake it up and insert it on the runqueue either.
2147 	 */
2148 	p->state = TASK_RUNNING;
2149 
2150 	/*
2151 	 * Make sure we do not leak PI boosting priority to the child.
2152 	 */
2153 	p->prio = current->normal_prio;
2154 
2155 	/*
2156 	 * Revert to default priority/policy on fork if requested.
2157 	 */
2158 	if (unlikely(p->sched_reset_on_fork)) {
2159 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2160 			p->policy = SCHED_NORMAL;
2161 			p->static_prio = NICE_TO_PRIO(0);
2162 			p->rt_priority = 0;
2163 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2164 			p->static_prio = NICE_TO_PRIO(0);
2165 
2166 		p->prio = p->normal_prio = __normal_prio(p);
2167 		set_load_weight(p);
2168 
2169 		/*
2170 		 * We don't need the reset flag anymore after the fork. It has
2171 		 * fulfilled its duty:
2172 		 */
2173 		p->sched_reset_on_fork = 0;
2174 	}
2175 
2176 	if (dl_prio(p->prio)) {
2177 		put_cpu();
2178 		return -EAGAIN;
2179 	} else if (rt_prio(p->prio)) {
2180 		p->sched_class = &rt_sched_class;
2181 	} else {
2182 		p->sched_class = &fair_sched_class;
2183 	}
2184 
2185 	if (p->sched_class->task_fork)
2186 		p->sched_class->task_fork(p);
2187 
2188 	/*
2189 	 * The child is not yet in the pid-hash so no cgroup attach races,
2190 	 * and the cgroup is pinned to this child due to cgroup_fork()
2191 	 * is ran before sched_fork().
2192 	 *
2193 	 * Silence PROVE_RCU.
2194 	 */
2195 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2196 	set_task_cpu(p, cpu);
2197 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2198 
2199 #ifdef CONFIG_SCHED_INFO
2200 	if (likely(sched_info_on()))
2201 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2202 #endif
2203 #if defined(CONFIG_SMP)
2204 	p->on_cpu = 0;
2205 #endif
2206 	init_task_preempt_count(p);
2207 #ifdef CONFIG_SMP
2208 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2209 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2210 #endif
2211 
2212 	put_cpu();
2213 	return 0;
2214 }
2215 
2216 unsigned long to_ratio(u64 period, u64 runtime)
2217 {
2218 	if (runtime == RUNTIME_INF)
2219 		return 1ULL << 20;
2220 
2221 	/*
2222 	 * Doing this here saves a lot of checks in all
2223 	 * the calling paths, and returning zero seems
2224 	 * safe for them anyway.
2225 	 */
2226 	if (period == 0)
2227 		return 0;
2228 
2229 	return div64_u64(runtime << 20, period);
2230 }
2231 
2232 #ifdef CONFIG_SMP
2233 inline struct dl_bw *dl_bw_of(int i)
2234 {
2235 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2236 			   "sched RCU must be held");
2237 	return &cpu_rq(i)->rd->dl_bw;
2238 }
2239 
2240 static inline int dl_bw_cpus(int i)
2241 {
2242 	struct root_domain *rd = cpu_rq(i)->rd;
2243 	int cpus = 0;
2244 
2245 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2246 			   "sched RCU must be held");
2247 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2248 		cpus++;
2249 
2250 	return cpus;
2251 }
2252 #else
2253 inline struct dl_bw *dl_bw_of(int i)
2254 {
2255 	return &cpu_rq(i)->dl.dl_bw;
2256 }
2257 
2258 static inline int dl_bw_cpus(int i)
2259 {
2260 	return 1;
2261 }
2262 #endif
2263 
2264 /*
2265  * We must be sure that accepting a new task (or allowing changing the
2266  * parameters of an existing one) is consistent with the bandwidth
2267  * constraints. If yes, this function also accordingly updates the currently
2268  * allocated bandwidth to reflect the new situation.
2269  *
2270  * This function is called while holding p's rq->lock.
2271  *
2272  * XXX we should delay bw change until the task's 0-lag point, see
2273  * __setparam_dl().
2274  */
2275 static int dl_overflow(struct task_struct *p, int policy,
2276 		       const struct sched_attr *attr)
2277 {
2278 
2279 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2280 	u64 period = attr->sched_period ?: attr->sched_deadline;
2281 	u64 runtime = attr->sched_runtime;
2282 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2283 	int cpus, err = -1;
2284 
2285 	if (new_bw == p->dl.dl_bw)
2286 		return 0;
2287 
2288 	/*
2289 	 * Either if a task, enters, leave, or stays -deadline but changes
2290 	 * its parameters, we may need to update accordingly the total
2291 	 * allocated bandwidth of the container.
2292 	 */
2293 	raw_spin_lock(&dl_b->lock);
2294 	cpus = dl_bw_cpus(task_cpu(p));
2295 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2296 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2297 		__dl_add(dl_b, new_bw);
2298 		err = 0;
2299 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2300 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2301 		__dl_clear(dl_b, p->dl.dl_bw);
2302 		__dl_add(dl_b, new_bw);
2303 		err = 0;
2304 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2305 		__dl_clear(dl_b, p->dl.dl_bw);
2306 		err = 0;
2307 	}
2308 	raw_spin_unlock(&dl_b->lock);
2309 
2310 	return err;
2311 }
2312 
2313 extern void init_dl_bw(struct dl_bw *dl_b);
2314 
2315 /*
2316  * wake_up_new_task - wake up a newly created task for the first time.
2317  *
2318  * This function will do some initial scheduler statistics housekeeping
2319  * that must be done for every newly created context, then puts the task
2320  * on the runqueue and wakes it.
2321  */
2322 void wake_up_new_task(struct task_struct *p)
2323 {
2324 	unsigned long flags;
2325 	struct rq *rq;
2326 
2327 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2328 #ifdef CONFIG_SMP
2329 	/*
2330 	 * Fork balancing, do it here and not earlier because:
2331 	 *  - cpus_allowed can change in the fork path
2332 	 *  - any previously selected cpu might disappear through hotplug
2333 	 */
2334 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2335 #endif
2336 
2337 	/* Initialize new task's runnable average */
2338 	init_entity_runnable_average(&p->se);
2339 	rq = __task_rq_lock(p);
2340 	activate_task(rq, p, 0);
2341 	p->on_rq = TASK_ON_RQ_QUEUED;
2342 	trace_sched_wakeup_new(p);
2343 	check_preempt_curr(rq, p, WF_FORK);
2344 #ifdef CONFIG_SMP
2345 	if (p->sched_class->task_woken)
2346 		p->sched_class->task_woken(rq, p);
2347 #endif
2348 	task_rq_unlock(rq, p, &flags);
2349 }
2350 
2351 #ifdef CONFIG_PREEMPT_NOTIFIERS
2352 
2353 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2354 
2355 void preempt_notifier_inc(void)
2356 {
2357 	static_key_slow_inc(&preempt_notifier_key);
2358 }
2359 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2360 
2361 void preempt_notifier_dec(void)
2362 {
2363 	static_key_slow_dec(&preempt_notifier_key);
2364 }
2365 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2366 
2367 /**
2368  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2369  * @notifier: notifier struct to register
2370  */
2371 void preempt_notifier_register(struct preempt_notifier *notifier)
2372 {
2373 	if (!static_key_false(&preempt_notifier_key))
2374 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2375 
2376 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2377 }
2378 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2379 
2380 /**
2381  * preempt_notifier_unregister - no longer interested in preemption notifications
2382  * @notifier: notifier struct to unregister
2383  *
2384  * This is *not* safe to call from within a preemption notifier.
2385  */
2386 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2387 {
2388 	hlist_del(&notifier->link);
2389 }
2390 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2391 
2392 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2393 {
2394 	struct preempt_notifier *notifier;
2395 
2396 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2397 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2398 }
2399 
2400 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2401 {
2402 	if (static_key_false(&preempt_notifier_key))
2403 		__fire_sched_in_preempt_notifiers(curr);
2404 }
2405 
2406 static void
2407 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2408 				   struct task_struct *next)
2409 {
2410 	struct preempt_notifier *notifier;
2411 
2412 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2413 		notifier->ops->sched_out(notifier, next);
2414 }
2415 
2416 static __always_inline void
2417 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2418 				 struct task_struct *next)
2419 {
2420 	if (static_key_false(&preempt_notifier_key))
2421 		__fire_sched_out_preempt_notifiers(curr, next);
2422 }
2423 
2424 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2425 
2426 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2427 {
2428 }
2429 
2430 static inline void
2431 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2432 				 struct task_struct *next)
2433 {
2434 }
2435 
2436 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2437 
2438 /**
2439  * prepare_task_switch - prepare to switch tasks
2440  * @rq: the runqueue preparing to switch
2441  * @prev: the current task that is being switched out
2442  * @next: the task we are going to switch to.
2443  *
2444  * This is called with the rq lock held and interrupts off. It must
2445  * be paired with a subsequent finish_task_switch after the context
2446  * switch.
2447  *
2448  * prepare_task_switch sets up locking and calls architecture specific
2449  * hooks.
2450  */
2451 static inline void
2452 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2453 		    struct task_struct *next)
2454 {
2455 	trace_sched_switch(prev, next);
2456 	sched_info_switch(rq, prev, next);
2457 	perf_event_task_sched_out(prev, next);
2458 	fire_sched_out_preempt_notifiers(prev, next);
2459 	prepare_lock_switch(rq, next);
2460 	prepare_arch_switch(next);
2461 }
2462 
2463 /**
2464  * finish_task_switch - clean up after a task-switch
2465  * @prev: the thread we just switched away from.
2466  *
2467  * finish_task_switch must be called after the context switch, paired
2468  * with a prepare_task_switch call before the context switch.
2469  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2470  * and do any other architecture-specific cleanup actions.
2471  *
2472  * Note that we may have delayed dropping an mm in context_switch(). If
2473  * so, we finish that here outside of the runqueue lock. (Doing it
2474  * with the lock held can cause deadlocks; see schedule() for
2475  * details.)
2476  *
2477  * The context switch have flipped the stack from under us and restored the
2478  * local variables which were saved when this task called schedule() in the
2479  * past. prev == current is still correct but we need to recalculate this_rq
2480  * because prev may have moved to another CPU.
2481  */
2482 static struct rq *finish_task_switch(struct task_struct *prev)
2483 	__releases(rq->lock)
2484 {
2485 	struct rq *rq = this_rq();
2486 	struct mm_struct *mm = rq->prev_mm;
2487 	long prev_state;
2488 
2489 	rq->prev_mm = NULL;
2490 
2491 	/*
2492 	 * A task struct has one reference for the use as "current".
2493 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2494 	 * schedule one last time. The schedule call will never return, and
2495 	 * the scheduled task must drop that reference.
2496 	 * The test for TASK_DEAD must occur while the runqueue locks are
2497 	 * still held, otherwise prev could be scheduled on another cpu, die
2498 	 * there before we look at prev->state, and then the reference would
2499 	 * be dropped twice.
2500 	 *		Manfred Spraul <manfred@colorfullife.com>
2501 	 */
2502 	prev_state = prev->state;
2503 	vtime_task_switch(prev);
2504 	perf_event_task_sched_in(prev, current);
2505 	finish_lock_switch(rq, prev);
2506 	finish_arch_post_lock_switch();
2507 
2508 	fire_sched_in_preempt_notifiers(current);
2509 	if (mm)
2510 		mmdrop(mm);
2511 	if (unlikely(prev_state == TASK_DEAD)) {
2512 		if (prev->sched_class->task_dead)
2513 			prev->sched_class->task_dead(prev);
2514 
2515 		/*
2516 		 * Remove function-return probe instances associated with this
2517 		 * task and put them back on the free list.
2518 		 */
2519 		kprobe_flush_task(prev);
2520 		put_task_struct(prev);
2521 	}
2522 
2523 	tick_nohz_task_switch(current);
2524 	return rq;
2525 }
2526 
2527 #ifdef CONFIG_SMP
2528 
2529 /* rq->lock is NOT held, but preemption is disabled */
2530 static void __balance_callback(struct rq *rq)
2531 {
2532 	struct callback_head *head, *next;
2533 	void (*func)(struct rq *rq);
2534 	unsigned long flags;
2535 
2536 	raw_spin_lock_irqsave(&rq->lock, flags);
2537 	head = rq->balance_callback;
2538 	rq->balance_callback = NULL;
2539 	while (head) {
2540 		func = (void (*)(struct rq *))head->func;
2541 		next = head->next;
2542 		head->next = NULL;
2543 		head = next;
2544 
2545 		func(rq);
2546 	}
2547 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2548 }
2549 
2550 static inline void balance_callback(struct rq *rq)
2551 {
2552 	if (unlikely(rq->balance_callback))
2553 		__balance_callback(rq);
2554 }
2555 
2556 #else
2557 
2558 static inline void balance_callback(struct rq *rq)
2559 {
2560 }
2561 
2562 #endif
2563 
2564 /**
2565  * schedule_tail - first thing a freshly forked thread must call.
2566  * @prev: the thread we just switched away from.
2567  */
2568 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2569 	__releases(rq->lock)
2570 {
2571 	struct rq *rq;
2572 
2573 	/* finish_task_switch() drops rq->lock and enables preemtion */
2574 	preempt_disable();
2575 	rq = finish_task_switch(prev);
2576 	balance_callback(rq);
2577 	preempt_enable();
2578 
2579 	if (current->set_child_tid)
2580 		put_user(task_pid_vnr(current), current->set_child_tid);
2581 }
2582 
2583 /*
2584  * context_switch - switch to the new MM and the new thread's register state.
2585  */
2586 static inline struct rq *
2587 context_switch(struct rq *rq, struct task_struct *prev,
2588 	       struct task_struct *next)
2589 {
2590 	struct mm_struct *mm, *oldmm;
2591 
2592 	prepare_task_switch(rq, prev, next);
2593 
2594 	mm = next->mm;
2595 	oldmm = prev->active_mm;
2596 	/*
2597 	 * For paravirt, this is coupled with an exit in switch_to to
2598 	 * combine the page table reload and the switch backend into
2599 	 * one hypercall.
2600 	 */
2601 	arch_start_context_switch(prev);
2602 
2603 	if (!mm) {
2604 		next->active_mm = oldmm;
2605 		atomic_inc(&oldmm->mm_count);
2606 		enter_lazy_tlb(oldmm, next);
2607 	} else
2608 		switch_mm(oldmm, mm, next);
2609 
2610 	if (!prev->mm) {
2611 		prev->active_mm = NULL;
2612 		rq->prev_mm = oldmm;
2613 	}
2614 	/*
2615 	 * Since the runqueue lock will be released by the next
2616 	 * task (which is an invalid locking op but in the case
2617 	 * of the scheduler it's an obvious special-case), so we
2618 	 * do an early lockdep release here:
2619 	 */
2620 	lockdep_unpin_lock(&rq->lock);
2621 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2622 
2623 	/* Here we just switch the register state and the stack. */
2624 	switch_to(prev, next, prev);
2625 	barrier();
2626 
2627 	return finish_task_switch(prev);
2628 }
2629 
2630 /*
2631  * nr_running and nr_context_switches:
2632  *
2633  * externally visible scheduler statistics: current number of runnable
2634  * threads, total number of context switches performed since bootup.
2635  */
2636 unsigned long nr_running(void)
2637 {
2638 	unsigned long i, sum = 0;
2639 
2640 	for_each_online_cpu(i)
2641 		sum += cpu_rq(i)->nr_running;
2642 
2643 	return sum;
2644 }
2645 
2646 /*
2647  * Check if only the current task is running on the cpu.
2648  */
2649 bool single_task_running(void)
2650 {
2651 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2652 		return true;
2653 	else
2654 		return false;
2655 }
2656 EXPORT_SYMBOL(single_task_running);
2657 
2658 unsigned long long nr_context_switches(void)
2659 {
2660 	int i;
2661 	unsigned long long sum = 0;
2662 
2663 	for_each_possible_cpu(i)
2664 		sum += cpu_rq(i)->nr_switches;
2665 
2666 	return sum;
2667 }
2668 
2669 unsigned long nr_iowait(void)
2670 {
2671 	unsigned long i, sum = 0;
2672 
2673 	for_each_possible_cpu(i)
2674 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2675 
2676 	return sum;
2677 }
2678 
2679 unsigned long nr_iowait_cpu(int cpu)
2680 {
2681 	struct rq *this = cpu_rq(cpu);
2682 	return atomic_read(&this->nr_iowait);
2683 }
2684 
2685 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2686 {
2687 	struct rq *rq = this_rq();
2688 	*nr_waiters = atomic_read(&rq->nr_iowait);
2689 	*load = rq->load.weight;
2690 }
2691 
2692 #ifdef CONFIG_SMP
2693 
2694 /*
2695  * sched_exec - execve() is a valuable balancing opportunity, because at
2696  * this point the task has the smallest effective memory and cache footprint.
2697  */
2698 void sched_exec(void)
2699 {
2700 	struct task_struct *p = current;
2701 	unsigned long flags;
2702 	int dest_cpu;
2703 
2704 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2705 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2706 	if (dest_cpu == smp_processor_id())
2707 		goto unlock;
2708 
2709 	if (likely(cpu_active(dest_cpu))) {
2710 		struct migration_arg arg = { p, dest_cpu };
2711 
2712 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2713 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2714 		return;
2715 	}
2716 unlock:
2717 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2718 }
2719 
2720 #endif
2721 
2722 DEFINE_PER_CPU(struct kernel_stat, kstat);
2723 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2724 
2725 EXPORT_PER_CPU_SYMBOL(kstat);
2726 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2727 
2728 /*
2729  * Return accounted runtime for the task.
2730  * In case the task is currently running, return the runtime plus current's
2731  * pending runtime that have not been accounted yet.
2732  */
2733 unsigned long long task_sched_runtime(struct task_struct *p)
2734 {
2735 	unsigned long flags;
2736 	struct rq *rq;
2737 	u64 ns;
2738 
2739 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2740 	/*
2741 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2742 	 * So we have a optimization chance when the task's delta_exec is 0.
2743 	 * Reading ->on_cpu is racy, but this is ok.
2744 	 *
2745 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2746 	 * If we race with it entering cpu, unaccounted time is 0. This is
2747 	 * indistinguishable from the read occurring a few cycles earlier.
2748 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2749 	 * been accounted, so we're correct here as well.
2750 	 */
2751 	if (!p->on_cpu || !task_on_rq_queued(p))
2752 		return p->se.sum_exec_runtime;
2753 #endif
2754 
2755 	rq = task_rq_lock(p, &flags);
2756 	/*
2757 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2758 	 * project cycles that may never be accounted to this
2759 	 * thread, breaking clock_gettime().
2760 	 */
2761 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2762 		update_rq_clock(rq);
2763 		p->sched_class->update_curr(rq);
2764 	}
2765 	ns = p->se.sum_exec_runtime;
2766 	task_rq_unlock(rq, p, &flags);
2767 
2768 	return ns;
2769 }
2770 
2771 /*
2772  * This function gets called by the timer code, with HZ frequency.
2773  * We call it with interrupts disabled.
2774  */
2775 void scheduler_tick(void)
2776 {
2777 	int cpu = smp_processor_id();
2778 	struct rq *rq = cpu_rq(cpu);
2779 	struct task_struct *curr = rq->curr;
2780 
2781 	sched_clock_tick();
2782 
2783 	raw_spin_lock(&rq->lock);
2784 	update_rq_clock(rq);
2785 	curr->sched_class->task_tick(rq, curr, 0);
2786 	update_cpu_load_active(rq);
2787 	calc_global_load_tick(rq);
2788 	raw_spin_unlock(&rq->lock);
2789 
2790 	perf_event_task_tick();
2791 
2792 #ifdef CONFIG_SMP
2793 	rq->idle_balance = idle_cpu(cpu);
2794 	trigger_load_balance(rq);
2795 #endif
2796 	rq_last_tick_reset(rq);
2797 }
2798 
2799 #ifdef CONFIG_NO_HZ_FULL
2800 /**
2801  * scheduler_tick_max_deferment
2802  *
2803  * Keep at least one tick per second when a single
2804  * active task is running because the scheduler doesn't
2805  * yet completely support full dynticks environment.
2806  *
2807  * This makes sure that uptime, CFS vruntime, load
2808  * balancing, etc... continue to move forward, even
2809  * with a very low granularity.
2810  *
2811  * Return: Maximum deferment in nanoseconds.
2812  */
2813 u64 scheduler_tick_max_deferment(void)
2814 {
2815 	struct rq *rq = this_rq();
2816 	unsigned long next, now = READ_ONCE(jiffies);
2817 
2818 	next = rq->last_sched_tick + HZ;
2819 
2820 	if (time_before_eq(next, now))
2821 		return 0;
2822 
2823 	return jiffies_to_nsecs(next - now);
2824 }
2825 #endif
2826 
2827 notrace unsigned long get_parent_ip(unsigned long addr)
2828 {
2829 	if (in_lock_functions(addr)) {
2830 		addr = CALLER_ADDR2;
2831 		if (in_lock_functions(addr))
2832 			addr = CALLER_ADDR3;
2833 	}
2834 	return addr;
2835 }
2836 
2837 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2838 				defined(CONFIG_PREEMPT_TRACER))
2839 
2840 void preempt_count_add(int val)
2841 {
2842 #ifdef CONFIG_DEBUG_PREEMPT
2843 	/*
2844 	 * Underflow?
2845 	 */
2846 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2847 		return;
2848 #endif
2849 	__preempt_count_add(val);
2850 #ifdef CONFIG_DEBUG_PREEMPT
2851 	/*
2852 	 * Spinlock count overflowing soon?
2853 	 */
2854 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2855 				PREEMPT_MASK - 10);
2856 #endif
2857 	if (preempt_count() == val) {
2858 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2859 #ifdef CONFIG_DEBUG_PREEMPT
2860 		current->preempt_disable_ip = ip;
2861 #endif
2862 		trace_preempt_off(CALLER_ADDR0, ip);
2863 	}
2864 }
2865 EXPORT_SYMBOL(preempt_count_add);
2866 NOKPROBE_SYMBOL(preempt_count_add);
2867 
2868 void preempt_count_sub(int val)
2869 {
2870 #ifdef CONFIG_DEBUG_PREEMPT
2871 	/*
2872 	 * Underflow?
2873 	 */
2874 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2875 		return;
2876 	/*
2877 	 * Is the spinlock portion underflowing?
2878 	 */
2879 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2880 			!(preempt_count() & PREEMPT_MASK)))
2881 		return;
2882 #endif
2883 
2884 	if (preempt_count() == val)
2885 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2886 	__preempt_count_sub(val);
2887 }
2888 EXPORT_SYMBOL(preempt_count_sub);
2889 NOKPROBE_SYMBOL(preempt_count_sub);
2890 
2891 #endif
2892 
2893 /*
2894  * Print scheduling while atomic bug:
2895  */
2896 static noinline void __schedule_bug(struct task_struct *prev)
2897 {
2898 	if (oops_in_progress)
2899 		return;
2900 
2901 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2902 		prev->comm, prev->pid, preempt_count());
2903 
2904 	debug_show_held_locks(prev);
2905 	print_modules();
2906 	if (irqs_disabled())
2907 		print_irqtrace_events(prev);
2908 #ifdef CONFIG_DEBUG_PREEMPT
2909 	if (in_atomic_preempt_off()) {
2910 		pr_err("Preemption disabled at:");
2911 		print_ip_sym(current->preempt_disable_ip);
2912 		pr_cont("\n");
2913 	}
2914 #endif
2915 	dump_stack();
2916 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2917 }
2918 
2919 /*
2920  * Various schedule()-time debugging checks and statistics:
2921  */
2922 static inline void schedule_debug(struct task_struct *prev)
2923 {
2924 #ifdef CONFIG_SCHED_STACK_END_CHECK
2925 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2926 #endif
2927 	/*
2928 	 * Test if we are atomic. Since do_exit() needs to call into
2929 	 * schedule() atomically, we ignore that path. Otherwise whine
2930 	 * if we are scheduling when we should not.
2931 	 */
2932 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2933 		__schedule_bug(prev);
2934 	rcu_sleep_check();
2935 
2936 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2937 
2938 	schedstat_inc(this_rq(), sched_count);
2939 }
2940 
2941 /*
2942  * Pick up the highest-prio task:
2943  */
2944 static inline struct task_struct *
2945 pick_next_task(struct rq *rq, struct task_struct *prev)
2946 {
2947 	const struct sched_class *class = &fair_sched_class;
2948 	struct task_struct *p;
2949 
2950 	/*
2951 	 * Optimization: we know that if all tasks are in
2952 	 * the fair class we can call that function directly:
2953 	 */
2954 	if (likely(prev->sched_class == class &&
2955 		   rq->nr_running == rq->cfs.h_nr_running)) {
2956 		p = fair_sched_class.pick_next_task(rq, prev);
2957 		if (unlikely(p == RETRY_TASK))
2958 			goto again;
2959 
2960 		/* assumes fair_sched_class->next == idle_sched_class */
2961 		if (unlikely(!p))
2962 			p = idle_sched_class.pick_next_task(rq, prev);
2963 
2964 		return p;
2965 	}
2966 
2967 again:
2968 	for_each_class(class) {
2969 		p = class->pick_next_task(rq, prev);
2970 		if (p) {
2971 			if (unlikely(p == RETRY_TASK))
2972 				goto again;
2973 			return p;
2974 		}
2975 	}
2976 
2977 	BUG(); /* the idle class will always have a runnable task */
2978 }
2979 
2980 /*
2981  * __schedule() is the main scheduler function.
2982  *
2983  * The main means of driving the scheduler and thus entering this function are:
2984  *
2985  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2986  *
2987  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2988  *      paths. For example, see arch/x86/entry_64.S.
2989  *
2990  *      To drive preemption between tasks, the scheduler sets the flag in timer
2991  *      interrupt handler scheduler_tick().
2992  *
2993  *   3. Wakeups don't really cause entry into schedule(). They add a
2994  *      task to the run-queue and that's it.
2995  *
2996  *      Now, if the new task added to the run-queue preempts the current
2997  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2998  *      called on the nearest possible occasion:
2999  *
3000  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3001  *
3002  *         - in syscall or exception context, at the next outmost
3003  *           preempt_enable(). (this might be as soon as the wake_up()'s
3004  *           spin_unlock()!)
3005  *
3006  *         - in IRQ context, return from interrupt-handler to
3007  *           preemptible context
3008  *
3009  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3010  *         then at the next:
3011  *
3012  *          - cond_resched() call
3013  *          - explicit schedule() call
3014  *          - return from syscall or exception to user-space
3015  *          - return from interrupt-handler to user-space
3016  *
3017  * WARNING: must be called with preemption disabled!
3018  */
3019 static void __sched __schedule(void)
3020 {
3021 	struct task_struct *prev, *next;
3022 	unsigned long *switch_count;
3023 	struct rq *rq;
3024 	int cpu;
3025 
3026 	cpu = smp_processor_id();
3027 	rq = cpu_rq(cpu);
3028 	rcu_note_context_switch();
3029 	prev = rq->curr;
3030 
3031 	schedule_debug(prev);
3032 
3033 	if (sched_feat(HRTICK))
3034 		hrtick_clear(rq);
3035 
3036 	/*
3037 	 * Make sure that signal_pending_state()->signal_pending() below
3038 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3039 	 * done by the caller to avoid the race with signal_wake_up().
3040 	 */
3041 	smp_mb__before_spinlock();
3042 	raw_spin_lock_irq(&rq->lock);
3043 	lockdep_pin_lock(&rq->lock);
3044 
3045 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3046 
3047 	switch_count = &prev->nivcsw;
3048 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3049 		if (unlikely(signal_pending_state(prev->state, prev))) {
3050 			prev->state = TASK_RUNNING;
3051 		} else {
3052 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3053 			prev->on_rq = 0;
3054 
3055 			/*
3056 			 * If a worker went to sleep, notify and ask workqueue
3057 			 * whether it wants to wake up a task to maintain
3058 			 * concurrency.
3059 			 */
3060 			if (prev->flags & PF_WQ_WORKER) {
3061 				struct task_struct *to_wakeup;
3062 
3063 				to_wakeup = wq_worker_sleeping(prev, cpu);
3064 				if (to_wakeup)
3065 					try_to_wake_up_local(to_wakeup);
3066 			}
3067 		}
3068 		switch_count = &prev->nvcsw;
3069 	}
3070 
3071 	if (task_on_rq_queued(prev))
3072 		update_rq_clock(rq);
3073 
3074 	next = pick_next_task(rq, prev);
3075 	clear_tsk_need_resched(prev);
3076 	clear_preempt_need_resched();
3077 	rq->clock_skip_update = 0;
3078 
3079 	if (likely(prev != next)) {
3080 		rq->nr_switches++;
3081 		rq->curr = next;
3082 		++*switch_count;
3083 
3084 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3085 		cpu = cpu_of(rq);
3086 	} else {
3087 		lockdep_unpin_lock(&rq->lock);
3088 		raw_spin_unlock_irq(&rq->lock);
3089 	}
3090 
3091 	balance_callback(rq);
3092 }
3093 
3094 static inline void sched_submit_work(struct task_struct *tsk)
3095 {
3096 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3097 		return;
3098 	/*
3099 	 * If we are going to sleep and we have plugged IO queued,
3100 	 * make sure to submit it to avoid deadlocks.
3101 	 */
3102 	if (blk_needs_flush_plug(tsk))
3103 		blk_schedule_flush_plug(tsk);
3104 }
3105 
3106 asmlinkage __visible void __sched schedule(void)
3107 {
3108 	struct task_struct *tsk = current;
3109 
3110 	sched_submit_work(tsk);
3111 	do {
3112 		preempt_disable();
3113 		__schedule();
3114 		sched_preempt_enable_no_resched();
3115 	} while (need_resched());
3116 }
3117 EXPORT_SYMBOL(schedule);
3118 
3119 #ifdef CONFIG_CONTEXT_TRACKING
3120 asmlinkage __visible void __sched schedule_user(void)
3121 {
3122 	/*
3123 	 * If we come here after a random call to set_need_resched(),
3124 	 * or we have been woken up remotely but the IPI has not yet arrived,
3125 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3126 	 * we find a better solution.
3127 	 *
3128 	 * NB: There are buggy callers of this function.  Ideally we
3129 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3130 	 * too frequently to make sense yet.
3131 	 */
3132 	enum ctx_state prev_state = exception_enter();
3133 	schedule();
3134 	exception_exit(prev_state);
3135 }
3136 #endif
3137 
3138 /**
3139  * schedule_preempt_disabled - called with preemption disabled
3140  *
3141  * Returns with preemption disabled. Note: preempt_count must be 1
3142  */
3143 void __sched schedule_preempt_disabled(void)
3144 {
3145 	sched_preempt_enable_no_resched();
3146 	schedule();
3147 	preempt_disable();
3148 }
3149 
3150 static void __sched notrace preempt_schedule_common(void)
3151 {
3152 	do {
3153 		preempt_active_enter();
3154 		__schedule();
3155 		preempt_active_exit();
3156 
3157 		/*
3158 		 * Check again in case we missed a preemption opportunity
3159 		 * between schedule and now.
3160 		 */
3161 	} while (need_resched());
3162 }
3163 
3164 #ifdef CONFIG_PREEMPT
3165 /*
3166  * this is the entry point to schedule() from in-kernel preemption
3167  * off of preempt_enable. Kernel preemptions off return from interrupt
3168  * occur there and call schedule directly.
3169  */
3170 asmlinkage __visible void __sched notrace preempt_schedule(void)
3171 {
3172 	/*
3173 	 * If there is a non-zero preempt_count or interrupts are disabled,
3174 	 * we do not want to preempt the current task. Just return..
3175 	 */
3176 	if (likely(!preemptible()))
3177 		return;
3178 
3179 	preempt_schedule_common();
3180 }
3181 NOKPROBE_SYMBOL(preempt_schedule);
3182 EXPORT_SYMBOL(preempt_schedule);
3183 
3184 /**
3185  * preempt_schedule_notrace - preempt_schedule called by tracing
3186  *
3187  * The tracing infrastructure uses preempt_enable_notrace to prevent
3188  * recursion and tracing preempt enabling caused by the tracing
3189  * infrastructure itself. But as tracing can happen in areas coming
3190  * from userspace or just about to enter userspace, a preempt enable
3191  * can occur before user_exit() is called. This will cause the scheduler
3192  * to be called when the system is still in usermode.
3193  *
3194  * To prevent this, the preempt_enable_notrace will use this function
3195  * instead of preempt_schedule() to exit user context if needed before
3196  * calling the scheduler.
3197  */
3198 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3199 {
3200 	enum ctx_state prev_ctx;
3201 
3202 	if (likely(!preemptible()))
3203 		return;
3204 
3205 	do {
3206 		/*
3207 		 * Use raw __prempt_count() ops that don't call function.
3208 		 * We can't call functions before disabling preemption which
3209 		 * disarm preemption tracing recursions.
3210 		 */
3211 		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3212 		barrier();
3213 		/*
3214 		 * Needs preempt disabled in case user_exit() is traced
3215 		 * and the tracer calls preempt_enable_notrace() causing
3216 		 * an infinite recursion.
3217 		 */
3218 		prev_ctx = exception_enter();
3219 		__schedule();
3220 		exception_exit(prev_ctx);
3221 
3222 		barrier();
3223 		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3224 	} while (need_resched());
3225 }
3226 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3227 
3228 #endif /* CONFIG_PREEMPT */
3229 
3230 /*
3231  * this is the entry point to schedule() from kernel preemption
3232  * off of irq context.
3233  * Note, that this is called and return with irqs disabled. This will
3234  * protect us against recursive calling from irq.
3235  */
3236 asmlinkage __visible void __sched preempt_schedule_irq(void)
3237 {
3238 	enum ctx_state prev_state;
3239 
3240 	/* Catch callers which need to be fixed */
3241 	BUG_ON(preempt_count() || !irqs_disabled());
3242 
3243 	prev_state = exception_enter();
3244 
3245 	do {
3246 		preempt_active_enter();
3247 		local_irq_enable();
3248 		__schedule();
3249 		local_irq_disable();
3250 		preempt_active_exit();
3251 	} while (need_resched());
3252 
3253 	exception_exit(prev_state);
3254 }
3255 
3256 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3257 			  void *key)
3258 {
3259 	return try_to_wake_up(curr->private, mode, wake_flags);
3260 }
3261 EXPORT_SYMBOL(default_wake_function);
3262 
3263 #ifdef CONFIG_RT_MUTEXES
3264 
3265 /*
3266  * rt_mutex_setprio - set the current priority of a task
3267  * @p: task
3268  * @prio: prio value (kernel-internal form)
3269  *
3270  * This function changes the 'effective' priority of a task. It does
3271  * not touch ->normal_prio like __setscheduler().
3272  *
3273  * Used by the rt_mutex code to implement priority inheritance
3274  * logic. Call site only calls if the priority of the task changed.
3275  */
3276 void rt_mutex_setprio(struct task_struct *p, int prio)
3277 {
3278 	int oldprio, queued, running, enqueue_flag = 0;
3279 	struct rq *rq;
3280 	const struct sched_class *prev_class;
3281 
3282 	BUG_ON(prio > MAX_PRIO);
3283 
3284 	rq = __task_rq_lock(p);
3285 
3286 	/*
3287 	 * Idle task boosting is a nono in general. There is one
3288 	 * exception, when PREEMPT_RT and NOHZ is active:
3289 	 *
3290 	 * The idle task calls get_next_timer_interrupt() and holds
3291 	 * the timer wheel base->lock on the CPU and another CPU wants
3292 	 * to access the timer (probably to cancel it). We can safely
3293 	 * ignore the boosting request, as the idle CPU runs this code
3294 	 * with interrupts disabled and will complete the lock
3295 	 * protected section without being interrupted. So there is no
3296 	 * real need to boost.
3297 	 */
3298 	if (unlikely(p == rq->idle)) {
3299 		WARN_ON(p != rq->curr);
3300 		WARN_ON(p->pi_blocked_on);
3301 		goto out_unlock;
3302 	}
3303 
3304 	trace_sched_pi_setprio(p, prio);
3305 	oldprio = p->prio;
3306 	prev_class = p->sched_class;
3307 	queued = task_on_rq_queued(p);
3308 	running = task_current(rq, p);
3309 	if (queued)
3310 		dequeue_task(rq, p, 0);
3311 	if (running)
3312 		put_prev_task(rq, p);
3313 
3314 	/*
3315 	 * Boosting condition are:
3316 	 * 1. -rt task is running and holds mutex A
3317 	 *      --> -dl task blocks on mutex A
3318 	 *
3319 	 * 2. -dl task is running and holds mutex A
3320 	 *      --> -dl task blocks on mutex A and could preempt the
3321 	 *          running task
3322 	 */
3323 	if (dl_prio(prio)) {
3324 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3325 		if (!dl_prio(p->normal_prio) ||
3326 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3327 			p->dl.dl_boosted = 1;
3328 			enqueue_flag = ENQUEUE_REPLENISH;
3329 		} else
3330 			p->dl.dl_boosted = 0;
3331 		p->sched_class = &dl_sched_class;
3332 	} else if (rt_prio(prio)) {
3333 		if (dl_prio(oldprio))
3334 			p->dl.dl_boosted = 0;
3335 		if (oldprio < prio)
3336 			enqueue_flag = ENQUEUE_HEAD;
3337 		p->sched_class = &rt_sched_class;
3338 	} else {
3339 		if (dl_prio(oldprio))
3340 			p->dl.dl_boosted = 0;
3341 		if (rt_prio(oldprio))
3342 			p->rt.timeout = 0;
3343 		p->sched_class = &fair_sched_class;
3344 	}
3345 
3346 	p->prio = prio;
3347 
3348 	if (running)
3349 		p->sched_class->set_curr_task(rq);
3350 	if (queued)
3351 		enqueue_task(rq, p, enqueue_flag);
3352 
3353 	check_class_changed(rq, p, prev_class, oldprio);
3354 out_unlock:
3355 	preempt_disable(); /* avoid rq from going away on us */
3356 	__task_rq_unlock(rq);
3357 
3358 	balance_callback(rq);
3359 	preempt_enable();
3360 }
3361 #endif
3362 
3363 void set_user_nice(struct task_struct *p, long nice)
3364 {
3365 	int old_prio, delta, queued;
3366 	unsigned long flags;
3367 	struct rq *rq;
3368 
3369 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3370 		return;
3371 	/*
3372 	 * We have to be careful, if called from sys_setpriority(),
3373 	 * the task might be in the middle of scheduling on another CPU.
3374 	 */
3375 	rq = task_rq_lock(p, &flags);
3376 	/*
3377 	 * The RT priorities are set via sched_setscheduler(), but we still
3378 	 * allow the 'normal' nice value to be set - but as expected
3379 	 * it wont have any effect on scheduling until the task is
3380 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3381 	 */
3382 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3383 		p->static_prio = NICE_TO_PRIO(nice);
3384 		goto out_unlock;
3385 	}
3386 	queued = task_on_rq_queued(p);
3387 	if (queued)
3388 		dequeue_task(rq, p, 0);
3389 
3390 	p->static_prio = NICE_TO_PRIO(nice);
3391 	set_load_weight(p);
3392 	old_prio = p->prio;
3393 	p->prio = effective_prio(p);
3394 	delta = p->prio - old_prio;
3395 
3396 	if (queued) {
3397 		enqueue_task(rq, p, 0);
3398 		/*
3399 		 * If the task increased its priority or is running and
3400 		 * lowered its priority, then reschedule its CPU:
3401 		 */
3402 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3403 			resched_curr(rq);
3404 	}
3405 out_unlock:
3406 	task_rq_unlock(rq, p, &flags);
3407 }
3408 EXPORT_SYMBOL(set_user_nice);
3409 
3410 /*
3411  * can_nice - check if a task can reduce its nice value
3412  * @p: task
3413  * @nice: nice value
3414  */
3415 int can_nice(const struct task_struct *p, const int nice)
3416 {
3417 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3418 	int nice_rlim = nice_to_rlimit(nice);
3419 
3420 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3421 		capable(CAP_SYS_NICE));
3422 }
3423 
3424 #ifdef __ARCH_WANT_SYS_NICE
3425 
3426 /*
3427  * sys_nice - change the priority of the current process.
3428  * @increment: priority increment
3429  *
3430  * sys_setpriority is a more generic, but much slower function that
3431  * does similar things.
3432  */
3433 SYSCALL_DEFINE1(nice, int, increment)
3434 {
3435 	long nice, retval;
3436 
3437 	/*
3438 	 * Setpriority might change our priority at the same moment.
3439 	 * We don't have to worry. Conceptually one call occurs first
3440 	 * and we have a single winner.
3441 	 */
3442 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3443 	nice = task_nice(current) + increment;
3444 
3445 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3446 	if (increment < 0 && !can_nice(current, nice))
3447 		return -EPERM;
3448 
3449 	retval = security_task_setnice(current, nice);
3450 	if (retval)
3451 		return retval;
3452 
3453 	set_user_nice(current, nice);
3454 	return 0;
3455 }
3456 
3457 #endif
3458 
3459 /**
3460  * task_prio - return the priority value of a given task.
3461  * @p: the task in question.
3462  *
3463  * Return: The priority value as seen by users in /proc.
3464  * RT tasks are offset by -200. Normal tasks are centered
3465  * around 0, value goes from -16 to +15.
3466  */
3467 int task_prio(const struct task_struct *p)
3468 {
3469 	return p->prio - MAX_RT_PRIO;
3470 }
3471 
3472 /**
3473  * idle_cpu - is a given cpu idle currently?
3474  * @cpu: the processor in question.
3475  *
3476  * Return: 1 if the CPU is currently idle. 0 otherwise.
3477  */
3478 int idle_cpu(int cpu)
3479 {
3480 	struct rq *rq = cpu_rq(cpu);
3481 
3482 	if (rq->curr != rq->idle)
3483 		return 0;
3484 
3485 	if (rq->nr_running)
3486 		return 0;
3487 
3488 #ifdef CONFIG_SMP
3489 	if (!llist_empty(&rq->wake_list))
3490 		return 0;
3491 #endif
3492 
3493 	return 1;
3494 }
3495 
3496 /**
3497  * idle_task - return the idle task for a given cpu.
3498  * @cpu: the processor in question.
3499  *
3500  * Return: The idle task for the cpu @cpu.
3501  */
3502 struct task_struct *idle_task(int cpu)
3503 {
3504 	return cpu_rq(cpu)->idle;
3505 }
3506 
3507 /**
3508  * find_process_by_pid - find a process with a matching PID value.
3509  * @pid: the pid in question.
3510  *
3511  * The task of @pid, if found. %NULL otherwise.
3512  */
3513 static struct task_struct *find_process_by_pid(pid_t pid)
3514 {
3515 	return pid ? find_task_by_vpid(pid) : current;
3516 }
3517 
3518 /*
3519  * This function initializes the sched_dl_entity of a newly becoming
3520  * SCHED_DEADLINE task.
3521  *
3522  * Only the static values are considered here, the actual runtime and the
3523  * absolute deadline will be properly calculated when the task is enqueued
3524  * for the first time with its new policy.
3525  */
3526 static void
3527 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3528 {
3529 	struct sched_dl_entity *dl_se = &p->dl;
3530 
3531 	dl_se->dl_runtime = attr->sched_runtime;
3532 	dl_se->dl_deadline = attr->sched_deadline;
3533 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3534 	dl_se->flags = attr->sched_flags;
3535 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3536 
3537 	/*
3538 	 * Changing the parameters of a task is 'tricky' and we're not doing
3539 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3540 	 *
3541 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3542 	 * point. This would include retaining the task_struct until that time
3543 	 * and change dl_overflow() to not immediately decrement the current
3544 	 * amount.
3545 	 *
3546 	 * Instead we retain the current runtime/deadline and let the new
3547 	 * parameters take effect after the current reservation period lapses.
3548 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3549 	 * before the current scheduling deadline.
3550 	 *
3551 	 * We can still have temporary overloads because we do not delay the
3552 	 * change in bandwidth until that time; so admission control is
3553 	 * not on the safe side. It does however guarantee tasks will never
3554 	 * consume more than promised.
3555 	 */
3556 }
3557 
3558 /*
3559  * sched_setparam() passes in -1 for its policy, to let the functions
3560  * it calls know not to change it.
3561  */
3562 #define SETPARAM_POLICY	-1
3563 
3564 static void __setscheduler_params(struct task_struct *p,
3565 		const struct sched_attr *attr)
3566 {
3567 	int policy = attr->sched_policy;
3568 
3569 	if (policy == SETPARAM_POLICY)
3570 		policy = p->policy;
3571 
3572 	p->policy = policy;
3573 
3574 	if (dl_policy(policy))
3575 		__setparam_dl(p, attr);
3576 	else if (fair_policy(policy))
3577 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3578 
3579 	/*
3580 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3581 	 * !rt_policy. Always setting this ensures that things like
3582 	 * getparam()/getattr() don't report silly values for !rt tasks.
3583 	 */
3584 	p->rt_priority = attr->sched_priority;
3585 	p->normal_prio = normal_prio(p);
3586 	set_load_weight(p);
3587 }
3588 
3589 /* Actually do priority change: must hold pi & rq lock. */
3590 static void __setscheduler(struct rq *rq, struct task_struct *p,
3591 			   const struct sched_attr *attr, bool keep_boost)
3592 {
3593 	__setscheduler_params(p, attr);
3594 
3595 	/*
3596 	 * Keep a potential priority boosting if called from
3597 	 * sched_setscheduler().
3598 	 */
3599 	if (keep_boost)
3600 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3601 	else
3602 		p->prio = normal_prio(p);
3603 
3604 	if (dl_prio(p->prio))
3605 		p->sched_class = &dl_sched_class;
3606 	else if (rt_prio(p->prio))
3607 		p->sched_class = &rt_sched_class;
3608 	else
3609 		p->sched_class = &fair_sched_class;
3610 }
3611 
3612 static void
3613 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3614 {
3615 	struct sched_dl_entity *dl_se = &p->dl;
3616 
3617 	attr->sched_priority = p->rt_priority;
3618 	attr->sched_runtime = dl_se->dl_runtime;
3619 	attr->sched_deadline = dl_se->dl_deadline;
3620 	attr->sched_period = dl_se->dl_period;
3621 	attr->sched_flags = dl_se->flags;
3622 }
3623 
3624 /*
3625  * This function validates the new parameters of a -deadline task.
3626  * We ask for the deadline not being zero, and greater or equal
3627  * than the runtime, as well as the period of being zero or
3628  * greater than deadline. Furthermore, we have to be sure that
3629  * user parameters are above the internal resolution of 1us (we
3630  * check sched_runtime only since it is always the smaller one) and
3631  * below 2^63 ns (we have to check both sched_deadline and
3632  * sched_period, as the latter can be zero).
3633  */
3634 static bool
3635 __checkparam_dl(const struct sched_attr *attr)
3636 {
3637 	/* deadline != 0 */
3638 	if (attr->sched_deadline == 0)
3639 		return false;
3640 
3641 	/*
3642 	 * Since we truncate DL_SCALE bits, make sure we're at least
3643 	 * that big.
3644 	 */
3645 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3646 		return false;
3647 
3648 	/*
3649 	 * Since we use the MSB for wrap-around and sign issues, make
3650 	 * sure it's not set (mind that period can be equal to zero).
3651 	 */
3652 	if (attr->sched_deadline & (1ULL << 63) ||
3653 	    attr->sched_period & (1ULL << 63))
3654 		return false;
3655 
3656 	/* runtime <= deadline <= period (if period != 0) */
3657 	if ((attr->sched_period != 0 &&
3658 	     attr->sched_period < attr->sched_deadline) ||
3659 	    attr->sched_deadline < attr->sched_runtime)
3660 		return false;
3661 
3662 	return true;
3663 }
3664 
3665 /*
3666  * check the target process has a UID that matches the current process's
3667  */
3668 static bool check_same_owner(struct task_struct *p)
3669 {
3670 	const struct cred *cred = current_cred(), *pcred;
3671 	bool match;
3672 
3673 	rcu_read_lock();
3674 	pcred = __task_cred(p);
3675 	match = (uid_eq(cred->euid, pcred->euid) ||
3676 		 uid_eq(cred->euid, pcred->uid));
3677 	rcu_read_unlock();
3678 	return match;
3679 }
3680 
3681 static bool dl_param_changed(struct task_struct *p,
3682 		const struct sched_attr *attr)
3683 {
3684 	struct sched_dl_entity *dl_se = &p->dl;
3685 
3686 	if (dl_se->dl_runtime != attr->sched_runtime ||
3687 		dl_se->dl_deadline != attr->sched_deadline ||
3688 		dl_se->dl_period != attr->sched_period ||
3689 		dl_se->flags != attr->sched_flags)
3690 		return true;
3691 
3692 	return false;
3693 }
3694 
3695 static int __sched_setscheduler(struct task_struct *p,
3696 				const struct sched_attr *attr,
3697 				bool user, bool pi)
3698 {
3699 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3700 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3701 	int retval, oldprio, oldpolicy = -1, queued, running;
3702 	int new_effective_prio, policy = attr->sched_policy;
3703 	unsigned long flags;
3704 	const struct sched_class *prev_class;
3705 	struct rq *rq;
3706 	int reset_on_fork;
3707 
3708 	/* may grab non-irq protected spin_locks */
3709 	BUG_ON(in_interrupt());
3710 recheck:
3711 	/* double check policy once rq lock held */
3712 	if (policy < 0) {
3713 		reset_on_fork = p->sched_reset_on_fork;
3714 		policy = oldpolicy = p->policy;
3715 	} else {
3716 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3717 
3718 		if (policy != SCHED_DEADLINE &&
3719 				policy != SCHED_FIFO && policy != SCHED_RR &&
3720 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3721 				policy != SCHED_IDLE)
3722 			return -EINVAL;
3723 	}
3724 
3725 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3726 		return -EINVAL;
3727 
3728 	/*
3729 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3730 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3731 	 * SCHED_BATCH and SCHED_IDLE is 0.
3732 	 */
3733 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3734 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3735 		return -EINVAL;
3736 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3737 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3738 		return -EINVAL;
3739 
3740 	/*
3741 	 * Allow unprivileged RT tasks to decrease priority:
3742 	 */
3743 	if (user && !capable(CAP_SYS_NICE)) {
3744 		if (fair_policy(policy)) {
3745 			if (attr->sched_nice < task_nice(p) &&
3746 			    !can_nice(p, attr->sched_nice))
3747 				return -EPERM;
3748 		}
3749 
3750 		if (rt_policy(policy)) {
3751 			unsigned long rlim_rtprio =
3752 					task_rlimit(p, RLIMIT_RTPRIO);
3753 
3754 			/* can't set/change the rt policy */
3755 			if (policy != p->policy && !rlim_rtprio)
3756 				return -EPERM;
3757 
3758 			/* can't increase priority */
3759 			if (attr->sched_priority > p->rt_priority &&
3760 			    attr->sched_priority > rlim_rtprio)
3761 				return -EPERM;
3762 		}
3763 
3764 		 /*
3765 		  * Can't set/change SCHED_DEADLINE policy at all for now
3766 		  * (safest behavior); in the future we would like to allow
3767 		  * unprivileged DL tasks to increase their relative deadline
3768 		  * or reduce their runtime (both ways reducing utilization)
3769 		  */
3770 		if (dl_policy(policy))
3771 			return -EPERM;
3772 
3773 		/*
3774 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3775 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3776 		 */
3777 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3778 			if (!can_nice(p, task_nice(p)))
3779 				return -EPERM;
3780 		}
3781 
3782 		/* can't change other user's priorities */
3783 		if (!check_same_owner(p))
3784 			return -EPERM;
3785 
3786 		/* Normal users shall not reset the sched_reset_on_fork flag */
3787 		if (p->sched_reset_on_fork && !reset_on_fork)
3788 			return -EPERM;
3789 	}
3790 
3791 	if (user) {
3792 		retval = security_task_setscheduler(p);
3793 		if (retval)
3794 			return retval;
3795 	}
3796 
3797 	/*
3798 	 * make sure no PI-waiters arrive (or leave) while we are
3799 	 * changing the priority of the task:
3800 	 *
3801 	 * To be able to change p->policy safely, the appropriate
3802 	 * runqueue lock must be held.
3803 	 */
3804 	rq = task_rq_lock(p, &flags);
3805 
3806 	/*
3807 	 * Changing the policy of the stop threads its a very bad idea
3808 	 */
3809 	if (p == rq->stop) {
3810 		task_rq_unlock(rq, p, &flags);
3811 		return -EINVAL;
3812 	}
3813 
3814 	/*
3815 	 * If not changing anything there's no need to proceed further,
3816 	 * but store a possible modification of reset_on_fork.
3817 	 */
3818 	if (unlikely(policy == p->policy)) {
3819 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3820 			goto change;
3821 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3822 			goto change;
3823 		if (dl_policy(policy) && dl_param_changed(p, attr))
3824 			goto change;
3825 
3826 		p->sched_reset_on_fork = reset_on_fork;
3827 		task_rq_unlock(rq, p, &flags);
3828 		return 0;
3829 	}
3830 change:
3831 
3832 	if (user) {
3833 #ifdef CONFIG_RT_GROUP_SCHED
3834 		/*
3835 		 * Do not allow realtime tasks into groups that have no runtime
3836 		 * assigned.
3837 		 */
3838 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3839 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3840 				!task_group_is_autogroup(task_group(p))) {
3841 			task_rq_unlock(rq, p, &flags);
3842 			return -EPERM;
3843 		}
3844 #endif
3845 #ifdef CONFIG_SMP
3846 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3847 			cpumask_t *span = rq->rd->span;
3848 
3849 			/*
3850 			 * Don't allow tasks with an affinity mask smaller than
3851 			 * the entire root_domain to become SCHED_DEADLINE. We
3852 			 * will also fail if there's no bandwidth available.
3853 			 */
3854 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3855 			    rq->rd->dl_bw.bw == 0) {
3856 				task_rq_unlock(rq, p, &flags);
3857 				return -EPERM;
3858 			}
3859 		}
3860 #endif
3861 	}
3862 
3863 	/* recheck policy now with rq lock held */
3864 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3865 		policy = oldpolicy = -1;
3866 		task_rq_unlock(rq, p, &flags);
3867 		goto recheck;
3868 	}
3869 
3870 	/*
3871 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3872 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3873 	 * is available.
3874 	 */
3875 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3876 		task_rq_unlock(rq, p, &flags);
3877 		return -EBUSY;
3878 	}
3879 
3880 	p->sched_reset_on_fork = reset_on_fork;
3881 	oldprio = p->prio;
3882 
3883 	if (pi) {
3884 		/*
3885 		 * Take priority boosted tasks into account. If the new
3886 		 * effective priority is unchanged, we just store the new
3887 		 * normal parameters and do not touch the scheduler class and
3888 		 * the runqueue. This will be done when the task deboost
3889 		 * itself.
3890 		 */
3891 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3892 		if (new_effective_prio == oldprio) {
3893 			__setscheduler_params(p, attr);
3894 			task_rq_unlock(rq, p, &flags);
3895 			return 0;
3896 		}
3897 	}
3898 
3899 	queued = task_on_rq_queued(p);
3900 	running = task_current(rq, p);
3901 	if (queued)
3902 		dequeue_task(rq, p, 0);
3903 	if (running)
3904 		put_prev_task(rq, p);
3905 
3906 	prev_class = p->sched_class;
3907 	__setscheduler(rq, p, attr, pi);
3908 
3909 	if (running)
3910 		p->sched_class->set_curr_task(rq);
3911 	if (queued) {
3912 		/*
3913 		 * We enqueue to tail when the priority of a task is
3914 		 * increased (user space view).
3915 		 */
3916 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3917 	}
3918 
3919 	check_class_changed(rq, p, prev_class, oldprio);
3920 	preempt_disable(); /* avoid rq from going away on us */
3921 	task_rq_unlock(rq, p, &flags);
3922 
3923 	if (pi)
3924 		rt_mutex_adjust_pi(p);
3925 
3926 	/*
3927 	 * Run balance callbacks after we've adjusted the PI chain.
3928 	 */
3929 	balance_callback(rq);
3930 	preempt_enable();
3931 
3932 	return 0;
3933 }
3934 
3935 static int _sched_setscheduler(struct task_struct *p, int policy,
3936 			       const struct sched_param *param, bool check)
3937 {
3938 	struct sched_attr attr = {
3939 		.sched_policy   = policy,
3940 		.sched_priority = param->sched_priority,
3941 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3942 	};
3943 
3944 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3945 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3946 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3947 		policy &= ~SCHED_RESET_ON_FORK;
3948 		attr.sched_policy = policy;
3949 	}
3950 
3951 	return __sched_setscheduler(p, &attr, check, true);
3952 }
3953 /**
3954  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3955  * @p: the task in question.
3956  * @policy: new policy.
3957  * @param: structure containing the new RT priority.
3958  *
3959  * Return: 0 on success. An error code otherwise.
3960  *
3961  * NOTE that the task may be already dead.
3962  */
3963 int sched_setscheduler(struct task_struct *p, int policy,
3964 		       const struct sched_param *param)
3965 {
3966 	return _sched_setscheduler(p, policy, param, true);
3967 }
3968 EXPORT_SYMBOL_GPL(sched_setscheduler);
3969 
3970 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3971 {
3972 	return __sched_setscheduler(p, attr, true, true);
3973 }
3974 EXPORT_SYMBOL_GPL(sched_setattr);
3975 
3976 /**
3977  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3978  * @p: the task in question.
3979  * @policy: new policy.
3980  * @param: structure containing the new RT priority.
3981  *
3982  * Just like sched_setscheduler, only don't bother checking if the
3983  * current context has permission.  For example, this is needed in
3984  * stop_machine(): we create temporary high priority worker threads,
3985  * but our caller might not have that capability.
3986  *
3987  * Return: 0 on success. An error code otherwise.
3988  */
3989 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3990 			       const struct sched_param *param)
3991 {
3992 	return _sched_setscheduler(p, policy, param, false);
3993 }
3994 
3995 static int
3996 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3997 {
3998 	struct sched_param lparam;
3999 	struct task_struct *p;
4000 	int retval;
4001 
4002 	if (!param || pid < 0)
4003 		return -EINVAL;
4004 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4005 		return -EFAULT;
4006 
4007 	rcu_read_lock();
4008 	retval = -ESRCH;
4009 	p = find_process_by_pid(pid);
4010 	if (p != NULL)
4011 		retval = sched_setscheduler(p, policy, &lparam);
4012 	rcu_read_unlock();
4013 
4014 	return retval;
4015 }
4016 
4017 /*
4018  * Mimics kernel/events/core.c perf_copy_attr().
4019  */
4020 static int sched_copy_attr(struct sched_attr __user *uattr,
4021 			   struct sched_attr *attr)
4022 {
4023 	u32 size;
4024 	int ret;
4025 
4026 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4027 		return -EFAULT;
4028 
4029 	/*
4030 	 * zero the full structure, so that a short copy will be nice.
4031 	 */
4032 	memset(attr, 0, sizeof(*attr));
4033 
4034 	ret = get_user(size, &uattr->size);
4035 	if (ret)
4036 		return ret;
4037 
4038 	if (size > PAGE_SIZE)	/* silly large */
4039 		goto err_size;
4040 
4041 	if (!size)		/* abi compat */
4042 		size = SCHED_ATTR_SIZE_VER0;
4043 
4044 	if (size < SCHED_ATTR_SIZE_VER0)
4045 		goto err_size;
4046 
4047 	/*
4048 	 * If we're handed a bigger struct than we know of,
4049 	 * ensure all the unknown bits are 0 - i.e. new
4050 	 * user-space does not rely on any kernel feature
4051 	 * extensions we dont know about yet.
4052 	 */
4053 	if (size > sizeof(*attr)) {
4054 		unsigned char __user *addr;
4055 		unsigned char __user *end;
4056 		unsigned char val;
4057 
4058 		addr = (void __user *)uattr + sizeof(*attr);
4059 		end  = (void __user *)uattr + size;
4060 
4061 		for (; addr < end; addr++) {
4062 			ret = get_user(val, addr);
4063 			if (ret)
4064 				return ret;
4065 			if (val)
4066 				goto err_size;
4067 		}
4068 		size = sizeof(*attr);
4069 	}
4070 
4071 	ret = copy_from_user(attr, uattr, size);
4072 	if (ret)
4073 		return -EFAULT;
4074 
4075 	/*
4076 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4077 	 * to be strict and return an error on out-of-bounds values?
4078 	 */
4079 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4080 
4081 	return 0;
4082 
4083 err_size:
4084 	put_user(sizeof(*attr), &uattr->size);
4085 	return -E2BIG;
4086 }
4087 
4088 /**
4089  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4090  * @pid: the pid in question.
4091  * @policy: new policy.
4092  * @param: structure containing the new RT priority.
4093  *
4094  * Return: 0 on success. An error code otherwise.
4095  */
4096 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4097 		struct sched_param __user *, param)
4098 {
4099 	/* negative values for policy are not valid */
4100 	if (policy < 0)
4101 		return -EINVAL;
4102 
4103 	return do_sched_setscheduler(pid, policy, param);
4104 }
4105 
4106 /**
4107  * sys_sched_setparam - set/change the RT priority of a thread
4108  * @pid: the pid in question.
4109  * @param: structure containing the new RT priority.
4110  *
4111  * Return: 0 on success. An error code otherwise.
4112  */
4113 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4114 {
4115 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4116 }
4117 
4118 /**
4119  * sys_sched_setattr - same as above, but with extended sched_attr
4120  * @pid: the pid in question.
4121  * @uattr: structure containing the extended parameters.
4122  * @flags: for future extension.
4123  */
4124 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4125 			       unsigned int, flags)
4126 {
4127 	struct sched_attr attr;
4128 	struct task_struct *p;
4129 	int retval;
4130 
4131 	if (!uattr || pid < 0 || flags)
4132 		return -EINVAL;
4133 
4134 	retval = sched_copy_attr(uattr, &attr);
4135 	if (retval)
4136 		return retval;
4137 
4138 	if ((int)attr.sched_policy < 0)
4139 		return -EINVAL;
4140 
4141 	rcu_read_lock();
4142 	retval = -ESRCH;
4143 	p = find_process_by_pid(pid);
4144 	if (p != NULL)
4145 		retval = sched_setattr(p, &attr);
4146 	rcu_read_unlock();
4147 
4148 	return retval;
4149 }
4150 
4151 /**
4152  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4153  * @pid: the pid in question.
4154  *
4155  * Return: On success, the policy of the thread. Otherwise, a negative error
4156  * code.
4157  */
4158 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4159 {
4160 	struct task_struct *p;
4161 	int retval;
4162 
4163 	if (pid < 0)
4164 		return -EINVAL;
4165 
4166 	retval = -ESRCH;
4167 	rcu_read_lock();
4168 	p = find_process_by_pid(pid);
4169 	if (p) {
4170 		retval = security_task_getscheduler(p);
4171 		if (!retval)
4172 			retval = p->policy
4173 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4174 	}
4175 	rcu_read_unlock();
4176 	return retval;
4177 }
4178 
4179 /**
4180  * sys_sched_getparam - get the RT priority of a thread
4181  * @pid: the pid in question.
4182  * @param: structure containing the RT priority.
4183  *
4184  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4185  * code.
4186  */
4187 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4188 {
4189 	struct sched_param lp = { .sched_priority = 0 };
4190 	struct task_struct *p;
4191 	int retval;
4192 
4193 	if (!param || pid < 0)
4194 		return -EINVAL;
4195 
4196 	rcu_read_lock();
4197 	p = find_process_by_pid(pid);
4198 	retval = -ESRCH;
4199 	if (!p)
4200 		goto out_unlock;
4201 
4202 	retval = security_task_getscheduler(p);
4203 	if (retval)
4204 		goto out_unlock;
4205 
4206 	if (task_has_rt_policy(p))
4207 		lp.sched_priority = p->rt_priority;
4208 	rcu_read_unlock();
4209 
4210 	/*
4211 	 * This one might sleep, we cannot do it with a spinlock held ...
4212 	 */
4213 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4214 
4215 	return retval;
4216 
4217 out_unlock:
4218 	rcu_read_unlock();
4219 	return retval;
4220 }
4221 
4222 static int sched_read_attr(struct sched_attr __user *uattr,
4223 			   struct sched_attr *attr,
4224 			   unsigned int usize)
4225 {
4226 	int ret;
4227 
4228 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4229 		return -EFAULT;
4230 
4231 	/*
4232 	 * If we're handed a smaller struct than we know of,
4233 	 * ensure all the unknown bits are 0 - i.e. old
4234 	 * user-space does not get uncomplete information.
4235 	 */
4236 	if (usize < sizeof(*attr)) {
4237 		unsigned char *addr;
4238 		unsigned char *end;
4239 
4240 		addr = (void *)attr + usize;
4241 		end  = (void *)attr + sizeof(*attr);
4242 
4243 		for (; addr < end; addr++) {
4244 			if (*addr)
4245 				return -EFBIG;
4246 		}
4247 
4248 		attr->size = usize;
4249 	}
4250 
4251 	ret = copy_to_user(uattr, attr, attr->size);
4252 	if (ret)
4253 		return -EFAULT;
4254 
4255 	return 0;
4256 }
4257 
4258 /**
4259  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4260  * @pid: the pid in question.
4261  * @uattr: structure containing the extended parameters.
4262  * @size: sizeof(attr) for fwd/bwd comp.
4263  * @flags: for future extension.
4264  */
4265 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4266 		unsigned int, size, unsigned int, flags)
4267 {
4268 	struct sched_attr attr = {
4269 		.size = sizeof(struct sched_attr),
4270 	};
4271 	struct task_struct *p;
4272 	int retval;
4273 
4274 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4275 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4276 		return -EINVAL;
4277 
4278 	rcu_read_lock();
4279 	p = find_process_by_pid(pid);
4280 	retval = -ESRCH;
4281 	if (!p)
4282 		goto out_unlock;
4283 
4284 	retval = security_task_getscheduler(p);
4285 	if (retval)
4286 		goto out_unlock;
4287 
4288 	attr.sched_policy = p->policy;
4289 	if (p->sched_reset_on_fork)
4290 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4291 	if (task_has_dl_policy(p))
4292 		__getparam_dl(p, &attr);
4293 	else if (task_has_rt_policy(p))
4294 		attr.sched_priority = p->rt_priority;
4295 	else
4296 		attr.sched_nice = task_nice(p);
4297 
4298 	rcu_read_unlock();
4299 
4300 	retval = sched_read_attr(uattr, &attr, size);
4301 	return retval;
4302 
4303 out_unlock:
4304 	rcu_read_unlock();
4305 	return retval;
4306 }
4307 
4308 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4309 {
4310 	cpumask_var_t cpus_allowed, new_mask;
4311 	struct task_struct *p;
4312 	int retval;
4313 
4314 	rcu_read_lock();
4315 
4316 	p = find_process_by_pid(pid);
4317 	if (!p) {
4318 		rcu_read_unlock();
4319 		return -ESRCH;
4320 	}
4321 
4322 	/* Prevent p going away */
4323 	get_task_struct(p);
4324 	rcu_read_unlock();
4325 
4326 	if (p->flags & PF_NO_SETAFFINITY) {
4327 		retval = -EINVAL;
4328 		goto out_put_task;
4329 	}
4330 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4331 		retval = -ENOMEM;
4332 		goto out_put_task;
4333 	}
4334 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4335 		retval = -ENOMEM;
4336 		goto out_free_cpus_allowed;
4337 	}
4338 	retval = -EPERM;
4339 	if (!check_same_owner(p)) {
4340 		rcu_read_lock();
4341 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4342 			rcu_read_unlock();
4343 			goto out_free_new_mask;
4344 		}
4345 		rcu_read_unlock();
4346 	}
4347 
4348 	retval = security_task_setscheduler(p);
4349 	if (retval)
4350 		goto out_free_new_mask;
4351 
4352 
4353 	cpuset_cpus_allowed(p, cpus_allowed);
4354 	cpumask_and(new_mask, in_mask, cpus_allowed);
4355 
4356 	/*
4357 	 * Since bandwidth control happens on root_domain basis,
4358 	 * if admission test is enabled, we only admit -deadline
4359 	 * tasks allowed to run on all the CPUs in the task's
4360 	 * root_domain.
4361 	 */
4362 #ifdef CONFIG_SMP
4363 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4364 		rcu_read_lock();
4365 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4366 			retval = -EBUSY;
4367 			rcu_read_unlock();
4368 			goto out_free_new_mask;
4369 		}
4370 		rcu_read_unlock();
4371 	}
4372 #endif
4373 again:
4374 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4375 
4376 	if (!retval) {
4377 		cpuset_cpus_allowed(p, cpus_allowed);
4378 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4379 			/*
4380 			 * We must have raced with a concurrent cpuset
4381 			 * update. Just reset the cpus_allowed to the
4382 			 * cpuset's cpus_allowed
4383 			 */
4384 			cpumask_copy(new_mask, cpus_allowed);
4385 			goto again;
4386 		}
4387 	}
4388 out_free_new_mask:
4389 	free_cpumask_var(new_mask);
4390 out_free_cpus_allowed:
4391 	free_cpumask_var(cpus_allowed);
4392 out_put_task:
4393 	put_task_struct(p);
4394 	return retval;
4395 }
4396 
4397 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4398 			     struct cpumask *new_mask)
4399 {
4400 	if (len < cpumask_size())
4401 		cpumask_clear(new_mask);
4402 	else if (len > cpumask_size())
4403 		len = cpumask_size();
4404 
4405 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4406 }
4407 
4408 /**
4409  * sys_sched_setaffinity - set the cpu affinity of a process
4410  * @pid: pid of the process
4411  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4412  * @user_mask_ptr: user-space pointer to the new cpu mask
4413  *
4414  * Return: 0 on success. An error code otherwise.
4415  */
4416 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4417 		unsigned long __user *, user_mask_ptr)
4418 {
4419 	cpumask_var_t new_mask;
4420 	int retval;
4421 
4422 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4423 		return -ENOMEM;
4424 
4425 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4426 	if (retval == 0)
4427 		retval = sched_setaffinity(pid, new_mask);
4428 	free_cpumask_var(new_mask);
4429 	return retval;
4430 }
4431 
4432 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4433 {
4434 	struct task_struct *p;
4435 	unsigned long flags;
4436 	int retval;
4437 
4438 	rcu_read_lock();
4439 
4440 	retval = -ESRCH;
4441 	p = find_process_by_pid(pid);
4442 	if (!p)
4443 		goto out_unlock;
4444 
4445 	retval = security_task_getscheduler(p);
4446 	if (retval)
4447 		goto out_unlock;
4448 
4449 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4450 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4451 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4452 
4453 out_unlock:
4454 	rcu_read_unlock();
4455 
4456 	return retval;
4457 }
4458 
4459 /**
4460  * sys_sched_getaffinity - get the cpu affinity of a process
4461  * @pid: pid of the process
4462  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4463  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4464  *
4465  * Return: 0 on success. An error code otherwise.
4466  */
4467 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4468 		unsigned long __user *, user_mask_ptr)
4469 {
4470 	int ret;
4471 	cpumask_var_t mask;
4472 
4473 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4474 		return -EINVAL;
4475 	if (len & (sizeof(unsigned long)-1))
4476 		return -EINVAL;
4477 
4478 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4479 		return -ENOMEM;
4480 
4481 	ret = sched_getaffinity(pid, mask);
4482 	if (ret == 0) {
4483 		size_t retlen = min_t(size_t, len, cpumask_size());
4484 
4485 		if (copy_to_user(user_mask_ptr, mask, retlen))
4486 			ret = -EFAULT;
4487 		else
4488 			ret = retlen;
4489 	}
4490 	free_cpumask_var(mask);
4491 
4492 	return ret;
4493 }
4494 
4495 /**
4496  * sys_sched_yield - yield the current processor to other threads.
4497  *
4498  * This function yields the current CPU to other tasks. If there are no
4499  * other threads running on this CPU then this function will return.
4500  *
4501  * Return: 0.
4502  */
4503 SYSCALL_DEFINE0(sched_yield)
4504 {
4505 	struct rq *rq = this_rq_lock();
4506 
4507 	schedstat_inc(rq, yld_count);
4508 	current->sched_class->yield_task(rq);
4509 
4510 	/*
4511 	 * Since we are going to call schedule() anyway, there's
4512 	 * no need to preempt or enable interrupts:
4513 	 */
4514 	__release(rq->lock);
4515 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4516 	do_raw_spin_unlock(&rq->lock);
4517 	sched_preempt_enable_no_resched();
4518 
4519 	schedule();
4520 
4521 	return 0;
4522 }
4523 
4524 int __sched _cond_resched(void)
4525 {
4526 	if (should_resched(0)) {
4527 		preempt_schedule_common();
4528 		return 1;
4529 	}
4530 	return 0;
4531 }
4532 EXPORT_SYMBOL(_cond_resched);
4533 
4534 /*
4535  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4536  * call schedule, and on return reacquire the lock.
4537  *
4538  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4539  * operations here to prevent schedule() from being called twice (once via
4540  * spin_unlock(), once by hand).
4541  */
4542 int __cond_resched_lock(spinlock_t *lock)
4543 {
4544 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4545 	int ret = 0;
4546 
4547 	lockdep_assert_held(lock);
4548 
4549 	if (spin_needbreak(lock) || resched) {
4550 		spin_unlock(lock);
4551 		if (resched)
4552 			preempt_schedule_common();
4553 		else
4554 			cpu_relax();
4555 		ret = 1;
4556 		spin_lock(lock);
4557 	}
4558 	return ret;
4559 }
4560 EXPORT_SYMBOL(__cond_resched_lock);
4561 
4562 int __sched __cond_resched_softirq(void)
4563 {
4564 	BUG_ON(!in_softirq());
4565 
4566 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4567 		local_bh_enable();
4568 		preempt_schedule_common();
4569 		local_bh_disable();
4570 		return 1;
4571 	}
4572 	return 0;
4573 }
4574 EXPORT_SYMBOL(__cond_resched_softirq);
4575 
4576 /**
4577  * yield - yield the current processor to other threads.
4578  *
4579  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4580  *
4581  * The scheduler is at all times free to pick the calling task as the most
4582  * eligible task to run, if removing the yield() call from your code breaks
4583  * it, its already broken.
4584  *
4585  * Typical broken usage is:
4586  *
4587  * while (!event)
4588  * 	yield();
4589  *
4590  * where one assumes that yield() will let 'the other' process run that will
4591  * make event true. If the current task is a SCHED_FIFO task that will never
4592  * happen. Never use yield() as a progress guarantee!!
4593  *
4594  * If you want to use yield() to wait for something, use wait_event().
4595  * If you want to use yield() to be 'nice' for others, use cond_resched().
4596  * If you still want to use yield(), do not!
4597  */
4598 void __sched yield(void)
4599 {
4600 	set_current_state(TASK_RUNNING);
4601 	sys_sched_yield();
4602 }
4603 EXPORT_SYMBOL(yield);
4604 
4605 /**
4606  * yield_to - yield the current processor to another thread in
4607  * your thread group, or accelerate that thread toward the
4608  * processor it's on.
4609  * @p: target task
4610  * @preempt: whether task preemption is allowed or not
4611  *
4612  * It's the caller's job to ensure that the target task struct
4613  * can't go away on us before we can do any checks.
4614  *
4615  * Return:
4616  *	true (>0) if we indeed boosted the target task.
4617  *	false (0) if we failed to boost the target.
4618  *	-ESRCH if there's no task to yield to.
4619  */
4620 int __sched yield_to(struct task_struct *p, bool preempt)
4621 {
4622 	struct task_struct *curr = current;
4623 	struct rq *rq, *p_rq;
4624 	unsigned long flags;
4625 	int yielded = 0;
4626 
4627 	local_irq_save(flags);
4628 	rq = this_rq();
4629 
4630 again:
4631 	p_rq = task_rq(p);
4632 	/*
4633 	 * If we're the only runnable task on the rq and target rq also
4634 	 * has only one task, there's absolutely no point in yielding.
4635 	 */
4636 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4637 		yielded = -ESRCH;
4638 		goto out_irq;
4639 	}
4640 
4641 	double_rq_lock(rq, p_rq);
4642 	if (task_rq(p) != p_rq) {
4643 		double_rq_unlock(rq, p_rq);
4644 		goto again;
4645 	}
4646 
4647 	if (!curr->sched_class->yield_to_task)
4648 		goto out_unlock;
4649 
4650 	if (curr->sched_class != p->sched_class)
4651 		goto out_unlock;
4652 
4653 	if (task_running(p_rq, p) || p->state)
4654 		goto out_unlock;
4655 
4656 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4657 	if (yielded) {
4658 		schedstat_inc(rq, yld_count);
4659 		/*
4660 		 * Make p's CPU reschedule; pick_next_entity takes care of
4661 		 * fairness.
4662 		 */
4663 		if (preempt && rq != p_rq)
4664 			resched_curr(p_rq);
4665 	}
4666 
4667 out_unlock:
4668 	double_rq_unlock(rq, p_rq);
4669 out_irq:
4670 	local_irq_restore(flags);
4671 
4672 	if (yielded > 0)
4673 		schedule();
4674 
4675 	return yielded;
4676 }
4677 EXPORT_SYMBOL_GPL(yield_to);
4678 
4679 /*
4680  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4681  * that process accounting knows that this is a task in IO wait state.
4682  */
4683 long __sched io_schedule_timeout(long timeout)
4684 {
4685 	int old_iowait = current->in_iowait;
4686 	struct rq *rq;
4687 	long ret;
4688 
4689 	current->in_iowait = 1;
4690 	blk_schedule_flush_plug(current);
4691 
4692 	delayacct_blkio_start();
4693 	rq = raw_rq();
4694 	atomic_inc(&rq->nr_iowait);
4695 	ret = schedule_timeout(timeout);
4696 	current->in_iowait = old_iowait;
4697 	atomic_dec(&rq->nr_iowait);
4698 	delayacct_blkio_end();
4699 
4700 	return ret;
4701 }
4702 EXPORT_SYMBOL(io_schedule_timeout);
4703 
4704 /**
4705  * sys_sched_get_priority_max - return maximum RT priority.
4706  * @policy: scheduling class.
4707  *
4708  * Return: On success, this syscall returns the maximum
4709  * rt_priority that can be used by a given scheduling class.
4710  * On failure, a negative error code is returned.
4711  */
4712 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4713 {
4714 	int ret = -EINVAL;
4715 
4716 	switch (policy) {
4717 	case SCHED_FIFO:
4718 	case SCHED_RR:
4719 		ret = MAX_USER_RT_PRIO-1;
4720 		break;
4721 	case SCHED_DEADLINE:
4722 	case SCHED_NORMAL:
4723 	case SCHED_BATCH:
4724 	case SCHED_IDLE:
4725 		ret = 0;
4726 		break;
4727 	}
4728 	return ret;
4729 }
4730 
4731 /**
4732  * sys_sched_get_priority_min - return minimum RT priority.
4733  * @policy: scheduling class.
4734  *
4735  * Return: On success, this syscall returns the minimum
4736  * rt_priority that can be used by a given scheduling class.
4737  * On failure, a negative error code is returned.
4738  */
4739 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4740 {
4741 	int ret = -EINVAL;
4742 
4743 	switch (policy) {
4744 	case SCHED_FIFO:
4745 	case SCHED_RR:
4746 		ret = 1;
4747 		break;
4748 	case SCHED_DEADLINE:
4749 	case SCHED_NORMAL:
4750 	case SCHED_BATCH:
4751 	case SCHED_IDLE:
4752 		ret = 0;
4753 	}
4754 	return ret;
4755 }
4756 
4757 /**
4758  * sys_sched_rr_get_interval - return the default timeslice of a process.
4759  * @pid: pid of the process.
4760  * @interval: userspace pointer to the timeslice value.
4761  *
4762  * this syscall writes the default timeslice value of a given process
4763  * into the user-space timespec buffer. A value of '0' means infinity.
4764  *
4765  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4766  * an error code.
4767  */
4768 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4769 		struct timespec __user *, interval)
4770 {
4771 	struct task_struct *p;
4772 	unsigned int time_slice;
4773 	unsigned long flags;
4774 	struct rq *rq;
4775 	int retval;
4776 	struct timespec t;
4777 
4778 	if (pid < 0)
4779 		return -EINVAL;
4780 
4781 	retval = -ESRCH;
4782 	rcu_read_lock();
4783 	p = find_process_by_pid(pid);
4784 	if (!p)
4785 		goto out_unlock;
4786 
4787 	retval = security_task_getscheduler(p);
4788 	if (retval)
4789 		goto out_unlock;
4790 
4791 	rq = task_rq_lock(p, &flags);
4792 	time_slice = 0;
4793 	if (p->sched_class->get_rr_interval)
4794 		time_slice = p->sched_class->get_rr_interval(rq, p);
4795 	task_rq_unlock(rq, p, &flags);
4796 
4797 	rcu_read_unlock();
4798 	jiffies_to_timespec(time_slice, &t);
4799 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4800 	return retval;
4801 
4802 out_unlock:
4803 	rcu_read_unlock();
4804 	return retval;
4805 }
4806 
4807 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4808 
4809 void sched_show_task(struct task_struct *p)
4810 {
4811 	unsigned long free = 0;
4812 	int ppid;
4813 	unsigned long state = p->state;
4814 
4815 	if (state)
4816 		state = __ffs(state) + 1;
4817 	printk(KERN_INFO "%-15.15s %c", p->comm,
4818 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4819 #if BITS_PER_LONG == 32
4820 	if (state == TASK_RUNNING)
4821 		printk(KERN_CONT " running  ");
4822 	else
4823 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4824 #else
4825 	if (state == TASK_RUNNING)
4826 		printk(KERN_CONT "  running task    ");
4827 	else
4828 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4829 #endif
4830 #ifdef CONFIG_DEBUG_STACK_USAGE
4831 	free = stack_not_used(p);
4832 #endif
4833 	ppid = 0;
4834 	rcu_read_lock();
4835 	if (pid_alive(p))
4836 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4837 	rcu_read_unlock();
4838 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4839 		task_pid_nr(p), ppid,
4840 		(unsigned long)task_thread_info(p)->flags);
4841 
4842 	print_worker_info(KERN_INFO, p);
4843 	show_stack(p, NULL);
4844 }
4845 
4846 void show_state_filter(unsigned long state_filter)
4847 {
4848 	struct task_struct *g, *p;
4849 
4850 #if BITS_PER_LONG == 32
4851 	printk(KERN_INFO
4852 		"  task                PC stack   pid father\n");
4853 #else
4854 	printk(KERN_INFO
4855 		"  task                        PC stack   pid father\n");
4856 #endif
4857 	rcu_read_lock();
4858 	for_each_process_thread(g, p) {
4859 		/*
4860 		 * reset the NMI-timeout, listing all files on a slow
4861 		 * console might take a lot of time:
4862 		 */
4863 		touch_nmi_watchdog();
4864 		if (!state_filter || (p->state & state_filter))
4865 			sched_show_task(p);
4866 	}
4867 
4868 	touch_all_softlockup_watchdogs();
4869 
4870 #ifdef CONFIG_SCHED_DEBUG
4871 	sysrq_sched_debug_show();
4872 #endif
4873 	rcu_read_unlock();
4874 	/*
4875 	 * Only show locks if all tasks are dumped:
4876 	 */
4877 	if (!state_filter)
4878 		debug_show_all_locks();
4879 }
4880 
4881 void init_idle_bootup_task(struct task_struct *idle)
4882 {
4883 	idle->sched_class = &idle_sched_class;
4884 }
4885 
4886 /**
4887  * init_idle - set up an idle thread for a given CPU
4888  * @idle: task in question
4889  * @cpu: cpu the idle task belongs to
4890  *
4891  * NOTE: this function does not set the idle thread's NEED_RESCHED
4892  * flag, to make booting more robust.
4893  */
4894 void init_idle(struct task_struct *idle, int cpu)
4895 {
4896 	struct rq *rq = cpu_rq(cpu);
4897 	unsigned long flags;
4898 
4899 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
4900 	raw_spin_lock(&rq->lock);
4901 
4902 	__sched_fork(0, idle);
4903 	idle->state = TASK_RUNNING;
4904 	idle->se.exec_start = sched_clock();
4905 
4906 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4907 	/*
4908 	 * We're having a chicken and egg problem, even though we are
4909 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4910 	 * lockdep check in task_group() will fail.
4911 	 *
4912 	 * Similar case to sched_fork(). / Alternatively we could
4913 	 * use task_rq_lock() here and obtain the other rq->lock.
4914 	 *
4915 	 * Silence PROVE_RCU
4916 	 */
4917 	rcu_read_lock();
4918 	__set_task_cpu(idle, cpu);
4919 	rcu_read_unlock();
4920 
4921 	rq->curr = rq->idle = idle;
4922 	idle->on_rq = TASK_ON_RQ_QUEUED;
4923 #if defined(CONFIG_SMP)
4924 	idle->on_cpu = 1;
4925 #endif
4926 	raw_spin_unlock(&rq->lock);
4927 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4928 
4929 	/* Set the preempt count _outside_ the spinlocks! */
4930 	init_idle_preempt_count(idle, cpu);
4931 
4932 	/*
4933 	 * The idle tasks have their own, simple scheduling class:
4934 	 */
4935 	idle->sched_class = &idle_sched_class;
4936 	ftrace_graph_init_idle_task(idle, cpu);
4937 	vtime_init_idle(idle, cpu);
4938 #if defined(CONFIG_SMP)
4939 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4940 #endif
4941 }
4942 
4943 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4944 			      const struct cpumask *trial)
4945 {
4946 	int ret = 1, trial_cpus;
4947 	struct dl_bw *cur_dl_b;
4948 	unsigned long flags;
4949 
4950 	if (!cpumask_weight(cur))
4951 		return ret;
4952 
4953 	rcu_read_lock_sched();
4954 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4955 	trial_cpus = cpumask_weight(trial);
4956 
4957 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4958 	if (cur_dl_b->bw != -1 &&
4959 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4960 		ret = 0;
4961 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4962 	rcu_read_unlock_sched();
4963 
4964 	return ret;
4965 }
4966 
4967 int task_can_attach(struct task_struct *p,
4968 		    const struct cpumask *cs_cpus_allowed)
4969 {
4970 	int ret = 0;
4971 
4972 	/*
4973 	 * Kthreads which disallow setaffinity shouldn't be moved
4974 	 * to a new cpuset; we don't want to change their cpu
4975 	 * affinity and isolating such threads by their set of
4976 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4977 	 * applicable for such threads.  This prevents checking for
4978 	 * success of set_cpus_allowed_ptr() on all attached tasks
4979 	 * before cpus_allowed may be changed.
4980 	 */
4981 	if (p->flags & PF_NO_SETAFFINITY) {
4982 		ret = -EINVAL;
4983 		goto out;
4984 	}
4985 
4986 #ifdef CONFIG_SMP
4987 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4988 					      cs_cpus_allowed)) {
4989 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4990 							cs_cpus_allowed);
4991 		struct dl_bw *dl_b;
4992 		bool overflow;
4993 		int cpus;
4994 		unsigned long flags;
4995 
4996 		rcu_read_lock_sched();
4997 		dl_b = dl_bw_of(dest_cpu);
4998 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4999 		cpus = dl_bw_cpus(dest_cpu);
5000 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5001 		if (overflow)
5002 			ret = -EBUSY;
5003 		else {
5004 			/*
5005 			 * We reserve space for this task in the destination
5006 			 * root_domain, as we can't fail after this point.
5007 			 * We will free resources in the source root_domain
5008 			 * later on (see set_cpus_allowed_dl()).
5009 			 */
5010 			__dl_add(dl_b, p->dl.dl_bw);
5011 		}
5012 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5013 		rcu_read_unlock_sched();
5014 
5015 	}
5016 #endif
5017 out:
5018 	return ret;
5019 }
5020 
5021 #ifdef CONFIG_SMP
5022 
5023 #ifdef CONFIG_NUMA_BALANCING
5024 /* Migrate current task p to target_cpu */
5025 int migrate_task_to(struct task_struct *p, int target_cpu)
5026 {
5027 	struct migration_arg arg = { p, target_cpu };
5028 	int curr_cpu = task_cpu(p);
5029 
5030 	if (curr_cpu == target_cpu)
5031 		return 0;
5032 
5033 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5034 		return -EINVAL;
5035 
5036 	/* TODO: This is not properly updating schedstats */
5037 
5038 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5039 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5040 }
5041 
5042 /*
5043  * Requeue a task on a given node and accurately track the number of NUMA
5044  * tasks on the runqueues
5045  */
5046 void sched_setnuma(struct task_struct *p, int nid)
5047 {
5048 	struct rq *rq;
5049 	unsigned long flags;
5050 	bool queued, running;
5051 
5052 	rq = task_rq_lock(p, &flags);
5053 	queued = task_on_rq_queued(p);
5054 	running = task_current(rq, p);
5055 
5056 	if (queued)
5057 		dequeue_task(rq, p, 0);
5058 	if (running)
5059 		put_prev_task(rq, p);
5060 
5061 	p->numa_preferred_nid = nid;
5062 
5063 	if (running)
5064 		p->sched_class->set_curr_task(rq);
5065 	if (queued)
5066 		enqueue_task(rq, p, 0);
5067 	task_rq_unlock(rq, p, &flags);
5068 }
5069 #endif /* CONFIG_NUMA_BALANCING */
5070 
5071 #ifdef CONFIG_HOTPLUG_CPU
5072 /*
5073  * Ensures that the idle task is using init_mm right before its cpu goes
5074  * offline.
5075  */
5076 void idle_task_exit(void)
5077 {
5078 	struct mm_struct *mm = current->active_mm;
5079 
5080 	BUG_ON(cpu_online(smp_processor_id()));
5081 
5082 	if (mm != &init_mm) {
5083 		switch_mm(mm, &init_mm, current);
5084 		finish_arch_post_lock_switch();
5085 	}
5086 	mmdrop(mm);
5087 }
5088 
5089 /*
5090  * Since this CPU is going 'away' for a while, fold any nr_active delta
5091  * we might have. Assumes we're called after migrate_tasks() so that the
5092  * nr_active count is stable.
5093  *
5094  * Also see the comment "Global load-average calculations".
5095  */
5096 static void calc_load_migrate(struct rq *rq)
5097 {
5098 	long delta = calc_load_fold_active(rq);
5099 	if (delta)
5100 		atomic_long_add(delta, &calc_load_tasks);
5101 }
5102 
5103 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5104 {
5105 }
5106 
5107 static const struct sched_class fake_sched_class = {
5108 	.put_prev_task = put_prev_task_fake,
5109 };
5110 
5111 static struct task_struct fake_task = {
5112 	/*
5113 	 * Avoid pull_{rt,dl}_task()
5114 	 */
5115 	.prio = MAX_PRIO + 1,
5116 	.sched_class = &fake_sched_class,
5117 };
5118 
5119 /*
5120  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5121  * try_to_wake_up()->select_task_rq().
5122  *
5123  * Called with rq->lock held even though we'er in stop_machine() and
5124  * there's no concurrency possible, we hold the required locks anyway
5125  * because of lock validation efforts.
5126  */
5127 static void migrate_tasks(struct rq *dead_rq)
5128 {
5129 	struct rq *rq = dead_rq;
5130 	struct task_struct *next, *stop = rq->stop;
5131 	int dest_cpu;
5132 
5133 	/*
5134 	 * Fudge the rq selection such that the below task selection loop
5135 	 * doesn't get stuck on the currently eligible stop task.
5136 	 *
5137 	 * We're currently inside stop_machine() and the rq is either stuck
5138 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5139 	 * either way we should never end up calling schedule() until we're
5140 	 * done here.
5141 	 */
5142 	rq->stop = NULL;
5143 
5144 	/*
5145 	 * put_prev_task() and pick_next_task() sched
5146 	 * class method both need to have an up-to-date
5147 	 * value of rq->clock[_task]
5148 	 */
5149 	update_rq_clock(rq);
5150 
5151 	for (;;) {
5152 		/*
5153 		 * There's this thread running, bail when that's the only
5154 		 * remaining thread.
5155 		 */
5156 		if (rq->nr_running == 1)
5157 			break;
5158 
5159 		/*
5160 		 * Ensure rq->lock covers the entire task selection
5161 		 * until the migration.
5162 		 */
5163 		lockdep_pin_lock(&rq->lock);
5164 		next = pick_next_task(rq, &fake_task);
5165 		BUG_ON(!next);
5166 		next->sched_class->put_prev_task(rq, next);
5167 
5168 		/* Find suitable destination for @next, with force if needed. */
5169 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5170 
5171 		lockdep_unpin_lock(&rq->lock);
5172 		rq = __migrate_task(rq, next, dest_cpu);
5173 		if (rq != dead_rq) {
5174 			raw_spin_unlock(&rq->lock);
5175 			rq = dead_rq;
5176 			raw_spin_lock(&rq->lock);
5177 		}
5178 	}
5179 
5180 	rq->stop = stop;
5181 }
5182 #endif /* CONFIG_HOTPLUG_CPU */
5183 
5184 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5185 
5186 static struct ctl_table sd_ctl_dir[] = {
5187 	{
5188 		.procname	= "sched_domain",
5189 		.mode		= 0555,
5190 	},
5191 	{}
5192 };
5193 
5194 static struct ctl_table sd_ctl_root[] = {
5195 	{
5196 		.procname	= "kernel",
5197 		.mode		= 0555,
5198 		.child		= sd_ctl_dir,
5199 	},
5200 	{}
5201 };
5202 
5203 static struct ctl_table *sd_alloc_ctl_entry(int n)
5204 {
5205 	struct ctl_table *entry =
5206 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5207 
5208 	return entry;
5209 }
5210 
5211 static void sd_free_ctl_entry(struct ctl_table **tablep)
5212 {
5213 	struct ctl_table *entry;
5214 
5215 	/*
5216 	 * In the intermediate directories, both the child directory and
5217 	 * procname are dynamically allocated and could fail but the mode
5218 	 * will always be set. In the lowest directory the names are
5219 	 * static strings and all have proc handlers.
5220 	 */
5221 	for (entry = *tablep; entry->mode; entry++) {
5222 		if (entry->child)
5223 			sd_free_ctl_entry(&entry->child);
5224 		if (entry->proc_handler == NULL)
5225 			kfree(entry->procname);
5226 	}
5227 
5228 	kfree(*tablep);
5229 	*tablep = NULL;
5230 }
5231 
5232 static int min_load_idx = 0;
5233 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5234 
5235 static void
5236 set_table_entry(struct ctl_table *entry,
5237 		const char *procname, void *data, int maxlen,
5238 		umode_t mode, proc_handler *proc_handler,
5239 		bool load_idx)
5240 {
5241 	entry->procname = procname;
5242 	entry->data = data;
5243 	entry->maxlen = maxlen;
5244 	entry->mode = mode;
5245 	entry->proc_handler = proc_handler;
5246 
5247 	if (load_idx) {
5248 		entry->extra1 = &min_load_idx;
5249 		entry->extra2 = &max_load_idx;
5250 	}
5251 }
5252 
5253 static struct ctl_table *
5254 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5255 {
5256 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5257 
5258 	if (table == NULL)
5259 		return NULL;
5260 
5261 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5262 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5263 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5264 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5265 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5266 		sizeof(int), 0644, proc_dointvec_minmax, true);
5267 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5268 		sizeof(int), 0644, proc_dointvec_minmax, true);
5269 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5270 		sizeof(int), 0644, proc_dointvec_minmax, true);
5271 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5272 		sizeof(int), 0644, proc_dointvec_minmax, true);
5273 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5274 		sizeof(int), 0644, proc_dointvec_minmax, true);
5275 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5276 		sizeof(int), 0644, proc_dointvec_minmax, false);
5277 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5278 		sizeof(int), 0644, proc_dointvec_minmax, false);
5279 	set_table_entry(&table[9], "cache_nice_tries",
5280 		&sd->cache_nice_tries,
5281 		sizeof(int), 0644, proc_dointvec_minmax, false);
5282 	set_table_entry(&table[10], "flags", &sd->flags,
5283 		sizeof(int), 0644, proc_dointvec_minmax, false);
5284 	set_table_entry(&table[11], "max_newidle_lb_cost",
5285 		&sd->max_newidle_lb_cost,
5286 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5287 	set_table_entry(&table[12], "name", sd->name,
5288 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5289 	/* &table[13] is terminator */
5290 
5291 	return table;
5292 }
5293 
5294 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5295 {
5296 	struct ctl_table *entry, *table;
5297 	struct sched_domain *sd;
5298 	int domain_num = 0, i;
5299 	char buf[32];
5300 
5301 	for_each_domain(cpu, sd)
5302 		domain_num++;
5303 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5304 	if (table == NULL)
5305 		return NULL;
5306 
5307 	i = 0;
5308 	for_each_domain(cpu, sd) {
5309 		snprintf(buf, 32, "domain%d", i);
5310 		entry->procname = kstrdup(buf, GFP_KERNEL);
5311 		entry->mode = 0555;
5312 		entry->child = sd_alloc_ctl_domain_table(sd);
5313 		entry++;
5314 		i++;
5315 	}
5316 	return table;
5317 }
5318 
5319 static struct ctl_table_header *sd_sysctl_header;
5320 static void register_sched_domain_sysctl(void)
5321 {
5322 	int i, cpu_num = num_possible_cpus();
5323 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5324 	char buf[32];
5325 
5326 	WARN_ON(sd_ctl_dir[0].child);
5327 	sd_ctl_dir[0].child = entry;
5328 
5329 	if (entry == NULL)
5330 		return;
5331 
5332 	for_each_possible_cpu(i) {
5333 		snprintf(buf, 32, "cpu%d", i);
5334 		entry->procname = kstrdup(buf, GFP_KERNEL);
5335 		entry->mode = 0555;
5336 		entry->child = sd_alloc_ctl_cpu_table(i);
5337 		entry++;
5338 	}
5339 
5340 	WARN_ON(sd_sysctl_header);
5341 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5342 }
5343 
5344 /* may be called multiple times per register */
5345 static void unregister_sched_domain_sysctl(void)
5346 {
5347 	unregister_sysctl_table(sd_sysctl_header);
5348 	sd_sysctl_header = NULL;
5349 	if (sd_ctl_dir[0].child)
5350 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5351 }
5352 #else
5353 static void register_sched_domain_sysctl(void)
5354 {
5355 }
5356 static void unregister_sched_domain_sysctl(void)
5357 {
5358 }
5359 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5360 
5361 static void set_rq_online(struct rq *rq)
5362 {
5363 	if (!rq->online) {
5364 		const struct sched_class *class;
5365 
5366 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5367 		rq->online = 1;
5368 
5369 		for_each_class(class) {
5370 			if (class->rq_online)
5371 				class->rq_online(rq);
5372 		}
5373 	}
5374 }
5375 
5376 static void set_rq_offline(struct rq *rq)
5377 {
5378 	if (rq->online) {
5379 		const struct sched_class *class;
5380 
5381 		for_each_class(class) {
5382 			if (class->rq_offline)
5383 				class->rq_offline(rq);
5384 		}
5385 
5386 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5387 		rq->online = 0;
5388 	}
5389 }
5390 
5391 /*
5392  * migration_call - callback that gets triggered when a CPU is added.
5393  * Here we can start up the necessary migration thread for the new CPU.
5394  */
5395 static int
5396 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5397 {
5398 	int cpu = (long)hcpu;
5399 	unsigned long flags;
5400 	struct rq *rq = cpu_rq(cpu);
5401 
5402 	switch (action & ~CPU_TASKS_FROZEN) {
5403 
5404 	case CPU_UP_PREPARE:
5405 		rq->calc_load_update = calc_load_update;
5406 		break;
5407 
5408 	case CPU_ONLINE:
5409 		/* Update our root-domain */
5410 		raw_spin_lock_irqsave(&rq->lock, flags);
5411 		if (rq->rd) {
5412 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5413 
5414 			set_rq_online(rq);
5415 		}
5416 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5417 		break;
5418 
5419 #ifdef CONFIG_HOTPLUG_CPU
5420 	case CPU_DYING:
5421 		sched_ttwu_pending();
5422 		/* Update our root-domain */
5423 		raw_spin_lock_irqsave(&rq->lock, flags);
5424 		if (rq->rd) {
5425 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5426 			set_rq_offline(rq);
5427 		}
5428 		migrate_tasks(rq);
5429 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5430 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5431 		break;
5432 
5433 	case CPU_DEAD:
5434 		calc_load_migrate(rq);
5435 		break;
5436 #endif
5437 	}
5438 
5439 	update_max_interval();
5440 
5441 	return NOTIFY_OK;
5442 }
5443 
5444 /*
5445  * Register at high priority so that task migration (migrate_all_tasks)
5446  * happens before everything else.  This has to be lower priority than
5447  * the notifier in the perf_event subsystem, though.
5448  */
5449 static struct notifier_block migration_notifier = {
5450 	.notifier_call = migration_call,
5451 	.priority = CPU_PRI_MIGRATION,
5452 };
5453 
5454 static void set_cpu_rq_start_time(void)
5455 {
5456 	int cpu = smp_processor_id();
5457 	struct rq *rq = cpu_rq(cpu);
5458 	rq->age_stamp = sched_clock_cpu(cpu);
5459 }
5460 
5461 static int sched_cpu_active(struct notifier_block *nfb,
5462 				      unsigned long action, void *hcpu)
5463 {
5464 	switch (action & ~CPU_TASKS_FROZEN) {
5465 	case CPU_STARTING:
5466 		set_cpu_rq_start_time();
5467 		return NOTIFY_OK;
5468 	case CPU_DOWN_FAILED:
5469 		set_cpu_active((long)hcpu, true);
5470 		return NOTIFY_OK;
5471 	default:
5472 		return NOTIFY_DONE;
5473 	}
5474 }
5475 
5476 static int sched_cpu_inactive(struct notifier_block *nfb,
5477 					unsigned long action, void *hcpu)
5478 {
5479 	switch (action & ~CPU_TASKS_FROZEN) {
5480 	case CPU_DOWN_PREPARE:
5481 		set_cpu_active((long)hcpu, false);
5482 		return NOTIFY_OK;
5483 	default:
5484 		return NOTIFY_DONE;
5485 	}
5486 }
5487 
5488 static int __init migration_init(void)
5489 {
5490 	void *cpu = (void *)(long)smp_processor_id();
5491 	int err;
5492 
5493 	/* Initialize migration for the boot CPU */
5494 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5495 	BUG_ON(err == NOTIFY_BAD);
5496 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5497 	register_cpu_notifier(&migration_notifier);
5498 
5499 	/* Register cpu active notifiers */
5500 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5501 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5502 
5503 	return 0;
5504 }
5505 early_initcall(migration_init);
5506 
5507 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5508 
5509 #ifdef CONFIG_SCHED_DEBUG
5510 
5511 static __read_mostly int sched_debug_enabled;
5512 
5513 static int __init sched_debug_setup(char *str)
5514 {
5515 	sched_debug_enabled = 1;
5516 
5517 	return 0;
5518 }
5519 early_param("sched_debug", sched_debug_setup);
5520 
5521 static inline bool sched_debug(void)
5522 {
5523 	return sched_debug_enabled;
5524 }
5525 
5526 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5527 				  struct cpumask *groupmask)
5528 {
5529 	struct sched_group *group = sd->groups;
5530 
5531 	cpumask_clear(groupmask);
5532 
5533 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5534 
5535 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5536 		printk("does not load-balance\n");
5537 		if (sd->parent)
5538 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5539 					" has parent");
5540 		return -1;
5541 	}
5542 
5543 	printk(KERN_CONT "span %*pbl level %s\n",
5544 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5545 
5546 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5547 		printk(KERN_ERR "ERROR: domain->span does not contain "
5548 				"CPU%d\n", cpu);
5549 	}
5550 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5551 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5552 				" CPU%d\n", cpu);
5553 	}
5554 
5555 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5556 	do {
5557 		if (!group) {
5558 			printk("\n");
5559 			printk(KERN_ERR "ERROR: group is NULL\n");
5560 			break;
5561 		}
5562 
5563 		if (!cpumask_weight(sched_group_cpus(group))) {
5564 			printk(KERN_CONT "\n");
5565 			printk(KERN_ERR "ERROR: empty group\n");
5566 			break;
5567 		}
5568 
5569 		if (!(sd->flags & SD_OVERLAP) &&
5570 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5571 			printk(KERN_CONT "\n");
5572 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5573 			break;
5574 		}
5575 
5576 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5577 
5578 		printk(KERN_CONT " %*pbl",
5579 		       cpumask_pr_args(sched_group_cpus(group)));
5580 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5581 			printk(KERN_CONT " (cpu_capacity = %d)",
5582 				group->sgc->capacity);
5583 		}
5584 
5585 		group = group->next;
5586 	} while (group != sd->groups);
5587 	printk(KERN_CONT "\n");
5588 
5589 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5590 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5591 
5592 	if (sd->parent &&
5593 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5594 		printk(KERN_ERR "ERROR: parent span is not a superset "
5595 			"of domain->span\n");
5596 	return 0;
5597 }
5598 
5599 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5600 {
5601 	int level = 0;
5602 
5603 	if (!sched_debug_enabled)
5604 		return;
5605 
5606 	if (!sd) {
5607 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5608 		return;
5609 	}
5610 
5611 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5612 
5613 	for (;;) {
5614 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5615 			break;
5616 		level++;
5617 		sd = sd->parent;
5618 		if (!sd)
5619 			break;
5620 	}
5621 }
5622 #else /* !CONFIG_SCHED_DEBUG */
5623 # define sched_domain_debug(sd, cpu) do { } while (0)
5624 static inline bool sched_debug(void)
5625 {
5626 	return false;
5627 }
5628 #endif /* CONFIG_SCHED_DEBUG */
5629 
5630 static int sd_degenerate(struct sched_domain *sd)
5631 {
5632 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5633 		return 1;
5634 
5635 	/* Following flags need at least 2 groups */
5636 	if (sd->flags & (SD_LOAD_BALANCE |
5637 			 SD_BALANCE_NEWIDLE |
5638 			 SD_BALANCE_FORK |
5639 			 SD_BALANCE_EXEC |
5640 			 SD_SHARE_CPUCAPACITY |
5641 			 SD_SHARE_PKG_RESOURCES |
5642 			 SD_SHARE_POWERDOMAIN)) {
5643 		if (sd->groups != sd->groups->next)
5644 			return 0;
5645 	}
5646 
5647 	/* Following flags don't use groups */
5648 	if (sd->flags & (SD_WAKE_AFFINE))
5649 		return 0;
5650 
5651 	return 1;
5652 }
5653 
5654 static int
5655 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5656 {
5657 	unsigned long cflags = sd->flags, pflags = parent->flags;
5658 
5659 	if (sd_degenerate(parent))
5660 		return 1;
5661 
5662 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5663 		return 0;
5664 
5665 	/* Flags needing groups don't count if only 1 group in parent */
5666 	if (parent->groups == parent->groups->next) {
5667 		pflags &= ~(SD_LOAD_BALANCE |
5668 				SD_BALANCE_NEWIDLE |
5669 				SD_BALANCE_FORK |
5670 				SD_BALANCE_EXEC |
5671 				SD_SHARE_CPUCAPACITY |
5672 				SD_SHARE_PKG_RESOURCES |
5673 				SD_PREFER_SIBLING |
5674 				SD_SHARE_POWERDOMAIN);
5675 		if (nr_node_ids == 1)
5676 			pflags &= ~SD_SERIALIZE;
5677 	}
5678 	if (~cflags & pflags)
5679 		return 0;
5680 
5681 	return 1;
5682 }
5683 
5684 static void free_rootdomain(struct rcu_head *rcu)
5685 {
5686 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5687 
5688 	cpupri_cleanup(&rd->cpupri);
5689 	cpudl_cleanup(&rd->cpudl);
5690 	free_cpumask_var(rd->dlo_mask);
5691 	free_cpumask_var(rd->rto_mask);
5692 	free_cpumask_var(rd->online);
5693 	free_cpumask_var(rd->span);
5694 	kfree(rd);
5695 }
5696 
5697 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5698 {
5699 	struct root_domain *old_rd = NULL;
5700 	unsigned long flags;
5701 
5702 	raw_spin_lock_irqsave(&rq->lock, flags);
5703 
5704 	if (rq->rd) {
5705 		old_rd = rq->rd;
5706 
5707 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5708 			set_rq_offline(rq);
5709 
5710 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5711 
5712 		/*
5713 		 * If we dont want to free the old_rd yet then
5714 		 * set old_rd to NULL to skip the freeing later
5715 		 * in this function:
5716 		 */
5717 		if (!atomic_dec_and_test(&old_rd->refcount))
5718 			old_rd = NULL;
5719 	}
5720 
5721 	atomic_inc(&rd->refcount);
5722 	rq->rd = rd;
5723 
5724 	cpumask_set_cpu(rq->cpu, rd->span);
5725 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5726 		set_rq_online(rq);
5727 
5728 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5729 
5730 	if (old_rd)
5731 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5732 }
5733 
5734 static int init_rootdomain(struct root_domain *rd)
5735 {
5736 	memset(rd, 0, sizeof(*rd));
5737 
5738 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5739 		goto out;
5740 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5741 		goto free_span;
5742 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5743 		goto free_online;
5744 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5745 		goto free_dlo_mask;
5746 
5747 	init_dl_bw(&rd->dl_bw);
5748 	if (cpudl_init(&rd->cpudl) != 0)
5749 		goto free_dlo_mask;
5750 
5751 	if (cpupri_init(&rd->cpupri) != 0)
5752 		goto free_rto_mask;
5753 	return 0;
5754 
5755 free_rto_mask:
5756 	free_cpumask_var(rd->rto_mask);
5757 free_dlo_mask:
5758 	free_cpumask_var(rd->dlo_mask);
5759 free_online:
5760 	free_cpumask_var(rd->online);
5761 free_span:
5762 	free_cpumask_var(rd->span);
5763 out:
5764 	return -ENOMEM;
5765 }
5766 
5767 /*
5768  * By default the system creates a single root-domain with all cpus as
5769  * members (mimicking the global state we have today).
5770  */
5771 struct root_domain def_root_domain;
5772 
5773 static void init_defrootdomain(void)
5774 {
5775 	init_rootdomain(&def_root_domain);
5776 
5777 	atomic_set(&def_root_domain.refcount, 1);
5778 }
5779 
5780 static struct root_domain *alloc_rootdomain(void)
5781 {
5782 	struct root_domain *rd;
5783 
5784 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5785 	if (!rd)
5786 		return NULL;
5787 
5788 	if (init_rootdomain(rd) != 0) {
5789 		kfree(rd);
5790 		return NULL;
5791 	}
5792 
5793 	return rd;
5794 }
5795 
5796 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5797 {
5798 	struct sched_group *tmp, *first;
5799 
5800 	if (!sg)
5801 		return;
5802 
5803 	first = sg;
5804 	do {
5805 		tmp = sg->next;
5806 
5807 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5808 			kfree(sg->sgc);
5809 
5810 		kfree(sg);
5811 		sg = tmp;
5812 	} while (sg != first);
5813 }
5814 
5815 static void free_sched_domain(struct rcu_head *rcu)
5816 {
5817 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5818 
5819 	/*
5820 	 * If its an overlapping domain it has private groups, iterate and
5821 	 * nuke them all.
5822 	 */
5823 	if (sd->flags & SD_OVERLAP) {
5824 		free_sched_groups(sd->groups, 1);
5825 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5826 		kfree(sd->groups->sgc);
5827 		kfree(sd->groups);
5828 	}
5829 	kfree(sd);
5830 }
5831 
5832 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5833 {
5834 	call_rcu(&sd->rcu, free_sched_domain);
5835 }
5836 
5837 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5838 {
5839 	for (; sd; sd = sd->parent)
5840 		destroy_sched_domain(sd, cpu);
5841 }
5842 
5843 /*
5844  * Keep a special pointer to the highest sched_domain that has
5845  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5846  * allows us to avoid some pointer chasing select_idle_sibling().
5847  *
5848  * Also keep a unique ID per domain (we use the first cpu number in
5849  * the cpumask of the domain), this allows us to quickly tell if
5850  * two cpus are in the same cache domain, see cpus_share_cache().
5851  */
5852 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5853 DEFINE_PER_CPU(int, sd_llc_size);
5854 DEFINE_PER_CPU(int, sd_llc_id);
5855 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5856 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5857 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5858 
5859 static void update_top_cache_domain(int cpu)
5860 {
5861 	struct sched_domain *sd;
5862 	struct sched_domain *busy_sd = NULL;
5863 	int id = cpu;
5864 	int size = 1;
5865 
5866 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5867 	if (sd) {
5868 		id = cpumask_first(sched_domain_span(sd));
5869 		size = cpumask_weight(sched_domain_span(sd));
5870 		busy_sd = sd->parent; /* sd_busy */
5871 	}
5872 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5873 
5874 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5875 	per_cpu(sd_llc_size, cpu) = size;
5876 	per_cpu(sd_llc_id, cpu) = id;
5877 
5878 	sd = lowest_flag_domain(cpu, SD_NUMA);
5879 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5880 
5881 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5882 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5883 }
5884 
5885 /*
5886  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5887  * hold the hotplug lock.
5888  */
5889 static void
5890 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5891 {
5892 	struct rq *rq = cpu_rq(cpu);
5893 	struct sched_domain *tmp;
5894 
5895 	/* Remove the sched domains which do not contribute to scheduling. */
5896 	for (tmp = sd; tmp; ) {
5897 		struct sched_domain *parent = tmp->parent;
5898 		if (!parent)
5899 			break;
5900 
5901 		if (sd_parent_degenerate(tmp, parent)) {
5902 			tmp->parent = parent->parent;
5903 			if (parent->parent)
5904 				parent->parent->child = tmp;
5905 			/*
5906 			 * Transfer SD_PREFER_SIBLING down in case of a
5907 			 * degenerate parent; the spans match for this
5908 			 * so the property transfers.
5909 			 */
5910 			if (parent->flags & SD_PREFER_SIBLING)
5911 				tmp->flags |= SD_PREFER_SIBLING;
5912 			destroy_sched_domain(parent, cpu);
5913 		} else
5914 			tmp = tmp->parent;
5915 	}
5916 
5917 	if (sd && sd_degenerate(sd)) {
5918 		tmp = sd;
5919 		sd = sd->parent;
5920 		destroy_sched_domain(tmp, cpu);
5921 		if (sd)
5922 			sd->child = NULL;
5923 	}
5924 
5925 	sched_domain_debug(sd, cpu);
5926 
5927 	rq_attach_root(rq, rd);
5928 	tmp = rq->sd;
5929 	rcu_assign_pointer(rq->sd, sd);
5930 	destroy_sched_domains(tmp, cpu);
5931 
5932 	update_top_cache_domain(cpu);
5933 }
5934 
5935 /* Setup the mask of cpus configured for isolated domains */
5936 static int __init isolated_cpu_setup(char *str)
5937 {
5938 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5939 	cpulist_parse(str, cpu_isolated_map);
5940 	return 1;
5941 }
5942 
5943 __setup("isolcpus=", isolated_cpu_setup);
5944 
5945 struct s_data {
5946 	struct sched_domain ** __percpu sd;
5947 	struct root_domain	*rd;
5948 };
5949 
5950 enum s_alloc {
5951 	sa_rootdomain,
5952 	sa_sd,
5953 	sa_sd_storage,
5954 	sa_none,
5955 };
5956 
5957 /*
5958  * Build an iteration mask that can exclude certain CPUs from the upwards
5959  * domain traversal.
5960  *
5961  * Asymmetric node setups can result in situations where the domain tree is of
5962  * unequal depth, make sure to skip domains that already cover the entire
5963  * range.
5964  *
5965  * In that case build_sched_domains() will have terminated the iteration early
5966  * and our sibling sd spans will be empty. Domains should always include the
5967  * cpu they're built on, so check that.
5968  *
5969  */
5970 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5971 {
5972 	const struct cpumask *span = sched_domain_span(sd);
5973 	struct sd_data *sdd = sd->private;
5974 	struct sched_domain *sibling;
5975 	int i;
5976 
5977 	for_each_cpu(i, span) {
5978 		sibling = *per_cpu_ptr(sdd->sd, i);
5979 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5980 			continue;
5981 
5982 		cpumask_set_cpu(i, sched_group_mask(sg));
5983 	}
5984 }
5985 
5986 /*
5987  * Return the canonical balance cpu for this group, this is the first cpu
5988  * of this group that's also in the iteration mask.
5989  */
5990 int group_balance_cpu(struct sched_group *sg)
5991 {
5992 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5993 }
5994 
5995 static int
5996 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5997 {
5998 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5999 	const struct cpumask *span = sched_domain_span(sd);
6000 	struct cpumask *covered = sched_domains_tmpmask;
6001 	struct sd_data *sdd = sd->private;
6002 	struct sched_domain *sibling;
6003 	int i;
6004 
6005 	cpumask_clear(covered);
6006 
6007 	for_each_cpu(i, span) {
6008 		struct cpumask *sg_span;
6009 
6010 		if (cpumask_test_cpu(i, covered))
6011 			continue;
6012 
6013 		sibling = *per_cpu_ptr(sdd->sd, i);
6014 
6015 		/* See the comment near build_group_mask(). */
6016 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6017 			continue;
6018 
6019 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6020 				GFP_KERNEL, cpu_to_node(cpu));
6021 
6022 		if (!sg)
6023 			goto fail;
6024 
6025 		sg_span = sched_group_cpus(sg);
6026 		if (sibling->child)
6027 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6028 		else
6029 			cpumask_set_cpu(i, sg_span);
6030 
6031 		cpumask_or(covered, covered, sg_span);
6032 
6033 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6034 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6035 			build_group_mask(sd, sg);
6036 
6037 		/*
6038 		 * Initialize sgc->capacity such that even if we mess up the
6039 		 * domains and no possible iteration will get us here, we won't
6040 		 * die on a /0 trap.
6041 		 */
6042 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6043 
6044 		/*
6045 		 * Make sure the first group of this domain contains the
6046 		 * canonical balance cpu. Otherwise the sched_domain iteration
6047 		 * breaks. See update_sg_lb_stats().
6048 		 */
6049 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6050 		    group_balance_cpu(sg) == cpu)
6051 			groups = sg;
6052 
6053 		if (!first)
6054 			first = sg;
6055 		if (last)
6056 			last->next = sg;
6057 		last = sg;
6058 		last->next = first;
6059 	}
6060 	sd->groups = groups;
6061 
6062 	return 0;
6063 
6064 fail:
6065 	free_sched_groups(first, 0);
6066 
6067 	return -ENOMEM;
6068 }
6069 
6070 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6071 {
6072 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6073 	struct sched_domain *child = sd->child;
6074 
6075 	if (child)
6076 		cpu = cpumask_first(sched_domain_span(child));
6077 
6078 	if (sg) {
6079 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6080 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6081 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6082 	}
6083 
6084 	return cpu;
6085 }
6086 
6087 /*
6088  * build_sched_groups will build a circular linked list of the groups
6089  * covered by the given span, and will set each group's ->cpumask correctly,
6090  * and ->cpu_capacity to 0.
6091  *
6092  * Assumes the sched_domain tree is fully constructed
6093  */
6094 static int
6095 build_sched_groups(struct sched_domain *sd, int cpu)
6096 {
6097 	struct sched_group *first = NULL, *last = NULL;
6098 	struct sd_data *sdd = sd->private;
6099 	const struct cpumask *span = sched_domain_span(sd);
6100 	struct cpumask *covered;
6101 	int i;
6102 
6103 	get_group(cpu, sdd, &sd->groups);
6104 	atomic_inc(&sd->groups->ref);
6105 
6106 	if (cpu != cpumask_first(span))
6107 		return 0;
6108 
6109 	lockdep_assert_held(&sched_domains_mutex);
6110 	covered = sched_domains_tmpmask;
6111 
6112 	cpumask_clear(covered);
6113 
6114 	for_each_cpu(i, span) {
6115 		struct sched_group *sg;
6116 		int group, j;
6117 
6118 		if (cpumask_test_cpu(i, covered))
6119 			continue;
6120 
6121 		group = get_group(i, sdd, &sg);
6122 		cpumask_setall(sched_group_mask(sg));
6123 
6124 		for_each_cpu(j, span) {
6125 			if (get_group(j, sdd, NULL) != group)
6126 				continue;
6127 
6128 			cpumask_set_cpu(j, covered);
6129 			cpumask_set_cpu(j, sched_group_cpus(sg));
6130 		}
6131 
6132 		if (!first)
6133 			first = sg;
6134 		if (last)
6135 			last->next = sg;
6136 		last = sg;
6137 	}
6138 	last->next = first;
6139 
6140 	return 0;
6141 }
6142 
6143 /*
6144  * Initialize sched groups cpu_capacity.
6145  *
6146  * cpu_capacity indicates the capacity of sched group, which is used while
6147  * distributing the load between different sched groups in a sched domain.
6148  * Typically cpu_capacity for all the groups in a sched domain will be same
6149  * unless there are asymmetries in the topology. If there are asymmetries,
6150  * group having more cpu_capacity will pickup more load compared to the
6151  * group having less cpu_capacity.
6152  */
6153 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6154 {
6155 	struct sched_group *sg = sd->groups;
6156 
6157 	WARN_ON(!sg);
6158 
6159 	do {
6160 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6161 		sg = sg->next;
6162 	} while (sg != sd->groups);
6163 
6164 	if (cpu != group_balance_cpu(sg))
6165 		return;
6166 
6167 	update_group_capacity(sd, cpu);
6168 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6169 }
6170 
6171 /*
6172  * Initializers for schedule domains
6173  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6174  */
6175 
6176 static int default_relax_domain_level = -1;
6177 int sched_domain_level_max;
6178 
6179 static int __init setup_relax_domain_level(char *str)
6180 {
6181 	if (kstrtoint(str, 0, &default_relax_domain_level))
6182 		pr_warn("Unable to set relax_domain_level\n");
6183 
6184 	return 1;
6185 }
6186 __setup("relax_domain_level=", setup_relax_domain_level);
6187 
6188 static void set_domain_attribute(struct sched_domain *sd,
6189 				 struct sched_domain_attr *attr)
6190 {
6191 	int request;
6192 
6193 	if (!attr || attr->relax_domain_level < 0) {
6194 		if (default_relax_domain_level < 0)
6195 			return;
6196 		else
6197 			request = default_relax_domain_level;
6198 	} else
6199 		request = attr->relax_domain_level;
6200 	if (request < sd->level) {
6201 		/* turn off idle balance on this domain */
6202 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6203 	} else {
6204 		/* turn on idle balance on this domain */
6205 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6206 	}
6207 }
6208 
6209 static void __sdt_free(const struct cpumask *cpu_map);
6210 static int __sdt_alloc(const struct cpumask *cpu_map);
6211 
6212 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6213 				 const struct cpumask *cpu_map)
6214 {
6215 	switch (what) {
6216 	case sa_rootdomain:
6217 		if (!atomic_read(&d->rd->refcount))
6218 			free_rootdomain(&d->rd->rcu); /* fall through */
6219 	case sa_sd:
6220 		free_percpu(d->sd); /* fall through */
6221 	case sa_sd_storage:
6222 		__sdt_free(cpu_map); /* fall through */
6223 	case sa_none:
6224 		break;
6225 	}
6226 }
6227 
6228 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6229 						   const struct cpumask *cpu_map)
6230 {
6231 	memset(d, 0, sizeof(*d));
6232 
6233 	if (__sdt_alloc(cpu_map))
6234 		return sa_sd_storage;
6235 	d->sd = alloc_percpu(struct sched_domain *);
6236 	if (!d->sd)
6237 		return sa_sd_storage;
6238 	d->rd = alloc_rootdomain();
6239 	if (!d->rd)
6240 		return sa_sd;
6241 	return sa_rootdomain;
6242 }
6243 
6244 /*
6245  * NULL the sd_data elements we've used to build the sched_domain and
6246  * sched_group structure so that the subsequent __free_domain_allocs()
6247  * will not free the data we're using.
6248  */
6249 static void claim_allocations(int cpu, struct sched_domain *sd)
6250 {
6251 	struct sd_data *sdd = sd->private;
6252 
6253 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6254 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6255 
6256 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6257 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6258 
6259 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6260 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6261 }
6262 
6263 #ifdef CONFIG_NUMA
6264 static int sched_domains_numa_levels;
6265 enum numa_topology_type sched_numa_topology_type;
6266 static int *sched_domains_numa_distance;
6267 int sched_max_numa_distance;
6268 static struct cpumask ***sched_domains_numa_masks;
6269 static int sched_domains_curr_level;
6270 #endif
6271 
6272 /*
6273  * SD_flags allowed in topology descriptions.
6274  *
6275  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6276  * SD_SHARE_PKG_RESOURCES - describes shared caches
6277  * SD_NUMA                - describes NUMA topologies
6278  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6279  *
6280  * Odd one out:
6281  * SD_ASYM_PACKING        - describes SMT quirks
6282  */
6283 #define TOPOLOGY_SD_FLAGS		\
6284 	(SD_SHARE_CPUCAPACITY |		\
6285 	 SD_SHARE_PKG_RESOURCES |	\
6286 	 SD_NUMA |			\
6287 	 SD_ASYM_PACKING |		\
6288 	 SD_SHARE_POWERDOMAIN)
6289 
6290 static struct sched_domain *
6291 sd_init(struct sched_domain_topology_level *tl, int cpu)
6292 {
6293 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6294 	int sd_weight, sd_flags = 0;
6295 
6296 #ifdef CONFIG_NUMA
6297 	/*
6298 	 * Ugly hack to pass state to sd_numa_mask()...
6299 	 */
6300 	sched_domains_curr_level = tl->numa_level;
6301 #endif
6302 
6303 	sd_weight = cpumask_weight(tl->mask(cpu));
6304 
6305 	if (tl->sd_flags)
6306 		sd_flags = (*tl->sd_flags)();
6307 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6308 			"wrong sd_flags in topology description\n"))
6309 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6310 
6311 	*sd = (struct sched_domain){
6312 		.min_interval		= sd_weight,
6313 		.max_interval		= 2*sd_weight,
6314 		.busy_factor		= 32,
6315 		.imbalance_pct		= 125,
6316 
6317 		.cache_nice_tries	= 0,
6318 		.busy_idx		= 0,
6319 		.idle_idx		= 0,
6320 		.newidle_idx		= 0,
6321 		.wake_idx		= 0,
6322 		.forkexec_idx		= 0,
6323 
6324 		.flags			= 1*SD_LOAD_BALANCE
6325 					| 1*SD_BALANCE_NEWIDLE
6326 					| 1*SD_BALANCE_EXEC
6327 					| 1*SD_BALANCE_FORK
6328 					| 0*SD_BALANCE_WAKE
6329 					| 1*SD_WAKE_AFFINE
6330 					| 0*SD_SHARE_CPUCAPACITY
6331 					| 0*SD_SHARE_PKG_RESOURCES
6332 					| 0*SD_SERIALIZE
6333 					| 0*SD_PREFER_SIBLING
6334 					| 0*SD_NUMA
6335 					| sd_flags
6336 					,
6337 
6338 		.last_balance		= jiffies,
6339 		.balance_interval	= sd_weight,
6340 		.smt_gain		= 0,
6341 		.max_newidle_lb_cost	= 0,
6342 		.next_decay_max_lb_cost	= jiffies,
6343 #ifdef CONFIG_SCHED_DEBUG
6344 		.name			= tl->name,
6345 #endif
6346 	};
6347 
6348 	/*
6349 	 * Convert topological properties into behaviour.
6350 	 */
6351 
6352 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6353 		sd->flags |= SD_PREFER_SIBLING;
6354 		sd->imbalance_pct = 110;
6355 		sd->smt_gain = 1178; /* ~15% */
6356 
6357 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6358 		sd->imbalance_pct = 117;
6359 		sd->cache_nice_tries = 1;
6360 		sd->busy_idx = 2;
6361 
6362 #ifdef CONFIG_NUMA
6363 	} else if (sd->flags & SD_NUMA) {
6364 		sd->cache_nice_tries = 2;
6365 		sd->busy_idx = 3;
6366 		sd->idle_idx = 2;
6367 
6368 		sd->flags |= SD_SERIALIZE;
6369 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6370 			sd->flags &= ~(SD_BALANCE_EXEC |
6371 				       SD_BALANCE_FORK |
6372 				       SD_WAKE_AFFINE);
6373 		}
6374 
6375 #endif
6376 	} else {
6377 		sd->flags |= SD_PREFER_SIBLING;
6378 		sd->cache_nice_tries = 1;
6379 		sd->busy_idx = 2;
6380 		sd->idle_idx = 1;
6381 	}
6382 
6383 	sd->private = &tl->data;
6384 
6385 	return sd;
6386 }
6387 
6388 /*
6389  * Topology list, bottom-up.
6390  */
6391 static struct sched_domain_topology_level default_topology[] = {
6392 #ifdef CONFIG_SCHED_SMT
6393 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6394 #endif
6395 #ifdef CONFIG_SCHED_MC
6396 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6397 #endif
6398 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6399 	{ NULL, },
6400 };
6401 
6402 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6403 
6404 #define for_each_sd_topology(tl)			\
6405 	for (tl = sched_domain_topology; tl->mask; tl++)
6406 
6407 void set_sched_topology(struct sched_domain_topology_level *tl)
6408 {
6409 	sched_domain_topology = tl;
6410 }
6411 
6412 #ifdef CONFIG_NUMA
6413 
6414 static const struct cpumask *sd_numa_mask(int cpu)
6415 {
6416 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6417 }
6418 
6419 static void sched_numa_warn(const char *str)
6420 {
6421 	static int done = false;
6422 	int i,j;
6423 
6424 	if (done)
6425 		return;
6426 
6427 	done = true;
6428 
6429 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6430 
6431 	for (i = 0; i < nr_node_ids; i++) {
6432 		printk(KERN_WARNING "  ");
6433 		for (j = 0; j < nr_node_ids; j++)
6434 			printk(KERN_CONT "%02d ", node_distance(i,j));
6435 		printk(KERN_CONT "\n");
6436 	}
6437 	printk(KERN_WARNING "\n");
6438 }
6439 
6440 bool find_numa_distance(int distance)
6441 {
6442 	int i;
6443 
6444 	if (distance == node_distance(0, 0))
6445 		return true;
6446 
6447 	for (i = 0; i < sched_domains_numa_levels; i++) {
6448 		if (sched_domains_numa_distance[i] == distance)
6449 			return true;
6450 	}
6451 
6452 	return false;
6453 }
6454 
6455 /*
6456  * A system can have three types of NUMA topology:
6457  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6458  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6459  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6460  *
6461  * The difference between a glueless mesh topology and a backplane
6462  * topology lies in whether communication between not directly
6463  * connected nodes goes through intermediary nodes (where programs
6464  * could run), or through backplane controllers. This affects
6465  * placement of programs.
6466  *
6467  * The type of topology can be discerned with the following tests:
6468  * - If the maximum distance between any nodes is 1 hop, the system
6469  *   is directly connected.
6470  * - If for two nodes A and B, located N > 1 hops away from each other,
6471  *   there is an intermediary node C, which is < N hops away from both
6472  *   nodes A and B, the system is a glueless mesh.
6473  */
6474 static void init_numa_topology_type(void)
6475 {
6476 	int a, b, c, n;
6477 
6478 	n = sched_max_numa_distance;
6479 
6480 	if (sched_domains_numa_levels <= 1) {
6481 		sched_numa_topology_type = NUMA_DIRECT;
6482 		return;
6483 	}
6484 
6485 	for_each_online_node(a) {
6486 		for_each_online_node(b) {
6487 			/* Find two nodes furthest removed from each other. */
6488 			if (node_distance(a, b) < n)
6489 				continue;
6490 
6491 			/* Is there an intermediary node between a and b? */
6492 			for_each_online_node(c) {
6493 				if (node_distance(a, c) < n &&
6494 				    node_distance(b, c) < n) {
6495 					sched_numa_topology_type =
6496 							NUMA_GLUELESS_MESH;
6497 					return;
6498 				}
6499 			}
6500 
6501 			sched_numa_topology_type = NUMA_BACKPLANE;
6502 			return;
6503 		}
6504 	}
6505 }
6506 
6507 static void sched_init_numa(void)
6508 {
6509 	int next_distance, curr_distance = node_distance(0, 0);
6510 	struct sched_domain_topology_level *tl;
6511 	int level = 0;
6512 	int i, j, k;
6513 
6514 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6515 	if (!sched_domains_numa_distance)
6516 		return;
6517 
6518 	/*
6519 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6520 	 * unique distances in the node_distance() table.
6521 	 *
6522 	 * Assumes node_distance(0,j) includes all distances in
6523 	 * node_distance(i,j) in order to avoid cubic time.
6524 	 */
6525 	next_distance = curr_distance;
6526 	for (i = 0; i < nr_node_ids; i++) {
6527 		for (j = 0; j < nr_node_ids; j++) {
6528 			for (k = 0; k < nr_node_ids; k++) {
6529 				int distance = node_distance(i, k);
6530 
6531 				if (distance > curr_distance &&
6532 				    (distance < next_distance ||
6533 				     next_distance == curr_distance))
6534 					next_distance = distance;
6535 
6536 				/*
6537 				 * While not a strong assumption it would be nice to know
6538 				 * about cases where if node A is connected to B, B is not
6539 				 * equally connected to A.
6540 				 */
6541 				if (sched_debug() && node_distance(k, i) != distance)
6542 					sched_numa_warn("Node-distance not symmetric");
6543 
6544 				if (sched_debug() && i && !find_numa_distance(distance))
6545 					sched_numa_warn("Node-0 not representative");
6546 			}
6547 			if (next_distance != curr_distance) {
6548 				sched_domains_numa_distance[level++] = next_distance;
6549 				sched_domains_numa_levels = level;
6550 				curr_distance = next_distance;
6551 			} else break;
6552 		}
6553 
6554 		/*
6555 		 * In case of sched_debug() we verify the above assumption.
6556 		 */
6557 		if (!sched_debug())
6558 			break;
6559 	}
6560 
6561 	if (!level)
6562 		return;
6563 
6564 	/*
6565 	 * 'level' contains the number of unique distances, excluding the
6566 	 * identity distance node_distance(i,i).
6567 	 *
6568 	 * The sched_domains_numa_distance[] array includes the actual distance
6569 	 * numbers.
6570 	 */
6571 
6572 	/*
6573 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6574 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6575 	 * the array will contain less then 'level' members. This could be
6576 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6577 	 * in other functions.
6578 	 *
6579 	 * We reset it to 'level' at the end of this function.
6580 	 */
6581 	sched_domains_numa_levels = 0;
6582 
6583 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6584 	if (!sched_domains_numa_masks)
6585 		return;
6586 
6587 	/*
6588 	 * Now for each level, construct a mask per node which contains all
6589 	 * cpus of nodes that are that many hops away from us.
6590 	 */
6591 	for (i = 0; i < level; i++) {
6592 		sched_domains_numa_masks[i] =
6593 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6594 		if (!sched_domains_numa_masks[i])
6595 			return;
6596 
6597 		for (j = 0; j < nr_node_ids; j++) {
6598 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6599 			if (!mask)
6600 				return;
6601 
6602 			sched_domains_numa_masks[i][j] = mask;
6603 
6604 			for (k = 0; k < nr_node_ids; k++) {
6605 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6606 					continue;
6607 
6608 				cpumask_or(mask, mask, cpumask_of_node(k));
6609 			}
6610 		}
6611 	}
6612 
6613 	/* Compute default topology size */
6614 	for (i = 0; sched_domain_topology[i].mask; i++);
6615 
6616 	tl = kzalloc((i + level + 1) *
6617 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6618 	if (!tl)
6619 		return;
6620 
6621 	/*
6622 	 * Copy the default topology bits..
6623 	 */
6624 	for (i = 0; sched_domain_topology[i].mask; i++)
6625 		tl[i] = sched_domain_topology[i];
6626 
6627 	/*
6628 	 * .. and append 'j' levels of NUMA goodness.
6629 	 */
6630 	for (j = 0; j < level; i++, j++) {
6631 		tl[i] = (struct sched_domain_topology_level){
6632 			.mask = sd_numa_mask,
6633 			.sd_flags = cpu_numa_flags,
6634 			.flags = SDTL_OVERLAP,
6635 			.numa_level = j,
6636 			SD_INIT_NAME(NUMA)
6637 		};
6638 	}
6639 
6640 	sched_domain_topology = tl;
6641 
6642 	sched_domains_numa_levels = level;
6643 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6644 
6645 	init_numa_topology_type();
6646 }
6647 
6648 static void sched_domains_numa_masks_set(int cpu)
6649 {
6650 	int i, j;
6651 	int node = cpu_to_node(cpu);
6652 
6653 	for (i = 0; i < sched_domains_numa_levels; i++) {
6654 		for (j = 0; j < nr_node_ids; j++) {
6655 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6656 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6657 		}
6658 	}
6659 }
6660 
6661 static void sched_domains_numa_masks_clear(int cpu)
6662 {
6663 	int i, j;
6664 	for (i = 0; i < sched_domains_numa_levels; i++) {
6665 		for (j = 0; j < nr_node_ids; j++)
6666 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6667 	}
6668 }
6669 
6670 /*
6671  * Update sched_domains_numa_masks[level][node] array when new cpus
6672  * are onlined.
6673  */
6674 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6675 					   unsigned long action,
6676 					   void *hcpu)
6677 {
6678 	int cpu = (long)hcpu;
6679 
6680 	switch (action & ~CPU_TASKS_FROZEN) {
6681 	case CPU_ONLINE:
6682 		sched_domains_numa_masks_set(cpu);
6683 		break;
6684 
6685 	case CPU_DEAD:
6686 		sched_domains_numa_masks_clear(cpu);
6687 		break;
6688 
6689 	default:
6690 		return NOTIFY_DONE;
6691 	}
6692 
6693 	return NOTIFY_OK;
6694 }
6695 #else
6696 static inline void sched_init_numa(void)
6697 {
6698 }
6699 
6700 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6701 					   unsigned long action,
6702 					   void *hcpu)
6703 {
6704 	return 0;
6705 }
6706 #endif /* CONFIG_NUMA */
6707 
6708 static int __sdt_alloc(const struct cpumask *cpu_map)
6709 {
6710 	struct sched_domain_topology_level *tl;
6711 	int j;
6712 
6713 	for_each_sd_topology(tl) {
6714 		struct sd_data *sdd = &tl->data;
6715 
6716 		sdd->sd = alloc_percpu(struct sched_domain *);
6717 		if (!sdd->sd)
6718 			return -ENOMEM;
6719 
6720 		sdd->sg = alloc_percpu(struct sched_group *);
6721 		if (!sdd->sg)
6722 			return -ENOMEM;
6723 
6724 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725 		if (!sdd->sgc)
6726 			return -ENOMEM;
6727 
6728 		for_each_cpu(j, cpu_map) {
6729 			struct sched_domain *sd;
6730 			struct sched_group *sg;
6731 			struct sched_group_capacity *sgc;
6732 
6733 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734 					GFP_KERNEL, cpu_to_node(j));
6735 			if (!sd)
6736 				return -ENOMEM;
6737 
6738 			*per_cpu_ptr(sdd->sd, j) = sd;
6739 
6740 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741 					GFP_KERNEL, cpu_to_node(j));
6742 			if (!sg)
6743 				return -ENOMEM;
6744 
6745 			sg->next = sg;
6746 
6747 			*per_cpu_ptr(sdd->sg, j) = sg;
6748 
6749 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750 					GFP_KERNEL, cpu_to_node(j));
6751 			if (!sgc)
6752 				return -ENOMEM;
6753 
6754 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6755 		}
6756 	}
6757 
6758 	return 0;
6759 }
6760 
6761 static void __sdt_free(const struct cpumask *cpu_map)
6762 {
6763 	struct sched_domain_topology_level *tl;
6764 	int j;
6765 
6766 	for_each_sd_topology(tl) {
6767 		struct sd_data *sdd = &tl->data;
6768 
6769 		for_each_cpu(j, cpu_map) {
6770 			struct sched_domain *sd;
6771 
6772 			if (sdd->sd) {
6773 				sd = *per_cpu_ptr(sdd->sd, j);
6774 				if (sd && (sd->flags & SD_OVERLAP))
6775 					free_sched_groups(sd->groups, 0);
6776 				kfree(*per_cpu_ptr(sdd->sd, j));
6777 			}
6778 
6779 			if (sdd->sg)
6780 				kfree(*per_cpu_ptr(sdd->sg, j));
6781 			if (sdd->sgc)
6782 				kfree(*per_cpu_ptr(sdd->sgc, j));
6783 		}
6784 		free_percpu(sdd->sd);
6785 		sdd->sd = NULL;
6786 		free_percpu(sdd->sg);
6787 		sdd->sg = NULL;
6788 		free_percpu(sdd->sgc);
6789 		sdd->sgc = NULL;
6790 	}
6791 }
6792 
6793 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795 		struct sched_domain *child, int cpu)
6796 {
6797 	struct sched_domain *sd = sd_init(tl, cpu);
6798 	if (!sd)
6799 		return child;
6800 
6801 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802 	if (child) {
6803 		sd->level = child->level + 1;
6804 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805 		child->parent = sd;
6806 		sd->child = child;
6807 
6808 		if (!cpumask_subset(sched_domain_span(child),
6809 				    sched_domain_span(sd))) {
6810 			pr_err("BUG: arch topology borken\n");
6811 #ifdef CONFIG_SCHED_DEBUG
6812 			pr_err("     the %s domain not a subset of the %s domain\n",
6813 					child->name, sd->name);
6814 #endif
6815 			/* Fixup, ensure @sd has at least @child cpus. */
6816 			cpumask_or(sched_domain_span(sd),
6817 				   sched_domain_span(sd),
6818 				   sched_domain_span(child));
6819 		}
6820 
6821 	}
6822 	set_domain_attribute(sd, attr);
6823 
6824 	return sd;
6825 }
6826 
6827 /*
6828  * Build sched domains for a given set of cpus and attach the sched domains
6829  * to the individual cpus
6830  */
6831 static int build_sched_domains(const struct cpumask *cpu_map,
6832 			       struct sched_domain_attr *attr)
6833 {
6834 	enum s_alloc alloc_state;
6835 	struct sched_domain *sd;
6836 	struct s_data d;
6837 	int i, ret = -ENOMEM;
6838 
6839 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840 	if (alloc_state != sa_rootdomain)
6841 		goto error;
6842 
6843 	/* Set up domains for cpus specified by the cpu_map. */
6844 	for_each_cpu(i, cpu_map) {
6845 		struct sched_domain_topology_level *tl;
6846 
6847 		sd = NULL;
6848 		for_each_sd_topology(tl) {
6849 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850 			if (tl == sched_domain_topology)
6851 				*per_cpu_ptr(d.sd, i) = sd;
6852 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853 				sd->flags |= SD_OVERLAP;
6854 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855 				break;
6856 		}
6857 	}
6858 
6859 	/* Build the groups for the domains */
6860 	for_each_cpu(i, cpu_map) {
6861 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863 			if (sd->flags & SD_OVERLAP) {
6864 				if (build_overlap_sched_groups(sd, i))
6865 					goto error;
6866 			} else {
6867 				if (build_sched_groups(sd, i))
6868 					goto error;
6869 			}
6870 		}
6871 	}
6872 
6873 	/* Calculate CPU capacity for physical packages and nodes */
6874 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875 		if (!cpumask_test_cpu(i, cpu_map))
6876 			continue;
6877 
6878 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879 			claim_allocations(i, sd);
6880 			init_sched_groups_capacity(i, sd);
6881 		}
6882 	}
6883 
6884 	/* Attach the domains */
6885 	rcu_read_lock();
6886 	for_each_cpu(i, cpu_map) {
6887 		sd = *per_cpu_ptr(d.sd, i);
6888 		cpu_attach_domain(sd, d.rd, i);
6889 	}
6890 	rcu_read_unlock();
6891 
6892 	ret = 0;
6893 error:
6894 	__free_domain_allocs(&d, alloc_state, cpu_map);
6895 	return ret;
6896 }
6897 
6898 static cpumask_var_t *doms_cur;	/* current sched domains */
6899 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6900 static struct sched_domain_attr *dattr_cur;
6901 				/* attribues of custom domains in 'doms_cur' */
6902 
6903 /*
6904  * Special case: If a kmalloc of a doms_cur partition (array of
6905  * cpumask) fails, then fallback to a single sched domain,
6906  * as determined by the single cpumask fallback_doms.
6907  */
6908 static cpumask_var_t fallback_doms;
6909 
6910 /*
6911  * arch_update_cpu_topology lets virtualized architectures update the
6912  * cpu core maps. It is supposed to return 1 if the topology changed
6913  * or 0 if it stayed the same.
6914  */
6915 int __weak arch_update_cpu_topology(void)
6916 {
6917 	return 0;
6918 }
6919 
6920 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921 {
6922 	int i;
6923 	cpumask_var_t *doms;
6924 
6925 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926 	if (!doms)
6927 		return NULL;
6928 	for (i = 0; i < ndoms; i++) {
6929 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930 			free_sched_domains(doms, i);
6931 			return NULL;
6932 		}
6933 	}
6934 	return doms;
6935 }
6936 
6937 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938 {
6939 	unsigned int i;
6940 	for (i = 0; i < ndoms; i++)
6941 		free_cpumask_var(doms[i]);
6942 	kfree(doms);
6943 }
6944 
6945 /*
6946  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6947  * For now this just excludes isolated cpus, but could be used to
6948  * exclude other special cases in the future.
6949  */
6950 static int init_sched_domains(const struct cpumask *cpu_map)
6951 {
6952 	int err;
6953 
6954 	arch_update_cpu_topology();
6955 	ndoms_cur = 1;
6956 	doms_cur = alloc_sched_domains(ndoms_cur);
6957 	if (!doms_cur)
6958 		doms_cur = &fallback_doms;
6959 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960 	err = build_sched_domains(doms_cur[0], NULL);
6961 	register_sched_domain_sysctl();
6962 
6963 	return err;
6964 }
6965 
6966 /*
6967  * Detach sched domains from a group of cpus specified in cpu_map
6968  * These cpus will now be attached to the NULL domain
6969  */
6970 static void detach_destroy_domains(const struct cpumask *cpu_map)
6971 {
6972 	int i;
6973 
6974 	rcu_read_lock();
6975 	for_each_cpu(i, cpu_map)
6976 		cpu_attach_domain(NULL, &def_root_domain, i);
6977 	rcu_read_unlock();
6978 }
6979 
6980 /* handle null as "default" */
6981 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982 			struct sched_domain_attr *new, int idx_new)
6983 {
6984 	struct sched_domain_attr tmp;
6985 
6986 	/* fast path */
6987 	if (!new && !cur)
6988 		return 1;
6989 
6990 	tmp = SD_ATTR_INIT;
6991 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992 			new ? (new + idx_new) : &tmp,
6993 			sizeof(struct sched_domain_attr));
6994 }
6995 
6996 /*
6997  * Partition sched domains as specified by the 'ndoms_new'
6998  * cpumasks in the array doms_new[] of cpumasks. This compares
6999  * doms_new[] to the current sched domain partitioning, doms_cur[].
7000  * It destroys each deleted domain and builds each new domain.
7001  *
7002  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7003  * The masks don't intersect (don't overlap.) We should setup one
7004  * sched domain for each mask. CPUs not in any of the cpumasks will
7005  * not be load balanced. If the same cpumask appears both in the
7006  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007  * it as it is.
7008  *
7009  * The passed in 'doms_new' should be allocated using
7010  * alloc_sched_domains.  This routine takes ownership of it and will
7011  * free_sched_domains it when done with it. If the caller failed the
7012  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013  * and partition_sched_domains() will fallback to the single partition
7014  * 'fallback_doms', it also forces the domains to be rebuilt.
7015  *
7016  * If doms_new == NULL it will be replaced with cpu_online_mask.
7017  * ndoms_new == 0 is a special case for destroying existing domains,
7018  * and it will not create the default domain.
7019  *
7020  * Call with hotplug lock held
7021  */
7022 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023 			     struct sched_domain_attr *dattr_new)
7024 {
7025 	int i, j, n;
7026 	int new_topology;
7027 
7028 	mutex_lock(&sched_domains_mutex);
7029 
7030 	/* always unregister in case we don't destroy any domains */
7031 	unregister_sched_domain_sysctl();
7032 
7033 	/* Let architecture update cpu core mappings. */
7034 	new_topology = arch_update_cpu_topology();
7035 
7036 	n = doms_new ? ndoms_new : 0;
7037 
7038 	/* Destroy deleted domains */
7039 	for (i = 0; i < ndoms_cur; i++) {
7040 		for (j = 0; j < n && !new_topology; j++) {
7041 			if (cpumask_equal(doms_cur[i], doms_new[j])
7042 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7043 				goto match1;
7044 		}
7045 		/* no match - a current sched domain not in new doms_new[] */
7046 		detach_destroy_domains(doms_cur[i]);
7047 match1:
7048 		;
7049 	}
7050 
7051 	n = ndoms_cur;
7052 	if (doms_new == NULL) {
7053 		n = 0;
7054 		doms_new = &fallback_doms;
7055 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056 		WARN_ON_ONCE(dattr_new);
7057 	}
7058 
7059 	/* Build new domains */
7060 	for (i = 0; i < ndoms_new; i++) {
7061 		for (j = 0; j < n && !new_topology; j++) {
7062 			if (cpumask_equal(doms_new[i], doms_cur[j])
7063 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7064 				goto match2;
7065 		}
7066 		/* no match - add a new doms_new */
7067 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7068 match2:
7069 		;
7070 	}
7071 
7072 	/* Remember the new sched domains */
7073 	if (doms_cur != &fallback_doms)
7074 		free_sched_domains(doms_cur, ndoms_cur);
7075 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7076 	doms_cur = doms_new;
7077 	dattr_cur = dattr_new;
7078 	ndoms_cur = ndoms_new;
7079 
7080 	register_sched_domain_sysctl();
7081 
7082 	mutex_unlock(&sched_domains_mutex);
7083 }
7084 
7085 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7086 
7087 /*
7088  * Update cpusets according to cpu_active mask.  If cpusets are
7089  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090  * around partition_sched_domains().
7091  *
7092  * If we come here as part of a suspend/resume, don't touch cpusets because we
7093  * want to restore it back to its original state upon resume anyway.
7094  */
7095 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7096 			     void *hcpu)
7097 {
7098 	switch (action) {
7099 	case CPU_ONLINE_FROZEN:
7100 	case CPU_DOWN_FAILED_FROZEN:
7101 
7102 		/*
7103 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7104 		 * resume sequence. As long as this is not the last online
7105 		 * operation in the resume sequence, just build a single sched
7106 		 * domain, ignoring cpusets.
7107 		 */
7108 		num_cpus_frozen--;
7109 		if (likely(num_cpus_frozen)) {
7110 			partition_sched_domains(1, NULL, NULL);
7111 			break;
7112 		}
7113 
7114 		/*
7115 		 * This is the last CPU online operation. So fall through and
7116 		 * restore the original sched domains by considering the
7117 		 * cpuset configurations.
7118 		 */
7119 
7120 	case CPU_ONLINE:
7121 		cpuset_update_active_cpus(true);
7122 		break;
7123 	default:
7124 		return NOTIFY_DONE;
7125 	}
7126 	return NOTIFY_OK;
7127 }
7128 
7129 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7130 			       void *hcpu)
7131 {
7132 	unsigned long flags;
7133 	long cpu = (long)hcpu;
7134 	struct dl_bw *dl_b;
7135 	bool overflow;
7136 	int cpus;
7137 
7138 	switch (action) {
7139 	case CPU_DOWN_PREPARE:
7140 		rcu_read_lock_sched();
7141 		dl_b = dl_bw_of(cpu);
7142 
7143 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7144 		cpus = dl_bw_cpus(cpu);
7145 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7147 
7148 		rcu_read_unlock_sched();
7149 
7150 		if (overflow)
7151 			return notifier_from_errno(-EBUSY);
7152 		cpuset_update_active_cpus(false);
7153 		break;
7154 	case CPU_DOWN_PREPARE_FROZEN:
7155 		num_cpus_frozen++;
7156 		partition_sched_domains(1, NULL, NULL);
7157 		break;
7158 	default:
7159 		return NOTIFY_DONE;
7160 	}
7161 	return NOTIFY_OK;
7162 }
7163 
7164 void __init sched_init_smp(void)
7165 {
7166 	cpumask_var_t non_isolated_cpus;
7167 
7168 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7169 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7170 
7171 	/* nohz_full won't take effect without isolating the cpus. */
7172 	tick_nohz_full_add_cpus_to(cpu_isolated_map);
7173 
7174 	sched_init_numa();
7175 
7176 	/*
7177 	 * There's no userspace yet to cause hotplug operations; hence all the
7178 	 * cpu masks are stable and all blatant races in the below code cannot
7179 	 * happen.
7180 	 */
7181 	mutex_lock(&sched_domains_mutex);
7182 	init_sched_domains(cpu_active_mask);
7183 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7184 	if (cpumask_empty(non_isolated_cpus))
7185 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7186 	mutex_unlock(&sched_domains_mutex);
7187 
7188 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7189 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7190 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7191 
7192 	init_hrtick();
7193 
7194 	/* Move init over to a non-isolated CPU */
7195 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7196 		BUG();
7197 	sched_init_granularity();
7198 	free_cpumask_var(non_isolated_cpus);
7199 
7200 	init_sched_rt_class();
7201 	init_sched_dl_class();
7202 }
7203 #else
7204 void __init sched_init_smp(void)
7205 {
7206 	sched_init_granularity();
7207 }
7208 #endif /* CONFIG_SMP */
7209 
7210 int in_sched_functions(unsigned long addr)
7211 {
7212 	return in_lock_functions(addr) ||
7213 		(addr >= (unsigned long)__sched_text_start
7214 		&& addr < (unsigned long)__sched_text_end);
7215 }
7216 
7217 #ifdef CONFIG_CGROUP_SCHED
7218 /*
7219  * Default task group.
7220  * Every task in system belongs to this group at bootup.
7221  */
7222 struct task_group root_task_group;
7223 LIST_HEAD(task_groups);
7224 #endif
7225 
7226 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7227 
7228 void __init sched_init(void)
7229 {
7230 	int i, j;
7231 	unsigned long alloc_size = 0, ptr;
7232 
7233 #ifdef CONFIG_FAIR_GROUP_SCHED
7234 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235 #endif
7236 #ifdef CONFIG_RT_GROUP_SCHED
7237 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238 #endif
7239 	if (alloc_size) {
7240 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7241 
7242 #ifdef CONFIG_FAIR_GROUP_SCHED
7243 		root_task_group.se = (struct sched_entity **)ptr;
7244 		ptr += nr_cpu_ids * sizeof(void **);
7245 
7246 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7247 		ptr += nr_cpu_ids * sizeof(void **);
7248 
7249 #endif /* CONFIG_FAIR_GROUP_SCHED */
7250 #ifdef CONFIG_RT_GROUP_SCHED
7251 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7252 		ptr += nr_cpu_ids * sizeof(void **);
7253 
7254 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7255 		ptr += nr_cpu_ids * sizeof(void **);
7256 
7257 #endif /* CONFIG_RT_GROUP_SCHED */
7258 	}
7259 #ifdef CONFIG_CPUMASK_OFFSTACK
7260 	for_each_possible_cpu(i) {
7261 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7262 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7263 	}
7264 #endif /* CONFIG_CPUMASK_OFFSTACK */
7265 
7266 	init_rt_bandwidth(&def_rt_bandwidth,
7267 			global_rt_period(), global_rt_runtime());
7268 	init_dl_bandwidth(&def_dl_bandwidth,
7269 			global_rt_period(), global_rt_runtime());
7270 
7271 #ifdef CONFIG_SMP
7272 	init_defrootdomain();
7273 #endif
7274 
7275 #ifdef CONFIG_RT_GROUP_SCHED
7276 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7277 			global_rt_period(), global_rt_runtime());
7278 #endif /* CONFIG_RT_GROUP_SCHED */
7279 
7280 #ifdef CONFIG_CGROUP_SCHED
7281 	list_add(&root_task_group.list, &task_groups);
7282 	INIT_LIST_HEAD(&root_task_group.children);
7283 	INIT_LIST_HEAD(&root_task_group.siblings);
7284 	autogroup_init(&init_task);
7285 
7286 #endif /* CONFIG_CGROUP_SCHED */
7287 
7288 	for_each_possible_cpu(i) {
7289 		struct rq *rq;
7290 
7291 		rq = cpu_rq(i);
7292 		raw_spin_lock_init(&rq->lock);
7293 		rq->nr_running = 0;
7294 		rq->calc_load_active = 0;
7295 		rq->calc_load_update = jiffies + LOAD_FREQ;
7296 		init_cfs_rq(&rq->cfs);
7297 		init_rt_rq(&rq->rt);
7298 		init_dl_rq(&rq->dl);
7299 #ifdef CONFIG_FAIR_GROUP_SCHED
7300 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7301 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7302 		/*
7303 		 * How much cpu bandwidth does root_task_group get?
7304 		 *
7305 		 * In case of task-groups formed thr' the cgroup filesystem, it
7306 		 * gets 100% of the cpu resources in the system. This overall
7307 		 * system cpu resource is divided among the tasks of
7308 		 * root_task_group and its child task-groups in a fair manner,
7309 		 * based on each entity's (task or task-group's) weight
7310 		 * (se->load.weight).
7311 		 *
7312 		 * In other words, if root_task_group has 10 tasks of weight
7313 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7314 		 * then A0's share of the cpu resource is:
7315 		 *
7316 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7317 		 *
7318 		 * We achieve this by letting root_task_group's tasks sit
7319 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7320 		 */
7321 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7322 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7323 #endif /* CONFIG_FAIR_GROUP_SCHED */
7324 
7325 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7326 #ifdef CONFIG_RT_GROUP_SCHED
7327 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7328 #endif
7329 
7330 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7331 			rq->cpu_load[j] = 0;
7332 
7333 		rq->last_load_update_tick = jiffies;
7334 
7335 #ifdef CONFIG_SMP
7336 		rq->sd = NULL;
7337 		rq->rd = NULL;
7338 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7339 		rq->balance_callback = NULL;
7340 		rq->active_balance = 0;
7341 		rq->next_balance = jiffies;
7342 		rq->push_cpu = 0;
7343 		rq->cpu = i;
7344 		rq->online = 0;
7345 		rq->idle_stamp = 0;
7346 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7347 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7348 
7349 		INIT_LIST_HEAD(&rq->cfs_tasks);
7350 
7351 		rq_attach_root(rq, &def_root_domain);
7352 #ifdef CONFIG_NO_HZ_COMMON
7353 		rq->nohz_flags = 0;
7354 #endif
7355 #ifdef CONFIG_NO_HZ_FULL
7356 		rq->last_sched_tick = 0;
7357 #endif
7358 #endif
7359 		init_rq_hrtick(rq);
7360 		atomic_set(&rq->nr_iowait, 0);
7361 	}
7362 
7363 	set_load_weight(&init_task);
7364 
7365 #ifdef CONFIG_PREEMPT_NOTIFIERS
7366 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7367 #endif
7368 
7369 	/*
7370 	 * The boot idle thread does lazy MMU switching as well:
7371 	 */
7372 	atomic_inc(&init_mm.mm_count);
7373 	enter_lazy_tlb(&init_mm, current);
7374 
7375 	/*
7376 	 * During early bootup we pretend to be a normal task:
7377 	 */
7378 	current->sched_class = &fair_sched_class;
7379 
7380 	/*
7381 	 * Make us the idle thread. Technically, schedule() should not be
7382 	 * called from this thread, however somewhere below it might be,
7383 	 * but because we are the idle thread, we just pick up running again
7384 	 * when this runqueue becomes "idle".
7385 	 */
7386 	init_idle(current, smp_processor_id());
7387 
7388 	calc_load_update = jiffies + LOAD_FREQ;
7389 
7390 #ifdef CONFIG_SMP
7391 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7392 	/* May be allocated at isolcpus cmdline parse time */
7393 	if (cpu_isolated_map == NULL)
7394 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7395 	idle_thread_set_boot_cpu();
7396 	set_cpu_rq_start_time();
7397 #endif
7398 	init_sched_fair_class();
7399 
7400 	scheduler_running = 1;
7401 }
7402 
7403 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7404 static inline int preempt_count_equals(int preempt_offset)
7405 {
7406 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7407 
7408 	return (nested == preempt_offset);
7409 }
7410 
7411 void __might_sleep(const char *file, int line, int preempt_offset)
7412 {
7413 	/*
7414 	 * Blocking primitives will set (and therefore destroy) current->state,
7415 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7416 	 * otherwise we will destroy state.
7417 	 */
7418 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7419 			"do not call blocking ops when !TASK_RUNNING; "
7420 			"state=%lx set at [<%p>] %pS\n",
7421 			current->state,
7422 			(void *)current->task_state_change,
7423 			(void *)current->task_state_change);
7424 
7425 	___might_sleep(file, line, preempt_offset);
7426 }
7427 EXPORT_SYMBOL(__might_sleep);
7428 
7429 void ___might_sleep(const char *file, int line, int preempt_offset)
7430 {
7431 	static unsigned long prev_jiffy;	/* ratelimiting */
7432 
7433 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7434 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7435 	     !is_idle_task(current)) ||
7436 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7437 		return;
7438 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7439 		return;
7440 	prev_jiffy = jiffies;
7441 
7442 	printk(KERN_ERR
7443 		"BUG: sleeping function called from invalid context at %s:%d\n",
7444 			file, line);
7445 	printk(KERN_ERR
7446 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7447 			in_atomic(), irqs_disabled(),
7448 			current->pid, current->comm);
7449 
7450 	if (task_stack_end_corrupted(current))
7451 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7452 
7453 	debug_show_held_locks(current);
7454 	if (irqs_disabled())
7455 		print_irqtrace_events(current);
7456 #ifdef CONFIG_DEBUG_PREEMPT
7457 	if (!preempt_count_equals(preempt_offset)) {
7458 		pr_err("Preemption disabled at:");
7459 		print_ip_sym(current->preempt_disable_ip);
7460 		pr_cont("\n");
7461 	}
7462 #endif
7463 	dump_stack();
7464 }
7465 EXPORT_SYMBOL(___might_sleep);
7466 #endif
7467 
7468 #ifdef CONFIG_MAGIC_SYSRQ
7469 void normalize_rt_tasks(void)
7470 {
7471 	struct task_struct *g, *p;
7472 	struct sched_attr attr = {
7473 		.sched_policy = SCHED_NORMAL,
7474 	};
7475 
7476 	read_lock(&tasklist_lock);
7477 	for_each_process_thread(g, p) {
7478 		/*
7479 		 * Only normalize user tasks:
7480 		 */
7481 		if (p->flags & PF_KTHREAD)
7482 			continue;
7483 
7484 		p->se.exec_start		= 0;
7485 #ifdef CONFIG_SCHEDSTATS
7486 		p->se.statistics.wait_start	= 0;
7487 		p->se.statistics.sleep_start	= 0;
7488 		p->se.statistics.block_start	= 0;
7489 #endif
7490 
7491 		if (!dl_task(p) && !rt_task(p)) {
7492 			/*
7493 			 * Renice negative nice level userspace
7494 			 * tasks back to 0:
7495 			 */
7496 			if (task_nice(p) < 0)
7497 				set_user_nice(p, 0);
7498 			continue;
7499 		}
7500 
7501 		__sched_setscheduler(p, &attr, false, false);
7502 	}
7503 	read_unlock(&tasklist_lock);
7504 }
7505 
7506 #endif /* CONFIG_MAGIC_SYSRQ */
7507 
7508 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7509 /*
7510  * These functions are only useful for the IA64 MCA handling, or kdb.
7511  *
7512  * They can only be called when the whole system has been
7513  * stopped - every CPU needs to be quiescent, and no scheduling
7514  * activity can take place. Using them for anything else would
7515  * be a serious bug, and as a result, they aren't even visible
7516  * under any other configuration.
7517  */
7518 
7519 /**
7520  * curr_task - return the current task for a given cpu.
7521  * @cpu: the processor in question.
7522  *
7523  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7524  *
7525  * Return: The current task for @cpu.
7526  */
7527 struct task_struct *curr_task(int cpu)
7528 {
7529 	return cpu_curr(cpu);
7530 }
7531 
7532 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7533 
7534 #ifdef CONFIG_IA64
7535 /**
7536  * set_curr_task - set the current task for a given cpu.
7537  * @cpu: the processor in question.
7538  * @p: the task pointer to set.
7539  *
7540  * Description: This function must only be used when non-maskable interrupts
7541  * are serviced on a separate stack. It allows the architecture to switch the
7542  * notion of the current task on a cpu in a non-blocking manner. This function
7543  * must be called with all CPU's synchronized, and interrupts disabled, the
7544  * and caller must save the original value of the current task (see
7545  * curr_task() above) and restore that value before reenabling interrupts and
7546  * re-starting the system.
7547  *
7548  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7549  */
7550 void set_curr_task(int cpu, struct task_struct *p)
7551 {
7552 	cpu_curr(cpu) = p;
7553 }
7554 
7555 #endif
7556 
7557 #ifdef CONFIG_CGROUP_SCHED
7558 /* task_group_lock serializes the addition/removal of task groups */
7559 static DEFINE_SPINLOCK(task_group_lock);
7560 
7561 static void free_sched_group(struct task_group *tg)
7562 {
7563 	free_fair_sched_group(tg);
7564 	free_rt_sched_group(tg);
7565 	autogroup_free(tg);
7566 	kfree(tg);
7567 }
7568 
7569 /* allocate runqueue etc for a new task group */
7570 struct task_group *sched_create_group(struct task_group *parent)
7571 {
7572 	struct task_group *tg;
7573 
7574 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7575 	if (!tg)
7576 		return ERR_PTR(-ENOMEM);
7577 
7578 	if (!alloc_fair_sched_group(tg, parent))
7579 		goto err;
7580 
7581 	if (!alloc_rt_sched_group(tg, parent))
7582 		goto err;
7583 
7584 	return tg;
7585 
7586 err:
7587 	free_sched_group(tg);
7588 	return ERR_PTR(-ENOMEM);
7589 }
7590 
7591 void sched_online_group(struct task_group *tg, struct task_group *parent)
7592 {
7593 	unsigned long flags;
7594 
7595 	spin_lock_irqsave(&task_group_lock, flags);
7596 	list_add_rcu(&tg->list, &task_groups);
7597 
7598 	WARN_ON(!parent); /* root should already exist */
7599 
7600 	tg->parent = parent;
7601 	INIT_LIST_HEAD(&tg->children);
7602 	list_add_rcu(&tg->siblings, &parent->children);
7603 	spin_unlock_irqrestore(&task_group_lock, flags);
7604 }
7605 
7606 /* rcu callback to free various structures associated with a task group */
7607 static void free_sched_group_rcu(struct rcu_head *rhp)
7608 {
7609 	/* now it should be safe to free those cfs_rqs */
7610 	free_sched_group(container_of(rhp, struct task_group, rcu));
7611 }
7612 
7613 /* Destroy runqueue etc associated with a task group */
7614 void sched_destroy_group(struct task_group *tg)
7615 {
7616 	/* wait for possible concurrent references to cfs_rqs complete */
7617 	call_rcu(&tg->rcu, free_sched_group_rcu);
7618 }
7619 
7620 void sched_offline_group(struct task_group *tg)
7621 {
7622 	unsigned long flags;
7623 	int i;
7624 
7625 	/* end participation in shares distribution */
7626 	for_each_possible_cpu(i)
7627 		unregister_fair_sched_group(tg, i);
7628 
7629 	spin_lock_irqsave(&task_group_lock, flags);
7630 	list_del_rcu(&tg->list);
7631 	list_del_rcu(&tg->siblings);
7632 	spin_unlock_irqrestore(&task_group_lock, flags);
7633 }
7634 
7635 /* change task's runqueue when it moves between groups.
7636  *	The caller of this function should have put the task in its new group
7637  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7638  *	reflect its new group.
7639  */
7640 void sched_move_task(struct task_struct *tsk)
7641 {
7642 	struct task_group *tg;
7643 	int queued, running;
7644 	unsigned long flags;
7645 	struct rq *rq;
7646 
7647 	rq = task_rq_lock(tsk, &flags);
7648 
7649 	running = task_current(rq, tsk);
7650 	queued = task_on_rq_queued(tsk);
7651 
7652 	if (queued)
7653 		dequeue_task(rq, tsk, 0);
7654 	if (unlikely(running))
7655 		put_prev_task(rq, tsk);
7656 
7657 	/*
7658 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7659 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7660 	 * to prevent lockdep warnings.
7661 	 */
7662 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7663 			  struct task_group, css);
7664 	tg = autogroup_task_group(tsk, tg);
7665 	tsk->sched_task_group = tg;
7666 
7667 #ifdef CONFIG_FAIR_GROUP_SCHED
7668 	if (tsk->sched_class->task_move_group)
7669 		tsk->sched_class->task_move_group(tsk, queued);
7670 	else
7671 #endif
7672 		set_task_rq(tsk, task_cpu(tsk));
7673 
7674 	if (unlikely(running))
7675 		tsk->sched_class->set_curr_task(rq);
7676 	if (queued)
7677 		enqueue_task(rq, tsk, 0);
7678 
7679 	task_rq_unlock(rq, tsk, &flags);
7680 }
7681 #endif /* CONFIG_CGROUP_SCHED */
7682 
7683 #ifdef CONFIG_RT_GROUP_SCHED
7684 /*
7685  * Ensure that the real time constraints are schedulable.
7686  */
7687 static DEFINE_MUTEX(rt_constraints_mutex);
7688 
7689 /* Must be called with tasklist_lock held */
7690 static inline int tg_has_rt_tasks(struct task_group *tg)
7691 {
7692 	struct task_struct *g, *p;
7693 
7694 	/*
7695 	 * Autogroups do not have RT tasks; see autogroup_create().
7696 	 */
7697 	if (task_group_is_autogroup(tg))
7698 		return 0;
7699 
7700 	for_each_process_thread(g, p) {
7701 		if (rt_task(p) && task_group(p) == tg)
7702 			return 1;
7703 	}
7704 
7705 	return 0;
7706 }
7707 
7708 struct rt_schedulable_data {
7709 	struct task_group *tg;
7710 	u64 rt_period;
7711 	u64 rt_runtime;
7712 };
7713 
7714 static int tg_rt_schedulable(struct task_group *tg, void *data)
7715 {
7716 	struct rt_schedulable_data *d = data;
7717 	struct task_group *child;
7718 	unsigned long total, sum = 0;
7719 	u64 period, runtime;
7720 
7721 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7722 	runtime = tg->rt_bandwidth.rt_runtime;
7723 
7724 	if (tg == d->tg) {
7725 		period = d->rt_period;
7726 		runtime = d->rt_runtime;
7727 	}
7728 
7729 	/*
7730 	 * Cannot have more runtime than the period.
7731 	 */
7732 	if (runtime > period && runtime != RUNTIME_INF)
7733 		return -EINVAL;
7734 
7735 	/*
7736 	 * Ensure we don't starve existing RT tasks.
7737 	 */
7738 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7739 		return -EBUSY;
7740 
7741 	total = to_ratio(period, runtime);
7742 
7743 	/*
7744 	 * Nobody can have more than the global setting allows.
7745 	 */
7746 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7747 		return -EINVAL;
7748 
7749 	/*
7750 	 * The sum of our children's runtime should not exceed our own.
7751 	 */
7752 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7753 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7754 		runtime = child->rt_bandwidth.rt_runtime;
7755 
7756 		if (child == d->tg) {
7757 			period = d->rt_period;
7758 			runtime = d->rt_runtime;
7759 		}
7760 
7761 		sum += to_ratio(period, runtime);
7762 	}
7763 
7764 	if (sum > total)
7765 		return -EINVAL;
7766 
7767 	return 0;
7768 }
7769 
7770 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7771 {
7772 	int ret;
7773 
7774 	struct rt_schedulable_data data = {
7775 		.tg = tg,
7776 		.rt_period = period,
7777 		.rt_runtime = runtime,
7778 	};
7779 
7780 	rcu_read_lock();
7781 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7782 	rcu_read_unlock();
7783 
7784 	return ret;
7785 }
7786 
7787 static int tg_set_rt_bandwidth(struct task_group *tg,
7788 		u64 rt_period, u64 rt_runtime)
7789 {
7790 	int i, err = 0;
7791 
7792 	/*
7793 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7794 	 * kernel creating (and or operating) RT threads.
7795 	 */
7796 	if (tg == &root_task_group && rt_runtime == 0)
7797 		return -EINVAL;
7798 
7799 	/* No period doesn't make any sense. */
7800 	if (rt_period == 0)
7801 		return -EINVAL;
7802 
7803 	mutex_lock(&rt_constraints_mutex);
7804 	read_lock(&tasklist_lock);
7805 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7806 	if (err)
7807 		goto unlock;
7808 
7809 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7810 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7811 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7812 
7813 	for_each_possible_cpu(i) {
7814 		struct rt_rq *rt_rq = tg->rt_rq[i];
7815 
7816 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7817 		rt_rq->rt_runtime = rt_runtime;
7818 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7819 	}
7820 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7821 unlock:
7822 	read_unlock(&tasklist_lock);
7823 	mutex_unlock(&rt_constraints_mutex);
7824 
7825 	return err;
7826 }
7827 
7828 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7829 {
7830 	u64 rt_runtime, rt_period;
7831 
7832 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7833 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7834 	if (rt_runtime_us < 0)
7835 		rt_runtime = RUNTIME_INF;
7836 
7837 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7838 }
7839 
7840 static long sched_group_rt_runtime(struct task_group *tg)
7841 {
7842 	u64 rt_runtime_us;
7843 
7844 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7845 		return -1;
7846 
7847 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7848 	do_div(rt_runtime_us, NSEC_PER_USEC);
7849 	return rt_runtime_us;
7850 }
7851 
7852 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7853 {
7854 	u64 rt_runtime, rt_period;
7855 
7856 	rt_period = rt_period_us * NSEC_PER_USEC;
7857 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7858 
7859 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7860 }
7861 
7862 static long sched_group_rt_period(struct task_group *tg)
7863 {
7864 	u64 rt_period_us;
7865 
7866 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7867 	do_div(rt_period_us, NSEC_PER_USEC);
7868 	return rt_period_us;
7869 }
7870 #endif /* CONFIG_RT_GROUP_SCHED */
7871 
7872 #ifdef CONFIG_RT_GROUP_SCHED
7873 static int sched_rt_global_constraints(void)
7874 {
7875 	int ret = 0;
7876 
7877 	mutex_lock(&rt_constraints_mutex);
7878 	read_lock(&tasklist_lock);
7879 	ret = __rt_schedulable(NULL, 0, 0);
7880 	read_unlock(&tasklist_lock);
7881 	mutex_unlock(&rt_constraints_mutex);
7882 
7883 	return ret;
7884 }
7885 
7886 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7887 {
7888 	/* Don't accept realtime tasks when there is no way for them to run */
7889 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7890 		return 0;
7891 
7892 	return 1;
7893 }
7894 
7895 #else /* !CONFIG_RT_GROUP_SCHED */
7896 static int sched_rt_global_constraints(void)
7897 {
7898 	unsigned long flags;
7899 	int i, ret = 0;
7900 
7901 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7902 	for_each_possible_cpu(i) {
7903 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7904 
7905 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7906 		rt_rq->rt_runtime = global_rt_runtime();
7907 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7908 	}
7909 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7910 
7911 	return ret;
7912 }
7913 #endif /* CONFIG_RT_GROUP_SCHED */
7914 
7915 static int sched_dl_global_validate(void)
7916 {
7917 	u64 runtime = global_rt_runtime();
7918 	u64 period = global_rt_period();
7919 	u64 new_bw = to_ratio(period, runtime);
7920 	struct dl_bw *dl_b;
7921 	int cpu, ret = 0;
7922 	unsigned long flags;
7923 
7924 	/*
7925 	 * Here we want to check the bandwidth not being set to some
7926 	 * value smaller than the currently allocated bandwidth in
7927 	 * any of the root_domains.
7928 	 *
7929 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7930 	 * cycling on root_domains... Discussion on different/better
7931 	 * solutions is welcome!
7932 	 */
7933 	for_each_possible_cpu(cpu) {
7934 		rcu_read_lock_sched();
7935 		dl_b = dl_bw_of(cpu);
7936 
7937 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7938 		if (new_bw < dl_b->total_bw)
7939 			ret = -EBUSY;
7940 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7941 
7942 		rcu_read_unlock_sched();
7943 
7944 		if (ret)
7945 			break;
7946 	}
7947 
7948 	return ret;
7949 }
7950 
7951 static void sched_dl_do_global(void)
7952 {
7953 	u64 new_bw = -1;
7954 	struct dl_bw *dl_b;
7955 	int cpu;
7956 	unsigned long flags;
7957 
7958 	def_dl_bandwidth.dl_period = global_rt_period();
7959 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7960 
7961 	if (global_rt_runtime() != RUNTIME_INF)
7962 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7963 
7964 	/*
7965 	 * FIXME: As above...
7966 	 */
7967 	for_each_possible_cpu(cpu) {
7968 		rcu_read_lock_sched();
7969 		dl_b = dl_bw_of(cpu);
7970 
7971 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7972 		dl_b->bw = new_bw;
7973 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7974 
7975 		rcu_read_unlock_sched();
7976 	}
7977 }
7978 
7979 static int sched_rt_global_validate(void)
7980 {
7981 	if (sysctl_sched_rt_period <= 0)
7982 		return -EINVAL;
7983 
7984 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7985 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7986 		return -EINVAL;
7987 
7988 	return 0;
7989 }
7990 
7991 static void sched_rt_do_global(void)
7992 {
7993 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7994 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7995 }
7996 
7997 int sched_rt_handler(struct ctl_table *table, int write,
7998 		void __user *buffer, size_t *lenp,
7999 		loff_t *ppos)
8000 {
8001 	int old_period, old_runtime;
8002 	static DEFINE_MUTEX(mutex);
8003 	int ret;
8004 
8005 	mutex_lock(&mutex);
8006 	old_period = sysctl_sched_rt_period;
8007 	old_runtime = sysctl_sched_rt_runtime;
8008 
8009 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8010 
8011 	if (!ret && write) {
8012 		ret = sched_rt_global_validate();
8013 		if (ret)
8014 			goto undo;
8015 
8016 		ret = sched_dl_global_validate();
8017 		if (ret)
8018 			goto undo;
8019 
8020 		ret = sched_rt_global_constraints();
8021 		if (ret)
8022 			goto undo;
8023 
8024 		sched_rt_do_global();
8025 		sched_dl_do_global();
8026 	}
8027 	if (0) {
8028 undo:
8029 		sysctl_sched_rt_period = old_period;
8030 		sysctl_sched_rt_runtime = old_runtime;
8031 	}
8032 	mutex_unlock(&mutex);
8033 
8034 	return ret;
8035 }
8036 
8037 int sched_rr_handler(struct ctl_table *table, int write,
8038 		void __user *buffer, size_t *lenp,
8039 		loff_t *ppos)
8040 {
8041 	int ret;
8042 	static DEFINE_MUTEX(mutex);
8043 
8044 	mutex_lock(&mutex);
8045 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8046 	/* make sure that internally we keep jiffies */
8047 	/* also, writing zero resets timeslice to default */
8048 	if (!ret && write) {
8049 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8050 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8051 	}
8052 	mutex_unlock(&mutex);
8053 	return ret;
8054 }
8055 
8056 #ifdef CONFIG_CGROUP_SCHED
8057 
8058 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8059 {
8060 	return css ? container_of(css, struct task_group, css) : NULL;
8061 }
8062 
8063 static struct cgroup_subsys_state *
8064 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8065 {
8066 	struct task_group *parent = css_tg(parent_css);
8067 	struct task_group *tg;
8068 
8069 	if (!parent) {
8070 		/* This is early initialization for the top cgroup */
8071 		return &root_task_group.css;
8072 	}
8073 
8074 	tg = sched_create_group(parent);
8075 	if (IS_ERR(tg))
8076 		return ERR_PTR(-ENOMEM);
8077 
8078 	return &tg->css;
8079 }
8080 
8081 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8082 {
8083 	struct task_group *tg = css_tg(css);
8084 	struct task_group *parent = css_tg(css->parent);
8085 
8086 	if (parent)
8087 		sched_online_group(tg, parent);
8088 	return 0;
8089 }
8090 
8091 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8092 {
8093 	struct task_group *tg = css_tg(css);
8094 
8095 	sched_destroy_group(tg);
8096 }
8097 
8098 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8099 {
8100 	struct task_group *tg = css_tg(css);
8101 
8102 	sched_offline_group(tg);
8103 }
8104 
8105 static void cpu_cgroup_fork(struct task_struct *task)
8106 {
8107 	sched_move_task(task);
8108 }
8109 
8110 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8111 				 struct cgroup_taskset *tset)
8112 {
8113 	struct task_struct *task;
8114 
8115 	cgroup_taskset_for_each(task, tset) {
8116 #ifdef CONFIG_RT_GROUP_SCHED
8117 		if (!sched_rt_can_attach(css_tg(css), task))
8118 			return -EINVAL;
8119 #else
8120 		/* We don't support RT-tasks being in separate groups */
8121 		if (task->sched_class != &fair_sched_class)
8122 			return -EINVAL;
8123 #endif
8124 	}
8125 	return 0;
8126 }
8127 
8128 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8129 			      struct cgroup_taskset *tset)
8130 {
8131 	struct task_struct *task;
8132 
8133 	cgroup_taskset_for_each(task, tset)
8134 		sched_move_task(task);
8135 }
8136 
8137 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8138 			    struct cgroup_subsys_state *old_css,
8139 			    struct task_struct *task)
8140 {
8141 	/*
8142 	 * cgroup_exit() is called in the copy_process() failure path.
8143 	 * Ignore this case since the task hasn't ran yet, this avoids
8144 	 * trying to poke a half freed task state from generic code.
8145 	 */
8146 	if (!(task->flags & PF_EXITING))
8147 		return;
8148 
8149 	sched_move_task(task);
8150 }
8151 
8152 #ifdef CONFIG_FAIR_GROUP_SCHED
8153 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8154 				struct cftype *cftype, u64 shareval)
8155 {
8156 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8157 }
8158 
8159 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8160 			       struct cftype *cft)
8161 {
8162 	struct task_group *tg = css_tg(css);
8163 
8164 	return (u64) scale_load_down(tg->shares);
8165 }
8166 
8167 #ifdef CONFIG_CFS_BANDWIDTH
8168 static DEFINE_MUTEX(cfs_constraints_mutex);
8169 
8170 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8171 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8172 
8173 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8174 
8175 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8176 {
8177 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8178 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8179 
8180 	if (tg == &root_task_group)
8181 		return -EINVAL;
8182 
8183 	/*
8184 	 * Ensure we have at some amount of bandwidth every period.  This is
8185 	 * to prevent reaching a state of large arrears when throttled via
8186 	 * entity_tick() resulting in prolonged exit starvation.
8187 	 */
8188 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8189 		return -EINVAL;
8190 
8191 	/*
8192 	 * Likewise, bound things on the otherside by preventing insane quota
8193 	 * periods.  This also allows us to normalize in computing quota
8194 	 * feasibility.
8195 	 */
8196 	if (period > max_cfs_quota_period)
8197 		return -EINVAL;
8198 
8199 	/*
8200 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8201 	 * unthrottle_offline_cfs_rqs().
8202 	 */
8203 	get_online_cpus();
8204 	mutex_lock(&cfs_constraints_mutex);
8205 	ret = __cfs_schedulable(tg, period, quota);
8206 	if (ret)
8207 		goto out_unlock;
8208 
8209 	runtime_enabled = quota != RUNTIME_INF;
8210 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8211 	/*
8212 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8213 	 * before making related changes, and on->off must occur afterwards
8214 	 */
8215 	if (runtime_enabled && !runtime_was_enabled)
8216 		cfs_bandwidth_usage_inc();
8217 	raw_spin_lock_irq(&cfs_b->lock);
8218 	cfs_b->period = ns_to_ktime(period);
8219 	cfs_b->quota = quota;
8220 
8221 	__refill_cfs_bandwidth_runtime(cfs_b);
8222 	/* restart the period timer (if active) to handle new period expiry */
8223 	if (runtime_enabled)
8224 		start_cfs_bandwidth(cfs_b);
8225 	raw_spin_unlock_irq(&cfs_b->lock);
8226 
8227 	for_each_online_cpu(i) {
8228 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8229 		struct rq *rq = cfs_rq->rq;
8230 
8231 		raw_spin_lock_irq(&rq->lock);
8232 		cfs_rq->runtime_enabled = runtime_enabled;
8233 		cfs_rq->runtime_remaining = 0;
8234 
8235 		if (cfs_rq->throttled)
8236 			unthrottle_cfs_rq(cfs_rq);
8237 		raw_spin_unlock_irq(&rq->lock);
8238 	}
8239 	if (runtime_was_enabled && !runtime_enabled)
8240 		cfs_bandwidth_usage_dec();
8241 out_unlock:
8242 	mutex_unlock(&cfs_constraints_mutex);
8243 	put_online_cpus();
8244 
8245 	return ret;
8246 }
8247 
8248 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8249 {
8250 	u64 quota, period;
8251 
8252 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8253 	if (cfs_quota_us < 0)
8254 		quota = RUNTIME_INF;
8255 	else
8256 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8257 
8258 	return tg_set_cfs_bandwidth(tg, period, quota);
8259 }
8260 
8261 long tg_get_cfs_quota(struct task_group *tg)
8262 {
8263 	u64 quota_us;
8264 
8265 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8266 		return -1;
8267 
8268 	quota_us = tg->cfs_bandwidth.quota;
8269 	do_div(quota_us, NSEC_PER_USEC);
8270 
8271 	return quota_us;
8272 }
8273 
8274 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8275 {
8276 	u64 quota, period;
8277 
8278 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8279 	quota = tg->cfs_bandwidth.quota;
8280 
8281 	return tg_set_cfs_bandwidth(tg, period, quota);
8282 }
8283 
8284 long tg_get_cfs_period(struct task_group *tg)
8285 {
8286 	u64 cfs_period_us;
8287 
8288 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8289 	do_div(cfs_period_us, NSEC_PER_USEC);
8290 
8291 	return cfs_period_us;
8292 }
8293 
8294 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8295 				  struct cftype *cft)
8296 {
8297 	return tg_get_cfs_quota(css_tg(css));
8298 }
8299 
8300 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8301 				   struct cftype *cftype, s64 cfs_quota_us)
8302 {
8303 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8304 }
8305 
8306 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8307 				   struct cftype *cft)
8308 {
8309 	return tg_get_cfs_period(css_tg(css));
8310 }
8311 
8312 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8313 				    struct cftype *cftype, u64 cfs_period_us)
8314 {
8315 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8316 }
8317 
8318 struct cfs_schedulable_data {
8319 	struct task_group *tg;
8320 	u64 period, quota;
8321 };
8322 
8323 /*
8324  * normalize group quota/period to be quota/max_period
8325  * note: units are usecs
8326  */
8327 static u64 normalize_cfs_quota(struct task_group *tg,
8328 			       struct cfs_schedulable_data *d)
8329 {
8330 	u64 quota, period;
8331 
8332 	if (tg == d->tg) {
8333 		period = d->period;
8334 		quota = d->quota;
8335 	} else {
8336 		period = tg_get_cfs_period(tg);
8337 		quota = tg_get_cfs_quota(tg);
8338 	}
8339 
8340 	/* note: these should typically be equivalent */
8341 	if (quota == RUNTIME_INF || quota == -1)
8342 		return RUNTIME_INF;
8343 
8344 	return to_ratio(period, quota);
8345 }
8346 
8347 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8348 {
8349 	struct cfs_schedulable_data *d = data;
8350 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8351 	s64 quota = 0, parent_quota = -1;
8352 
8353 	if (!tg->parent) {
8354 		quota = RUNTIME_INF;
8355 	} else {
8356 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8357 
8358 		quota = normalize_cfs_quota(tg, d);
8359 		parent_quota = parent_b->hierarchical_quota;
8360 
8361 		/*
8362 		 * ensure max(child_quota) <= parent_quota, inherit when no
8363 		 * limit is set
8364 		 */
8365 		if (quota == RUNTIME_INF)
8366 			quota = parent_quota;
8367 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8368 			return -EINVAL;
8369 	}
8370 	cfs_b->hierarchical_quota = quota;
8371 
8372 	return 0;
8373 }
8374 
8375 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8376 {
8377 	int ret;
8378 	struct cfs_schedulable_data data = {
8379 		.tg = tg,
8380 		.period = period,
8381 		.quota = quota,
8382 	};
8383 
8384 	if (quota != RUNTIME_INF) {
8385 		do_div(data.period, NSEC_PER_USEC);
8386 		do_div(data.quota, NSEC_PER_USEC);
8387 	}
8388 
8389 	rcu_read_lock();
8390 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8391 	rcu_read_unlock();
8392 
8393 	return ret;
8394 }
8395 
8396 static int cpu_stats_show(struct seq_file *sf, void *v)
8397 {
8398 	struct task_group *tg = css_tg(seq_css(sf));
8399 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8400 
8401 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8402 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8403 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8404 
8405 	return 0;
8406 }
8407 #endif /* CONFIG_CFS_BANDWIDTH */
8408 #endif /* CONFIG_FAIR_GROUP_SCHED */
8409 
8410 #ifdef CONFIG_RT_GROUP_SCHED
8411 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8412 				struct cftype *cft, s64 val)
8413 {
8414 	return sched_group_set_rt_runtime(css_tg(css), val);
8415 }
8416 
8417 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8418 			       struct cftype *cft)
8419 {
8420 	return sched_group_rt_runtime(css_tg(css));
8421 }
8422 
8423 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8424 				    struct cftype *cftype, u64 rt_period_us)
8425 {
8426 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8427 }
8428 
8429 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8430 				   struct cftype *cft)
8431 {
8432 	return sched_group_rt_period(css_tg(css));
8433 }
8434 #endif /* CONFIG_RT_GROUP_SCHED */
8435 
8436 static struct cftype cpu_files[] = {
8437 #ifdef CONFIG_FAIR_GROUP_SCHED
8438 	{
8439 		.name = "shares",
8440 		.read_u64 = cpu_shares_read_u64,
8441 		.write_u64 = cpu_shares_write_u64,
8442 	},
8443 #endif
8444 #ifdef CONFIG_CFS_BANDWIDTH
8445 	{
8446 		.name = "cfs_quota_us",
8447 		.read_s64 = cpu_cfs_quota_read_s64,
8448 		.write_s64 = cpu_cfs_quota_write_s64,
8449 	},
8450 	{
8451 		.name = "cfs_period_us",
8452 		.read_u64 = cpu_cfs_period_read_u64,
8453 		.write_u64 = cpu_cfs_period_write_u64,
8454 	},
8455 	{
8456 		.name = "stat",
8457 		.seq_show = cpu_stats_show,
8458 	},
8459 #endif
8460 #ifdef CONFIG_RT_GROUP_SCHED
8461 	{
8462 		.name = "rt_runtime_us",
8463 		.read_s64 = cpu_rt_runtime_read,
8464 		.write_s64 = cpu_rt_runtime_write,
8465 	},
8466 	{
8467 		.name = "rt_period_us",
8468 		.read_u64 = cpu_rt_period_read_uint,
8469 		.write_u64 = cpu_rt_period_write_uint,
8470 	},
8471 #endif
8472 	{ }	/* terminate */
8473 };
8474 
8475 struct cgroup_subsys cpu_cgrp_subsys = {
8476 	.css_alloc	= cpu_cgroup_css_alloc,
8477 	.css_free	= cpu_cgroup_css_free,
8478 	.css_online	= cpu_cgroup_css_online,
8479 	.css_offline	= cpu_cgroup_css_offline,
8480 	.fork		= cpu_cgroup_fork,
8481 	.can_attach	= cpu_cgroup_can_attach,
8482 	.attach		= cpu_cgroup_attach,
8483 	.exit		= cpu_cgroup_exit,
8484 	.legacy_cftypes	= cpu_files,
8485 	.early_init	= 1,
8486 };
8487 
8488 #endif	/* CONFIG_CGROUP_SCHED */
8489 
8490 void dump_cpu_task(int cpu)
8491 {
8492 	pr_info("Task dump for CPU %d:\n", cpu);
8493 	sched_show_task(cpu_curr(cpu));
8494 }
8495