xref: /openbmc/linux/kernel/sched/core.c (revision 74a5ce20e6eeeb3751340b390e7ac1d1d07bbf55)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83 
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90 
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 	unsigned long delta;
94 	ktime_t soft, hard, now;
95 
96 	for (;;) {
97 		if (hrtimer_active(period_timer))
98 			break;
99 
100 		now = hrtimer_cb_get_time(period_timer);
101 		hrtimer_forward(period_timer, now, period);
102 
103 		soft = hrtimer_get_softexpires(period_timer);
104 		hard = hrtimer_get_expires(period_timer);
105 		delta = ktime_to_ns(ktime_sub(hard, soft));
106 		__hrtimer_start_range_ns(period_timer, soft, delta,
107 					 HRTIMER_MODE_ABS_PINNED, 0);
108 	}
109 }
110 
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113 
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115 
116 void update_rq_clock(struct rq *rq)
117 {
118 	s64 delta;
119 
120 	if (rq->skip_clock_update > 0)
121 		return;
122 
123 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 	rq->clock += delta;
125 	update_rq_clock_task(rq, delta);
126 }
127 
128 /*
129  * Debugging: various feature bits
130  */
131 
132 #define SCHED_FEAT(name, enabled)	\
133 	(1UL << __SCHED_FEAT_##name) * enabled |
134 
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 	0;
138 
139 #undef SCHED_FEAT
140 
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled)	\
143 	#name ,
144 
145 static __read_mostly char *sched_feat_names[] = {
146 #include "features.h"
147 	NULL
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static ssize_t
197 sched_feat_write(struct file *filp, const char __user *ubuf,
198 		size_t cnt, loff_t *ppos)
199 {
200 	char buf[64];
201 	char *cmp;
202 	int neg = 0;
203 	int i;
204 
205 	if (cnt > 63)
206 		cnt = 63;
207 
208 	if (copy_from_user(&buf, ubuf, cnt))
209 		return -EFAULT;
210 
211 	buf[cnt] = 0;
212 	cmp = strstrip(buf);
213 
214 	if (strncmp(cmp, "NO_", 3) == 0) {
215 		neg = 1;
216 		cmp += 3;
217 	}
218 
219 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
220 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
221 			if (neg) {
222 				sysctl_sched_features &= ~(1UL << i);
223 				sched_feat_disable(i);
224 			} else {
225 				sysctl_sched_features |= (1UL << i);
226 				sched_feat_enable(i);
227 			}
228 			break;
229 		}
230 	}
231 
232 	if (i == __SCHED_FEAT_NR)
233 		return -EINVAL;
234 
235 	*ppos += cnt;
236 
237 	return cnt;
238 }
239 
240 static int sched_feat_open(struct inode *inode, struct file *filp)
241 {
242 	return single_open(filp, sched_feat_show, NULL);
243 }
244 
245 static const struct file_operations sched_feat_fops = {
246 	.open		= sched_feat_open,
247 	.write		= sched_feat_write,
248 	.read		= seq_read,
249 	.llseek		= seq_lseek,
250 	.release	= single_release,
251 };
252 
253 static __init int sched_init_debug(void)
254 {
255 	debugfs_create_file("sched_features", 0644, NULL, NULL,
256 			&sched_feat_fops);
257 
258 	return 0;
259 }
260 late_initcall(sched_init_debug);
261 #endif /* CONFIG_SCHED_DEBUG */
262 
263 /*
264  * Number of tasks to iterate in a single balance run.
265  * Limited because this is done with IRQs disabled.
266  */
267 const_debug unsigned int sysctl_sched_nr_migrate = 32;
268 
269 /*
270  * period over which we average the RT time consumption, measured
271  * in ms.
272  *
273  * default: 1s
274  */
275 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
276 
277 /*
278  * period over which we measure -rt task cpu usage in us.
279  * default: 1s
280  */
281 unsigned int sysctl_sched_rt_period = 1000000;
282 
283 __read_mostly int scheduler_running;
284 
285 /*
286  * part of the period that we allow rt tasks to run in us.
287  * default: 0.95s
288  */
289 int sysctl_sched_rt_runtime = 950000;
290 
291 
292 
293 /*
294  * __task_rq_lock - lock the rq @p resides on.
295  */
296 static inline struct rq *__task_rq_lock(struct task_struct *p)
297 	__acquires(rq->lock)
298 {
299 	struct rq *rq;
300 
301 	lockdep_assert_held(&p->pi_lock);
302 
303 	for (;;) {
304 		rq = task_rq(p);
305 		raw_spin_lock(&rq->lock);
306 		if (likely(rq == task_rq(p)))
307 			return rq;
308 		raw_spin_unlock(&rq->lock);
309 	}
310 }
311 
312 /*
313  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
314  */
315 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
316 	__acquires(p->pi_lock)
317 	__acquires(rq->lock)
318 {
319 	struct rq *rq;
320 
321 	for (;;) {
322 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
323 		rq = task_rq(p);
324 		raw_spin_lock(&rq->lock);
325 		if (likely(rq == task_rq(p)))
326 			return rq;
327 		raw_spin_unlock(&rq->lock);
328 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
329 	}
330 }
331 
332 static void __task_rq_unlock(struct rq *rq)
333 	__releases(rq->lock)
334 {
335 	raw_spin_unlock(&rq->lock);
336 }
337 
338 static inline void
339 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
340 	__releases(rq->lock)
341 	__releases(p->pi_lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
345 }
346 
347 /*
348  * this_rq_lock - lock this runqueue and disable interrupts.
349  */
350 static struct rq *this_rq_lock(void)
351 	__acquires(rq->lock)
352 {
353 	struct rq *rq;
354 
355 	local_irq_disable();
356 	rq = this_rq();
357 	raw_spin_lock(&rq->lock);
358 
359 	return rq;
360 }
361 
362 #ifdef CONFIG_SCHED_HRTICK
363 /*
364  * Use HR-timers to deliver accurate preemption points.
365  *
366  * Its all a bit involved since we cannot program an hrt while holding the
367  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
368  * reschedule event.
369  *
370  * When we get rescheduled we reprogram the hrtick_timer outside of the
371  * rq->lock.
372  */
373 
374 static void hrtick_clear(struct rq *rq)
375 {
376 	if (hrtimer_active(&rq->hrtick_timer))
377 		hrtimer_cancel(&rq->hrtick_timer);
378 }
379 
380 /*
381  * High-resolution timer tick.
382  * Runs from hardirq context with interrupts disabled.
383  */
384 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 {
386 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387 
388 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389 
390 	raw_spin_lock(&rq->lock);
391 	update_rq_clock(rq);
392 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 	raw_spin_unlock(&rq->lock);
394 
395 	return HRTIMER_NORESTART;
396 }
397 
398 #ifdef CONFIG_SMP
399 /*
400  * called from hardirq (IPI) context
401  */
402 static void __hrtick_start(void *arg)
403 {
404 	struct rq *rq = arg;
405 
406 	raw_spin_lock(&rq->lock);
407 	hrtimer_restart(&rq->hrtick_timer);
408 	rq->hrtick_csd_pending = 0;
409 	raw_spin_unlock(&rq->lock);
410 }
411 
412 /*
413  * Called to set the hrtick timer state.
414  *
415  * called with rq->lock held and irqs disabled
416  */
417 void hrtick_start(struct rq *rq, u64 delay)
418 {
419 	struct hrtimer *timer = &rq->hrtick_timer;
420 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421 
422 	hrtimer_set_expires(timer, time);
423 
424 	if (rq == this_rq()) {
425 		hrtimer_restart(timer);
426 	} else if (!rq->hrtick_csd_pending) {
427 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
428 		rq->hrtick_csd_pending = 1;
429 	}
430 }
431 
432 static int
433 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
434 {
435 	int cpu = (int)(long)hcpu;
436 
437 	switch (action) {
438 	case CPU_UP_CANCELED:
439 	case CPU_UP_CANCELED_FROZEN:
440 	case CPU_DOWN_PREPARE:
441 	case CPU_DOWN_PREPARE_FROZEN:
442 	case CPU_DEAD:
443 	case CPU_DEAD_FROZEN:
444 		hrtick_clear(cpu_rq(cpu));
445 		return NOTIFY_OK;
446 	}
447 
448 	return NOTIFY_DONE;
449 }
450 
451 static __init void init_hrtick(void)
452 {
453 	hotcpu_notifier(hotplug_hrtick, 0);
454 }
455 #else
456 /*
457  * Called to set the hrtick timer state.
458  *
459  * called with rq->lock held and irqs disabled
460  */
461 void hrtick_start(struct rq *rq, u64 delay)
462 {
463 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
464 			HRTIMER_MODE_REL_PINNED, 0);
465 }
466 
467 static inline void init_hrtick(void)
468 {
469 }
470 #endif /* CONFIG_SMP */
471 
472 static void init_rq_hrtick(struct rq *rq)
473 {
474 #ifdef CONFIG_SMP
475 	rq->hrtick_csd_pending = 0;
476 
477 	rq->hrtick_csd.flags = 0;
478 	rq->hrtick_csd.func = __hrtick_start;
479 	rq->hrtick_csd.info = rq;
480 #endif
481 
482 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
483 	rq->hrtick_timer.function = hrtick;
484 }
485 #else	/* CONFIG_SCHED_HRTICK */
486 static inline void hrtick_clear(struct rq *rq)
487 {
488 }
489 
490 static inline void init_rq_hrtick(struct rq *rq)
491 {
492 }
493 
494 static inline void init_hrtick(void)
495 {
496 }
497 #endif	/* CONFIG_SCHED_HRTICK */
498 
499 /*
500  * resched_task - mark a task 'to be rescheduled now'.
501  *
502  * On UP this means the setting of the need_resched flag, on SMP it
503  * might also involve a cross-CPU call to trigger the scheduler on
504  * the target CPU.
505  */
506 #ifdef CONFIG_SMP
507 
508 #ifndef tsk_is_polling
509 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
510 #endif
511 
512 void resched_task(struct task_struct *p)
513 {
514 	int cpu;
515 
516 	assert_raw_spin_locked(&task_rq(p)->lock);
517 
518 	if (test_tsk_need_resched(p))
519 		return;
520 
521 	set_tsk_need_resched(p);
522 
523 	cpu = task_cpu(p);
524 	if (cpu == smp_processor_id())
525 		return;
526 
527 	/* NEED_RESCHED must be visible before we test polling */
528 	smp_mb();
529 	if (!tsk_is_polling(p))
530 		smp_send_reschedule(cpu);
531 }
532 
533 void resched_cpu(int cpu)
534 {
535 	struct rq *rq = cpu_rq(cpu);
536 	unsigned long flags;
537 
538 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
539 		return;
540 	resched_task(cpu_curr(cpu));
541 	raw_spin_unlock_irqrestore(&rq->lock, flags);
542 }
543 
544 #ifdef CONFIG_NO_HZ
545 /*
546  * In the semi idle case, use the nearest busy cpu for migrating timers
547  * from an idle cpu.  This is good for power-savings.
548  *
549  * We don't do similar optimization for completely idle system, as
550  * selecting an idle cpu will add more delays to the timers than intended
551  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
552  */
553 int get_nohz_timer_target(void)
554 {
555 	int cpu = smp_processor_id();
556 	int i;
557 	struct sched_domain *sd;
558 
559 	rcu_read_lock();
560 	for_each_domain(cpu, sd) {
561 		for_each_cpu(i, sched_domain_span(sd)) {
562 			if (!idle_cpu(i)) {
563 				cpu = i;
564 				goto unlock;
565 			}
566 		}
567 	}
568 unlock:
569 	rcu_read_unlock();
570 	return cpu;
571 }
572 /*
573  * When add_timer_on() enqueues a timer into the timer wheel of an
574  * idle CPU then this timer might expire before the next timer event
575  * which is scheduled to wake up that CPU. In case of a completely
576  * idle system the next event might even be infinite time into the
577  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
578  * leaves the inner idle loop so the newly added timer is taken into
579  * account when the CPU goes back to idle and evaluates the timer
580  * wheel for the next timer event.
581  */
582 void wake_up_idle_cpu(int cpu)
583 {
584 	struct rq *rq = cpu_rq(cpu);
585 
586 	if (cpu == smp_processor_id())
587 		return;
588 
589 	/*
590 	 * This is safe, as this function is called with the timer
591 	 * wheel base lock of (cpu) held. When the CPU is on the way
592 	 * to idle and has not yet set rq->curr to idle then it will
593 	 * be serialized on the timer wheel base lock and take the new
594 	 * timer into account automatically.
595 	 */
596 	if (rq->curr != rq->idle)
597 		return;
598 
599 	/*
600 	 * We can set TIF_RESCHED on the idle task of the other CPU
601 	 * lockless. The worst case is that the other CPU runs the
602 	 * idle task through an additional NOOP schedule()
603 	 */
604 	set_tsk_need_resched(rq->idle);
605 
606 	/* NEED_RESCHED must be visible before we test polling */
607 	smp_mb();
608 	if (!tsk_is_polling(rq->idle))
609 		smp_send_reschedule(cpu);
610 }
611 
612 static inline bool got_nohz_idle_kick(void)
613 {
614 	int cpu = smp_processor_id();
615 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
616 }
617 
618 #else /* CONFIG_NO_HZ */
619 
620 static inline bool got_nohz_idle_kick(void)
621 {
622 	return false;
623 }
624 
625 #endif /* CONFIG_NO_HZ */
626 
627 void sched_avg_update(struct rq *rq)
628 {
629 	s64 period = sched_avg_period();
630 
631 	while ((s64)(rq->clock - rq->age_stamp) > period) {
632 		/*
633 		 * Inline assembly required to prevent the compiler
634 		 * optimising this loop into a divmod call.
635 		 * See __iter_div_u64_rem() for another example of this.
636 		 */
637 		asm("" : "+rm" (rq->age_stamp));
638 		rq->age_stamp += period;
639 		rq->rt_avg /= 2;
640 	}
641 }
642 
643 #else /* !CONFIG_SMP */
644 void resched_task(struct task_struct *p)
645 {
646 	assert_raw_spin_locked(&task_rq(p)->lock);
647 	set_tsk_need_resched(p);
648 }
649 #endif /* CONFIG_SMP */
650 
651 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
652 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653 /*
654  * Iterate task_group tree rooted at *from, calling @down when first entering a
655  * node and @up when leaving it for the final time.
656  *
657  * Caller must hold rcu_lock or sufficient equivalent.
658  */
659 int walk_tg_tree_from(struct task_group *from,
660 			     tg_visitor down, tg_visitor up, void *data)
661 {
662 	struct task_group *parent, *child;
663 	int ret;
664 
665 	parent = from;
666 
667 down:
668 	ret = (*down)(parent, data);
669 	if (ret)
670 		goto out;
671 	list_for_each_entry_rcu(child, &parent->children, siblings) {
672 		parent = child;
673 		goto down;
674 
675 up:
676 		continue;
677 	}
678 	ret = (*up)(parent, data);
679 	if (ret || parent == from)
680 		goto out;
681 
682 	child = parent;
683 	parent = parent->parent;
684 	if (parent)
685 		goto up;
686 out:
687 	return ret;
688 }
689 
690 int tg_nop(struct task_group *tg, void *data)
691 {
692 	return 0;
693 }
694 #endif
695 
696 static void set_load_weight(struct task_struct *p)
697 {
698 	int prio = p->static_prio - MAX_RT_PRIO;
699 	struct load_weight *load = &p->se.load;
700 
701 	/*
702 	 * SCHED_IDLE tasks get minimal weight:
703 	 */
704 	if (p->policy == SCHED_IDLE) {
705 		load->weight = scale_load(WEIGHT_IDLEPRIO);
706 		load->inv_weight = WMULT_IDLEPRIO;
707 		return;
708 	}
709 
710 	load->weight = scale_load(prio_to_weight[prio]);
711 	load->inv_weight = prio_to_wmult[prio];
712 }
713 
714 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715 {
716 	update_rq_clock(rq);
717 	sched_info_queued(p);
718 	p->sched_class->enqueue_task(rq, p, flags);
719 }
720 
721 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722 {
723 	update_rq_clock(rq);
724 	sched_info_dequeued(p);
725 	p->sched_class->dequeue_task(rq, p, flags);
726 }
727 
728 void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 {
730 	if (task_contributes_to_load(p))
731 		rq->nr_uninterruptible--;
732 
733 	enqueue_task(rq, p, flags);
734 }
735 
736 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 	if (task_contributes_to_load(p))
739 		rq->nr_uninterruptible++;
740 
741 	dequeue_task(rq, p, flags);
742 }
743 
744 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
745 
746 /*
747  * There are no locks covering percpu hardirq/softirq time.
748  * They are only modified in account_system_vtime, on corresponding CPU
749  * with interrupts disabled. So, writes are safe.
750  * They are read and saved off onto struct rq in update_rq_clock().
751  * This may result in other CPU reading this CPU's irq time and can
752  * race with irq/account_system_vtime on this CPU. We would either get old
753  * or new value with a side effect of accounting a slice of irq time to wrong
754  * task when irq is in progress while we read rq->clock. That is a worthy
755  * compromise in place of having locks on each irq in account_system_time.
756  */
757 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
758 static DEFINE_PER_CPU(u64, cpu_softirq_time);
759 
760 static DEFINE_PER_CPU(u64, irq_start_time);
761 static int sched_clock_irqtime;
762 
763 void enable_sched_clock_irqtime(void)
764 {
765 	sched_clock_irqtime = 1;
766 }
767 
768 void disable_sched_clock_irqtime(void)
769 {
770 	sched_clock_irqtime = 0;
771 }
772 
773 #ifndef CONFIG_64BIT
774 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775 
776 static inline void irq_time_write_begin(void)
777 {
778 	__this_cpu_inc(irq_time_seq.sequence);
779 	smp_wmb();
780 }
781 
782 static inline void irq_time_write_end(void)
783 {
784 	smp_wmb();
785 	__this_cpu_inc(irq_time_seq.sequence);
786 }
787 
788 static inline u64 irq_time_read(int cpu)
789 {
790 	u64 irq_time;
791 	unsigned seq;
792 
793 	do {
794 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
795 		irq_time = per_cpu(cpu_softirq_time, cpu) +
796 			   per_cpu(cpu_hardirq_time, cpu);
797 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798 
799 	return irq_time;
800 }
801 #else /* CONFIG_64BIT */
802 static inline void irq_time_write_begin(void)
803 {
804 }
805 
806 static inline void irq_time_write_end(void)
807 {
808 }
809 
810 static inline u64 irq_time_read(int cpu)
811 {
812 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813 }
814 #endif /* CONFIG_64BIT */
815 
816 /*
817  * Called before incrementing preempt_count on {soft,}irq_enter
818  * and before decrementing preempt_count on {soft,}irq_exit.
819  */
820 void account_system_vtime(struct task_struct *curr)
821 {
822 	unsigned long flags;
823 	s64 delta;
824 	int cpu;
825 
826 	if (!sched_clock_irqtime)
827 		return;
828 
829 	local_irq_save(flags);
830 
831 	cpu = smp_processor_id();
832 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
833 	__this_cpu_add(irq_start_time, delta);
834 
835 	irq_time_write_begin();
836 	/*
837 	 * We do not account for softirq time from ksoftirqd here.
838 	 * We want to continue accounting softirq time to ksoftirqd thread
839 	 * in that case, so as not to confuse scheduler with a special task
840 	 * that do not consume any time, but still wants to run.
841 	 */
842 	if (hardirq_count())
843 		__this_cpu_add(cpu_hardirq_time, delta);
844 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
845 		__this_cpu_add(cpu_softirq_time, delta);
846 
847 	irq_time_write_end();
848 	local_irq_restore(flags);
849 }
850 EXPORT_SYMBOL_GPL(account_system_vtime);
851 
852 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853 
854 #ifdef CONFIG_PARAVIRT
855 static inline u64 steal_ticks(u64 steal)
856 {
857 	if (unlikely(steal > NSEC_PER_SEC))
858 		return div_u64(steal, TICK_NSEC);
859 
860 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861 }
862 #endif
863 
864 static void update_rq_clock_task(struct rq *rq, s64 delta)
865 {
866 /*
867  * In theory, the compile should just see 0 here, and optimize out the call
868  * to sched_rt_avg_update. But I don't trust it...
869  */
870 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
871 	s64 steal = 0, irq_delta = 0;
872 #endif
873 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
874 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
875 
876 	/*
877 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
878 	 * this case when a previous update_rq_clock() happened inside a
879 	 * {soft,}irq region.
880 	 *
881 	 * When this happens, we stop ->clock_task and only update the
882 	 * prev_irq_time stamp to account for the part that fit, so that a next
883 	 * update will consume the rest. This ensures ->clock_task is
884 	 * monotonic.
885 	 *
886 	 * It does however cause some slight miss-attribution of {soft,}irq
887 	 * time, a more accurate solution would be to update the irq_time using
888 	 * the current rq->clock timestamp, except that would require using
889 	 * atomic ops.
890 	 */
891 	if (irq_delta > delta)
892 		irq_delta = delta;
893 
894 	rq->prev_irq_time += irq_delta;
895 	delta -= irq_delta;
896 #endif
897 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
898 	if (static_key_false((&paravirt_steal_rq_enabled))) {
899 		u64 st;
900 
901 		steal = paravirt_steal_clock(cpu_of(rq));
902 		steal -= rq->prev_steal_time_rq;
903 
904 		if (unlikely(steal > delta))
905 			steal = delta;
906 
907 		st = steal_ticks(steal);
908 		steal = st * TICK_NSEC;
909 
910 		rq->prev_steal_time_rq += steal;
911 
912 		delta -= steal;
913 	}
914 #endif
915 
916 	rq->clock_task += delta;
917 
918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
920 		sched_rt_avg_update(rq, irq_delta + steal);
921 #endif
922 }
923 
924 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
925 static int irqtime_account_hi_update(void)
926 {
927 	u64 *cpustat = kcpustat_this_cpu->cpustat;
928 	unsigned long flags;
929 	u64 latest_ns;
930 	int ret = 0;
931 
932 	local_irq_save(flags);
933 	latest_ns = this_cpu_read(cpu_hardirq_time);
934 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
935 		ret = 1;
936 	local_irq_restore(flags);
937 	return ret;
938 }
939 
940 static int irqtime_account_si_update(void)
941 {
942 	u64 *cpustat = kcpustat_this_cpu->cpustat;
943 	unsigned long flags;
944 	u64 latest_ns;
945 	int ret = 0;
946 
947 	local_irq_save(flags);
948 	latest_ns = this_cpu_read(cpu_softirq_time);
949 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
950 		ret = 1;
951 	local_irq_restore(flags);
952 	return ret;
953 }
954 
955 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
956 
957 #define sched_clock_irqtime	(0)
958 
959 #endif
960 
961 void sched_set_stop_task(int cpu, struct task_struct *stop)
962 {
963 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
964 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
965 
966 	if (stop) {
967 		/*
968 		 * Make it appear like a SCHED_FIFO task, its something
969 		 * userspace knows about and won't get confused about.
970 		 *
971 		 * Also, it will make PI more or less work without too
972 		 * much confusion -- but then, stop work should not
973 		 * rely on PI working anyway.
974 		 */
975 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976 
977 		stop->sched_class = &stop_sched_class;
978 	}
979 
980 	cpu_rq(cpu)->stop = stop;
981 
982 	if (old_stop) {
983 		/*
984 		 * Reset it back to a normal scheduling class so that
985 		 * it can die in pieces.
986 		 */
987 		old_stop->sched_class = &rt_sched_class;
988 	}
989 }
990 
991 /*
992  * __normal_prio - return the priority that is based on the static prio
993  */
994 static inline int __normal_prio(struct task_struct *p)
995 {
996 	return p->static_prio;
997 }
998 
999 /*
1000  * Calculate the expected normal priority: i.e. priority
1001  * without taking RT-inheritance into account. Might be
1002  * boosted by interactivity modifiers. Changes upon fork,
1003  * setprio syscalls, and whenever the interactivity
1004  * estimator recalculates.
1005  */
1006 static inline int normal_prio(struct task_struct *p)
1007 {
1008 	int prio;
1009 
1010 	if (task_has_rt_policy(p))
1011 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1012 	else
1013 		prio = __normal_prio(p);
1014 	return prio;
1015 }
1016 
1017 /*
1018  * Calculate the current priority, i.e. the priority
1019  * taken into account by the scheduler. This value might
1020  * be boosted by RT tasks, or might be boosted by
1021  * interactivity modifiers. Will be RT if the task got
1022  * RT-boosted. If not then it returns p->normal_prio.
1023  */
1024 static int effective_prio(struct task_struct *p)
1025 {
1026 	p->normal_prio = normal_prio(p);
1027 	/*
1028 	 * If we are RT tasks or we were boosted to RT priority,
1029 	 * keep the priority unchanged. Otherwise, update priority
1030 	 * to the normal priority:
1031 	 */
1032 	if (!rt_prio(p->prio))
1033 		return p->normal_prio;
1034 	return p->prio;
1035 }
1036 
1037 /**
1038  * task_curr - is this task currently executing on a CPU?
1039  * @p: the task in question.
1040  */
1041 inline int task_curr(const struct task_struct *p)
1042 {
1043 	return cpu_curr(task_cpu(p)) == p;
1044 }
1045 
1046 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1047 				       const struct sched_class *prev_class,
1048 				       int oldprio)
1049 {
1050 	if (prev_class != p->sched_class) {
1051 		if (prev_class->switched_from)
1052 			prev_class->switched_from(rq, p);
1053 		p->sched_class->switched_to(rq, p);
1054 	} else if (oldprio != p->prio)
1055 		p->sched_class->prio_changed(rq, p, oldprio);
1056 }
1057 
1058 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1059 {
1060 	const struct sched_class *class;
1061 
1062 	if (p->sched_class == rq->curr->sched_class) {
1063 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1064 	} else {
1065 		for_each_class(class) {
1066 			if (class == rq->curr->sched_class)
1067 				break;
1068 			if (class == p->sched_class) {
1069 				resched_task(rq->curr);
1070 				break;
1071 			}
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * A queue event has occurred, and we're going to schedule.  In
1077 	 * this case, we can save a useless back to back clock update.
1078 	 */
1079 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1080 		rq->skip_clock_update = 1;
1081 }
1082 
1083 #ifdef CONFIG_SMP
1084 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1085 {
1086 #ifdef CONFIG_SCHED_DEBUG
1087 	/*
1088 	 * We should never call set_task_cpu() on a blocked task,
1089 	 * ttwu() will sort out the placement.
1090 	 */
1091 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1092 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1093 
1094 #ifdef CONFIG_LOCKDEP
1095 	/*
1096 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1097 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 	 *
1099 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1100 	 * see set_task_rq().
1101 	 *
1102 	 * Furthermore, all task_rq users should acquire both locks, see
1103 	 * task_rq_lock().
1104 	 */
1105 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1106 				      lockdep_is_held(&task_rq(p)->lock)));
1107 #endif
1108 #endif
1109 
1110 	trace_sched_migrate_task(p, new_cpu);
1111 
1112 	if (task_cpu(p) != new_cpu) {
1113 		p->se.nr_migrations++;
1114 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1115 	}
1116 
1117 	__set_task_cpu(p, new_cpu);
1118 }
1119 
1120 struct migration_arg {
1121 	struct task_struct *task;
1122 	int dest_cpu;
1123 };
1124 
1125 static int migration_cpu_stop(void *data);
1126 
1127 /*
1128  * wait_task_inactive - wait for a thread to unschedule.
1129  *
1130  * If @match_state is nonzero, it's the @p->state value just checked and
1131  * not expected to change.  If it changes, i.e. @p might have woken up,
1132  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1133  * we return a positive number (its total switch count).  If a second call
1134  * a short while later returns the same number, the caller can be sure that
1135  * @p has remained unscheduled the whole time.
1136  *
1137  * The caller must ensure that the task *will* unschedule sometime soon,
1138  * else this function might spin for a *long* time. This function can't
1139  * be called with interrupts off, or it may introduce deadlock with
1140  * smp_call_function() if an IPI is sent by the same process we are
1141  * waiting to become inactive.
1142  */
1143 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1144 {
1145 	unsigned long flags;
1146 	int running, on_rq;
1147 	unsigned long ncsw;
1148 	struct rq *rq;
1149 
1150 	for (;;) {
1151 		/*
1152 		 * We do the initial early heuristics without holding
1153 		 * any task-queue locks at all. We'll only try to get
1154 		 * the runqueue lock when things look like they will
1155 		 * work out!
1156 		 */
1157 		rq = task_rq(p);
1158 
1159 		/*
1160 		 * If the task is actively running on another CPU
1161 		 * still, just relax and busy-wait without holding
1162 		 * any locks.
1163 		 *
1164 		 * NOTE! Since we don't hold any locks, it's not
1165 		 * even sure that "rq" stays as the right runqueue!
1166 		 * But we don't care, since "task_running()" will
1167 		 * return false if the runqueue has changed and p
1168 		 * is actually now running somewhere else!
1169 		 */
1170 		while (task_running(rq, p)) {
1171 			if (match_state && unlikely(p->state != match_state))
1172 				return 0;
1173 			cpu_relax();
1174 		}
1175 
1176 		/*
1177 		 * Ok, time to look more closely! We need the rq
1178 		 * lock now, to be *sure*. If we're wrong, we'll
1179 		 * just go back and repeat.
1180 		 */
1181 		rq = task_rq_lock(p, &flags);
1182 		trace_sched_wait_task(p);
1183 		running = task_running(rq, p);
1184 		on_rq = p->on_rq;
1185 		ncsw = 0;
1186 		if (!match_state || p->state == match_state)
1187 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1188 		task_rq_unlock(rq, p, &flags);
1189 
1190 		/*
1191 		 * If it changed from the expected state, bail out now.
1192 		 */
1193 		if (unlikely(!ncsw))
1194 			break;
1195 
1196 		/*
1197 		 * Was it really running after all now that we
1198 		 * checked with the proper locks actually held?
1199 		 *
1200 		 * Oops. Go back and try again..
1201 		 */
1202 		if (unlikely(running)) {
1203 			cpu_relax();
1204 			continue;
1205 		}
1206 
1207 		/*
1208 		 * It's not enough that it's not actively running,
1209 		 * it must be off the runqueue _entirely_, and not
1210 		 * preempted!
1211 		 *
1212 		 * So if it was still runnable (but just not actively
1213 		 * running right now), it's preempted, and we should
1214 		 * yield - it could be a while.
1215 		 */
1216 		if (unlikely(on_rq)) {
1217 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218 
1219 			set_current_state(TASK_UNINTERRUPTIBLE);
1220 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1221 			continue;
1222 		}
1223 
1224 		/*
1225 		 * Ahh, all good. It wasn't running, and it wasn't
1226 		 * runnable, which means that it will never become
1227 		 * running in the future either. We're all done!
1228 		 */
1229 		break;
1230 	}
1231 
1232 	return ncsw;
1233 }
1234 
1235 /***
1236  * kick_process - kick a running thread to enter/exit the kernel
1237  * @p: the to-be-kicked thread
1238  *
1239  * Cause a process which is running on another CPU to enter
1240  * kernel-mode, without any delay. (to get signals handled.)
1241  *
1242  * NOTE: this function doesn't have to take the runqueue lock,
1243  * because all it wants to ensure is that the remote task enters
1244  * the kernel. If the IPI races and the task has been migrated
1245  * to another CPU then no harm is done and the purpose has been
1246  * achieved as well.
1247  */
1248 void kick_process(struct task_struct *p)
1249 {
1250 	int cpu;
1251 
1252 	preempt_disable();
1253 	cpu = task_cpu(p);
1254 	if ((cpu != smp_processor_id()) && task_curr(p))
1255 		smp_send_reschedule(cpu);
1256 	preempt_enable();
1257 }
1258 EXPORT_SYMBOL_GPL(kick_process);
1259 #endif /* CONFIG_SMP */
1260 
1261 #ifdef CONFIG_SMP
1262 /*
1263  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264  */
1265 static int select_fallback_rq(int cpu, struct task_struct *p)
1266 {
1267 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268 	enum { cpuset, possible, fail } state = cpuset;
1269 	int dest_cpu;
1270 
1271 	/* Look for allowed, online CPU in same node. */
1272 	for_each_cpu(dest_cpu, nodemask) {
1273 		if (!cpu_online(dest_cpu))
1274 			continue;
1275 		if (!cpu_active(dest_cpu))
1276 			continue;
1277 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1278 			return dest_cpu;
1279 	}
1280 
1281 	for (;;) {
1282 		/* Any allowed, online CPU? */
1283 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1284 			if (!cpu_online(dest_cpu))
1285 				continue;
1286 			if (!cpu_active(dest_cpu))
1287 				continue;
1288 			goto out;
1289 		}
1290 
1291 		switch (state) {
1292 		case cpuset:
1293 			/* No more Mr. Nice Guy. */
1294 			cpuset_cpus_allowed_fallback(p);
1295 			state = possible;
1296 			break;
1297 
1298 		case possible:
1299 			do_set_cpus_allowed(p, cpu_possible_mask);
1300 			state = fail;
1301 			break;
1302 
1303 		case fail:
1304 			BUG();
1305 			break;
1306 		}
1307 	}
1308 
1309 out:
1310 	if (state != cpuset) {
1311 		/*
1312 		 * Don't tell them about moving exiting tasks or
1313 		 * kernel threads (both mm NULL), since they never
1314 		 * leave kernel.
1315 		 */
1316 		if (p->mm && printk_ratelimit()) {
1317 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1318 					task_pid_nr(p), p->comm, cpu);
1319 		}
1320 	}
1321 
1322 	return dest_cpu;
1323 }
1324 
1325 /*
1326  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1327  */
1328 static inline
1329 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1330 {
1331 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1332 
1333 	/*
1334 	 * In order not to call set_task_cpu() on a blocking task we need
1335 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1336 	 * cpu.
1337 	 *
1338 	 * Since this is common to all placement strategies, this lives here.
1339 	 *
1340 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1341 	 *   not worry about this generic constraint ]
1342 	 */
1343 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1344 		     !cpu_online(cpu)))
1345 		cpu = select_fallback_rq(task_cpu(p), p);
1346 
1347 	return cpu;
1348 }
1349 
1350 static void update_avg(u64 *avg, u64 sample)
1351 {
1352 	s64 diff = sample - *avg;
1353 	*avg += diff >> 3;
1354 }
1355 #endif
1356 
1357 static void
1358 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1359 {
1360 #ifdef CONFIG_SCHEDSTATS
1361 	struct rq *rq = this_rq();
1362 
1363 #ifdef CONFIG_SMP
1364 	int this_cpu = smp_processor_id();
1365 
1366 	if (cpu == this_cpu) {
1367 		schedstat_inc(rq, ttwu_local);
1368 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1369 	} else {
1370 		struct sched_domain *sd;
1371 
1372 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1373 		rcu_read_lock();
1374 		for_each_domain(this_cpu, sd) {
1375 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1376 				schedstat_inc(sd, ttwu_wake_remote);
1377 				break;
1378 			}
1379 		}
1380 		rcu_read_unlock();
1381 	}
1382 
1383 	if (wake_flags & WF_MIGRATED)
1384 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1385 
1386 #endif /* CONFIG_SMP */
1387 
1388 	schedstat_inc(rq, ttwu_count);
1389 	schedstat_inc(p, se.statistics.nr_wakeups);
1390 
1391 	if (wake_flags & WF_SYNC)
1392 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1393 
1394 #endif /* CONFIG_SCHEDSTATS */
1395 }
1396 
1397 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1398 {
1399 	activate_task(rq, p, en_flags);
1400 	p->on_rq = 1;
1401 
1402 	/* if a worker is waking up, notify workqueue */
1403 	if (p->flags & PF_WQ_WORKER)
1404 		wq_worker_waking_up(p, cpu_of(rq));
1405 }
1406 
1407 /*
1408  * Mark the task runnable and perform wakeup-preemption.
1409  */
1410 static void
1411 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1412 {
1413 	trace_sched_wakeup(p, true);
1414 	check_preempt_curr(rq, p, wake_flags);
1415 
1416 	p->state = TASK_RUNNING;
1417 #ifdef CONFIG_SMP
1418 	if (p->sched_class->task_woken)
1419 		p->sched_class->task_woken(rq, p);
1420 
1421 	if (rq->idle_stamp) {
1422 		u64 delta = rq->clock - rq->idle_stamp;
1423 		u64 max = 2*sysctl_sched_migration_cost;
1424 
1425 		if (delta > max)
1426 			rq->avg_idle = max;
1427 		else
1428 			update_avg(&rq->avg_idle, delta);
1429 		rq->idle_stamp = 0;
1430 	}
1431 #endif
1432 }
1433 
1434 static void
1435 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1436 {
1437 #ifdef CONFIG_SMP
1438 	if (p->sched_contributes_to_load)
1439 		rq->nr_uninterruptible--;
1440 #endif
1441 
1442 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1443 	ttwu_do_wakeup(rq, p, wake_flags);
1444 }
1445 
1446 /*
1447  * Called in case the task @p isn't fully descheduled from its runqueue,
1448  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1449  * since all we need to do is flip p->state to TASK_RUNNING, since
1450  * the task is still ->on_rq.
1451  */
1452 static int ttwu_remote(struct task_struct *p, int wake_flags)
1453 {
1454 	struct rq *rq;
1455 	int ret = 0;
1456 
1457 	rq = __task_rq_lock(p);
1458 	if (p->on_rq) {
1459 		ttwu_do_wakeup(rq, p, wake_flags);
1460 		ret = 1;
1461 	}
1462 	__task_rq_unlock(rq);
1463 
1464 	return ret;
1465 }
1466 
1467 #ifdef CONFIG_SMP
1468 static void sched_ttwu_pending(void)
1469 {
1470 	struct rq *rq = this_rq();
1471 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1472 	struct task_struct *p;
1473 
1474 	raw_spin_lock(&rq->lock);
1475 
1476 	while (llist) {
1477 		p = llist_entry(llist, struct task_struct, wake_entry);
1478 		llist = llist_next(llist);
1479 		ttwu_do_activate(rq, p, 0);
1480 	}
1481 
1482 	raw_spin_unlock(&rq->lock);
1483 }
1484 
1485 void scheduler_ipi(void)
1486 {
1487 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1488 		return;
1489 
1490 	/*
1491 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1492 	 * traditionally all their work was done from the interrupt return
1493 	 * path. Now that we actually do some work, we need to make sure
1494 	 * we do call them.
1495 	 *
1496 	 * Some archs already do call them, luckily irq_enter/exit nest
1497 	 * properly.
1498 	 *
1499 	 * Arguably we should visit all archs and update all handlers,
1500 	 * however a fair share of IPIs are still resched only so this would
1501 	 * somewhat pessimize the simple resched case.
1502 	 */
1503 	irq_enter();
1504 	sched_ttwu_pending();
1505 
1506 	/*
1507 	 * Check if someone kicked us for doing the nohz idle load balance.
1508 	 */
1509 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1510 		this_rq()->idle_balance = 1;
1511 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1512 	}
1513 	irq_exit();
1514 }
1515 
1516 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1517 {
1518 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1519 		smp_send_reschedule(cpu);
1520 }
1521 
1522 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1523 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1524 {
1525 	struct rq *rq;
1526 	int ret = 0;
1527 
1528 	rq = __task_rq_lock(p);
1529 	if (p->on_cpu) {
1530 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1531 		ttwu_do_wakeup(rq, p, wake_flags);
1532 		ret = 1;
1533 	}
1534 	__task_rq_unlock(rq);
1535 
1536 	return ret;
1537 
1538 }
1539 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1540 
1541 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 {
1543 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 }
1545 #endif /* CONFIG_SMP */
1546 
1547 static void ttwu_queue(struct task_struct *p, int cpu)
1548 {
1549 	struct rq *rq = cpu_rq(cpu);
1550 
1551 #if defined(CONFIG_SMP)
1552 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 		ttwu_queue_remote(p, cpu);
1555 		return;
1556 	}
1557 #endif
1558 
1559 	raw_spin_lock(&rq->lock);
1560 	ttwu_do_activate(rq, p, 0);
1561 	raw_spin_unlock(&rq->lock);
1562 }
1563 
1564 /**
1565  * try_to_wake_up - wake up a thread
1566  * @p: the thread to be awakened
1567  * @state: the mask of task states that can be woken
1568  * @wake_flags: wake modifier flags (WF_*)
1569  *
1570  * Put it on the run-queue if it's not already there. The "current"
1571  * thread is always on the run-queue (except when the actual
1572  * re-schedule is in progress), and as such you're allowed to do
1573  * the simpler "current->state = TASK_RUNNING" to mark yourself
1574  * runnable without the overhead of this.
1575  *
1576  * Returns %true if @p was woken up, %false if it was already running
1577  * or @state didn't match @p's state.
1578  */
1579 static int
1580 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 {
1582 	unsigned long flags;
1583 	int cpu, success = 0;
1584 
1585 	smp_wmb();
1586 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1587 	if (!(p->state & state))
1588 		goto out;
1589 
1590 	success = 1; /* we're going to change ->state */
1591 	cpu = task_cpu(p);
1592 
1593 	if (p->on_rq && ttwu_remote(p, wake_flags))
1594 		goto stat;
1595 
1596 #ifdef CONFIG_SMP
1597 	/*
1598 	 * If the owning (remote) cpu is still in the middle of schedule() with
1599 	 * this task as prev, wait until its done referencing the task.
1600 	 */
1601 	while (p->on_cpu) {
1602 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1603 		/*
1604 		 * In case the architecture enables interrupts in
1605 		 * context_switch(), we cannot busy wait, since that
1606 		 * would lead to deadlocks when an interrupt hits and
1607 		 * tries to wake up @prev. So bail and do a complete
1608 		 * remote wakeup.
1609 		 */
1610 		if (ttwu_activate_remote(p, wake_flags))
1611 			goto stat;
1612 #else
1613 		cpu_relax();
1614 #endif
1615 	}
1616 	/*
1617 	 * Pairs with the smp_wmb() in finish_lock_switch().
1618 	 */
1619 	smp_rmb();
1620 
1621 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1622 	p->state = TASK_WAKING;
1623 
1624 	if (p->sched_class->task_waking)
1625 		p->sched_class->task_waking(p);
1626 
1627 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1628 	if (task_cpu(p) != cpu) {
1629 		wake_flags |= WF_MIGRATED;
1630 		set_task_cpu(p, cpu);
1631 	}
1632 #endif /* CONFIG_SMP */
1633 
1634 	ttwu_queue(p, cpu);
1635 stat:
1636 	ttwu_stat(p, cpu, wake_flags);
1637 out:
1638 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1639 
1640 	return success;
1641 }
1642 
1643 /**
1644  * try_to_wake_up_local - try to wake up a local task with rq lock held
1645  * @p: the thread to be awakened
1646  *
1647  * Put @p on the run-queue if it's not already there. The caller must
1648  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1649  * the current task.
1650  */
1651 static void try_to_wake_up_local(struct task_struct *p)
1652 {
1653 	struct rq *rq = task_rq(p);
1654 
1655 	BUG_ON(rq != this_rq());
1656 	BUG_ON(p == current);
1657 	lockdep_assert_held(&rq->lock);
1658 
1659 	if (!raw_spin_trylock(&p->pi_lock)) {
1660 		raw_spin_unlock(&rq->lock);
1661 		raw_spin_lock(&p->pi_lock);
1662 		raw_spin_lock(&rq->lock);
1663 	}
1664 
1665 	if (!(p->state & TASK_NORMAL))
1666 		goto out;
1667 
1668 	if (!p->on_rq)
1669 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1670 
1671 	ttwu_do_wakeup(rq, p, 0);
1672 	ttwu_stat(p, smp_processor_id(), 0);
1673 out:
1674 	raw_spin_unlock(&p->pi_lock);
1675 }
1676 
1677 /**
1678  * wake_up_process - Wake up a specific process
1679  * @p: The process to be woken up.
1680  *
1681  * Attempt to wake up the nominated process and move it to the set of runnable
1682  * processes.  Returns 1 if the process was woken up, 0 if it was already
1683  * running.
1684  *
1685  * It may be assumed that this function implies a write memory barrier before
1686  * changing the task state if and only if any tasks are woken up.
1687  */
1688 int wake_up_process(struct task_struct *p)
1689 {
1690 	return try_to_wake_up(p, TASK_ALL, 0);
1691 }
1692 EXPORT_SYMBOL(wake_up_process);
1693 
1694 int wake_up_state(struct task_struct *p, unsigned int state)
1695 {
1696 	return try_to_wake_up(p, state, 0);
1697 }
1698 
1699 /*
1700  * Perform scheduler related setup for a newly forked process p.
1701  * p is forked by current.
1702  *
1703  * __sched_fork() is basic setup used by init_idle() too:
1704  */
1705 static void __sched_fork(struct task_struct *p)
1706 {
1707 	p->on_rq			= 0;
1708 
1709 	p->se.on_rq			= 0;
1710 	p->se.exec_start		= 0;
1711 	p->se.sum_exec_runtime		= 0;
1712 	p->se.prev_sum_exec_runtime	= 0;
1713 	p->se.nr_migrations		= 0;
1714 	p->se.vruntime			= 0;
1715 	INIT_LIST_HEAD(&p->se.group_node);
1716 
1717 #ifdef CONFIG_SCHEDSTATS
1718 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1719 #endif
1720 
1721 	INIT_LIST_HEAD(&p->rt.run_list);
1722 
1723 #ifdef CONFIG_PREEMPT_NOTIFIERS
1724 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1725 #endif
1726 }
1727 
1728 /*
1729  * fork()/clone()-time setup:
1730  */
1731 void sched_fork(struct task_struct *p)
1732 {
1733 	unsigned long flags;
1734 	int cpu = get_cpu();
1735 
1736 	__sched_fork(p);
1737 	/*
1738 	 * We mark the process as running here. This guarantees that
1739 	 * nobody will actually run it, and a signal or other external
1740 	 * event cannot wake it up and insert it on the runqueue either.
1741 	 */
1742 	p->state = TASK_RUNNING;
1743 
1744 	/*
1745 	 * Make sure we do not leak PI boosting priority to the child.
1746 	 */
1747 	p->prio = current->normal_prio;
1748 
1749 	/*
1750 	 * Revert to default priority/policy on fork if requested.
1751 	 */
1752 	if (unlikely(p->sched_reset_on_fork)) {
1753 		if (task_has_rt_policy(p)) {
1754 			p->policy = SCHED_NORMAL;
1755 			p->static_prio = NICE_TO_PRIO(0);
1756 			p->rt_priority = 0;
1757 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1758 			p->static_prio = NICE_TO_PRIO(0);
1759 
1760 		p->prio = p->normal_prio = __normal_prio(p);
1761 		set_load_weight(p);
1762 
1763 		/*
1764 		 * We don't need the reset flag anymore after the fork. It has
1765 		 * fulfilled its duty:
1766 		 */
1767 		p->sched_reset_on_fork = 0;
1768 	}
1769 
1770 	if (!rt_prio(p->prio))
1771 		p->sched_class = &fair_sched_class;
1772 
1773 	if (p->sched_class->task_fork)
1774 		p->sched_class->task_fork(p);
1775 
1776 	/*
1777 	 * The child is not yet in the pid-hash so no cgroup attach races,
1778 	 * and the cgroup is pinned to this child due to cgroup_fork()
1779 	 * is ran before sched_fork().
1780 	 *
1781 	 * Silence PROVE_RCU.
1782 	 */
1783 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1784 	set_task_cpu(p, cpu);
1785 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1786 
1787 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1788 	if (likely(sched_info_on()))
1789 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1790 #endif
1791 #if defined(CONFIG_SMP)
1792 	p->on_cpu = 0;
1793 #endif
1794 #ifdef CONFIG_PREEMPT_COUNT
1795 	/* Want to start with kernel preemption disabled. */
1796 	task_thread_info(p)->preempt_count = 1;
1797 #endif
1798 #ifdef CONFIG_SMP
1799 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1800 #endif
1801 
1802 	put_cpu();
1803 }
1804 
1805 /*
1806  * wake_up_new_task - wake up a newly created task for the first time.
1807  *
1808  * This function will do some initial scheduler statistics housekeeping
1809  * that must be done for every newly created context, then puts the task
1810  * on the runqueue and wakes it.
1811  */
1812 void wake_up_new_task(struct task_struct *p)
1813 {
1814 	unsigned long flags;
1815 	struct rq *rq;
1816 
1817 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1818 #ifdef CONFIG_SMP
1819 	/*
1820 	 * Fork balancing, do it here and not earlier because:
1821 	 *  - cpus_allowed can change in the fork path
1822 	 *  - any previously selected cpu might disappear through hotplug
1823 	 */
1824 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1825 #endif
1826 
1827 	rq = __task_rq_lock(p);
1828 	activate_task(rq, p, 0);
1829 	p->on_rq = 1;
1830 	trace_sched_wakeup_new(p, true);
1831 	check_preempt_curr(rq, p, WF_FORK);
1832 #ifdef CONFIG_SMP
1833 	if (p->sched_class->task_woken)
1834 		p->sched_class->task_woken(rq, p);
1835 #endif
1836 	task_rq_unlock(rq, p, &flags);
1837 }
1838 
1839 #ifdef CONFIG_PREEMPT_NOTIFIERS
1840 
1841 /**
1842  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1843  * @notifier: notifier struct to register
1844  */
1845 void preempt_notifier_register(struct preempt_notifier *notifier)
1846 {
1847 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848 }
1849 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1850 
1851 /**
1852  * preempt_notifier_unregister - no longer interested in preemption notifications
1853  * @notifier: notifier struct to unregister
1854  *
1855  * This is safe to call from within a preemption notifier.
1856  */
1857 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858 {
1859 	hlist_del(&notifier->link);
1860 }
1861 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862 
1863 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864 {
1865 	struct preempt_notifier *notifier;
1866 	struct hlist_node *node;
1867 
1868 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1869 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1870 }
1871 
1872 static void
1873 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1874 				 struct task_struct *next)
1875 {
1876 	struct preempt_notifier *notifier;
1877 	struct hlist_node *node;
1878 
1879 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1880 		notifier->ops->sched_out(notifier, next);
1881 }
1882 
1883 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1884 
1885 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1886 {
1887 }
1888 
1889 static void
1890 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1891 				 struct task_struct *next)
1892 {
1893 }
1894 
1895 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1896 
1897 /**
1898  * prepare_task_switch - prepare to switch tasks
1899  * @rq: the runqueue preparing to switch
1900  * @prev: the current task that is being switched out
1901  * @next: the task we are going to switch to.
1902  *
1903  * This is called with the rq lock held and interrupts off. It must
1904  * be paired with a subsequent finish_task_switch after the context
1905  * switch.
1906  *
1907  * prepare_task_switch sets up locking and calls architecture specific
1908  * hooks.
1909  */
1910 static inline void
1911 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1912 		    struct task_struct *next)
1913 {
1914 	sched_info_switch(prev, next);
1915 	perf_event_task_sched_out(prev, next);
1916 	fire_sched_out_preempt_notifiers(prev, next);
1917 	prepare_lock_switch(rq, next);
1918 	prepare_arch_switch(next);
1919 	trace_sched_switch(prev, next);
1920 }
1921 
1922 /**
1923  * finish_task_switch - clean up after a task-switch
1924  * @rq: runqueue associated with task-switch
1925  * @prev: the thread we just switched away from.
1926  *
1927  * finish_task_switch must be called after the context switch, paired
1928  * with a prepare_task_switch call before the context switch.
1929  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1930  * and do any other architecture-specific cleanup actions.
1931  *
1932  * Note that we may have delayed dropping an mm in context_switch(). If
1933  * so, we finish that here outside of the runqueue lock. (Doing it
1934  * with the lock held can cause deadlocks; see schedule() for
1935  * details.)
1936  */
1937 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1938 	__releases(rq->lock)
1939 {
1940 	struct mm_struct *mm = rq->prev_mm;
1941 	long prev_state;
1942 
1943 	rq->prev_mm = NULL;
1944 
1945 	/*
1946 	 * A task struct has one reference for the use as "current".
1947 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1948 	 * schedule one last time. The schedule call will never return, and
1949 	 * the scheduled task must drop that reference.
1950 	 * The test for TASK_DEAD must occur while the runqueue locks are
1951 	 * still held, otherwise prev could be scheduled on another cpu, die
1952 	 * there before we look at prev->state, and then the reference would
1953 	 * be dropped twice.
1954 	 *		Manfred Spraul <manfred@colorfullife.com>
1955 	 */
1956 	prev_state = prev->state;
1957 	finish_arch_switch(prev);
1958 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1959 	local_irq_disable();
1960 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1961 	perf_event_task_sched_in(prev, current);
1962 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1963 	local_irq_enable();
1964 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1965 	finish_lock_switch(rq, prev);
1966 	finish_arch_post_lock_switch();
1967 
1968 	fire_sched_in_preempt_notifiers(current);
1969 	if (mm)
1970 		mmdrop(mm);
1971 	if (unlikely(prev_state == TASK_DEAD)) {
1972 		/*
1973 		 * Remove function-return probe instances associated with this
1974 		 * task and put them back on the free list.
1975 		 */
1976 		kprobe_flush_task(prev);
1977 		put_task_struct(prev);
1978 	}
1979 }
1980 
1981 #ifdef CONFIG_SMP
1982 
1983 /* assumes rq->lock is held */
1984 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1985 {
1986 	if (prev->sched_class->pre_schedule)
1987 		prev->sched_class->pre_schedule(rq, prev);
1988 }
1989 
1990 /* rq->lock is NOT held, but preemption is disabled */
1991 static inline void post_schedule(struct rq *rq)
1992 {
1993 	if (rq->post_schedule) {
1994 		unsigned long flags;
1995 
1996 		raw_spin_lock_irqsave(&rq->lock, flags);
1997 		if (rq->curr->sched_class->post_schedule)
1998 			rq->curr->sched_class->post_schedule(rq);
1999 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2000 
2001 		rq->post_schedule = 0;
2002 	}
2003 }
2004 
2005 #else
2006 
2007 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2008 {
2009 }
2010 
2011 static inline void post_schedule(struct rq *rq)
2012 {
2013 }
2014 
2015 #endif
2016 
2017 /**
2018  * schedule_tail - first thing a freshly forked thread must call.
2019  * @prev: the thread we just switched away from.
2020  */
2021 asmlinkage void schedule_tail(struct task_struct *prev)
2022 	__releases(rq->lock)
2023 {
2024 	struct rq *rq = this_rq();
2025 
2026 	finish_task_switch(rq, prev);
2027 
2028 	/*
2029 	 * FIXME: do we need to worry about rq being invalidated by the
2030 	 * task_switch?
2031 	 */
2032 	post_schedule(rq);
2033 
2034 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2035 	/* In this case, finish_task_switch does not reenable preemption */
2036 	preempt_enable();
2037 #endif
2038 	if (current->set_child_tid)
2039 		put_user(task_pid_vnr(current), current->set_child_tid);
2040 }
2041 
2042 /*
2043  * context_switch - switch to the new MM and the new
2044  * thread's register state.
2045  */
2046 static inline void
2047 context_switch(struct rq *rq, struct task_struct *prev,
2048 	       struct task_struct *next)
2049 {
2050 	struct mm_struct *mm, *oldmm;
2051 
2052 	prepare_task_switch(rq, prev, next);
2053 
2054 	mm = next->mm;
2055 	oldmm = prev->active_mm;
2056 	/*
2057 	 * For paravirt, this is coupled with an exit in switch_to to
2058 	 * combine the page table reload and the switch backend into
2059 	 * one hypercall.
2060 	 */
2061 	arch_start_context_switch(prev);
2062 
2063 	if (!mm) {
2064 		next->active_mm = oldmm;
2065 		atomic_inc(&oldmm->mm_count);
2066 		enter_lazy_tlb(oldmm, next);
2067 	} else
2068 		switch_mm(oldmm, mm, next);
2069 
2070 	if (!prev->mm) {
2071 		prev->active_mm = NULL;
2072 		rq->prev_mm = oldmm;
2073 	}
2074 	/*
2075 	 * Since the runqueue lock will be released by the next
2076 	 * task (which is an invalid locking op but in the case
2077 	 * of the scheduler it's an obvious special-case), so we
2078 	 * do an early lockdep release here:
2079 	 */
2080 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2081 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2082 #endif
2083 
2084 	/* Here we just switch the register state and the stack. */
2085 	rcu_switch_from(prev);
2086 	switch_to(prev, next, prev);
2087 
2088 	barrier();
2089 	/*
2090 	 * this_rq must be evaluated again because prev may have moved
2091 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2092 	 * frame will be invalid.
2093 	 */
2094 	finish_task_switch(this_rq(), prev);
2095 }
2096 
2097 /*
2098  * nr_running, nr_uninterruptible and nr_context_switches:
2099  *
2100  * externally visible scheduler statistics: current number of runnable
2101  * threads, current number of uninterruptible-sleeping threads, total
2102  * number of context switches performed since bootup.
2103  */
2104 unsigned long nr_running(void)
2105 {
2106 	unsigned long i, sum = 0;
2107 
2108 	for_each_online_cpu(i)
2109 		sum += cpu_rq(i)->nr_running;
2110 
2111 	return sum;
2112 }
2113 
2114 unsigned long nr_uninterruptible(void)
2115 {
2116 	unsigned long i, sum = 0;
2117 
2118 	for_each_possible_cpu(i)
2119 		sum += cpu_rq(i)->nr_uninterruptible;
2120 
2121 	/*
2122 	 * Since we read the counters lockless, it might be slightly
2123 	 * inaccurate. Do not allow it to go below zero though:
2124 	 */
2125 	if (unlikely((long)sum < 0))
2126 		sum = 0;
2127 
2128 	return sum;
2129 }
2130 
2131 unsigned long long nr_context_switches(void)
2132 {
2133 	int i;
2134 	unsigned long long sum = 0;
2135 
2136 	for_each_possible_cpu(i)
2137 		sum += cpu_rq(i)->nr_switches;
2138 
2139 	return sum;
2140 }
2141 
2142 unsigned long nr_iowait(void)
2143 {
2144 	unsigned long i, sum = 0;
2145 
2146 	for_each_possible_cpu(i)
2147 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2148 
2149 	return sum;
2150 }
2151 
2152 unsigned long nr_iowait_cpu(int cpu)
2153 {
2154 	struct rq *this = cpu_rq(cpu);
2155 	return atomic_read(&this->nr_iowait);
2156 }
2157 
2158 unsigned long this_cpu_load(void)
2159 {
2160 	struct rq *this = this_rq();
2161 	return this->cpu_load[0];
2162 }
2163 
2164 
2165 /* Variables and functions for calc_load */
2166 static atomic_long_t calc_load_tasks;
2167 static unsigned long calc_load_update;
2168 unsigned long avenrun[3];
2169 EXPORT_SYMBOL(avenrun);
2170 
2171 static long calc_load_fold_active(struct rq *this_rq)
2172 {
2173 	long nr_active, delta = 0;
2174 
2175 	nr_active = this_rq->nr_running;
2176 	nr_active += (long) this_rq->nr_uninterruptible;
2177 
2178 	if (nr_active != this_rq->calc_load_active) {
2179 		delta = nr_active - this_rq->calc_load_active;
2180 		this_rq->calc_load_active = nr_active;
2181 	}
2182 
2183 	return delta;
2184 }
2185 
2186 static unsigned long
2187 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2188 {
2189 	load *= exp;
2190 	load += active * (FIXED_1 - exp);
2191 	load += 1UL << (FSHIFT - 1);
2192 	return load >> FSHIFT;
2193 }
2194 
2195 #ifdef CONFIG_NO_HZ
2196 /*
2197  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198  *
2199  * When making the ILB scale, we should try to pull this in as well.
2200  */
2201 static atomic_long_t calc_load_tasks_idle;
2202 
2203 void calc_load_account_idle(struct rq *this_rq)
2204 {
2205 	long delta;
2206 
2207 	delta = calc_load_fold_active(this_rq);
2208 	if (delta)
2209 		atomic_long_add(delta, &calc_load_tasks_idle);
2210 }
2211 
2212 static long calc_load_fold_idle(void)
2213 {
2214 	long delta = 0;
2215 
2216 	/*
2217 	 * Its got a race, we don't care...
2218 	 */
2219 	if (atomic_long_read(&calc_load_tasks_idle))
2220 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2221 
2222 	return delta;
2223 }
2224 
2225 /**
2226  * fixed_power_int - compute: x^n, in O(log n) time
2227  *
2228  * @x:         base of the power
2229  * @frac_bits: fractional bits of @x
2230  * @n:         power to raise @x to.
2231  *
2232  * By exploiting the relation between the definition of the natural power
2233  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2234  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2235  * (where: n_i \elem {0, 1}, the binary vector representing n),
2236  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2237  * of course trivially computable in O(log_2 n), the length of our binary
2238  * vector.
2239  */
2240 static unsigned long
2241 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2242 {
2243 	unsigned long result = 1UL << frac_bits;
2244 
2245 	if (n) for (;;) {
2246 		if (n & 1) {
2247 			result *= x;
2248 			result += 1UL << (frac_bits - 1);
2249 			result >>= frac_bits;
2250 		}
2251 		n >>= 1;
2252 		if (!n)
2253 			break;
2254 		x *= x;
2255 		x += 1UL << (frac_bits - 1);
2256 		x >>= frac_bits;
2257 	}
2258 
2259 	return result;
2260 }
2261 
2262 /*
2263  * a1 = a0 * e + a * (1 - e)
2264  *
2265  * a2 = a1 * e + a * (1 - e)
2266  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2267  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2268  *
2269  * a3 = a2 * e + a * (1 - e)
2270  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2271  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2272  *
2273  *  ...
2274  *
2275  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2276  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2277  *    = a0 * e^n + a * (1 - e^n)
2278  *
2279  * [1] application of the geometric series:
2280  *
2281  *              n         1 - x^(n+1)
2282  *     S_n := \Sum x^i = -------------
2283  *             i=0          1 - x
2284  */
2285 static unsigned long
2286 calc_load_n(unsigned long load, unsigned long exp,
2287 	    unsigned long active, unsigned int n)
2288 {
2289 
2290 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2291 }
2292 
2293 /*
2294  * NO_HZ can leave us missing all per-cpu ticks calling
2295  * calc_load_account_active(), but since an idle CPU folds its delta into
2296  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2297  * in the pending idle delta if our idle period crossed a load cycle boundary.
2298  *
2299  * Once we've updated the global active value, we need to apply the exponential
2300  * weights adjusted to the number of cycles missed.
2301  */
2302 static void calc_global_nohz(void)
2303 {
2304 	long delta, active, n;
2305 
2306 	/*
2307 	 * If we crossed a calc_load_update boundary, make sure to fold
2308 	 * any pending idle changes, the respective CPUs might have
2309 	 * missed the tick driven calc_load_account_active() update
2310 	 * due to NO_HZ.
2311 	 */
2312 	delta = calc_load_fold_idle();
2313 	if (delta)
2314 		atomic_long_add(delta, &calc_load_tasks);
2315 
2316 	/*
2317 	 * It could be the one fold was all it took, we done!
2318 	 */
2319 	if (time_before(jiffies, calc_load_update + 10))
2320 		return;
2321 
2322 	/*
2323 	 * Catch-up, fold however many we are behind still
2324 	 */
2325 	delta = jiffies - calc_load_update - 10;
2326 	n = 1 + (delta / LOAD_FREQ);
2327 
2328 	active = atomic_long_read(&calc_load_tasks);
2329 	active = active > 0 ? active * FIXED_1 : 0;
2330 
2331 	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2332 	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2333 	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2334 
2335 	calc_load_update += n * LOAD_FREQ;
2336 }
2337 #else
2338 void calc_load_account_idle(struct rq *this_rq)
2339 {
2340 }
2341 
2342 static inline long calc_load_fold_idle(void)
2343 {
2344 	return 0;
2345 }
2346 
2347 static void calc_global_nohz(void)
2348 {
2349 }
2350 #endif
2351 
2352 /**
2353  * get_avenrun - get the load average array
2354  * @loads:	pointer to dest load array
2355  * @offset:	offset to add
2356  * @shift:	shift count to shift the result left
2357  *
2358  * These values are estimates at best, so no need for locking.
2359  */
2360 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2361 {
2362 	loads[0] = (avenrun[0] + offset) << shift;
2363 	loads[1] = (avenrun[1] + offset) << shift;
2364 	loads[2] = (avenrun[2] + offset) << shift;
2365 }
2366 
2367 /*
2368  * calc_load - update the avenrun load estimates 10 ticks after the
2369  * CPUs have updated calc_load_tasks.
2370  */
2371 void calc_global_load(unsigned long ticks)
2372 {
2373 	long active;
2374 
2375 	if (time_before(jiffies, calc_load_update + 10))
2376 		return;
2377 
2378 	active = atomic_long_read(&calc_load_tasks);
2379 	active = active > 0 ? active * FIXED_1 : 0;
2380 
2381 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2382 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2383 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2384 
2385 	calc_load_update += LOAD_FREQ;
2386 
2387 	/*
2388 	 * Account one period with whatever state we found before
2389 	 * folding in the nohz state and ageing the entire idle period.
2390 	 *
2391 	 * This avoids loosing a sample when we go idle between
2392 	 * calc_load_account_active() (10 ticks ago) and now and thus
2393 	 * under-accounting.
2394 	 */
2395 	calc_global_nohz();
2396 }
2397 
2398 /*
2399  * Called from update_cpu_load() to periodically update this CPU's
2400  * active count.
2401  */
2402 static void calc_load_account_active(struct rq *this_rq)
2403 {
2404 	long delta;
2405 
2406 	if (time_before(jiffies, this_rq->calc_load_update))
2407 		return;
2408 
2409 	delta  = calc_load_fold_active(this_rq);
2410 	delta += calc_load_fold_idle();
2411 	if (delta)
2412 		atomic_long_add(delta, &calc_load_tasks);
2413 
2414 	this_rq->calc_load_update += LOAD_FREQ;
2415 }
2416 
2417 /*
2418  * The exact cpuload at various idx values, calculated at every tick would be
2419  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420  *
2421  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2422  * on nth tick when cpu may be busy, then we have:
2423  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2424  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425  *
2426  * decay_load_missed() below does efficient calculation of
2427  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429  *
2430  * The calculation is approximated on a 128 point scale.
2431  * degrade_zero_ticks is the number of ticks after which load at any
2432  * particular idx is approximated to be zero.
2433  * degrade_factor is a precomputed table, a row for each load idx.
2434  * Each column corresponds to degradation factor for a power of two ticks,
2435  * based on 128 point scale.
2436  * Example:
2437  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2438  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439  *
2440  * With this power of 2 load factors, we can degrade the load n times
2441  * by looking at 1 bits in n and doing as many mult/shift instead of
2442  * n mult/shifts needed by the exact degradation.
2443  */
2444 #define DEGRADE_SHIFT		7
2445 static const unsigned char
2446 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2447 static const unsigned char
2448 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2449 					{0, 0, 0, 0, 0, 0, 0, 0},
2450 					{64, 32, 8, 0, 0, 0, 0, 0},
2451 					{96, 72, 40, 12, 1, 0, 0},
2452 					{112, 98, 75, 43, 15, 1, 0},
2453 					{120, 112, 98, 76, 45, 16, 2} };
2454 
2455 /*
2456  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2457  * would be when CPU is idle and so we just decay the old load without
2458  * adding any new load.
2459  */
2460 static unsigned long
2461 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2462 {
2463 	int j = 0;
2464 
2465 	if (!missed_updates)
2466 		return load;
2467 
2468 	if (missed_updates >= degrade_zero_ticks[idx])
2469 		return 0;
2470 
2471 	if (idx == 1)
2472 		return load >> missed_updates;
2473 
2474 	while (missed_updates) {
2475 		if (missed_updates % 2)
2476 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2477 
2478 		missed_updates >>= 1;
2479 		j++;
2480 	}
2481 	return load;
2482 }
2483 
2484 /*
2485  * Update rq->cpu_load[] statistics. This function is usually called every
2486  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2487  * every tick. We fix it up based on jiffies.
2488  */
2489 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2490 			      unsigned long pending_updates)
2491 {
2492 	int i, scale;
2493 
2494 	this_rq->nr_load_updates++;
2495 
2496 	/* Update our load: */
2497 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2498 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2499 		unsigned long old_load, new_load;
2500 
2501 		/* scale is effectively 1 << i now, and >> i divides by scale */
2502 
2503 		old_load = this_rq->cpu_load[i];
2504 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2505 		new_load = this_load;
2506 		/*
2507 		 * Round up the averaging division if load is increasing. This
2508 		 * prevents us from getting stuck on 9 if the load is 10, for
2509 		 * example.
2510 		 */
2511 		if (new_load > old_load)
2512 			new_load += scale - 1;
2513 
2514 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2515 	}
2516 
2517 	sched_avg_update(this_rq);
2518 }
2519 
2520 #ifdef CONFIG_NO_HZ
2521 /*
2522  * There is no sane way to deal with nohz on smp when using jiffies because the
2523  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2524  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2525  *
2526  * Therefore we cannot use the delta approach from the regular tick since that
2527  * would seriously skew the load calculation. However we'll make do for those
2528  * updates happening while idle (nohz_idle_balance) or coming out of idle
2529  * (tick_nohz_idle_exit).
2530  *
2531  * This means we might still be one tick off for nohz periods.
2532  */
2533 
2534 /*
2535  * Called from nohz_idle_balance() to update the load ratings before doing the
2536  * idle balance.
2537  */
2538 void update_idle_cpu_load(struct rq *this_rq)
2539 {
2540 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2541 	unsigned long load = this_rq->load.weight;
2542 	unsigned long pending_updates;
2543 
2544 	/*
2545 	 * bail if there's load or we're actually up-to-date.
2546 	 */
2547 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2548 		return;
2549 
2550 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2551 	this_rq->last_load_update_tick = curr_jiffies;
2552 
2553 	__update_cpu_load(this_rq, load, pending_updates);
2554 }
2555 
2556 /*
2557  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2558  */
2559 void update_cpu_load_nohz(void)
2560 {
2561 	struct rq *this_rq = this_rq();
2562 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2563 	unsigned long pending_updates;
2564 
2565 	if (curr_jiffies == this_rq->last_load_update_tick)
2566 		return;
2567 
2568 	raw_spin_lock(&this_rq->lock);
2569 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2570 	if (pending_updates) {
2571 		this_rq->last_load_update_tick = curr_jiffies;
2572 		/*
2573 		 * We were idle, this means load 0, the current load might be
2574 		 * !0 due to remote wakeups and the sort.
2575 		 */
2576 		__update_cpu_load(this_rq, 0, pending_updates);
2577 	}
2578 	raw_spin_unlock(&this_rq->lock);
2579 }
2580 #endif /* CONFIG_NO_HZ */
2581 
2582 /*
2583  * Called from scheduler_tick()
2584  */
2585 static void update_cpu_load_active(struct rq *this_rq)
2586 {
2587 	/*
2588 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2589 	 */
2590 	this_rq->last_load_update_tick = jiffies;
2591 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2592 
2593 	calc_load_account_active(this_rq);
2594 }
2595 
2596 #ifdef CONFIG_SMP
2597 
2598 /*
2599  * sched_exec - execve() is a valuable balancing opportunity, because at
2600  * this point the task has the smallest effective memory and cache footprint.
2601  */
2602 void sched_exec(void)
2603 {
2604 	struct task_struct *p = current;
2605 	unsigned long flags;
2606 	int dest_cpu;
2607 
2608 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2609 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2610 	if (dest_cpu == smp_processor_id())
2611 		goto unlock;
2612 
2613 	if (likely(cpu_active(dest_cpu))) {
2614 		struct migration_arg arg = { p, dest_cpu };
2615 
2616 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2617 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2618 		return;
2619 	}
2620 unlock:
2621 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2622 }
2623 
2624 #endif
2625 
2626 DEFINE_PER_CPU(struct kernel_stat, kstat);
2627 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2628 
2629 EXPORT_PER_CPU_SYMBOL(kstat);
2630 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2631 
2632 /*
2633  * Return any ns on the sched_clock that have not yet been accounted in
2634  * @p in case that task is currently running.
2635  *
2636  * Called with task_rq_lock() held on @rq.
2637  */
2638 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2639 {
2640 	u64 ns = 0;
2641 
2642 	if (task_current(rq, p)) {
2643 		update_rq_clock(rq);
2644 		ns = rq->clock_task - p->se.exec_start;
2645 		if ((s64)ns < 0)
2646 			ns = 0;
2647 	}
2648 
2649 	return ns;
2650 }
2651 
2652 unsigned long long task_delta_exec(struct task_struct *p)
2653 {
2654 	unsigned long flags;
2655 	struct rq *rq;
2656 	u64 ns = 0;
2657 
2658 	rq = task_rq_lock(p, &flags);
2659 	ns = do_task_delta_exec(p, rq);
2660 	task_rq_unlock(rq, p, &flags);
2661 
2662 	return ns;
2663 }
2664 
2665 /*
2666  * Return accounted runtime for the task.
2667  * In case the task is currently running, return the runtime plus current's
2668  * pending runtime that have not been accounted yet.
2669  */
2670 unsigned long long task_sched_runtime(struct task_struct *p)
2671 {
2672 	unsigned long flags;
2673 	struct rq *rq;
2674 	u64 ns = 0;
2675 
2676 	rq = task_rq_lock(p, &flags);
2677 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2678 	task_rq_unlock(rq, p, &flags);
2679 
2680 	return ns;
2681 }
2682 
2683 #ifdef CONFIG_CGROUP_CPUACCT
2684 struct cgroup_subsys cpuacct_subsys;
2685 struct cpuacct root_cpuacct;
2686 #endif
2687 
2688 static inline void task_group_account_field(struct task_struct *p, int index,
2689 					    u64 tmp)
2690 {
2691 #ifdef CONFIG_CGROUP_CPUACCT
2692 	struct kernel_cpustat *kcpustat;
2693 	struct cpuacct *ca;
2694 #endif
2695 	/*
2696 	 * Since all updates are sure to touch the root cgroup, we
2697 	 * get ourselves ahead and touch it first. If the root cgroup
2698 	 * is the only cgroup, then nothing else should be necessary.
2699 	 *
2700 	 */
2701 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2702 
2703 #ifdef CONFIG_CGROUP_CPUACCT
2704 	if (unlikely(!cpuacct_subsys.active))
2705 		return;
2706 
2707 	rcu_read_lock();
2708 	ca = task_ca(p);
2709 	while (ca && (ca != &root_cpuacct)) {
2710 		kcpustat = this_cpu_ptr(ca->cpustat);
2711 		kcpustat->cpustat[index] += tmp;
2712 		ca = parent_ca(ca);
2713 	}
2714 	rcu_read_unlock();
2715 #endif
2716 }
2717 
2718 
2719 /*
2720  * Account user cpu time to a process.
2721  * @p: the process that the cpu time gets accounted to
2722  * @cputime: the cpu time spent in user space since the last update
2723  * @cputime_scaled: cputime scaled by cpu frequency
2724  */
2725 void account_user_time(struct task_struct *p, cputime_t cputime,
2726 		       cputime_t cputime_scaled)
2727 {
2728 	int index;
2729 
2730 	/* Add user time to process. */
2731 	p->utime += cputime;
2732 	p->utimescaled += cputime_scaled;
2733 	account_group_user_time(p, cputime);
2734 
2735 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2736 
2737 	/* Add user time to cpustat. */
2738 	task_group_account_field(p, index, (__force u64) cputime);
2739 
2740 	/* Account for user time used */
2741 	acct_update_integrals(p);
2742 }
2743 
2744 /*
2745  * Account guest cpu time to a process.
2746  * @p: the process that the cpu time gets accounted to
2747  * @cputime: the cpu time spent in virtual machine since the last update
2748  * @cputime_scaled: cputime scaled by cpu frequency
2749  */
2750 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2751 			       cputime_t cputime_scaled)
2752 {
2753 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2754 
2755 	/* Add guest time to process. */
2756 	p->utime += cputime;
2757 	p->utimescaled += cputime_scaled;
2758 	account_group_user_time(p, cputime);
2759 	p->gtime += cputime;
2760 
2761 	/* Add guest time to cpustat. */
2762 	if (TASK_NICE(p) > 0) {
2763 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2764 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2765 	} else {
2766 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2767 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2768 	}
2769 }
2770 
2771 /*
2772  * Account system cpu time to a process and desired cpustat field
2773  * @p: the process that the cpu time gets accounted to
2774  * @cputime: the cpu time spent in kernel space since the last update
2775  * @cputime_scaled: cputime scaled by cpu frequency
2776  * @target_cputime64: pointer to cpustat field that has to be updated
2777  */
2778 static inline
2779 void __account_system_time(struct task_struct *p, cputime_t cputime,
2780 			cputime_t cputime_scaled, int index)
2781 {
2782 	/* Add system time to process. */
2783 	p->stime += cputime;
2784 	p->stimescaled += cputime_scaled;
2785 	account_group_system_time(p, cputime);
2786 
2787 	/* Add system time to cpustat. */
2788 	task_group_account_field(p, index, (__force u64) cputime);
2789 
2790 	/* Account for system time used */
2791 	acct_update_integrals(p);
2792 }
2793 
2794 /*
2795  * Account system cpu time to a process.
2796  * @p: the process that the cpu time gets accounted to
2797  * @hardirq_offset: the offset to subtract from hardirq_count()
2798  * @cputime: the cpu time spent in kernel space since the last update
2799  * @cputime_scaled: cputime scaled by cpu frequency
2800  */
2801 void account_system_time(struct task_struct *p, int hardirq_offset,
2802 			 cputime_t cputime, cputime_t cputime_scaled)
2803 {
2804 	int index;
2805 
2806 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2807 		account_guest_time(p, cputime, cputime_scaled);
2808 		return;
2809 	}
2810 
2811 	if (hardirq_count() - hardirq_offset)
2812 		index = CPUTIME_IRQ;
2813 	else if (in_serving_softirq())
2814 		index = CPUTIME_SOFTIRQ;
2815 	else
2816 		index = CPUTIME_SYSTEM;
2817 
2818 	__account_system_time(p, cputime, cputime_scaled, index);
2819 }
2820 
2821 /*
2822  * Account for involuntary wait time.
2823  * @cputime: the cpu time spent in involuntary wait
2824  */
2825 void account_steal_time(cputime_t cputime)
2826 {
2827 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2828 
2829 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2830 }
2831 
2832 /*
2833  * Account for idle time.
2834  * @cputime: the cpu time spent in idle wait
2835  */
2836 void account_idle_time(cputime_t cputime)
2837 {
2838 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2839 	struct rq *rq = this_rq();
2840 
2841 	if (atomic_read(&rq->nr_iowait) > 0)
2842 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2843 	else
2844 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2845 }
2846 
2847 static __always_inline bool steal_account_process_tick(void)
2848 {
2849 #ifdef CONFIG_PARAVIRT
2850 	if (static_key_false(&paravirt_steal_enabled)) {
2851 		u64 steal, st = 0;
2852 
2853 		steal = paravirt_steal_clock(smp_processor_id());
2854 		steal -= this_rq()->prev_steal_time;
2855 
2856 		st = steal_ticks(steal);
2857 		this_rq()->prev_steal_time += st * TICK_NSEC;
2858 
2859 		account_steal_time(st);
2860 		return st;
2861 	}
2862 #endif
2863 	return false;
2864 }
2865 
2866 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2867 
2868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2869 /*
2870  * Account a tick to a process and cpustat
2871  * @p: the process that the cpu time gets accounted to
2872  * @user_tick: is the tick from userspace
2873  * @rq: the pointer to rq
2874  *
2875  * Tick demultiplexing follows the order
2876  * - pending hardirq update
2877  * - pending softirq update
2878  * - user_time
2879  * - idle_time
2880  * - system time
2881  *   - check for guest_time
2882  *   - else account as system_time
2883  *
2884  * Check for hardirq is done both for system and user time as there is
2885  * no timer going off while we are on hardirq and hence we may never get an
2886  * opportunity to update it solely in system time.
2887  * p->stime and friends are only updated on system time and not on irq
2888  * softirq as those do not count in task exec_runtime any more.
2889  */
2890 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2891 						struct rq *rq)
2892 {
2893 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2894 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2895 
2896 	if (steal_account_process_tick())
2897 		return;
2898 
2899 	if (irqtime_account_hi_update()) {
2900 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2901 	} else if (irqtime_account_si_update()) {
2902 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2903 	} else if (this_cpu_ksoftirqd() == p) {
2904 		/*
2905 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2906 		 * So, we have to handle it separately here.
2907 		 * Also, p->stime needs to be updated for ksoftirqd.
2908 		 */
2909 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2910 					CPUTIME_SOFTIRQ);
2911 	} else if (user_tick) {
2912 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2913 	} else if (p == rq->idle) {
2914 		account_idle_time(cputime_one_jiffy);
2915 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2916 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2917 	} else {
2918 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2919 					CPUTIME_SYSTEM);
2920 	}
2921 }
2922 
2923 static void irqtime_account_idle_ticks(int ticks)
2924 {
2925 	int i;
2926 	struct rq *rq = this_rq();
2927 
2928 	for (i = 0; i < ticks; i++)
2929 		irqtime_account_process_tick(current, 0, rq);
2930 }
2931 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2932 static void irqtime_account_idle_ticks(int ticks) {}
2933 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2934 						struct rq *rq) {}
2935 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2936 
2937 /*
2938  * Account a single tick of cpu time.
2939  * @p: the process that the cpu time gets accounted to
2940  * @user_tick: indicates if the tick is a user or a system tick
2941  */
2942 void account_process_tick(struct task_struct *p, int user_tick)
2943 {
2944 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2945 	struct rq *rq = this_rq();
2946 
2947 	if (sched_clock_irqtime) {
2948 		irqtime_account_process_tick(p, user_tick, rq);
2949 		return;
2950 	}
2951 
2952 	if (steal_account_process_tick())
2953 		return;
2954 
2955 	if (user_tick)
2956 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2957 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2958 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2959 				    one_jiffy_scaled);
2960 	else
2961 		account_idle_time(cputime_one_jiffy);
2962 }
2963 
2964 /*
2965  * Account multiple ticks of steal time.
2966  * @p: the process from which the cpu time has been stolen
2967  * @ticks: number of stolen ticks
2968  */
2969 void account_steal_ticks(unsigned long ticks)
2970 {
2971 	account_steal_time(jiffies_to_cputime(ticks));
2972 }
2973 
2974 /*
2975  * Account multiple ticks of idle time.
2976  * @ticks: number of stolen ticks
2977  */
2978 void account_idle_ticks(unsigned long ticks)
2979 {
2980 
2981 	if (sched_clock_irqtime) {
2982 		irqtime_account_idle_ticks(ticks);
2983 		return;
2984 	}
2985 
2986 	account_idle_time(jiffies_to_cputime(ticks));
2987 }
2988 
2989 #endif
2990 
2991 /*
2992  * Use precise platform statistics if available:
2993  */
2994 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2995 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2996 {
2997 	*ut = p->utime;
2998 	*st = p->stime;
2999 }
3000 
3001 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3002 {
3003 	struct task_cputime cputime;
3004 
3005 	thread_group_cputime(p, &cputime);
3006 
3007 	*ut = cputime.utime;
3008 	*st = cputime.stime;
3009 }
3010 #else
3011 
3012 #ifndef nsecs_to_cputime
3013 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3014 #endif
3015 
3016 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3017 {
3018 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3019 
3020 	/*
3021 	 * Use CFS's precise accounting:
3022 	 */
3023 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3024 
3025 	if (total) {
3026 		u64 temp = (__force u64) rtime;
3027 
3028 		temp *= (__force u64) utime;
3029 		do_div(temp, (__force u32) total);
3030 		utime = (__force cputime_t) temp;
3031 	} else
3032 		utime = rtime;
3033 
3034 	/*
3035 	 * Compare with previous values, to keep monotonicity:
3036 	 */
3037 	p->prev_utime = max(p->prev_utime, utime);
3038 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3039 
3040 	*ut = p->prev_utime;
3041 	*st = p->prev_stime;
3042 }
3043 
3044 /*
3045  * Must be called with siglock held.
3046  */
3047 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3048 {
3049 	struct signal_struct *sig = p->signal;
3050 	struct task_cputime cputime;
3051 	cputime_t rtime, utime, total;
3052 
3053 	thread_group_cputime(p, &cputime);
3054 
3055 	total = cputime.utime + cputime.stime;
3056 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3057 
3058 	if (total) {
3059 		u64 temp = (__force u64) rtime;
3060 
3061 		temp *= (__force u64) cputime.utime;
3062 		do_div(temp, (__force u32) total);
3063 		utime = (__force cputime_t) temp;
3064 	} else
3065 		utime = rtime;
3066 
3067 	sig->prev_utime = max(sig->prev_utime, utime);
3068 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3069 
3070 	*ut = sig->prev_utime;
3071 	*st = sig->prev_stime;
3072 }
3073 #endif
3074 
3075 /*
3076  * This function gets called by the timer code, with HZ frequency.
3077  * We call it with interrupts disabled.
3078  */
3079 void scheduler_tick(void)
3080 {
3081 	int cpu = smp_processor_id();
3082 	struct rq *rq = cpu_rq(cpu);
3083 	struct task_struct *curr = rq->curr;
3084 
3085 	sched_clock_tick();
3086 
3087 	raw_spin_lock(&rq->lock);
3088 	update_rq_clock(rq);
3089 	update_cpu_load_active(rq);
3090 	curr->sched_class->task_tick(rq, curr, 0);
3091 	raw_spin_unlock(&rq->lock);
3092 
3093 	perf_event_task_tick();
3094 
3095 #ifdef CONFIG_SMP
3096 	rq->idle_balance = idle_cpu(cpu);
3097 	trigger_load_balance(rq, cpu);
3098 #endif
3099 }
3100 
3101 notrace unsigned long get_parent_ip(unsigned long addr)
3102 {
3103 	if (in_lock_functions(addr)) {
3104 		addr = CALLER_ADDR2;
3105 		if (in_lock_functions(addr))
3106 			addr = CALLER_ADDR3;
3107 	}
3108 	return addr;
3109 }
3110 
3111 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3112 				defined(CONFIG_PREEMPT_TRACER))
3113 
3114 void __kprobes add_preempt_count(int val)
3115 {
3116 #ifdef CONFIG_DEBUG_PREEMPT
3117 	/*
3118 	 * Underflow?
3119 	 */
3120 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3121 		return;
3122 #endif
3123 	preempt_count() += val;
3124 #ifdef CONFIG_DEBUG_PREEMPT
3125 	/*
3126 	 * Spinlock count overflowing soon?
3127 	 */
3128 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3129 				PREEMPT_MASK - 10);
3130 #endif
3131 	if (preempt_count() == val)
3132 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3133 }
3134 EXPORT_SYMBOL(add_preempt_count);
3135 
3136 void __kprobes sub_preempt_count(int val)
3137 {
3138 #ifdef CONFIG_DEBUG_PREEMPT
3139 	/*
3140 	 * Underflow?
3141 	 */
3142 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3143 		return;
3144 	/*
3145 	 * Is the spinlock portion underflowing?
3146 	 */
3147 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3148 			!(preempt_count() & PREEMPT_MASK)))
3149 		return;
3150 #endif
3151 
3152 	if (preempt_count() == val)
3153 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3154 	preempt_count() -= val;
3155 }
3156 EXPORT_SYMBOL(sub_preempt_count);
3157 
3158 #endif
3159 
3160 /*
3161  * Print scheduling while atomic bug:
3162  */
3163 static noinline void __schedule_bug(struct task_struct *prev)
3164 {
3165 	if (oops_in_progress)
3166 		return;
3167 
3168 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3169 		prev->comm, prev->pid, preempt_count());
3170 
3171 	debug_show_held_locks(prev);
3172 	print_modules();
3173 	if (irqs_disabled())
3174 		print_irqtrace_events(prev);
3175 	dump_stack();
3176 	add_taint(TAINT_WARN);
3177 }
3178 
3179 /*
3180  * Various schedule()-time debugging checks and statistics:
3181  */
3182 static inline void schedule_debug(struct task_struct *prev)
3183 {
3184 	/*
3185 	 * Test if we are atomic. Since do_exit() needs to call into
3186 	 * schedule() atomically, we ignore that path for now.
3187 	 * Otherwise, whine if we are scheduling when we should not be.
3188 	 */
3189 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3190 		__schedule_bug(prev);
3191 	rcu_sleep_check();
3192 
3193 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3194 
3195 	schedstat_inc(this_rq(), sched_count);
3196 }
3197 
3198 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3199 {
3200 	if (prev->on_rq || rq->skip_clock_update < 0)
3201 		update_rq_clock(rq);
3202 	prev->sched_class->put_prev_task(rq, prev);
3203 }
3204 
3205 /*
3206  * Pick up the highest-prio task:
3207  */
3208 static inline struct task_struct *
3209 pick_next_task(struct rq *rq)
3210 {
3211 	const struct sched_class *class;
3212 	struct task_struct *p;
3213 
3214 	/*
3215 	 * Optimization: we know that if all tasks are in
3216 	 * the fair class we can call that function directly:
3217 	 */
3218 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3219 		p = fair_sched_class.pick_next_task(rq);
3220 		if (likely(p))
3221 			return p;
3222 	}
3223 
3224 	for_each_class(class) {
3225 		p = class->pick_next_task(rq);
3226 		if (p)
3227 			return p;
3228 	}
3229 
3230 	BUG(); /* the idle class will always have a runnable task */
3231 }
3232 
3233 /*
3234  * __schedule() is the main scheduler function.
3235  */
3236 static void __sched __schedule(void)
3237 {
3238 	struct task_struct *prev, *next;
3239 	unsigned long *switch_count;
3240 	struct rq *rq;
3241 	int cpu;
3242 
3243 need_resched:
3244 	preempt_disable();
3245 	cpu = smp_processor_id();
3246 	rq = cpu_rq(cpu);
3247 	rcu_note_context_switch(cpu);
3248 	prev = rq->curr;
3249 
3250 	schedule_debug(prev);
3251 
3252 	if (sched_feat(HRTICK))
3253 		hrtick_clear(rq);
3254 
3255 	raw_spin_lock_irq(&rq->lock);
3256 
3257 	switch_count = &prev->nivcsw;
3258 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3259 		if (unlikely(signal_pending_state(prev->state, prev))) {
3260 			prev->state = TASK_RUNNING;
3261 		} else {
3262 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3263 			prev->on_rq = 0;
3264 
3265 			/*
3266 			 * If a worker went to sleep, notify and ask workqueue
3267 			 * whether it wants to wake up a task to maintain
3268 			 * concurrency.
3269 			 */
3270 			if (prev->flags & PF_WQ_WORKER) {
3271 				struct task_struct *to_wakeup;
3272 
3273 				to_wakeup = wq_worker_sleeping(prev, cpu);
3274 				if (to_wakeup)
3275 					try_to_wake_up_local(to_wakeup);
3276 			}
3277 		}
3278 		switch_count = &prev->nvcsw;
3279 	}
3280 
3281 	pre_schedule(rq, prev);
3282 
3283 	if (unlikely(!rq->nr_running))
3284 		idle_balance(cpu, rq);
3285 
3286 	put_prev_task(rq, prev);
3287 	next = pick_next_task(rq);
3288 	clear_tsk_need_resched(prev);
3289 	rq->skip_clock_update = 0;
3290 
3291 	if (likely(prev != next)) {
3292 		rq->nr_switches++;
3293 		rq->curr = next;
3294 		++*switch_count;
3295 
3296 		context_switch(rq, prev, next); /* unlocks the rq */
3297 		/*
3298 		 * The context switch have flipped the stack from under us
3299 		 * and restored the local variables which were saved when
3300 		 * this task called schedule() in the past. prev == current
3301 		 * is still correct, but it can be moved to another cpu/rq.
3302 		 */
3303 		cpu = smp_processor_id();
3304 		rq = cpu_rq(cpu);
3305 	} else
3306 		raw_spin_unlock_irq(&rq->lock);
3307 
3308 	post_schedule(rq);
3309 
3310 	sched_preempt_enable_no_resched();
3311 	if (need_resched())
3312 		goto need_resched;
3313 }
3314 
3315 static inline void sched_submit_work(struct task_struct *tsk)
3316 {
3317 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3318 		return;
3319 	/*
3320 	 * If we are going to sleep and we have plugged IO queued,
3321 	 * make sure to submit it to avoid deadlocks.
3322 	 */
3323 	if (blk_needs_flush_plug(tsk))
3324 		blk_schedule_flush_plug(tsk);
3325 }
3326 
3327 asmlinkage void __sched schedule(void)
3328 {
3329 	struct task_struct *tsk = current;
3330 
3331 	sched_submit_work(tsk);
3332 	__schedule();
3333 }
3334 EXPORT_SYMBOL(schedule);
3335 
3336 /**
3337  * schedule_preempt_disabled - called with preemption disabled
3338  *
3339  * Returns with preemption disabled. Note: preempt_count must be 1
3340  */
3341 void __sched schedule_preempt_disabled(void)
3342 {
3343 	sched_preempt_enable_no_resched();
3344 	schedule();
3345 	preempt_disable();
3346 }
3347 
3348 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3349 
3350 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3351 {
3352 	if (lock->owner != owner)
3353 		return false;
3354 
3355 	/*
3356 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3357 	 * lock->owner still matches owner, if that fails, owner might
3358 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3359 	 * ensures the memory stays valid.
3360 	 */
3361 	barrier();
3362 
3363 	return owner->on_cpu;
3364 }
3365 
3366 /*
3367  * Look out! "owner" is an entirely speculative pointer
3368  * access and not reliable.
3369  */
3370 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3371 {
3372 	if (!sched_feat(OWNER_SPIN))
3373 		return 0;
3374 
3375 	rcu_read_lock();
3376 	while (owner_running(lock, owner)) {
3377 		if (need_resched())
3378 			break;
3379 
3380 		arch_mutex_cpu_relax();
3381 	}
3382 	rcu_read_unlock();
3383 
3384 	/*
3385 	 * We break out the loop above on need_resched() and when the
3386 	 * owner changed, which is a sign for heavy contention. Return
3387 	 * success only when lock->owner is NULL.
3388 	 */
3389 	return lock->owner == NULL;
3390 }
3391 #endif
3392 
3393 #ifdef CONFIG_PREEMPT
3394 /*
3395  * this is the entry point to schedule() from in-kernel preemption
3396  * off of preempt_enable. Kernel preemptions off return from interrupt
3397  * occur there and call schedule directly.
3398  */
3399 asmlinkage void __sched notrace preempt_schedule(void)
3400 {
3401 	struct thread_info *ti = current_thread_info();
3402 
3403 	/*
3404 	 * If there is a non-zero preempt_count or interrupts are disabled,
3405 	 * we do not want to preempt the current task. Just return..
3406 	 */
3407 	if (likely(ti->preempt_count || irqs_disabled()))
3408 		return;
3409 
3410 	do {
3411 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3412 		__schedule();
3413 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3414 
3415 		/*
3416 		 * Check again in case we missed a preemption opportunity
3417 		 * between schedule and now.
3418 		 */
3419 		barrier();
3420 	} while (need_resched());
3421 }
3422 EXPORT_SYMBOL(preempt_schedule);
3423 
3424 /*
3425  * this is the entry point to schedule() from kernel preemption
3426  * off of irq context.
3427  * Note, that this is called and return with irqs disabled. This will
3428  * protect us against recursive calling from irq.
3429  */
3430 asmlinkage void __sched preempt_schedule_irq(void)
3431 {
3432 	struct thread_info *ti = current_thread_info();
3433 
3434 	/* Catch callers which need to be fixed */
3435 	BUG_ON(ti->preempt_count || !irqs_disabled());
3436 
3437 	do {
3438 		add_preempt_count(PREEMPT_ACTIVE);
3439 		local_irq_enable();
3440 		__schedule();
3441 		local_irq_disable();
3442 		sub_preempt_count(PREEMPT_ACTIVE);
3443 
3444 		/*
3445 		 * Check again in case we missed a preemption opportunity
3446 		 * between schedule and now.
3447 		 */
3448 		barrier();
3449 	} while (need_resched());
3450 }
3451 
3452 #endif /* CONFIG_PREEMPT */
3453 
3454 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3455 			  void *key)
3456 {
3457 	return try_to_wake_up(curr->private, mode, wake_flags);
3458 }
3459 EXPORT_SYMBOL(default_wake_function);
3460 
3461 /*
3462  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3463  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3464  * number) then we wake all the non-exclusive tasks and one exclusive task.
3465  *
3466  * There are circumstances in which we can try to wake a task which has already
3467  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3468  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3469  */
3470 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3471 			int nr_exclusive, int wake_flags, void *key)
3472 {
3473 	wait_queue_t *curr, *next;
3474 
3475 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3476 		unsigned flags = curr->flags;
3477 
3478 		if (curr->func(curr, mode, wake_flags, key) &&
3479 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3480 			break;
3481 	}
3482 }
3483 
3484 /**
3485  * __wake_up - wake up threads blocked on a waitqueue.
3486  * @q: the waitqueue
3487  * @mode: which threads
3488  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3489  * @key: is directly passed to the wakeup function
3490  *
3491  * It may be assumed that this function implies a write memory barrier before
3492  * changing the task state if and only if any tasks are woken up.
3493  */
3494 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3495 			int nr_exclusive, void *key)
3496 {
3497 	unsigned long flags;
3498 
3499 	spin_lock_irqsave(&q->lock, flags);
3500 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3501 	spin_unlock_irqrestore(&q->lock, flags);
3502 }
3503 EXPORT_SYMBOL(__wake_up);
3504 
3505 /*
3506  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3507  */
3508 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3509 {
3510 	__wake_up_common(q, mode, nr, 0, NULL);
3511 }
3512 EXPORT_SYMBOL_GPL(__wake_up_locked);
3513 
3514 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3515 {
3516 	__wake_up_common(q, mode, 1, 0, key);
3517 }
3518 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3519 
3520 /**
3521  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3522  * @q: the waitqueue
3523  * @mode: which threads
3524  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3525  * @key: opaque value to be passed to wakeup targets
3526  *
3527  * The sync wakeup differs that the waker knows that it will schedule
3528  * away soon, so while the target thread will be woken up, it will not
3529  * be migrated to another CPU - ie. the two threads are 'synchronized'
3530  * with each other. This can prevent needless bouncing between CPUs.
3531  *
3532  * On UP it can prevent extra preemption.
3533  *
3534  * It may be assumed that this function implies a write memory barrier before
3535  * changing the task state if and only if any tasks are woken up.
3536  */
3537 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3538 			int nr_exclusive, void *key)
3539 {
3540 	unsigned long flags;
3541 	int wake_flags = WF_SYNC;
3542 
3543 	if (unlikely(!q))
3544 		return;
3545 
3546 	if (unlikely(!nr_exclusive))
3547 		wake_flags = 0;
3548 
3549 	spin_lock_irqsave(&q->lock, flags);
3550 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3551 	spin_unlock_irqrestore(&q->lock, flags);
3552 }
3553 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3554 
3555 /*
3556  * __wake_up_sync - see __wake_up_sync_key()
3557  */
3558 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3559 {
3560 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3561 }
3562 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3563 
3564 /**
3565  * complete: - signals a single thread waiting on this completion
3566  * @x:  holds the state of this particular completion
3567  *
3568  * This will wake up a single thread waiting on this completion. Threads will be
3569  * awakened in the same order in which they were queued.
3570  *
3571  * See also complete_all(), wait_for_completion() and related routines.
3572  *
3573  * It may be assumed that this function implies a write memory barrier before
3574  * changing the task state if and only if any tasks are woken up.
3575  */
3576 void complete(struct completion *x)
3577 {
3578 	unsigned long flags;
3579 
3580 	spin_lock_irqsave(&x->wait.lock, flags);
3581 	x->done++;
3582 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3583 	spin_unlock_irqrestore(&x->wait.lock, flags);
3584 }
3585 EXPORT_SYMBOL(complete);
3586 
3587 /**
3588  * complete_all: - signals all threads waiting on this completion
3589  * @x:  holds the state of this particular completion
3590  *
3591  * This will wake up all threads waiting on this particular completion event.
3592  *
3593  * It may be assumed that this function implies a write memory barrier before
3594  * changing the task state if and only if any tasks are woken up.
3595  */
3596 void complete_all(struct completion *x)
3597 {
3598 	unsigned long flags;
3599 
3600 	spin_lock_irqsave(&x->wait.lock, flags);
3601 	x->done += UINT_MAX/2;
3602 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3603 	spin_unlock_irqrestore(&x->wait.lock, flags);
3604 }
3605 EXPORT_SYMBOL(complete_all);
3606 
3607 static inline long __sched
3608 do_wait_for_common(struct completion *x, long timeout, int state)
3609 {
3610 	if (!x->done) {
3611 		DECLARE_WAITQUEUE(wait, current);
3612 
3613 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3614 		do {
3615 			if (signal_pending_state(state, current)) {
3616 				timeout = -ERESTARTSYS;
3617 				break;
3618 			}
3619 			__set_current_state(state);
3620 			spin_unlock_irq(&x->wait.lock);
3621 			timeout = schedule_timeout(timeout);
3622 			spin_lock_irq(&x->wait.lock);
3623 		} while (!x->done && timeout);
3624 		__remove_wait_queue(&x->wait, &wait);
3625 		if (!x->done)
3626 			return timeout;
3627 	}
3628 	x->done--;
3629 	return timeout ?: 1;
3630 }
3631 
3632 static long __sched
3633 wait_for_common(struct completion *x, long timeout, int state)
3634 {
3635 	might_sleep();
3636 
3637 	spin_lock_irq(&x->wait.lock);
3638 	timeout = do_wait_for_common(x, timeout, state);
3639 	spin_unlock_irq(&x->wait.lock);
3640 	return timeout;
3641 }
3642 
3643 /**
3644  * wait_for_completion: - waits for completion of a task
3645  * @x:  holds the state of this particular completion
3646  *
3647  * This waits to be signaled for completion of a specific task. It is NOT
3648  * interruptible and there is no timeout.
3649  *
3650  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3651  * and interrupt capability. Also see complete().
3652  */
3653 void __sched wait_for_completion(struct completion *x)
3654 {
3655 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3656 }
3657 EXPORT_SYMBOL(wait_for_completion);
3658 
3659 /**
3660  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3661  * @x:  holds the state of this particular completion
3662  * @timeout:  timeout value in jiffies
3663  *
3664  * This waits for either a completion of a specific task to be signaled or for a
3665  * specified timeout to expire. The timeout is in jiffies. It is not
3666  * interruptible.
3667  *
3668  * The return value is 0 if timed out, and positive (at least 1, or number of
3669  * jiffies left till timeout) if completed.
3670  */
3671 unsigned long __sched
3672 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3673 {
3674 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3675 }
3676 EXPORT_SYMBOL(wait_for_completion_timeout);
3677 
3678 /**
3679  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3680  * @x:  holds the state of this particular completion
3681  *
3682  * This waits for completion of a specific task to be signaled. It is
3683  * interruptible.
3684  *
3685  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3686  */
3687 int __sched wait_for_completion_interruptible(struct completion *x)
3688 {
3689 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3690 	if (t == -ERESTARTSYS)
3691 		return t;
3692 	return 0;
3693 }
3694 EXPORT_SYMBOL(wait_for_completion_interruptible);
3695 
3696 /**
3697  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3698  * @x:  holds the state of this particular completion
3699  * @timeout:  timeout value in jiffies
3700  *
3701  * This waits for either a completion of a specific task to be signaled or for a
3702  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3703  *
3704  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3705  * positive (at least 1, or number of jiffies left till timeout) if completed.
3706  */
3707 long __sched
3708 wait_for_completion_interruptible_timeout(struct completion *x,
3709 					  unsigned long timeout)
3710 {
3711 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3712 }
3713 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3714 
3715 /**
3716  * wait_for_completion_killable: - waits for completion of a task (killable)
3717  * @x:  holds the state of this particular completion
3718  *
3719  * This waits to be signaled for completion of a specific task. It can be
3720  * interrupted by a kill signal.
3721  *
3722  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3723  */
3724 int __sched wait_for_completion_killable(struct completion *x)
3725 {
3726 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3727 	if (t == -ERESTARTSYS)
3728 		return t;
3729 	return 0;
3730 }
3731 EXPORT_SYMBOL(wait_for_completion_killable);
3732 
3733 /**
3734  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3735  * @x:  holds the state of this particular completion
3736  * @timeout:  timeout value in jiffies
3737  *
3738  * This waits for either a completion of a specific task to be
3739  * signaled or for a specified timeout to expire. It can be
3740  * interrupted by a kill signal. The timeout is in jiffies.
3741  *
3742  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3743  * positive (at least 1, or number of jiffies left till timeout) if completed.
3744  */
3745 long __sched
3746 wait_for_completion_killable_timeout(struct completion *x,
3747 				     unsigned long timeout)
3748 {
3749 	return wait_for_common(x, timeout, TASK_KILLABLE);
3750 }
3751 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3752 
3753 /**
3754  *	try_wait_for_completion - try to decrement a completion without blocking
3755  *	@x:	completion structure
3756  *
3757  *	Returns: 0 if a decrement cannot be done without blocking
3758  *		 1 if a decrement succeeded.
3759  *
3760  *	If a completion is being used as a counting completion,
3761  *	attempt to decrement the counter without blocking. This
3762  *	enables us to avoid waiting if the resource the completion
3763  *	is protecting is not available.
3764  */
3765 bool try_wait_for_completion(struct completion *x)
3766 {
3767 	unsigned long flags;
3768 	int ret = 1;
3769 
3770 	spin_lock_irqsave(&x->wait.lock, flags);
3771 	if (!x->done)
3772 		ret = 0;
3773 	else
3774 		x->done--;
3775 	spin_unlock_irqrestore(&x->wait.lock, flags);
3776 	return ret;
3777 }
3778 EXPORT_SYMBOL(try_wait_for_completion);
3779 
3780 /**
3781  *	completion_done - Test to see if a completion has any waiters
3782  *	@x:	completion structure
3783  *
3784  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3785  *		 1 if there are no waiters.
3786  *
3787  */
3788 bool completion_done(struct completion *x)
3789 {
3790 	unsigned long flags;
3791 	int ret = 1;
3792 
3793 	spin_lock_irqsave(&x->wait.lock, flags);
3794 	if (!x->done)
3795 		ret = 0;
3796 	spin_unlock_irqrestore(&x->wait.lock, flags);
3797 	return ret;
3798 }
3799 EXPORT_SYMBOL(completion_done);
3800 
3801 static long __sched
3802 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3803 {
3804 	unsigned long flags;
3805 	wait_queue_t wait;
3806 
3807 	init_waitqueue_entry(&wait, current);
3808 
3809 	__set_current_state(state);
3810 
3811 	spin_lock_irqsave(&q->lock, flags);
3812 	__add_wait_queue(q, &wait);
3813 	spin_unlock(&q->lock);
3814 	timeout = schedule_timeout(timeout);
3815 	spin_lock_irq(&q->lock);
3816 	__remove_wait_queue(q, &wait);
3817 	spin_unlock_irqrestore(&q->lock, flags);
3818 
3819 	return timeout;
3820 }
3821 
3822 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3823 {
3824 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3825 }
3826 EXPORT_SYMBOL(interruptible_sleep_on);
3827 
3828 long __sched
3829 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3830 {
3831 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3832 }
3833 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3834 
3835 void __sched sleep_on(wait_queue_head_t *q)
3836 {
3837 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3838 }
3839 EXPORT_SYMBOL(sleep_on);
3840 
3841 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3842 {
3843 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3844 }
3845 EXPORT_SYMBOL(sleep_on_timeout);
3846 
3847 #ifdef CONFIG_RT_MUTEXES
3848 
3849 /*
3850  * rt_mutex_setprio - set the current priority of a task
3851  * @p: task
3852  * @prio: prio value (kernel-internal form)
3853  *
3854  * This function changes the 'effective' priority of a task. It does
3855  * not touch ->normal_prio like __setscheduler().
3856  *
3857  * Used by the rt_mutex code to implement priority inheritance logic.
3858  */
3859 void rt_mutex_setprio(struct task_struct *p, int prio)
3860 {
3861 	int oldprio, on_rq, running;
3862 	struct rq *rq;
3863 	const struct sched_class *prev_class;
3864 
3865 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3866 
3867 	rq = __task_rq_lock(p);
3868 
3869 	/*
3870 	 * Idle task boosting is a nono in general. There is one
3871 	 * exception, when PREEMPT_RT and NOHZ is active:
3872 	 *
3873 	 * The idle task calls get_next_timer_interrupt() and holds
3874 	 * the timer wheel base->lock on the CPU and another CPU wants
3875 	 * to access the timer (probably to cancel it). We can safely
3876 	 * ignore the boosting request, as the idle CPU runs this code
3877 	 * with interrupts disabled and will complete the lock
3878 	 * protected section without being interrupted. So there is no
3879 	 * real need to boost.
3880 	 */
3881 	if (unlikely(p == rq->idle)) {
3882 		WARN_ON(p != rq->curr);
3883 		WARN_ON(p->pi_blocked_on);
3884 		goto out_unlock;
3885 	}
3886 
3887 	trace_sched_pi_setprio(p, prio);
3888 	oldprio = p->prio;
3889 	prev_class = p->sched_class;
3890 	on_rq = p->on_rq;
3891 	running = task_current(rq, p);
3892 	if (on_rq)
3893 		dequeue_task(rq, p, 0);
3894 	if (running)
3895 		p->sched_class->put_prev_task(rq, p);
3896 
3897 	if (rt_prio(prio))
3898 		p->sched_class = &rt_sched_class;
3899 	else
3900 		p->sched_class = &fair_sched_class;
3901 
3902 	p->prio = prio;
3903 
3904 	if (running)
3905 		p->sched_class->set_curr_task(rq);
3906 	if (on_rq)
3907 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3908 
3909 	check_class_changed(rq, p, prev_class, oldprio);
3910 out_unlock:
3911 	__task_rq_unlock(rq);
3912 }
3913 #endif
3914 void set_user_nice(struct task_struct *p, long nice)
3915 {
3916 	int old_prio, delta, on_rq;
3917 	unsigned long flags;
3918 	struct rq *rq;
3919 
3920 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3921 		return;
3922 	/*
3923 	 * We have to be careful, if called from sys_setpriority(),
3924 	 * the task might be in the middle of scheduling on another CPU.
3925 	 */
3926 	rq = task_rq_lock(p, &flags);
3927 	/*
3928 	 * The RT priorities are set via sched_setscheduler(), but we still
3929 	 * allow the 'normal' nice value to be set - but as expected
3930 	 * it wont have any effect on scheduling until the task is
3931 	 * SCHED_FIFO/SCHED_RR:
3932 	 */
3933 	if (task_has_rt_policy(p)) {
3934 		p->static_prio = NICE_TO_PRIO(nice);
3935 		goto out_unlock;
3936 	}
3937 	on_rq = p->on_rq;
3938 	if (on_rq)
3939 		dequeue_task(rq, p, 0);
3940 
3941 	p->static_prio = NICE_TO_PRIO(nice);
3942 	set_load_weight(p);
3943 	old_prio = p->prio;
3944 	p->prio = effective_prio(p);
3945 	delta = p->prio - old_prio;
3946 
3947 	if (on_rq) {
3948 		enqueue_task(rq, p, 0);
3949 		/*
3950 		 * If the task increased its priority or is running and
3951 		 * lowered its priority, then reschedule its CPU:
3952 		 */
3953 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3954 			resched_task(rq->curr);
3955 	}
3956 out_unlock:
3957 	task_rq_unlock(rq, p, &flags);
3958 }
3959 EXPORT_SYMBOL(set_user_nice);
3960 
3961 /*
3962  * can_nice - check if a task can reduce its nice value
3963  * @p: task
3964  * @nice: nice value
3965  */
3966 int can_nice(const struct task_struct *p, const int nice)
3967 {
3968 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3969 	int nice_rlim = 20 - nice;
3970 
3971 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3972 		capable(CAP_SYS_NICE));
3973 }
3974 
3975 #ifdef __ARCH_WANT_SYS_NICE
3976 
3977 /*
3978  * sys_nice - change the priority of the current process.
3979  * @increment: priority increment
3980  *
3981  * sys_setpriority is a more generic, but much slower function that
3982  * does similar things.
3983  */
3984 SYSCALL_DEFINE1(nice, int, increment)
3985 {
3986 	long nice, retval;
3987 
3988 	/*
3989 	 * Setpriority might change our priority at the same moment.
3990 	 * We don't have to worry. Conceptually one call occurs first
3991 	 * and we have a single winner.
3992 	 */
3993 	if (increment < -40)
3994 		increment = -40;
3995 	if (increment > 40)
3996 		increment = 40;
3997 
3998 	nice = TASK_NICE(current) + increment;
3999 	if (nice < -20)
4000 		nice = -20;
4001 	if (nice > 19)
4002 		nice = 19;
4003 
4004 	if (increment < 0 && !can_nice(current, nice))
4005 		return -EPERM;
4006 
4007 	retval = security_task_setnice(current, nice);
4008 	if (retval)
4009 		return retval;
4010 
4011 	set_user_nice(current, nice);
4012 	return 0;
4013 }
4014 
4015 #endif
4016 
4017 /**
4018  * task_prio - return the priority value of a given task.
4019  * @p: the task in question.
4020  *
4021  * This is the priority value as seen by users in /proc.
4022  * RT tasks are offset by -200. Normal tasks are centered
4023  * around 0, value goes from -16 to +15.
4024  */
4025 int task_prio(const struct task_struct *p)
4026 {
4027 	return p->prio - MAX_RT_PRIO;
4028 }
4029 
4030 /**
4031  * task_nice - return the nice value of a given task.
4032  * @p: the task in question.
4033  */
4034 int task_nice(const struct task_struct *p)
4035 {
4036 	return TASK_NICE(p);
4037 }
4038 EXPORT_SYMBOL(task_nice);
4039 
4040 /**
4041  * idle_cpu - is a given cpu idle currently?
4042  * @cpu: the processor in question.
4043  */
4044 int idle_cpu(int cpu)
4045 {
4046 	struct rq *rq = cpu_rq(cpu);
4047 
4048 	if (rq->curr != rq->idle)
4049 		return 0;
4050 
4051 	if (rq->nr_running)
4052 		return 0;
4053 
4054 #ifdef CONFIG_SMP
4055 	if (!llist_empty(&rq->wake_list))
4056 		return 0;
4057 #endif
4058 
4059 	return 1;
4060 }
4061 
4062 /**
4063  * idle_task - return the idle task for a given cpu.
4064  * @cpu: the processor in question.
4065  */
4066 struct task_struct *idle_task(int cpu)
4067 {
4068 	return cpu_rq(cpu)->idle;
4069 }
4070 
4071 /**
4072  * find_process_by_pid - find a process with a matching PID value.
4073  * @pid: the pid in question.
4074  */
4075 static struct task_struct *find_process_by_pid(pid_t pid)
4076 {
4077 	return pid ? find_task_by_vpid(pid) : current;
4078 }
4079 
4080 /* Actually do priority change: must hold rq lock. */
4081 static void
4082 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4083 {
4084 	p->policy = policy;
4085 	p->rt_priority = prio;
4086 	p->normal_prio = normal_prio(p);
4087 	/* we are holding p->pi_lock already */
4088 	p->prio = rt_mutex_getprio(p);
4089 	if (rt_prio(p->prio))
4090 		p->sched_class = &rt_sched_class;
4091 	else
4092 		p->sched_class = &fair_sched_class;
4093 	set_load_weight(p);
4094 }
4095 
4096 /*
4097  * check the target process has a UID that matches the current process's
4098  */
4099 static bool check_same_owner(struct task_struct *p)
4100 {
4101 	const struct cred *cred = current_cred(), *pcred;
4102 	bool match;
4103 
4104 	rcu_read_lock();
4105 	pcred = __task_cred(p);
4106 	match = (uid_eq(cred->euid, pcred->euid) ||
4107 		 uid_eq(cred->euid, pcred->uid));
4108 	rcu_read_unlock();
4109 	return match;
4110 }
4111 
4112 static int __sched_setscheduler(struct task_struct *p, int policy,
4113 				const struct sched_param *param, bool user)
4114 {
4115 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4116 	unsigned long flags;
4117 	const struct sched_class *prev_class;
4118 	struct rq *rq;
4119 	int reset_on_fork;
4120 
4121 	/* may grab non-irq protected spin_locks */
4122 	BUG_ON(in_interrupt());
4123 recheck:
4124 	/* double check policy once rq lock held */
4125 	if (policy < 0) {
4126 		reset_on_fork = p->sched_reset_on_fork;
4127 		policy = oldpolicy = p->policy;
4128 	} else {
4129 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4130 		policy &= ~SCHED_RESET_ON_FORK;
4131 
4132 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4133 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4134 				policy != SCHED_IDLE)
4135 			return -EINVAL;
4136 	}
4137 
4138 	/*
4139 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4140 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4141 	 * SCHED_BATCH and SCHED_IDLE is 0.
4142 	 */
4143 	if (param->sched_priority < 0 ||
4144 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4145 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4146 		return -EINVAL;
4147 	if (rt_policy(policy) != (param->sched_priority != 0))
4148 		return -EINVAL;
4149 
4150 	/*
4151 	 * Allow unprivileged RT tasks to decrease priority:
4152 	 */
4153 	if (user && !capable(CAP_SYS_NICE)) {
4154 		if (rt_policy(policy)) {
4155 			unsigned long rlim_rtprio =
4156 					task_rlimit(p, RLIMIT_RTPRIO);
4157 
4158 			/* can't set/change the rt policy */
4159 			if (policy != p->policy && !rlim_rtprio)
4160 				return -EPERM;
4161 
4162 			/* can't increase priority */
4163 			if (param->sched_priority > p->rt_priority &&
4164 			    param->sched_priority > rlim_rtprio)
4165 				return -EPERM;
4166 		}
4167 
4168 		/*
4169 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4170 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4171 		 */
4172 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4173 			if (!can_nice(p, TASK_NICE(p)))
4174 				return -EPERM;
4175 		}
4176 
4177 		/* can't change other user's priorities */
4178 		if (!check_same_owner(p))
4179 			return -EPERM;
4180 
4181 		/* Normal users shall not reset the sched_reset_on_fork flag */
4182 		if (p->sched_reset_on_fork && !reset_on_fork)
4183 			return -EPERM;
4184 	}
4185 
4186 	if (user) {
4187 		retval = security_task_setscheduler(p);
4188 		if (retval)
4189 			return retval;
4190 	}
4191 
4192 	/*
4193 	 * make sure no PI-waiters arrive (or leave) while we are
4194 	 * changing the priority of the task:
4195 	 *
4196 	 * To be able to change p->policy safely, the appropriate
4197 	 * runqueue lock must be held.
4198 	 */
4199 	rq = task_rq_lock(p, &flags);
4200 
4201 	/*
4202 	 * Changing the policy of the stop threads its a very bad idea
4203 	 */
4204 	if (p == rq->stop) {
4205 		task_rq_unlock(rq, p, &flags);
4206 		return -EINVAL;
4207 	}
4208 
4209 	/*
4210 	 * If not changing anything there's no need to proceed further:
4211 	 */
4212 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4213 			param->sched_priority == p->rt_priority))) {
4214 
4215 		__task_rq_unlock(rq);
4216 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4217 		return 0;
4218 	}
4219 
4220 #ifdef CONFIG_RT_GROUP_SCHED
4221 	if (user) {
4222 		/*
4223 		 * Do not allow realtime tasks into groups that have no runtime
4224 		 * assigned.
4225 		 */
4226 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4227 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4228 				!task_group_is_autogroup(task_group(p))) {
4229 			task_rq_unlock(rq, p, &flags);
4230 			return -EPERM;
4231 		}
4232 	}
4233 #endif
4234 
4235 	/* recheck policy now with rq lock held */
4236 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4237 		policy = oldpolicy = -1;
4238 		task_rq_unlock(rq, p, &flags);
4239 		goto recheck;
4240 	}
4241 	on_rq = p->on_rq;
4242 	running = task_current(rq, p);
4243 	if (on_rq)
4244 		dequeue_task(rq, p, 0);
4245 	if (running)
4246 		p->sched_class->put_prev_task(rq, p);
4247 
4248 	p->sched_reset_on_fork = reset_on_fork;
4249 
4250 	oldprio = p->prio;
4251 	prev_class = p->sched_class;
4252 	__setscheduler(rq, p, policy, param->sched_priority);
4253 
4254 	if (running)
4255 		p->sched_class->set_curr_task(rq);
4256 	if (on_rq)
4257 		enqueue_task(rq, p, 0);
4258 
4259 	check_class_changed(rq, p, prev_class, oldprio);
4260 	task_rq_unlock(rq, p, &flags);
4261 
4262 	rt_mutex_adjust_pi(p);
4263 
4264 	return 0;
4265 }
4266 
4267 /**
4268  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4269  * @p: the task in question.
4270  * @policy: new policy.
4271  * @param: structure containing the new RT priority.
4272  *
4273  * NOTE that the task may be already dead.
4274  */
4275 int sched_setscheduler(struct task_struct *p, int policy,
4276 		       const struct sched_param *param)
4277 {
4278 	return __sched_setscheduler(p, policy, param, true);
4279 }
4280 EXPORT_SYMBOL_GPL(sched_setscheduler);
4281 
4282 /**
4283  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4284  * @p: the task in question.
4285  * @policy: new policy.
4286  * @param: structure containing the new RT priority.
4287  *
4288  * Just like sched_setscheduler, only don't bother checking if the
4289  * current context has permission.  For example, this is needed in
4290  * stop_machine(): we create temporary high priority worker threads,
4291  * but our caller might not have that capability.
4292  */
4293 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4294 			       const struct sched_param *param)
4295 {
4296 	return __sched_setscheduler(p, policy, param, false);
4297 }
4298 
4299 static int
4300 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4301 {
4302 	struct sched_param lparam;
4303 	struct task_struct *p;
4304 	int retval;
4305 
4306 	if (!param || pid < 0)
4307 		return -EINVAL;
4308 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4309 		return -EFAULT;
4310 
4311 	rcu_read_lock();
4312 	retval = -ESRCH;
4313 	p = find_process_by_pid(pid);
4314 	if (p != NULL)
4315 		retval = sched_setscheduler(p, policy, &lparam);
4316 	rcu_read_unlock();
4317 
4318 	return retval;
4319 }
4320 
4321 /**
4322  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4323  * @pid: the pid in question.
4324  * @policy: new policy.
4325  * @param: structure containing the new RT priority.
4326  */
4327 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4328 		struct sched_param __user *, param)
4329 {
4330 	/* negative values for policy are not valid */
4331 	if (policy < 0)
4332 		return -EINVAL;
4333 
4334 	return do_sched_setscheduler(pid, policy, param);
4335 }
4336 
4337 /**
4338  * sys_sched_setparam - set/change the RT priority of a thread
4339  * @pid: the pid in question.
4340  * @param: structure containing the new RT priority.
4341  */
4342 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4343 {
4344 	return do_sched_setscheduler(pid, -1, param);
4345 }
4346 
4347 /**
4348  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4349  * @pid: the pid in question.
4350  */
4351 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4352 {
4353 	struct task_struct *p;
4354 	int retval;
4355 
4356 	if (pid < 0)
4357 		return -EINVAL;
4358 
4359 	retval = -ESRCH;
4360 	rcu_read_lock();
4361 	p = find_process_by_pid(pid);
4362 	if (p) {
4363 		retval = security_task_getscheduler(p);
4364 		if (!retval)
4365 			retval = p->policy
4366 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4367 	}
4368 	rcu_read_unlock();
4369 	return retval;
4370 }
4371 
4372 /**
4373  * sys_sched_getparam - get the RT priority of a thread
4374  * @pid: the pid in question.
4375  * @param: structure containing the RT priority.
4376  */
4377 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4378 {
4379 	struct sched_param lp;
4380 	struct task_struct *p;
4381 	int retval;
4382 
4383 	if (!param || pid < 0)
4384 		return -EINVAL;
4385 
4386 	rcu_read_lock();
4387 	p = find_process_by_pid(pid);
4388 	retval = -ESRCH;
4389 	if (!p)
4390 		goto out_unlock;
4391 
4392 	retval = security_task_getscheduler(p);
4393 	if (retval)
4394 		goto out_unlock;
4395 
4396 	lp.sched_priority = p->rt_priority;
4397 	rcu_read_unlock();
4398 
4399 	/*
4400 	 * This one might sleep, we cannot do it with a spinlock held ...
4401 	 */
4402 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4403 
4404 	return retval;
4405 
4406 out_unlock:
4407 	rcu_read_unlock();
4408 	return retval;
4409 }
4410 
4411 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4412 {
4413 	cpumask_var_t cpus_allowed, new_mask;
4414 	struct task_struct *p;
4415 	int retval;
4416 
4417 	get_online_cpus();
4418 	rcu_read_lock();
4419 
4420 	p = find_process_by_pid(pid);
4421 	if (!p) {
4422 		rcu_read_unlock();
4423 		put_online_cpus();
4424 		return -ESRCH;
4425 	}
4426 
4427 	/* Prevent p going away */
4428 	get_task_struct(p);
4429 	rcu_read_unlock();
4430 
4431 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4432 		retval = -ENOMEM;
4433 		goto out_put_task;
4434 	}
4435 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4436 		retval = -ENOMEM;
4437 		goto out_free_cpus_allowed;
4438 	}
4439 	retval = -EPERM;
4440 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4441 		goto out_unlock;
4442 
4443 	retval = security_task_setscheduler(p);
4444 	if (retval)
4445 		goto out_unlock;
4446 
4447 	cpuset_cpus_allowed(p, cpus_allowed);
4448 	cpumask_and(new_mask, in_mask, cpus_allowed);
4449 again:
4450 	retval = set_cpus_allowed_ptr(p, new_mask);
4451 
4452 	if (!retval) {
4453 		cpuset_cpus_allowed(p, cpus_allowed);
4454 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4455 			/*
4456 			 * We must have raced with a concurrent cpuset
4457 			 * update. Just reset the cpus_allowed to the
4458 			 * cpuset's cpus_allowed
4459 			 */
4460 			cpumask_copy(new_mask, cpus_allowed);
4461 			goto again;
4462 		}
4463 	}
4464 out_unlock:
4465 	free_cpumask_var(new_mask);
4466 out_free_cpus_allowed:
4467 	free_cpumask_var(cpus_allowed);
4468 out_put_task:
4469 	put_task_struct(p);
4470 	put_online_cpus();
4471 	return retval;
4472 }
4473 
4474 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4475 			     struct cpumask *new_mask)
4476 {
4477 	if (len < cpumask_size())
4478 		cpumask_clear(new_mask);
4479 	else if (len > cpumask_size())
4480 		len = cpumask_size();
4481 
4482 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4483 }
4484 
4485 /**
4486  * sys_sched_setaffinity - set the cpu affinity of a process
4487  * @pid: pid of the process
4488  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4489  * @user_mask_ptr: user-space pointer to the new cpu mask
4490  */
4491 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4492 		unsigned long __user *, user_mask_ptr)
4493 {
4494 	cpumask_var_t new_mask;
4495 	int retval;
4496 
4497 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4498 		return -ENOMEM;
4499 
4500 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4501 	if (retval == 0)
4502 		retval = sched_setaffinity(pid, new_mask);
4503 	free_cpumask_var(new_mask);
4504 	return retval;
4505 }
4506 
4507 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4508 {
4509 	struct task_struct *p;
4510 	unsigned long flags;
4511 	int retval;
4512 
4513 	get_online_cpus();
4514 	rcu_read_lock();
4515 
4516 	retval = -ESRCH;
4517 	p = find_process_by_pid(pid);
4518 	if (!p)
4519 		goto out_unlock;
4520 
4521 	retval = security_task_getscheduler(p);
4522 	if (retval)
4523 		goto out_unlock;
4524 
4525 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4526 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4527 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4528 
4529 out_unlock:
4530 	rcu_read_unlock();
4531 	put_online_cpus();
4532 
4533 	return retval;
4534 }
4535 
4536 /**
4537  * sys_sched_getaffinity - get the cpu affinity of a process
4538  * @pid: pid of the process
4539  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4540  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4541  */
4542 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4543 		unsigned long __user *, user_mask_ptr)
4544 {
4545 	int ret;
4546 	cpumask_var_t mask;
4547 
4548 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4549 		return -EINVAL;
4550 	if (len & (sizeof(unsigned long)-1))
4551 		return -EINVAL;
4552 
4553 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4554 		return -ENOMEM;
4555 
4556 	ret = sched_getaffinity(pid, mask);
4557 	if (ret == 0) {
4558 		size_t retlen = min_t(size_t, len, cpumask_size());
4559 
4560 		if (copy_to_user(user_mask_ptr, mask, retlen))
4561 			ret = -EFAULT;
4562 		else
4563 			ret = retlen;
4564 	}
4565 	free_cpumask_var(mask);
4566 
4567 	return ret;
4568 }
4569 
4570 /**
4571  * sys_sched_yield - yield the current processor to other threads.
4572  *
4573  * This function yields the current CPU to other tasks. If there are no
4574  * other threads running on this CPU then this function will return.
4575  */
4576 SYSCALL_DEFINE0(sched_yield)
4577 {
4578 	struct rq *rq = this_rq_lock();
4579 
4580 	schedstat_inc(rq, yld_count);
4581 	current->sched_class->yield_task(rq);
4582 
4583 	/*
4584 	 * Since we are going to call schedule() anyway, there's
4585 	 * no need to preempt or enable interrupts:
4586 	 */
4587 	__release(rq->lock);
4588 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4589 	do_raw_spin_unlock(&rq->lock);
4590 	sched_preempt_enable_no_resched();
4591 
4592 	schedule();
4593 
4594 	return 0;
4595 }
4596 
4597 static inline int should_resched(void)
4598 {
4599 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4600 }
4601 
4602 static void __cond_resched(void)
4603 {
4604 	add_preempt_count(PREEMPT_ACTIVE);
4605 	__schedule();
4606 	sub_preempt_count(PREEMPT_ACTIVE);
4607 }
4608 
4609 int __sched _cond_resched(void)
4610 {
4611 	if (should_resched()) {
4612 		__cond_resched();
4613 		return 1;
4614 	}
4615 	return 0;
4616 }
4617 EXPORT_SYMBOL(_cond_resched);
4618 
4619 /*
4620  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4621  * call schedule, and on return reacquire the lock.
4622  *
4623  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4624  * operations here to prevent schedule() from being called twice (once via
4625  * spin_unlock(), once by hand).
4626  */
4627 int __cond_resched_lock(spinlock_t *lock)
4628 {
4629 	int resched = should_resched();
4630 	int ret = 0;
4631 
4632 	lockdep_assert_held(lock);
4633 
4634 	if (spin_needbreak(lock) || resched) {
4635 		spin_unlock(lock);
4636 		if (resched)
4637 			__cond_resched();
4638 		else
4639 			cpu_relax();
4640 		ret = 1;
4641 		spin_lock(lock);
4642 	}
4643 	return ret;
4644 }
4645 EXPORT_SYMBOL(__cond_resched_lock);
4646 
4647 int __sched __cond_resched_softirq(void)
4648 {
4649 	BUG_ON(!in_softirq());
4650 
4651 	if (should_resched()) {
4652 		local_bh_enable();
4653 		__cond_resched();
4654 		local_bh_disable();
4655 		return 1;
4656 	}
4657 	return 0;
4658 }
4659 EXPORT_SYMBOL(__cond_resched_softirq);
4660 
4661 /**
4662  * yield - yield the current processor to other threads.
4663  *
4664  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4665  *
4666  * The scheduler is at all times free to pick the calling task as the most
4667  * eligible task to run, if removing the yield() call from your code breaks
4668  * it, its already broken.
4669  *
4670  * Typical broken usage is:
4671  *
4672  * while (!event)
4673  * 	yield();
4674  *
4675  * where one assumes that yield() will let 'the other' process run that will
4676  * make event true. If the current task is a SCHED_FIFO task that will never
4677  * happen. Never use yield() as a progress guarantee!!
4678  *
4679  * If you want to use yield() to wait for something, use wait_event().
4680  * If you want to use yield() to be 'nice' for others, use cond_resched().
4681  * If you still want to use yield(), do not!
4682  */
4683 void __sched yield(void)
4684 {
4685 	set_current_state(TASK_RUNNING);
4686 	sys_sched_yield();
4687 }
4688 EXPORT_SYMBOL(yield);
4689 
4690 /**
4691  * yield_to - yield the current processor to another thread in
4692  * your thread group, or accelerate that thread toward the
4693  * processor it's on.
4694  * @p: target task
4695  * @preempt: whether task preemption is allowed or not
4696  *
4697  * It's the caller's job to ensure that the target task struct
4698  * can't go away on us before we can do any checks.
4699  *
4700  * Returns true if we indeed boosted the target task.
4701  */
4702 bool __sched yield_to(struct task_struct *p, bool preempt)
4703 {
4704 	struct task_struct *curr = current;
4705 	struct rq *rq, *p_rq;
4706 	unsigned long flags;
4707 	bool yielded = 0;
4708 
4709 	local_irq_save(flags);
4710 	rq = this_rq();
4711 
4712 again:
4713 	p_rq = task_rq(p);
4714 	double_rq_lock(rq, p_rq);
4715 	while (task_rq(p) != p_rq) {
4716 		double_rq_unlock(rq, p_rq);
4717 		goto again;
4718 	}
4719 
4720 	if (!curr->sched_class->yield_to_task)
4721 		goto out;
4722 
4723 	if (curr->sched_class != p->sched_class)
4724 		goto out;
4725 
4726 	if (task_running(p_rq, p) || p->state)
4727 		goto out;
4728 
4729 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4730 	if (yielded) {
4731 		schedstat_inc(rq, yld_count);
4732 		/*
4733 		 * Make p's CPU reschedule; pick_next_entity takes care of
4734 		 * fairness.
4735 		 */
4736 		if (preempt && rq != p_rq)
4737 			resched_task(p_rq->curr);
4738 	} else {
4739 		/*
4740 		 * We might have set it in task_yield_fair(), but are
4741 		 * not going to schedule(), so don't want to skip
4742 		 * the next update.
4743 		 */
4744 		rq->skip_clock_update = 0;
4745 	}
4746 
4747 out:
4748 	double_rq_unlock(rq, p_rq);
4749 	local_irq_restore(flags);
4750 
4751 	if (yielded)
4752 		schedule();
4753 
4754 	return yielded;
4755 }
4756 EXPORT_SYMBOL_GPL(yield_to);
4757 
4758 /*
4759  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4760  * that process accounting knows that this is a task in IO wait state.
4761  */
4762 void __sched io_schedule(void)
4763 {
4764 	struct rq *rq = raw_rq();
4765 
4766 	delayacct_blkio_start();
4767 	atomic_inc(&rq->nr_iowait);
4768 	blk_flush_plug(current);
4769 	current->in_iowait = 1;
4770 	schedule();
4771 	current->in_iowait = 0;
4772 	atomic_dec(&rq->nr_iowait);
4773 	delayacct_blkio_end();
4774 }
4775 EXPORT_SYMBOL(io_schedule);
4776 
4777 long __sched io_schedule_timeout(long timeout)
4778 {
4779 	struct rq *rq = raw_rq();
4780 	long ret;
4781 
4782 	delayacct_blkio_start();
4783 	atomic_inc(&rq->nr_iowait);
4784 	blk_flush_plug(current);
4785 	current->in_iowait = 1;
4786 	ret = schedule_timeout(timeout);
4787 	current->in_iowait = 0;
4788 	atomic_dec(&rq->nr_iowait);
4789 	delayacct_blkio_end();
4790 	return ret;
4791 }
4792 
4793 /**
4794  * sys_sched_get_priority_max - return maximum RT priority.
4795  * @policy: scheduling class.
4796  *
4797  * this syscall returns the maximum rt_priority that can be used
4798  * by a given scheduling class.
4799  */
4800 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4801 {
4802 	int ret = -EINVAL;
4803 
4804 	switch (policy) {
4805 	case SCHED_FIFO:
4806 	case SCHED_RR:
4807 		ret = MAX_USER_RT_PRIO-1;
4808 		break;
4809 	case SCHED_NORMAL:
4810 	case SCHED_BATCH:
4811 	case SCHED_IDLE:
4812 		ret = 0;
4813 		break;
4814 	}
4815 	return ret;
4816 }
4817 
4818 /**
4819  * sys_sched_get_priority_min - return minimum RT priority.
4820  * @policy: scheduling class.
4821  *
4822  * this syscall returns the minimum rt_priority that can be used
4823  * by a given scheduling class.
4824  */
4825 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4826 {
4827 	int ret = -EINVAL;
4828 
4829 	switch (policy) {
4830 	case SCHED_FIFO:
4831 	case SCHED_RR:
4832 		ret = 1;
4833 		break;
4834 	case SCHED_NORMAL:
4835 	case SCHED_BATCH:
4836 	case SCHED_IDLE:
4837 		ret = 0;
4838 	}
4839 	return ret;
4840 }
4841 
4842 /**
4843  * sys_sched_rr_get_interval - return the default timeslice of a process.
4844  * @pid: pid of the process.
4845  * @interval: userspace pointer to the timeslice value.
4846  *
4847  * this syscall writes the default timeslice value of a given process
4848  * into the user-space timespec buffer. A value of '0' means infinity.
4849  */
4850 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4851 		struct timespec __user *, interval)
4852 {
4853 	struct task_struct *p;
4854 	unsigned int time_slice;
4855 	unsigned long flags;
4856 	struct rq *rq;
4857 	int retval;
4858 	struct timespec t;
4859 
4860 	if (pid < 0)
4861 		return -EINVAL;
4862 
4863 	retval = -ESRCH;
4864 	rcu_read_lock();
4865 	p = find_process_by_pid(pid);
4866 	if (!p)
4867 		goto out_unlock;
4868 
4869 	retval = security_task_getscheduler(p);
4870 	if (retval)
4871 		goto out_unlock;
4872 
4873 	rq = task_rq_lock(p, &flags);
4874 	time_slice = p->sched_class->get_rr_interval(rq, p);
4875 	task_rq_unlock(rq, p, &flags);
4876 
4877 	rcu_read_unlock();
4878 	jiffies_to_timespec(time_slice, &t);
4879 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4880 	return retval;
4881 
4882 out_unlock:
4883 	rcu_read_unlock();
4884 	return retval;
4885 }
4886 
4887 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4888 
4889 void sched_show_task(struct task_struct *p)
4890 {
4891 	unsigned long free = 0;
4892 	unsigned state;
4893 
4894 	state = p->state ? __ffs(p->state) + 1 : 0;
4895 	printk(KERN_INFO "%-15.15s %c", p->comm,
4896 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4897 #if BITS_PER_LONG == 32
4898 	if (state == TASK_RUNNING)
4899 		printk(KERN_CONT " running  ");
4900 	else
4901 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4902 #else
4903 	if (state == TASK_RUNNING)
4904 		printk(KERN_CONT "  running task    ");
4905 	else
4906 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4907 #endif
4908 #ifdef CONFIG_DEBUG_STACK_USAGE
4909 	free = stack_not_used(p);
4910 #endif
4911 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4912 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4913 		(unsigned long)task_thread_info(p)->flags);
4914 
4915 	show_stack(p, NULL);
4916 }
4917 
4918 void show_state_filter(unsigned long state_filter)
4919 {
4920 	struct task_struct *g, *p;
4921 
4922 #if BITS_PER_LONG == 32
4923 	printk(KERN_INFO
4924 		"  task                PC stack   pid father\n");
4925 #else
4926 	printk(KERN_INFO
4927 		"  task                        PC stack   pid father\n");
4928 #endif
4929 	rcu_read_lock();
4930 	do_each_thread(g, p) {
4931 		/*
4932 		 * reset the NMI-timeout, listing all files on a slow
4933 		 * console might take a lot of time:
4934 		 */
4935 		touch_nmi_watchdog();
4936 		if (!state_filter || (p->state & state_filter))
4937 			sched_show_task(p);
4938 	} while_each_thread(g, p);
4939 
4940 	touch_all_softlockup_watchdogs();
4941 
4942 #ifdef CONFIG_SCHED_DEBUG
4943 	sysrq_sched_debug_show();
4944 #endif
4945 	rcu_read_unlock();
4946 	/*
4947 	 * Only show locks if all tasks are dumped:
4948 	 */
4949 	if (!state_filter)
4950 		debug_show_all_locks();
4951 }
4952 
4953 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4954 {
4955 	idle->sched_class = &idle_sched_class;
4956 }
4957 
4958 /**
4959  * init_idle - set up an idle thread for a given CPU
4960  * @idle: task in question
4961  * @cpu: cpu the idle task belongs to
4962  *
4963  * NOTE: this function does not set the idle thread's NEED_RESCHED
4964  * flag, to make booting more robust.
4965  */
4966 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4967 {
4968 	struct rq *rq = cpu_rq(cpu);
4969 	unsigned long flags;
4970 
4971 	raw_spin_lock_irqsave(&rq->lock, flags);
4972 
4973 	__sched_fork(idle);
4974 	idle->state = TASK_RUNNING;
4975 	idle->se.exec_start = sched_clock();
4976 
4977 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4978 	/*
4979 	 * We're having a chicken and egg problem, even though we are
4980 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4981 	 * lockdep check in task_group() will fail.
4982 	 *
4983 	 * Similar case to sched_fork(). / Alternatively we could
4984 	 * use task_rq_lock() here and obtain the other rq->lock.
4985 	 *
4986 	 * Silence PROVE_RCU
4987 	 */
4988 	rcu_read_lock();
4989 	__set_task_cpu(idle, cpu);
4990 	rcu_read_unlock();
4991 
4992 	rq->curr = rq->idle = idle;
4993 #if defined(CONFIG_SMP)
4994 	idle->on_cpu = 1;
4995 #endif
4996 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4997 
4998 	/* Set the preempt count _outside_ the spinlocks! */
4999 	task_thread_info(idle)->preempt_count = 0;
5000 
5001 	/*
5002 	 * The idle tasks have their own, simple scheduling class:
5003 	 */
5004 	idle->sched_class = &idle_sched_class;
5005 	ftrace_graph_init_idle_task(idle, cpu);
5006 #if defined(CONFIG_SMP)
5007 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5008 #endif
5009 }
5010 
5011 #ifdef CONFIG_SMP
5012 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5013 {
5014 	if (p->sched_class && p->sched_class->set_cpus_allowed)
5015 		p->sched_class->set_cpus_allowed(p, new_mask);
5016 
5017 	cpumask_copy(&p->cpus_allowed, new_mask);
5018 	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5019 }
5020 
5021 /*
5022  * This is how migration works:
5023  *
5024  * 1) we invoke migration_cpu_stop() on the target CPU using
5025  *    stop_one_cpu().
5026  * 2) stopper starts to run (implicitly forcing the migrated thread
5027  *    off the CPU)
5028  * 3) it checks whether the migrated task is still in the wrong runqueue.
5029  * 4) if it's in the wrong runqueue then the migration thread removes
5030  *    it and puts it into the right queue.
5031  * 5) stopper completes and stop_one_cpu() returns and the migration
5032  *    is done.
5033  */
5034 
5035 /*
5036  * Change a given task's CPU affinity. Migrate the thread to a
5037  * proper CPU and schedule it away if the CPU it's executing on
5038  * is removed from the allowed bitmask.
5039  *
5040  * NOTE: the caller must have a valid reference to the task, the
5041  * task must not exit() & deallocate itself prematurely. The
5042  * call is not atomic; no spinlocks may be held.
5043  */
5044 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5045 {
5046 	unsigned long flags;
5047 	struct rq *rq;
5048 	unsigned int dest_cpu;
5049 	int ret = 0;
5050 
5051 	rq = task_rq_lock(p, &flags);
5052 
5053 	if (cpumask_equal(&p->cpus_allowed, new_mask))
5054 		goto out;
5055 
5056 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5057 		ret = -EINVAL;
5058 		goto out;
5059 	}
5060 
5061 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5062 		ret = -EINVAL;
5063 		goto out;
5064 	}
5065 
5066 	do_set_cpus_allowed(p, new_mask);
5067 
5068 	/* Can the task run on the task's current CPU? If so, we're done */
5069 	if (cpumask_test_cpu(task_cpu(p), new_mask))
5070 		goto out;
5071 
5072 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5073 	if (p->on_rq) {
5074 		struct migration_arg arg = { p, dest_cpu };
5075 		/* Need help from migration thread: drop lock and wait. */
5076 		task_rq_unlock(rq, p, &flags);
5077 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5078 		tlb_migrate_finish(p->mm);
5079 		return 0;
5080 	}
5081 out:
5082 	task_rq_unlock(rq, p, &flags);
5083 
5084 	return ret;
5085 }
5086 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5087 
5088 /*
5089  * Move (not current) task off this cpu, onto dest cpu. We're doing
5090  * this because either it can't run here any more (set_cpus_allowed()
5091  * away from this CPU, or CPU going down), or because we're
5092  * attempting to rebalance this task on exec (sched_exec).
5093  *
5094  * So we race with normal scheduler movements, but that's OK, as long
5095  * as the task is no longer on this CPU.
5096  *
5097  * Returns non-zero if task was successfully migrated.
5098  */
5099 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5100 {
5101 	struct rq *rq_dest, *rq_src;
5102 	int ret = 0;
5103 
5104 	if (unlikely(!cpu_active(dest_cpu)))
5105 		return ret;
5106 
5107 	rq_src = cpu_rq(src_cpu);
5108 	rq_dest = cpu_rq(dest_cpu);
5109 
5110 	raw_spin_lock(&p->pi_lock);
5111 	double_rq_lock(rq_src, rq_dest);
5112 	/* Already moved. */
5113 	if (task_cpu(p) != src_cpu)
5114 		goto done;
5115 	/* Affinity changed (again). */
5116 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5117 		goto fail;
5118 
5119 	/*
5120 	 * If we're not on a rq, the next wake-up will ensure we're
5121 	 * placed properly.
5122 	 */
5123 	if (p->on_rq) {
5124 		dequeue_task(rq_src, p, 0);
5125 		set_task_cpu(p, dest_cpu);
5126 		enqueue_task(rq_dest, p, 0);
5127 		check_preempt_curr(rq_dest, p, 0);
5128 	}
5129 done:
5130 	ret = 1;
5131 fail:
5132 	double_rq_unlock(rq_src, rq_dest);
5133 	raw_spin_unlock(&p->pi_lock);
5134 	return ret;
5135 }
5136 
5137 /*
5138  * migration_cpu_stop - this will be executed by a highprio stopper thread
5139  * and performs thread migration by bumping thread off CPU then
5140  * 'pushing' onto another runqueue.
5141  */
5142 static int migration_cpu_stop(void *data)
5143 {
5144 	struct migration_arg *arg = data;
5145 
5146 	/*
5147 	 * The original target cpu might have gone down and we might
5148 	 * be on another cpu but it doesn't matter.
5149 	 */
5150 	local_irq_disable();
5151 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5152 	local_irq_enable();
5153 	return 0;
5154 }
5155 
5156 #ifdef CONFIG_HOTPLUG_CPU
5157 
5158 /*
5159  * Ensures that the idle task is using init_mm right before its cpu goes
5160  * offline.
5161  */
5162 void idle_task_exit(void)
5163 {
5164 	struct mm_struct *mm = current->active_mm;
5165 
5166 	BUG_ON(cpu_online(smp_processor_id()));
5167 
5168 	if (mm != &init_mm)
5169 		switch_mm(mm, &init_mm, current);
5170 	mmdrop(mm);
5171 }
5172 
5173 /*
5174  * While a dead CPU has no uninterruptible tasks queued at this point,
5175  * it might still have a nonzero ->nr_uninterruptible counter, because
5176  * for performance reasons the counter is not stricly tracking tasks to
5177  * their home CPUs. So we just add the counter to another CPU's counter,
5178  * to keep the global sum constant after CPU-down:
5179  */
5180 static void migrate_nr_uninterruptible(struct rq *rq_src)
5181 {
5182 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5183 
5184 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5185 	rq_src->nr_uninterruptible = 0;
5186 }
5187 
5188 /*
5189  * remove the tasks which were accounted by rq from calc_load_tasks.
5190  */
5191 static void calc_global_load_remove(struct rq *rq)
5192 {
5193 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5194 	rq->calc_load_active = 0;
5195 }
5196 
5197 /*
5198  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5199  * try_to_wake_up()->select_task_rq().
5200  *
5201  * Called with rq->lock held even though we'er in stop_machine() and
5202  * there's no concurrency possible, we hold the required locks anyway
5203  * because of lock validation efforts.
5204  */
5205 static void migrate_tasks(unsigned int dead_cpu)
5206 {
5207 	struct rq *rq = cpu_rq(dead_cpu);
5208 	struct task_struct *next, *stop = rq->stop;
5209 	int dest_cpu;
5210 
5211 	/*
5212 	 * Fudge the rq selection such that the below task selection loop
5213 	 * doesn't get stuck on the currently eligible stop task.
5214 	 *
5215 	 * We're currently inside stop_machine() and the rq is either stuck
5216 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5217 	 * either way we should never end up calling schedule() until we're
5218 	 * done here.
5219 	 */
5220 	rq->stop = NULL;
5221 
5222 	/* Ensure any throttled groups are reachable by pick_next_task */
5223 	unthrottle_offline_cfs_rqs(rq);
5224 
5225 	for ( ; ; ) {
5226 		/*
5227 		 * There's this thread running, bail when that's the only
5228 		 * remaining thread.
5229 		 */
5230 		if (rq->nr_running == 1)
5231 			break;
5232 
5233 		next = pick_next_task(rq);
5234 		BUG_ON(!next);
5235 		next->sched_class->put_prev_task(rq, next);
5236 
5237 		/* Find suitable destination for @next, with force if needed. */
5238 		dest_cpu = select_fallback_rq(dead_cpu, next);
5239 		raw_spin_unlock(&rq->lock);
5240 
5241 		__migrate_task(next, dead_cpu, dest_cpu);
5242 
5243 		raw_spin_lock(&rq->lock);
5244 	}
5245 
5246 	rq->stop = stop;
5247 }
5248 
5249 #endif /* CONFIG_HOTPLUG_CPU */
5250 
5251 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5252 
5253 static struct ctl_table sd_ctl_dir[] = {
5254 	{
5255 		.procname	= "sched_domain",
5256 		.mode		= 0555,
5257 	},
5258 	{}
5259 };
5260 
5261 static struct ctl_table sd_ctl_root[] = {
5262 	{
5263 		.procname	= "kernel",
5264 		.mode		= 0555,
5265 		.child		= sd_ctl_dir,
5266 	},
5267 	{}
5268 };
5269 
5270 static struct ctl_table *sd_alloc_ctl_entry(int n)
5271 {
5272 	struct ctl_table *entry =
5273 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5274 
5275 	return entry;
5276 }
5277 
5278 static void sd_free_ctl_entry(struct ctl_table **tablep)
5279 {
5280 	struct ctl_table *entry;
5281 
5282 	/*
5283 	 * In the intermediate directories, both the child directory and
5284 	 * procname are dynamically allocated and could fail but the mode
5285 	 * will always be set. In the lowest directory the names are
5286 	 * static strings and all have proc handlers.
5287 	 */
5288 	for (entry = *tablep; entry->mode; entry++) {
5289 		if (entry->child)
5290 			sd_free_ctl_entry(&entry->child);
5291 		if (entry->proc_handler == NULL)
5292 			kfree(entry->procname);
5293 	}
5294 
5295 	kfree(*tablep);
5296 	*tablep = NULL;
5297 }
5298 
5299 static void
5300 set_table_entry(struct ctl_table *entry,
5301 		const char *procname, void *data, int maxlen,
5302 		umode_t mode, proc_handler *proc_handler)
5303 {
5304 	entry->procname = procname;
5305 	entry->data = data;
5306 	entry->maxlen = maxlen;
5307 	entry->mode = mode;
5308 	entry->proc_handler = proc_handler;
5309 }
5310 
5311 static struct ctl_table *
5312 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5313 {
5314 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5315 
5316 	if (table == NULL)
5317 		return NULL;
5318 
5319 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5320 		sizeof(long), 0644, proc_doulongvec_minmax);
5321 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5322 		sizeof(long), 0644, proc_doulongvec_minmax);
5323 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5324 		sizeof(int), 0644, proc_dointvec_minmax);
5325 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5326 		sizeof(int), 0644, proc_dointvec_minmax);
5327 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5328 		sizeof(int), 0644, proc_dointvec_minmax);
5329 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5330 		sizeof(int), 0644, proc_dointvec_minmax);
5331 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5332 		sizeof(int), 0644, proc_dointvec_minmax);
5333 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5334 		sizeof(int), 0644, proc_dointvec_minmax);
5335 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5336 		sizeof(int), 0644, proc_dointvec_minmax);
5337 	set_table_entry(&table[9], "cache_nice_tries",
5338 		&sd->cache_nice_tries,
5339 		sizeof(int), 0644, proc_dointvec_minmax);
5340 	set_table_entry(&table[10], "flags", &sd->flags,
5341 		sizeof(int), 0644, proc_dointvec_minmax);
5342 	set_table_entry(&table[11], "name", sd->name,
5343 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5344 	/* &table[12] is terminator */
5345 
5346 	return table;
5347 }
5348 
5349 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5350 {
5351 	struct ctl_table *entry, *table;
5352 	struct sched_domain *sd;
5353 	int domain_num = 0, i;
5354 	char buf[32];
5355 
5356 	for_each_domain(cpu, sd)
5357 		domain_num++;
5358 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5359 	if (table == NULL)
5360 		return NULL;
5361 
5362 	i = 0;
5363 	for_each_domain(cpu, sd) {
5364 		snprintf(buf, 32, "domain%d", i);
5365 		entry->procname = kstrdup(buf, GFP_KERNEL);
5366 		entry->mode = 0555;
5367 		entry->child = sd_alloc_ctl_domain_table(sd);
5368 		entry++;
5369 		i++;
5370 	}
5371 	return table;
5372 }
5373 
5374 static struct ctl_table_header *sd_sysctl_header;
5375 static void register_sched_domain_sysctl(void)
5376 {
5377 	int i, cpu_num = num_possible_cpus();
5378 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5379 	char buf[32];
5380 
5381 	WARN_ON(sd_ctl_dir[0].child);
5382 	sd_ctl_dir[0].child = entry;
5383 
5384 	if (entry == NULL)
5385 		return;
5386 
5387 	for_each_possible_cpu(i) {
5388 		snprintf(buf, 32, "cpu%d", i);
5389 		entry->procname = kstrdup(buf, GFP_KERNEL);
5390 		entry->mode = 0555;
5391 		entry->child = sd_alloc_ctl_cpu_table(i);
5392 		entry++;
5393 	}
5394 
5395 	WARN_ON(sd_sysctl_header);
5396 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5397 }
5398 
5399 /* may be called multiple times per register */
5400 static void unregister_sched_domain_sysctl(void)
5401 {
5402 	if (sd_sysctl_header)
5403 		unregister_sysctl_table(sd_sysctl_header);
5404 	sd_sysctl_header = NULL;
5405 	if (sd_ctl_dir[0].child)
5406 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5407 }
5408 #else
5409 static void register_sched_domain_sysctl(void)
5410 {
5411 }
5412 static void unregister_sched_domain_sysctl(void)
5413 {
5414 }
5415 #endif
5416 
5417 static void set_rq_online(struct rq *rq)
5418 {
5419 	if (!rq->online) {
5420 		const struct sched_class *class;
5421 
5422 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5423 		rq->online = 1;
5424 
5425 		for_each_class(class) {
5426 			if (class->rq_online)
5427 				class->rq_online(rq);
5428 		}
5429 	}
5430 }
5431 
5432 static void set_rq_offline(struct rq *rq)
5433 {
5434 	if (rq->online) {
5435 		const struct sched_class *class;
5436 
5437 		for_each_class(class) {
5438 			if (class->rq_offline)
5439 				class->rq_offline(rq);
5440 		}
5441 
5442 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5443 		rq->online = 0;
5444 	}
5445 }
5446 
5447 /*
5448  * migration_call - callback that gets triggered when a CPU is added.
5449  * Here we can start up the necessary migration thread for the new CPU.
5450  */
5451 static int __cpuinit
5452 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5453 {
5454 	int cpu = (long)hcpu;
5455 	unsigned long flags;
5456 	struct rq *rq = cpu_rq(cpu);
5457 
5458 	switch (action & ~CPU_TASKS_FROZEN) {
5459 
5460 	case CPU_UP_PREPARE:
5461 		rq->calc_load_update = calc_load_update;
5462 		break;
5463 
5464 	case CPU_ONLINE:
5465 		/* Update our root-domain */
5466 		raw_spin_lock_irqsave(&rq->lock, flags);
5467 		if (rq->rd) {
5468 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5469 
5470 			set_rq_online(rq);
5471 		}
5472 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5473 		break;
5474 
5475 #ifdef CONFIG_HOTPLUG_CPU
5476 	case CPU_DYING:
5477 		sched_ttwu_pending();
5478 		/* Update our root-domain */
5479 		raw_spin_lock_irqsave(&rq->lock, flags);
5480 		if (rq->rd) {
5481 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5482 			set_rq_offline(rq);
5483 		}
5484 		migrate_tasks(cpu);
5485 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5486 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5487 
5488 		migrate_nr_uninterruptible(rq);
5489 		calc_global_load_remove(rq);
5490 		break;
5491 #endif
5492 	}
5493 
5494 	update_max_interval();
5495 
5496 	return NOTIFY_OK;
5497 }
5498 
5499 /*
5500  * Register at high priority so that task migration (migrate_all_tasks)
5501  * happens before everything else.  This has to be lower priority than
5502  * the notifier in the perf_event subsystem, though.
5503  */
5504 static struct notifier_block __cpuinitdata migration_notifier = {
5505 	.notifier_call = migration_call,
5506 	.priority = CPU_PRI_MIGRATION,
5507 };
5508 
5509 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5510 				      unsigned long action, void *hcpu)
5511 {
5512 	switch (action & ~CPU_TASKS_FROZEN) {
5513 	case CPU_STARTING:
5514 	case CPU_DOWN_FAILED:
5515 		set_cpu_active((long)hcpu, true);
5516 		return NOTIFY_OK;
5517 	default:
5518 		return NOTIFY_DONE;
5519 	}
5520 }
5521 
5522 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5523 					unsigned long action, void *hcpu)
5524 {
5525 	switch (action & ~CPU_TASKS_FROZEN) {
5526 	case CPU_DOWN_PREPARE:
5527 		set_cpu_active((long)hcpu, false);
5528 		return NOTIFY_OK;
5529 	default:
5530 		return NOTIFY_DONE;
5531 	}
5532 }
5533 
5534 static int __init migration_init(void)
5535 {
5536 	void *cpu = (void *)(long)smp_processor_id();
5537 	int err;
5538 
5539 	/* Initialize migration for the boot CPU */
5540 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5541 	BUG_ON(err == NOTIFY_BAD);
5542 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5543 	register_cpu_notifier(&migration_notifier);
5544 
5545 	/* Register cpu active notifiers */
5546 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5547 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5548 
5549 	return 0;
5550 }
5551 early_initcall(migration_init);
5552 #endif
5553 
5554 #ifdef CONFIG_SMP
5555 
5556 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5557 
5558 #ifdef CONFIG_SCHED_DEBUG
5559 
5560 static __read_mostly int sched_domain_debug_enabled;
5561 
5562 static int __init sched_domain_debug_setup(char *str)
5563 {
5564 	sched_domain_debug_enabled = 1;
5565 
5566 	return 0;
5567 }
5568 early_param("sched_debug", sched_domain_debug_setup);
5569 
5570 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5571 				  struct cpumask *groupmask)
5572 {
5573 	struct sched_group *group = sd->groups;
5574 	char str[256];
5575 
5576 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5577 	cpumask_clear(groupmask);
5578 
5579 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5580 
5581 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5582 		printk("does not load-balance\n");
5583 		if (sd->parent)
5584 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5585 					" has parent");
5586 		return -1;
5587 	}
5588 
5589 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5590 
5591 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5592 		printk(KERN_ERR "ERROR: domain->span does not contain "
5593 				"CPU%d\n", cpu);
5594 	}
5595 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5596 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5597 				" CPU%d\n", cpu);
5598 	}
5599 
5600 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5601 	do {
5602 		if (!group) {
5603 			printk("\n");
5604 			printk(KERN_ERR "ERROR: group is NULL\n");
5605 			break;
5606 		}
5607 
5608 		if (!group->sgp->power) {
5609 			printk(KERN_CONT "\n");
5610 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5611 					"set\n");
5612 			break;
5613 		}
5614 
5615 		if (!cpumask_weight(sched_group_cpus(group))) {
5616 			printk(KERN_CONT "\n");
5617 			printk(KERN_ERR "ERROR: empty group\n");
5618 			break;
5619 		}
5620 
5621 		if (!(sd->flags & SD_OVERLAP) &&
5622 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5623 			printk(KERN_CONT "\n");
5624 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5625 			break;
5626 		}
5627 
5628 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5629 
5630 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5631 
5632 		printk(KERN_CONT " %s", str);
5633 		if (group->sgp->power != SCHED_POWER_SCALE) {
5634 			printk(KERN_CONT " (cpu_power = %d)",
5635 				group->sgp->power);
5636 		}
5637 
5638 		group = group->next;
5639 	} while (group != sd->groups);
5640 	printk(KERN_CONT "\n");
5641 
5642 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5643 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5644 
5645 	if (sd->parent &&
5646 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5647 		printk(KERN_ERR "ERROR: parent span is not a superset "
5648 			"of domain->span\n");
5649 	return 0;
5650 }
5651 
5652 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5653 {
5654 	int level = 0;
5655 
5656 	if (!sched_domain_debug_enabled)
5657 		return;
5658 
5659 	if (!sd) {
5660 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5661 		return;
5662 	}
5663 
5664 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5665 
5666 	for (;;) {
5667 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5668 			break;
5669 		level++;
5670 		sd = sd->parent;
5671 		if (!sd)
5672 			break;
5673 	}
5674 }
5675 #else /* !CONFIG_SCHED_DEBUG */
5676 # define sched_domain_debug(sd, cpu) do { } while (0)
5677 #endif /* CONFIG_SCHED_DEBUG */
5678 
5679 static int sd_degenerate(struct sched_domain *sd)
5680 {
5681 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5682 		return 1;
5683 
5684 	/* Following flags need at least 2 groups */
5685 	if (sd->flags & (SD_LOAD_BALANCE |
5686 			 SD_BALANCE_NEWIDLE |
5687 			 SD_BALANCE_FORK |
5688 			 SD_BALANCE_EXEC |
5689 			 SD_SHARE_CPUPOWER |
5690 			 SD_SHARE_PKG_RESOURCES)) {
5691 		if (sd->groups != sd->groups->next)
5692 			return 0;
5693 	}
5694 
5695 	/* Following flags don't use groups */
5696 	if (sd->flags & (SD_WAKE_AFFINE))
5697 		return 0;
5698 
5699 	return 1;
5700 }
5701 
5702 static int
5703 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5704 {
5705 	unsigned long cflags = sd->flags, pflags = parent->flags;
5706 
5707 	if (sd_degenerate(parent))
5708 		return 1;
5709 
5710 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5711 		return 0;
5712 
5713 	/* Flags needing groups don't count if only 1 group in parent */
5714 	if (parent->groups == parent->groups->next) {
5715 		pflags &= ~(SD_LOAD_BALANCE |
5716 				SD_BALANCE_NEWIDLE |
5717 				SD_BALANCE_FORK |
5718 				SD_BALANCE_EXEC |
5719 				SD_SHARE_CPUPOWER |
5720 				SD_SHARE_PKG_RESOURCES);
5721 		if (nr_node_ids == 1)
5722 			pflags &= ~SD_SERIALIZE;
5723 	}
5724 	if (~cflags & pflags)
5725 		return 0;
5726 
5727 	return 1;
5728 }
5729 
5730 static void free_rootdomain(struct rcu_head *rcu)
5731 {
5732 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5733 
5734 	cpupri_cleanup(&rd->cpupri);
5735 	free_cpumask_var(rd->rto_mask);
5736 	free_cpumask_var(rd->online);
5737 	free_cpumask_var(rd->span);
5738 	kfree(rd);
5739 }
5740 
5741 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5742 {
5743 	struct root_domain *old_rd = NULL;
5744 	unsigned long flags;
5745 
5746 	raw_spin_lock_irqsave(&rq->lock, flags);
5747 
5748 	if (rq->rd) {
5749 		old_rd = rq->rd;
5750 
5751 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5752 			set_rq_offline(rq);
5753 
5754 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5755 
5756 		/*
5757 		 * If we dont want to free the old_rt yet then
5758 		 * set old_rd to NULL to skip the freeing later
5759 		 * in this function:
5760 		 */
5761 		if (!atomic_dec_and_test(&old_rd->refcount))
5762 			old_rd = NULL;
5763 	}
5764 
5765 	atomic_inc(&rd->refcount);
5766 	rq->rd = rd;
5767 
5768 	cpumask_set_cpu(rq->cpu, rd->span);
5769 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5770 		set_rq_online(rq);
5771 
5772 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5773 
5774 	if (old_rd)
5775 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5776 }
5777 
5778 static int init_rootdomain(struct root_domain *rd)
5779 {
5780 	memset(rd, 0, sizeof(*rd));
5781 
5782 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5783 		goto out;
5784 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5785 		goto free_span;
5786 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5787 		goto free_online;
5788 
5789 	if (cpupri_init(&rd->cpupri) != 0)
5790 		goto free_rto_mask;
5791 	return 0;
5792 
5793 free_rto_mask:
5794 	free_cpumask_var(rd->rto_mask);
5795 free_online:
5796 	free_cpumask_var(rd->online);
5797 free_span:
5798 	free_cpumask_var(rd->span);
5799 out:
5800 	return -ENOMEM;
5801 }
5802 
5803 /*
5804  * By default the system creates a single root-domain with all cpus as
5805  * members (mimicking the global state we have today).
5806  */
5807 struct root_domain def_root_domain;
5808 
5809 static void init_defrootdomain(void)
5810 {
5811 	init_rootdomain(&def_root_domain);
5812 
5813 	atomic_set(&def_root_domain.refcount, 1);
5814 }
5815 
5816 static struct root_domain *alloc_rootdomain(void)
5817 {
5818 	struct root_domain *rd;
5819 
5820 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5821 	if (!rd)
5822 		return NULL;
5823 
5824 	if (init_rootdomain(rd) != 0) {
5825 		kfree(rd);
5826 		return NULL;
5827 	}
5828 
5829 	return rd;
5830 }
5831 
5832 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5833 {
5834 	struct sched_group *tmp, *first;
5835 
5836 	if (!sg)
5837 		return;
5838 
5839 	first = sg;
5840 	do {
5841 		tmp = sg->next;
5842 
5843 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5844 			kfree(sg->sgp);
5845 
5846 		kfree(sg);
5847 		sg = tmp;
5848 	} while (sg != first);
5849 }
5850 
5851 static void free_sched_domain(struct rcu_head *rcu)
5852 {
5853 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5854 
5855 	/*
5856 	 * If its an overlapping domain it has private groups, iterate and
5857 	 * nuke them all.
5858 	 */
5859 	if (sd->flags & SD_OVERLAP) {
5860 		free_sched_groups(sd->groups, 1);
5861 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5862 		kfree(sd->groups->sgp);
5863 		kfree(sd->groups);
5864 	}
5865 	kfree(sd);
5866 }
5867 
5868 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5869 {
5870 	call_rcu(&sd->rcu, free_sched_domain);
5871 }
5872 
5873 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5874 {
5875 	for (; sd; sd = sd->parent)
5876 		destroy_sched_domain(sd, cpu);
5877 }
5878 
5879 /*
5880  * Keep a special pointer to the highest sched_domain that has
5881  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5882  * allows us to avoid some pointer chasing select_idle_sibling().
5883  *
5884  * Also keep a unique ID per domain (we use the first cpu number in
5885  * the cpumask of the domain), this allows us to quickly tell if
5886  * two cpus are in the same cache domain, see cpus_share_cache().
5887  */
5888 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5889 DEFINE_PER_CPU(int, sd_llc_id);
5890 
5891 static void update_top_cache_domain(int cpu)
5892 {
5893 	struct sched_domain *sd;
5894 	int id = cpu;
5895 
5896 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5897 	if (sd)
5898 		id = cpumask_first(sched_domain_span(sd));
5899 
5900 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5901 	per_cpu(sd_llc_id, cpu) = id;
5902 }
5903 
5904 /*
5905  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5906  * hold the hotplug lock.
5907  */
5908 static void
5909 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5910 {
5911 	struct rq *rq = cpu_rq(cpu);
5912 	struct sched_domain *tmp;
5913 
5914 	/* Remove the sched domains which do not contribute to scheduling. */
5915 	for (tmp = sd; tmp; ) {
5916 		struct sched_domain *parent = tmp->parent;
5917 		if (!parent)
5918 			break;
5919 
5920 		if (sd_parent_degenerate(tmp, parent)) {
5921 			tmp->parent = parent->parent;
5922 			if (parent->parent)
5923 				parent->parent->child = tmp;
5924 			destroy_sched_domain(parent, cpu);
5925 		} else
5926 			tmp = tmp->parent;
5927 	}
5928 
5929 	if (sd && sd_degenerate(sd)) {
5930 		tmp = sd;
5931 		sd = sd->parent;
5932 		destroy_sched_domain(tmp, cpu);
5933 		if (sd)
5934 			sd->child = NULL;
5935 	}
5936 
5937 	sched_domain_debug(sd, cpu);
5938 
5939 	rq_attach_root(rq, rd);
5940 	tmp = rq->sd;
5941 	rcu_assign_pointer(rq->sd, sd);
5942 	destroy_sched_domains(tmp, cpu);
5943 
5944 	update_top_cache_domain(cpu);
5945 }
5946 
5947 /* cpus with isolated domains */
5948 static cpumask_var_t cpu_isolated_map;
5949 
5950 /* Setup the mask of cpus configured for isolated domains */
5951 static int __init isolated_cpu_setup(char *str)
5952 {
5953 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5954 	cpulist_parse(str, cpu_isolated_map);
5955 	return 1;
5956 }
5957 
5958 __setup("isolcpus=", isolated_cpu_setup);
5959 
5960 static const struct cpumask *cpu_cpu_mask(int cpu)
5961 {
5962 	return cpumask_of_node(cpu_to_node(cpu));
5963 }
5964 
5965 struct sd_data {
5966 	struct sched_domain **__percpu sd;
5967 	struct sched_group **__percpu sg;
5968 	struct sched_group_power **__percpu sgp;
5969 };
5970 
5971 struct s_data {
5972 	struct sched_domain ** __percpu sd;
5973 	struct root_domain	*rd;
5974 };
5975 
5976 enum s_alloc {
5977 	sa_rootdomain,
5978 	sa_sd,
5979 	sa_sd_storage,
5980 	sa_none,
5981 };
5982 
5983 struct sched_domain_topology_level;
5984 
5985 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5986 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5987 
5988 #define SDTL_OVERLAP	0x01
5989 
5990 struct sched_domain_topology_level {
5991 	sched_domain_init_f init;
5992 	sched_domain_mask_f mask;
5993 	int		    flags;
5994 	int		    numa_level;
5995 	struct sd_data      data;
5996 };
5997 
5998 static int
5999 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6000 {
6001 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6002 	const struct cpumask *span = sched_domain_span(sd);
6003 	struct cpumask *covered = sched_domains_tmpmask;
6004 	struct sd_data *sdd = sd->private;
6005 	struct sched_domain *child;
6006 	int i;
6007 
6008 	cpumask_clear(covered);
6009 
6010 	for_each_cpu(i, span) {
6011 		struct cpumask *sg_span;
6012 
6013 		if (cpumask_test_cpu(i, covered))
6014 			continue;
6015 
6016 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6017 				GFP_KERNEL, cpu_to_node(cpu));
6018 
6019 		if (!sg)
6020 			goto fail;
6021 
6022 		sg_span = sched_group_cpus(sg);
6023 
6024 		child = *per_cpu_ptr(sdd->sd, i);
6025 		if (child->child) {
6026 			child = child->child;
6027 			cpumask_copy(sg_span, sched_domain_span(child));
6028 		} else
6029 			cpumask_set_cpu(i, sg_span);
6030 
6031 		cpumask_or(covered, covered, sg_span);
6032 
6033 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6034 		atomic_inc(&sg->sgp->ref);
6035 
6036 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6037 			       cpumask_first(sg_span) == cpu) {
6038 			WARN_ON_ONCE(!cpumask_test_cpu(cpu, sg_span));
6039 			groups = sg;
6040 		}
6041 
6042 		if (!first)
6043 			first = sg;
6044 		if (last)
6045 			last->next = sg;
6046 		last = sg;
6047 		last->next = first;
6048 	}
6049 	sd->groups = groups;
6050 
6051 	return 0;
6052 
6053 fail:
6054 	free_sched_groups(first, 0);
6055 
6056 	return -ENOMEM;
6057 }
6058 
6059 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6060 {
6061 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6062 	struct sched_domain *child = sd->child;
6063 
6064 	if (child)
6065 		cpu = cpumask_first(sched_domain_span(child));
6066 
6067 	if (sg) {
6068 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6069 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6070 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6071 	}
6072 
6073 	return cpu;
6074 }
6075 
6076 /*
6077  * build_sched_groups will build a circular linked list of the groups
6078  * covered by the given span, and will set each group's ->cpumask correctly,
6079  * and ->cpu_power to 0.
6080  *
6081  * Assumes the sched_domain tree is fully constructed
6082  */
6083 static int
6084 build_sched_groups(struct sched_domain *sd, int cpu)
6085 {
6086 	struct sched_group *first = NULL, *last = NULL;
6087 	struct sd_data *sdd = sd->private;
6088 	const struct cpumask *span = sched_domain_span(sd);
6089 	struct cpumask *covered;
6090 	int i;
6091 
6092 	get_group(cpu, sdd, &sd->groups);
6093 	atomic_inc(&sd->groups->ref);
6094 
6095 	if (cpu != cpumask_first(sched_domain_span(sd)))
6096 		return 0;
6097 
6098 	lockdep_assert_held(&sched_domains_mutex);
6099 	covered = sched_domains_tmpmask;
6100 
6101 	cpumask_clear(covered);
6102 
6103 	for_each_cpu(i, span) {
6104 		struct sched_group *sg;
6105 		int group = get_group(i, sdd, &sg);
6106 		int j;
6107 
6108 		if (cpumask_test_cpu(i, covered))
6109 			continue;
6110 
6111 		cpumask_clear(sched_group_cpus(sg));
6112 		sg->sgp->power = 0;
6113 
6114 		for_each_cpu(j, span) {
6115 			if (get_group(j, sdd, NULL) != group)
6116 				continue;
6117 
6118 			cpumask_set_cpu(j, covered);
6119 			cpumask_set_cpu(j, sched_group_cpus(sg));
6120 		}
6121 
6122 		if (!first)
6123 			first = sg;
6124 		if (last)
6125 			last->next = sg;
6126 		last = sg;
6127 	}
6128 	last->next = first;
6129 
6130 	return 0;
6131 }
6132 
6133 /*
6134  * Initialize sched groups cpu_power.
6135  *
6136  * cpu_power indicates the capacity of sched group, which is used while
6137  * distributing the load between different sched groups in a sched domain.
6138  * Typically cpu_power for all the groups in a sched domain will be same unless
6139  * there are asymmetries in the topology. If there are asymmetries, group
6140  * having more cpu_power will pickup more load compared to the group having
6141  * less cpu_power.
6142  */
6143 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6144 {
6145 	struct sched_group *sg = sd->groups;
6146 
6147 	WARN_ON(!sd || !sg);
6148 
6149 	do {
6150 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6151 		sg = sg->next;
6152 	} while (sg != sd->groups);
6153 
6154 	if (cpu != group_first_cpu(sg))
6155 		return;
6156 
6157 	update_group_power(sd, cpu);
6158 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6159 }
6160 
6161 int __weak arch_sd_sibling_asym_packing(void)
6162 {
6163        return 0*SD_ASYM_PACKING;
6164 }
6165 
6166 /*
6167  * Initializers for schedule domains
6168  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6169  */
6170 
6171 #ifdef CONFIG_SCHED_DEBUG
6172 # define SD_INIT_NAME(sd, type)		sd->name = #type
6173 #else
6174 # define SD_INIT_NAME(sd, type)		do { } while (0)
6175 #endif
6176 
6177 #define SD_INIT_FUNC(type)						\
6178 static noinline struct sched_domain *					\
6179 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6180 {									\
6181 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6182 	*sd = SD_##type##_INIT;						\
6183 	SD_INIT_NAME(sd, type);						\
6184 	sd->private = &tl->data;					\
6185 	return sd;							\
6186 }
6187 
6188 SD_INIT_FUNC(CPU)
6189 #ifdef CONFIG_SCHED_SMT
6190  SD_INIT_FUNC(SIBLING)
6191 #endif
6192 #ifdef CONFIG_SCHED_MC
6193  SD_INIT_FUNC(MC)
6194 #endif
6195 #ifdef CONFIG_SCHED_BOOK
6196  SD_INIT_FUNC(BOOK)
6197 #endif
6198 
6199 static int default_relax_domain_level = -1;
6200 int sched_domain_level_max;
6201 
6202 static int __init setup_relax_domain_level(char *str)
6203 {
6204 	unsigned long val;
6205 
6206 	val = simple_strtoul(str, NULL, 0);
6207 	if (val < sched_domain_level_max)
6208 		default_relax_domain_level = val;
6209 
6210 	return 1;
6211 }
6212 __setup("relax_domain_level=", setup_relax_domain_level);
6213 
6214 static void set_domain_attribute(struct sched_domain *sd,
6215 				 struct sched_domain_attr *attr)
6216 {
6217 	int request;
6218 
6219 	if (!attr || attr->relax_domain_level < 0) {
6220 		if (default_relax_domain_level < 0)
6221 			return;
6222 		else
6223 			request = default_relax_domain_level;
6224 	} else
6225 		request = attr->relax_domain_level;
6226 	if (request < sd->level) {
6227 		/* turn off idle balance on this domain */
6228 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6229 	} else {
6230 		/* turn on idle balance on this domain */
6231 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6232 	}
6233 }
6234 
6235 static void __sdt_free(const struct cpumask *cpu_map);
6236 static int __sdt_alloc(const struct cpumask *cpu_map);
6237 
6238 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6239 				 const struct cpumask *cpu_map)
6240 {
6241 	switch (what) {
6242 	case sa_rootdomain:
6243 		if (!atomic_read(&d->rd->refcount))
6244 			free_rootdomain(&d->rd->rcu); /* fall through */
6245 	case sa_sd:
6246 		free_percpu(d->sd); /* fall through */
6247 	case sa_sd_storage:
6248 		__sdt_free(cpu_map); /* fall through */
6249 	case sa_none:
6250 		break;
6251 	}
6252 }
6253 
6254 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6255 						   const struct cpumask *cpu_map)
6256 {
6257 	memset(d, 0, sizeof(*d));
6258 
6259 	if (__sdt_alloc(cpu_map))
6260 		return sa_sd_storage;
6261 	d->sd = alloc_percpu(struct sched_domain *);
6262 	if (!d->sd)
6263 		return sa_sd_storage;
6264 	d->rd = alloc_rootdomain();
6265 	if (!d->rd)
6266 		return sa_sd;
6267 	return sa_rootdomain;
6268 }
6269 
6270 /*
6271  * NULL the sd_data elements we've used to build the sched_domain and
6272  * sched_group structure so that the subsequent __free_domain_allocs()
6273  * will not free the data we're using.
6274  */
6275 static void claim_allocations(int cpu, struct sched_domain *sd)
6276 {
6277 	struct sd_data *sdd = sd->private;
6278 
6279 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6280 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6281 
6282 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6283 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6284 
6285 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6286 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6287 }
6288 
6289 #ifdef CONFIG_SCHED_SMT
6290 static const struct cpumask *cpu_smt_mask(int cpu)
6291 {
6292 	return topology_thread_cpumask(cpu);
6293 }
6294 #endif
6295 
6296 /*
6297  * Topology list, bottom-up.
6298  */
6299 static struct sched_domain_topology_level default_topology[] = {
6300 #ifdef CONFIG_SCHED_SMT
6301 	{ sd_init_SIBLING, cpu_smt_mask, },
6302 #endif
6303 #ifdef CONFIG_SCHED_MC
6304 	{ sd_init_MC, cpu_coregroup_mask, },
6305 #endif
6306 #ifdef CONFIG_SCHED_BOOK
6307 	{ sd_init_BOOK, cpu_book_mask, },
6308 #endif
6309 	{ sd_init_CPU, cpu_cpu_mask, },
6310 	{ NULL, },
6311 };
6312 
6313 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6314 
6315 #ifdef CONFIG_NUMA
6316 
6317 static int sched_domains_numa_levels;
6318 static int sched_domains_numa_scale;
6319 static int *sched_domains_numa_distance;
6320 static struct cpumask ***sched_domains_numa_masks;
6321 static int sched_domains_curr_level;
6322 
6323 static inline int sd_local_flags(int level)
6324 {
6325 	if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
6326 		return 0;
6327 
6328 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6329 }
6330 
6331 static struct sched_domain *
6332 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6333 {
6334 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6335 	int level = tl->numa_level;
6336 	int sd_weight = cpumask_weight(
6337 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6338 
6339 	*sd = (struct sched_domain){
6340 		.min_interval		= sd_weight,
6341 		.max_interval		= 2*sd_weight,
6342 		.busy_factor		= 32,
6343 		.imbalance_pct		= 125,
6344 		.cache_nice_tries	= 2,
6345 		.busy_idx		= 3,
6346 		.idle_idx		= 2,
6347 		.newidle_idx		= 0,
6348 		.wake_idx		= 0,
6349 		.forkexec_idx		= 0,
6350 
6351 		.flags			= 1*SD_LOAD_BALANCE
6352 					| 1*SD_BALANCE_NEWIDLE
6353 					| 0*SD_BALANCE_EXEC
6354 					| 0*SD_BALANCE_FORK
6355 					| 0*SD_BALANCE_WAKE
6356 					| 0*SD_WAKE_AFFINE
6357 					| 0*SD_PREFER_LOCAL
6358 					| 0*SD_SHARE_CPUPOWER
6359 					| 0*SD_SHARE_PKG_RESOURCES
6360 					| 1*SD_SERIALIZE
6361 					| 0*SD_PREFER_SIBLING
6362 					| sd_local_flags(level)
6363 					,
6364 		.last_balance		= jiffies,
6365 		.balance_interval	= sd_weight,
6366 	};
6367 	SD_INIT_NAME(sd, NUMA);
6368 	sd->private = &tl->data;
6369 
6370 	/*
6371 	 * Ugly hack to pass state to sd_numa_mask()...
6372 	 */
6373 	sched_domains_curr_level = tl->numa_level;
6374 
6375 	return sd;
6376 }
6377 
6378 static const struct cpumask *sd_numa_mask(int cpu)
6379 {
6380 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6381 }
6382 
6383 static void sched_init_numa(void)
6384 {
6385 	int next_distance, curr_distance = node_distance(0, 0);
6386 	struct sched_domain_topology_level *tl;
6387 	int level = 0;
6388 	int i, j, k;
6389 
6390 	sched_domains_numa_scale = curr_distance;
6391 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6392 	if (!sched_domains_numa_distance)
6393 		return;
6394 
6395 	/*
6396 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6397 	 * unique distances in the node_distance() table.
6398 	 *
6399 	 * Assumes node_distance(0,j) includes all distances in
6400 	 * node_distance(i,j) in order to avoid cubic time.
6401 	 *
6402 	 * XXX: could be optimized to O(n log n) by using sort()
6403 	 */
6404 	next_distance = curr_distance;
6405 	for (i = 0; i < nr_node_ids; i++) {
6406 		for (j = 0; j < nr_node_ids; j++) {
6407 			int distance = node_distance(0, j);
6408 			if (distance > curr_distance &&
6409 					(distance < next_distance ||
6410 					 next_distance == curr_distance))
6411 				next_distance = distance;
6412 		}
6413 		if (next_distance != curr_distance) {
6414 			sched_domains_numa_distance[level++] = next_distance;
6415 			sched_domains_numa_levels = level;
6416 			curr_distance = next_distance;
6417 		} else break;
6418 	}
6419 	/*
6420 	 * 'level' contains the number of unique distances, excluding the
6421 	 * identity distance node_distance(i,i).
6422 	 *
6423 	 * The sched_domains_nume_distance[] array includes the actual distance
6424 	 * numbers.
6425 	 */
6426 
6427 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6428 	if (!sched_domains_numa_masks)
6429 		return;
6430 
6431 	/*
6432 	 * Now for each level, construct a mask per node which contains all
6433 	 * cpus of nodes that are that many hops away from us.
6434 	 */
6435 	for (i = 0; i < level; i++) {
6436 		sched_domains_numa_masks[i] =
6437 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6438 		if (!sched_domains_numa_masks[i])
6439 			return;
6440 
6441 		for (j = 0; j < nr_node_ids; j++) {
6442 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6443 			if (!mask)
6444 				return;
6445 
6446 			sched_domains_numa_masks[i][j] = mask;
6447 
6448 			for (k = 0; k < nr_node_ids; k++) {
6449 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6450 					continue;
6451 
6452 				cpumask_or(mask, mask, cpumask_of_node(k));
6453 			}
6454 		}
6455 	}
6456 
6457 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6458 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6459 	if (!tl)
6460 		return;
6461 
6462 	/*
6463 	 * Copy the default topology bits..
6464 	 */
6465 	for (i = 0; default_topology[i].init; i++)
6466 		tl[i] = default_topology[i];
6467 
6468 	/*
6469 	 * .. and append 'j' levels of NUMA goodness.
6470 	 */
6471 	for (j = 0; j < level; i++, j++) {
6472 		tl[i] = (struct sched_domain_topology_level){
6473 			.init = sd_numa_init,
6474 			.mask = sd_numa_mask,
6475 			.flags = SDTL_OVERLAP,
6476 			.numa_level = j,
6477 		};
6478 	}
6479 
6480 	sched_domain_topology = tl;
6481 }
6482 #else
6483 static inline void sched_init_numa(void)
6484 {
6485 }
6486 #endif /* CONFIG_NUMA */
6487 
6488 static int __sdt_alloc(const struct cpumask *cpu_map)
6489 {
6490 	struct sched_domain_topology_level *tl;
6491 	int j;
6492 
6493 	for (tl = sched_domain_topology; tl->init; tl++) {
6494 		struct sd_data *sdd = &tl->data;
6495 
6496 		sdd->sd = alloc_percpu(struct sched_domain *);
6497 		if (!sdd->sd)
6498 			return -ENOMEM;
6499 
6500 		sdd->sg = alloc_percpu(struct sched_group *);
6501 		if (!sdd->sg)
6502 			return -ENOMEM;
6503 
6504 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6505 		if (!sdd->sgp)
6506 			return -ENOMEM;
6507 
6508 		for_each_cpu(j, cpu_map) {
6509 			struct sched_domain *sd;
6510 			struct sched_group *sg;
6511 			struct sched_group_power *sgp;
6512 
6513 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6514 					GFP_KERNEL, cpu_to_node(j));
6515 			if (!sd)
6516 				return -ENOMEM;
6517 
6518 			*per_cpu_ptr(sdd->sd, j) = sd;
6519 
6520 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6521 					GFP_KERNEL, cpu_to_node(j));
6522 			if (!sg)
6523 				return -ENOMEM;
6524 
6525 			sg->next = sg;
6526 
6527 			*per_cpu_ptr(sdd->sg, j) = sg;
6528 
6529 			sgp = kzalloc_node(sizeof(struct sched_group_power),
6530 					GFP_KERNEL, cpu_to_node(j));
6531 			if (!sgp)
6532 				return -ENOMEM;
6533 
6534 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6535 		}
6536 	}
6537 
6538 	return 0;
6539 }
6540 
6541 static void __sdt_free(const struct cpumask *cpu_map)
6542 {
6543 	struct sched_domain_topology_level *tl;
6544 	int j;
6545 
6546 	for (tl = sched_domain_topology; tl->init; tl++) {
6547 		struct sd_data *sdd = &tl->data;
6548 
6549 		for_each_cpu(j, cpu_map) {
6550 			struct sched_domain *sd;
6551 
6552 			if (sdd->sd) {
6553 				sd = *per_cpu_ptr(sdd->sd, j);
6554 				if (sd && (sd->flags & SD_OVERLAP))
6555 					free_sched_groups(sd->groups, 0);
6556 				kfree(*per_cpu_ptr(sdd->sd, j));
6557 			}
6558 
6559 			if (sdd->sg)
6560 				kfree(*per_cpu_ptr(sdd->sg, j));
6561 			if (sdd->sgp)
6562 				kfree(*per_cpu_ptr(sdd->sgp, j));
6563 		}
6564 		free_percpu(sdd->sd);
6565 		sdd->sd = NULL;
6566 		free_percpu(sdd->sg);
6567 		sdd->sg = NULL;
6568 		free_percpu(sdd->sgp);
6569 		sdd->sgp = NULL;
6570 	}
6571 }
6572 
6573 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6574 		struct s_data *d, const struct cpumask *cpu_map,
6575 		struct sched_domain_attr *attr, struct sched_domain *child,
6576 		int cpu)
6577 {
6578 	struct sched_domain *sd = tl->init(tl, cpu);
6579 	if (!sd)
6580 		return child;
6581 
6582 	set_domain_attribute(sd, attr);
6583 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6584 	if (child) {
6585 		sd->level = child->level + 1;
6586 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6587 		child->parent = sd;
6588 	}
6589 	sd->child = child;
6590 
6591 	return sd;
6592 }
6593 
6594 /*
6595  * Build sched domains for a given set of cpus and attach the sched domains
6596  * to the individual cpus
6597  */
6598 static int build_sched_domains(const struct cpumask *cpu_map,
6599 			       struct sched_domain_attr *attr)
6600 {
6601 	enum s_alloc alloc_state = sa_none;
6602 	struct sched_domain *sd;
6603 	struct s_data d;
6604 	int i, ret = -ENOMEM;
6605 
6606 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6607 	if (alloc_state != sa_rootdomain)
6608 		goto error;
6609 
6610 	/* Set up domains for cpus specified by the cpu_map. */
6611 	for_each_cpu(i, cpu_map) {
6612 		struct sched_domain_topology_level *tl;
6613 
6614 		sd = NULL;
6615 		for (tl = sched_domain_topology; tl->init; tl++) {
6616 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6617 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6618 				sd->flags |= SD_OVERLAP;
6619 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6620 				break;
6621 		}
6622 
6623 		while (sd->child)
6624 			sd = sd->child;
6625 
6626 		*per_cpu_ptr(d.sd, i) = sd;
6627 	}
6628 
6629 	/* Build the groups for the domains */
6630 	for_each_cpu(i, cpu_map) {
6631 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6632 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6633 			if (sd->flags & SD_OVERLAP) {
6634 				if (build_overlap_sched_groups(sd, i))
6635 					goto error;
6636 			} else {
6637 				if (build_sched_groups(sd, i))
6638 					goto error;
6639 			}
6640 		}
6641 	}
6642 
6643 	/* Calculate CPU power for physical packages and nodes */
6644 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6645 		if (!cpumask_test_cpu(i, cpu_map))
6646 			continue;
6647 
6648 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6649 			claim_allocations(i, sd);
6650 			init_sched_groups_power(i, sd);
6651 		}
6652 	}
6653 
6654 	/* Attach the domains */
6655 	rcu_read_lock();
6656 	for_each_cpu(i, cpu_map) {
6657 		sd = *per_cpu_ptr(d.sd, i);
6658 		cpu_attach_domain(sd, d.rd, i);
6659 	}
6660 	rcu_read_unlock();
6661 
6662 	ret = 0;
6663 error:
6664 	__free_domain_allocs(&d, alloc_state, cpu_map);
6665 	return ret;
6666 }
6667 
6668 static cpumask_var_t *doms_cur;	/* current sched domains */
6669 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6670 static struct sched_domain_attr *dattr_cur;
6671 				/* attribues of custom domains in 'doms_cur' */
6672 
6673 /*
6674  * Special case: If a kmalloc of a doms_cur partition (array of
6675  * cpumask) fails, then fallback to a single sched domain,
6676  * as determined by the single cpumask fallback_doms.
6677  */
6678 static cpumask_var_t fallback_doms;
6679 
6680 /*
6681  * arch_update_cpu_topology lets virtualized architectures update the
6682  * cpu core maps. It is supposed to return 1 if the topology changed
6683  * or 0 if it stayed the same.
6684  */
6685 int __attribute__((weak)) arch_update_cpu_topology(void)
6686 {
6687 	return 0;
6688 }
6689 
6690 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6691 {
6692 	int i;
6693 	cpumask_var_t *doms;
6694 
6695 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6696 	if (!doms)
6697 		return NULL;
6698 	for (i = 0; i < ndoms; i++) {
6699 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6700 			free_sched_domains(doms, i);
6701 			return NULL;
6702 		}
6703 	}
6704 	return doms;
6705 }
6706 
6707 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6708 {
6709 	unsigned int i;
6710 	for (i = 0; i < ndoms; i++)
6711 		free_cpumask_var(doms[i]);
6712 	kfree(doms);
6713 }
6714 
6715 /*
6716  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6717  * For now this just excludes isolated cpus, but could be used to
6718  * exclude other special cases in the future.
6719  */
6720 static int init_sched_domains(const struct cpumask *cpu_map)
6721 {
6722 	int err;
6723 
6724 	arch_update_cpu_topology();
6725 	ndoms_cur = 1;
6726 	doms_cur = alloc_sched_domains(ndoms_cur);
6727 	if (!doms_cur)
6728 		doms_cur = &fallback_doms;
6729 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6730 	dattr_cur = NULL;
6731 	err = build_sched_domains(doms_cur[0], NULL);
6732 	register_sched_domain_sysctl();
6733 
6734 	return err;
6735 }
6736 
6737 /*
6738  * Detach sched domains from a group of cpus specified in cpu_map
6739  * These cpus will now be attached to the NULL domain
6740  */
6741 static void detach_destroy_domains(const struct cpumask *cpu_map)
6742 {
6743 	int i;
6744 
6745 	rcu_read_lock();
6746 	for_each_cpu(i, cpu_map)
6747 		cpu_attach_domain(NULL, &def_root_domain, i);
6748 	rcu_read_unlock();
6749 }
6750 
6751 /* handle null as "default" */
6752 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6753 			struct sched_domain_attr *new, int idx_new)
6754 {
6755 	struct sched_domain_attr tmp;
6756 
6757 	/* fast path */
6758 	if (!new && !cur)
6759 		return 1;
6760 
6761 	tmp = SD_ATTR_INIT;
6762 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6763 			new ? (new + idx_new) : &tmp,
6764 			sizeof(struct sched_domain_attr));
6765 }
6766 
6767 /*
6768  * Partition sched domains as specified by the 'ndoms_new'
6769  * cpumasks in the array doms_new[] of cpumasks. This compares
6770  * doms_new[] to the current sched domain partitioning, doms_cur[].
6771  * It destroys each deleted domain and builds each new domain.
6772  *
6773  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6774  * The masks don't intersect (don't overlap.) We should setup one
6775  * sched domain for each mask. CPUs not in any of the cpumasks will
6776  * not be load balanced. If the same cpumask appears both in the
6777  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6778  * it as it is.
6779  *
6780  * The passed in 'doms_new' should be allocated using
6781  * alloc_sched_domains.  This routine takes ownership of it and will
6782  * free_sched_domains it when done with it. If the caller failed the
6783  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6784  * and partition_sched_domains() will fallback to the single partition
6785  * 'fallback_doms', it also forces the domains to be rebuilt.
6786  *
6787  * If doms_new == NULL it will be replaced with cpu_online_mask.
6788  * ndoms_new == 0 is a special case for destroying existing domains,
6789  * and it will not create the default domain.
6790  *
6791  * Call with hotplug lock held
6792  */
6793 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6794 			     struct sched_domain_attr *dattr_new)
6795 {
6796 	int i, j, n;
6797 	int new_topology;
6798 
6799 	mutex_lock(&sched_domains_mutex);
6800 
6801 	/* always unregister in case we don't destroy any domains */
6802 	unregister_sched_domain_sysctl();
6803 
6804 	/* Let architecture update cpu core mappings. */
6805 	new_topology = arch_update_cpu_topology();
6806 
6807 	n = doms_new ? ndoms_new : 0;
6808 
6809 	/* Destroy deleted domains */
6810 	for (i = 0; i < ndoms_cur; i++) {
6811 		for (j = 0; j < n && !new_topology; j++) {
6812 			if (cpumask_equal(doms_cur[i], doms_new[j])
6813 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6814 				goto match1;
6815 		}
6816 		/* no match - a current sched domain not in new doms_new[] */
6817 		detach_destroy_domains(doms_cur[i]);
6818 match1:
6819 		;
6820 	}
6821 
6822 	if (doms_new == NULL) {
6823 		ndoms_cur = 0;
6824 		doms_new = &fallback_doms;
6825 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6826 		WARN_ON_ONCE(dattr_new);
6827 	}
6828 
6829 	/* Build new domains */
6830 	for (i = 0; i < ndoms_new; i++) {
6831 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6832 			if (cpumask_equal(doms_new[i], doms_cur[j])
6833 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6834 				goto match2;
6835 		}
6836 		/* no match - add a new doms_new */
6837 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6838 match2:
6839 		;
6840 	}
6841 
6842 	/* Remember the new sched domains */
6843 	if (doms_cur != &fallback_doms)
6844 		free_sched_domains(doms_cur, ndoms_cur);
6845 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6846 	doms_cur = doms_new;
6847 	dattr_cur = dattr_new;
6848 	ndoms_cur = ndoms_new;
6849 
6850 	register_sched_domain_sysctl();
6851 
6852 	mutex_unlock(&sched_domains_mutex);
6853 }
6854 
6855 /*
6856  * Update cpusets according to cpu_active mask.  If cpusets are
6857  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6858  * around partition_sched_domains().
6859  */
6860 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6861 			     void *hcpu)
6862 {
6863 	switch (action & ~CPU_TASKS_FROZEN) {
6864 	case CPU_ONLINE:
6865 	case CPU_DOWN_FAILED:
6866 		cpuset_update_active_cpus();
6867 		return NOTIFY_OK;
6868 	default:
6869 		return NOTIFY_DONE;
6870 	}
6871 }
6872 
6873 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6874 			       void *hcpu)
6875 {
6876 	switch (action & ~CPU_TASKS_FROZEN) {
6877 	case CPU_DOWN_PREPARE:
6878 		cpuset_update_active_cpus();
6879 		return NOTIFY_OK;
6880 	default:
6881 		return NOTIFY_DONE;
6882 	}
6883 }
6884 
6885 void __init sched_init_smp(void)
6886 {
6887 	cpumask_var_t non_isolated_cpus;
6888 
6889 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6890 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6891 
6892 	sched_init_numa();
6893 
6894 	get_online_cpus();
6895 	mutex_lock(&sched_domains_mutex);
6896 	init_sched_domains(cpu_active_mask);
6897 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6898 	if (cpumask_empty(non_isolated_cpus))
6899 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6900 	mutex_unlock(&sched_domains_mutex);
6901 	put_online_cpus();
6902 
6903 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6904 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6905 
6906 	/* RT runtime code needs to handle some hotplug events */
6907 	hotcpu_notifier(update_runtime, 0);
6908 
6909 	init_hrtick();
6910 
6911 	/* Move init over to a non-isolated CPU */
6912 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6913 		BUG();
6914 	sched_init_granularity();
6915 	free_cpumask_var(non_isolated_cpus);
6916 
6917 	init_sched_rt_class();
6918 }
6919 #else
6920 void __init sched_init_smp(void)
6921 {
6922 	sched_init_granularity();
6923 }
6924 #endif /* CONFIG_SMP */
6925 
6926 const_debug unsigned int sysctl_timer_migration = 1;
6927 
6928 int in_sched_functions(unsigned long addr)
6929 {
6930 	return in_lock_functions(addr) ||
6931 		(addr >= (unsigned long)__sched_text_start
6932 		&& addr < (unsigned long)__sched_text_end);
6933 }
6934 
6935 #ifdef CONFIG_CGROUP_SCHED
6936 struct task_group root_task_group;
6937 #endif
6938 
6939 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6940 
6941 void __init sched_init(void)
6942 {
6943 	int i, j;
6944 	unsigned long alloc_size = 0, ptr;
6945 
6946 #ifdef CONFIG_FAIR_GROUP_SCHED
6947 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6948 #endif
6949 #ifdef CONFIG_RT_GROUP_SCHED
6950 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6951 #endif
6952 #ifdef CONFIG_CPUMASK_OFFSTACK
6953 	alloc_size += num_possible_cpus() * cpumask_size();
6954 #endif
6955 	if (alloc_size) {
6956 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6957 
6958 #ifdef CONFIG_FAIR_GROUP_SCHED
6959 		root_task_group.se = (struct sched_entity **)ptr;
6960 		ptr += nr_cpu_ids * sizeof(void **);
6961 
6962 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6963 		ptr += nr_cpu_ids * sizeof(void **);
6964 
6965 #endif /* CONFIG_FAIR_GROUP_SCHED */
6966 #ifdef CONFIG_RT_GROUP_SCHED
6967 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6968 		ptr += nr_cpu_ids * sizeof(void **);
6969 
6970 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6971 		ptr += nr_cpu_ids * sizeof(void **);
6972 
6973 #endif /* CONFIG_RT_GROUP_SCHED */
6974 #ifdef CONFIG_CPUMASK_OFFSTACK
6975 		for_each_possible_cpu(i) {
6976 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6977 			ptr += cpumask_size();
6978 		}
6979 #endif /* CONFIG_CPUMASK_OFFSTACK */
6980 	}
6981 
6982 #ifdef CONFIG_SMP
6983 	init_defrootdomain();
6984 #endif
6985 
6986 	init_rt_bandwidth(&def_rt_bandwidth,
6987 			global_rt_period(), global_rt_runtime());
6988 
6989 #ifdef CONFIG_RT_GROUP_SCHED
6990 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6991 			global_rt_period(), global_rt_runtime());
6992 #endif /* CONFIG_RT_GROUP_SCHED */
6993 
6994 #ifdef CONFIG_CGROUP_SCHED
6995 	list_add(&root_task_group.list, &task_groups);
6996 	INIT_LIST_HEAD(&root_task_group.children);
6997 	INIT_LIST_HEAD(&root_task_group.siblings);
6998 	autogroup_init(&init_task);
6999 
7000 #endif /* CONFIG_CGROUP_SCHED */
7001 
7002 #ifdef CONFIG_CGROUP_CPUACCT
7003 	root_cpuacct.cpustat = &kernel_cpustat;
7004 	root_cpuacct.cpuusage = alloc_percpu(u64);
7005 	/* Too early, not expected to fail */
7006 	BUG_ON(!root_cpuacct.cpuusage);
7007 #endif
7008 	for_each_possible_cpu(i) {
7009 		struct rq *rq;
7010 
7011 		rq = cpu_rq(i);
7012 		raw_spin_lock_init(&rq->lock);
7013 		rq->nr_running = 0;
7014 		rq->calc_load_active = 0;
7015 		rq->calc_load_update = jiffies + LOAD_FREQ;
7016 		init_cfs_rq(&rq->cfs);
7017 		init_rt_rq(&rq->rt, rq);
7018 #ifdef CONFIG_FAIR_GROUP_SCHED
7019 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7020 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7021 		/*
7022 		 * How much cpu bandwidth does root_task_group get?
7023 		 *
7024 		 * In case of task-groups formed thr' the cgroup filesystem, it
7025 		 * gets 100% of the cpu resources in the system. This overall
7026 		 * system cpu resource is divided among the tasks of
7027 		 * root_task_group and its child task-groups in a fair manner,
7028 		 * based on each entity's (task or task-group's) weight
7029 		 * (se->load.weight).
7030 		 *
7031 		 * In other words, if root_task_group has 10 tasks of weight
7032 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7033 		 * then A0's share of the cpu resource is:
7034 		 *
7035 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7036 		 *
7037 		 * We achieve this by letting root_task_group's tasks sit
7038 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7039 		 */
7040 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7041 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7042 #endif /* CONFIG_FAIR_GROUP_SCHED */
7043 
7044 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7045 #ifdef CONFIG_RT_GROUP_SCHED
7046 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7047 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7048 #endif
7049 
7050 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7051 			rq->cpu_load[j] = 0;
7052 
7053 		rq->last_load_update_tick = jiffies;
7054 
7055 #ifdef CONFIG_SMP
7056 		rq->sd = NULL;
7057 		rq->rd = NULL;
7058 		rq->cpu_power = SCHED_POWER_SCALE;
7059 		rq->post_schedule = 0;
7060 		rq->active_balance = 0;
7061 		rq->next_balance = jiffies;
7062 		rq->push_cpu = 0;
7063 		rq->cpu = i;
7064 		rq->online = 0;
7065 		rq->idle_stamp = 0;
7066 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7067 
7068 		INIT_LIST_HEAD(&rq->cfs_tasks);
7069 
7070 		rq_attach_root(rq, &def_root_domain);
7071 #ifdef CONFIG_NO_HZ
7072 		rq->nohz_flags = 0;
7073 #endif
7074 #endif
7075 		init_rq_hrtick(rq);
7076 		atomic_set(&rq->nr_iowait, 0);
7077 	}
7078 
7079 	set_load_weight(&init_task);
7080 
7081 #ifdef CONFIG_PREEMPT_NOTIFIERS
7082 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7083 #endif
7084 
7085 #ifdef CONFIG_RT_MUTEXES
7086 	plist_head_init(&init_task.pi_waiters);
7087 #endif
7088 
7089 	/*
7090 	 * The boot idle thread does lazy MMU switching as well:
7091 	 */
7092 	atomic_inc(&init_mm.mm_count);
7093 	enter_lazy_tlb(&init_mm, current);
7094 
7095 	/*
7096 	 * Make us the idle thread. Technically, schedule() should not be
7097 	 * called from this thread, however somewhere below it might be,
7098 	 * but because we are the idle thread, we just pick up running again
7099 	 * when this runqueue becomes "idle".
7100 	 */
7101 	init_idle(current, smp_processor_id());
7102 
7103 	calc_load_update = jiffies + LOAD_FREQ;
7104 
7105 	/*
7106 	 * During early bootup we pretend to be a normal task:
7107 	 */
7108 	current->sched_class = &fair_sched_class;
7109 
7110 #ifdef CONFIG_SMP
7111 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7112 	/* May be allocated at isolcpus cmdline parse time */
7113 	if (cpu_isolated_map == NULL)
7114 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7115 	idle_thread_set_boot_cpu();
7116 #endif
7117 	init_sched_fair_class();
7118 
7119 	scheduler_running = 1;
7120 }
7121 
7122 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7123 static inline int preempt_count_equals(int preempt_offset)
7124 {
7125 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7126 
7127 	return (nested == preempt_offset);
7128 }
7129 
7130 void __might_sleep(const char *file, int line, int preempt_offset)
7131 {
7132 	static unsigned long prev_jiffy;	/* ratelimiting */
7133 
7134 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7135 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7136 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7137 		return;
7138 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7139 		return;
7140 	prev_jiffy = jiffies;
7141 
7142 	printk(KERN_ERR
7143 		"BUG: sleeping function called from invalid context at %s:%d\n",
7144 			file, line);
7145 	printk(KERN_ERR
7146 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7147 			in_atomic(), irqs_disabled(),
7148 			current->pid, current->comm);
7149 
7150 	debug_show_held_locks(current);
7151 	if (irqs_disabled())
7152 		print_irqtrace_events(current);
7153 	dump_stack();
7154 }
7155 EXPORT_SYMBOL(__might_sleep);
7156 #endif
7157 
7158 #ifdef CONFIG_MAGIC_SYSRQ
7159 static void normalize_task(struct rq *rq, struct task_struct *p)
7160 {
7161 	const struct sched_class *prev_class = p->sched_class;
7162 	int old_prio = p->prio;
7163 	int on_rq;
7164 
7165 	on_rq = p->on_rq;
7166 	if (on_rq)
7167 		dequeue_task(rq, p, 0);
7168 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7169 	if (on_rq) {
7170 		enqueue_task(rq, p, 0);
7171 		resched_task(rq->curr);
7172 	}
7173 
7174 	check_class_changed(rq, p, prev_class, old_prio);
7175 }
7176 
7177 void normalize_rt_tasks(void)
7178 {
7179 	struct task_struct *g, *p;
7180 	unsigned long flags;
7181 	struct rq *rq;
7182 
7183 	read_lock_irqsave(&tasklist_lock, flags);
7184 	do_each_thread(g, p) {
7185 		/*
7186 		 * Only normalize user tasks:
7187 		 */
7188 		if (!p->mm)
7189 			continue;
7190 
7191 		p->se.exec_start		= 0;
7192 #ifdef CONFIG_SCHEDSTATS
7193 		p->se.statistics.wait_start	= 0;
7194 		p->se.statistics.sleep_start	= 0;
7195 		p->se.statistics.block_start	= 0;
7196 #endif
7197 
7198 		if (!rt_task(p)) {
7199 			/*
7200 			 * Renice negative nice level userspace
7201 			 * tasks back to 0:
7202 			 */
7203 			if (TASK_NICE(p) < 0 && p->mm)
7204 				set_user_nice(p, 0);
7205 			continue;
7206 		}
7207 
7208 		raw_spin_lock(&p->pi_lock);
7209 		rq = __task_rq_lock(p);
7210 
7211 		normalize_task(rq, p);
7212 
7213 		__task_rq_unlock(rq);
7214 		raw_spin_unlock(&p->pi_lock);
7215 	} while_each_thread(g, p);
7216 
7217 	read_unlock_irqrestore(&tasklist_lock, flags);
7218 }
7219 
7220 #endif /* CONFIG_MAGIC_SYSRQ */
7221 
7222 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7223 /*
7224  * These functions are only useful for the IA64 MCA handling, or kdb.
7225  *
7226  * They can only be called when the whole system has been
7227  * stopped - every CPU needs to be quiescent, and no scheduling
7228  * activity can take place. Using them for anything else would
7229  * be a serious bug, and as a result, they aren't even visible
7230  * under any other configuration.
7231  */
7232 
7233 /**
7234  * curr_task - return the current task for a given cpu.
7235  * @cpu: the processor in question.
7236  *
7237  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7238  */
7239 struct task_struct *curr_task(int cpu)
7240 {
7241 	return cpu_curr(cpu);
7242 }
7243 
7244 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7245 
7246 #ifdef CONFIG_IA64
7247 /**
7248  * set_curr_task - set the current task for a given cpu.
7249  * @cpu: the processor in question.
7250  * @p: the task pointer to set.
7251  *
7252  * Description: This function must only be used when non-maskable interrupts
7253  * are serviced on a separate stack. It allows the architecture to switch the
7254  * notion of the current task on a cpu in a non-blocking manner. This function
7255  * must be called with all CPU's synchronized, and interrupts disabled, the
7256  * and caller must save the original value of the current task (see
7257  * curr_task() above) and restore that value before reenabling interrupts and
7258  * re-starting the system.
7259  *
7260  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7261  */
7262 void set_curr_task(int cpu, struct task_struct *p)
7263 {
7264 	cpu_curr(cpu) = p;
7265 }
7266 
7267 #endif
7268 
7269 #ifdef CONFIG_CGROUP_SCHED
7270 /* task_group_lock serializes the addition/removal of task groups */
7271 static DEFINE_SPINLOCK(task_group_lock);
7272 
7273 static void free_sched_group(struct task_group *tg)
7274 {
7275 	free_fair_sched_group(tg);
7276 	free_rt_sched_group(tg);
7277 	autogroup_free(tg);
7278 	kfree(tg);
7279 }
7280 
7281 /* allocate runqueue etc for a new task group */
7282 struct task_group *sched_create_group(struct task_group *parent)
7283 {
7284 	struct task_group *tg;
7285 	unsigned long flags;
7286 
7287 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7288 	if (!tg)
7289 		return ERR_PTR(-ENOMEM);
7290 
7291 	if (!alloc_fair_sched_group(tg, parent))
7292 		goto err;
7293 
7294 	if (!alloc_rt_sched_group(tg, parent))
7295 		goto err;
7296 
7297 	spin_lock_irqsave(&task_group_lock, flags);
7298 	list_add_rcu(&tg->list, &task_groups);
7299 
7300 	WARN_ON(!parent); /* root should already exist */
7301 
7302 	tg->parent = parent;
7303 	INIT_LIST_HEAD(&tg->children);
7304 	list_add_rcu(&tg->siblings, &parent->children);
7305 	spin_unlock_irqrestore(&task_group_lock, flags);
7306 
7307 	return tg;
7308 
7309 err:
7310 	free_sched_group(tg);
7311 	return ERR_PTR(-ENOMEM);
7312 }
7313 
7314 /* rcu callback to free various structures associated with a task group */
7315 static void free_sched_group_rcu(struct rcu_head *rhp)
7316 {
7317 	/* now it should be safe to free those cfs_rqs */
7318 	free_sched_group(container_of(rhp, struct task_group, rcu));
7319 }
7320 
7321 /* Destroy runqueue etc associated with a task group */
7322 void sched_destroy_group(struct task_group *tg)
7323 {
7324 	unsigned long flags;
7325 	int i;
7326 
7327 	/* end participation in shares distribution */
7328 	for_each_possible_cpu(i)
7329 		unregister_fair_sched_group(tg, i);
7330 
7331 	spin_lock_irqsave(&task_group_lock, flags);
7332 	list_del_rcu(&tg->list);
7333 	list_del_rcu(&tg->siblings);
7334 	spin_unlock_irqrestore(&task_group_lock, flags);
7335 
7336 	/* wait for possible concurrent references to cfs_rqs complete */
7337 	call_rcu(&tg->rcu, free_sched_group_rcu);
7338 }
7339 
7340 /* change task's runqueue when it moves between groups.
7341  *	The caller of this function should have put the task in its new group
7342  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7343  *	reflect its new group.
7344  */
7345 void sched_move_task(struct task_struct *tsk)
7346 {
7347 	int on_rq, running;
7348 	unsigned long flags;
7349 	struct rq *rq;
7350 
7351 	rq = task_rq_lock(tsk, &flags);
7352 
7353 	running = task_current(rq, tsk);
7354 	on_rq = tsk->on_rq;
7355 
7356 	if (on_rq)
7357 		dequeue_task(rq, tsk, 0);
7358 	if (unlikely(running))
7359 		tsk->sched_class->put_prev_task(rq, tsk);
7360 
7361 #ifdef CONFIG_FAIR_GROUP_SCHED
7362 	if (tsk->sched_class->task_move_group)
7363 		tsk->sched_class->task_move_group(tsk, on_rq);
7364 	else
7365 #endif
7366 		set_task_rq(tsk, task_cpu(tsk));
7367 
7368 	if (unlikely(running))
7369 		tsk->sched_class->set_curr_task(rq);
7370 	if (on_rq)
7371 		enqueue_task(rq, tsk, 0);
7372 
7373 	task_rq_unlock(rq, tsk, &flags);
7374 }
7375 #endif /* CONFIG_CGROUP_SCHED */
7376 
7377 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7378 static unsigned long to_ratio(u64 period, u64 runtime)
7379 {
7380 	if (runtime == RUNTIME_INF)
7381 		return 1ULL << 20;
7382 
7383 	return div64_u64(runtime << 20, period);
7384 }
7385 #endif
7386 
7387 #ifdef CONFIG_RT_GROUP_SCHED
7388 /*
7389  * Ensure that the real time constraints are schedulable.
7390  */
7391 static DEFINE_MUTEX(rt_constraints_mutex);
7392 
7393 /* Must be called with tasklist_lock held */
7394 static inline int tg_has_rt_tasks(struct task_group *tg)
7395 {
7396 	struct task_struct *g, *p;
7397 
7398 	do_each_thread(g, p) {
7399 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7400 			return 1;
7401 	} while_each_thread(g, p);
7402 
7403 	return 0;
7404 }
7405 
7406 struct rt_schedulable_data {
7407 	struct task_group *tg;
7408 	u64 rt_period;
7409 	u64 rt_runtime;
7410 };
7411 
7412 static int tg_rt_schedulable(struct task_group *tg, void *data)
7413 {
7414 	struct rt_schedulable_data *d = data;
7415 	struct task_group *child;
7416 	unsigned long total, sum = 0;
7417 	u64 period, runtime;
7418 
7419 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7420 	runtime = tg->rt_bandwidth.rt_runtime;
7421 
7422 	if (tg == d->tg) {
7423 		period = d->rt_period;
7424 		runtime = d->rt_runtime;
7425 	}
7426 
7427 	/*
7428 	 * Cannot have more runtime than the period.
7429 	 */
7430 	if (runtime > period && runtime != RUNTIME_INF)
7431 		return -EINVAL;
7432 
7433 	/*
7434 	 * Ensure we don't starve existing RT tasks.
7435 	 */
7436 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7437 		return -EBUSY;
7438 
7439 	total = to_ratio(period, runtime);
7440 
7441 	/*
7442 	 * Nobody can have more than the global setting allows.
7443 	 */
7444 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7445 		return -EINVAL;
7446 
7447 	/*
7448 	 * The sum of our children's runtime should not exceed our own.
7449 	 */
7450 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7451 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7452 		runtime = child->rt_bandwidth.rt_runtime;
7453 
7454 		if (child == d->tg) {
7455 			period = d->rt_period;
7456 			runtime = d->rt_runtime;
7457 		}
7458 
7459 		sum += to_ratio(period, runtime);
7460 	}
7461 
7462 	if (sum > total)
7463 		return -EINVAL;
7464 
7465 	return 0;
7466 }
7467 
7468 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7469 {
7470 	int ret;
7471 
7472 	struct rt_schedulable_data data = {
7473 		.tg = tg,
7474 		.rt_period = period,
7475 		.rt_runtime = runtime,
7476 	};
7477 
7478 	rcu_read_lock();
7479 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7480 	rcu_read_unlock();
7481 
7482 	return ret;
7483 }
7484 
7485 static int tg_set_rt_bandwidth(struct task_group *tg,
7486 		u64 rt_period, u64 rt_runtime)
7487 {
7488 	int i, err = 0;
7489 
7490 	mutex_lock(&rt_constraints_mutex);
7491 	read_lock(&tasklist_lock);
7492 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7493 	if (err)
7494 		goto unlock;
7495 
7496 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7497 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7498 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7499 
7500 	for_each_possible_cpu(i) {
7501 		struct rt_rq *rt_rq = tg->rt_rq[i];
7502 
7503 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7504 		rt_rq->rt_runtime = rt_runtime;
7505 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7506 	}
7507 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7508 unlock:
7509 	read_unlock(&tasklist_lock);
7510 	mutex_unlock(&rt_constraints_mutex);
7511 
7512 	return err;
7513 }
7514 
7515 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7516 {
7517 	u64 rt_runtime, rt_period;
7518 
7519 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7520 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7521 	if (rt_runtime_us < 0)
7522 		rt_runtime = RUNTIME_INF;
7523 
7524 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7525 }
7526 
7527 long sched_group_rt_runtime(struct task_group *tg)
7528 {
7529 	u64 rt_runtime_us;
7530 
7531 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7532 		return -1;
7533 
7534 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7535 	do_div(rt_runtime_us, NSEC_PER_USEC);
7536 	return rt_runtime_us;
7537 }
7538 
7539 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7540 {
7541 	u64 rt_runtime, rt_period;
7542 
7543 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7544 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7545 
7546 	if (rt_period == 0)
7547 		return -EINVAL;
7548 
7549 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7550 }
7551 
7552 long sched_group_rt_period(struct task_group *tg)
7553 {
7554 	u64 rt_period_us;
7555 
7556 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7557 	do_div(rt_period_us, NSEC_PER_USEC);
7558 	return rt_period_us;
7559 }
7560 
7561 static int sched_rt_global_constraints(void)
7562 {
7563 	u64 runtime, period;
7564 	int ret = 0;
7565 
7566 	if (sysctl_sched_rt_period <= 0)
7567 		return -EINVAL;
7568 
7569 	runtime = global_rt_runtime();
7570 	period = global_rt_period();
7571 
7572 	/*
7573 	 * Sanity check on the sysctl variables.
7574 	 */
7575 	if (runtime > period && runtime != RUNTIME_INF)
7576 		return -EINVAL;
7577 
7578 	mutex_lock(&rt_constraints_mutex);
7579 	read_lock(&tasklist_lock);
7580 	ret = __rt_schedulable(NULL, 0, 0);
7581 	read_unlock(&tasklist_lock);
7582 	mutex_unlock(&rt_constraints_mutex);
7583 
7584 	return ret;
7585 }
7586 
7587 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7588 {
7589 	/* Don't accept realtime tasks when there is no way for them to run */
7590 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7591 		return 0;
7592 
7593 	return 1;
7594 }
7595 
7596 #else /* !CONFIG_RT_GROUP_SCHED */
7597 static int sched_rt_global_constraints(void)
7598 {
7599 	unsigned long flags;
7600 	int i;
7601 
7602 	if (sysctl_sched_rt_period <= 0)
7603 		return -EINVAL;
7604 
7605 	/*
7606 	 * There's always some RT tasks in the root group
7607 	 * -- migration, kstopmachine etc..
7608 	 */
7609 	if (sysctl_sched_rt_runtime == 0)
7610 		return -EBUSY;
7611 
7612 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7613 	for_each_possible_cpu(i) {
7614 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7615 
7616 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7617 		rt_rq->rt_runtime = global_rt_runtime();
7618 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7619 	}
7620 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7621 
7622 	return 0;
7623 }
7624 #endif /* CONFIG_RT_GROUP_SCHED */
7625 
7626 int sched_rt_handler(struct ctl_table *table, int write,
7627 		void __user *buffer, size_t *lenp,
7628 		loff_t *ppos)
7629 {
7630 	int ret;
7631 	int old_period, old_runtime;
7632 	static DEFINE_MUTEX(mutex);
7633 
7634 	mutex_lock(&mutex);
7635 	old_period = sysctl_sched_rt_period;
7636 	old_runtime = sysctl_sched_rt_runtime;
7637 
7638 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7639 
7640 	if (!ret && write) {
7641 		ret = sched_rt_global_constraints();
7642 		if (ret) {
7643 			sysctl_sched_rt_period = old_period;
7644 			sysctl_sched_rt_runtime = old_runtime;
7645 		} else {
7646 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7647 			def_rt_bandwidth.rt_period =
7648 				ns_to_ktime(global_rt_period());
7649 		}
7650 	}
7651 	mutex_unlock(&mutex);
7652 
7653 	return ret;
7654 }
7655 
7656 #ifdef CONFIG_CGROUP_SCHED
7657 
7658 /* return corresponding task_group object of a cgroup */
7659 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7660 {
7661 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7662 			    struct task_group, css);
7663 }
7664 
7665 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7666 {
7667 	struct task_group *tg, *parent;
7668 
7669 	if (!cgrp->parent) {
7670 		/* This is early initialization for the top cgroup */
7671 		return &root_task_group.css;
7672 	}
7673 
7674 	parent = cgroup_tg(cgrp->parent);
7675 	tg = sched_create_group(parent);
7676 	if (IS_ERR(tg))
7677 		return ERR_PTR(-ENOMEM);
7678 
7679 	return &tg->css;
7680 }
7681 
7682 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7683 {
7684 	struct task_group *tg = cgroup_tg(cgrp);
7685 
7686 	sched_destroy_group(tg);
7687 }
7688 
7689 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7690 				 struct cgroup_taskset *tset)
7691 {
7692 	struct task_struct *task;
7693 
7694 	cgroup_taskset_for_each(task, cgrp, tset) {
7695 #ifdef CONFIG_RT_GROUP_SCHED
7696 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7697 			return -EINVAL;
7698 #else
7699 		/* We don't support RT-tasks being in separate groups */
7700 		if (task->sched_class != &fair_sched_class)
7701 			return -EINVAL;
7702 #endif
7703 	}
7704 	return 0;
7705 }
7706 
7707 static void cpu_cgroup_attach(struct cgroup *cgrp,
7708 			      struct cgroup_taskset *tset)
7709 {
7710 	struct task_struct *task;
7711 
7712 	cgroup_taskset_for_each(task, cgrp, tset)
7713 		sched_move_task(task);
7714 }
7715 
7716 static void
7717 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7718 		struct task_struct *task)
7719 {
7720 	/*
7721 	 * cgroup_exit() is called in the copy_process() failure path.
7722 	 * Ignore this case since the task hasn't ran yet, this avoids
7723 	 * trying to poke a half freed task state from generic code.
7724 	 */
7725 	if (!(task->flags & PF_EXITING))
7726 		return;
7727 
7728 	sched_move_task(task);
7729 }
7730 
7731 #ifdef CONFIG_FAIR_GROUP_SCHED
7732 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7733 				u64 shareval)
7734 {
7735 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7736 }
7737 
7738 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7739 {
7740 	struct task_group *tg = cgroup_tg(cgrp);
7741 
7742 	return (u64) scale_load_down(tg->shares);
7743 }
7744 
7745 #ifdef CONFIG_CFS_BANDWIDTH
7746 static DEFINE_MUTEX(cfs_constraints_mutex);
7747 
7748 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7749 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7750 
7751 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7752 
7753 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7754 {
7755 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7756 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7757 
7758 	if (tg == &root_task_group)
7759 		return -EINVAL;
7760 
7761 	/*
7762 	 * Ensure we have at some amount of bandwidth every period.  This is
7763 	 * to prevent reaching a state of large arrears when throttled via
7764 	 * entity_tick() resulting in prolonged exit starvation.
7765 	 */
7766 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7767 		return -EINVAL;
7768 
7769 	/*
7770 	 * Likewise, bound things on the otherside by preventing insane quota
7771 	 * periods.  This also allows us to normalize in computing quota
7772 	 * feasibility.
7773 	 */
7774 	if (period > max_cfs_quota_period)
7775 		return -EINVAL;
7776 
7777 	mutex_lock(&cfs_constraints_mutex);
7778 	ret = __cfs_schedulable(tg, period, quota);
7779 	if (ret)
7780 		goto out_unlock;
7781 
7782 	runtime_enabled = quota != RUNTIME_INF;
7783 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7784 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7785 	raw_spin_lock_irq(&cfs_b->lock);
7786 	cfs_b->period = ns_to_ktime(period);
7787 	cfs_b->quota = quota;
7788 
7789 	__refill_cfs_bandwidth_runtime(cfs_b);
7790 	/* restart the period timer (if active) to handle new period expiry */
7791 	if (runtime_enabled && cfs_b->timer_active) {
7792 		/* force a reprogram */
7793 		cfs_b->timer_active = 0;
7794 		__start_cfs_bandwidth(cfs_b);
7795 	}
7796 	raw_spin_unlock_irq(&cfs_b->lock);
7797 
7798 	for_each_possible_cpu(i) {
7799 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7800 		struct rq *rq = cfs_rq->rq;
7801 
7802 		raw_spin_lock_irq(&rq->lock);
7803 		cfs_rq->runtime_enabled = runtime_enabled;
7804 		cfs_rq->runtime_remaining = 0;
7805 
7806 		if (cfs_rq->throttled)
7807 			unthrottle_cfs_rq(cfs_rq);
7808 		raw_spin_unlock_irq(&rq->lock);
7809 	}
7810 out_unlock:
7811 	mutex_unlock(&cfs_constraints_mutex);
7812 
7813 	return ret;
7814 }
7815 
7816 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7817 {
7818 	u64 quota, period;
7819 
7820 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7821 	if (cfs_quota_us < 0)
7822 		quota = RUNTIME_INF;
7823 	else
7824 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7825 
7826 	return tg_set_cfs_bandwidth(tg, period, quota);
7827 }
7828 
7829 long tg_get_cfs_quota(struct task_group *tg)
7830 {
7831 	u64 quota_us;
7832 
7833 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7834 		return -1;
7835 
7836 	quota_us = tg->cfs_bandwidth.quota;
7837 	do_div(quota_us, NSEC_PER_USEC);
7838 
7839 	return quota_us;
7840 }
7841 
7842 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7843 {
7844 	u64 quota, period;
7845 
7846 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7847 	quota = tg->cfs_bandwidth.quota;
7848 
7849 	return tg_set_cfs_bandwidth(tg, period, quota);
7850 }
7851 
7852 long tg_get_cfs_period(struct task_group *tg)
7853 {
7854 	u64 cfs_period_us;
7855 
7856 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7857 	do_div(cfs_period_us, NSEC_PER_USEC);
7858 
7859 	return cfs_period_us;
7860 }
7861 
7862 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7863 {
7864 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7865 }
7866 
7867 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7868 				s64 cfs_quota_us)
7869 {
7870 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7871 }
7872 
7873 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7874 {
7875 	return tg_get_cfs_period(cgroup_tg(cgrp));
7876 }
7877 
7878 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7879 				u64 cfs_period_us)
7880 {
7881 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7882 }
7883 
7884 struct cfs_schedulable_data {
7885 	struct task_group *tg;
7886 	u64 period, quota;
7887 };
7888 
7889 /*
7890  * normalize group quota/period to be quota/max_period
7891  * note: units are usecs
7892  */
7893 static u64 normalize_cfs_quota(struct task_group *tg,
7894 			       struct cfs_schedulable_data *d)
7895 {
7896 	u64 quota, period;
7897 
7898 	if (tg == d->tg) {
7899 		period = d->period;
7900 		quota = d->quota;
7901 	} else {
7902 		period = tg_get_cfs_period(tg);
7903 		quota = tg_get_cfs_quota(tg);
7904 	}
7905 
7906 	/* note: these should typically be equivalent */
7907 	if (quota == RUNTIME_INF || quota == -1)
7908 		return RUNTIME_INF;
7909 
7910 	return to_ratio(period, quota);
7911 }
7912 
7913 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7914 {
7915 	struct cfs_schedulable_data *d = data;
7916 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7917 	s64 quota = 0, parent_quota = -1;
7918 
7919 	if (!tg->parent) {
7920 		quota = RUNTIME_INF;
7921 	} else {
7922 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7923 
7924 		quota = normalize_cfs_quota(tg, d);
7925 		parent_quota = parent_b->hierarchal_quota;
7926 
7927 		/*
7928 		 * ensure max(child_quota) <= parent_quota, inherit when no
7929 		 * limit is set
7930 		 */
7931 		if (quota == RUNTIME_INF)
7932 			quota = parent_quota;
7933 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7934 			return -EINVAL;
7935 	}
7936 	cfs_b->hierarchal_quota = quota;
7937 
7938 	return 0;
7939 }
7940 
7941 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7942 {
7943 	int ret;
7944 	struct cfs_schedulable_data data = {
7945 		.tg = tg,
7946 		.period = period,
7947 		.quota = quota,
7948 	};
7949 
7950 	if (quota != RUNTIME_INF) {
7951 		do_div(data.period, NSEC_PER_USEC);
7952 		do_div(data.quota, NSEC_PER_USEC);
7953 	}
7954 
7955 	rcu_read_lock();
7956 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7957 	rcu_read_unlock();
7958 
7959 	return ret;
7960 }
7961 
7962 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7963 		struct cgroup_map_cb *cb)
7964 {
7965 	struct task_group *tg = cgroup_tg(cgrp);
7966 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7967 
7968 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7969 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7970 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7971 
7972 	return 0;
7973 }
7974 #endif /* CONFIG_CFS_BANDWIDTH */
7975 #endif /* CONFIG_FAIR_GROUP_SCHED */
7976 
7977 #ifdef CONFIG_RT_GROUP_SCHED
7978 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7979 				s64 val)
7980 {
7981 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7982 }
7983 
7984 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7985 {
7986 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7987 }
7988 
7989 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7990 		u64 rt_period_us)
7991 {
7992 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7993 }
7994 
7995 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7996 {
7997 	return sched_group_rt_period(cgroup_tg(cgrp));
7998 }
7999 #endif /* CONFIG_RT_GROUP_SCHED */
8000 
8001 static struct cftype cpu_files[] = {
8002 #ifdef CONFIG_FAIR_GROUP_SCHED
8003 	{
8004 		.name = "shares",
8005 		.read_u64 = cpu_shares_read_u64,
8006 		.write_u64 = cpu_shares_write_u64,
8007 	},
8008 #endif
8009 #ifdef CONFIG_CFS_BANDWIDTH
8010 	{
8011 		.name = "cfs_quota_us",
8012 		.read_s64 = cpu_cfs_quota_read_s64,
8013 		.write_s64 = cpu_cfs_quota_write_s64,
8014 	},
8015 	{
8016 		.name = "cfs_period_us",
8017 		.read_u64 = cpu_cfs_period_read_u64,
8018 		.write_u64 = cpu_cfs_period_write_u64,
8019 	},
8020 	{
8021 		.name = "stat",
8022 		.read_map = cpu_stats_show,
8023 	},
8024 #endif
8025 #ifdef CONFIG_RT_GROUP_SCHED
8026 	{
8027 		.name = "rt_runtime_us",
8028 		.read_s64 = cpu_rt_runtime_read,
8029 		.write_s64 = cpu_rt_runtime_write,
8030 	},
8031 	{
8032 		.name = "rt_period_us",
8033 		.read_u64 = cpu_rt_period_read_uint,
8034 		.write_u64 = cpu_rt_period_write_uint,
8035 	},
8036 #endif
8037 	{ }	/* terminate */
8038 };
8039 
8040 struct cgroup_subsys cpu_cgroup_subsys = {
8041 	.name		= "cpu",
8042 	.create		= cpu_cgroup_create,
8043 	.destroy	= cpu_cgroup_destroy,
8044 	.can_attach	= cpu_cgroup_can_attach,
8045 	.attach		= cpu_cgroup_attach,
8046 	.exit		= cpu_cgroup_exit,
8047 	.subsys_id	= cpu_cgroup_subsys_id,
8048 	.base_cftypes	= cpu_files,
8049 	.early_init	= 1,
8050 };
8051 
8052 #endif	/* CONFIG_CGROUP_SCHED */
8053 
8054 #ifdef CONFIG_CGROUP_CPUACCT
8055 
8056 /*
8057  * CPU accounting code for task groups.
8058  *
8059  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8060  * (balbir@in.ibm.com).
8061  */
8062 
8063 /* create a new cpu accounting group */
8064 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8065 {
8066 	struct cpuacct *ca;
8067 
8068 	if (!cgrp->parent)
8069 		return &root_cpuacct.css;
8070 
8071 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8072 	if (!ca)
8073 		goto out;
8074 
8075 	ca->cpuusage = alloc_percpu(u64);
8076 	if (!ca->cpuusage)
8077 		goto out_free_ca;
8078 
8079 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8080 	if (!ca->cpustat)
8081 		goto out_free_cpuusage;
8082 
8083 	return &ca->css;
8084 
8085 out_free_cpuusage:
8086 	free_percpu(ca->cpuusage);
8087 out_free_ca:
8088 	kfree(ca);
8089 out:
8090 	return ERR_PTR(-ENOMEM);
8091 }
8092 
8093 /* destroy an existing cpu accounting group */
8094 static void cpuacct_destroy(struct cgroup *cgrp)
8095 {
8096 	struct cpuacct *ca = cgroup_ca(cgrp);
8097 
8098 	free_percpu(ca->cpustat);
8099 	free_percpu(ca->cpuusage);
8100 	kfree(ca);
8101 }
8102 
8103 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8104 {
8105 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8106 	u64 data;
8107 
8108 #ifndef CONFIG_64BIT
8109 	/*
8110 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8111 	 */
8112 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8113 	data = *cpuusage;
8114 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8115 #else
8116 	data = *cpuusage;
8117 #endif
8118 
8119 	return data;
8120 }
8121 
8122 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8123 {
8124 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8125 
8126 #ifndef CONFIG_64BIT
8127 	/*
8128 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8129 	 */
8130 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8131 	*cpuusage = val;
8132 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8133 #else
8134 	*cpuusage = val;
8135 #endif
8136 }
8137 
8138 /* return total cpu usage (in nanoseconds) of a group */
8139 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8140 {
8141 	struct cpuacct *ca = cgroup_ca(cgrp);
8142 	u64 totalcpuusage = 0;
8143 	int i;
8144 
8145 	for_each_present_cpu(i)
8146 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8147 
8148 	return totalcpuusage;
8149 }
8150 
8151 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8152 								u64 reset)
8153 {
8154 	struct cpuacct *ca = cgroup_ca(cgrp);
8155 	int err = 0;
8156 	int i;
8157 
8158 	if (reset) {
8159 		err = -EINVAL;
8160 		goto out;
8161 	}
8162 
8163 	for_each_present_cpu(i)
8164 		cpuacct_cpuusage_write(ca, i, 0);
8165 
8166 out:
8167 	return err;
8168 }
8169 
8170 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8171 				   struct seq_file *m)
8172 {
8173 	struct cpuacct *ca = cgroup_ca(cgroup);
8174 	u64 percpu;
8175 	int i;
8176 
8177 	for_each_present_cpu(i) {
8178 		percpu = cpuacct_cpuusage_read(ca, i);
8179 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8180 	}
8181 	seq_printf(m, "\n");
8182 	return 0;
8183 }
8184 
8185 static const char *cpuacct_stat_desc[] = {
8186 	[CPUACCT_STAT_USER] = "user",
8187 	[CPUACCT_STAT_SYSTEM] = "system",
8188 };
8189 
8190 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8191 			      struct cgroup_map_cb *cb)
8192 {
8193 	struct cpuacct *ca = cgroup_ca(cgrp);
8194 	int cpu;
8195 	s64 val = 0;
8196 
8197 	for_each_online_cpu(cpu) {
8198 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8199 		val += kcpustat->cpustat[CPUTIME_USER];
8200 		val += kcpustat->cpustat[CPUTIME_NICE];
8201 	}
8202 	val = cputime64_to_clock_t(val);
8203 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8204 
8205 	val = 0;
8206 	for_each_online_cpu(cpu) {
8207 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8208 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8209 		val += kcpustat->cpustat[CPUTIME_IRQ];
8210 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8211 	}
8212 
8213 	val = cputime64_to_clock_t(val);
8214 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8215 
8216 	return 0;
8217 }
8218 
8219 static struct cftype files[] = {
8220 	{
8221 		.name = "usage",
8222 		.read_u64 = cpuusage_read,
8223 		.write_u64 = cpuusage_write,
8224 	},
8225 	{
8226 		.name = "usage_percpu",
8227 		.read_seq_string = cpuacct_percpu_seq_read,
8228 	},
8229 	{
8230 		.name = "stat",
8231 		.read_map = cpuacct_stats_show,
8232 	},
8233 	{ }	/* terminate */
8234 };
8235 
8236 /*
8237  * charge this task's execution time to its accounting group.
8238  *
8239  * called with rq->lock held.
8240  */
8241 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8242 {
8243 	struct cpuacct *ca;
8244 	int cpu;
8245 
8246 	if (unlikely(!cpuacct_subsys.active))
8247 		return;
8248 
8249 	cpu = task_cpu(tsk);
8250 
8251 	rcu_read_lock();
8252 
8253 	ca = task_ca(tsk);
8254 
8255 	for (; ca; ca = parent_ca(ca)) {
8256 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8257 		*cpuusage += cputime;
8258 	}
8259 
8260 	rcu_read_unlock();
8261 }
8262 
8263 struct cgroup_subsys cpuacct_subsys = {
8264 	.name = "cpuacct",
8265 	.create = cpuacct_create,
8266 	.destroy = cpuacct_destroy,
8267 	.subsys_id = cpuacct_subsys_id,
8268 	.base_cftypes = files,
8269 };
8270 #endif	/* CONFIG_CGROUP_CPUACCT */
8271