1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 #ifdef CONFIG_SCHED_DEBUG 128 #define SCHED_FEAT(name, enabled) \ 129 #name , 130 131 static const char * const sched_feat_names[] = { 132 #include "features.h" 133 }; 134 135 #undef SCHED_FEAT 136 137 static int sched_feat_show(struct seq_file *m, void *v) 138 { 139 int i; 140 141 for (i = 0; i < __SCHED_FEAT_NR; i++) { 142 if (!(sysctl_sched_features & (1UL << i))) 143 seq_puts(m, "NO_"); 144 seq_printf(m, "%s ", sched_feat_names[i]); 145 } 146 seq_puts(m, "\n"); 147 148 return 0; 149 } 150 151 #ifdef HAVE_JUMP_LABEL 152 153 #define jump_label_key__true STATIC_KEY_INIT_TRUE 154 #define jump_label_key__false STATIC_KEY_INIT_FALSE 155 156 #define SCHED_FEAT(name, enabled) \ 157 jump_label_key__##enabled , 158 159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 160 #include "features.h" 161 }; 162 163 #undef SCHED_FEAT 164 165 static void sched_feat_disable(int i) 166 { 167 if (static_key_enabled(&sched_feat_keys[i])) 168 static_key_slow_dec(&sched_feat_keys[i]); 169 } 170 171 static void sched_feat_enable(int i) 172 { 173 if (!static_key_enabled(&sched_feat_keys[i])) 174 static_key_slow_inc(&sched_feat_keys[i]); 175 } 176 #else 177 static void sched_feat_disable(int i) { }; 178 static void sched_feat_enable(int i) { }; 179 #endif /* HAVE_JUMP_LABEL */ 180 181 static int sched_feat_set(char *cmp) 182 { 183 int i; 184 int neg = 0; 185 186 if (strncmp(cmp, "NO_", 3) == 0) { 187 neg = 1; 188 cmp += 3; 189 } 190 191 for (i = 0; i < __SCHED_FEAT_NR; i++) { 192 if (strcmp(cmp, sched_feat_names[i]) == 0) { 193 if (neg) { 194 sysctl_sched_features &= ~(1UL << i); 195 sched_feat_disable(i); 196 } else { 197 sysctl_sched_features |= (1UL << i); 198 sched_feat_enable(i); 199 } 200 break; 201 } 202 } 203 204 return i; 205 } 206 207 static ssize_t 208 sched_feat_write(struct file *filp, const char __user *ubuf, 209 size_t cnt, loff_t *ppos) 210 { 211 char buf[64]; 212 char *cmp; 213 int i; 214 struct inode *inode; 215 216 if (cnt > 63) 217 cnt = 63; 218 219 if (copy_from_user(&buf, ubuf, cnt)) 220 return -EFAULT; 221 222 buf[cnt] = 0; 223 cmp = strstrip(buf); 224 225 /* Ensure the static_key remains in a consistent state */ 226 inode = file_inode(filp); 227 mutex_lock(&inode->i_mutex); 228 i = sched_feat_set(cmp); 229 mutex_unlock(&inode->i_mutex); 230 if (i == __SCHED_FEAT_NR) 231 return -EINVAL; 232 233 *ppos += cnt; 234 235 return cnt; 236 } 237 238 static int sched_feat_open(struct inode *inode, struct file *filp) 239 { 240 return single_open(filp, sched_feat_show, NULL); 241 } 242 243 static const struct file_operations sched_feat_fops = { 244 .open = sched_feat_open, 245 .write = sched_feat_write, 246 .read = seq_read, 247 .llseek = seq_lseek, 248 .release = single_release, 249 }; 250 251 static __init int sched_init_debug(void) 252 { 253 debugfs_create_file("sched_features", 0644, NULL, NULL, 254 &sched_feat_fops); 255 256 return 0; 257 } 258 late_initcall(sched_init_debug); 259 #endif /* CONFIG_SCHED_DEBUG */ 260 261 /* 262 * Number of tasks to iterate in a single balance run. 263 * Limited because this is done with IRQs disabled. 264 */ 265 const_debug unsigned int sysctl_sched_nr_migrate = 32; 266 267 /* 268 * period over which we average the RT time consumption, measured 269 * in ms. 270 * 271 * default: 1s 272 */ 273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 274 275 /* 276 * period over which we measure -rt task cpu usage in us. 277 * default: 1s 278 */ 279 unsigned int sysctl_sched_rt_period = 1000000; 280 281 __read_mostly int scheduler_running; 282 283 /* 284 * part of the period that we allow rt tasks to run in us. 285 * default: 0.95s 286 */ 287 int sysctl_sched_rt_runtime = 950000; 288 289 /* cpus with isolated domains */ 290 cpumask_var_t cpu_isolated_map; 291 292 /* 293 * this_rq_lock - lock this runqueue and disable interrupts. 294 */ 295 static struct rq *this_rq_lock(void) 296 __acquires(rq->lock) 297 { 298 struct rq *rq; 299 300 local_irq_disable(); 301 rq = this_rq(); 302 raw_spin_lock(&rq->lock); 303 304 return rq; 305 } 306 307 #ifdef CONFIG_SCHED_HRTICK 308 /* 309 * Use HR-timers to deliver accurate preemption points. 310 */ 311 312 static void hrtick_clear(struct rq *rq) 313 { 314 if (hrtimer_active(&rq->hrtick_timer)) 315 hrtimer_cancel(&rq->hrtick_timer); 316 } 317 318 /* 319 * High-resolution timer tick. 320 * Runs from hardirq context with interrupts disabled. 321 */ 322 static enum hrtimer_restart hrtick(struct hrtimer *timer) 323 { 324 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 325 326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 327 328 raw_spin_lock(&rq->lock); 329 update_rq_clock(rq); 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 331 raw_spin_unlock(&rq->lock); 332 333 return HRTIMER_NORESTART; 334 } 335 336 #ifdef CONFIG_SMP 337 338 static void __hrtick_restart(struct rq *rq) 339 { 340 struct hrtimer *timer = &rq->hrtick_timer; 341 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 343 } 344 345 /* 346 * called from hardirq (IPI) context 347 */ 348 static void __hrtick_start(void *arg) 349 { 350 struct rq *rq = arg; 351 352 raw_spin_lock(&rq->lock); 353 __hrtick_restart(rq); 354 rq->hrtick_csd_pending = 0; 355 raw_spin_unlock(&rq->lock); 356 } 357 358 /* 359 * Called to set the hrtick timer state. 360 * 361 * called with rq->lock held and irqs disabled 362 */ 363 void hrtick_start(struct rq *rq, u64 delay) 364 { 365 struct hrtimer *timer = &rq->hrtick_timer; 366 ktime_t time; 367 s64 delta; 368 369 /* 370 * Don't schedule slices shorter than 10000ns, that just 371 * doesn't make sense and can cause timer DoS. 372 */ 373 delta = max_t(s64, delay, 10000LL); 374 time = ktime_add_ns(timer->base->get_time(), delta); 375 376 hrtimer_set_expires(timer, time); 377 378 if (rq == this_rq()) { 379 __hrtick_restart(rq); 380 } else if (!rq->hrtick_csd_pending) { 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 382 rq->hrtick_csd_pending = 1; 383 } 384 } 385 386 static int 387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 388 { 389 int cpu = (int)(long)hcpu; 390 391 switch (action) { 392 case CPU_UP_CANCELED: 393 case CPU_UP_CANCELED_FROZEN: 394 case CPU_DOWN_PREPARE: 395 case CPU_DOWN_PREPARE_FROZEN: 396 case CPU_DEAD: 397 case CPU_DEAD_FROZEN: 398 hrtick_clear(cpu_rq(cpu)); 399 return NOTIFY_OK; 400 } 401 402 return NOTIFY_DONE; 403 } 404 405 static __init void init_hrtick(void) 406 { 407 hotcpu_notifier(hotplug_hrtick, 0); 408 } 409 #else 410 /* 411 * Called to set the hrtick timer state. 412 * 413 * called with rq->lock held and irqs disabled 414 */ 415 void hrtick_start(struct rq *rq, u64 delay) 416 { 417 /* 418 * Don't schedule slices shorter than 10000ns, that just 419 * doesn't make sense. Rely on vruntime for fairness. 420 */ 421 delay = max_t(u64, delay, 10000LL); 422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 423 HRTIMER_MODE_REL_PINNED); 424 } 425 426 static inline void init_hrtick(void) 427 { 428 } 429 #endif /* CONFIG_SMP */ 430 431 static void init_rq_hrtick(struct rq *rq) 432 { 433 #ifdef CONFIG_SMP 434 rq->hrtick_csd_pending = 0; 435 436 rq->hrtick_csd.flags = 0; 437 rq->hrtick_csd.func = __hrtick_start; 438 rq->hrtick_csd.info = rq; 439 #endif 440 441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 442 rq->hrtick_timer.function = hrtick; 443 } 444 #else /* CONFIG_SCHED_HRTICK */ 445 static inline void hrtick_clear(struct rq *rq) 446 { 447 } 448 449 static inline void init_rq_hrtick(struct rq *rq) 450 { 451 } 452 453 static inline void init_hrtick(void) 454 { 455 } 456 #endif /* CONFIG_SCHED_HRTICK */ 457 458 /* 459 * cmpxchg based fetch_or, macro so it works for different integer types 460 */ 461 #define fetch_or(ptr, val) \ 462 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 463 for (;;) { \ 464 __old = cmpxchg((ptr), __val, __val | (val)); \ 465 if (__old == __val) \ 466 break; \ 467 __val = __old; \ 468 } \ 469 __old; \ 470 }) 471 472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 473 /* 474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 475 * this avoids any races wrt polling state changes and thereby avoids 476 * spurious IPIs. 477 */ 478 static bool set_nr_and_not_polling(struct task_struct *p) 479 { 480 struct thread_info *ti = task_thread_info(p); 481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 482 } 483 484 /* 485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 486 * 487 * If this returns true, then the idle task promises to call 488 * sched_ttwu_pending() and reschedule soon. 489 */ 490 static bool set_nr_if_polling(struct task_struct *p) 491 { 492 struct thread_info *ti = task_thread_info(p); 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 494 495 for (;;) { 496 if (!(val & _TIF_POLLING_NRFLAG)) 497 return false; 498 if (val & _TIF_NEED_RESCHED) 499 return true; 500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 501 if (old == val) 502 break; 503 val = old; 504 } 505 return true; 506 } 507 508 #else 509 static bool set_nr_and_not_polling(struct task_struct *p) 510 { 511 set_tsk_need_resched(p); 512 return true; 513 } 514 515 #ifdef CONFIG_SMP 516 static bool set_nr_if_polling(struct task_struct *p) 517 { 518 return false; 519 } 520 #endif 521 #endif 522 523 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 524 { 525 struct wake_q_node *node = &task->wake_q; 526 527 /* 528 * Atomically grab the task, if ->wake_q is !nil already it means 529 * its already queued (either by us or someone else) and will get the 530 * wakeup due to that. 531 * 532 * This cmpxchg() implies a full barrier, which pairs with the write 533 * barrier implied by the wakeup in wake_up_list(). 534 */ 535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 536 return; 537 538 get_task_struct(task); 539 540 /* 541 * The head is context local, there can be no concurrency. 542 */ 543 *head->lastp = node; 544 head->lastp = &node->next; 545 } 546 547 void wake_up_q(struct wake_q_head *head) 548 { 549 struct wake_q_node *node = head->first; 550 551 while (node != WAKE_Q_TAIL) { 552 struct task_struct *task; 553 554 task = container_of(node, struct task_struct, wake_q); 555 BUG_ON(!task); 556 /* task can safely be re-inserted now */ 557 node = node->next; 558 task->wake_q.next = NULL; 559 560 /* 561 * wake_up_process() implies a wmb() to pair with the queueing 562 * in wake_q_add() so as not to miss wakeups. 563 */ 564 wake_up_process(task); 565 put_task_struct(task); 566 } 567 } 568 569 /* 570 * resched_curr - mark rq's current task 'to be rescheduled now'. 571 * 572 * On UP this means the setting of the need_resched flag, on SMP it 573 * might also involve a cross-CPU call to trigger the scheduler on 574 * the target CPU. 575 */ 576 void resched_curr(struct rq *rq) 577 { 578 struct task_struct *curr = rq->curr; 579 int cpu; 580 581 lockdep_assert_held(&rq->lock); 582 583 if (test_tsk_need_resched(curr)) 584 return; 585 586 cpu = cpu_of(rq); 587 588 if (cpu == smp_processor_id()) { 589 set_tsk_need_resched(curr); 590 set_preempt_need_resched(); 591 return; 592 } 593 594 if (set_nr_and_not_polling(curr)) 595 smp_send_reschedule(cpu); 596 else 597 trace_sched_wake_idle_without_ipi(cpu); 598 } 599 600 void resched_cpu(int cpu) 601 { 602 struct rq *rq = cpu_rq(cpu); 603 unsigned long flags; 604 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 606 return; 607 resched_curr(rq); 608 raw_spin_unlock_irqrestore(&rq->lock, flags); 609 } 610 611 #ifdef CONFIG_SMP 612 #ifdef CONFIG_NO_HZ_COMMON 613 /* 614 * In the semi idle case, use the nearest busy cpu for migrating timers 615 * from an idle cpu. This is good for power-savings. 616 * 617 * We don't do similar optimization for completely idle system, as 618 * selecting an idle cpu will add more delays to the timers than intended 619 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 620 */ 621 int get_nohz_timer_target(void) 622 { 623 int i, cpu = smp_processor_id(); 624 struct sched_domain *sd; 625 626 if (!idle_cpu(cpu)) 627 return cpu; 628 629 rcu_read_lock(); 630 for_each_domain(cpu, sd) { 631 for_each_cpu(i, sched_domain_span(sd)) { 632 if (!idle_cpu(i)) { 633 cpu = i; 634 goto unlock; 635 } 636 } 637 } 638 unlock: 639 rcu_read_unlock(); 640 return cpu; 641 } 642 /* 643 * When add_timer_on() enqueues a timer into the timer wheel of an 644 * idle CPU then this timer might expire before the next timer event 645 * which is scheduled to wake up that CPU. In case of a completely 646 * idle system the next event might even be infinite time into the 647 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 648 * leaves the inner idle loop so the newly added timer is taken into 649 * account when the CPU goes back to idle and evaluates the timer 650 * wheel for the next timer event. 651 */ 652 static void wake_up_idle_cpu(int cpu) 653 { 654 struct rq *rq = cpu_rq(cpu); 655 656 if (cpu == smp_processor_id()) 657 return; 658 659 if (set_nr_and_not_polling(rq->idle)) 660 smp_send_reschedule(cpu); 661 else 662 trace_sched_wake_idle_without_ipi(cpu); 663 } 664 665 static bool wake_up_full_nohz_cpu(int cpu) 666 { 667 /* 668 * We just need the target to call irq_exit() and re-evaluate 669 * the next tick. The nohz full kick at least implies that. 670 * If needed we can still optimize that later with an 671 * empty IRQ. 672 */ 673 if (tick_nohz_full_cpu(cpu)) { 674 if (cpu != smp_processor_id() || 675 tick_nohz_tick_stopped()) 676 tick_nohz_full_kick_cpu(cpu); 677 return true; 678 } 679 680 return false; 681 } 682 683 void wake_up_nohz_cpu(int cpu) 684 { 685 if (!wake_up_full_nohz_cpu(cpu)) 686 wake_up_idle_cpu(cpu); 687 } 688 689 static inline bool got_nohz_idle_kick(void) 690 { 691 int cpu = smp_processor_id(); 692 693 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 694 return false; 695 696 if (idle_cpu(cpu) && !need_resched()) 697 return true; 698 699 /* 700 * We can't run Idle Load Balance on this CPU for this time so we 701 * cancel it and clear NOHZ_BALANCE_KICK 702 */ 703 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 704 return false; 705 } 706 707 #else /* CONFIG_NO_HZ_COMMON */ 708 709 static inline bool got_nohz_idle_kick(void) 710 { 711 return false; 712 } 713 714 #endif /* CONFIG_NO_HZ_COMMON */ 715 716 #ifdef CONFIG_NO_HZ_FULL 717 bool sched_can_stop_tick(void) 718 { 719 /* 720 * FIFO realtime policy runs the highest priority task. Other runnable 721 * tasks are of a lower priority. The scheduler tick does nothing. 722 */ 723 if (current->policy == SCHED_FIFO) 724 return true; 725 726 /* 727 * Round-robin realtime tasks time slice with other tasks at the same 728 * realtime priority. Is this task the only one at this priority? 729 */ 730 if (current->policy == SCHED_RR) { 731 struct sched_rt_entity *rt_se = ¤t->rt; 732 733 return rt_se->run_list.prev == rt_se->run_list.next; 734 } 735 736 /* 737 * More than one running task need preemption. 738 * nr_running update is assumed to be visible 739 * after IPI is sent from wakers. 740 */ 741 if (this_rq()->nr_running > 1) 742 return false; 743 744 return true; 745 } 746 #endif /* CONFIG_NO_HZ_FULL */ 747 748 void sched_avg_update(struct rq *rq) 749 { 750 s64 period = sched_avg_period(); 751 752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 753 /* 754 * Inline assembly required to prevent the compiler 755 * optimising this loop into a divmod call. 756 * See __iter_div_u64_rem() for another example of this. 757 */ 758 asm("" : "+rm" (rq->age_stamp)); 759 rq->age_stamp += period; 760 rq->rt_avg /= 2; 761 } 762 } 763 764 #endif /* CONFIG_SMP */ 765 766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 768 /* 769 * Iterate task_group tree rooted at *from, calling @down when first entering a 770 * node and @up when leaving it for the final time. 771 * 772 * Caller must hold rcu_lock or sufficient equivalent. 773 */ 774 int walk_tg_tree_from(struct task_group *from, 775 tg_visitor down, tg_visitor up, void *data) 776 { 777 struct task_group *parent, *child; 778 int ret; 779 780 parent = from; 781 782 down: 783 ret = (*down)(parent, data); 784 if (ret) 785 goto out; 786 list_for_each_entry_rcu(child, &parent->children, siblings) { 787 parent = child; 788 goto down; 789 790 up: 791 continue; 792 } 793 ret = (*up)(parent, data); 794 if (ret || parent == from) 795 goto out; 796 797 child = parent; 798 parent = parent->parent; 799 if (parent) 800 goto up; 801 out: 802 return ret; 803 } 804 805 int tg_nop(struct task_group *tg, void *data) 806 { 807 return 0; 808 } 809 #endif 810 811 static void set_load_weight(struct task_struct *p) 812 { 813 int prio = p->static_prio - MAX_RT_PRIO; 814 struct load_weight *load = &p->se.load; 815 816 /* 817 * SCHED_IDLE tasks get minimal weight: 818 */ 819 if (p->policy == SCHED_IDLE) { 820 load->weight = scale_load(WEIGHT_IDLEPRIO); 821 load->inv_weight = WMULT_IDLEPRIO; 822 return; 823 } 824 825 load->weight = scale_load(prio_to_weight[prio]); 826 load->inv_weight = prio_to_wmult[prio]; 827 } 828 829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 830 { 831 update_rq_clock(rq); 832 sched_info_queued(rq, p); 833 p->sched_class->enqueue_task(rq, p, flags); 834 } 835 836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 837 { 838 update_rq_clock(rq); 839 sched_info_dequeued(rq, p); 840 p->sched_class->dequeue_task(rq, p, flags); 841 } 842 843 void activate_task(struct rq *rq, struct task_struct *p, int flags) 844 { 845 if (task_contributes_to_load(p)) 846 rq->nr_uninterruptible--; 847 848 enqueue_task(rq, p, flags); 849 } 850 851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 852 { 853 if (task_contributes_to_load(p)) 854 rq->nr_uninterruptible++; 855 856 dequeue_task(rq, p, flags); 857 } 858 859 static void update_rq_clock_task(struct rq *rq, s64 delta) 860 { 861 /* 862 * In theory, the compile should just see 0 here, and optimize out the call 863 * to sched_rt_avg_update. But I don't trust it... 864 */ 865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 866 s64 steal = 0, irq_delta = 0; 867 #endif 868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 870 871 /* 872 * Since irq_time is only updated on {soft,}irq_exit, we might run into 873 * this case when a previous update_rq_clock() happened inside a 874 * {soft,}irq region. 875 * 876 * When this happens, we stop ->clock_task and only update the 877 * prev_irq_time stamp to account for the part that fit, so that a next 878 * update will consume the rest. This ensures ->clock_task is 879 * monotonic. 880 * 881 * It does however cause some slight miss-attribution of {soft,}irq 882 * time, a more accurate solution would be to update the irq_time using 883 * the current rq->clock timestamp, except that would require using 884 * atomic ops. 885 */ 886 if (irq_delta > delta) 887 irq_delta = delta; 888 889 rq->prev_irq_time += irq_delta; 890 delta -= irq_delta; 891 #endif 892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 893 if (static_key_false((¶virt_steal_rq_enabled))) { 894 steal = paravirt_steal_clock(cpu_of(rq)); 895 steal -= rq->prev_steal_time_rq; 896 897 if (unlikely(steal > delta)) 898 steal = delta; 899 900 rq->prev_steal_time_rq += steal; 901 delta -= steal; 902 } 903 #endif 904 905 rq->clock_task += delta; 906 907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 909 sched_rt_avg_update(rq, irq_delta + steal); 910 #endif 911 } 912 913 void sched_set_stop_task(int cpu, struct task_struct *stop) 914 { 915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 916 struct task_struct *old_stop = cpu_rq(cpu)->stop; 917 918 if (stop) { 919 /* 920 * Make it appear like a SCHED_FIFO task, its something 921 * userspace knows about and won't get confused about. 922 * 923 * Also, it will make PI more or less work without too 924 * much confusion -- but then, stop work should not 925 * rely on PI working anyway. 926 */ 927 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 928 929 stop->sched_class = &stop_sched_class; 930 } 931 932 cpu_rq(cpu)->stop = stop; 933 934 if (old_stop) { 935 /* 936 * Reset it back to a normal scheduling class so that 937 * it can die in pieces. 938 */ 939 old_stop->sched_class = &rt_sched_class; 940 } 941 } 942 943 /* 944 * __normal_prio - return the priority that is based on the static prio 945 */ 946 static inline int __normal_prio(struct task_struct *p) 947 { 948 return p->static_prio; 949 } 950 951 /* 952 * Calculate the expected normal priority: i.e. priority 953 * without taking RT-inheritance into account. Might be 954 * boosted by interactivity modifiers. Changes upon fork, 955 * setprio syscalls, and whenever the interactivity 956 * estimator recalculates. 957 */ 958 static inline int normal_prio(struct task_struct *p) 959 { 960 int prio; 961 962 if (task_has_dl_policy(p)) 963 prio = MAX_DL_PRIO-1; 964 else if (task_has_rt_policy(p)) 965 prio = MAX_RT_PRIO-1 - p->rt_priority; 966 else 967 prio = __normal_prio(p); 968 return prio; 969 } 970 971 /* 972 * Calculate the current priority, i.e. the priority 973 * taken into account by the scheduler. This value might 974 * be boosted by RT tasks, or might be boosted by 975 * interactivity modifiers. Will be RT if the task got 976 * RT-boosted. If not then it returns p->normal_prio. 977 */ 978 static int effective_prio(struct task_struct *p) 979 { 980 p->normal_prio = normal_prio(p); 981 /* 982 * If we are RT tasks or we were boosted to RT priority, 983 * keep the priority unchanged. Otherwise, update priority 984 * to the normal priority: 985 */ 986 if (!rt_prio(p->prio)) 987 return p->normal_prio; 988 return p->prio; 989 } 990 991 /** 992 * task_curr - is this task currently executing on a CPU? 993 * @p: the task in question. 994 * 995 * Return: 1 if the task is currently executing. 0 otherwise. 996 */ 997 inline int task_curr(const struct task_struct *p) 998 { 999 return cpu_curr(task_cpu(p)) == p; 1000 } 1001 1002 /* 1003 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1004 * use the balance_callback list if you want balancing. 1005 * 1006 * this means any call to check_class_changed() must be followed by a call to 1007 * balance_callback(). 1008 */ 1009 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1010 const struct sched_class *prev_class, 1011 int oldprio) 1012 { 1013 if (prev_class != p->sched_class) { 1014 if (prev_class->switched_from) 1015 prev_class->switched_from(rq, p); 1016 1017 p->sched_class->switched_to(rq, p); 1018 } else if (oldprio != p->prio || dl_task(p)) 1019 p->sched_class->prio_changed(rq, p, oldprio); 1020 } 1021 1022 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1023 { 1024 const struct sched_class *class; 1025 1026 if (p->sched_class == rq->curr->sched_class) { 1027 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1028 } else { 1029 for_each_class(class) { 1030 if (class == rq->curr->sched_class) 1031 break; 1032 if (class == p->sched_class) { 1033 resched_curr(rq); 1034 break; 1035 } 1036 } 1037 } 1038 1039 /* 1040 * A queue event has occurred, and we're going to schedule. In 1041 * this case, we can save a useless back to back clock update. 1042 */ 1043 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1044 rq_clock_skip_update(rq, true); 1045 } 1046 1047 #ifdef CONFIG_SMP 1048 /* 1049 * This is how migration works: 1050 * 1051 * 1) we invoke migration_cpu_stop() on the target CPU using 1052 * stop_one_cpu(). 1053 * 2) stopper starts to run (implicitly forcing the migrated thread 1054 * off the CPU) 1055 * 3) it checks whether the migrated task is still in the wrong runqueue. 1056 * 4) if it's in the wrong runqueue then the migration thread removes 1057 * it and puts it into the right queue. 1058 * 5) stopper completes and stop_one_cpu() returns and the migration 1059 * is done. 1060 */ 1061 1062 /* 1063 * move_queued_task - move a queued task to new rq. 1064 * 1065 * Returns (locked) new rq. Old rq's lock is released. 1066 */ 1067 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 1068 { 1069 lockdep_assert_held(&rq->lock); 1070 1071 dequeue_task(rq, p, 0); 1072 p->on_rq = TASK_ON_RQ_MIGRATING; 1073 set_task_cpu(p, new_cpu); 1074 raw_spin_unlock(&rq->lock); 1075 1076 rq = cpu_rq(new_cpu); 1077 1078 raw_spin_lock(&rq->lock); 1079 BUG_ON(task_cpu(p) != new_cpu); 1080 p->on_rq = TASK_ON_RQ_QUEUED; 1081 enqueue_task(rq, p, 0); 1082 check_preempt_curr(rq, p, 0); 1083 1084 return rq; 1085 } 1086 1087 struct migration_arg { 1088 struct task_struct *task; 1089 int dest_cpu; 1090 }; 1091 1092 /* 1093 * Move (not current) task off this cpu, onto dest cpu. We're doing 1094 * this because either it can't run here any more (set_cpus_allowed() 1095 * away from this CPU, or CPU going down), or because we're 1096 * attempting to rebalance this task on exec (sched_exec). 1097 * 1098 * So we race with normal scheduler movements, but that's OK, as long 1099 * as the task is no longer on this CPU. 1100 */ 1101 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1102 { 1103 if (unlikely(!cpu_active(dest_cpu))) 1104 return rq; 1105 1106 /* Affinity changed (again). */ 1107 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1108 return rq; 1109 1110 rq = move_queued_task(rq, p, dest_cpu); 1111 1112 return rq; 1113 } 1114 1115 /* 1116 * migration_cpu_stop - this will be executed by a highprio stopper thread 1117 * and performs thread migration by bumping thread off CPU then 1118 * 'pushing' onto another runqueue. 1119 */ 1120 static int migration_cpu_stop(void *data) 1121 { 1122 struct migration_arg *arg = data; 1123 struct task_struct *p = arg->task; 1124 struct rq *rq = this_rq(); 1125 1126 /* 1127 * The original target cpu might have gone down and we might 1128 * be on another cpu but it doesn't matter. 1129 */ 1130 local_irq_disable(); 1131 /* 1132 * We need to explicitly wake pending tasks before running 1133 * __migrate_task() such that we will not miss enforcing cpus_allowed 1134 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1135 */ 1136 sched_ttwu_pending(); 1137 1138 raw_spin_lock(&p->pi_lock); 1139 raw_spin_lock(&rq->lock); 1140 /* 1141 * If task_rq(p) != rq, it cannot be migrated here, because we're 1142 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1143 * we're holding p->pi_lock. 1144 */ 1145 if (task_rq(p) == rq && task_on_rq_queued(p)) 1146 rq = __migrate_task(rq, p, arg->dest_cpu); 1147 raw_spin_unlock(&rq->lock); 1148 raw_spin_unlock(&p->pi_lock); 1149 1150 local_irq_enable(); 1151 return 0; 1152 } 1153 1154 /* 1155 * sched_class::set_cpus_allowed must do the below, but is not required to 1156 * actually call this function. 1157 */ 1158 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1159 { 1160 cpumask_copy(&p->cpus_allowed, new_mask); 1161 p->nr_cpus_allowed = cpumask_weight(new_mask); 1162 } 1163 1164 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1165 { 1166 struct rq *rq = task_rq(p); 1167 bool queued, running; 1168 1169 lockdep_assert_held(&p->pi_lock); 1170 1171 queued = task_on_rq_queued(p); 1172 running = task_current(rq, p); 1173 1174 if (queued) { 1175 /* 1176 * Because __kthread_bind() calls this on blocked tasks without 1177 * holding rq->lock. 1178 */ 1179 lockdep_assert_held(&rq->lock); 1180 dequeue_task(rq, p, 0); 1181 } 1182 if (running) 1183 put_prev_task(rq, p); 1184 1185 p->sched_class->set_cpus_allowed(p, new_mask); 1186 1187 if (running) 1188 p->sched_class->set_curr_task(rq); 1189 if (queued) 1190 enqueue_task(rq, p, 0); 1191 } 1192 1193 /* 1194 * Change a given task's CPU affinity. Migrate the thread to a 1195 * proper CPU and schedule it away if the CPU it's executing on 1196 * is removed from the allowed bitmask. 1197 * 1198 * NOTE: the caller must have a valid reference to the task, the 1199 * task must not exit() & deallocate itself prematurely. The 1200 * call is not atomic; no spinlocks may be held. 1201 */ 1202 static int __set_cpus_allowed_ptr(struct task_struct *p, 1203 const struct cpumask *new_mask, bool check) 1204 { 1205 unsigned long flags; 1206 struct rq *rq; 1207 unsigned int dest_cpu; 1208 int ret = 0; 1209 1210 rq = task_rq_lock(p, &flags); 1211 1212 /* 1213 * Must re-check here, to close a race against __kthread_bind(), 1214 * sched_setaffinity() is not guaranteed to observe the flag. 1215 */ 1216 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1217 ret = -EINVAL; 1218 goto out; 1219 } 1220 1221 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1222 goto out; 1223 1224 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 1225 ret = -EINVAL; 1226 goto out; 1227 } 1228 1229 do_set_cpus_allowed(p, new_mask); 1230 1231 /* Can the task run on the task's current CPU? If so, we're done */ 1232 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1233 goto out; 1234 1235 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 1236 if (task_running(rq, p) || p->state == TASK_WAKING) { 1237 struct migration_arg arg = { p, dest_cpu }; 1238 /* Need help from migration thread: drop lock and wait. */ 1239 task_rq_unlock(rq, p, &flags); 1240 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1241 tlb_migrate_finish(p->mm); 1242 return 0; 1243 } else if (task_on_rq_queued(p)) { 1244 /* 1245 * OK, since we're going to drop the lock immediately 1246 * afterwards anyway. 1247 */ 1248 lockdep_unpin_lock(&rq->lock); 1249 rq = move_queued_task(rq, p, dest_cpu); 1250 lockdep_pin_lock(&rq->lock); 1251 } 1252 out: 1253 task_rq_unlock(rq, p, &flags); 1254 1255 return ret; 1256 } 1257 1258 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1259 { 1260 return __set_cpus_allowed_ptr(p, new_mask, false); 1261 } 1262 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1263 1264 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1265 { 1266 #ifdef CONFIG_SCHED_DEBUG 1267 /* 1268 * We should never call set_task_cpu() on a blocked task, 1269 * ttwu() will sort out the placement. 1270 */ 1271 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1272 !p->on_rq); 1273 1274 #ifdef CONFIG_LOCKDEP 1275 /* 1276 * The caller should hold either p->pi_lock or rq->lock, when changing 1277 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1278 * 1279 * sched_move_task() holds both and thus holding either pins the cgroup, 1280 * see task_group(). 1281 * 1282 * Furthermore, all task_rq users should acquire both locks, see 1283 * task_rq_lock(). 1284 */ 1285 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1286 lockdep_is_held(&task_rq(p)->lock))); 1287 #endif 1288 #endif 1289 1290 trace_sched_migrate_task(p, new_cpu); 1291 1292 if (task_cpu(p) != new_cpu) { 1293 if (p->sched_class->migrate_task_rq) 1294 p->sched_class->migrate_task_rq(p, new_cpu); 1295 p->se.nr_migrations++; 1296 perf_event_task_migrate(p); 1297 } 1298 1299 __set_task_cpu(p, new_cpu); 1300 } 1301 1302 static void __migrate_swap_task(struct task_struct *p, int cpu) 1303 { 1304 if (task_on_rq_queued(p)) { 1305 struct rq *src_rq, *dst_rq; 1306 1307 src_rq = task_rq(p); 1308 dst_rq = cpu_rq(cpu); 1309 1310 deactivate_task(src_rq, p, 0); 1311 set_task_cpu(p, cpu); 1312 activate_task(dst_rq, p, 0); 1313 check_preempt_curr(dst_rq, p, 0); 1314 } else { 1315 /* 1316 * Task isn't running anymore; make it appear like we migrated 1317 * it before it went to sleep. This means on wakeup we make the 1318 * previous cpu our targer instead of where it really is. 1319 */ 1320 p->wake_cpu = cpu; 1321 } 1322 } 1323 1324 struct migration_swap_arg { 1325 struct task_struct *src_task, *dst_task; 1326 int src_cpu, dst_cpu; 1327 }; 1328 1329 static int migrate_swap_stop(void *data) 1330 { 1331 struct migration_swap_arg *arg = data; 1332 struct rq *src_rq, *dst_rq; 1333 int ret = -EAGAIN; 1334 1335 src_rq = cpu_rq(arg->src_cpu); 1336 dst_rq = cpu_rq(arg->dst_cpu); 1337 1338 double_raw_lock(&arg->src_task->pi_lock, 1339 &arg->dst_task->pi_lock); 1340 double_rq_lock(src_rq, dst_rq); 1341 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1342 goto unlock; 1343 1344 if (task_cpu(arg->src_task) != arg->src_cpu) 1345 goto unlock; 1346 1347 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1348 goto unlock; 1349 1350 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1351 goto unlock; 1352 1353 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1354 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1355 1356 ret = 0; 1357 1358 unlock: 1359 double_rq_unlock(src_rq, dst_rq); 1360 raw_spin_unlock(&arg->dst_task->pi_lock); 1361 raw_spin_unlock(&arg->src_task->pi_lock); 1362 1363 return ret; 1364 } 1365 1366 /* 1367 * Cross migrate two tasks 1368 */ 1369 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1370 { 1371 struct migration_swap_arg arg; 1372 int ret = -EINVAL; 1373 1374 arg = (struct migration_swap_arg){ 1375 .src_task = cur, 1376 .src_cpu = task_cpu(cur), 1377 .dst_task = p, 1378 .dst_cpu = task_cpu(p), 1379 }; 1380 1381 if (arg.src_cpu == arg.dst_cpu) 1382 goto out; 1383 1384 /* 1385 * These three tests are all lockless; this is OK since all of them 1386 * will be re-checked with proper locks held further down the line. 1387 */ 1388 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1389 goto out; 1390 1391 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1392 goto out; 1393 1394 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1395 goto out; 1396 1397 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1398 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1399 1400 out: 1401 return ret; 1402 } 1403 1404 /* 1405 * wait_task_inactive - wait for a thread to unschedule. 1406 * 1407 * If @match_state is nonzero, it's the @p->state value just checked and 1408 * not expected to change. If it changes, i.e. @p might have woken up, 1409 * then return zero. When we succeed in waiting for @p to be off its CPU, 1410 * we return a positive number (its total switch count). If a second call 1411 * a short while later returns the same number, the caller can be sure that 1412 * @p has remained unscheduled the whole time. 1413 * 1414 * The caller must ensure that the task *will* unschedule sometime soon, 1415 * else this function might spin for a *long* time. This function can't 1416 * be called with interrupts off, or it may introduce deadlock with 1417 * smp_call_function() if an IPI is sent by the same process we are 1418 * waiting to become inactive. 1419 */ 1420 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1421 { 1422 unsigned long flags; 1423 int running, queued; 1424 unsigned long ncsw; 1425 struct rq *rq; 1426 1427 for (;;) { 1428 /* 1429 * We do the initial early heuristics without holding 1430 * any task-queue locks at all. We'll only try to get 1431 * the runqueue lock when things look like they will 1432 * work out! 1433 */ 1434 rq = task_rq(p); 1435 1436 /* 1437 * If the task is actively running on another CPU 1438 * still, just relax and busy-wait without holding 1439 * any locks. 1440 * 1441 * NOTE! Since we don't hold any locks, it's not 1442 * even sure that "rq" stays as the right runqueue! 1443 * But we don't care, since "task_running()" will 1444 * return false if the runqueue has changed and p 1445 * is actually now running somewhere else! 1446 */ 1447 while (task_running(rq, p)) { 1448 if (match_state && unlikely(p->state != match_state)) 1449 return 0; 1450 cpu_relax(); 1451 } 1452 1453 /* 1454 * Ok, time to look more closely! We need the rq 1455 * lock now, to be *sure*. If we're wrong, we'll 1456 * just go back and repeat. 1457 */ 1458 rq = task_rq_lock(p, &flags); 1459 trace_sched_wait_task(p); 1460 running = task_running(rq, p); 1461 queued = task_on_rq_queued(p); 1462 ncsw = 0; 1463 if (!match_state || p->state == match_state) 1464 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1465 task_rq_unlock(rq, p, &flags); 1466 1467 /* 1468 * If it changed from the expected state, bail out now. 1469 */ 1470 if (unlikely(!ncsw)) 1471 break; 1472 1473 /* 1474 * Was it really running after all now that we 1475 * checked with the proper locks actually held? 1476 * 1477 * Oops. Go back and try again.. 1478 */ 1479 if (unlikely(running)) { 1480 cpu_relax(); 1481 continue; 1482 } 1483 1484 /* 1485 * It's not enough that it's not actively running, 1486 * it must be off the runqueue _entirely_, and not 1487 * preempted! 1488 * 1489 * So if it was still runnable (but just not actively 1490 * running right now), it's preempted, and we should 1491 * yield - it could be a while. 1492 */ 1493 if (unlikely(queued)) { 1494 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1495 1496 set_current_state(TASK_UNINTERRUPTIBLE); 1497 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1498 continue; 1499 } 1500 1501 /* 1502 * Ahh, all good. It wasn't running, and it wasn't 1503 * runnable, which means that it will never become 1504 * running in the future either. We're all done! 1505 */ 1506 break; 1507 } 1508 1509 return ncsw; 1510 } 1511 1512 /*** 1513 * kick_process - kick a running thread to enter/exit the kernel 1514 * @p: the to-be-kicked thread 1515 * 1516 * Cause a process which is running on another CPU to enter 1517 * kernel-mode, without any delay. (to get signals handled.) 1518 * 1519 * NOTE: this function doesn't have to take the runqueue lock, 1520 * because all it wants to ensure is that the remote task enters 1521 * the kernel. If the IPI races and the task has been migrated 1522 * to another CPU then no harm is done and the purpose has been 1523 * achieved as well. 1524 */ 1525 void kick_process(struct task_struct *p) 1526 { 1527 int cpu; 1528 1529 preempt_disable(); 1530 cpu = task_cpu(p); 1531 if ((cpu != smp_processor_id()) && task_curr(p)) 1532 smp_send_reschedule(cpu); 1533 preempt_enable(); 1534 } 1535 EXPORT_SYMBOL_GPL(kick_process); 1536 1537 /* 1538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1539 */ 1540 static int select_fallback_rq(int cpu, struct task_struct *p) 1541 { 1542 int nid = cpu_to_node(cpu); 1543 const struct cpumask *nodemask = NULL; 1544 enum { cpuset, possible, fail } state = cpuset; 1545 int dest_cpu; 1546 1547 /* 1548 * If the node that the cpu is on has been offlined, cpu_to_node() 1549 * will return -1. There is no cpu on the node, and we should 1550 * select the cpu on the other node. 1551 */ 1552 if (nid != -1) { 1553 nodemask = cpumask_of_node(nid); 1554 1555 /* Look for allowed, online CPU in same node. */ 1556 for_each_cpu(dest_cpu, nodemask) { 1557 if (!cpu_online(dest_cpu)) 1558 continue; 1559 if (!cpu_active(dest_cpu)) 1560 continue; 1561 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1562 return dest_cpu; 1563 } 1564 } 1565 1566 for (;;) { 1567 /* Any allowed, online CPU? */ 1568 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1569 if (!cpu_online(dest_cpu)) 1570 continue; 1571 if (!cpu_active(dest_cpu)) 1572 continue; 1573 goto out; 1574 } 1575 1576 switch (state) { 1577 case cpuset: 1578 /* No more Mr. Nice Guy. */ 1579 cpuset_cpus_allowed_fallback(p); 1580 state = possible; 1581 break; 1582 1583 case possible: 1584 do_set_cpus_allowed(p, cpu_possible_mask); 1585 state = fail; 1586 break; 1587 1588 case fail: 1589 BUG(); 1590 break; 1591 } 1592 } 1593 1594 out: 1595 if (state != cpuset) { 1596 /* 1597 * Don't tell them about moving exiting tasks or 1598 * kernel threads (both mm NULL), since they never 1599 * leave kernel. 1600 */ 1601 if (p->mm && printk_ratelimit()) { 1602 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1603 task_pid_nr(p), p->comm, cpu); 1604 } 1605 } 1606 1607 return dest_cpu; 1608 } 1609 1610 /* 1611 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1612 */ 1613 static inline 1614 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1615 { 1616 lockdep_assert_held(&p->pi_lock); 1617 1618 if (p->nr_cpus_allowed > 1) 1619 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1620 1621 /* 1622 * In order not to call set_task_cpu() on a blocking task we need 1623 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1624 * cpu. 1625 * 1626 * Since this is common to all placement strategies, this lives here. 1627 * 1628 * [ this allows ->select_task() to simply return task_cpu(p) and 1629 * not worry about this generic constraint ] 1630 */ 1631 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1632 !cpu_online(cpu))) 1633 cpu = select_fallback_rq(task_cpu(p), p); 1634 1635 return cpu; 1636 } 1637 1638 static void update_avg(u64 *avg, u64 sample) 1639 { 1640 s64 diff = sample - *avg; 1641 *avg += diff >> 3; 1642 } 1643 1644 #else 1645 1646 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1647 const struct cpumask *new_mask, bool check) 1648 { 1649 return set_cpus_allowed_ptr(p, new_mask); 1650 } 1651 1652 #endif /* CONFIG_SMP */ 1653 1654 static void 1655 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1656 { 1657 #ifdef CONFIG_SCHEDSTATS 1658 struct rq *rq = this_rq(); 1659 1660 #ifdef CONFIG_SMP 1661 int this_cpu = smp_processor_id(); 1662 1663 if (cpu == this_cpu) { 1664 schedstat_inc(rq, ttwu_local); 1665 schedstat_inc(p, se.statistics.nr_wakeups_local); 1666 } else { 1667 struct sched_domain *sd; 1668 1669 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1670 rcu_read_lock(); 1671 for_each_domain(this_cpu, sd) { 1672 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1673 schedstat_inc(sd, ttwu_wake_remote); 1674 break; 1675 } 1676 } 1677 rcu_read_unlock(); 1678 } 1679 1680 if (wake_flags & WF_MIGRATED) 1681 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1682 1683 #endif /* CONFIG_SMP */ 1684 1685 schedstat_inc(rq, ttwu_count); 1686 schedstat_inc(p, se.statistics.nr_wakeups); 1687 1688 if (wake_flags & WF_SYNC) 1689 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1690 1691 #endif /* CONFIG_SCHEDSTATS */ 1692 } 1693 1694 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1695 { 1696 activate_task(rq, p, en_flags); 1697 p->on_rq = TASK_ON_RQ_QUEUED; 1698 1699 /* if a worker is waking up, notify workqueue */ 1700 if (p->flags & PF_WQ_WORKER) 1701 wq_worker_waking_up(p, cpu_of(rq)); 1702 } 1703 1704 /* 1705 * Mark the task runnable and perform wakeup-preemption. 1706 */ 1707 static void 1708 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1709 { 1710 check_preempt_curr(rq, p, wake_flags); 1711 p->state = TASK_RUNNING; 1712 trace_sched_wakeup(p); 1713 1714 #ifdef CONFIG_SMP 1715 if (p->sched_class->task_woken) { 1716 /* 1717 * Our task @p is fully woken up and running; so its safe to 1718 * drop the rq->lock, hereafter rq is only used for statistics. 1719 */ 1720 lockdep_unpin_lock(&rq->lock); 1721 p->sched_class->task_woken(rq, p); 1722 lockdep_pin_lock(&rq->lock); 1723 } 1724 1725 if (rq->idle_stamp) { 1726 u64 delta = rq_clock(rq) - rq->idle_stamp; 1727 u64 max = 2*rq->max_idle_balance_cost; 1728 1729 update_avg(&rq->avg_idle, delta); 1730 1731 if (rq->avg_idle > max) 1732 rq->avg_idle = max; 1733 1734 rq->idle_stamp = 0; 1735 } 1736 #endif 1737 } 1738 1739 static void 1740 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1741 { 1742 lockdep_assert_held(&rq->lock); 1743 1744 #ifdef CONFIG_SMP 1745 if (p->sched_contributes_to_load) 1746 rq->nr_uninterruptible--; 1747 #endif 1748 1749 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1750 ttwu_do_wakeup(rq, p, wake_flags); 1751 } 1752 1753 /* 1754 * Called in case the task @p isn't fully descheduled from its runqueue, 1755 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1756 * since all we need to do is flip p->state to TASK_RUNNING, since 1757 * the task is still ->on_rq. 1758 */ 1759 static int ttwu_remote(struct task_struct *p, int wake_flags) 1760 { 1761 struct rq *rq; 1762 int ret = 0; 1763 1764 rq = __task_rq_lock(p); 1765 if (task_on_rq_queued(p)) { 1766 /* check_preempt_curr() may use rq clock */ 1767 update_rq_clock(rq); 1768 ttwu_do_wakeup(rq, p, wake_flags); 1769 ret = 1; 1770 } 1771 __task_rq_unlock(rq); 1772 1773 return ret; 1774 } 1775 1776 #ifdef CONFIG_SMP 1777 void sched_ttwu_pending(void) 1778 { 1779 struct rq *rq = this_rq(); 1780 struct llist_node *llist = llist_del_all(&rq->wake_list); 1781 struct task_struct *p; 1782 unsigned long flags; 1783 1784 if (!llist) 1785 return; 1786 1787 raw_spin_lock_irqsave(&rq->lock, flags); 1788 lockdep_pin_lock(&rq->lock); 1789 1790 while (llist) { 1791 p = llist_entry(llist, struct task_struct, wake_entry); 1792 llist = llist_next(llist); 1793 ttwu_do_activate(rq, p, 0); 1794 } 1795 1796 lockdep_unpin_lock(&rq->lock); 1797 raw_spin_unlock_irqrestore(&rq->lock, flags); 1798 } 1799 1800 void scheduler_ipi(void) 1801 { 1802 /* 1803 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1804 * TIF_NEED_RESCHED remotely (for the first time) will also send 1805 * this IPI. 1806 */ 1807 preempt_fold_need_resched(); 1808 1809 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1810 return; 1811 1812 /* 1813 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1814 * traditionally all their work was done from the interrupt return 1815 * path. Now that we actually do some work, we need to make sure 1816 * we do call them. 1817 * 1818 * Some archs already do call them, luckily irq_enter/exit nest 1819 * properly. 1820 * 1821 * Arguably we should visit all archs and update all handlers, 1822 * however a fair share of IPIs are still resched only so this would 1823 * somewhat pessimize the simple resched case. 1824 */ 1825 irq_enter(); 1826 sched_ttwu_pending(); 1827 1828 /* 1829 * Check if someone kicked us for doing the nohz idle load balance. 1830 */ 1831 if (unlikely(got_nohz_idle_kick())) { 1832 this_rq()->idle_balance = 1; 1833 raise_softirq_irqoff(SCHED_SOFTIRQ); 1834 } 1835 irq_exit(); 1836 } 1837 1838 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1839 { 1840 struct rq *rq = cpu_rq(cpu); 1841 1842 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1843 if (!set_nr_if_polling(rq->idle)) 1844 smp_send_reschedule(cpu); 1845 else 1846 trace_sched_wake_idle_without_ipi(cpu); 1847 } 1848 } 1849 1850 void wake_up_if_idle(int cpu) 1851 { 1852 struct rq *rq = cpu_rq(cpu); 1853 unsigned long flags; 1854 1855 rcu_read_lock(); 1856 1857 if (!is_idle_task(rcu_dereference(rq->curr))) 1858 goto out; 1859 1860 if (set_nr_if_polling(rq->idle)) { 1861 trace_sched_wake_idle_without_ipi(cpu); 1862 } else { 1863 raw_spin_lock_irqsave(&rq->lock, flags); 1864 if (is_idle_task(rq->curr)) 1865 smp_send_reschedule(cpu); 1866 /* Else cpu is not in idle, do nothing here */ 1867 raw_spin_unlock_irqrestore(&rq->lock, flags); 1868 } 1869 1870 out: 1871 rcu_read_unlock(); 1872 } 1873 1874 bool cpus_share_cache(int this_cpu, int that_cpu) 1875 { 1876 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1877 } 1878 #endif /* CONFIG_SMP */ 1879 1880 static void ttwu_queue(struct task_struct *p, int cpu) 1881 { 1882 struct rq *rq = cpu_rq(cpu); 1883 1884 #if defined(CONFIG_SMP) 1885 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1886 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1887 ttwu_queue_remote(p, cpu); 1888 return; 1889 } 1890 #endif 1891 1892 raw_spin_lock(&rq->lock); 1893 lockdep_pin_lock(&rq->lock); 1894 ttwu_do_activate(rq, p, 0); 1895 lockdep_unpin_lock(&rq->lock); 1896 raw_spin_unlock(&rq->lock); 1897 } 1898 1899 /** 1900 * try_to_wake_up - wake up a thread 1901 * @p: the thread to be awakened 1902 * @state: the mask of task states that can be woken 1903 * @wake_flags: wake modifier flags (WF_*) 1904 * 1905 * Put it on the run-queue if it's not already there. The "current" 1906 * thread is always on the run-queue (except when the actual 1907 * re-schedule is in progress), and as such you're allowed to do 1908 * the simpler "current->state = TASK_RUNNING" to mark yourself 1909 * runnable without the overhead of this. 1910 * 1911 * Return: %true if @p was woken up, %false if it was already running. 1912 * or @state didn't match @p's state. 1913 */ 1914 static int 1915 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1916 { 1917 unsigned long flags; 1918 int cpu, success = 0; 1919 1920 /* 1921 * If we are going to wake up a thread waiting for CONDITION we 1922 * need to ensure that CONDITION=1 done by the caller can not be 1923 * reordered with p->state check below. This pairs with mb() in 1924 * set_current_state() the waiting thread does. 1925 */ 1926 smp_mb__before_spinlock(); 1927 raw_spin_lock_irqsave(&p->pi_lock, flags); 1928 if (!(p->state & state)) 1929 goto out; 1930 1931 trace_sched_waking(p); 1932 1933 success = 1; /* we're going to change ->state */ 1934 cpu = task_cpu(p); 1935 1936 if (p->on_rq && ttwu_remote(p, wake_flags)) 1937 goto stat; 1938 1939 #ifdef CONFIG_SMP 1940 /* 1941 * If the owning (remote) cpu is still in the middle of schedule() with 1942 * this task as prev, wait until its done referencing the task. 1943 */ 1944 while (p->on_cpu) 1945 cpu_relax(); 1946 /* 1947 * Pairs with the smp_wmb() in finish_lock_switch(). 1948 */ 1949 smp_rmb(); 1950 1951 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1952 p->state = TASK_WAKING; 1953 1954 if (p->sched_class->task_waking) 1955 p->sched_class->task_waking(p); 1956 1957 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1958 if (task_cpu(p) != cpu) { 1959 wake_flags |= WF_MIGRATED; 1960 set_task_cpu(p, cpu); 1961 } 1962 #endif /* CONFIG_SMP */ 1963 1964 ttwu_queue(p, cpu); 1965 stat: 1966 ttwu_stat(p, cpu, wake_flags); 1967 out: 1968 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1969 1970 return success; 1971 } 1972 1973 /** 1974 * try_to_wake_up_local - try to wake up a local task with rq lock held 1975 * @p: the thread to be awakened 1976 * 1977 * Put @p on the run-queue if it's not already there. The caller must 1978 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1979 * the current task. 1980 */ 1981 static void try_to_wake_up_local(struct task_struct *p) 1982 { 1983 struct rq *rq = task_rq(p); 1984 1985 if (WARN_ON_ONCE(rq != this_rq()) || 1986 WARN_ON_ONCE(p == current)) 1987 return; 1988 1989 lockdep_assert_held(&rq->lock); 1990 1991 if (!raw_spin_trylock(&p->pi_lock)) { 1992 /* 1993 * This is OK, because current is on_cpu, which avoids it being 1994 * picked for load-balance and preemption/IRQs are still 1995 * disabled avoiding further scheduler activity on it and we've 1996 * not yet picked a replacement task. 1997 */ 1998 lockdep_unpin_lock(&rq->lock); 1999 raw_spin_unlock(&rq->lock); 2000 raw_spin_lock(&p->pi_lock); 2001 raw_spin_lock(&rq->lock); 2002 lockdep_pin_lock(&rq->lock); 2003 } 2004 2005 if (!(p->state & TASK_NORMAL)) 2006 goto out; 2007 2008 trace_sched_waking(p); 2009 2010 if (!task_on_rq_queued(p)) 2011 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2012 2013 ttwu_do_wakeup(rq, p, 0); 2014 ttwu_stat(p, smp_processor_id(), 0); 2015 out: 2016 raw_spin_unlock(&p->pi_lock); 2017 } 2018 2019 /** 2020 * wake_up_process - Wake up a specific process 2021 * @p: The process to be woken up. 2022 * 2023 * Attempt to wake up the nominated process and move it to the set of runnable 2024 * processes. 2025 * 2026 * Return: 1 if the process was woken up, 0 if it was already running. 2027 * 2028 * It may be assumed that this function implies a write memory barrier before 2029 * changing the task state if and only if any tasks are woken up. 2030 */ 2031 int wake_up_process(struct task_struct *p) 2032 { 2033 WARN_ON(task_is_stopped_or_traced(p)); 2034 return try_to_wake_up(p, TASK_NORMAL, 0); 2035 } 2036 EXPORT_SYMBOL(wake_up_process); 2037 2038 int wake_up_state(struct task_struct *p, unsigned int state) 2039 { 2040 return try_to_wake_up(p, state, 0); 2041 } 2042 2043 /* 2044 * This function clears the sched_dl_entity static params. 2045 */ 2046 void __dl_clear_params(struct task_struct *p) 2047 { 2048 struct sched_dl_entity *dl_se = &p->dl; 2049 2050 dl_se->dl_runtime = 0; 2051 dl_se->dl_deadline = 0; 2052 dl_se->dl_period = 0; 2053 dl_se->flags = 0; 2054 dl_se->dl_bw = 0; 2055 2056 dl_se->dl_throttled = 0; 2057 dl_se->dl_new = 1; 2058 dl_se->dl_yielded = 0; 2059 } 2060 2061 /* 2062 * Perform scheduler related setup for a newly forked process p. 2063 * p is forked by current. 2064 * 2065 * __sched_fork() is basic setup used by init_idle() too: 2066 */ 2067 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2068 { 2069 p->on_rq = 0; 2070 2071 p->se.on_rq = 0; 2072 p->se.exec_start = 0; 2073 p->se.sum_exec_runtime = 0; 2074 p->se.prev_sum_exec_runtime = 0; 2075 p->se.nr_migrations = 0; 2076 p->se.vruntime = 0; 2077 INIT_LIST_HEAD(&p->se.group_node); 2078 2079 #ifdef CONFIG_SCHEDSTATS 2080 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2081 #endif 2082 2083 RB_CLEAR_NODE(&p->dl.rb_node); 2084 init_dl_task_timer(&p->dl); 2085 __dl_clear_params(p); 2086 2087 INIT_LIST_HEAD(&p->rt.run_list); 2088 2089 #ifdef CONFIG_PREEMPT_NOTIFIERS 2090 INIT_HLIST_HEAD(&p->preempt_notifiers); 2091 #endif 2092 2093 #ifdef CONFIG_NUMA_BALANCING 2094 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2095 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2096 p->mm->numa_scan_seq = 0; 2097 } 2098 2099 if (clone_flags & CLONE_VM) 2100 p->numa_preferred_nid = current->numa_preferred_nid; 2101 else 2102 p->numa_preferred_nid = -1; 2103 2104 p->node_stamp = 0ULL; 2105 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2106 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2107 p->numa_work.next = &p->numa_work; 2108 p->numa_faults = NULL; 2109 p->last_task_numa_placement = 0; 2110 p->last_sum_exec_runtime = 0; 2111 2112 p->numa_group = NULL; 2113 #endif /* CONFIG_NUMA_BALANCING */ 2114 } 2115 2116 #ifdef CONFIG_NUMA_BALANCING 2117 #ifdef CONFIG_SCHED_DEBUG 2118 void set_numabalancing_state(bool enabled) 2119 { 2120 if (enabled) 2121 sched_feat_set("NUMA"); 2122 else 2123 sched_feat_set("NO_NUMA"); 2124 } 2125 #else 2126 __read_mostly bool numabalancing_enabled; 2127 2128 void set_numabalancing_state(bool enabled) 2129 { 2130 numabalancing_enabled = enabled; 2131 } 2132 #endif /* CONFIG_SCHED_DEBUG */ 2133 2134 #ifdef CONFIG_PROC_SYSCTL 2135 int sysctl_numa_balancing(struct ctl_table *table, int write, 2136 void __user *buffer, size_t *lenp, loff_t *ppos) 2137 { 2138 struct ctl_table t; 2139 int err; 2140 int state = numabalancing_enabled; 2141 2142 if (write && !capable(CAP_SYS_ADMIN)) 2143 return -EPERM; 2144 2145 t = *table; 2146 t.data = &state; 2147 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2148 if (err < 0) 2149 return err; 2150 if (write) 2151 set_numabalancing_state(state); 2152 return err; 2153 } 2154 #endif 2155 #endif 2156 2157 /* 2158 * fork()/clone()-time setup: 2159 */ 2160 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2161 { 2162 unsigned long flags; 2163 int cpu = get_cpu(); 2164 2165 __sched_fork(clone_flags, p); 2166 /* 2167 * We mark the process as running here. This guarantees that 2168 * nobody will actually run it, and a signal or other external 2169 * event cannot wake it up and insert it on the runqueue either. 2170 */ 2171 p->state = TASK_RUNNING; 2172 2173 /* 2174 * Make sure we do not leak PI boosting priority to the child. 2175 */ 2176 p->prio = current->normal_prio; 2177 2178 /* 2179 * Revert to default priority/policy on fork if requested. 2180 */ 2181 if (unlikely(p->sched_reset_on_fork)) { 2182 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2183 p->policy = SCHED_NORMAL; 2184 p->static_prio = NICE_TO_PRIO(0); 2185 p->rt_priority = 0; 2186 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2187 p->static_prio = NICE_TO_PRIO(0); 2188 2189 p->prio = p->normal_prio = __normal_prio(p); 2190 set_load_weight(p); 2191 2192 /* 2193 * We don't need the reset flag anymore after the fork. It has 2194 * fulfilled its duty: 2195 */ 2196 p->sched_reset_on_fork = 0; 2197 } 2198 2199 if (dl_prio(p->prio)) { 2200 put_cpu(); 2201 return -EAGAIN; 2202 } else if (rt_prio(p->prio)) { 2203 p->sched_class = &rt_sched_class; 2204 } else { 2205 p->sched_class = &fair_sched_class; 2206 } 2207 2208 if (p->sched_class->task_fork) 2209 p->sched_class->task_fork(p); 2210 2211 /* 2212 * The child is not yet in the pid-hash so no cgroup attach races, 2213 * and the cgroup is pinned to this child due to cgroup_fork() 2214 * is ran before sched_fork(). 2215 * 2216 * Silence PROVE_RCU. 2217 */ 2218 raw_spin_lock_irqsave(&p->pi_lock, flags); 2219 set_task_cpu(p, cpu); 2220 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2221 2222 #ifdef CONFIG_SCHED_INFO 2223 if (likely(sched_info_on())) 2224 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2225 #endif 2226 #if defined(CONFIG_SMP) 2227 p->on_cpu = 0; 2228 #endif 2229 init_task_preempt_count(p); 2230 #ifdef CONFIG_SMP 2231 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2232 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2233 #endif 2234 2235 put_cpu(); 2236 return 0; 2237 } 2238 2239 unsigned long to_ratio(u64 period, u64 runtime) 2240 { 2241 if (runtime == RUNTIME_INF) 2242 return 1ULL << 20; 2243 2244 /* 2245 * Doing this here saves a lot of checks in all 2246 * the calling paths, and returning zero seems 2247 * safe for them anyway. 2248 */ 2249 if (period == 0) 2250 return 0; 2251 2252 return div64_u64(runtime << 20, period); 2253 } 2254 2255 #ifdef CONFIG_SMP 2256 inline struct dl_bw *dl_bw_of(int i) 2257 { 2258 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2259 "sched RCU must be held"); 2260 return &cpu_rq(i)->rd->dl_bw; 2261 } 2262 2263 static inline int dl_bw_cpus(int i) 2264 { 2265 struct root_domain *rd = cpu_rq(i)->rd; 2266 int cpus = 0; 2267 2268 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2269 "sched RCU must be held"); 2270 for_each_cpu_and(i, rd->span, cpu_active_mask) 2271 cpus++; 2272 2273 return cpus; 2274 } 2275 #else 2276 inline struct dl_bw *dl_bw_of(int i) 2277 { 2278 return &cpu_rq(i)->dl.dl_bw; 2279 } 2280 2281 static inline int dl_bw_cpus(int i) 2282 { 2283 return 1; 2284 } 2285 #endif 2286 2287 /* 2288 * We must be sure that accepting a new task (or allowing changing the 2289 * parameters of an existing one) is consistent with the bandwidth 2290 * constraints. If yes, this function also accordingly updates the currently 2291 * allocated bandwidth to reflect the new situation. 2292 * 2293 * This function is called while holding p's rq->lock. 2294 * 2295 * XXX we should delay bw change until the task's 0-lag point, see 2296 * __setparam_dl(). 2297 */ 2298 static int dl_overflow(struct task_struct *p, int policy, 2299 const struct sched_attr *attr) 2300 { 2301 2302 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2303 u64 period = attr->sched_period ?: attr->sched_deadline; 2304 u64 runtime = attr->sched_runtime; 2305 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2306 int cpus, err = -1; 2307 2308 if (new_bw == p->dl.dl_bw) 2309 return 0; 2310 2311 /* 2312 * Either if a task, enters, leave, or stays -deadline but changes 2313 * its parameters, we may need to update accordingly the total 2314 * allocated bandwidth of the container. 2315 */ 2316 raw_spin_lock(&dl_b->lock); 2317 cpus = dl_bw_cpus(task_cpu(p)); 2318 if (dl_policy(policy) && !task_has_dl_policy(p) && 2319 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2320 __dl_add(dl_b, new_bw); 2321 err = 0; 2322 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2323 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2324 __dl_clear(dl_b, p->dl.dl_bw); 2325 __dl_add(dl_b, new_bw); 2326 err = 0; 2327 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2328 __dl_clear(dl_b, p->dl.dl_bw); 2329 err = 0; 2330 } 2331 raw_spin_unlock(&dl_b->lock); 2332 2333 return err; 2334 } 2335 2336 extern void init_dl_bw(struct dl_bw *dl_b); 2337 2338 /* 2339 * wake_up_new_task - wake up a newly created task for the first time. 2340 * 2341 * This function will do some initial scheduler statistics housekeeping 2342 * that must be done for every newly created context, then puts the task 2343 * on the runqueue and wakes it. 2344 */ 2345 void wake_up_new_task(struct task_struct *p) 2346 { 2347 unsigned long flags; 2348 struct rq *rq; 2349 2350 raw_spin_lock_irqsave(&p->pi_lock, flags); 2351 #ifdef CONFIG_SMP 2352 /* 2353 * Fork balancing, do it here and not earlier because: 2354 * - cpus_allowed can change in the fork path 2355 * - any previously selected cpu might disappear through hotplug 2356 */ 2357 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2358 #endif 2359 2360 /* Initialize new task's runnable average */ 2361 init_entity_runnable_average(&p->se); 2362 rq = __task_rq_lock(p); 2363 activate_task(rq, p, 0); 2364 p->on_rq = TASK_ON_RQ_QUEUED; 2365 trace_sched_wakeup_new(p); 2366 check_preempt_curr(rq, p, WF_FORK); 2367 #ifdef CONFIG_SMP 2368 if (p->sched_class->task_woken) 2369 p->sched_class->task_woken(rq, p); 2370 #endif 2371 task_rq_unlock(rq, p, &flags); 2372 } 2373 2374 #ifdef CONFIG_PREEMPT_NOTIFIERS 2375 2376 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2377 2378 void preempt_notifier_inc(void) 2379 { 2380 static_key_slow_inc(&preempt_notifier_key); 2381 } 2382 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2383 2384 void preempt_notifier_dec(void) 2385 { 2386 static_key_slow_dec(&preempt_notifier_key); 2387 } 2388 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2389 2390 /** 2391 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2392 * @notifier: notifier struct to register 2393 */ 2394 void preempt_notifier_register(struct preempt_notifier *notifier) 2395 { 2396 if (!static_key_false(&preempt_notifier_key)) 2397 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2398 2399 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2400 } 2401 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2402 2403 /** 2404 * preempt_notifier_unregister - no longer interested in preemption notifications 2405 * @notifier: notifier struct to unregister 2406 * 2407 * This is *not* safe to call from within a preemption notifier. 2408 */ 2409 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2410 { 2411 hlist_del(¬ifier->link); 2412 } 2413 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2414 2415 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2416 { 2417 struct preempt_notifier *notifier; 2418 2419 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2420 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2421 } 2422 2423 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2424 { 2425 if (static_key_false(&preempt_notifier_key)) 2426 __fire_sched_in_preempt_notifiers(curr); 2427 } 2428 2429 static void 2430 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2431 struct task_struct *next) 2432 { 2433 struct preempt_notifier *notifier; 2434 2435 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2436 notifier->ops->sched_out(notifier, next); 2437 } 2438 2439 static __always_inline void 2440 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2441 struct task_struct *next) 2442 { 2443 if (static_key_false(&preempt_notifier_key)) 2444 __fire_sched_out_preempt_notifiers(curr, next); 2445 } 2446 2447 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2448 2449 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2450 { 2451 } 2452 2453 static inline void 2454 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2455 struct task_struct *next) 2456 { 2457 } 2458 2459 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2460 2461 /** 2462 * prepare_task_switch - prepare to switch tasks 2463 * @rq: the runqueue preparing to switch 2464 * @prev: the current task that is being switched out 2465 * @next: the task we are going to switch to. 2466 * 2467 * This is called with the rq lock held and interrupts off. It must 2468 * be paired with a subsequent finish_task_switch after the context 2469 * switch. 2470 * 2471 * prepare_task_switch sets up locking and calls architecture specific 2472 * hooks. 2473 */ 2474 static inline void 2475 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2476 struct task_struct *next) 2477 { 2478 trace_sched_switch(prev, next); 2479 sched_info_switch(rq, prev, next); 2480 perf_event_task_sched_out(prev, next); 2481 fire_sched_out_preempt_notifiers(prev, next); 2482 prepare_lock_switch(rq, next); 2483 prepare_arch_switch(next); 2484 } 2485 2486 /** 2487 * finish_task_switch - clean up after a task-switch 2488 * @prev: the thread we just switched away from. 2489 * 2490 * finish_task_switch must be called after the context switch, paired 2491 * with a prepare_task_switch call before the context switch. 2492 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2493 * and do any other architecture-specific cleanup actions. 2494 * 2495 * Note that we may have delayed dropping an mm in context_switch(). If 2496 * so, we finish that here outside of the runqueue lock. (Doing it 2497 * with the lock held can cause deadlocks; see schedule() for 2498 * details.) 2499 * 2500 * The context switch have flipped the stack from under us and restored the 2501 * local variables which were saved when this task called schedule() in the 2502 * past. prev == current is still correct but we need to recalculate this_rq 2503 * because prev may have moved to another CPU. 2504 */ 2505 static struct rq *finish_task_switch(struct task_struct *prev) 2506 __releases(rq->lock) 2507 { 2508 struct rq *rq = this_rq(); 2509 struct mm_struct *mm = rq->prev_mm; 2510 long prev_state; 2511 2512 rq->prev_mm = NULL; 2513 2514 /* 2515 * A task struct has one reference for the use as "current". 2516 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2517 * schedule one last time. The schedule call will never return, and 2518 * the scheduled task must drop that reference. 2519 * The test for TASK_DEAD must occur while the runqueue locks are 2520 * still held, otherwise prev could be scheduled on another cpu, die 2521 * there before we look at prev->state, and then the reference would 2522 * be dropped twice. 2523 * Manfred Spraul <manfred@colorfullife.com> 2524 */ 2525 prev_state = prev->state; 2526 vtime_task_switch(prev); 2527 perf_event_task_sched_in(prev, current); 2528 finish_lock_switch(rq, prev); 2529 finish_arch_post_lock_switch(); 2530 2531 fire_sched_in_preempt_notifiers(current); 2532 if (mm) 2533 mmdrop(mm); 2534 if (unlikely(prev_state == TASK_DEAD)) { 2535 if (prev->sched_class->task_dead) 2536 prev->sched_class->task_dead(prev); 2537 2538 /* 2539 * Remove function-return probe instances associated with this 2540 * task and put them back on the free list. 2541 */ 2542 kprobe_flush_task(prev); 2543 put_task_struct(prev); 2544 } 2545 2546 tick_nohz_task_switch(current); 2547 return rq; 2548 } 2549 2550 #ifdef CONFIG_SMP 2551 2552 /* rq->lock is NOT held, but preemption is disabled */ 2553 static void __balance_callback(struct rq *rq) 2554 { 2555 struct callback_head *head, *next; 2556 void (*func)(struct rq *rq); 2557 unsigned long flags; 2558 2559 raw_spin_lock_irqsave(&rq->lock, flags); 2560 head = rq->balance_callback; 2561 rq->balance_callback = NULL; 2562 while (head) { 2563 func = (void (*)(struct rq *))head->func; 2564 next = head->next; 2565 head->next = NULL; 2566 head = next; 2567 2568 func(rq); 2569 } 2570 raw_spin_unlock_irqrestore(&rq->lock, flags); 2571 } 2572 2573 static inline void balance_callback(struct rq *rq) 2574 { 2575 if (unlikely(rq->balance_callback)) 2576 __balance_callback(rq); 2577 } 2578 2579 #else 2580 2581 static inline void balance_callback(struct rq *rq) 2582 { 2583 } 2584 2585 #endif 2586 2587 /** 2588 * schedule_tail - first thing a freshly forked thread must call. 2589 * @prev: the thread we just switched away from. 2590 */ 2591 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2592 __releases(rq->lock) 2593 { 2594 struct rq *rq; 2595 2596 /* finish_task_switch() drops rq->lock and enables preemtion */ 2597 preempt_disable(); 2598 rq = finish_task_switch(prev); 2599 balance_callback(rq); 2600 preempt_enable(); 2601 2602 if (current->set_child_tid) 2603 put_user(task_pid_vnr(current), current->set_child_tid); 2604 } 2605 2606 /* 2607 * context_switch - switch to the new MM and the new thread's register state. 2608 */ 2609 static inline struct rq * 2610 context_switch(struct rq *rq, struct task_struct *prev, 2611 struct task_struct *next) 2612 { 2613 struct mm_struct *mm, *oldmm; 2614 2615 prepare_task_switch(rq, prev, next); 2616 2617 mm = next->mm; 2618 oldmm = prev->active_mm; 2619 /* 2620 * For paravirt, this is coupled with an exit in switch_to to 2621 * combine the page table reload and the switch backend into 2622 * one hypercall. 2623 */ 2624 arch_start_context_switch(prev); 2625 2626 if (!mm) { 2627 next->active_mm = oldmm; 2628 atomic_inc(&oldmm->mm_count); 2629 enter_lazy_tlb(oldmm, next); 2630 } else 2631 switch_mm(oldmm, mm, next); 2632 2633 if (!prev->mm) { 2634 prev->active_mm = NULL; 2635 rq->prev_mm = oldmm; 2636 } 2637 /* 2638 * Since the runqueue lock will be released by the next 2639 * task (which is an invalid locking op but in the case 2640 * of the scheduler it's an obvious special-case), so we 2641 * do an early lockdep release here: 2642 */ 2643 lockdep_unpin_lock(&rq->lock); 2644 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2645 2646 /* Here we just switch the register state and the stack. */ 2647 switch_to(prev, next, prev); 2648 barrier(); 2649 2650 return finish_task_switch(prev); 2651 } 2652 2653 /* 2654 * nr_running and nr_context_switches: 2655 * 2656 * externally visible scheduler statistics: current number of runnable 2657 * threads, total number of context switches performed since bootup. 2658 */ 2659 unsigned long nr_running(void) 2660 { 2661 unsigned long i, sum = 0; 2662 2663 for_each_online_cpu(i) 2664 sum += cpu_rq(i)->nr_running; 2665 2666 return sum; 2667 } 2668 2669 /* 2670 * Check if only the current task is running on the cpu. 2671 */ 2672 bool single_task_running(void) 2673 { 2674 if (cpu_rq(smp_processor_id())->nr_running == 1) 2675 return true; 2676 else 2677 return false; 2678 } 2679 EXPORT_SYMBOL(single_task_running); 2680 2681 unsigned long long nr_context_switches(void) 2682 { 2683 int i; 2684 unsigned long long sum = 0; 2685 2686 for_each_possible_cpu(i) 2687 sum += cpu_rq(i)->nr_switches; 2688 2689 return sum; 2690 } 2691 2692 unsigned long nr_iowait(void) 2693 { 2694 unsigned long i, sum = 0; 2695 2696 for_each_possible_cpu(i) 2697 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2698 2699 return sum; 2700 } 2701 2702 unsigned long nr_iowait_cpu(int cpu) 2703 { 2704 struct rq *this = cpu_rq(cpu); 2705 return atomic_read(&this->nr_iowait); 2706 } 2707 2708 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2709 { 2710 struct rq *rq = this_rq(); 2711 *nr_waiters = atomic_read(&rq->nr_iowait); 2712 *load = rq->load.weight; 2713 } 2714 2715 #ifdef CONFIG_SMP 2716 2717 /* 2718 * sched_exec - execve() is a valuable balancing opportunity, because at 2719 * this point the task has the smallest effective memory and cache footprint. 2720 */ 2721 void sched_exec(void) 2722 { 2723 struct task_struct *p = current; 2724 unsigned long flags; 2725 int dest_cpu; 2726 2727 raw_spin_lock_irqsave(&p->pi_lock, flags); 2728 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2729 if (dest_cpu == smp_processor_id()) 2730 goto unlock; 2731 2732 if (likely(cpu_active(dest_cpu))) { 2733 struct migration_arg arg = { p, dest_cpu }; 2734 2735 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2736 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2737 return; 2738 } 2739 unlock: 2740 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2741 } 2742 2743 #endif 2744 2745 DEFINE_PER_CPU(struct kernel_stat, kstat); 2746 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2747 2748 EXPORT_PER_CPU_SYMBOL(kstat); 2749 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2750 2751 /* 2752 * Return accounted runtime for the task. 2753 * In case the task is currently running, return the runtime plus current's 2754 * pending runtime that have not been accounted yet. 2755 */ 2756 unsigned long long task_sched_runtime(struct task_struct *p) 2757 { 2758 unsigned long flags; 2759 struct rq *rq; 2760 u64 ns; 2761 2762 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2763 /* 2764 * 64-bit doesn't need locks to atomically read a 64bit value. 2765 * So we have a optimization chance when the task's delta_exec is 0. 2766 * Reading ->on_cpu is racy, but this is ok. 2767 * 2768 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2769 * If we race with it entering cpu, unaccounted time is 0. This is 2770 * indistinguishable from the read occurring a few cycles earlier. 2771 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2772 * been accounted, so we're correct here as well. 2773 */ 2774 if (!p->on_cpu || !task_on_rq_queued(p)) 2775 return p->se.sum_exec_runtime; 2776 #endif 2777 2778 rq = task_rq_lock(p, &flags); 2779 /* 2780 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2781 * project cycles that may never be accounted to this 2782 * thread, breaking clock_gettime(). 2783 */ 2784 if (task_current(rq, p) && task_on_rq_queued(p)) { 2785 update_rq_clock(rq); 2786 p->sched_class->update_curr(rq); 2787 } 2788 ns = p->se.sum_exec_runtime; 2789 task_rq_unlock(rq, p, &flags); 2790 2791 return ns; 2792 } 2793 2794 /* 2795 * This function gets called by the timer code, with HZ frequency. 2796 * We call it with interrupts disabled. 2797 */ 2798 void scheduler_tick(void) 2799 { 2800 int cpu = smp_processor_id(); 2801 struct rq *rq = cpu_rq(cpu); 2802 struct task_struct *curr = rq->curr; 2803 2804 sched_clock_tick(); 2805 2806 raw_spin_lock(&rq->lock); 2807 update_rq_clock(rq); 2808 curr->sched_class->task_tick(rq, curr, 0); 2809 update_cpu_load_active(rq); 2810 calc_global_load_tick(rq); 2811 raw_spin_unlock(&rq->lock); 2812 2813 perf_event_task_tick(); 2814 2815 #ifdef CONFIG_SMP 2816 rq->idle_balance = idle_cpu(cpu); 2817 trigger_load_balance(rq); 2818 #endif 2819 rq_last_tick_reset(rq); 2820 } 2821 2822 #ifdef CONFIG_NO_HZ_FULL 2823 /** 2824 * scheduler_tick_max_deferment 2825 * 2826 * Keep at least one tick per second when a single 2827 * active task is running because the scheduler doesn't 2828 * yet completely support full dynticks environment. 2829 * 2830 * This makes sure that uptime, CFS vruntime, load 2831 * balancing, etc... continue to move forward, even 2832 * with a very low granularity. 2833 * 2834 * Return: Maximum deferment in nanoseconds. 2835 */ 2836 u64 scheduler_tick_max_deferment(void) 2837 { 2838 struct rq *rq = this_rq(); 2839 unsigned long next, now = READ_ONCE(jiffies); 2840 2841 next = rq->last_sched_tick + HZ; 2842 2843 if (time_before_eq(next, now)) 2844 return 0; 2845 2846 return jiffies_to_nsecs(next - now); 2847 } 2848 #endif 2849 2850 notrace unsigned long get_parent_ip(unsigned long addr) 2851 { 2852 if (in_lock_functions(addr)) { 2853 addr = CALLER_ADDR2; 2854 if (in_lock_functions(addr)) 2855 addr = CALLER_ADDR3; 2856 } 2857 return addr; 2858 } 2859 2860 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2861 defined(CONFIG_PREEMPT_TRACER)) 2862 2863 void preempt_count_add(int val) 2864 { 2865 #ifdef CONFIG_DEBUG_PREEMPT 2866 /* 2867 * Underflow? 2868 */ 2869 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2870 return; 2871 #endif 2872 __preempt_count_add(val); 2873 #ifdef CONFIG_DEBUG_PREEMPT 2874 /* 2875 * Spinlock count overflowing soon? 2876 */ 2877 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2878 PREEMPT_MASK - 10); 2879 #endif 2880 if (preempt_count() == val) { 2881 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2882 #ifdef CONFIG_DEBUG_PREEMPT 2883 current->preempt_disable_ip = ip; 2884 #endif 2885 trace_preempt_off(CALLER_ADDR0, ip); 2886 } 2887 } 2888 EXPORT_SYMBOL(preempt_count_add); 2889 NOKPROBE_SYMBOL(preempt_count_add); 2890 2891 void preempt_count_sub(int val) 2892 { 2893 #ifdef CONFIG_DEBUG_PREEMPT 2894 /* 2895 * Underflow? 2896 */ 2897 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2898 return; 2899 /* 2900 * Is the spinlock portion underflowing? 2901 */ 2902 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2903 !(preempt_count() & PREEMPT_MASK))) 2904 return; 2905 #endif 2906 2907 if (preempt_count() == val) 2908 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2909 __preempt_count_sub(val); 2910 } 2911 EXPORT_SYMBOL(preempt_count_sub); 2912 NOKPROBE_SYMBOL(preempt_count_sub); 2913 2914 #endif 2915 2916 /* 2917 * Print scheduling while atomic bug: 2918 */ 2919 static noinline void __schedule_bug(struct task_struct *prev) 2920 { 2921 if (oops_in_progress) 2922 return; 2923 2924 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2925 prev->comm, prev->pid, preempt_count()); 2926 2927 debug_show_held_locks(prev); 2928 print_modules(); 2929 if (irqs_disabled()) 2930 print_irqtrace_events(prev); 2931 #ifdef CONFIG_DEBUG_PREEMPT 2932 if (in_atomic_preempt_off()) { 2933 pr_err("Preemption disabled at:"); 2934 print_ip_sym(current->preempt_disable_ip); 2935 pr_cont("\n"); 2936 } 2937 #endif 2938 dump_stack(); 2939 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2940 } 2941 2942 /* 2943 * Various schedule()-time debugging checks and statistics: 2944 */ 2945 static inline void schedule_debug(struct task_struct *prev) 2946 { 2947 #ifdef CONFIG_SCHED_STACK_END_CHECK 2948 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2949 #endif 2950 /* 2951 * Test if we are atomic. Since do_exit() needs to call into 2952 * schedule() atomically, we ignore that path. Otherwise whine 2953 * if we are scheduling when we should not. 2954 */ 2955 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2956 __schedule_bug(prev); 2957 rcu_sleep_check(); 2958 2959 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2960 2961 schedstat_inc(this_rq(), sched_count); 2962 } 2963 2964 /* 2965 * Pick up the highest-prio task: 2966 */ 2967 static inline struct task_struct * 2968 pick_next_task(struct rq *rq, struct task_struct *prev) 2969 { 2970 const struct sched_class *class = &fair_sched_class; 2971 struct task_struct *p; 2972 2973 /* 2974 * Optimization: we know that if all tasks are in 2975 * the fair class we can call that function directly: 2976 */ 2977 if (likely(prev->sched_class == class && 2978 rq->nr_running == rq->cfs.h_nr_running)) { 2979 p = fair_sched_class.pick_next_task(rq, prev); 2980 if (unlikely(p == RETRY_TASK)) 2981 goto again; 2982 2983 /* assumes fair_sched_class->next == idle_sched_class */ 2984 if (unlikely(!p)) 2985 p = idle_sched_class.pick_next_task(rq, prev); 2986 2987 return p; 2988 } 2989 2990 again: 2991 for_each_class(class) { 2992 p = class->pick_next_task(rq, prev); 2993 if (p) { 2994 if (unlikely(p == RETRY_TASK)) 2995 goto again; 2996 return p; 2997 } 2998 } 2999 3000 BUG(); /* the idle class will always have a runnable task */ 3001 } 3002 3003 /* 3004 * __schedule() is the main scheduler function. 3005 * 3006 * The main means of driving the scheduler and thus entering this function are: 3007 * 3008 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3009 * 3010 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3011 * paths. For example, see arch/x86/entry_64.S. 3012 * 3013 * To drive preemption between tasks, the scheduler sets the flag in timer 3014 * interrupt handler scheduler_tick(). 3015 * 3016 * 3. Wakeups don't really cause entry into schedule(). They add a 3017 * task to the run-queue and that's it. 3018 * 3019 * Now, if the new task added to the run-queue preempts the current 3020 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3021 * called on the nearest possible occasion: 3022 * 3023 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3024 * 3025 * - in syscall or exception context, at the next outmost 3026 * preempt_enable(). (this might be as soon as the wake_up()'s 3027 * spin_unlock()!) 3028 * 3029 * - in IRQ context, return from interrupt-handler to 3030 * preemptible context 3031 * 3032 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3033 * then at the next: 3034 * 3035 * - cond_resched() call 3036 * - explicit schedule() call 3037 * - return from syscall or exception to user-space 3038 * - return from interrupt-handler to user-space 3039 * 3040 * WARNING: must be called with preemption disabled! 3041 */ 3042 static void __sched __schedule(void) 3043 { 3044 struct task_struct *prev, *next; 3045 unsigned long *switch_count; 3046 struct rq *rq; 3047 int cpu; 3048 3049 cpu = smp_processor_id(); 3050 rq = cpu_rq(cpu); 3051 rcu_note_context_switch(); 3052 prev = rq->curr; 3053 3054 schedule_debug(prev); 3055 3056 if (sched_feat(HRTICK)) 3057 hrtick_clear(rq); 3058 3059 /* 3060 * Make sure that signal_pending_state()->signal_pending() below 3061 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3062 * done by the caller to avoid the race with signal_wake_up(). 3063 */ 3064 smp_mb__before_spinlock(); 3065 raw_spin_lock_irq(&rq->lock); 3066 lockdep_pin_lock(&rq->lock); 3067 3068 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3069 3070 switch_count = &prev->nivcsw; 3071 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3072 if (unlikely(signal_pending_state(prev->state, prev))) { 3073 prev->state = TASK_RUNNING; 3074 } else { 3075 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3076 prev->on_rq = 0; 3077 3078 /* 3079 * If a worker went to sleep, notify and ask workqueue 3080 * whether it wants to wake up a task to maintain 3081 * concurrency. 3082 */ 3083 if (prev->flags & PF_WQ_WORKER) { 3084 struct task_struct *to_wakeup; 3085 3086 to_wakeup = wq_worker_sleeping(prev, cpu); 3087 if (to_wakeup) 3088 try_to_wake_up_local(to_wakeup); 3089 } 3090 } 3091 switch_count = &prev->nvcsw; 3092 } 3093 3094 if (task_on_rq_queued(prev)) 3095 update_rq_clock(rq); 3096 3097 next = pick_next_task(rq, prev); 3098 clear_tsk_need_resched(prev); 3099 clear_preempt_need_resched(); 3100 rq->clock_skip_update = 0; 3101 3102 if (likely(prev != next)) { 3103 rq->nr_switches++; 3104 rq->curr = next; 3105 ++*switch_count; 3106 3107 rq = context_switch(rq, prev, next); /* unlocks the rq */ 3108 cpu = cpu_of(rq); 3109 } else { 3110 lockdep_unpin_lock(&rq->lock); 3111 raw_spin_unlock_irq(&rq->lock); 3112 } 3113 3114 balance_callback(rq); 3115 } 3116 3117 static inline void sched_submit_work(struct task_struct *tsk) 3118 { 3119 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3120 return; 3121 /* 3122 * If we are going to sleep and we have plugged IO queued, 3123 * make sure to submit it to avoid deadlocks. 3124 */ 3125 if (blk_needs_flush_plug(tsk)) 3126 blk_schedule_flush_plug(tsk); 3127 } 3128 3129 asmlinkage __visible void __sched schedule(void) 3130 { 3131 struct task_struct *tsk = current; 3132 3133 sched_submit_work(tsk); 3134 do { 3135 preempt_disable(); 3136 __schedule(); 3137 sched_preempt_enable_no_resched(); 3138 } while (need_resched()); 3139 } 3140 EXPORT_SYMBOL(schedule); 3141 3142 #ifdef CONFIG_CONTEXT_TRACKING 3143 asmlinkage __visible void __sched schedule_user(void) 3144 { 3145 /* 3146 * If we come here after a random call to set_need_resched(), 3147 * or we have been woken up remotely but the IPI has not yet arrived, 3148 * we haven't yet exited the RCU idle mode. Do it here manually until 3149 * we find a better solution. 3150 * 3151 * NB: There are buggy callers of this function. Ideally we 3152 * should warn if prev_state != CONTEXT_USER, but that will trigger 3153 * too frequently to make sense yet. 3154 */ 3155 enum ctx_state prev_state = exception_enter(); 3156 schedule(); 3157 exception_exit(prev_state); 3158 } 3159 #endif 3160 3161 /** 3162 * schedule_preempt_disabled - called with preemption disabled 3163 * 3164 * Returns with preemption disabled. Note: preempt_count must be 1 3165 */ 3166 void __sched schedule_preempt_disabled(void) 3167 { 3168 sched_preempt_enable_no_resched(); 3169 schedule(); 3170 preempt_disable(); 3171 } 3172 3173 static void __sched notrace preempt_schedule_common(void) 3174 { 3175 do { 3176 preempt_active_enter(); 3177 __schedule(); 3178 preempt_active_exit(); 3179 3180 /* 3181 * Check again in case we missed a preemption opportunity 3182 * between schedule and now. 3183 */ 3184 } while (need_resched()); 3185 } 3186 3187 #ifdef CONFIG_PREEMPT 3188 /* 3189 * this is the entry point to schedule() from in-kernel preemption 3190 * off of preempt_enable. Kernel preemptions off return from interrupt 3191 * occur there and call schedule directly. 3192 */ 3193 asmlinkage __visible void __sched notrace preempt_schedule(void) 3194 { 3195 /* 3196 * If there is a non-zero preempt_count or interrupts are disabled, 3197 * we do not want to preempt the current task. Just return.. 3198 */ 3199 if (likely(!preemptible())) 3200 return; 3201 3202 preempt_schedule_common(); 3203 } 3204 NOKPROBE_SYMBOL(preempt_schedule); 3205 EXPORT_SYMBOL(preempt_schedule); 3206 3207 /** 3208 * preempt_schedule_notrace - preempt_schedule called by tracing 3209 * 3210 * The tracing infrastructure uses preempt_enable_notrace to prevent 3211 * recursion and tracing preempt enabling caused by the tracing 3212 * infrastructure itself. But as tracing can happen in areas coming 3213 * from userspace or just about to enter userspace, a preempt enable 3214 * can occur before user_exit() is called. This will cause the scheduler 3215 * to be called when the system is still in usermode. 3216 * 3217 * To prevent this, the preempt_enable_notrace will use this function 3218 * instead of preempt_schedule() to exit user context if needed before 3219 * calling the scheduler. 3220 */ 3221 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3222 { 3223 enum ctx_state prev_ctx; 3224 3225 if (likely(!preemptible())) 3226 return; 3227 3228 do { 3229 /* 3230 * Use raw __prempt_count() ops that don't call function. 3231 * We can't call functions before disabling preemption which 3232 * disarm preemption tracing recursions. 3233 */ 3234 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET); 3235 barrier(); 3236 /* 3237 * Needs preempt disabled in case user_exit() is traced 3238 * and the tracer calls preempt_enable_notrace() causing 3239 * an infinite recursion. 3240 */ 3241 prev_ctx = exception_enter(); 3242 __schedule(); 3243 exception_exit(prev_ctx); 3244 3245 barrier(); 3246 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET); 3247 } while (need_resched()); 3248 } 3249 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3250 3251 #endif /* CONFIG_PREEMPT */ 3252 3253 /* 3254 * this is the entry point to schedule() from kernel preemption 3255 * off of irq context. 3256 * Note, that this is called and return with irqs disabled. This will 3257 * protect us against recursive calling from irq. 3258 */ 3259 asmlinkage __visible void __sched preempt_schedule_irq(void) 3260 { 3261 enum ctx_state prev_state; 3262 3263 /* Catch callers which need to be fixed */ 3264 BUG_ON(preempt_count() || !irqs_disabled()); 3265 3266 prev_state = exception_enter(); 3267 3268 do { 3269 preempt_active_enter(); 3270 local_irq_enable(); 3271 __schedule(); 3272 local_irq_disable(); 3273 preempt_active_exit(); 3274 } while (need_resched()); 3275 3276 exception_exit(prev_state); 3277 } 3278 3279 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3280 void *key) 3281 { 3282 return try_to_wake_up(curr->private, mode, wake_flags); 3283 } 3284 EXPORT_SYMBOL(default_wake_function); 3285 3286 #ifdef CONFIG_RT_MUTEXES 3287 3288 /* 3289 * rt_mutex_setprio - set the current priority of a task 3290 * @p: task 3291 * @prio: prio value (kernel-internal form) 3292 * 3293 * This function changes the 'effective' priority of a task. It does 3294 * not touch ->normal_prio like __setscheduler(). 3295 * 3296 * Used by the rt_mutex code to implement priority inheritance 3297 * logic. Call site only calls if the priority of the task changed. 3298 */ 3299 void rt_mutex_setprio(struct task_struct *p, int prio) 3300 { 3301 int oldprio, queued, running, enqueue_flag = 0; 3302 struct rq *rq; 3303 const struct sched_class *prev_class; 3304 3305 BUG_ON(prio > MAX_PRIO); 3306 3307 rq = __task_rq_lock(p); 3308 3309 /* 3310 * Idle task boosting is a nono in general. There is one 3311 * exception, when PREEMPT_RT and NOHZ is active: 3312 * 3313 * The idle task calls get_next_timer_interrupt() and holds 3314 * the timer wheel base->lock on the CPU and another CPU wants 3315 * to access the timer (probably to cancel it). We can safely 3316 * ignore the boosting request, as the idle CPU runs this code 3317 * with interrupts disabled and will complete the lock 3318 * protected section without being interrupted. So there is no 3319 * real need to boost. 3320 */ 3321 if (unlikely(p == rq->idle)) { 3322 WARN_ON(p != rq->curr); 3323 WARN_ON(p->pi_blocked_on); 3324 goto out_unlock; 3325 } 3326 3327 trace_sched_pi_setprio(p, prio); 3328 oldprio = p->prio; 3329 prev_class = p->sched_class; 3330 queued = task_on_rq_queued(p); 3331 running = task_current(rq, p); 3332 if (queued) 3333 dequeue_task(rq, p, 0); 3334 if (running) 3335 put_prev_task(rq, p); 3336 3337 /* 3338 * Boosting condition are: 3339 * 1. -rt task is running and holds mutex A 3340 * --> -dl task blocks on mutex A 3341 * 3342 * 2. -dl task is running and holds mutex A 3343 * --> -dl task blocks on mutex A and could preempt the 3344 * running task 3345 */ 3346 if (dl_prio(prio)) { 3347 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3348 if (!dl_prio(p->normal_prio) || 3349 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3350 p->dl.dl_boosted = 1; 3351 enqueue_flag = ENQUEUE_REPLENISH; 3352 } else 3353 p->dl.dl_boosted = 0; 3354 p->sched_class = &dl_sched_class; 3355 } else if (rt_prio(prio)) { 3356 if (dl_prio(oldprio)) 3357 p->dl.dl_boosted = 0; 3358 if (oldprio < prio) 3359 enqueue_flag = ENQUEUE_HEAD; 3360 p->sched_class = &rt_sched_class; 3361 } else { 3362 if (dl_prio(oldprio)) 3363 p->dl.dl_boosted = 0; 3364 if (rt_prio(oldprio)) 3365 p->rt.timeout = 0; 3366 p->sched_class = &fair_sched_class; 3367 } 3368 3369 p->prio = prio; 3370 3371 if (running) 3372 p->sched_class->set_curr_task(rq); 3373 if (queued) 3374 enqueue_task(rq, p, enqueue_flag); 3375 3376 check_class_changed(rq, p, prev_class, oldprio); 3377 out_unlock: 3378 preempt_disable(); /* avoid rq from going away on us */ 3379 __task_rq_unlock(rq); 3380 3381 balance_callback(rq); 3382 preempt_enable(); 3383 } 3384 #endif 3385 3386 void set_user_nice(struct task_struct *p, long nice) 3387 { 3388 int old_prio, delta, queued; 3389 unsigned long flags; 3390 struct rq *rq; 3391 3392 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3393 return; 3394 /* 3395 * We have to be careful, if called from sys_setpriority(), 3396 * the task might be in the middle of scheduling on another CPU. 3397 */ 3398 rq = task_rq_lock(p, &flags); 3399 /* 3400 * The RT priorities are set via sched_setscheduler(), but we still 3401 * allow the 'normal' nice value to be set - but as expected 3402 * it wont have any effect on scheduling until the task is 3403 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3404 */ 3405 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3406 p->static_prio = NICE_TO_PRIO(nice); 3407 goto out_unlock; 3408 } 3409 queued = task_on_rq_queued(p); 3410 if (queued) 3411 dequeue_task(rq, p, 0); 3412 3413 p->static_prio = NICE_TO_PRIO(nice); 3414 set_load_weight(p); 3415 old_prio = p->prio; 3416 p->prio = effective_prio(p); 3417 delta = p->prio - old_prio; 3418 3419 if (queued) { 3420 enqueue_task(rq, p, 0); 3421 /* 3422 * If the task increased its priority or is running and 3423 * lowered its priority, then reschedule its CPU: 3424 */ 3425 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3426 resched_curr(rq); 3427 } 3428 out_unlock: 3429 task_rq_unlock(rq, p, &flags); 3430 } 3431 EXPORT_SYMBOL(set_user_nice); 3432 3433 /* 3434 * can_nice - check if a task can reduce its nice value 3435 * @p: task 3436 * @nice: nice value 3437 */ 3438 int can_nice(const struct task_struct *p, const int nice) 3439 { 3440 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3441 int nice_rlim = nice_to_rlimit(nice); 3442 3443 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3444 capable(CAP_SYS_NICE)); 3445 } 3446 3447 #ifdef __ARCH_WANT_SYS_NICE 3448 3449 /* 3450 * sys_nice - change the priority of the current process. 3451 * @increment: priority increment 3452 * 3453 * sys_setpriority is a more generic, but much slower function that 3454 * does similar things. 3455 */ 3456 SYSCALL_DEFINE1(nice, int, increment) 3457 { 3458 long nice, retval; 3459 3460 /* 3461 * Setpriority might change our priority at the same moment. 3462 * We don't have to worry. Conceptually one call occurs first 3463 * and we have a single winner. 3464 */ 3465 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3466 nice = task_nice(current) + increment; 3467 3468 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3469 if (increment < 0 && !can_nice(current, nice)) 3470 return -EPERM; 3471 3472 retval = security_task_setnice(current, nice); 3473 if (retval) 3474 return retval; 3475 3476 set_user_nice(current, nice); 3477 return 0; 3478 } 3479 3480 #endif 3481 3482 /** 3483 * task_prio - return the priority value of a given task. 3484 * @p: the task in question. 3485 * 3486 * Return: The priority value as seen by users in /proc. 3487 * RT tasks are offset by -200. Normal tasks are centered 3488 * around 0, value goes from -16 to +15. 3489 */ 3490 int task_prio(const struct task_struct *p) 3491 { 3492 return p->prio - MAX_RT_PRIO; 3493 } 3494 3495 /** 3496 * idle_cpu - is a given cpu idle currently? 3497 * @cpu: the processor in question. 3498 * 3499 * Return: 1 if the CPU is currently idle. 0 otherwise. 3500 */ 3501 int idle_cpu(int cpu) 3502 { 3503 struct rq *rq = cpu_rq(cpu); 3504 3505 if (rq->curr != rq->idle) 3506 return 0; 3507 3508 if (rq->nr_running) 3509 return 0; 3510 3511 #ifdef CONFIG_SMP 3512 if (!llist_empty(&rq->wake_list)) 3513 return 0; 3514 #endif 3515 3516 return 1; 3517 } 3518 3519 /** 3520 * idle_task - return the idle task for a given cpu. 3521 * @cpu: the processor in question. 3522 * 3523 * Return: The idle task for the cpu @cpu. 3524 */ 3525 struct task_struct *idle_task(int cpu) 3526 { 3527 return cpu_rq(cpu)->idle; 3528 } 3529 3530 /** 3531 * find_process_by_pid - find a process with a matching PID value. 3532 * @pid: the pid in question. 3533 * 3534 * The task of @pid, if found. %NULL otherwise. 3535 */ 3536 static struct task_struct *find_process_by_pid(pid_t pid) 3537 { 3538 return pid ? find_task_by_vpid(pid) : current; 3539 } 3540 3541 /* 3542 * This function initializes the sched_dl_entity of a newly becoming 3543 * SCHED_DEADLINE task. 3544 * 3545 * Only the static values are considered here, the actual runtime and the 3546 * absolute deadline will be properly calculated when the task is enqueued 3547 * for the first time with its new policy. 3548 */ 3549 static void 3550 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3551 { 3552 struct sched_dl_entity *dl_se = &p->dl; 3553 3554 dl_se->dl_runtime = attr->sched_runtime; 3555 dl_se->dl_deadline = attr->sched_deadline; 3556 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3557 dl_se->flags = attr->sched_flags; 3558 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3559 3560 /* 3561 * Changing the parameters of a task is 'tricky' and we're not doing 3562 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3563 * 3564 * What we SHOULD do is delay the bandwidth release until the 0-lag 3565 * point. This would include retaining the task_struct until that time 3566 * and change dl_overflow() to not immediately decrement the current 3567 * amount. 3568 * 3569 * Instead we retain the current runtime/deadline and let the new 3570 * parameters take effect after the current reservation period lapses. 3571 * This is safe (albeit pessimistic) because the 0-lag point is always 3572 * before the current scheduling deadline. 3573 * 3574 * We can still have temporary overloads because we do not delay the 3575 * change in bandwidth until that time; so admission control is 3576 * not on the safe side. It does however guarantee tasks will never 3577 * consume more than promised. 3578 */ 3579 } 3580 3581 /* 3582 * sched_setparam() passes in -1 for its policy, to let the functions 3583 * it calls know not to change it. 3584 */ 3585 #define SETPARAM_POLICY -1 3586 3587 static void __setscheduler_params(struct task_struct *p, 3588 const struct sched_attr *attr) 3589 { 3590 int policy = attr->sched_policy; 3591 3592 if (policy == SETPARAM_POLICY) 3593 policy = p->policy; 3594 3595 p->policy = policy; 3596 3597 if (dl_policy(policy)) 3598 __setparam_dl(p, attr); 3599 else if (fair_policy(policy)) 3600 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3601 3602 /* 3603 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3604 * !rt_policy. Always setting this ensures that things like 3605 * getparam()/getattr() don't report silly values for !rt tasks. 3606 */ 3607 p->rt_priority = attr->sched_priority; 3608 p->normal_prio = normal_prio(p); 3609 set_load_weight(p); 3610 } 3611 3612 /* Actually do priority change: must hold pi & rq lock. */ 3613 static void __setscheduler(struct rq *rq, struct task_struct *p, 3614 const struct sched_attr *attr, bool keep_boost) 3615 { 3616 __setscheduler_params(p, attr); 3617 3618 /* 3619 * Keep a potential priority boosting if called from 3620 * sched_setscheduler(). 3621 */ 3622 if (keep_boost) 3623 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3624 else 3625 p->prio = normal_prio(p); 3626 3627 if (dl_prio(p->prio)) 3628 p->sched_class = &dl_sched_class; 3629 else if (rt_prio(p->prio)) 3630 p->sched_class = &rt_sched_class; 3631 else 3632 p->sched_class = &fair_sched_class; 3633 } 3634 3635 static void 3636 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3637 { 3638 struct sched_dl_entity *dl_se = &p->dl; 3639 3640 attr->sched_priority = p->rt_priority; 3641 attr->sched_runtime = dl_se->dl_runtime; 3642 attr->sched_deadline = dl_se->dl_deadline; 3643 attr->sched_period = dl_se->dl_period; 3644 attr->sched_flags = dl_se->flags; 3645 } 3646 3647 /* 3648 * This function validates the new parameters of a -deadline task. 3649 * We ask for the deadline not being zero, and greater or equal 3650 * than the runtime, as well as the period of being zero or 3651 * greater than deadline. Furthermore, we have to be sure that 3652 * user parameters are above the internal resolution of 1us (we 3653 * check sched_runtime only since it is always the smaller one) and 3654 * below 2^63 ns (we have to check both sched_deadline and 3655 * sched_period, as the latter can be zero). 3656 */ 3657 static bool 3658 __checkparam_dl(const struct sched_attr *attr) 3659 { 3660 /* deadline != 0 */ 3661 if (attr->sched_deadline == 0) 3662 return false; 3663 3664 /* 3665 * Since we truncate DL_SCALE bits, make sure we're at least 3666 * that big. 3667 */ 3668 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3669 return false; 3670 3671 /* 3672 * Since we use the MSB for wrap-around and sign issues, make 3673 * sure it's not set (mind that period can be equal to zero). 3674 */ 3675 if (attr->sched_deadline & (1ULL << 63) || 3676 attr->sched_period & (1ULL << 63)) 3677 return false; 3678 3679 /* runtime <= deadline <= period (if period != 0) */ 3680 if ((attr->sched_period != 0 && 3681 attr->sched_period < attr->sched_deadline) || 3682 attr->sched_deadline < attr->sched_runtime) 3683 return false; 3684 3685 return true; 3686 } 3687 3688 /* 3689 * check the target process has a UID that matches the current process's 3690 */ 3691 static bool check_same_owner(struct task_struct *p) 3692 { 3693 const struct cred *cred = current_cred(), *pcred; 3694 bool match; 3695 3696 rcu_read_lock(); 3697 pcred = __task_cred(p); 3698 match = (uid_eq(cred->euid, pcred->euid) || 3699 uid_eq(cred->euid, pcred->uid)); 3700 rcu_read_unlock(); 3701 return match; 3702 } 3703 3704 static bool dl_param_changed(struct task_struct *p, 3705 const struct sched_attr *attr) 3706 { 3707 struct sched_dl_entity *dl_se = &p->dl; 3708 3709 if (dl_se->dl_runtime != attr->sched_runtime || 3710 dl_se->dl_deadline != attr->sched_deadline || 3711 dl_se->dl_period != attr->sched_period || 3712 dl_se->flags != attr->sched_flags) 3713 return true; 3714 3715 return false; 3716 } 3717 3718 static int __sched_setscheduler(struct task_struct *p, 3719 const struct sched_attr *attr, 3720 bool user, bool pi) 3721 { 3722 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3723 MAX_RT_PRIO - 1 - attr->sched_priority; 3724 int retval, oldprio, oldpolicy = -1, queued, running; 3725 int new_effective_prio, policy = attr->sched_policy; 3726 unsigned long flags; 3727 const struct sched_class *prev_class; 3728 struct rq *rq; 3729 int reset_on_fork; 3730 3731 /* may grab non-irq protected spin_locks */ 3732 BUG_ON(in_interrupt()); 3733 recheck: 3734 /* double check policy once rq lock held */ 3735 if (policy < 0) { 3736 reset_on_fork = p->sched_reset_on_fork; 3737 policy = oldpolicy = p->policy; 3738 } else { 3739 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3740 3741 if (policy != SCHED_DEADLINE && 3742 policy != SCHED_FIFO && policy != SCHED_RR && 3743 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3744 policy != SCHED_IDLE) 3745 return -EINVAL; 3746 } 3747 3748 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3749 return -EINVAL; 3750 3751 /* 3752 * Valid priorities for SCHED_FIFO and SCHED_RR are 3753 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3754 * SCHED_BATCH and SCHED_IDLE is 0. 3755 */ 3756 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3757 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3758 return -EINVAL; 3759 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3760 (rt_policy(policy) != (attr->sched_priority != 0))) 3761 return -EINVAL; 3762 3763 /* 3764 * Allow unprivileged RT tasks to decrease priority: 3765 */ 3766 if (user && !capable(CAP_SYS_NICE)) { 3767 if (fair_policy(policy)) { 3768 if (attr->sched_nice < task_nice(p) && 3769 !can_nice(p, attr->sched_nice)) 3770 return -EPERM; 3771 } 3772 3773 if (rt_policy(policy)) { 3774 unsigned long rlim_rtprio = 3775 task_rlimit(p, RLIMIT_RTPRIO); 3776 3777 /* can't set/change the rt policy */ 3778 if (policy != p->policy && !rlim_rtprio) 3779 return -EPERM; 3780 3781 /* can't increase priority */ 3782 if (attr->sched_priority > p->rt_priority && 3783 attr->sched_priority > rlim_rtprio) 3784 return -EPERM; 3785 } 3786 3787 /* 3788 * Can't set/change SCHED_DEADLINE policy at all for now 3789 * (safest behavior); in the future we would like to allow 3790 * unprivileged DL tasks to increase their relative deadline 3791 * or reduce their runtime (both ways reducing utilization) 3792 */ 3793 if (dl_policy(policy)) 3794 return -EPERM; 3795 3796 /* 3797 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3798 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3799 */ 3800 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3801 if (!can_nice(p, task_nice(p))) 3802 return -EPERM; 3803 } 3804 3805 /* can't change other user's priorities */ 3806 if (!check_same_owner(p)) 3807 return -EPERM; 3808 3809 /* Normal users shall not reset the sched_reset_on_fork flag */ 3810 if (p->sched_reset_on_fork && !reset_on_fork) 3811 return -EPERM; 3812 } 3813 3814 if (user) { 3815 retval = security_task_setscheduler(p); 3816 if (retval) 3817 return retval; 3818 } 3819 3820 /* 3821 * make sure no PI-waiters arrive (or leave) while we are 3822 * changing the priority of the task: 3823 * 3824 * To be able to change p->policy safely, the appropriate 3825 * runqueue lock must be held. 3826 */ 3827 rq = task_rq_lock(p, &flags); 3828 3829 /* 3830 * Changing the policy of the stop threads its a very bad idea 3831 */ 3832 if (p == rq->stop) { 3833 task_rq_unlock(rq, p, &flags); 3834 return -EINVAL; 3835 } 3836 3837 /* 3838 * If not changing anything there's no need to proceed further, 3839 * but store a possible modification of reset_on_fork. 3840 */ 3841 if (unlikely(policy == p->policy)) { 3842 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3843 goto change; 3844 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3845 goto change; 3846 if (dl_policy(policy) && dl_param_changed(p, attr)) 3847 goto change; 3848 3849 p->sched_reset_on_fork = reset_on_fork; 3850 task_rq_unlock(rq, p, &flags); 3851 return 0; 3852 } 3853 change: 3854 3855 if (user) { 3856 #ifdef CONFIG_RT_GROUP_SCHED 3857 /* 3858 * Do not allow realtime tasks into groups that have no runtime 3859 * assigned. 3860 */ 3861 if (rt_bandwidth_enabled() && rt_policy(policy) && 3862 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3863 !task_group_is_autogroup(task_group(p))) { 3864 task_rq_unlock(rq, p, &flags); 3865 return -EPERM; 3866 } 3867 #endif 3868 #ifdef CONFIG_SMP 3869 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3870 cpumask_t *span = rq->rd->span; 3871 3872 /* 3873 * Don't allow tasks with an affinity mask smaller than 3874 * the entire root_domain to become SCHED_DEADLINE. We 3875 * will also fail if there's no bandwidth available. 3876 */ 3877 if (!cpumask_subset(span, &p->cpus_allowed) || 3878 rq->rd->dl_bw.bw == 0) { 3879 task_rq_unlock(rq, p, &flags); 3880 return -EPERM; 3881 } 3882 } 3883 #endif 3884 } 3885 3886 /* recheck policy now with rq lock held */ 3887 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3888 policy = oldpolicy = -1; 3889 task_rq_unlock(rq, p, &flags); 3890 goto recheck; 3891 } 3892 3893 /* 3894 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3895 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3896 * is available. 3897 */ 3898 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3899 task_rq_unlock(rq, p, &flags); 3900 return -EBUSY; 3901 } 3902 3903 p->sched_reset_on_fork = reset_on_fork; 3904 oldprio = p->prio; 3905 3906 if (pi) { 3907 /* 3908 * Take priority boosted tasks into account. If the new 3909 * effective priority is unchanged, we just store the new 3910 * normal parameters and do not touch the scheduler class and 3911 * the runqueue. This will be done when the task deboost 3912 * itself. 3913 */ 3914 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 3915 if (new_effective_prio == oldprio) { 3916 __setscheduler_params(p, attr); 3917 task_rq_unlock(rq, p, &flags); 3918 return 0; 3919 } 3920 } 3921 3922 queued = task_on_rq_queued(p); 3923 running = task_current(rq, p); 3924 if (queued) 3925 dequeue_task(rq, p, 0); 3926 if (running) 3927 put_prev_task(rq, p); 3928 3929 prev_class = p->sched_class; 3930 __setscheduler(rq, p, attr, pi); 3931 3932 if (running) 3933 p->sched_class->set_curr_task(rq); 3934 if (queued) { 3935 /* 3936 * We enqueue to tail when the priority of a task is 3937 * increased (user space view). 3938 */ 3939 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3940 } 3941 3942 check_class_changed(rq, p, prev_class, oldprio); 3943 preempt_disable(); /* avoid rq from going away on us */ 3944 task_rq_unlock(rq, p, &flags); 3945 3946 if (pi) 3947 rt_mutex_adjust_pi(p); 3948 3949 /* 3950 * Run balance callbacks after we've adjusted the PI chain. 3951 */ 3952 balance_callback(rq); 3953 preempt_enable(); 3954 3955 return 0; 3956 } 3957 3958 static int _sched_setscheduler(struct task_struct *p, int policy, 3959 const struct sched_param *param, bool check) 3960 { 3961 struct sched_attr attr = { 3962 .sched_policy = policy, 3963 .sched_priority = param->sched_priority, 3964 .sched_nice = PRIO_TO_NICE(p->static_prio), 3965 }; 3966 3967 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3968 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3969 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3970 policy &= ~SCHED_RESET_ON_FORK; 3971 attr.sched_policy = policy; 3972 } 3973 3974 return __sched_setscheduler(p, &attr, check, true); 3975 } 3976 /** 3977 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3978 * @p: the task in question. 3979 * @policy: new policy. 3980 * @param: structure containing the new RT priority. 3981 * 3982 * Return: 0 on success. An error code otherwise. 3983 * 3984 * NOTE that the task may be already dead. 3985 */ 3986 int sched_setscheduler(struct task_struct *p, int policy, 3987 const struct sched_param *param) 3988 { 3989 return _sched_setscheduler(p, policy, param, true); 3990 } 3991 EXPORT_SYMBOL_GPL(sched_setscheduler); 3992 3993 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3994 { 3995 return __sched_setscheduler(p, attr, true, true); 3996 } 3997 EXPORT_SYMBOL_GPL(sched_setattr); 3998 3999 /** 4000 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4001 * @p: the task in question. 4002 * @policy: new policy. 4003 * @param: structure containing the new RT priority. 4004 * 4005 * Just like sched_setscheduler, only don't bother checking if the 4006 * current context has permission. For example, this is needed in 4007 * stop_machine(): we create temporary high priority worker threads, 4008 * but our caller might not have that capability. 4009 * 4010 * Return: 0 on success. An error code otherwise. 4011 */ 4012 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4013 const struct sched_param *param) 4014 { 4015 return _sched_setscheduler(p, policy, param, false); 4016 } 4017 4018 static int 4019 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4020 { 4021 struct sched_param lparam; 4022 struct task_struct *p; 4023 int retval; 4024 4025 if (!param || pid < 0) 4026 return -EINVAL; 4027 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4028 return -EFAULT; 4029 4030 rcu_read_lock(); 4031 retval = -ESRCH; 4032 p = find_process_by_pid(pid); 4033 if (p != NULL) 4034 retval = sched_setscheduler(p, policy, &lparam); 4035 rcu_read_unlock(); 4036 4037 return retval; 4038 } 4039 4040 /* 4041 * Mimics kernel/events/core.c perf_copy_attr(). 4042 */ 4043 static int sched_copy_attr(struct sched_attr __user *uattr, 4044 struct sched_attr *attr) 4045 { 4046 u32 size; 4047 int ret; 4048 4049 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4050 return -EFAULT; 4051 4052 /* 4053 * zero the full structure, so that a short copy will be nice. 4054 */ 4055 memset(attr, 0, sizeof(*attr)); 4056 4057 ret = get_user(size, &uattr->size); 4058 if (ret) 4059 return ret; 4060 4061 if (size > PAGE_SIZE) /* silly large */ 4062 goto err_size; 4063 4064 if (!size) /* abi compat */ 4065 size = SCHED_ATTR_SIZE_VER0; 4066 4067 if (size < SCHED_ATTR_SIZE_VER0) 4068 goto err_size; 4069 4070 /* 4071 * If we're handed a bigger struct than we know of, 4072 * ensure all the unknown bits are 0 - i.e. new 4073 * user-space does not rely on any kernel feature 4074 * extensions we dont know about yet. 4075 */ 4076 if (size > sizeof(*attr)) { 4077 unsigned char __user *addr; 4078 unsigned char __user *end; 4079 unsigned char val; 4080 4081 addr = (void __user *)uattr + sizeof(*attr); 4082 end = (void __user *)uattr + size; 4083 4084 for (; addr < end; addr++) { 4085 ret = get_user(val, addr); 4086 if (ret) 4087 return ret; 4088 if (val) 4089 goto err_size; 4090 } 4091 size = sizeof(*attr); 4092 } 4093 4094 ret = copy_from_user(attr, uattr, size); 4095 if (ret) 4096 return -EFAULT; 4097 4098 /* 4099 * XXX: do we want to be lenient like existing syscalls; or do we want 4100 * to be strict and return an error on out-of-bounds values? 4101 */ 4102 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4103 4104 return 0; 4105 4106 err_size: 4107 put_user(sizeof(*attr), &uattr->size); 4108 return -E2BIG; 4109 } 4110 4111 /** 4112 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4113 * @pid: the pid in question. 4114 * @policy: new policy. 4115 * @param: structure containing the new RT priority. 4116 * 4117 * Return: 0 on success. An error code otherwise. 4118 */ 4119 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4120 struct sched_param __user *, param) 4121 { 4122 /* negative values for policy are not valid */ 4123 if (policy < 0) 4124 return -EINVAL; 4125 4126 return do_sched_setscheduler(pid, policy, param); 4127 } 4128 4129 /** 4130 * sys_sched_setparam - set/change the RT priority of a thread 4131 * @pid: the pid in question. 4132 * @param: structure containing the new RT priority. 4133 * 4134 * Return: 0 on success. An error code otherwise. 4135 */ 4136 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4137 { 4138 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4139 } 4140 4141 /** 4142 * sys_sched_setattr - same as above, but with extended sched_attr 4143 * @pid: the pid in question. 4144 * @uattr: structure containing the extended parameters. 4145 * @flags: for future extension. 4146 */ 4147 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4148 unsigned int, flags) 4149 { 4150 struct sched_attr attr; 4151 struct task_struct *p; 4152 int retval; 4153 4154 if (!uattr || pid < 0 || flags) 4155 return -EINVAL; 4156 4157 retval = sched_copy_attr(uattr, &attr); 4158 if (retval) 4159 return retval; 4160 4161 if ((int)attr.sched_policy < 0) 4162 return -EINVAL; 4163 4164 rcu_read_lock(); 4165 retval = -ESRCH; 4166 p = find_process_by_pid(pid); 4167 if (p != NULL) 4168 retval = sched_setattr(p, &attr); 4169 rcu_read_unlock(); 4170 4171 return retval; 4172 } 4173 4174 /** 4175 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4176 * @pid: the pid in question. 4177 * 4178 * Return: On success, the policy of the thread. Otherwise, a negative error 4179 * code. 4180 */ 4181 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4182 { 4183 struct task_struct *p; 4184 int retval; 4185 4186 if (pid < 0) 4187 return -EINVAL; 4188 4189 retval = -ESRCH; 4190 rcu_read_lock(); 4191 p = find_process_by_pid(pid); 4192 if (p) { 4193 retval = security_task_getscheduler(p); 4194 if (!retval) 4195 retval = p->policy 4196 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4197 } 4198 rcu_read_unlock(); 4199 return retval; 4200 } 4201 4202 /** 4203 * sys_sched_getparam - get the RT priority of a thread 4204 * @pid: the pid in question. 4205 * @param: structure containing the RT priority. 4206 * 4207 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4208 * code. 4209 */ 4210 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4211 { 4212 struct sched_param lp = { .sched_priority = 0 }; 4213 struct task_struct *p; 4214 int retval; 4215 4216 if (!param || pid < 0) 4217 return -EINVAL; 4218 4219 rcu_read_lock(); 4220 p = find_process_by_pid(pid); 4221 retval = -ESRCH; 4222 if (!p) 4223 goto out_unlock; 4224 4225 retval = security_task_getscheduler(p); 4226 if (retval) 4227 goto out_unlock; 4228 4229 if (task_has_rt_policy(p)) 4230 lp.sched_priority = p->rt_priority; 4231 rcu_read_unlock(); 4232 4233 /* 4234 * This one might sleep, we cannot do it with a spinlock held ... 4235 */ 4236 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4237 4238 return retval; 4239 4240 out_unlock: 4241 rcu_read_unlock(); 4242 return retval; 4243 } 4244 4245 static int sched_read_attr(struct sched_attr __user *uattr, 4246 struct sched_attr *attr, 4247 unsigned int usize) 4248 { 4249 int ret; 4250 4251 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4252 return -EFAULT; 4253 4254 /* 4255 * If we're handed a smaller struct than we know of, 4256 * ensure all the unknown bits are 0 - i.e. old 4257 * user-space does not get uncomplete information. 4258 */ 4259 if (usize < sizeof(*attr)) { 4260 unsigned char *addr; 4261 unsigned char *end; 4262 4263 addr = (void *)attr + usize; 4264 end = (void *)attr + sizeof(*attr); 4265 4266 for (; addr < end; addr++) { 4267 if (*addr) 4268 return -EFBIG; 4269 } 4270 4271 attr->size = usize; 4272 } 4273 4274 ret = copy_to_user(uattr, attr, attr->size); 4275 if (ret) 4276 return -EFAULT; 4277 4278 return 0; 4279 } 4280 4281 /** 4282 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4283 * @pid: the pid in question. 4284 * @uattr: structure containing the extended parameters. 4285 * @size: sizeof(attr) for fwd/bwd comp. 4286 * @flags: for future extension. 4287 */ 4288 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4289 unsigned int, size, unsigned int, flags) 4290 { 4291 struct sched_attr attr = { 4292 .size = sizeof(struct sched_attr), 4293 }; 4294 struct task_struct *p; 4295 int retval; 4296 4297 if (!uattr || pid < 0 || size > PAGE_SIZE || 4298 size < SCHED_ATTR_SIZE_VER0 || flags) 4299 return -EINVAL; 4300 4301 rcu_read_lock(); 4302 p = find_process_by_pid(pid); 4303 retval = -ESRCH; 4304 if (!p) 4305 goto out_unlock; 4306 4307 retval = security_task_getscheduler(p); 4308 if (retval) 4309 goto out_unlock; 4310 4311 attr.sched_policy = p->policy; 4312 if (p->sched_reset_on_fork) 4313 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4314 if (task_has_dl_policy(p)) 4315 __getparam_dl(p, &attr); 4316 else if (task_has_rt_policy(p)) 4317 attr.sched_priority = p->rt_priority; 4318 else 4319 attr.sched_nice = task_nice(p); 4320 4321 rcu_read_unlock(); 4322 4323 retval = sched_read_attr(uattr, &attr, size); 4324 return retval; 4325 4326 out_unlock: 4327 rcu_read_unlock(); 4328 return retval; 4329 } 4330 4331 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4332 { 4333 cpumask_var_t cpus_allowed, new_mask; 4334 struct task_struct *p; 4335 int retval; 4336 4337 rcu_read_lock(); 4338 4339 p = find_process_by_pid(pid); 4340 if (!p) { 4341 rcu_read_unlock(); 4342 return -ESRCH; 4343 } 4344 4345 /* Prevent p going away */ 4346 get_task_struct(p); 4347 rcu_read_unlock(); 4348 4349 if (p->flags & PF_NO_SETAFFINITY) { 4350 retval = -EINVAL; 4351 goto out_put_task; 4352 } 4353 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4354 retval = -ENOMEM; 4355 goto out_put_task; 4356 } 4357 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4358 retval = -ENOMEM; 4359 goto out_free_cpus_allowed; 4360 } 4361 retval = -EPERM; 4362 if (!check_same_owner(p)) { 4363 rcu_read_lock(); 4364 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4365 rcu_read_unlock(); 4366 goto out_free_new_mask; 4367 } 4368 rcu_read_unlock(); 4369 } 4370 4371 retval = security_task_setscheduler(p); 4372 if (retval) 4373 goto out_free_new_mask; 4374 4375 4376 cpuset_cpus_allowed(p, cpus_allowed); 4377 cpumask_and(new_mask, in_mask, cpus_allowed); 4378 4379 /* 4380 * Since bandwidth control happens on root_domain basis, 4381 * if admission test is enabled, we only admit -deadline 4382 * tasks allowed to run on all the CPUs in the task's 4383 * root_domain. 4384 */ 4385 #ifdef CONFIG_SMP 4386 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4387 rcu_read_lock(); 4388 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4389 retval = -EBUSY; 4390 rcu_read_unlock(); 4391 goto out_free_new_mask; 4392 } 4393 rcu_read_unlock(); 4394 } 4395 #endif 4396 again: 4397 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4398 4399 if (!retval) { 4400 cpuset_cpus_allowed(p, cpus_allowed); 4401 if (!cpumask_subset(new_mask, cpus_allowed)) { 4402 /* 4403 * We must have raced with a concurrent cpuset 4404 * update. Just reset the cpus_allowed to the 4405 * cpuset's cpus_allowed 4406 */ 4407 cpumask_copy(new_mask, cpus_allowed); 4408 goto again; 4409 } 4410 } 4411 out_free_new_mask: 4412 free_cpumask_var(new_mask); 4413 out_free_cpus_allowed: 4414 free_cpumask_var(cpus_allowed); 4415 out_put_task: 4416 put_task_struct(p); 4417 return retval; 4418 } 4419 4420 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4421 struct cpumask *new_mask) 4422 { 4423 if (len < cpumask_size()) 4424 cpumask_clear(new_mask); 4425 else if (len > cpumask_size()) 4426 len = cpumask_size(); 4427 4428 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4429 } 4430 4431 /** 4432 * sys_sched_setaffinity - set the cpu affinity of a process 4433 * @pid: pid of the process 4434 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4435 * @user_mask_ptr: user-space pointer to the new cpu mask 4436 * 4437 * Return: 0 on success. An error code otherwise. 4438 */ 4439 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4440 unsigned long __user *, user_mask_ptr) 4441 { 4442 cpumask_var_t new_mask; 4443 int retval; 4444 4445 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4446 return -ENOMEM; 4447 4448 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4449 if (retval == 0) 4450 retval = sched_setaffinity(pid, new_mask); 4451 free_cpumask_var(new_mask); 4452 return retval; 4453 } 4454 4455 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4456 { 4457 struct task_struct *p; 4458 unsigned long flags; 4459 int retval; 4460 4461 rcu_read_lock(); 4462 4463 retval = -ESRCH; 4464 p = find_process_by_pid(pid); 4465 if (!p) 4466 goto out_unlock; 4467 4468 retval = security_task_getscheduler(p); 4469 if (retval) 4470 goto out_unlock; 4471 4472 raw_spin_lock_irqsave(&p->pi_lock, flags); 4473 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4474 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4475 4476 out_unlock: 4477 rcu_read_unlock(); 4478 4479 return retval; 4480 } 4481 4482 /** 4483 * sys_sched_getaffinity - get the cpu affinity of a process 4484 * @pid: pid of the process 4485 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4486 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4487 * 4488 * Return: 0 on success. An error code otherwise. 4489 */ 4490 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4491 unsigned long __user *, user_mask_ptr) 4492 { 4493 int ret; 4494 cpumask_var_t mask; 4495 4496 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4497 return -EINVAL; 4498 if (len & (sizeof(unsigned long)-1)) 4499 return -EINVAL; 4500 4501 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4502 return -ENOMEM; 4503 4504 ret = sched_getaffinity(pid, mask); 4505 if (ret == 0) { 4506 size_t retlen = min_t(size_t, len, cpumask_size()); 4507 4508 if (copy_to_user(user_mask_ptr, mask, retlen)) 4509 ret = -EFAULT; 4510 else 4511 ret = retlen; 4512 } 4513 free_cpumask_var(mask); 4514 4515 return ret; 4516 } 4517 4518 /** 4519 * sys_sched_yield - yield the current processor to other threads. 4520 * 4521 * This function yields the current CPU to other tasks. If there are no 4522 * other threads running on this CPU then this function will return. 4523 * 4524 * Return: 0. 4525 */ 4526 SYSCALL_DEFINE0(sched_yield) 4527 { 4528 struct rq *rq = this_rq_lock(); 4529 4530 schedstat_inc(rq, yld_count); 4531 current->sched_class->yield_task(rq); 4532 4533 /* 4534 * Since we are going to call schedule() anyway, there's 4535 * no need to preempt or enable interrupts: 4536 */ 4537 __release(rq->lock); 4538 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4539 do_raw_spin_unlock(&rq->lock); 4540 sched_preempt_enable_no_resched(); 4541 4542 schedule(); 4543 4544 return 0; 4545 } 4546 4547 int __sched _cond_resched(void) 4548 { 4549 if (should_resched(0)) { 4550 preempt_schedule_common(); 4551 return 1; 4552 } 4553 return 0; 4554 } 4555 EXPORT_SYMBOL(_cond_resched); 4556 4557 /* 4558 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4559 * call schedule, and on return reacquire the lock. 4560 * 4561 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4562 * operations here to prevent schedule() from being called twice (once via 4563 * spin_unlock(), once by hand). 4564 */ 4565 int __cond_resched_lock(spinlock_t *lock) 4566 { 4567 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4568 int ret = 0; 4569 4570 lockdep_assert_held(lock); 4571 4572 if (spin_needbreak(lock) || resched) { 4573 spin_unlock(lock); 4574 if (resched) 4575 preempt_schedule_common(); 4576 else 4577 cpu_relax(); 4578 ret = 1; 4579 spin_lock(lock); 4580 } 4581 return ret; 4582 } 4583 EXPORT_SYMBOL(__cond_resched_lock); 4584 4585 int __sched __cond_resched_softirq(void) 4586 { 4587 BUG_ON(!in_softirq()); 4588 4589 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4590 local_bh_enable(); 4591 preempt_schedule_common(); 4592 local_bh_disable(); 4593 return 1; 4594 } 4595 return 0; 4596 } 4597 EXPORT_SYMBOL(__cond_resched_softirq); 4598 4599 /** 4600 * yield - yield the current processor to other threads. 4601 * 4602 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4603 * 4604 * The scheduler is at all times free to pick the calling task as the most 4605 * eligible task to run, if removing the yield() call from your code breaks 4606 * it, its already broken. 4607 * 4608 * Typical broken usage is: 4609 * 4610 * while (!event) 4611 * yield(); 4612 * 4613 * where one assumes that yield() will let 'the other' process run that will 4614 * make event true. If the current task is a SCHED_FIFO task that will never 4615 * happen. Never use yield() as a progress guarantee!! 4616 * 4617 * If you want to use yield() to wait for something, use wait_event(). 4618 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4619 * If you still want to use yield(), do not! 4620 */ 4621 void __sched yield(void) 4622 { 4623 set_current_state(TASK_RUNNING); 4624 sys_sched_yield(); 4625 } 4626 EXPORT_SYMBOL(yield); 4627 4628 /** 4629 * yield_to - yield the current processor to another thread in 4630 * your thread group, or accelerate that thread toward the 4631 * processor it's on. 4632 * @p: target task 4633 * @preempt: whether task preemption is allowed or not 4634 * 4635 * It's the caller's job to ensure that the target task struct 4636 * can't go away on us before we can do any checks. 4637 * 4638 * Return: 4639 * true (>0) if we indeed boosted the target task. 4640 * false (0) if we failed to boost the target. 4641 * -ESRCH if there's no task to yield to. 4642 */ 4643 int __sched yield_to(struct task_struct *p, bool preempt) 4644 { 4645 struct task_struct *curr = current; 4646 struct rq *rq, *p_rq; 4647 unsigned long flags; 4648 int yielded = 0; 4649 4650 local_irq_save(flags); 4651 rq = this_rq(); 4652 4653 again: 4654 p_rq = task_rq(p); 4655 /* 4656 * If we're the only runnable task on the rq and target rq also 4657 * has only one task, there's absolutely no point in yielding. 4658 */ 4659 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4660 yielded = -ESRCH; 4661 goto out_irq; 4662 } 4663 4664 double_rq_lock(rq, p_rq); 4665 if (task_rq(p) != p_rq) { 4666 double_rq_unlock(rq, p_rq); 4667 goto again; 4668 } 4669 4670 if (!curr->sched_class->yield_to_task) 4671 goto out_unlock; 4672 4673 if (curr->sched_class != p->sched_class) 4674 goto out_unlock; 4675 4676 if (task_running(p_rq, p) || p->state) 4677 goto out_unlock; 4678 4679 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4680 if (yielded) { 4681 schedstat_inc(rq, yld_count); 4682 /* 4683 * Make p's CPU reschedule; pick_next_entity takes care of 4684 * fairness. 4685 */ 4686 if (preempt && rq != p_rq) 4687 resched_curr(p_rq); 4688 } 4689 4690 out_unlock: 4691 double_rq_unlock(rq, p_rq); 4692 out_irq: 4693 local_irq_restore(flags); 4694 4695 if (yielded > 0) 4696 schedule(); 4697 4698 return yielded; 4699 } 4700 EXPORT_SYMBOL_GPL(yield_to); 4701 4702 /* 4703 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4704 * that process accounting knows that this is a task in IO wait state. 4705 */ 4706 long __sched io_schedule_timeout(long timeout) 4707 { 4708 int old_iowait = current->in_iowait; 4709 struct rq *rq; 4710 long ret; 4711 4712 current->in_iowait = 1; 4713 blk_schedule_flush_plug(current); 4714 4715 delayacct_blkio_start(); 4716 rq = raw_rq(); 4717 atomic_inc(&rq->nr_iowait); 4718 ret = schedule_timeout(timeout); 4719 current->in_iowait = old_iowait; 4720 atomic_dec(&rq->nr_iowait); 4721 delayacct_blkio_end(); 4722 4723 return ret; 4724 } 4725 EXPORT_SYMBOL(io_schedule_timeout); 4726 4727 /** 4728 * sys_sched_get_priority_max - return maximum RT priority. 4729 * @policy: scheduling class. 4730 * 4731 * Return: On success, this syscall returns the maximum 4732 * rt_priority that can be used by a given scheduling class. 4733 * On failure, a negative error code is returned. 4734 */ 4735 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4736 { 4737 int ret = -EINVAL; 4738 4739 switch (policy) { 4740 case SCHED_FIFO: 4741 case SCHED_RR: 4742 ret = MAX_USER_RT_PRIO-1; 4743 break; 4744 case SCHED_DEADLINE: 4745 case SCHED_NORMAL: 4746 case SCHED_BATCH: 4747 case SCHED_IDLE: 4748 ret = 0; 4749 break; 4750 } 4751 return ret; 4752 } 4753 4754 /** 4755 * sys_sched_get_priority_min - return minimum RT priority. 4756 * @policy: scheduling class. 4757 * 4758 * Return: On success, this syscall returns the minimum 4759 * rt_priority that can be used by a given scheduling class. 4760 * On failure, a negative error code is returned. 4761 */ 4762 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4763 { 4764 int ret = -EINVAL; 4765 4766 switch (policy) { 4767 case SCHED_FIFO: 4768 case SCHED_RR: 4769 ret = 1; 4770 break; 4771 case SCHED_DEADLINE: 4772 case SCHED_NORMAL: 4773 case SCHED_BATCH: 4774 case SCHED_IDLE: 4775 ret = 0; 4776 } 4777 return ret; 4778 } 4779 4780 /** 4781 * sys_sched_rr_get_interval - return the default timeslice of a process. 4782 * @pid: pid of the process. 4783 * @interval: userspace pointer to the timeslice value. 4784 * 4785 * this syscall writes the default timeslice value of a given process 4786 * into the user-space timespec buffer. A value of '0' means infinity. 4787 * 4788 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4789 * an error code. 4790 */ 4791 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4792 struct timespec __user *, interval) 4793 { 4794 struct task_struct *p; 4795 unsigned int time_slice; 4796 unsigned long flags; 4797 struct rq *rq; 4798 int retval; 4799 struct timespec t; 4800 4801 if (pid < 0) 4802 return -EINVAL; 4803 4804 retval = -ESRCH; 4805 rcu_read_lock(); 4806 p = find_process_by_pid(pid); 4807 if (!p) 4808 goto out_unlock; 4809 4810 retval = security_task_getscheduler(p); 4811 if (retval) 4812 goto out_unlock; 4813 4814 rq = task_rq_lock(p, &flags); 4815 time_slice = 0; 4816 if (p->sched_class->get_rr_interval) 4817 time_slice = p->sched_class->get_rr_interval(rq, p); 4818 task_rq_unlock(rq, p, &flags); 4819 4820 rcu_read_unlock(); 4821 jiffies_to_timespec(time_slice, &t); 4822 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4823 return retval; 4824 4825 out_unlock: 4826 rcu_read_unlock(); 4827 return retval; 4828 } 4829 4830 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4831 4832 void sched_show_task(struct task_struct *p) 4833 { 4834 unsigned long free = 0; 4835 int ppid; 4836 unsigned long state = p->state; 4837 4838 if (state) 4839 state = __ffs(state) + 1; 4840 printk(KERN_INFO "%-15.15s %c", p->comm, 4841 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4842 #if BITS_PER_LONG == 32 4843 if (state == TASK_RUNNING) 4844 printk(KERN_CONT " running "); 4845 else 4846 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4847 #else 4848 if (state == TASK_RUNNING) 4849 printk(KERN_CONT " running task "); 4850 else 4851 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4852 #endif 4853 #ifdef CONFIG_DEBUG_STACK_USAGE 4854 free = stack_not_used(p); 4855 #endif 4856 ppid = 0; 4857 rcu_read_lock(); 4858 if (pid_alive(p)) 4859 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4860 rcu_read_unlock(); 4861 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4862 task_pid_nr(p), ppid, 4863 (unsigned long)task_thread_info(p)->flags); 4864 4865 print_worker_info(KERN_INFO, p); 4866 show_stack(p, NULL); 4867 } 4868 4869 void show_state_filter(unsigned long state_filter) 4870 { 4871 struct task_struct *g, *p; 4872 4873 #if BITS_PER_LONG == 32 4874 printk(KERN_INFO 4875 " task PC stack pid father\n"); 4876 #else 4877 printk(KERN_INFO 4878 " task PC stack pid father\n"); 4879 #endif 4880 rcu_read_lock(); 4881 for_each_process_thread(g, p) { 4882 /* 4883 * reset the NMI-timeout, listing all files on a slow 4884 * console might take a lot of time: 4885 */ 4886 touch_nmi_watchdog(); 4887 if (!state_filter || (p->state & state_filter)) 4888 sched_show_task(p); 4889 } 4890 4891 touch_all_softlockup_watchdogs(); 4892 4893 #ifdef CONFIG_SCHED_DEBUG 4894 sysrq_sched_debug_show(); 4895 #endif 4896 rcu_read_unlock(); 4897 /* 4898 * Only show locks if all tasks are dumped: 4899 */ 4900 if (!state_filter) 4901 debug_show_all_locks(); 4902 } 4903 4904 void init_idle_bootup_task(struct task_struct *idle) 4905 { 4906 idle->sched_class = &idle_sched_class; 4907 } 4908 4909 /** 4910 * init_idle - set up an idle thread for a given CPU 4911 * @idle: task in question 4912 * @cpu: cpu the idle task belongs to 4913 * 4914 * NOTE: this function does not set the idle thread's NEED_RESCHED 4915 * flag, to make booting more robust. 4916 */ 4917 void init_idle(struct task_struct *idle, int cpu) 4918 { 4919 struct rq *rq = cpu_rq(cpu); 4920 unsigned long flags; 4921 4922 raw_spin_lock_irqsave(&idle->pi_lock, flags); 4923 raw_spin_lock(&rq->lock); 4924 4925 __sched_fork(0, idle); 4926 idle->state = TASK_RUNNING; 4927 idle->se.exec_start = sched_clock(); 4928 4929 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4930 /* 4931 * We're having a chicken and egg problem, even though we are 4932 * holding rq->lock, the cpu isn't yet set to this cpu so the 4933 * lockdep check in task_group() will fail. 4934 * 4935 * Similar case to sched_fork(). / Alternatively we could 4936 * use task_rq_lock() here and obtain the other rq->lock. 4937 * 4938 * Silence PROVE_RCU 4939 */ 4940 rcu_read_lock(); 4941 __set_task_cpu(idle, cpu); 4942 rcu_read_unlock(); 4943 4944 rq->curr = rq->idle = idle; 4945 idle->on_rq = TASK_ON_RQ_QUEUED; 4946 #if defined(CONFIG_SMP) 4947 idle->on_cpu = 1; 4948 #endif 4949 raw_spin_unlock(&rq->lock); 4950 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 4951 4952 /* Set the preempt count _outside_ the spinlocks! */ 4953 init_idle_preempt_count(idle, cpu); 4954 4955 /* 4956 * The idle tasks have their own, simple scheduling class: 4957 */ 4958 idle->sched_class = &idle_sched_class; 4959 ftrace_graph_init_idle_task(idle, cpu); 4960 vtime_init_idle(idle, cpu); 4961 #if defined(CONFIG_SMP) 4962 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4963 #endif 4964 } 4965 4966 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 4967 const struct cpumask *trial) 4968 { 4969 int ret = 1, trial_cpus; 4970 struct dl_bw *cur_dl_b; 4971 unsigned long flags; 4972 4973 if (!cpumask_weight(cur)) 4974 return ret; 4975 4976 rcu_read_lock_sched(); 4977 cur_dl_b = dl_bw_of(cpumask_any(cur)); 4978 trial_cpus = cpumask_weight(trial); 4979 4980 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 4981 if (cur_dl_b->bw != -1 && 4982 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 4983 ret = 0; 4984 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 4985 rcu_read_unlock_sched(); 4986 4987 return ret; 4988 } 4989 4990 int task_can_attach(struct task_struct *p, 4991 const struct cpumask *cs_cpus_allowed) 4992 { 4993 int ret = 0; 4994 4995 /* 4996 * Kthreads which disallow setaffinity shouldn't be moved 4997 * to a new cpuset; we don't want to change their cpu 4998 * affinity and isolating such threads by their set of 4999 * allowed nodes is unnecessary. Thus, cpusets are not 5000 * applicable for such threads. This prevents checking for 5001 * success of set_cpus_allowed_ptr() on all attached tasks 5002 * before cpus_allowed may be changed. 5003 */ 5004 if (p->flags & PF_NO_SETAFFINITY) { 5005 ret = -EINVAL; 5006 goto out; 5007 } 5008 5009 #ifdef CONFIG_SMP 5010 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5011 cs_cpus_allowed)) { 5012 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5013 cs_cpus_allowed); 5014 struct dl_bw *dl_b; 5015 bool overflow; 5016 int cpus; 5017 unsigned long flags; 5018 5019 rcu_read_lock_sched(); 5020 dl_b = dl_bw_of(dest_cpu); 5021 raw_spin_lock_irqsave(&dl_b->lock, flags); 5022 cpus = dl_bw_cpus(dest_cpu); 5023 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5024 if (overflow) 5025 ret = -EBUSY; 5026 else { 5027 /* 5028 * We reserve space for this task in the destination 5029 * root_domain, as we can't fail after this point. 5030 * We will free resources in the source root_domain 5031 * later on (see set_cpus_allowed_dl()). 5032 */ 5033 __dl_add(dl_b, p->dl.dl_bw); 5034 } 5035 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5036 rcu_read_unlock_sched(); 5037 5038 } 5039 #endif 5040 out: 5041 return ret; 5042 } 5043 5044 #ifdef CONFIG_SMP 5045 5046 #ifdef CONFIG_NUMA_BALANCING 5047 /* Migrate current task p to target_cpu */ 5048 int migrate_task_to(struct task_struct *p, int target_cpu) 5049 { 5050 struct migration_arg arg = { p, target_cpu }; 5051 int curr_cpu = task_cpu(p); 5052 5053 if (curr_cpu == target_cpu) 5054 return 0; 5055 5056 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5057 return -EINVAL; 5058 5059 /* TODO: This is not properly updating schedstats */ 5060 5061 trace_sched_move_numa(p, curr_cpu, target_cpu); 5062 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5063 } 5064 5065 /* 5066 * Requeue a task on a given node and accurately track the number of NUMA 5067 * tasks on the runqueues 5068 */ 5069 void sched_setnuma(struct task_struct *p, int nid) 5070 { 5071 struct rq *rq; 5072 unsigned long flags; 5073 bool queued, running; 5074 5075 rq = task_rq_lock(p, &flags); 5076 queued = task_on_rq_queued(p); 5077 running = task_current(rq, p); 5078 5079 if (queued) 5080 dequeue_task(rq, p, 0); 5081 if (running) 5082 put_prev_task(rq, p); 5083 5084 p->numa_preferred_nid = nid; 5085 5086 if (running) 5087 p->sched_class->set_curr_task(rq); 5088 if (queued) 5089 enqueue_task(rq, p, 0); 5090 task_rq_unlock(rq, p, &flags); 5091 } 5092 #endif /* CONFIG_NUMA_BALANCING */ 5093 5094 #ifdef CONFIG_HOTPLUG_CPU 5095 /* 5096 * Ensures that the idle task is using init_mm right before its cpu goes 5097 * offline. 5098 */ 5099 void idle_task_exit(void) 5100 { 5101 struct mm_struct *mm = current->active_mm; 5102 5103 BUG_ON(cpu_online(smp_processor_id())); 5104 5105 if (mm != &init_mm) { 5106 switch_mm(mm, &init_mm, current); 5107 finish_arch_post_lock_switch(); 5108 } 5109 mmdrop(mm); 5110 } 5111 5112 /* 5113 * Since this CPU is going 'away' for a while, fold any nr_active delta 5114 * we might have. Assumes we're called after migrate_tasks() so that the 5115 * nr_active count is stable. 5116 * 5117 * Also see the comment "Global load-average calculations". 5118 */ 5119 static void calc_load_migrate(struct rq *rq) 5120 { 5121 long delta = calc_load_fold_active(rq); 5122 if (delta) 5123 atomic_long_add(delta, &calc_load_tasks); 5124 } 5125 5126 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5127 { 5128 } 5129 5130 static const struct sched_class fake_sched_class = { 5131 .put_prev_task = put_prev_task_fake, 5132 }; 5133 5134 static struct task_struct fake_task = { 5135 /* 5136 * Avoid pull_{rt,dl}_task() 5137 */ 5138 .prio = MAX_PRIO + 1, 5139 .sched_class = &fake_sched_class, 5140 }; 5141 5142 /* 5143 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5144 * try_to_wake_up()->select_task_rq(). 5145 * 5146 * Called with rq->lock held even though we'er in stop_machine() and 5147 * there's no concurrency possible, we hold the required locks anyway 5148 * because of lock validation efforts. 5149 */ 5150 static void migrate_tasks(struct rq *dead_rq) 5151 { 5152 struct rq *rq = dead_rq; 5153 struct task_struct *next, *stop = rq->stop; 5154 int dest_cpu; 5155 5156 /* 5157 * Fudge the rq selection such that the below task selection loop 5158 * doesn't get stuck on the currently eligible stop task. 5159 * 5160 * We're currently inside stop_machine() and the rq is either stuck 5161 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5162 * either way we should never end up calling schedule() until we're 5163 * done here. 5164 */ 5165 rq->stop = NULL; 5166 5167 /* 5168 * put_prev_task() and pick_next_task() sched 5169 * class method both need to have an up-to-date 5170 * value of rq->clock[_task] 5171 */ 5172 update_rq_clock(rq); 5173 5174 for (;;) { 5175 /* 5176 * There's this thread running, bail when that's the only 5177 * remaining thread. 5178 */ 5179 if (rq->nr_running == 1) 5180 break; 5181 5182 /* 5183 * Ensure rq->lock covers the entire task selection 5184 * until the migration. 5185 */ 5186 lockdep_pin_lock(&rq->lock); 5187 next = pick_next_task(rq, &fake_task); 5188 BUG_ON(!next); 5189 next->sched_class->put_prev_task(rq, next); 5190 5191 /* Find suitable destination for @next, with force if needed. */ 5192 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5193 5194 lockdep_unpin_lock(&rq->lock); 5195 rq = __migrate_task(rq, next, dest_cpu); 5196 if (rq != dead_rq) { 5197 raw_spin_unlock(&rq->lock); 5198 rq = dead_rq; 5199 raw_spin_lock(&rq->lock); 5200 } 5201 } 5202 5203 rq->stop = stop; 5204 } 5205 #endif /* CONFIG_HOTPLUG_CPU */ 5206 5207 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5208 5209 static struct ctl_table sd_ctl_dir[] = { 5210 { 5211 .procname = "sched_domain", 5212 .mode = 0555, 5213 }, 5214 {} 5215 }; 5216 5217 static struct ctl_table sd_ctl_root[] = { 5218 { 5219 .procname = "kernel", 5220 .mode = 0555, 5221 .child = sd_ctl_dir, 5222 }, 5223 {} 5224 }; 5225 5226 static struct ctl_table *sd_alloc_ctl_entry(int n) 5227 { 5228 struct ctl_table *entry = 5229 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5230 5231 return entry; 5232 } 5233 5234 static void sd_free_ctl_entry(struct ctl_table **tablep) 5235 { 5236 struct ctl_table *entry; 5237 5238 /* 5239 * In the intermediate directories, both the child directory and 5240 * procname are dynamically allocated and could fail but the mode 5241 * will always be set. In the lowest directory the names are 5242 * static strings and all have proc handlers. 5243 */ 5244 for (entry = *tablep; entry->mode; entry++) { 5245 if (entry->child) 5246 sd_free_ctl_entry(&entry->child); 5247 if (entry->proc_handler == NULL) 5248 kfree(entry->procname); 5249 } 5250 5251 kfree(*tablep); 5252 *tablep = NULL; 5253 } 5254 5255 static int min_load_idx = 0; 5256 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5257 5258 static void 5259 set_table_entry(struct ctl_table *entry, 5260 const char *procname, void *data, int maxlen, 5261 umode_t mode, proc_handler *proc_handler, 5262 bool load_idx) 5263 { 5264 entry->procname = procname; 5265 entry->data = data; 5266 entry->maxlen = maxlen; 5267 entry->mode = mode; 5268 entry->proc_handler = proc_handler; 5269 5270 if (load_idx) { 5271 entry->extra1 = &min_load_idx; 5272 entry->extra2 = &max_load_idx; 5273 } 5274 } 5275 5276 static struct ctl_table * 5277 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5278 { 5279 struct ctl_table *table = sd_alloc_ctl_entry(14); 5280 5281 if (table == NULL) 5282 return NULL; 5283 5284 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5285 sizeof(long), 0644, proc_doulongvec_minmax, false); 5286 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5287 sizeof(long), 0644, proc_doulongvec_minmax, false); 5288 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5289 sizeof(int), 0644, proc_dointvec_minmax, true); 5290 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5291 sizeof(int), 0644, proc_dointvec_minmax, true); 5292 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5293 sizeof(int), 0644, proc_dointvec_minmax, true); 5294 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5295 sizeof(int), 0644, proc_dointvec_minmax, true); 5296 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5297 sizeof(int), 0644, proc_dointvec_minmax, true); 5298 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5299 sizeof(int), 0644, proc_dointvec_minmax, false); 5300 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5301 sizeof(int), 0644, proc_dointvec_minmax, false); 5302 set_table_entry(&table[9], "cache_nice_tries", 5303 &sd->cache_nice_tries, 5304 sizeof(int), 0644, proc_dointvec_minmax, false); 5305 set_table_entry(&table[10], "flags", &sd->flags, 5306 sizeof(int), 0644, proc_dointvec_minmax, false); 5307 set_table_entry(&table[11], "max_newidle_lb_cost", 5308 &sd->max_newidle_lb_cost, 5309 sizeof(long), 0644, proc_doulongvec_minmax, false); 5310 set_table_entry(&table[12], "name", sd->name, 5311 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5312 /* &table[13] is terminator */ 5313 5314 return table; 5315 } 5316 5317 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5318 { 5319 struct ctl_table *entry, *table; 5320 struct sched_domain *sd; 5321 int domain_num = 0, i; 5322 char buf[32]; 5323 5324 for_each_domain(cpu, sd) 5325 domain_num++; 5326 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5327 if (table == NULL) 5328 return NULL; 5329 5330 i = 0; 5331 for_each_domain(cpu, sd) { 5332 snprintf(buf, 32, "domain%d", i); 5333 entry->procname = kstrdup(buf, GFP_KERNEL); 5334 entry->mode = 0555; 5335 entry->child = sd_alloc_ctl_domain_table(sd); 5336 entry++; 5337 i++; 5338 } 5339 return table; 5340 } 5341 5342 static struct ctl_table_header *sd_sysctl_header; 5343 static void register_sched_domain_sysctl(void) 5344 { 5345 int i, cpu_num = num_possible_cpus(); 5346 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5347 char buf[32]; 5348 5349 WARN_ON(sd_ctl_dir[0].child); 5350 sd_ctl_dir[0].child = entry; 5351 5352 if (entry == NULL) 5353 return; 5354 5355 for_each_possible_cpu(i) { 5356 snprintf(buf, 32, "cpu%d", i); 5357 entry->procname = kstrdup(buf, GFP_KERNEL); 5358 entry->mode = 0555; 5359 entry->child = sd_alloc_ctl_cpu_table(i); 5360 entry++; 5361 } 5362 5363 WARN_ON(sd_sysctl_header); 5364 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5365 } 5366 5367 /* may be called multiple times per register */ 5368 static void unregister_sched_domain_sysctl(void) 5369 { 5370 unregister_sysctl_table(sd_sysctl_header); 5371 sd_sysctl_header = NULL; 5372 if (sd_ctl_dir[0].child) 5373 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5374 } 5375 #else 5376 static void register_sched_domain_sysctl(void) 5377 { 5378 } 5379 static void unregister_sched_domain_sysctl(void) 5380 { 5381 } 5382 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */ 5383 5384 static void set_rq_online(struct rq *rq) 5385 { 5386 if (!rq->online) { 5387 const struct sched_class *class; 5388 5389 cpumask_set_cpu(rq->cpu, rq->rd->online); 5390 rq->online = 1; 5391 5392 for_each_class(class) { 5393 if (class->rq_online) 5394 class->rq_online(rq); 5395 } 5396 } 5397 } 5398 5399 static void set_rq_offline(struct rq *rq) 5400 { 5401 if (rq->online) { 5402 const struct sched_class *class; 5403 5404 for_each_class(class) { 5405 if (class->rq_offline) 5406 class->rq_offline(rq); 5407 } 5408 5409 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5410 rq->online = 0; 5411 } 5412 } 5413 5414 /* 5415 * migration_call - callback that gets triggered when a CPU is added. 5416 * Here we can start up the necessary migration thread for the new CPU. 5417 */ 5418 static int 5419 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5420 { 5421 int cpu = (long)hcpu; 5422 unsigned long flags; 5423 struct rq *rq = cpu_rq(cpu); 5424 5425 switch (action & ~CPU_TASKS_FROZEN) { 5426 5427 case CPU_UP_PREPARE: 5428 rq->calc_load_update = calc_load_update; 5429 break; 5430 5431 case CPU_ONLINE: 5432 /* Update our root-domain */ 5433 raw_spin_lock_irqsave(&rq->lock, flags); 5434 if (rq->rd) { 5435 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5436 5437 set_rq_online(rq); 5438 } 5439 raw_spin_unlock_irqrestore(&rq->lock, flags); 5440 break; 5441 5442 #ifdef CONFIG_HOTPLUG_CPU 5443 case CPU_DYING: 5444 sched_ttwu_pending(); 5445 /* Update our root-domain */ 5446 raw_spin_lock_irqsave(&rq->lock, flags); 5447 if (rq->rd) { 5448 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5449 set_rq_offline(rq); 5450 } 5451 migrate_tasks(rq); 5452 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5453 raw_spin_unlock_irqrestore(&rq->lock, flags); 5454 break; 5455 5456 case CPU_DEAD: 5457 calc_load_migrate(rq); 5458 break; 5459 #endif 5460 } 5461 5462 update_max_interval(); 5463 5464 return NOTIFY_OK; 5465 } 5466 5467 /* 5468 * Register at high priority so that task migration (migrate_all_tasks) 5469 * happens before everything else. This has to be lower priority than 5470 * the notifier in the perf_event subsystem, though. 5471 */ 5472 static struct notifier_block migration_notifier = { 5473 .notifier_call = migration_call, 5474 .priority = CPU_PRI_MIGRATION, 5475 }; 5476 5477 static void set_cpu_rq_start_time(void) 5478 { 5479 int cpu = smp_processor_id(); 5480 struct rq *rq = cpu_rq(cpu); 5481 rq->age_stamp = sched_clock_cpu(cpu); 5482 } 5483 5484 static int sched_cpu_active(struct notifier_block *nfb, 5485 unsigned long action, void *hcpu) 5486 { 5487 switch (action & ~CPU_TASKS_FROZEN) { 5488 case CPU_STARTING: 5489 set_cpu_rq_start_time(); 5490 return NOTIFY_OK; 5491 case CPU_DOWN_FAILED: 5492 set_cpu_active((long)hcpu, true); 5493 return NOTIFY_OK; 5494 default: 5495 return NOTIFY_DONE; 5496 } 5497 } 5498 5499 static int sched_cpu_inactive(struct notifier_block *nfb, 5500 unsigned long action, void *hcpu) 5501 { 5502 switch (action & ~CPU_TASKS_FROZEN) { 5503 case CPU_DOWN_PREPARE: 5504 set_cpu_active((long)hcpu, false); 5505 return NOTIFY_OK; 5506 default: 5507 return NOTIFY_DONE; 5508 } 5509 } 5510 5511 static int __init migration_init(void) 5512 { 5513 void *cpu = (void *)(long)smp_processor_id(); 5514 int err; 5515 5516 /* Initialize migration for the boot CPU */ 5517 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5518 BUG_ON(err == NOTIFY_BAD); 5519 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5520 register_cpu_notifier(&migration_notifier); 5521 5522 /* Register cpu active notifiers */ 5523 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5524 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5525 5526 return 0; 5527 } 5528 early_initcall(migration_init); 5529 5530 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5531 5532 #ifdef CONFIG_SCHED_DEBUG 5533 5534 static __read_mostly int sched_debug_enabled; 5535 5536 static int __init sched_debug_setup(char *str) 5537 { 5538 sched_debug_enabled = 1; 5539 5540 return 0; 5541 } 5542 early_param("sched_debug", sched_debug_setup); 5543 5544 static inline bool sched_debug(void) 5545 { 5546 return sched_debug_enabled; 5547 } 5548 5549 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5550 struct cpumask *groupmask) 5551 { 5552 struct sched_group *group = sd->groups; 5553 5554 cpumask_clear(groupmask); 5555 5556 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5557 5558 if (!(sd->flags & SD_LOAD_BALANCE)) { 5559 printk("does not load-balance\n"); 5560 if (sd->parent) 5561 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5562 " has parent"); 5563 return -1; 5564 } 5565 5566 printk(KERN_CONT "span %*pbl level %s\n", 5567 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5568 5569 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5570 printk(KERN_ERR "ERROR: domain->span does not contain " 5571 "CPU%d\n", cpu); 5572 } 5573 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5574 printk(KERN_ERR "ERROR: domain->groups does not contain" 5575 " CPU%d\n", cpu); 5576 } 5577 5578 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5579 do { 5580 if (!group) { 5581 printk("\n"); 5582 printk(KERN_ERR "ERROR: group is NULL\n"); 5583 break; 5584 } 5585 5586 if (!cpumask_weight(sched_group_cpus(group))) { 5587 printk(KERN_CONT "\n"); 5588 printk(KERN_ERR "ERROR: empty group\n"); 5589 break; 5590 } 5591 5592 if (!(sd->flags & SD_OVERLAP) && 5593 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5594 printk(KERN_CONT "\n"); 5595 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5596 break; 5597 } 5598 5599 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5600 5601 printk(KERN_CONT " %*pbl", 5602 cpumask_pr_args(sched_group_cpus(group))); 5603 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5604 printk(KERN_CONT " (cpu_capacity = %d)", 5605 group->sgc->capacity); 5606 } 5607 5608 group = group->next; 5609 } while (group != sd->groups); 5610 printk(KERN_CONT "\n"); 5611 5612 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5613 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5614 5615 if (sd->parent && 5616 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5617 printk(KERN_ERR "ERROR: parent span is not a superset " 5618 "of domain->span\n"); 5619 return 0; 5620 } 5621 5622 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5623 { 5624 int level = 0; 5625 5626 if (!sched_debug_enabled) 5627 return; 5628 5629 if (!sd) { 5630 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5631 return; 5632 } 5633 5634 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5635 5636 for (;;) { 5637 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5638 break; 5639 level++; 5640 sd = sd->parent; 5641 if (!sd) 5642 break; 5643 } 5644 } 5645 #else /* !CONFIG_SCHED_DEBUG */ 5646 # define sched_domain_debug(sd, cpu) do { } while (0) 5647 static inline bool sched_debug(void) 5648 { 5649 return false; 5650 } 5651 #endif /* CONFIG_SCHED_DEBUG */ 5652 5653 static int sd_degenerate(struct sched_domain *sd) 5654 { 5655 if (cpumask_weight(sched_domain_span(sd)) == 1) 5656 return 1; 5657 5658 /* Following flags need at least 2 groups */ 5659 if (sd->flags & (SD_LOAD_BALANCE | 5660 SD_BALANCE_NEWIDLE | 5661 SD_BALANCE_FORK | 5662 SD_BALANCE_EXEC | 5663 SD_SHARE_CPUCAPACITY | 5664 SD_SHARE_PKG_RESOURCES | 5665 SD_SHARE_POWERDOMAIN)) { 5666 if (sd->groups != sd->groups->next) 5667 return 0; 5668 } 5669 5670 /* Following flags don't use groups */ 5671 if (sd->flags & (SD_WAKE_AFFINE)) 5672 return 0; 5673 5674 return 1; 5675 } 5676 5677 static int 5678 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5679 { 5680 unsigned long cflags = sd->flags, pflags = parent->flags; 5681 5682 if (sd_degenerate(parent)) 5683 return 1; 5684 5685 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5686 return 0; 5687 5688 /* Flags needing groups don't count if only 1 group in parent */ 5689 if (parent->groups == parent->groups->next) { 5690 pflags &= ~(SD_LOAD_BALANCE | 5691 SD_BALANCE_NEWIDLE | 5692 SD_BALANCE_FORK | 5693 SD_BALANCE_EXEC | 5694 SD_SHARE_CPUCAPACITY | 5695 SD_SHARE_PKG_RESOURCES | 5696 SD_PREFER_SIBLING | 5697 SD_SHARE_POWERDOMAIN); 5698 if (nr_node_ids == 1) 5699 pflags &= ~SD_SERIALIZE; 5700 } 5701 if (~cflags & pflags) 5702 return 0; 5703 5704 return 1; 5705 } 5706 5707 static void free_rootdomain(struct rcu_head *rcu) 5708 { 5709 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5710 5711 cpupri_cleanup(&rd->cpupri); 5712 cpudl_cleanup(&rd->cpudl); 5713 free_cpumask_var(rd->dlo_mask); 5714 free_cpumask_var(rd->rto_mask); 5715 free_cpumask_var(rd->online); 5716 free_cpumask_var(rd->span); 5717 kfree(rd); 5718 } 5719 5720 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5721 { 5722 struct root_domain *old_rd = NULL; 5723 unsigned long flags; 5724 5725 raw_spin_lock_irqsave(&rq->lock, flags); 5726 5727 if (rq->rd) { 5728 old_rd = rq->rd; 5729 5730 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5731 set_rq_offline(rq); 5732 5733 cpumask_clear_cpu(rq->cpu, old_rd->span); 5734 5735 /* 5736 * If we dont want to free the old_rd yet then 5737 * set old_rd to NULL to skip the freeing later 5738 * in this function: 5739 */ 5740 if (!atomic_dec_and_test(&old_rd->refcount)) 5741 old_rd = NULL; 5742 } 5743 5744 atomic_inc(&rd->refcount); 5745 rq->rd = rd; 5746 5747 cpumask_set_cpu(rq->cpu, rd->span); 5748 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5749 set_rq_online(rq); 5750 5751 raw_spin_unlock_irqrestore(&rq->lock, flags); 5752 5753 if (old_rd) 5754 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5755 } 5756 5757 static int init_rootdomain(struct root_domain *rd) 5758 { 5759 memset(rd, 0, sizeof(*rd)); 5760 5761 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5762 goto out; 5763 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5764 goto free_span; 5765 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5766 goto free_online; 5767 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5768 goto free_dlo_mask; 5769 5770 init_dl_bw(&rd->dl_bw); 5771 if (cpudl_init(&rd->cpudl) != 0) 5772 goto free_dlo_mask; 5773 5774 if (cpupri_init(&rd->cpupri) != 0) 5775 goto free_rto_mask; 5776 return 0; 5777 5778 free_rto_mask: 5779 free_cpumask_var(rd->rto_mask); 5780 free_dlo_mask: 5781 free_cpumask_var(rd->dlo_mask); 5782 free_online: 5783 free_cpumask_var(rd->online); 5784 free_span: 5785 free_cpumask_var(rd->span); 5786 out: 5787 return -ENOMEM; 5788 } 5789 5790 /* 5791 * By default the system creates a single root-domain with all cpus as 5792 * members (mimicking the global state we have today). 5793 */ 5794 struct root_domain def_root_domain; 5795 5796 static void init_defrootdomain(void) 5797 { 5798 init_rootdomain(&def_root_domain); 5799 5800 atomic_set(&def_root_domain.refcount, 1); 5801 } 5802 5803 static struct root_domain *alloc_rootdomain(void) 5804 { 5805 struct root_domain *rd; 5806 5807 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5808 if (!rd) 5809 return NULL; 5810 5811 if (init_rootdomain(rd) != 0) { 5812 kfree(rd); 5813 return NULL; 5814 } 5815 5816 return rd; 5817 } 5818 5819 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5820 { 5821 struct sched_group *tmp, *first; 5822 5823 if (!sg) 5824 return; 5825 5826 first = sg; 5827 do { 5828 tmp = sg->next; 5829 5830 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5831 kfree(sg->sgc); 5832 5833 kfree(sg); 5834 sg = tmp; 5835 } while (sg != first); 5836 } 5837 5838 static void free_sched_domain(struct rcu_head *rcu) 5839 { 5840 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5841 5842 /* 5843 * If its an overlapping domain it has private groups, iterate and 5844 * nuke them all. 5845 */ 5846 if (sd->flags & SD_OVERLAP) { 5847 free_sched_groups(sd->groups, 1); 5848 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5849 kfree(sd->groups->sgc); 5850 kfree(sd->groups); 5851 } 5852 kfree(sd); 5853 } 5854 5855 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5856 { 5857 call_rcu(&sd->rcu, free_sched_domain); 5858 } 5859 5860 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5861 { 5862 for (; sd; sd = sd->parent) 5863 destroy_sched_domain(sd, cpu); 5864 } 5865 5866 /* 5867 * Keep a special pointer to the highest sched_domain that has 5868 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5869 * allows us to avoid some pointer chasing select_idle_sibling(). 5870 * 5871 * Also keep a unique ID per domain (we use the first cpu number in 5872 * the cpumask of the domain), this allows us to quickly tell if 5873 * two cpus are in the same cache domain, see cpus_share_cache(). 5874 */ 5875 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5876 DEFINE_PER_CPU(int, sd_llc_size); 5877 DEFINE_PER_CPU(int, sd_llc_id); 5878 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5879 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5880 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5881 5882 static void update_top_cache_domain(int cpu) 5883 { 5884 struct sched_domain *sd; 5885 struct sched_domain *busy_sd = NULL; 5886 int id = cpu; 5887 int size = 1; 5888 5889 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5890 if (sd) { 5891 id = cpumask_first(sched_domain_span(sd)); 5892 size = cpumask_weight(sched_domain_span(sd)); 5893 busy_sd = sd->parent; /* sd_busy */ 5894 } 5895 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5896 5897 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5898 per_cpu(sd_llc_size, cpu) = size; 5899 per_cpu(sd_llc_id, cpu) = id; 5900 5901 sd = lowest_flag_domain(cpu, SD_NUMA); 5902 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5903 5904 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5905 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5906 } 5907 5908 /* 5909 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5910 * hold the hotplug lock. 5911 */ 5912 static void 5913 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5914 { 5915 struct rq *rq = cpu_rq(cpu); 5916 struct sched_domain *tmp; 5917 5918 /* Remove the sched domains which do not contribute to scheduling. */ 5919 for (tmp = sd; tmp; ) { 5920 struct sched_domain *parent = tmp->parent; 5921 if (!parent) 5922 break; 5923 5924 if (sd_parent_degenerate(tmp, parent)) { 5925 tmp->parent = parent->parent; 5926 if (parent->parent) 5927 parent->parent->child = tmp; 5928 /* 5929 * Transfer SD_PREFER_SIBLING down in case of a 5930 * degenerate parent; the spans match for this 5931 * so the property transfers. 5932 */ 5933 if (parent->flags & SD_PREFER_SIBLING) 5934 tmp->flags |= SD_PREFER_SIBLING; 5935 destroy_sched_domain(parent, cpu); 5936 } else 5937 tmp = tmp->parent; 5938 } 5939 5940 if (sd && sd_degenerate(sd)) { 5941 tmp = sd; 5942 sd = sd->parent; 5943 destroy_sched_domain(tmp, cpu); 5944 if (sd) 5945 sd->child = NULL; 5946 } 5947 5948 sched_domain_debug(sd, cpu); 5949 5950 rq_attach_root(rq, rd); 5951 tmp = rq->sd; 5952 rcu_assign_pointer(rq->sd, sd); 5953 destroy_sched_domains(tmp, cpu); 5954 5955 update_top_cache_domain(cpu); 5956 } 5957 5958 /* Setup the mask of cpus configured for isolated domains */ 5959 static int __init isolated_cpu_setup(char *str) 5960 { 5961 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5962 cpulist_parse(str, cpu_isolated_map); 5963 return 1; 5964 } 5965 5966 __setup("isolcpus=", isolated_cpu_setup); 5967 5968 struct s_data { 5969 struct sched_domain ** __percpu sd; 5970 struct root_domain *rd; 5971 }; 5972 5973 enum s_alloc { 5974 sa_rootdomain, 5975 sa_sd, 5976 sa_sd_storage, 5977 sa_none, 5978 }; 5979 5980 /* 5981 * Build an iteration mask that can exclude certain CPUs from the upwards 5982 * domain traversal. 5983 * 5984 * Asymmetric node setups can result in situations where the domain tree is of 5985 * unequal depth, make sure to skip domains that already cover the entire 5986 * range. 5987 * 5988 * In that case build_sched_domains() will have terminated the iteration early 5989 * and our sibling sd spans will be empty. Domains should always include the 5990 * cpu they're built on, so check that. 5991 * 5992 */ 5993 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5994 { 5995 const struct cpumask *span = sched_domain_span(sd); 5996 struct sd_data *sdd = sd->private; 5997 struct sched_domain *sibling; 5998 int i; 5999 6000 for_each_cpu(i, span) { 6001 sibling = *per_cpu_ptr(sdd->sd, i); 6002 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6003 continue; 6004 6005 cpumask_set_cpu(i, sched_group_mask(sg)); 6006 } 6007 } 6008 6009 /* 6010 * Return the canonical balance cpu for this group, this is the first cpu 6011 * of this group that's also in the iteration mask. 6012 */ 6013 int group_balance_cpu(struct sched_group *sg) 6014 { 6015 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6016 } 6017 6018 static int 6019 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6020 { 6021 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6022 const struct cpumask *span = sched_domain_span(sd); 6023 struct cpumask *covered = sched_domains_tmpmask; 6024 struct sd_data *sdd = sd->private; 6025 struct sched_domain *sibling; 6026 int i; 6027 6028 cpumask_clear(covered); 6029 6030 for_each_cpu(i, span) { 6031 struct cpumask *sg_span; 6032 6033 if (cpumask_test_cpu(i, covered)) 6034 continue; 6035 6036 sibling = *per_cpu_ptr(sdd->sd, i); 6037 6038 /* See the comment near build_group_mask(). */ 6039 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6040 continue; 6041 6042 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6043 GFP_KERNEL, cpu_to_node(cpu)); 6044 6045 if (!sg) 6046 goto fail; 6047 6048 sg_span = sched_group_cpus(sg); 6049 if (sibling->child) 6050 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6051 else 6052 cpumask_set_cpu(i, sg_span); 6053 6054 cpumask_or(covered, covered, sg_span); 6055 6056 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6057 if (atomic_inc_return(&sg->sgc->ref) == 1) 6058 build_group_mask(sd, sg); 6059 6060 /* 6061 * Initialize sgc->capacity such that even if we mess up the 6062 * domains and no possible iteration will get us here, we won't 6063 * die on a /0 trap. 6064 */ 6065 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6066 6067 /* 6068 * Make sure the first group of this domain contains the 6069 * canonical balance cpu. Otherwise the sched_domain iteration 6070 * breaks. See update_sg_lb_stats(). 6071 */ 6072 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6073 group_balance_cpu(sg) == cpu) 6074 groups = sg; 6075 6076 if (!first) 6077 first = sg; 6078 if (last) 6079 last->next = sg; 6080 last = sg; 6081 last->next = first; 6082 } 6083 sd->groups = groups; 6084 6085 return 0; 6086 6087 fail: 6088 free_sched_groups(first, 0); 6089 6090 return -ENOMEM; 6091 } 6092 6093 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6094 { 6095 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6096 struct sched_domain *child = sd->child; 6097 6098 if (child) 6099 cpu = cpumask_first(sched_domain_span(child)); 6100 6101 if (sg) { 6102 *sg = *per_cpu_ptr(sdd->sg, cpu); 6103 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6104 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6105 } 6106 6107 return cpu; 6108 } 6109 6110 /* 6111 * build_sched_groups will build a circular linked list of the groups 6112 * covered by the given span, and will set each group's ->cpumask correctly, 6113 * and ->cpu_capacity to 0. 6114 * 6115 * Assumes the sched_domain tree is fully constructed 6116 */ 6117 static int 6118 build_sched_groups(struct sched_domain *sd, int cpu) 6119 { 6120 struct sched_group *first = NULL, *last = NULL; 6121 struct sd_data *sdd = sd->private; 6122 const struct cpumask *span = sched_domain_span(sd); 6123 struct cpumask *covered; 6124 int i; 6125 6126 get_group(cpu, sdd, &sd->groups); 6127 atomic_inc(&sd->groups->ref); 6128 6129 if (cpu != cpumask_first(span)) 6130 return 0; 6131 6132 lockdep_assert_held(&sched_domains_mutex); 6133 covered = sched_domains_tmpmask; 6134 6135 cpumask_clear(covered); 6136 6137 for_each_cpu(i, span) { 6138 struct sched_group *sg; 6139 int group, j; 6140 6141 if (cpumask_test_cpu(i, covered)) 6142 continue; 6143 6144 group = get_group(i, sdd, &sg); 6145 cpumask_setall(sched_group_mask(sg)); 6146 6147 for_each_cpu(j, span) { 6148 if (get_group(j, sdd, NULL) != group) 6149 continue; 6150 6151 cpumask_set_cpu(j, covered); 6152 cpumask_set_cpu(j, sched_group_cpus(sg)); 6153 } 6154 6155 if (!first) 6156 first = sg; 6157 if (last) 6158 last->next = sg; 6159 last = sg; 6160 } 6161 last->next = first; 6162 6163 return 0; 6164 } 6165 6166 /* 6167 * Initialize sched groups cpu_capacity. 6168 * 6169 * cpu_capacity indicates the capacity of sched group, which is used while 6170 * distributing the load between different sched groups in a sched domain. 6171 * Typically cpu_capacity for all the groups in a sched domain will be same 6172 * unless there are asymmetries in the topology. If there are asymmetries, 6173 * group having more cpu_capacity will pickup more load compared to the 6174 * group having less cpu_capacity. 6175 */ 6176 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6177 { 6178 struct sched_group *sg = sd->groups; 6179 6180 WARN_ON(!sg); 6181 6182 do { 6183 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6184 sg = sg->next; 6185 } while (sg != sd->groups); 6186 6187 if (cpu != group_balance_cpu(sg)) 6188 return; 6189 6190 update_group_capacity(sd, cpu); 6191 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6192 } 6193 6194 /* 6195 * Initializers for schedule domains 6196 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6197 */ 6198 6199 static int default_relax_domain_level = -1; 6200 int sched_domain_level_max; 6201 6202 static int __init setup_relax_domain_level(char *str) 6203 { 6204 if (kstrtoint(str, 0, &default_relax_domain_level)) 6205 pr_warn("Unable to set relax_domain_level\n"); 6206 6207 return 1; 6208 } 6209 __setup("relax_domain_level=", setup_relax_domain_level); 6210 6211 static void set_domain_attribute(struct sched_domain *sd, 6212 struct sched_domain_attr *attr) 6213 { 6214 int request; 6215 6216 if (!attr || attr->relax_domain_level < 0) { 6217 if (default_relax_domain_level < 0) 6218 return; 6219 else 6220 request = default_relax_domain_level; 6221 } else 6222 request = attr->relax_domain_level; 6223 if (request < sd->level) { 6224 /* turn off idle balance on this domain */ 6225 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6226 } else { 6227 /* turn on idle balance on this domain */ 6228 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6229 } 6230 } 6231 6232 static void __sdt_free(const struct cpumask *cpu_map); 6233 static int __sdt_alloc(const struct cpumask *cpu_map); 6234 6235 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6236 const struct cpumask *cpu_map) 6237 { 6238 switch (what) { 6239 case sa_rootdomain: 6240 if (!atomic_read(&d->rd->refcount)) 6241 free_rootdomain(&d->rd->rcu); /* fall through */ 6242 case sa_sd: 6243 free_percpu(d->sd); /* fall through */ 6244 case sa_sd_storage: 6245 __sdt_free(cpu_map); /* fall through */ 6246 case sa_none: 6247 break; 6248 } 6249 } 6250 6251 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6252 const struct cpumask *cpu_map) 6253 { 6254 memset(d, 0, sizeof(*d)); 6255 6256 if (__sdt_alloc(cpu_map)) 6257 return sa_sd_storage; 6258 d->sd = alloc_percpu(struct sched_domain *); 6259 if (!d->sd) 6260 return sa_sd_storage; 6261 d->rd = alloc_rootdomain(); 6262 if (!d->rd) 6263 return sa_sd; 6264 return sa_rootdomain; 6265 } 6266 6267 /* 6268 * NULL the sd_data elements we've used to build the sched_domain and 6269 * sched_group structure so that the subsequent __free_domain_allocs() 6270 * will not free the data we're using. 6271 */ 6272 static void claim_allocations(int cpu, struct sched_domain *sd) 6273 { 6274 struct sd_data *sdd = sd->private; 6275 6276 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6277 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6278 6279 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6280 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6281 6282 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6283 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6284 } 6285 6286 #ifdef CONFIG_NUMA 6287 static int sched_domains_numa_levels; 6288 enum numa_topology_type sched_numa_topology_type; 6289 static int *sched_domains_numa_distance; 6290 int sched_max_numa_distance; 6291 static struct cpumask ***sched_domains_numa_masks; 6292 static int sched_domains_curr_level; 6293 #endif 6294 6295 /* 6296 * SD_flags allowed in topology descriptions. 6297 * 6298 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6299 * SD_SHARE_PKG_RESOURCES - describes shared caches 6300 * SD_NUMA - describes NUMA topologies 6301 * SD_SHARE_POWERDOMAIN - describes shared power domain 6302 * 6303 * Odd one out: 6304 * SD_ASYM_PACKING - describes SMT quirks 6305 */ 6306 #define TOPOLOGY_SD_FLAGS \ 6307 (SD_SHARE_CPUCAPACITY | \ 6308 SD_SHARE_PKG_RESOURCES | \ 6309 SD_NUMA | \ 6310 SD_ASYM_PACKING | \ 6311 SD_SHARE_POWERDOMAIN) 6312 6313 static struct sched_domain * 6314 sd_init(struct sched_domain_topology_level *tl, int cpu) 6315 { 6316 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6317 int sd_weight, sd_flags = 0; 6318 6319 #ifdef CONFIG_NUMA 6320 /* 6321 * Ugly hack to pass state to sd_numa_mask()... 6322 */ 6323 sched_domains_curr_level = tl->numa_level; 6324 #endif 6325 6326 sd_weight = cpumask_weight(tl->mask(cpu)); 6327 6328 if (tl->sd_flags) 6329 sd_flags = (*tl->sd_flags)(); 6330 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6331 "wrong sd_flags in topology description\n")) 6332 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6333 6334 *sd = (struct sched_domain){ 6335 .min_interval = sd_weight, 6336 .max_interval = 2*sd_weight, 6337 .busy_factor = 32, 6338 .imbalance_pct = 125, 6339 6340 .cache_nice_tries = 0, 6341 .busy_idx = 0, 6342 .idle_idx = 0, 6343 .newidle_idx = 0, 6344 .wake_idx = 0, 6345 .forkexec_idx = 0, 6346 6347 .flags = 1*SD_LOAD_BALANCE 6348 | 1*SD_BALANCE_NEWIDLE 6349 | 1*SD_BALANCE_EXEC 6350 | 1*SD_BALANCE_FORK 6351 | 0*SD_BALANCE_WAKE 6352 | 1*SD_WAKE_AFFINE 6353 | 0*SD_SHARE_CPUCAPACITY 6354 | 0*SD_SHARE_PKG_RESOURCES 6355 | 0*SD_SERIALIZE 6356 | 0*SD_PREFER_SIBLING 6357 | 0*SD_NUMA 6358 | sd_flags 6359 , 6360 6361 .last_balance = jiffies, 6362 .balance_interval = sd_weight, 6363 .smt_gain = 0, 6364 .max_newidle_lb_cost = 0, 6365 .next_decay_max_lb_cost = jiffies, 6366 #ifdef CONFIG_SCHED_DEBUG 6367 .name = tl->name, 6368 #endif 6369 }; 6370 6371 /* 6372 * Convert topological properties into behaviour. 6373 */ 6374 6375 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6376 sd->flags |= SD_PREFER_SIBLING; 6377 sd->imbalance_pct = 110; 6378 sd->smt_gain = 1178; /* ~15% */ 6379 6380 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6381 sd->imbalance_pct = 117; 6382 sd->cache_nice_tries = 1; 6383 sd->busy_idx = 2; 6384 6385 #ifdef CONFIG_NUMA 6386 } else if (sd->flags & SD_NUMA) { 6387 sd->cache_nice_tries = 2; 6388 sd->busy_idx = 3; 6389 sd->idle_idx = 2; 6390 6391 sd->flags |= SD_SERIALIZE; 6392 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6393 sd->flags &= ~(SD_BALANCE_EXEC | 6394 SD_BALANCE_FORK | 6395 SD_WAKE_AFFINE); 6396 } 6397 6398 #endif 6399 } else { 6400 sd->flags |= SD_PREFER_SIBLING; 6401 sd->cache_nice_tries = 1; 6402 sd->busy_idx = 2; 6403 sd->idle_idx = 1; 6404 } 6405 6406 sd->private = &tl->data; 6407 6408 return sd; 6409 } 6410 6411 /* 6412 * Topology list, bottom-up. 6413 */ 6414 static struct sched_domain_topology_level default_topology[] = { 6415 #ifdef CONFIG_SCHED_SMT 6416 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6417 #endif 6418 #ifdef CONFIG_SCHED_MC 6419 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6420 #endif 6421 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6422 { NULL, }, 6423 }; 6424 6425 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6426 6427 #define for_each_sd_topology(tl) \ 6428 for (tl = sched_domain_topology; tl->mask; tl++) 6429 6430 void set_sched_topology(struct sched_domain_topology_level *tl) 6431 { 6432 sched_domain_topology = tl; 6433 } 6434 6435 #ifdef CONFIG_NUMA 6436 6437 static const struct cpumask *sd_numa_mask(int cpu) 6438 { 6439 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6440 } 6441 6442 static void sched_numa_warn(const char *str) 6443 { 6444 static int done = false; 6445 int i,j; 6446 6447 if (done) 6448 return; 6449 6450 done = true; 6451 6452 printk(KERN_WARNING "ERROR: %s\n\n", str); 6453 6454 for (i = 0; i < nr_node_ids; i++) { 6455 printk(KERN_WARNING " "); 6456 for (j = 0; j < nr_node_ids; j++) 6457 printk(KERN_CONT "%02d ", node_distance(i,j)); 6458 printk(KERN_CONT "\n"); 6459 } 6460 printk(KERN_WARNING "\n"); 6461 } 6462 6463 bool find_numa_distance(int distance) 6464 { 6465 int i; 6466 6467 if (distance == node_distance(0, 0)) 6468 return true; 6469 6470 for (i = 0; i < sched_domains_numa_levels; i++) { 6471 if (sched_domains_numa_distance[i] == distance) 6472 return true; 6473 } 6474 6475 return false; 6476 } 6477 6478 /* 6479 * A system can have three types of NUMA topology: 6480 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6481 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6482 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6483 * 6484 * The difference between a glueless mesh topology and a backplane 6485 * topology lies in whether communication between not directly 6486 * connected nodes goes through intermediary nodes (where programs 6487 * could run), or through backplane controllers. This affects 6488 * placement of programs. 6489 * 6490 * The type of topology can be discerned with the following tests: 6491 * - If the maximum distance between any nodes is 1 hop, the system 6492 * is directly connected. 6493 * - If for two nodes A and B, located N > 1 hops away from each other, 6494 * there is an intermediary node C, which is < N hops away from both 6495 * nodes A and B, the system is a glueless mesh. 6496 */ 6497 static void init_numa_topology_type(void) 6498 { 6499 int a, b, c, n; 6500 6501 n = sched_max_numa_distance; 6502 6503 if (sched_domains_numa_levels <= 1) { 6504 sched_numa_topology_type = NUMA_DIRECT; 6505 return; 6506 } 6507 6508 for_each_online_node(a) { 6509 for_each_online_node(b) { 6510 /* Find two nodes furthest removed from each other. */ 6511 if (node_distance(a, b) < n) 6512 continue; 6513 6514 /* Is there an intermediary node between a and b? */ 6515 for_each_online_node(c) { 6516 if (node_distance(a, c) < n && 6517 node_distance(b, c) < n) { 6518 sched_numa_topology_type = 6519 NUMA_GLUELESS_MESH; 6520 return; 6521 } 6522 } 6523 6524 sched_numa_topology_type = NUMA_BACKPLANE; 6525 return; 6526 } 6527 } 6528 } 6529 6530 static void sched_init_numa(void) 6531 { 6532 int next_distance, curr_distance = node_distance(0, 0); 6533 struct sched_domain_topology_level *tl; 6534 int level = 0; 6535 int i, j, k; 6536 6537 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6538 if (!sched_domains_numa_distance) 6539 return; 6540 6541 /* 6542 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6543 * unique distances in the node_distance() table. 6544 * 6545 * Assumes node_distance(0,j) includes all distances in 6546 * node_distance(i,j) in order to avoid cubic time. 6547 */ 6548 next_distance = curr_distance; 6549 for (i = 0; i < nr_node_ids; i++) { 6550 for (j = 0; j < nr_node_ids; j++) { 6551 for (k = 0; k < nr_node_ids; k++) { 6552 int distance = node_distance(i, k); 6553 6554 if (distance > curr_distance && 6555 (distance < next_distance || 6556 next_distance == curr_distance)) 6557 next_distance = distance; 6558 6559 /* 6560 * While not a strong assumption it would be nice to know 6561 * about cases where if node A is connected to B, B is not 6562 * equally connected to A. 6563 */ 6564 if (sched_debug() && node_distance(k, i) != distance) 6565 sched_numa_warn("Node-distance not symmetric"); 6566 6567 if (sched_debug() && i && !find_numa_distance(distance)) 6568 sched_numa_warn("Node-0 not representative"); 6569 } 6570 if (next_distance != curr_distance) { 6571 sched_domains_numa_distance[level++] = next_distance; 6572 sched_domains_numa_levels = level; 6573 curr_distance = next_distance; 6574 } else break; 6575 } 6576 6577 /* 6578 * In case of sched_debug() we verify the above assumption. 6579 */ 6580 if (!sched_debug()) 6581 break; 6582 } 6583 6584 if (!level) 6585 return; 6586 6587 /* 6588 * 'level' contains the number of unique distances, excluding the 6589 * identity distance node_distance(i,i). 6590 * 6591 * The sched_domains_numa_distance[] array includes the actual distance 6592 * numbers. 6593 */ 6594 6595 /* 6596 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6597 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6598 * the array will contain less then 'level' members. This could be 6599 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6600 * in other functions. 6601 * 6602 * We reset it to 'level' at the end of this function. 6603 */ 6604 sched_domains_numa_levels = 0; 6605 6606 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6607 if (!sched_domains_numa_masks) 6608 return; 6609 6610 /* 6611 * Now for each level, construct a mask per node which contains all 6612 * cpus of nodes that are that many hops away from us. 6613 */ 6614 for (i = 0; i < level; i++) { 6615 sched_domains_numa_masks[i] = 6616 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6617 if (!sched_domains_numa_masks[i]) 6618 return; 6619 6620 for (j = 0; j < nr_node_ids; j++) { 6621 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6622 if (!mask) 6623 return; 6624 6625 sched_domains_numa_masks[i][j] = mask; 6626 6627 for (k = 0; k < nr_node_ids; k++) { 6628 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6629 continue; 6630 6631 cpumask_or(mask, mask, cpumask_of_node(k)); 6632 } 6633 } 6634 } 6635 6636 /* Compute default topology size */ 6637 for (i = 0; sched_domain_topology[i].mask; i++); 6638 6639 tl = kzalloc((i + level + 1) * 6640 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6641 if (!tl) 6642 return; 6643 6644 /* 6645 * Copy the default topology bits.. 6646 */ 6647 for (i = 0; sched_domain_topology[i].mask; i++) 6648 tl[i] = sched_domain_topology[i]; 6649 6650 /* 6651 * .. and append 'j' levels of NUMA goodness. 6652 */ 6653 for (j = 0; j < level; i++, j++) { 6654 tl[i] = (struct sched_domain_topology_level){ 6655 .mask = sd_numa_mask, 6656 .sd_flags = cpu_numa_flags, 6657 .flags = SDTL_OVERLAP, 6658 .numa_level = j, 6659 SD_INIT_NAME(NUMA) 6660 }; 6661 } 6662 6663 sched_domain_topology = tl; 6664 6665 sched_domains_numa_levels = level; 6666 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6667 6668 init_numa_topology_type(); 6669 } 6670 6671 static void sched_domains_numa_masks_set(int cpu) 6672 { 6673 int i, j; 6674 int node = cpu_to_node(cpu); 6675 6676 for (i = 0; i < sched_domains_numa_levels; i++) { 6677 for (j = 0; j < nr_node_ids; j++) { 6678 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6679 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6680 } 6681 } 6682 } 6683 6684 static void sched_domains_numa_masks_clear(int cpu) 6685 { 6686 int i, j; 6687 for (i = 0; i < sched_domains_numa_levels; i++) { 6688 for (j = 0; j < nr_node_ids; j++) 6689 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6690 } 6691 } 6692 6693 /* 6694 * Update sched_domains_numa_masks[level][node] array when new cpus 6695 * are onlined. 6696 */ 6697 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6698 unsigned long action, 6699 void *hcpu) 6700 { 6701 int cpu = (long)hcpu; 6702 6703 switch (action & ~CPU_TASKS_FROZEN) { 6704 case CPU_ONLINE: 6705 sched_domains_numa_masks_set(cpu); 6706 break; 6707 6708 case CPU_DEAD: 6709 sched_domains_numa_masks_clear(cpu); 6710 break; 6711 6712 default: 6713 return NOTIFY_DONE; 6714 } 6715 6716 return NOTIFY_OK; 6717 } 6718 #else 6719 static inline void sched_init_numa(void) 6720 { 6721 } 6722 6723 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6724 unsigned long action, 6725 void *hcpu) 6726 { 6727 return 0; 6728 } 6729 #endif /* CONFIG_NUMA */ 6730 6731 static int __sdt_alloc(const struct cpumask *cpu_map) 6732 { 6733 struct sched_domain_topology_level *tl; 6734 int j; 6735 6736 for_each_sd_topology(tl) { 6737 struct sd_data *sdd = &tl->data; 6738 6739 sdd->sd = alloc_percpu(struct sched_domain *); 6740 if (!sdd->sd) 6741 return -ENOMEM; 6742 6743 sdd->sg = alloc_percpu(struct sched_group *); 6744 if (!sdd->sg) 6745 return -ENOMEM; 6746 6747 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6748 if (!sdd->sgc) 6749 return -ENOMEM; 6750 6751 for_each_cpu(j, cpu_map) { 6752 struct sched_domain *sd; 6753 struct sched_group *sg; 6754 struct sched_group_capacity *sgc; 6755 6756 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6757 GFP_KERNEL, cpu_to_node(j)); 6758 if (!sd) 6759 return -ENOMEM; 6760 6761 *per_cpu_ptr(sdd->sd, j) = sd; 6762 6763 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6764 GFP_KERNEL, cpu_to_node(j)); 6765 if (!sg) 6766 return -ENOMEM; 6767 6768 sg->next = sg; 6769 6770 *per_cpu_ptr(sdd->sg, j) = sg; 6771 6772 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6773 GFP_KERNEL, cpu_to_node(j)); 6774 if (!sgc) 6775 return -ENOMEM; 6776 6777 *per_cpu_ptr(sdd->sgc, j) = sgc; 6778 } 6779 } 6780 6781 return 0; 6782 } 6783 6784 static void __sdt_free(const struct cpumask *cpu_map) 6785 { 6786 struct sched_domain_topology_level *tl; 6787 int j; 6788 6789 for_each_sd_topology(tl) { 6790 struct sd_data *sdd = &tl->data; 6791 6792 for_each_cpu(j, cpu_map) { 6793 struct sched_domain *sd; 6794 6795 if (sdd->sd) { 6796 sd = *per_cpu_ptr(sdd->sd, j); 6797 if (sd && (sd->flags & SD_OVERLAP)) 6798 free_sched_groups(sd->groups, 0); 6799 kfree(*per_cpu_ptr(sdd->sd, j)); 6800 } 6801 6802 if (sdd->sg) 6803 kfree(*per_cpu_ptr(sdd->sg, j)); 6804 if (sdd->sgc) 6805 kfree(*per_cpu_ptr(sdd->sgc, j)); 6806 } 6807 free_percpu(sdd->sd); 6808 sdd->sd = NULL; 6809 free_percpu(sdd->sg); 6810 sdd->sg = NULL; 6811 free_percpu(sdd->sgc); 6812 sdd->sgc = NULL; 6813 } 6814 } 6815 6816 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6817 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6818 struct sched_domain *child, int cpu) 6819 { 6820 struct sched_domain *sd = sd_init(tl, cpu); 6821 if (!sd) 6822 return child; 6823 6824 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6825 if (child) { 6826 sd->level = child->level + 1; 6827 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6828 child->parent = sd; 6829 sd->child = child; 6830 6831 if (!cpumask_subset(sched_domain_span(child), 6832 sched_domain_span(sd))) { 6833 pr_err("BUG: arch topology borken\n"); 6834 #ifdef CONFIG_SCHED_DEBUG 6835 pr_err(" the %s domain not a subset of the %s domain\n", 6836 child->name, sd->name); 6837 #endif 6838 /* Fixup, ensure @sd has at least @child cpus. */ 6839 cpumask_or(sched_domain_span(sd), 6840 sched_domain_span(sd), 6841 sched_domain_span(child)); 6842 } 6843 6844 } 6845 set_domain_attribute(sd, attr); 6846 6847 return sd; 6848 } 6849 6850 /* 6851 * Build sched domains for a given set of cpus and attach the sched domains 6852 * to the individual cpus 6853 */ 6854 static int build_sched_domains(const struct cpumask *cpu_map, 6855 struct sched_domain_attr *attr) 6856 { 6857 enum s_alloc alloc_state; 6858 struct sched_domain *sd; 6859 struct s_data d; 6860 int i, ret = -ENOMEM; 6861 6862 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6863 if (alloc_state != sa_rootdomain) 6864 goto error; 6865 6866 /* Set up domains for cpus specified by the cpu_map. */ 6867 for_each_cpu(i, cpu_map) { 6868 struct sched_domain_topology_level *tl; 6869 6870 sd = NULL; 6871 for_each_sd_topology(tl) { 6872 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6873 if (tl == sched_domain_topology) 6874 *per_cpu_ptr(d.sd, i) = sd; 6875 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6876 sd->flags |= SD_OVERLAP; 6877 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6878 break; 6879 } 6880 } 6881 6882 /* Build the groups for the domains */ 6883 for_each_cpu(i, cpu_map) { 6884 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6885 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6886 if (sd->flags & SD_OVERLAP) { 6887 if (build_overlap_sched_groups(sd, i)) 6888 goto error; 6889 } else { 6890 if (build_sched_groups(sd, i)) 6891 goto error; 6892 } 6893 } 6894 } 6895 6896 /* Calculate CPU capacity for physical packages and nodes */ 6897 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6898 if (!cpumask_test_cpu(i, cpu_map)) 6899 continue; 6900 6901 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6902 claim_allocations(i, sd); 6903 init_sched_groups_capacity(i, sd); 6904 } 6905 } 6906 6907 /* Attach the domains */ 6908 rcu_read_lock(); 6909 for_each_cpu(i, cpu_map) { 6910 sd = *per_cpu_ptr(d.sd, i); 6911 cpu_attach_domain(sd, d.rd, i); 6912 } 6913 rcu_read_unlock(); 6914 6915 ret = 0; 6916 error: 6917 __free_domain_allocs(&d, alloc_state, cpu_map); 6918 return ret; 6919 } 6920 6921 static cpumask_var_t *doms_cur; /* current sched domains */ 6922 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6923 static struct sched_domain_attr *dattr_cur; 6924 /* attribues of custom domains in 'doms_cur' */ 6925 6926 /* 6927 * Special case: If a kmalloc of a doms_cur partition (array of 6928 * cpumask) fails, then fallback to a single sched domain, 6929 * as determined by the single cpumask fallback_doms. 6930 */ 6931 static cpumask_var_t fallback_doms; 6932 6933 /* 6934 * arch_update_cpu_topology lets virtualized architectures update the 6935 * cpu core maps. It is supposed to return 1 if the topology changed 6936 * or 0 if it stayed the same. 6937 */ 6938 int __weak arch_update_cpu_topology(void) 6939 { 6940 return 0; 6941 } 6942 6943 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6944 { 6945 int i; 6946 cpumask_var_t *doms; 6947 6948 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6949 if (!doms) 6950 return NULL; 6951 for (i = 0; i < ndoms; i++) { 6952 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6953 free_sched_domains(doms, i); 6954 return NULL; 6955 } 6956 } 6957 return doms; 6958 } 6959 6960 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6961 { 6962 unsigned int i; 6963 for (i = 0; i < ndoms; i++) 6964 free_cpumask_var(doms[i]); 6965 kfree(doms); 6966 } 6967 6968 /* 6969 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6970 * For now this just excludes isolated cpus, but could be used to 6971 * exclude other special cases in the future. 6972 */ 6973 static int init_sched_domains(const struct cpumask *cpu_map) 6974 { 6975 int err; 6976 6977 arch_update_cpu_topology(); 6978 ndoms_cur = 1; 6979 doms_cur = alloc_sched_domains(ndoms_cur); 6980 if (!doms_cur) 6981 doms_cur = &fallback_doms; 6982 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6983 err = build_sched_domains(doms_cur[0], NULL); 6984 register_sched_domain_sysctl(); 6985 6986 return err; 6987 } 6988 6989 /* 6990 * Detach sched domains from a group of cpus specified in cpu_map 6991 * These cpus will now be attached to the NULL domain 6992 */ 6993 static void detach_destroy_domains(const struct cpumask *cpu_map) 6994 { 6995 int i; 6996 6997 rcu_read_lock(); 6998 for_each_cpu(i, cpu_map) 6999 cpu_attach_domain(NULL, &def_root_domain, i); 7000 rcu_read_unlock(); 7001 } 7002 7003 /* handle null as "default" */ 7004 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 7005 struct sched_domain_attr *new, int idx_new) 7006 { 7007 struct sched_domain_attr tmp; 7008 7009 /* fast path */ 7010 if (!new && !cur) 7011 return 1; 7012 7013 tmp = SD_ATTR_INIT; 7014 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7015 new ? (new + idx_new) : &tmp, 7016 sizeof(struct sched_domain_attr)); 7017 } 7018 7019 /* 7020 * Partition sched domains as specified by the 'ndoms_new' 7021 * cpumasks in the array doms_new[] of cpumasks. This compares 7022 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7023 * It destroys each deleted domain and builds each new domain. 7024 * 7025 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7026 * The masks don't intersect (don't overlap.) We should setup one 7027 * sched domain for each mask. CPUs not in any of the cpumasks will 7028 * not be load balanced. If the same cpumask appears both in the 7029 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7030 * it as it is. 7031 * 7032 * The passed in 'doms_new' should be allocated using 7033 * alloc_sched_domains. This routine takes ownership of it and will 7034 * free_sched_domains it when done with it. If the caller failed the 7035 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7036 * and partition_sched_domains() will fallback to the single partition 7037 * 'fallback_doms', it also forces the domains to be rebuilt. 7038 * 7039 * If doms_new == NULL it will be replaced with cpu_online_mask. 7040 * ndoms_new == 0 is a special case for destroying existing domains, 7041 * and it will not create the default domain. 7042 * 7043 * Call with hotplug lock held 7044 */ 7045 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7046 struct sched_domain_attr *dattr_new) 7047 { 7048 int i, j, n; 7049 int new_topology; 7050 7051 mutex_lock(&sched_domains_mutex); 7052 7053 /* always unregister in case we don't destroy any domains */ 7054 unregister_sched_domain_sysctl(); 7055 7056 /* Let architecture update cpu core mappings. */ 7057 new_topology = arch_update_cpu_topology(); 7058 7059 n = doms_new ? ndoms_new : 0; 7060 7061 /* Destroy deleted domains */ 7062 for (i = 0; i < ndoms_cur; i++) { 7063 for (j = 0; j < n && !new_topology; j++) { 7064 if (cpumask_equal(doms_cur[i], doms_new[j]) 7065 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7066 goto match1; 7067 } 7068 /* no match - a current sched domain not in new doms_new[] */ 7069 detach_destroy_domains(doms_cur[i]); 7070 match1: 7071 ; 7072 } 7073 7074 n = ndoms_cur; 7075 if (doms_new == NULL) { 7076 n = 0; 7077 doms_new = &fallback_doms; 7078 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7079 WARN_ON_ONCE(dattr_new); 7080 } 7081 7082 /* Build new domains */ 7083 for (i = 0; i < ndoms_new; i++) { 7084 for (j = 0; j < n && !new_topology; j++) { 7085 if (cpumask_equal(doms_new[i], doms_cur[j]) 7086 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7087 goto match2; 7088 } 7089 /* no match - add a new doms_new */ 7090 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7091 match2: 7092 ; 7093 } 7094 7095 /* Remember the new sched domains */ 7096 if (doms_cur != &fallback_doms) 7097 free_sched_domains(doms_cur, ndoms_cur); 7098 kfree(dattr_cur); /* kfree(NULL) is safe */ 7099 doms_cur = doms_new; 7100 dattr_cur = dattr_new; 7101 ndoms_cur = ndoms_new; 7102 7103 register_sched_domain_sysctl(); 7104 7105 mutex_unlock(&sched_domains_mutex); 7106 } 7107 7108 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7109 7110 /* 7111 * Update cpusets according to cpu_active mask. If cpusets are 7112 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7113 * around partition_sched_domains(). 7114 * 7115 * If we come here as part of a suspend/resume, don't touch cpusets because we 7116 * want to restore it back to its original state upon resume anyway. 7117 */ 7118 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 7119 void *hcpu) 7120 { 7121 switch (action) { 7122 case CPU_ONLINE_FROZEN: 7123 case CPU_DOWN_FAILED_FROZEN: 7124 7125 /* 7126 * num_cpus_frozen tracks how many CPUs are involved in suspend 7127 * resume sequence. As long as this is not the last online 7128 * operation in the resume sequence, just build a single sched 7129 * domain, ignoring cpusets. 7130 */ 7131 num_cpus_frozen--; 7132 if (likely(num_cpus_frozen)) { 7133 partition_sched_domains(1, NULL, NULL); 7134 break; 7135 } 7136 7137 /* 7138 * This is the last CPU online operation. So fall through and 7139 * restore the original sched domains by considering the 7140 * cpuset configurations. 7141 */ 7142 7143 case CPU_ONLINE: 7144 cpuset_update_active_cpus(true); 7145 break; 7146 default: 7147 return NOTIFY_DONE; 7148 } 7149 return NOTIFY_OK; 7150 } 7151 7152 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7153 void *hcpu) 7154 { 7155 unsigned long flags; 7156 long cpu = (long)hcpu; 7157 struct dl_bw *dl_b; 7158 bool overflow; 7159 int cpus; 7160 7161 switch (action) { 7162 case CPU_DOWN_PREPARE: 7163 rcu_read_lock_sched(); 7164 dl_b = dl_bw_of(cpu); 7165 7166 raw_spin_lock_irqsave(&dl_b->lock, flags); 7167 cpus = dl_bw_cpus(cpu); 7168 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7169 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7170 7171 rcu_read_unlock_sched(); 7172 7173 if (overflow) 7174 return notifier_from_errno(-EBUSY); 7175 cpuset_update_active_cpus(false); 7176 break; 7177 case CPU_DOWN_PREPARE_FROZEN: 7178 num_cpus_frozen++; 7179 partition_sched_domains(1, NULL, NULL); 7180 break; 7181 default: 7182 return NOTIFY_DONE; 7183 } 7184 return NOTIFY_OK; 7185 } 7186 7187 void __init sched_init_smp(void) 7188 { 7189 cpumask_var_t non_isolated_cpus; 7190 7191 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7192 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7193 7194 /* nohz_full won't take effect without isolating the cpus. */ 7195 tick_nohz_full_add_cpus_to(cpu_isolated_map); 7196 7197 sched_init_numa(); 7198 7199 /* 7200 * There's no userspace yet to cause hotplug operations; hence all the 7201 * cpu masks are stable and all blatant races in the below code cannot 7202 * happen. 7203 */ 7204 mutex_lock(&sched_domains_mutex); 7205 init_sched_domains(cpu_active_mask); 7206 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7207 if (cpumask_empty(non_isolated_cpus)) 7208 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7209 mutex_unlock(&sched_domains_mutex); 7210 7211 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7212 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7213 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7214 7215 init_hrtick(); 7216 7217 /* Move init over to a non-isolated CPU */ 7218 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7219 BUG(); 7220 sched_init_granularity(); 7221 free_cpumask_var(non_isolated_cpus); 7222 7223 init_sched_rt_class(); 7224 init_sched_dl_class(); 7225 } 7226 #else 7227 void __init sched_init_smp(void) 7228 { 7229 sched_init_granularity(); 7230 } 7231 #endif /* CONFIG_SMP */ 7232 7233 int in_sched_functions(unsigned long addr) 7234 { 7235 return in_lock_functions(addr) || 7236 (addr >= (unsigned long)__sched_text_start 7237 && addr < (unsigned long)__sched_text_end); 7238 } 7239 7240 #ifdef CONFIG_CGROUP_SCHED 7241 /* 7242 * Default task group. 7243 * Every task in system belongs to this group at bootup. 7244 */ 7245 struct task_group root_task_group; 7246 LIST_HEAD(task_groups); 7247 #endif 7248 7249 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7250 7251 void __init sched_init(void) 7252 { 7253 int i, j; 7254 unsigned long alloc_size = 0, ptr; 7255 7256 #ifdef CONFIG_FAIR_GROUP_SCHED 7257 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7258 #endif 7259 #ifdef CONFIG_RT_GROUP_SCHED 7260 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7261 #endif 7262 if (alloc_size) { 7263 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7264 7265 #ifdef CONFIG_FAIR_GROUP_SCHED 7266 root_task_group.se = (struct sched_entity **)ptr; 7267 ptr += nr_cpu_ids * sizeof(void **); 7268 7269 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7270 ptr += nr_cpu_ids * sizeof(void **); 7271 7272 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7273 #ifdef CONFIG_RT_GROUP_SCHED 7274 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7275 ptr += nr_cpu_ids * sizeof(void **); 7276 7277 root_task_group.rt_rq = (struct rt_rq **)ptr; 7278 ptr += nr_cpu_ids * sizeof(void **); 7279 7280 #endif /* CONFIG_RT_GROUP_SCHED */ 7281 } 7282 #ifdef CONFIG_CPUMASK_OFFSTACK 7283 for_each_possible_cpu(i) { 7284 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7285 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7286 } 7287 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7288 7289 init_rt_bandwidth(&def_rt_bandwidth, 7290 global_rt_period(), global_rt_runtime()); 7291 init_dl_bandwidth(&def_dl_bandwidth, 7292 global_rt_period(), global_rt_runtime()); 7293 7294 #ifdef CONFIG_SMP 7295 init_defrootdomain(); 7296 #endif 7297 7298 #ifdef CONFIG_RT_GROUP_SCHED 7299 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7300 global_rt_period(), global_rt_runtime()); 7301 #endif /* CONFIG_RT_GROUP_SCHED */ 7302 7303 #ifdef CONFIG_CGROUP_SCHED 7304 list_add(&root_task_group.list, &task_groups); 7305 INIT_LIST_HEAD(&root_task_group.children); 7306 INIT_LIST_HEAD(&root_task_group.siblings); 7307 autogroup_init(&init_task); 7308 7309 #endif /* CONFIG_CGROUP_SCHED */ 7310 7311 for_each_possible_cpu(i) { 7312 struct rq *rq; 7313 7314 rq = cpu_rq(i); 7315 raw_spin_lock_init(&rq->lock); 7316 rq->nr_running = 0; 7317 rq->calc_load_active = 0; 7318 rq->calc_load_update = jiffies + LOAD_FREQ; 7319 init_cfs_rq(&rq->cfs); 7320 init_rt_rq(&rq->rt); 7321 init_dl_rq(&rq->dl); 7322 #ifdef CONFIG_FAIR_GROUP_SCHED 7323 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7324 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7325 /* 7326 * How much cpu bandwidth does root_task_group get? 7327 * 7328 * In case of task-groups formed thr' the cgroup filesystem, it 7329 * gets 100% of the cpu resources in the system. This overall 7330 * system cpu resource is divided among the tasks of 7331 * root_task_group and its child task-groups in a fair manner, 7332 * based on each entity's (task or task-group's) weight 7333 * (se->load.weight). 7334 * 7335 * In other words, if root_task_group has 10 tasks of weight 7336 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7337 * then A0's share of the cpu resource is: 7338 * 7339 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7340 * 7341 * We achieve this by letting root_task_group's tasks sit 7342 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7343 */ 7344 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7345 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7346 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7347 7348 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7349 #ifdef CONFIG_RT_GROUP_SCHED 7350 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7351 #endif 7352 7353 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7354 rq->cpu_load[j] = 0; 7355 7356 rq->last_load_update_tick = jiffies; 7357 7358 #ifdef CONFIG_SMP 7359 rq->sd = NULL; 7360 rq->rd = NULL; 7361 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7362 rq->balance_callback = NULL; 7363 rq->active_balance = 0; 7364 rq->next_balance = jiffies; 7365 rq->push_cpu = 0; 7366 rq->cpu = i; 7367 rq->online = 0; 7368 rq->idle_stamp = 0; 7369 rq->avg_idle = 2*sysctl_sched_migration_cost; 7370 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7371 7372 INIT_LIST_HEAD(&rq->cfs_tasks); 7373 7374 rq_attach_root(rq, &def_root_domain); 7375 #ifdef CONFIG_NO_HZ_COMMON 7376 rq->nohz_flags = 0; 7377 #endif 7378 #ifdef CONFIG_NO_HZ_FULL 7379 rq->last_sched_tick = 0; 7380 #endif 7381 #endif 7382 init_rq_hrtick(rq); 7383 atomic_set(&rq->nr_iowait, 0); 7384 } 7385 7386 set_load_weight(&init_task); 7387 7388 #ifdef CONFIG_PREEMPT_NOTIFIERS 7389 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7390 #endif 7391 7392 /* 7393 * The boot idle thread does lazy MMU switching as well: 7394 */ 7395 atomic_inc(&init_mm.mm_count); 7396 enter_lazy_tlb(&init_mm, current); 7397 7398 /* 7399 * During early bootup we pretend to be a normal task: 7400 */ 7401 current->sched_class = &fair_sched_class; 7402 7403 /* 7404 * Make us the idle thread. Technically, schedule() should not be 7405 * called from this thread, however somewhere below it might be, 7406 * but because we are the idle thread, we just pick up running again 7407 * when this runqueue becomes "idle". 7408 */ 7409 init_idle(current, smp_processor_id()); 7410 7411 calc_load_update = jiffies + LOAD_FREQ; 7412 7413 #ifdef CONFIG_SMP 7414 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7415 /* May be allocated at isolcpus cmdline parse time */ 7416 if (cpu_isolated_map == NULL) 7417 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7418 idle_thread_set_boot_cpu(); 7419 set_cpu_rq_start_time(); 7420 #endif 7421 init_sched_fair_class(); 7422 7423 scheduler_running = 1; 7424 } 7425 7426 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7427 static inline int preempt_count_equals(int preempt_offset) 7428 { 7429 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7430 7431 return (nested == preempt_offset); 7432 } 7433 7434 void __might_sleep(const char *file, int line, int preempt_offset) 7435 { 7436 /* 7437 * Blocking primitives will set (and therefore destroy) current->state, 7438 * since we will exit with TASK_RUNNING make sure we enter with it, 7439 * otherwise we will destroy state. 7440 */ 7441 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7442 "do not call blocking ops when !TASK_RUNNING; " 7443 "state=%lx set at [<%p>] %pS\n", 7444 current->state, 7445 (void *)current->task_state_change, 7446 (void *)current->task_state_change); 7447 7448 ___might_sleep(file, line, preempt_offset); 7449 } 7450 EXPORT_SYMBOL(__might_sleep); 7451 7452 void ___might_sleep(const char *file, int line, int preempt_offset) 7453 { 7454 static unsigned long prev_jiffy; /* ratelimiting */ 7455 7456 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7457 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7458 !is_idle_task(current)) || 7459 system_state != SYSTEM_RUNNING || oops_in_progress) 7460 return; 7461 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7462 return; 7463 prev_jiffy = jiffies; 7464 7465 printk(KERN_ERR 7466 "BUG: sleeping function called from invalid context at %s:%d\n", 7467 file, line); 7468 printk(KERN_ERR 7469 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7470 in_atomic(), irqs_disabled(), 7471 current->pid, current->comm); 7472 7473 if (task_stack_end_corrupted(current)) 7474 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7475 7476 debug_show_held_locks(current); 7477 if (irqs_disabled()) 7478 print_irqtrace_events(current); 7479 #ifdef CONFIG_DEBUG_PREEMPT 7480 if (!preempt_count_equals(preempt_offset)) { 7481 pr_err("Preemption disabled at:"); 7482 print_ip_sym(current->preempt_disable_ip); 7483 pr_cont("\n"); 7484 } 7485 #endif 7486 dump_stack(); 7487 } 7488 EXPORT_SYMBOL(___might_sleep); 7489 #endif 7490 7491 #ifdef CONFIG_MAGIC_SYSRQ 7492 void normalize_rt_tasks(void) 7493 { 7494 struct task_struct *g, *p; 7495 struct sched_attr attr = { 7496 .sched_policy = SCHED_NORMAL, 7497 }; 7498 7499 read_lock(&tasklist_lock); 7500 for_each_process_thread(g, p) { 7501 /* 7502 * Only normalize user tasks: 7503 */ 7504 if (p->flags & PF_KTHREAD) 7505 continue; 7506 7507 p->se.exec_start = 0; 7508 #ifdef CONFIG_SCHEDSTATS 7509 p->se.statistics.wait_start = 0; 7510 p->se.statistics.sleep_start = 0; 7511 p->se.statistics.block_start = 0; 7512 #endif 7513 7514 if (!dl_task(p) && !rt_task(p)) { 7515 /* 7516 * Renice negative nice level userspace 7517 * tasks back to 0: 7518 */ 7519 if (task_nice(p) < 0) 7520 set_user_nice(p, 0); 7521 continue; 7522 } 7523 7524 __sched_setscheduler(p, &attr, false, false); 7525 } 7526 read_unlock(&tasklist_lock); 7527 } 7528 7529 #endif /* CONFIG_MAGIC_SYSRQ */ 7530 7531 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7532 /* 7533 * These functions are only useful for the IA64 MCA handling, or kdb. 7534 * 7535 * They can only be called when the whole system has been 7536 * stopped - every CPU needs to be quiescent, and no scheduling 7537 * activity can take place. Using them for anything else would 7538 * be a serious bug, and as a result, they aren't even visible 7539 * under any other configuration. 7540 */ 7541 7542 /** 7543 * curr_task - return the current task for a given cpu. 7544 * @cpu: the processor in question. 7545 * 7546 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7547 * 7548 * Return: The current task for @cpu. 7549 */ 7550 struct task_struct *curr_task(int cpu) 7551 { 7552 return cpu_curr(cpu); 7553 } 7554 7555 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7556 7557 #ifdef CONFIG_IA64 7558 /** 7559 * set_curr_task - set the current task for a given cpu. 7560 * @cpu: the processor in question. 7561 * @p: the task pointer to set. 7562 * 7563 * Description: This function must only be used when non-maskable interrupts 7564 * are serviced on a separate stack. It allows the architecture to switch the 7565 * notion of the current task on a cpu in a non-blocking manner. This function 7566 * must be called with all CPU's synchronized, and interrupts disabled, the 7567 * and caller must save the original value of the current task (see 7568 * curr_task() above) and restore that value before reenabling interrupts and 7569 * re-starting the system. 7570 * 7571 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7572 */ 7573 void set_curr_task(int cpu, struct task_struct *p) 7574 { 7575 cpu_curr(cpu) = p; 7576 } 7577 7578 #endif 7579 7580 #ifdef CONFIG_CGROUP_SCHED 7581 /* task_group_lock serializes the addition/removal of task groups */ 7582 static DEFINE_SPINLOCK(task_group_lock); 7583 7584 static void free_sched_group(struct task_group *tg) 7585 { 7586 free_fair_sched_group(tg); 7587 free_rt_sched_group(tg); 7588 autogroup_free(tg); 7589 kfree(tg); 7590 } 7591 7592 /* allocate runqueue etc for a new task group */ 7593 struct task_group *sched_create_group(struct task_group *parent) 7594 { 7595 struct task_group *tg; 7596 7597 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7598 if (!tg) 7599 return ERR_PTR(-ENOMEM); 7600 7601 if (!alloc_fair_sched_group(tg, parent)) 7602 goto err; 7603 7604 if (!alloc_rt_sched_group(tg, parent)) 7605 goto err; 7606 7607 return tg; 7608 7609 err: 7610 free_sched_group(tg); 7611 return ERR_PTR(-ENOMEM); 7612 } 7613 7614 void sched_online_group(struct task_group *tg, struct task_group *parent) 7615 { 7616 unsigned long flags; 7617 7618 spin_lock_irqsave(&task_group_lock, flags); 7619 list_add_rcu(&tg->list, &task_groups); 7620 7621 WARN_ON(!parent); /* root should already exist */ 7622 7623 tg->parent = parent; 7624 INIT_LIST_HEAD(&tg->children); 7625 list_add_rcu(&tg->siblings, &parent->children); 7626 spin_unlock_irqrestore(&task_group_lock, flags); 7627 } 7628 7629 /* rcu callback to free various structures associated with a task group */ 7630 static void free_sched_group_rcu(struct rcu_head *rhp) 7631 { 7632 /* now it should be safe to free those cfs_rqs */ 7633 free_sched_group(container_of(rhp, struct task_group, rcu)); 7634 } 7635 7636 /* Destroy runqueue etc associated with a task group */ 7637 void sched_destroy_group(struct task_group *tg) 7638 { 7639 /* wait for possible concurrent references to cfs_rqs complete */ 7640 call_rcu(&tg->rcu, free_sched_group_rcu); 7641 } 7642 7643 void sched_offline_group(struct task_group *tg) 7644 { 7645 unsigned long flags; 7646 int i; 7647 7648 /* end participation in shares distribution */ 7649 for_each_possible_cpu(i) 7650 unregister_fair_sched_group(tg, i); 7651 7652 spin_lock_irqsave(&task_group_lock, flags); 7653 list_del_rcu(&tg->list); 7654 list_del_rcu(&tg->siblings); 7655 spin_unlock_irqrestore(&task_group_lock, flags); 7656 } 7657 7658 /* change task's runqueue when it moves between groups. 7659 * The caller of this function should have put the task in its new group 7660 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7661 * reflect its new group. 7662 */ 7663 void sched_move_task(struct task_struct *tsk) 7664 { 7665 struct task_group *tg; 7666 int queued, running; 7667 unsigned long flags; 7668 struct rq *rq; 7669 7670 rq = task_rq_lock(tsk, &flags); 7671 7672 running = task_current(rq, tsk); 7673 queued = task_on_rq_queued(tsk); 7674 7675 if (queued) 7676 dequeue_task(rq, tsk, 0); 7677 if (unlikely(running)) 7678 put_prev_task(rq, tsk); 7679 7680 /* 7681 * All callers are synchronized by task_rq_lock(); we do not use RCU 7682 * which is pointless here. Thus, we pass "true" to task_css_check() 7683 * to prevent lockdep warnings. 7684 */ 7685 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7686 struct task_group, css); 7687 tg = autogroup_task_group(tsk, tg); 7688 tsk->sched_task_group = tg; 7689 7690 #ifdef CONFIG_FAIR_GROUP_SCHED 7691 if (tsk->sched_class->task_move_group) 7692 tsk->sched_class->task_move_group(tsk, queued); 7693 else 7694 #endif 7695 set_task_rq(tsk, task_cpu(tsk)); 7696 7697 if (unlikely(running)) 7698 tsk->sched_class->set_curr_task(rq); 7699 if (queued) 7700 enqueue_task(rq, tsk, 0); 7701 7702 task_rq_unlock(rq, tsk, &flags); 7703 } 7704 #endif /* CONFIG_CGROUP_SCHED */ 7705 7706 #ifdef CONFIG_RT_GROUP_SCHED 7707 /* 7708 * Ensure that the real time constraints are schedulable. 7709 */ 7710 static DEFINE_MUTEX(rt_constraints_mutex); 7711 7712 /* Must be called with tasklist_lock held */ 7713 static inline int tg_has_rt_tasks(struct task_group *tg) 7714 { 7715 struct task_struct *g, *p; 7716 7717 /* 7718 * Autogroups do not have RT tasks; see autogroup_create(). 7719 */ 7720 if (task_group_is_autogroup(tg)) 7721 return 0; 7722 7723 for_each_process_thread(g, p) { 7724 if (rt_task(p) && task_group(p) == tg) 7725 return 1; 7726 } 7727 7728 return 0; 7729 } 7730 7731 struct rt_schedulable_data { 7732 struct task_group *tg; 7733 u64 rt_period; 7734 u64 rt_runtime; 7735 }; 7736 7737 static int tg_rt_schedulable(struct task_group *tg, void *data) 7738 { 7739 struct rt_schedulable_data *d = data; 7740 struct task_group *child; 7741 unsigned long total, sum = 0; 7742 u64 period, runtime; 7743 7744 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7745 runtime = tg->rt_bandwidth.rt_runtime; 7746 7747 if (tg == d->tg) { 7748 period = d->rt_period; 7749 runtime = d->rt_runtime; 7750 } 7751 7752 /* 7753 * Cannot have more runtime than the period. 7754 */ 7755 if (runtime > period && runtime != RUNTIME_INF) 7756 return -EINVAL; 7757 7758 /* 7759 * Ensure we don't starve existing RT tasks. 7760 */ 7761 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7762 return -EBUSY; 7763 7764 total = to_ratio(period, runtime); 7765 7766 /* 7767 * Nobody can have more than the global setting allows. 7768 */ 7769 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7770 return -EINVAL; 7771 7772 /* 7773 * The sum of our children's runtime should not exceed our own. 7774 */ 7775 list_for_each_entry_rcu(child, &tg->children, siblings) { 7776 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7777 runtime = child->rt_bandwidth.rt_runtime; 7778 7779 if (child == d->tg) { 7780 period = d->rt_period; 7781 runtime = d->rt_runtime; 7782 } 7783 7784 sum += to_ratio(period, runtime); 7785 } 7786 7787 if (sum > total) 7788 return -EINVAL; 7789 7790 return 0; 7791 } 7792 7793 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7794 { 7795 int ret; 7796 7797 struct rt_schedulable_data data = { 7798 .tg = tg, 7799 .rt_period = period, 7800 .rt_runtime = runtime, 7801 }; 7802 7803 rcu_read_lock(); 7804 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7805 rcu_read_unlock(); 7806 7807 return ret; 7808 } 7809 7810 static int tg_set_rt_bandwidth(struct task_group *tg, 7811 u64 rt_period, u64 rt_runtime) 7812 { 7813 int i, err = 0; 7814 7815 /* 7816 * Disallowing the root group RT runtime is BAD, it would disallow the 7817 * kernel creating (and or operating) RT threads. 7818 */ 7819 if (tg == &root_task_group && rt_runtime == 0) 7820 return -EINVAL; 7821 7822 /* No period doesn't make any sense. */ 7823 if (rt_period == 0) 7824 return -EINVAL; 7825 7826 mutex_lock(&rt_constraints_mutex); 7827 read_lock(&tasklist_lock); 7828 err = __rt_schedulable(tg, rt_period, rt_runtime); 7829 if (err) 7830 goto unlock; 7831 7832 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7833 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7834 tg->rt_bandwidth.rt_runtime = rt_runtime; 7835 7836 for_each_possible_cpu(i) { 7837 struct rt_rq *rt_rq = tg->rt_rq[i]; 7838 7839 raw_spin_lock(&rt_rq->rt_runtime_lock); 7840 rt_rq->rt_runtime = rt_runtime; 7841 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7842 } 7843 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7844 unlock: 7845 read_unlock(&tasklist_lock); 7846 mutex_unlock(&rt_constraints_mutex); 7847 7848 return err; 7849 } 7850 7851 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7852 { 7853 u64 rt_runtime, rt_period; 7854 7855 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7856 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7857 if (rt_runtime_us < 0) 7858 rt_runtime = RUNTIME_INF; 7859 7860 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7861 } 7862 7863 static long sched_group_rt_runtime(struct task_group *tg) 7864 { 7865 u64 rt_runtime_us; 7866 7867 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7868 return -1; 7869 7870 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7871 do_div(rt_runtime_us, NSEC_PER_USEC); 7872 return rt_runtime_us; 7873 } 7874 7875 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7876 { 7877 u64 rt_runtime, rt_period; 7878 7879 rt_period = rt_period_us * NSEC_PER_USEC; 7880 rt_runtime = tg->rt_bandwidth.rt_runtime; 7881 7882 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7883 } 7884 7885 static long sched_group_rt_period(struct task_group *tg) 7886 { 7887 u64 rt_period_us; 7888 7889 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7890 do_div(rt_period_us, NSEC_PER_USEC); 7891 return rt_period_us; 7892 } 7893 #endif /* CONFIG_RT_GROUP_SCHED */ 7894 7895 #ifdef CONFIG_RT_GROUP_SCHED 7896 static int sched_rt_global_constraints(void) 7897 { 7898 int ret = 0; 7899 7900 mutex_lock(&rt_constraints_mutex); 7901 read_lock(&tasklist_lock); 7902 ret = __rt_schedulable(NULL, 0, 0); 7903 read_unlock(&tasklist_lock); 7904 mutex_unlock(&rt_constraints_mutex); 7905 7906 return ret; 7907 } 7908 7909 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7910 { 7911 /* Don't accept realtime tasks when there is no way for them to run */ 7912 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7913 return 0; 7914 7915 return 1; 7916 } 7917 7918 #else /* !CONFIG_RT_GROUP_SCHED */ 7919 static int sched_rt_global_constraints(void) 7920 { 7921 unsigned long flags; 7922 int i, ret = 0; 7923 7924 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7925 for_each_possible_cpu(i) { 7926 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7927 7928 raw_spin_lock(&rt_rq->rt_runtime_lock); 7929 rt_rq->rt_runtime = global_rt_runtime(); 7930 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7931 } 7932 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7933 7934 return ret; 7935 } 7936 #endif /* CONFIG_RT_GROUP_SCHED */ 7937 7938 static int sched_dl_global_validate(void) 7939 { 7940 u64 runtime = global_rt_runtime(); 7941 u64 period = global_rt_period(); 7942 u64 new_bw = to_ratio(period, runtime); 7943 struct dl_bw *dl_b; 7944 int cpu, ret = 0; 7945 unsigned long flags; 7946 7947 /* 7948 * Here we want to check the bandwidth not being set to some 7949 * value smaller than the currently allocated bandwidth in 7950 * any of the root_domains. 7951 * 7952 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7953 * cycling on root_domains... Discussion on different/better 7954 * solutions is welcome! 7955 */ 7956 for_each_possible_cpu(cpu) { 7957 rcu_read_lock_sched(); 7958 dl_b = dl_bw_of(cpu); 7959 7960 raw_spin_lock_irqsave(&dl_b->lock, flags); 7961 if (new_bw < dl_b->total_bw) 7962 ret = -EBUSY; 7963 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7964 7965 rcu_read_unlock_sched(); 7966 7967 if (ret) 7968 break; 7969 } 7970 7971 return ret; 7972 } 7973 7974 static void sched_dl_do_global(void) 7975 { 7976 u64 new_bw = -1; 7977 struct dl_bw *dl_b; 7978 int cpu; 7979 unsigned long flags; 7980 7981 def_dl_bandwidth.dl_period = global_rt_period(); 7982 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7983 7984 if (global_rt_runtime() != RUNTIME_INF) 7985 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7986 7987 /* 7988 * FIXME: As above... 7989 */ 7990 for_each_possible_cpu(cpu) { 7991 rcu_read_lock_sched(); 7992 dl_b = dl_bw_of(cpu); 7993 7994 raw_spin_lock_irqsave(&dl_b->lock, flags); 7995 dl_b->bw = new_bw; 7996 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7997 7998 rcu_read_unlock_sched(); 7999 } 8000 } 8001 8002 static int sched_rt_global_validate(void) 8003 { 8004 if (sysctl_sched_rt_period <= 0) 8005 return -EINVAL; 8006 8007 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8008 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8009 return -EINVAL; 8010 8011 return 0; 8012 } 8013 8014 static void sched_rt_do_global(void) 8015 { 8016 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8017 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8018 } 8019 8020 int sched_rt_handler(struct ctl_table *table, int write, 8021 void __user *buffer, size_t *lenp, 8022 loff_t *ppos) 8023 { 8024 int old_period, old_runtime; 8025 static DEFINE_MUTEX(mutex); 8026 int ret; 8027 8028 mutex_lock(&mutex); 8029 old_period = sysctl_sched_rt_period; 8030 old_runtime = sysctl_sched_rt_runtime; 8031 8032 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8033 8034 if (!ret && write) { 8035 ret = sched_rt_global_validate(); 8036 if (ret) 8037 goto undo; 8038 8039 ret = sched_dl_global_validate(); 8040 if (ret) 8041 goto undo; 8042 8043 ret = sched_rt_global_constraints(); 8044 if (ret) 8045 goto undo; 8046 8047 sched_rt_do_global(); 8048 sched_dl_do_global(); 8049 } 8050 if (0) { 8051 undo: 8052 sysctl_sched_rt_period = old_period; 8053 sysctl_sched_rt_runtime = old_runtime; 8054 } 8055 mutex_unlock(&mutex); 8056 8057 return ret; 8058 } 8059 8060 int sched_rr_handler(struct ctl_table *table, int write, 8061 void __user *buffer, size_t *lenp, 8062 loff_t *ppos) 8063 { 8064 int ret; 8065 static DEFINE_MUTEX(mutex); 8066 8067 mutex_lock(&mutex); 8068 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8069 /* make sure that internally we keep jiffies */ 8070 /* also, writing zero resets timeslice to default */ 8071 if (!ret && write) { 8072 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8073 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8074 } 8075 mutex_unlock(&mutex); 8076 return ret; 8077 } 8078 8079 #ifdef CONFIG_CGROUP_SCHED 8080 8081 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8082 { 8083 return css ? container_of(css, struct task_group, css) : NULL; 8084 } 8085 8086 static struct cgroup_subsys_state * 8087 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8088 { 8089 struct task_group *parent = css_tg(parent_css); 8090 struct task_group *tg; 8091 8092 if (!parent) { 8093 /* This is early initialization for the top cgroup */ 8094 return &root_task_group.css; 8095 } 8096 8097 tg = sched_create_group(parent); 8098 if (IS_ERR(tg)) 8099 return ERR_PTR(-ENOMEM); 8100 8101 return &tg->css; 8102 } 8103 8104 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8105 { 8106 struct task_group *tg = css_tg(css); 8107 struct task_group *parent = css_tg(css->parent); 8108 8109 if (parent) 8110 sched_online_group(tg, parent); 8111 return 0; 8112 } 8113 8114 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8115 { 8116 struct task_group *tg = css_tg(css); 8117 8118 sched_destroy_group(tg); 8119 } 8120 8121 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 8122 { 8123 struct task_group *tg = css_tg(css); 8124 8125 sched_offline_group(tg); 8126 } 8127 8128 static void cpu_cgroup_fork(struct task_struct *task) 8129 { 8130 sched_move_task(task); 8131 } 8132 8133 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 8134 struct cgroup_taskset *tset) 8135 { 8136 struct task_struct *task; 8137 8138 cgroup_taskset_for_each(task, tset) { 8139 #ifdef CONFIG_RT_GROUP_SCHED 8140 if (!sched_rt_can_attach(css_tg(css), task)) 8141 return -EINVAL; 8142 #else 8143 /* We don't support RT-tasks being in separate groups */ 8144 if (task->sched_class != &fair_sched_class) 8145 return -EINVAL; 8146 #endif 8147 } 8148 return 0; 8149 } 8150 8151 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8152 struct cgroup_taskset *tset) 8153 { 8154 struct task_struct *task; 8155 8156 cgroup_taskset_for_each(task, tset) 8157 sched_move_task(task); 8158 } 8159 8160 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 8161 struct cgroup_subsys_state *old_css, 8162 struct task_struct *task) 8163 { 8164 /* 8165 * cgroup_exit() is called in the copy_process() failure path. 8166 * Ignore this case since the task hasn't ran yet, this avoids 8167 * trying to poke a half freed task state from generic code. 8168 */ 8169 if (!(task->flags & PF_EXITING)) 8170 return; 8171 8172 sched_move_task(task); 8173 } 8174 8175 #ifdef CONFIG_FAIR_GROUP_SCHED 8176 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8177 struct cftype *cftype, u64 shareval) 8178 { 8179 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8180 } 8181 8182 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8183 struct cftype *cft) 8184 { 8185 struct task_group *tg = css_tg(css); 8186 8187 return (u64) scale_load_down(tg->shares); 8188 } 8189 8190 #ifdef CONFIG_CFS_BANDWIDTH 8191 static DEFINE_MUTEX(cfs_constraints_mutex); 8192 8193 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8194 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8195 8196 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8197 8198 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8199 { 8200 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8201 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8202 8203 if (tg == &root_task_group) 8204 return -EINVAL; 8205 8206 /* 8207 * Ensure we have at some amount of bandwidth every period. This is 8208 * to prevent reaching a state of large arrears when throttled via 8209 * entity_tick() resulting in prolonged exit starvation. 8210 */ 8211 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8212 return -EINVAL; 8213 8214 /* 8215 * Likewise, bound things on the otherside by preventing insane quota 8216 * periods. This also allows us to normalize in computing quota 8217 * feasibility. 8218 */ 8219 if (period > max_cfs_quota_period) 8220 return -EINVAL; 8221 8222 /* 8223 * Prevent race between setting of cfs_rq->runtime_enabled and 8224 * unthrottle_offline_cfs_rqs(). 8225 */ 8226 get_online_cpus(); 8227 mutex_lock(&cfs_constraints_mutex); 8228 ret = __cfs_schedulable(tg, period, quota); 8229 if (ret) 8230 goto out_unlock; 8231 8232 runtime_enabled = quota != RUNTIME_INF; 8233 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8234 /* 8235 * If we need to toggle cfs_bandwidth_used, off->on must occur 8236 * before making related changes, and on->off must occur afterwards 8237 */ 8238 if (runtime_enabled && !runtime_was_enabled) 8239 cfs_bandwidth_usage_inc(); 8240 raw_spin_lock_irq(&cfs_b->lock); 8241 cfs_b->period = ns_to_ktime(period); 8242 cfs_b->quota = quota; 8243 8244 __refill_cfs_bandwidth_runtime(cfs_b); 8245 /* restart the period timer (if active) to handle new period expiry */ 8246 if (runtime_enabled) 8247 start_cfs_bandwidth(cfs_b); 8248 raw_spin_unlock_irq(&cfs_b->lock); 8249 8250 for_each_online_cpu(i) { 8251 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8252 struct rq *rq = cfs_rq->rq; 8253 8254 raw_spin_lock_irq(&rq->lock); 8255 cfs_rq->runtime_enabled = runtime_enabled; 8256 cfs_rq->runtime_remaining = 0; 8257 8258 if (cfs_rq->throttled) 8259 unthrottle_cfs_rq(cfs_rq); 8260 raw_spin_unlock_irq(&rq->lock); 8261 } 8262 if (runtime_was_enabled && !runtime_enabled) 8263 cfs_bandwidth_usage_dec(); 8264 out_unlock: 8265 mutex_unlock(&cfs_constraints_mutex); 8266 put_online_cpus(); 8267 8268 return ret; 8269 } 8270 8271 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8272 { 8273 u64 quota, period; 8274 8275 period = ktime_to_ns(tg->cfs_bandwidth.period); 8276 if (cfs_quota_us < 0) 8277 quota = RUNTIME_INF; 8278 else 8279 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8280 8281 return tg_set_cfs_bandwidth(tg, period, quota); 8282 } 8283 8284 long tg_get_cfs_quota(struct task_group *tg) 8285 { 8286 u64 quota_us; 8287 8288 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8289 return -1; 8290 8291 quota_us = tg->cfs_bandwidth.quota; 8292 do_div(quota_us, NSEC_PER_USEC); 8293 8294 return quota_us; 8295 } 8296 8297 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8298 { 8299 u64 quota, period; 8300 8301 period = (u64)cfs_period_us * NSEC_PER_USEC; 8302 quota = tg->cfs_bandwidth.quota; 8303 8304 return tg_set_cfs_bandwidth(tg, period, quota); 8305 } 8306 8307 long tg_get_cfs_period(struct task_group *tg) 8308 { 8309 u64 cfs_period_us; 8310 8311 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8312 do_div(cfs_period_us, NSEC_PER_USEC); 8313 8314 return cfs_period_us; 8315 } 8316 8317 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8318 struct cftype *cft) 8319 { 8320 return tg_get_cfs_quota(css_tg(css)); 8321 } 8322 8323 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8324 struct cftype *cftype, s64 cfs_quota_us) 8325 { 8326 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8327 } 8328 8329 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8330 struct cftype *cft) 8331 { 8332 return tg_get_cfs_period(css_tg(css)); 8333 } 8334 8335 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8336 struct cftype *cftype, u64 cfs_period_us) 8337 { 8338 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8339 } 8340 8341 struct cfs_schedulable_data { 8342 struct task_group *tg; 8343 u64 period, quota; 8344 }; 8345 8346 /* 8347 * normalize group quota/period to be quota/max_period 8348 * note: units are usecs 8349 */ 8350 static u64 normalize_cfs_quota(struct task_group *tg, 8351 struct cfs_schedulable_data *d) 8352 { 8353 u64 quota, period; 8354 8355 if (tg == d->tg) { 8356 period = d->period; 8357 quota = d->quota; 8358 } else { 8359 period = tg_get_cfs_period(tg); 8360 quota = tg_get_cfs_quota(tg); 8361 } 8362 8363 /* note: these should typically be equivalent */ 8364 if (quota == RUNTIME_INF || quota == -1) 8365 return RUNTIME_INF; 8366 8367 return to_ratio(period, quota); 8368 } 8369 8370 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8371 { 8372 struct cfs_schedulable_data *d = data; 8373 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8374 s64 quota = 0, parent_quota = -1; 8375 8376 if (!tg->parent) { 8377 quota = RUNTIME_INF; 8378 } else { 8379 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8380 8381 quota = normalize_cfs_quota(tg, d); 8382 parent_quota = parent_b->hierarchical_quota; 8383 8384 /* 8385 * ensure max(child_quota) <= parent_quota, inherit when no 8386 * limit is set 8387 */ 8388 if (quota == RUNTIME_INF) 8389 quota = parent_quota; 8390 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8391 return -EINVAL; 8392 } 8393 cfs_b->hierarchical_quota = quota; 8394 8395 return 0; 8396 } 8397 8398 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8399 { 8400 int ret; 8401 struct cfs_schedulable_data data = { 8402 .tg = tg, 8403 .period = period, 8404 .quota = quota, 8405 }; 8406 8407 if (quota != RUNTIME_INF) { 8408 do_div(data.period, NSEC_PER_USEC); 8409 do_div(data.quota, NSEC_PER_USEC); 8410 } 8411 8412 rcu_read_lock(); 8413 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8414 rcu_read_unlock(); 8415 8416 return ret; 8417 } 8418 8419 static int cpu_stats_show(struct seq_file *sf, void *v) 8420 { 8421 struct task_group *tg = css_tg(seq_css(sf)); 8422 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8423 8424 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8425 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8426 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8427 8428 return 0; 8429 } 8430 #endif /* CONFIG_CFS_BANDWIDTH */ 8431 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8432 8433 #ifdef CONFIG_RT_GROUP_SCHED 8434 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8435 struct cftype *cft, s64 val) 8436 { 8437 return sched_group_set_rt_runtime(css_tg(css), val); 8438 } 8439 8440 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8441 struct cftype *cft) 8442 { 8443 return sched_group_rt_runtime(css_tg(css)); 8444 } 8445 8446 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8447 struct cftype *cftype, u64 rt_period_us) 8448 { 8449 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8450 } 8451 8452 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8453 struct cftype *cft) 8454 { 8455 return sched_group_rt_period(css_tg(css)); 8456 } 8457 #endif /* CONFIG_RT_GROUP_SCHED */ 8458 8459 static struct cftype cpu_files[] = { 8460 #ifdef CONFIG_FAIR_GROUP_SCHED 8461 { 8462 .name = "shares", 8463 .read_u64 = cpu_shares_read_u64, 8464 .write_u64 = cpu_shares_write_u64, 8465 }, 8466 #endif 8467 #ifdef CONFIG_CFS_BANDWIDTH 8468 { 8469 .name = "cfs_quota_us", 8470 .read_s64 = cpu_cfs_quota_read_s64, 8471 .write_s64 = cpu_cfs_quota_write_s64, 8472 }, 8473 { 8474 .name = "cfs_period_us", 8475 .read_u64 = cpu_cfs_period_read_u64, 8476 .write_u64 = cpu_cfs_period_write_u64, 8477 }, 8478 { 8479 .name = "stat", 8480 .seq_show = cpu_stats_show, 8481 }, 8482 #endif 8483 #ifdef CONFIG_RT_GROUP_SCHED 8484 { 8485 .name = "rt_runtime_us", 8486 .read_s64 = cpu_rt_runtime_read, 8487 .write_s64 = cpu_rt_runtime_write, 8488 }, 8489 { 8490 .name = "rt_period_us", 8491 .read_u64 = cpu_rt_period_read_uint, 8492 .write_u64 = cpu_rt_period_write_uint, 8493 }, 8494 #endif 8495 { } /* terminate */ 8496 }; 8497 8498 struct cgroup_subsys cpu_cgrp_subsys = { 8499 .css_alloc = cpu_cgroup_css_alloc, 8500 .css_free = cpu_cgroup_css_free, 8501 .css_online = cpu_cgroup_css_online, 8502 .css_offline = cpu_cgroup_css_offline, 8503 .fork = cpu_cgroup_fork, 8504 .can_attach = cpu_cgroup_can_attach, 8505 .attach = cpu_cgroup_attach, 8506 .exit = cpu_cgroup_exit, 8507 .legacy_cftypes = cpu_files, 8508 .early_init = 1, 8509 }; 8510 8511 #endif /* CONFIG_CGROUP_SCHED */ 8512 8513 void dump_cpu_task(int cpu) 8514 { 8515 pr_info("Task dump for CPU %d:\n", cpu); 8516 sched_show_task(cpu_curr(cpu)); 8517 } 8518