xref: /openbmc/linux/kernel/sched/core.c (revision 46a87b3851f0d6eb05e6d83d5c5a30df0eca8f76)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21 
22 #include "pelt.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26 
27 /*
28  * Export tracepoints that act as a bare tracehook (ie: have no trace event
29  * associated with them) to allow external modules to probe them.
30  */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37 
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39 
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42  * Debugging: various feature bits
43  *
44  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45  * sysctl_sched_features, defined in sched.h, to allow constants propagation
46  * at compile time and compiler optimization based on features default.
47  */
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 	0;
53 #undef SCHED_FEAT
54 #endif
55 
56 /*
57  * Number of tasks to iterate in a single balance run.
58  * Limited because this is done with IRQs disabled.
59  */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61 
62 /*
63  * period over which we measure -rt task CPU usage in us.
64  * default: 1s
65  */
66 unsigned int sysctl_sched_rt_period = 1000000;
67 
68 __read_mostly int scheduler_running;
69 
70 /*
71  * part of the period that we allow rt tasks to run in us.
72  * default: 0.95s
73  */
74 int sysctl_sched_rt_runtime = 950000;
75 
76 /*
77  * __task_rq_lock - lock the rq @p resides on.
78  */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 	__acquires(rq->lock)
81 {
82 	struct rq *rq;
83 
84 	lockdep_assert_held(&p->pi_lock);
85 
86 	for (;;) {
87 		rq = task_rq(p);
88 		raw_spin_lock(&rq->lock);
89 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 			rq_pin_lock(rq, rf);
91 			return rq;
92 		}
93 		raw_spin_unlock(&rq->lock);
94 
95 		while (unlikely(task_on_rq_migrating(p)))
96 			cpu_relax();
97 	}
98 }
99 
100 /*
101  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102  */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 	__acquires(p->pi_lock)
105 	__acquires(rq->lock)
106 {
107 	struct rq *rq;
108 
109 	for (;;) {
110 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 		rq = task_rq(p);
112 		raw_spin_lock(&rq->lock);
113 		/*
114 		 *	move_queued_task()		task_rq_lock()
115 		 *
116 		 *	ACQUIRE (rq->lock)
117 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
118 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
119 		 *	[S] ->cpu = new_cpu		[L] task_rq()
120 		 *					[L] ->on_rq
121 		 *	RELEASE (rq->lock)
122 		 *
123 		 * If we observe the old CPU in task_rq_lock(), the acquire of
124 		 * the old rq->lock will fully serialize against the stores.
125 		 *
126 		 * If we observe the new CPU in task_rq_lock(), the address
127 		 * dependency headed by '[L] rq = task_rq()' and the acquire
128 		 * will pair with the WMB to ensure we then also see migrating.
129 		 */
130 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 			rq_pin_lock(rq, rf);
132 			return rq;
133 		}
134 		raw_spin_unlock(&rq->lock);
135 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136 
137 		while (unlikely(task_on_rq_migrating(p)))
138 			cpu_relax();
139 	}
140 }
141 
142 /*
143  * RQ-clock updating methods:
144  */
145 
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149  * In theory, the compile should just see 0 here, and optimize out the call
150  * to sched_rt_avg_update. But I don't trust it...
151  */
152 	s64 __maybe_unused steal = 0, irq_delta = 0;
153 
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156 
157 	/*
158 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 	 * this case when a previous update_rq_clock() happened inside a
160 	 * {soft,}irq region.
161 	 *
162 	 * When this happens, we stop ->clock_task and only update the
163 	 * prev_irq_time stamp to account for the part that fit, so that a next
164 	 * update will consume the rest. This ensures ->clock_task is
165 	 * monotonic.
166 	 *
167 	 * It does however cause some slight miss-attribution of {soft,}irq
168 	 * time, a more accurate solution would be to update the irq_time using
169 	 * the current rq->clock timestamp, except that would require using
170 	 * atomic ops.
171 	 */
172 	if (irq_delta > delta)
173 		irq_delta = delta;
174 
175 	rq->prev_irq_time += irq_delta;
176 	delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 	if (static_key_false((&paravirt_steal_rq_enabled))) {
180 		steal = paravirt_steal_clock(cpu_of(rq));
181 		steal -= rq->prev_steal_time_rq;
182 
183 		if (unlikely(steal > delta))
184 			steal = delta;
185 
186 		rq->prev_steal_time_rq += steal;
187 		delta -= steal;
188 	}
189 #endif
190 
191 	rq->clock_task += delta;
192 
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 		update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 	update_rq_clock_pelt(rq, delta);
198 }
199 
200 void update_rq_clock(struct rq *rq)
201 {
202 	s64 delta;
203 
204 	lockdep_assert_held(&rq->lock);
205 
206 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 		return;
208 
209 #ifdef CONFIG_SCHED_DEBUG
210 	if (sched_feat(WARN_DOUBLE_CLOCK))
211 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 	rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214 
215 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 	if (delta < 0)
217 		return;
218 	rq->clock += delta;
219 	update_rq_clock_task(rq, delta);
220 }
221 
222 
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225  * Use HR-timers to deliver accurate preemption points.
226  */
227 
228 static void hrtick_clear(struct rq *rq)
229 {
230 	if (hrtimer_active(&rq->hrtick_timer))
231 		hrtimer_cancel(&rq->hrtick_timer);
232 }
233 
234 /*
235  * High-resolution timer tick.
236  * Runs from hardirq context with interrupts disabled.
237  */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 	struct rq_flags rf;
242 
243 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244 
245 	rq_lock(rq, &rf);
246 	update_rq_clock(rq);
247 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 	rq_unlock(rq, &rf);
249 
250 	return HRTIMER_NORESTART;
251 }
252 
253 #ifdef CONFIG_SMP
254 
255 static void __hrtick_restart(struct rq *rq)
256 {
257 	struct hrtimer *timer = &rq->hrtick_timer;
258 
259 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261 
262 /*
263  * called from hardirq (IPI) context
264  */
265 static void __hrtick_start(void *arg)
266 {
267 	struct rq *rq = arg;
268 	struct rq_flags rf;
269 
270 	rq_lock(rq, &rf);
271 	__hrtick_restart(rq);
272 	rq->hrtick_csd_pending = 0;
273 	rq_unlock(rq, &rf);
274 }
275 
276 /*
277  * Called to set the hrtick timer state.
278  *
279  * called with rq->lock held and irqs disabled
280  */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 	struct hrtimer *timer = &rq->hrtick_timer;
284 	ktime_t time;
285 	s64 delta;
286 
287 	/*
288 	 * Don't schedule slices shorter than 10000ns, that just
289 	 * doesn't make sense and can cause timer DoS.
290 	 */
291 	delta = max_t(s64, delay, 10000LL);
292 	time = ktime_add_ns(timer->base->get_time(), delta);
293 
294 	hrtimer_set_expires(timer, time);
295 
296 	if (rq == this_rq()) {
297 		__hrtick_restart(rq);
298 	} else if (!rq->hrtick_csd_pending) {
299 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
300 		rq->hrtick_csd_pending = 1;
301 	}
302 }
303 
304 #else
305 /*
306  * Called to set the hrtick timer state.
307  *
308  * called with rq->lock held and irqs disabled
309  */
310 void hrtick_start(struct rq *rq, u64 delay)
311 {
312 	/*
313 	 * Don't schedule slices shorter than 10000ns, that just
314 	 * doesn't make sense. Rely on vruntime for fairness.
315 	 */
316 	delay = max_t(u64, delay, 10000LL);
317 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
318 		      HRTIMER_MODE_REL_PINNED_HARD);
319 }
320 #endif /* CONFIG_SMP */
321 
322 static void hrtick_rq_init(struct rq *rq)
323 {
324 #ifdef CONFIG_SMP
325 	rq->hrtick_csd_pending = 0;
326 
327 	rq->hrtick_csd.flags = 0;
328 	rq->hrtick_csd.func = __hrtick_start;
329 	rq->hrtick_csd.info = rq;
330 #endif
331 
332 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
333 	rq->hrtick_timer.function = hrtick;
334 }
335 #else	/* CONFIG_SCHED_HRTICK */
336 static inline void hrtick_clear(struct rq *rq)
337 {
338 }
339 
340 static inline void hrtick_rq_init(struct rq *rq)
341 {
342 }
343 #endif	/* CONFIG_SCHED_HRTICK */
344 
345 /*
346  * cmpxchg based fetch_or, macro so it works for different integer types
347  */
348 #define fetch_or(ptr, mask)						\
349 	({								\
350 		typeof(ptr) _ptr = (ptr);				\
351 		typeof(mask) _mask = (mask);				\
352 		typeof(*_ptr) _old, _val = *_ptr;			\
353 									\
354 		for (;;) {						\
355 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
356 			if (_old == _val)				\
357 				break;					\
358 			_val = _old;					\
359 		}							\
360 	_old;								\
361 })
362 
363 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
364 /*
365  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366  * this avoids any races wrt polling state changes and thereby avoids
367  * spurious IPIs.
368  */
369 static bool set_nr_and_not_polling(struct task_struct *p)
370 {
371 	struct thread_info *ti = task_thread_info(p);
372 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373 }
374 
375 /*
376  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377  *
378  * If this returns true, then the idle task promises to call
379  * sched_ttwu_pending() and reschedule soon.
380  */
381 static bool set_nr_if_polling(struct task_struct *p)
382 {
383 	struct thread_info *ti = task_thread_info(p);
384 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
385 
386 	for (;;) {
387 		if (!(val & _TIF_POLLING_NRFLAG))
388 			return false;
389 		if (val & _TIF_NEED_RESCHED)
390 			return true;
391 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 		if (old == val)
393 			break;
394 		val = old;
395 	}
396 	return true;
397 }
398 
399 #else
400 static bool set_nr_and_not_polling(struct task_struct *p)
401 {
402 	set_tsk_need_resched(p);
403 	return true;
404 }
405 
406 #ifdef CONFIG_SMP
407 static bool set_nr_if_polling(struct task_struct *p)
408 {
409 	return false;
410 }
411 #endif
412 #endif
413 
414 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
415 {
416 	struct wake_q_node *node = &task->wake_q;
417 
418 	/*
419 	 * Atomically grab the task, if ->wake_q is !nil already it means
420 	 * its already queued (either by us or someone else) and will get the
421 	 * wakeup due to that.
422 	 *
423 	 * In order to ensure that a pending wakeup will observe our pending
424 	 * state, even in the failed case, an explicit smp_mb() must be used.
425 	 */
426 	smp_mb__before_atomic();
427 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
428 		return false;
429 
430 	/*
431 	 * The head is context local, there can be no concurrency.
432 	 */
433 	*head->lastp = node;
434 	head->lastp = &node->next;
435 	return true;
436 }
437 
438 /**
439  * wake_q_add() - queue a wakeup for 'later' waking.
440  * @head: the wake_q_head to add @task to
441  * @task: the task to queue for 'later' wakeup
442  *
443  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445  * instantly.
446  *
447  * This function must be used as-if it were wake_up_process(); IOW the task
448  * must be ready to be woken at this location.
449  */
450 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451 {
452 	if (__wake_q_add(head, task))
453 		get_task_struct(task);
454 }
455 
456 /**
457  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458  * @head: the wake_q_head to add @task to
459  * @task: the task to queue for 'later' wakeup
460  *
461  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463  * instantly.
464  *
465  * This function must be used as-if it were wake_up_process(); IOW the task
466  * must be ready to be woken at this location.
467  *
468  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469  * that already hold reference to @task can call the 'safe' version and trust
470  * wake_q to do the right thing depending whether or not the @task is already
471  * queued for wakeup.
472  */
473 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474 {
475 	if (!__wake_q_add(head, task))
476 		put_task_struct(task);
477 }
478 
479 void wake_up_q(struct wake_q_head *head)
480 {
481 	struct wake_q_node *node = head->first;
482 
483 	while (node != WAKE_Q_TAIL) {
484 		struct task_struct *task;
485 
486 		task = container_of(node, struct task_struct, wake_q);
487 		BUG_ON(!task);
488 		/* Task can safely be re-inserted now: */
489 		node = node->next;
490 		task->wake_q.next = NULL;
491 
492 		/*
493 		 * wake_up_process() executes a full barrier, which pairs with
494 		 * the queueing in wake_q_add() so as not to miss wakeups.
495 		 */
496 		wake_up_process(task);
497 		put_task_struct(task);
498 	}
499 }
500 
501 /*
502  * resched_curr - mark rq's current task 'to be rescheduled now'.
503  *
504  * On UP this means the setting of the need_resched flag, on SMP it
505  * might also involve a cross-CPU call to trigger the scheduler on
506  * the target CPU.
507  */
508 void resched_curr(struct rq *rq)
509 {
510 	struct task_struct *curr = rq->curr;
511 	int cpu;
512 
513 	lockdep_assert_held(&rq->lock);
514 
515 	if (test_tsk_need_resched(curr))
516 		return;
517 
518 	cpu = cpu_of(rq);
519 
520 	if (cpu == smp_processor_id()) {
521 		set_tsk_need_resched(curr);
522 		set_preempt_need_resched();
523 		return;
524 	}
525 
526 	if (set_nr_and_not_polling(curr))
527 		smp_send_reschedule(cpu);
528 	else
529 		trace_sched_wake_idle_without_ipi(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	raw_spin_lock_irqsave(&rq->lock, flags);
538 	if (cpu_online(cpu) || cpu == smp_processor_id())
539 		resched_curr(rq);
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_SMP
544 #ifdef CONFIG_NO_HZ_COMMON
545 /*
546  * In the semi idle case, use the nearest busy CPU for migrating timers
547  * from an idle CPU.  This is good for power-savings.
548  *
549  * We don't do similar optimization for completely idle system, as
550  * selecting an idle CPU will add more delays to the timers than intended
551  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
552  */
553 int get_nohz_timer_target(void)
554 {
555 	int i, cpu = smp_processor_id(), default_cpu = -1;
556 	struct sched_domain *sd;
557 
558 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
559 		if (!idle_cpu(cpu))
560 			return cpu;
561 		default_cpu = cpu;
562 	}
563 
564 	rcu_read_lock();
565 	for_each_domain(cpu, sd) {
566 		for_each_cpu_and(i, sched_domain_span(sd),
567 			housekeeping_cpumask(HK_FLAG_TIMER)) {
568 			if (cpu == i)
569 				continue;
570 
571 			if (!idle_cpu(i)) {
572 				cpu = i;
573 				goto unlock;
574 			}
575 		}
576 	}
577 
578 	if (default_cpu == -1)
579 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
580 	cpu = default_cpu;
581 unlock:
582 	rcu_read_unlock();
583 	return cpu;
584 }
585 
586 /*
587  * When add_timer_on() enqueues a timer into the timer wheel of an
588  * idle CPU then this timer might expire before the next timer event
589  * which is scheduled to wake up that CPU. In case of a completely
590  * idle system the next event might even be infinite time into the
591  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
592  * leaves the inner idle loop so the newly added timer is taken into
593  * account when the CPU goes back to idle and evaluates the timer
594  * wheel for the next timer event.
595  */
596 static void wake_up_idle_cpu(int cpu)
597 {
598 	struct rq *rq = cpu_rq(cpu);
599 
600 	if (cpu == smp_processor_id())
601 		return;
602 
603 	if (set_nr_and_not_polling(rq->idle))
604 		smp_send_reschedule(cpu);
605 	else
606 		trace_sched_wake_idle_without_ipi(cpu);
607 }
608 
609 static bool wake_up_full_nohz_cpu(int cpu)
610 {
611 	/*
612 	 * We just need the target to call irq_exit() and re-evaluate
613 	 * the next tick. The nohz full kick at least implies that.
614 	 * If needed we can still optimize that later with an
615 	 * empty IRQ.
616 	 */
617 	if (cpu_is_offline(cpu))
618 		return true;  /* Don't try to wake offline CPUs. */
619 	if (tick_nohz_full_cpu(cpu)) {
620 		if (cpu != smp_processor_id() ||
621 		    tick_nohz_tick_stopped())
622 			tick_nohz_full_kick_cpu(cpu);
623 		return true;
624 	}
625 
626 	return false;
627 }
628 
629 /*
630  * Wake up the specified CPU.  If the CPU is going offline, it is the
631  * caller's responsibility to deal with the lost wakeup, for example,
632  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
633  */
634 void wake_up_nohz_cpu(int cpu)
635 {
636 	if (!wake_up_full_nohz_cpu(cpu))
637 		wake_up_idle_cpu(cpu);
638 }
639 
640 static inline bool got_nohz_idle_kick(void)
641 {
642 	int cpu = smp_processor_id();
643 
644 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
645 		return false;
646 
647 	if (idle_cpu(cpu) && !need_resched())
648 		return true;
649 
650 	/*
651 	 * We can't run Idle Load Balance on this CPU for this time so we
652 	 * cancel it and clear NOHZ_BALANCE_KICK
653 	 */
654 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
655 	return false;
656 }
657 
658 #else /* CONFIG_NO_HZ_COMMON */
659 
660 static inline bool got_nohz_idle_kick(void)
661 {
662 	return false;
663 }
664 
665 #endif /* CONFIG_NO_HZ_COMMON */
666 
667 #ifdef CONFIG_NO_HZ_FULL
668 bool sched_can_stop_tick(struct rq *rq)
669 {
670 	int fifo_nr_running;
671 
672 	/* Deadline tasks, even if single, need the tick */
673 	if (rq->dl.dl_nr_running)
674 		return false;
675 
676 	/*
677 	 * If there are more than one RR tasks, we need the tick to effect the
678 	 * actual RR behaviour.
679 	 */
680 	if (rq->rt.rr_nr_running) {
681 		if (rq->rt.rr_nr_running == 1)
682 			return true;
683 		else
684 			return false;
685 	}
686 
687 	/*
688 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
689 	 * forced preemption between FIFO tasks.
690 	 */
691 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
692 	if (fifo_nr_running)
693 		return true;
694 
695 	/*
696 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
697 	 * if there's more than one we need the tick for involuntary
698 	 * preemption.
699 	 */
700 	if (rq->nr_running > 1)
701 		return false;
702 
703 	return true;
704 }
705 #endif /* CONFIG_NO_HZ_FULL */
706 #endif /* CONFIG_SMP */
707 
708 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
709 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
710 /*
711  * Iterate task_group tree rooted at *from, calling @down when first entering a
712  * node and @up when leaving it for the final time.
713  *
714  * Caller must hold rcu_lock or sufficient equivalent.
715  */
716 int walk_tg_tree_from(struct task_group *from,
717 			     tg_visitor down, tg_visitor up, void *data)
718 {
719 	struct task_group *parent, *child;
720 	int ret;
721 
722 	parent = from;
723 
724 down:
725 	ret = (*down)(parent, data);
726 	if (ret)
727 		goto out;
728 	list_for_each_entry_rcu(child, &parent->children, siblings) {
729 		parent = child;
730 		goto down;
731 
732 up:
733 		continue;
734 	}
735 	ret = (*up)(parent, data);
736 	if (ret || parent == from)
737 		goto out;
738 
739 	child = parent;
740 	parent = parent->parent;
741 	if (parent)
742 		goto up;
743 out:
744 	return ret;
745 }
746 
747 int tg_nop(struct task_group *tg, void *data)
748 {
749 	return 0;
750 }
751 #endif
752 
753 static void set_load_weight(struct task_struct *p, bool update_load)
754 {
755 	int prio = p->static_prio - MAX_RT_PRIO;
756 	struct load_weight *load = &p->se.load;
757 
758 	/*
759 	 * SCHED_IDLE tasks get minimal weight:
760 	 */
761 	if (task_has_idle_policy(p)) {
762 		load->weight = scale_load(WEIGHT_IDLEPRIO);
763 		load->inv_weight = WMULT_IDLEPRIO;
764 		return;
765 	}
766 
767 	/*
768 	 * SCHED_OTHER tasks have to update their load when changing their
769 	 * weight
770 	 */
771 	if (update_load && p->sched_class == &fair_sched_class) {
772 		reweight_task(p, prio);
773 	} else {
774 		load->weight = scale_load(sched_prio_to_weight[prio]);
775 		load->inv_weight = sched_prio_to_wmult[prio];
776 	}
777 }
778 
779 #ifdef CONFIG_UCLAMP_TASK
780 /*
781  * Serializes updates of utilization clamp values
782  *
783  * The (slow-path) user-space triggers utilization clamp value updates which
784  * can require updates on (fast-path) scheduler's data structures used to
785  * support enqueue/dequeue operations.
786  * While the per-CPU rq lock protects fast-path update operations, user-space
787  * requests are serialized using a mutex to reduce the risk of conflicting
788  * updates or API abuses.
789  */
790 static DEFINE_MUTEX(uclamp_mutex);
791 
792 /* Max allowed minimum utilization */
793 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
794 
795 /* Max allowed maximum utilization */
796 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
797 
798 /* All clamps are required to be less or equal than these values */
799 static struct uclamp_se uclamp_default[UCLAMP_CNT];
800 
801 /* Integer rounded range for each bucket */
802 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
803 
804 #define for_each_clamp_id(clamp_id) \
805 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
806 
807 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
808 {
809 	return clamp_value / UCLAMP_BUCKET_DELTA;
810 }
811 
812 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
813 {
814 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
815 }
816 
817 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
818 {
819 	if (clamp_id == UCLAMP_MIN)
820 		return 0;
821 	return SCHED_CAPACITY_SCALE;
822 }
823 
824 static inline void uclamp_se_set(struct uclamp_se *uc_se,
825 				 unsigned int value, bool user_defined)
826 {
827 	uc_se->value = value;
828 	uc_se->bucket_id = uclamp_bucket_id(value);
829 	uc_se->user_defined = user_defined;
830 }
831 
832 static inline unsigned int
833 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
834 		  unsigned int clamp_value)
835 {
836 	/*
837 	 * Avoid blocked utilization pushing up the frequency when we go
838 	 * idle (which drops the max-clamp) by retaining the last known
839 	 * max-clamp.
840 	 */
841 	if (clamp_id == UCLAMP_MAX) {
842 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
843 		return clamp_value;
844 	}
845 
846 	return uclamp_none(UCLAMP_MIN);
847 }
848 
849 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
850 				     unsigned int clamp_value)
851 {
852 	/* Reset max-clamp retention only on idle exit */
853 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
854 		return;
855 
856 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
857 }
858 
859 static inline
860 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
861 				   unsigned int clamp_value)
862 {
863 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
864 	int bucket_id = UCLAMP_BUCKETS - 1;
865 
866 	/*
867 	 * Since both min and max clamps are max aggregated, find the
868 	 * top most bucket with tasks in.
869 	 */
870 	for ( ; bucket_id >= 0; bucket_id--) {
871 		if (!bucket[bucket_id].tasks)
872 			continue;
873 		return bucket[bucket_id].value;
874 	}
875 
876 	/* No tasks -- default clamp values */
877 	return uclamp_idle_value(rq, clamp_id, clamp_value);
878 }
879 
880 static inline struct uclamp_se
881 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
882 {
883 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
884 #ifdef CONFIG_UCLAMP_TASK_GROUP
885 	struct uclamp_se uc_max;
886 
887 	/*
888 	 * Tasks in autogroups or root task group will be
889 	 * restricted by system defaults.
890 	 */
891 	if (task_group_is_autogroup(task_group(p)))
892 		return uc_req;
893 	if (task_group(p) == &root_task_group)
894 		return uc_req;
895 
896 	uc_max = task_group(p)->uclamp[clamp_id];
897 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
898 		return uc_max;
899 #endif
900 
901 	return uc_req;
902 }
903 
904 /*
905  * The effective clamp bucket index of a task depends on, by increasing
906  * priority:
907  * - the task specific clamp value, when explicitly requested from userspace
908  * - the task group effective clamp value, for tasks not either in the root
909  *   group or in an autogroup
910  * - the system default clamp value, defined by the sysadmin
911  */
912 static inline struct uclamp_se
913 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
914 {
915 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
916 	struct uclamp_se uc_max = uclamp_default[clamp_id];
917 
918 	/* System default restrictions always apply */
919 	if (unlikely(uc_req.value > uc_max.value))
920 		return uc_max;
921 
922 	return uc_req;
923 }
924 
925 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
926 {
927 	struct uclamp_se uc_eff;
928 
929 	/* Task currently refcounted: use back-annotated (effective) value */
930 	if (p->uclamp[clamp_id].active)
931 		return (unsigned long)p->uclamp[clamp_id].value;
932 
933 	uc_eff = uclamp_eff_get(p, clamp_id);
934 
935 	return (unsigned long)uc_eff.value;
936 }
937 
938 /*
939  * When a task is enqueued on a rq, the clamp bucket currently defined by the
940  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
941  * updates the rq's clamp value if required.
942  *
943  * Tasks can have a task-specific value requested from user-space, track
944  * within each bucket the maximum value for tasks refcounted in it.
945  * This "local max aggregation" allows to track the exact "requested" value
946  * for each bucket when all its RUNNABLE tasks require the same clamp.
947  */
948 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
949 				    enum uclamp_id clamp_id)
950 {
951 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
952 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
953 	struct uclamp_bucket *bucket;
954 
955 	lockdep_assert_held(&rq->lock);
956 
957 	/* Update task effective clamp */
958 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
959 
960 	bucket = &uc_rq->bucket[uc_se->bucket_id];
961 	bucket->tasks++;
962 	uc_se->active = true;
963 
964 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
965 
966 	/*
967 	 * Local max aggregation: rq buckets always track the max
968 	 * "requested" clamp value of its RUNNABLE tasks.
969 	 */
970 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
971 		bucket->value = uc_se->value;
972 
973 	if (uc_se->value > READ_ONCE(uc_rq->value))
974 		WRITE_ONCE(uc_rq->value, uc_se->value);
975 }
976 
977 /*
978  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
979  * is released. If this is the last task reference counting the rq's max
980  * active clamp value, then the rq's clamp value is updated.
981  *
982  * Both refcounted tasks and rq's cached clamp values are expected to be
983  * always valid. If it's detected they are not, as defensive programming,
984  * enforce the expected state and warn.
985  */
986 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
987 				    enum uclamp_id clamp_id)
988 {
989 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
990 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
991 	struct uclamp_bucket *bucket;
992 	unsigned int bkt_clamp;
993 	unsigned int rq_clamp;
994 
995 	lockdep_assert_held(&rq->lock);
996 
997 	bucket = &uc_rq->bucket[uc_se->bucket_id];
998 	SCHED_WARN_ON(!bucket->tasks);
999 	if (likely(bucket->tasks))
1000 		bucket->tasks--;
1001 	uc_se->active = false;
1002 
1003 	/*
1004 	 * Keep "local max aggregation" simple and accept to (possibly)
1005 	 * overboost some RUNNABLE tasks in the same bucket.
1006 	 * The rq clamp bucket value is reset to its base value whenever
1007 	 * there are no more RUNNABLE tasks refcounting it.
1008 	 */
1009 	if (likely(bucket->tasks))
1010 		return;
1011 
1012 	rq_clamp = READ_ONCE(uc_rq->value);
1013 	/*
1014 	 * Defensive programming: this should never happen. If it happens,
1015 	 * e.g. due to future modification, warn and fixup the expected value.
1016 	 */
1017 	SCHED_WARN_ON(bucket->value > rq_clamp);
1018 	if (bucket->value >= rq_clamp) {
1019 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1020 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1021 	}
1022 }
1023 
1024 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1025 {
1026 	enum uclamp_id clamp_id;
1027 
1028 	if (unlikely(!p->sched_class->uclamp_enabled))
1029 		return;
1030 
1031 	for_each_clamp_id(clamp_id)
1032 		uclamp_rq_inc_id(rq, p, clamp_id);
1033 
1034 	/* Reset clamp idle holding when there is one RUNNABLE task */
1035 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1036 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1037 }
1038 
1039 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1040 {
1041 	enum uclamp_id clamp_id;
1042 
1043 	if (unlikely(!p->sched_class->uclamp_enabled))
1044 		return;
1045 
1046 	for_each_clamp_id(clamp_id)
1047 		uclamp_rq_dec_id(rq, p, clamp_id);
1048 }
1049 
1050 static inline void
1051 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1052 {
1053 	struct rq_flags rf;
1054 	struct rq *rq;
1055 
1056 	/*
1057 	 * Lock the task and the rq where the task is (or was) queued.
1058 	 *
1059 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1060 	 * price to pay to safely serialize util_{min,max} updates with
1061 	 * enqueues, dequeues and migration operations.
1062 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1063 	 */
1064 	rq = task_rq_lock(p, &rf);
1065 
1066 	/*
1067 	 * Setting the clamp bucket is serialized by task_rq_lock().
1068 	 * If the task is not yet RUNNABLE and its task_struct is not
1069 	 * affecting a valid clamp bucket, the next time it's enqueued,
1070 	 * it will already see the updated clamp bucket value.
1071 	 */
1072 	if (p->uclamp[clamp_id].active) {
1073 		uclamp_rq_dec_id(rq, p, clamp_id);
1074 		uclamp_rq_inc_id(rq, p, clamp_id);
1075 	}
1076 
1077 	task_rq_unlock(rq, p, &rf);
1078 }
1079 
1080 #ifdef CONFIG_UCLAMP_TASK_GROUP
1081 static inline void
1082 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1083 			   unsigned int clamps)
1084 {
1085 	enum uclamp_id clamp_id;
1086 	struct css_task_iter it;
1087 	struct task_struct *p;
1088 
1089 	css_task_iter_start(css, 0, &it);
1090 	while ((p = css_task_iter_next(&it))) {
1091 		for_each_clamp_id(clamp_id) {
1092 			if ((0x1 << clamp_id) & clamps)
1093 				uclamp_update_active(p, clamp_id);
1094 		}
1095 	}
1096 	css_task_iter_end(&it);
1097 }
1098 
1099 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1100 static void uclamp_update_root_tg(void)
1101 {
1102 	struct task_group *tg = &root_task_group;
1103 
1104 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1105 		      sysctl_sched_uclamp_util_min, false);
1106 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1107 		      sysctl_sched_uclamp_util_max, false);
1108 
1109 	rcu_read_lock();
1110 	cpu_util_update_eff(&root_task_group.css);
1111 	rcu_read_unlock();
1112 }
1113 #else
1114 static void uclamp_update_root_tg(void) { }
1115 #endif
1116 
1117 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1118 				void __user *buffer, size_t *lenp,
1119 				loff_t *ppos)
1120 {
1121 	bool update_root_tg = false;
1122 	int old_min, old_max;
1123 	int result;
1124 
1125 	mutex_lock(&uclamp_mutex);
1126 	old_min = sysctl_sched_uclamp_util_min;
1127 	old_max = sysctl_sched_uclamp_util_max;
1128 
1129 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1130 	if (result)
1131 		goto undo;
1132 	if (!write)
1133 		goto done;
1134 
1135 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1136 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1137 		result = -EINVAL;
1138 		goto undo;
1139 	}
1140 
1141 	if (old_min != sysctl_sched_uclamp_util_min) {
1142 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1143 			      sysctl_sched_uclamp_util_min, false);
1144 		update_root_tg = true;
1145 	}
1146 	if (old_max != sysctl_sched_uclamp_util_max) {
1147 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1148 			      sysctl_sched_uclamp_util_max, false);
1149 		update_root_tg = true;
1150 	}
1151 
1152 	if (update_root_tg)
1153 		uclamp_update_root_tg();
1154 
1155 	/*
1156 	 * We update all RUNNABLE tasks only when task groups are in use.
1157 	 * Otherwise, keep it simple and do just a lazy update at each next
1158 	 * task enqueue time.
1159 	 */
1160 
1161 	goto done;
1162 
1163 undo:
1164 	sysctl_sched_uclamp_util_min = old_min;
1165 	sysctl_sched_uclamp_util_max = old_max;
1166 done:
1167 	mutex_unlock(&uclamp_mutex);
1168 
1169 	return result;
1170 }
1171 
1172 static int uclamp_validate(struct task_struct *p,
1173 			   const struct sched_attr *attr)
1174 {
1175 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1176 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1177 
1178 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1179 		lower_bound = attr->sched_util_min;
1180 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1181 		upper_bound = attr->sched_util_max;
1182 
1183 	if (lower_bound > upper_bound)
1184 		return -EINVAL;
1185 	if (upper_bound > SCHED_CAPACITY_SCALE)
1186 		return -EINVAL;
1187 
1188 	return 0;
1189 }
1190 
1191 static void __setscheduler_uclamp(struct task_struct *p,
1192 				  const struct sched_attr *attr)
1193 {
1194 	enum uclamp_id clamp_id;
1195 
1196 	/*
1197 	 * On scheduling class change, reset to default clamps for tasks
1198 	 * without a task-specific value.
1199 	 */
1200 	for_each_clamp_id(clamp_id) {
1201 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1202 		unsigned int clamp_value = uclamp_none(clamp_id);
1203 
1204 		/* Keep using defined clamps across class changes */
1205 		if (uc_se->user_defined)
1206 			continue;
1207 
1208 		/* By default, RT tasks always get 100% boost */
1209 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1210 			clamp_value = uclamp_none(UCLAMP_MAX);
1211 
1212 		uclamp_se_set(uc_se, clamp_value, false);
1213 	}
1214 
1215 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1216 		return;
1217 
1218 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1219 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1220 			      attr->sched_util_min, true);
1221 	}
1222 
1223 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1224 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1225 			      attr->sched_util_max, true);
1226 	}
1227 }
1228 
1229 static void uclamp_fork(struct task_struct *p)
1230 {
1231 	enum uclamp_id clamp_id;
1232 
1233 	for_each_clamp_id(clamp_id)
1234 		p->uclamp[clamp_id].active = false;
1235 
1236 	if (likely(!p->sched_reset_on_fork))
1237 		return;
1238 
1239 	for_each_clamp_id(clamp_id) {
1240 		unsigned int clamp_value = uclamp_none(clamp_id);
1241 
1242 		/* By default, RT tasks always get 100% boost */
1243 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1244 			clamp_value = uclamp_none(UCLAMP_MAX);
1245 
1246 		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1247 	}
1248 }
1249 
1250 static void __init init_uclamp(void)
1251 {
1252 	struct uclamp_se uc_max = {};
1253 	enum uclamp_id clamp_id;
1254 	int cpu;
1255 
1256 	mutex_init(&uclamp_mutex);
1257 
1258 	for_each_possible_cpu(cpu) {
1259 		memset(&cpu_rq(cpu)->uclamp, 0,
1260 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1261 		cpu_rq(cpu)->uclamp_flags = 0;
1262 	}
1263 
1264 	for_each_clamp_id(clamp_id) {
1265 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1266 			      uclamp_none(clamp_id), false);
1267 	}
1268 
1269 	/* System defaults allow max clamp values for both indexes */
1270 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1271 	for_each_clamp_id(clamp_id) {
1272 		uclamp_default[clamp_id] = uc_max;
1273 #ifdef CONFIG_UCLAMP_TASK_GROUP
1274 		root_task_group.uclamp_req[clamp_id] = uc_max;
1275 		root_task_group.uclamp[clamp_id] = uc_max;
1276 #endif
1277 	}
1278 }
1279 
1280 #else /* CONFIG_UCLAMP_TASK */
1281 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1282 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1283 static inline int uclamp_validate(struct task_struct *p,
1284 				  const struct sched_attr *attr)
1285 {
1286 	return -EOPNOTSUPP;
1287 }
1288 static void __setscheduler_uclamp(struct task_struct *p,
1289 				  const struct sched_attr *attr) { }
1290 static inline void uclamp_fork(struct task_struct *p) { }
1291 static inline void init_uclamp(void) { }
1292 #endif /* CONFIG_UCLAMP_TASK */
1293 
1294 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1295 {
1296 	if (!(flags & ENQUEUE_NOCLOCK))
1297 		update_rq_clock(rq);
1298 
1299 	if (!(flags & ENQUEUE_RESTORE)) {
1300 		sched_info_queued(rq, p);
1301 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1302 	}
1303 
1304 	uclamp_rq_inc(rq, p);
1305 	p->sched_class->enqueue_task(rq, p, flags);
1306 }
1307 
1308 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1309 {
1310 	if (!(flags & DEQUEUE_NOCLOCK))
1311 		update_rq_clock(rq);
1312 
1313 	if (!(flags & DEQUEUE_SAVE)) {
1314 		sched_info_dequeued(rq, p);
1315 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1316 	}
1317 
1318 	uclamp_rq_dec(rq, p);
1319 	p->sched_class->dequeue_task(rq, p, flags);
1320 }
1321 
1322 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1323 {
1324 	if (task_contributes_to_load(p))
1325 		rq->nr_uninterruptible--;
1326 
1327 	enqueue_task(rq, p, flags);
1328 
1329 	p->on_rq = TASK_ON_RQ_QUEUED;
1330 }
1331 
1332 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1333 {
1334 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1335 
1336 	if (task_contributes_to_load(p))
1337 		rq->nr_uninterruptible++;
1338 
1339 	dequeue_task(rq, p, flags);
1340 }
1341 
1342 /*
1343  * __normal_prio - return the priority that is based on the static prio
1344  */
1345 static inline int __normal_prio(struct task_struct *p)
1346 {
1347 	return p->static_prio;
1348 }
1349 
1350 /*
1351  * Calculate the expected normal priority: i.e. priority
1352  * without taking RT-inheritance into account. Might be
1353  * boosted by interactivity modifiers. Changes upon fork,
1354  * setprio syscalls, and whenever the interactivity
1355  * estimator recalculates.
1356  */
1357 static inline int normal_prio(struct task_struct *p)
1358 {
1359 	int prio;
1360 
1361 	if (task_has_dl_policy(p))
1362 		prio = MAX_DL_PRIO-1;
1363 	else if (task_has_rt_policy(p))
1364 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1365 	else
1366 		prio = __normal_prio(p);
1367 	return prio;
1368 }
1369 
1370 /*
1371  * Calculate the current priority, i.e. the priority
1372  * taken into account by the scheduler. This value might
1373  * be boosted by RT tasks, or might be boosted by
1374  * interactivity modifiers. Will be RT if the task got
1375  * RT-boosted. If not then it returns p->normal_prio.
1376  */
1377 static int effective_prio(struct task_struct *p)
1378 {
1379 	p->normal_prio = normal_prio(p);
1380 	/*
1381 	 * If we are RT tasks or we were boosted to RT priority,
1382 	 * keep the priority unchanged. Otherwise, update priority
1383 	 * to the normal priority:
1384 	 */
1385 	if (!rt_prio(p->prio))
1386 		return p->normal_prio;
1387 	return p->prio;
1388 }
1389 
1390 /**
1391  * task_curr - is this task currently executing on a CPU?
1392  * @p: the task in question.
1393  *
1394  * Return: 1 if the task is currently executing. 0 otherwise.
1395  */
1396 inline int task_curr(const struct task_struct *p)
1397 {
1398 	return cpu_curr(task_cpu(p)) == p;
1399 }
1400 
1401 /*
1402  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1403  * use the balance_callback list if you want balancing.
1404  *
1405  * this means any call to check_class_changed() must be followed by a call to
1406  * balance_callback().
1407  */
1408 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1409 				       const struct sched_class *prev_class,
1410 				       int oldprio)
1411 {
1412 	if (prev_class != p->sched_class) {
1413 		if (prev_class->switched_from)
1414 			prev_class->switched_from(rq, p);
1415 
1416 		p->sched_class->switched_to(rq, p);
1417 	} else if (oldprio != p->prio || dl_task(p))
1418 		p->sched_class->prio_changed(rq, p, oldprio);
1419 }
1420 
1421 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1422 {
1423 	const struct sched_class *class;
1424 
1425 	if (p->sched_class == rq->curr->sched_class) {
1426 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1427 	} else {
1428 		for_each_class(class) {
1429 			if (class == rq->curr->sched_class)
1430 				break;
1431 			if (class == p->sched_class) {
1432 				resched_curr(rq);
1433 				break;
1434 			}
1435 		}
1436 	}
1437 
1438 	/*
1439 	 * A queue event has occurred, and we're going to schedule.  In
1440 	 * this case, we can save a useless back to back clock update.
1441 	 */
1442 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1443 		rq_clock_skip_update(rq);
1444 }
1445 
1446 #ifdef CONFIG_SMP
1447 
1448 /*
1449  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1450  * __set_cpus_allowed_ptr() and select_fallback_rq().
1451  */
1452 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1453 {
1454 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1455 		return false;
1456 
1457 	if (is_per_cpu_kthread(p))
1458 		return cpu_online(cpu);
1459 
1460 	return cpu_active(cpu);
1461 }
1462 
1463 /*
1464  * This is how migration works:
1465  *
1466  * 1) we invoke migration_cpu_stop() on the target CPU using
1467  *    stop_one_cpu().
1468  * 2) stopper starts to run (implicitly forcing the migrated thread
1469  *    off the CPU)
1470  * 3) it checks whether the migrated task is still in the wrong runqueue.
1471  * 4) if it's in the wrong runqueue then the migration thread removes
1472  *    it and puts it into the right queue.
1473  * 5) stopper completes and stop_one_cpu() returns and the migration
1474  *    is done.
1475  */
1476 
1477 /*
1478  * move_queued_task - move a queued task to new rq.
1479  *
1480  * Returns (locked) new rq. Old rq's lock is released.
1481  */
1482 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1483 				   struct task_struct *p, int new_cpu)
1484 {
1485 	lockdep_assert_held(&rq->lock);
1486 
1487 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1488 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1489 	set_task_cpu(p, new_cpu);
1490 	rq_unlock(rq, rf);
1491 
1492 	rq = cpu_rq(new_cpu);
1493 
1494 	rq_lock(rq, rf);
1495 	BUG_ON(task_cpu(p) != new_cpu);
1496 	enqueue_task(rq, p, 0);
1497 	p->on_rq = TASK_ON_RQ_QUEUED;
1498 	check_preempt_curr(rq, p, 0);
1499 
1500 	return rq;
1501 }
1502 
1503 struct migration_arg {
1504 	struct task_struct *task;
1505 	int dest_cpu;
1506 };
1507 
1508 /*
1509  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1510  * this because either it can't run here any more (set_cpus_allowed()
1511  * away from this CPU, or CPU going down), or because we're
1512  * attempting to rebalance this task on exec (sched_exec).
1513  *
1514  * So we race with normal scheduler movements, but that's OK, as long
1515  * as the task is no longer on this CPU.
1516  */
1517 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1518 				 struct task_struct *p, int dest_cpu)
1519 {
1520 	/* Affinity changed (again). */
1521 	if (!is_cpu_allowed(p, dest_cpu))
1522 		return rq;
1523 
1524 	update_rq_clock(rq);
1525 	rq = move_queued_task(rq, rf, p, dest_cpu);
1526 
1527 	return rq;
1528 }
1529 
1530 /*
1531  * migration_cpu_stop - this will be executed by a highprio stopper thread
1532  * and performs thread migration by bumping thread off CPU then
1533  * 'pushing' onto another runqueue.
1534  */
1535 static int migration_cpu_stop(void *data)
1536 {
1537 	struct migration_arg *arg = data;
1538 	struct task_struct *p = arg->task;
1539 	struct rq *rq = this_rq();
1540 	struct rq_flags rf;
1541 
1542 	/*
1543 	 * The original target CPU might have gone down and we might
1544 	 * be on another CPU but it doesn't matter.
1545 	 */
1546 	local_irq_disable();
1547 	/*
1548 	 * We need to explicitly wake pending tasks before running
1549 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1550 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1551 	 */
1552 	sched_ttwu_pending();
1553 
1554 	raw_spin_lock(&p->pi_lock);
1555 	rq_lock(rq, &rf);
1556 	/*
1557 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1558 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1559 	 * we're holding p->pi_lock.
1560 	 */
1561 	if (task_rq(p) == rq) {
1562 		if (task_on_rq_queued(p))
1563 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1564 		else
1565 			p->wake_cpu = arg->dest_cpu;
1566 	}
1567 	rq_unlock(rq, &rf);
1568 	raw_spin_unlock(&p->pi_lock);
1569 
1570 	local_irq_enable();
1571 	return 0;
1572 }
1573 
1574 /*
1575  * sched_class::set_cpus_allowed must do the below, but is not required to
1576  * actually call this function.
1577  */
1578 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1579 {
1580 	cpumask_copy(&p->cpus_mask, new_mask);
1581 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1582 }
1583 
1584 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1585 {
1586 	struct rq *rq = task_rq(p);
1587 	bool queued, running;
1588 
1589 	lockdep_assert_held(&p->pi_lock);
1590 
1591 	queued = task_on_rq_queued(p);
1592 	running = task_current(rq, p);
1593 
1594 	if (queued) {
1595 		/*
1596 		 * Because __kthread_bind() calls this on blocked tasks without
1597 		 * holding rq->lock.
1598 		 */
1599 		lockdep_assert_held(&rq->lock);
1600 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1601 	}
1602 	if (running)
1603 		put_prev_task(rq, p);
1604 
1605 	p->sched_class->set_cpus_allowed(p, new_mask);
1606 
1607 	if (queued)
1608 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1609 	if (running)
1610 		set_next_task(rq, p);
1611 }
1612 
1613 /*
1614  * Change a given task's CPU affinity. Migrate the thread to a
1615  * proper CPU and schedule it away if the CPU it's executing on
1616  * is removed from the allowed bitmask.
1617  *
1618  * NOTE: the caller must have a valid reference to the task, the
1619  * task must not exit() & deallocate itself prematurely. The
1620  * call is not atomic; no spinlocks may be held.
1621  */
1622 static int __set_cpus_allowed_ptr(struct task_struct *p,
1623 				  const struct cpumask *new_mask, bool check)
1624 {
1625 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1626 	unsigned int dest_cpu;
1627 	struct rq_flags rf;
1628 	struct rq *rq;
1629 	int ret = 0;
1630 
1631 	rq = task_rq_lock(p, &rf);
1632 	update_rq_clock(rq);
1633 
1634 	if (p->flags & PF_KTHREAD) {
1635 		/*
1636 		 * Kernel threads are allowed on online && !active CPUs
1637 		 */
1638 		cpu_valid_mask = cpu_online_mask;
1639 	}
1640 
1641 	/*
1642 	 * Must re-check here, to close a race against __kthread_bind(),
1643 	 * sched_setaffinity() is not guaranteed to observe the flag.
1644 	 */
1645 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1646 		ret = -EINVAL;
1647 		goto out;
1648 	}
1649 
1650 	if (cpumask_equal(p->cpus_ptr, new_mask))
1651 		goto out;
1652 
1653 	/*
1654 	 * Picking a ~random cpu helps in cases where we are changing affinity
1655 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1656 	 * immediately required to distribute the tasks within their new mask.
1657 	 */
1658 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1659 	if (dest_cpu >= nr_cpu_ids) {
1660 		ret = -EINVAL;
1661 		goto out;
1662 	}
1663 
1664 	do_set_cpus_allowed(p, new_mask);
1665 
1666 	if (p->flags & PF_KTHREAD) {
1667 		/*
1668 		 * For kernel threads that do indeed end up on online &&
1669 		 * !active we want to ensure they are strict per-CPU threads.
1670 		 */
1671 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1672 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1673 			p->nr_cpus_allowed != 1);
1674 	}
1675 
1676 	/* Can the task run on the task's current CPU? If so, we're done */
1677 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1678 		goto out;
1679 
1680 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1681 		struct migration_arg arg = { p, dest_cpu };
1682 		/* Need help from migration thread: drop lock and wait. */
1683 		task_rq_unlock(rq, p, &rf);
1684 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1685 		return 0;
1686 	} else if (task_on_rq_queued(p)) {
1687 		/*
1688 		 * OK, since we're going to drop the lock immediately
1689 		 * afterwards anyway.
1690 		 */
1691 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1692 	}
1693 out:
1694 	task_rq_unlock(rq, p, &rf);
1695 
1696 	return ret;
1697 }
1698 
1699 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1700 {
1701 	return __set_cpus_allowed_ptr(p, new_mask, false);
1702 }
1703 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1704 
1705 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1706 {
1707 #ifdef CONFIG_SCHED_DEBUG
1708 	/*
1709 	 * We should never call set_task_cpu() on a blocked task,
1710 	 * ttwu() will sort out the placement.
1711 	 */
1712 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1713 			!p->on_rq);
1714 
1715 	/*
1716 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1717 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1718 	 * time relying on p->on_rq.
1719 	 */
1720 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1721 		     p->sched_class == &fair_sched_class &&
1722 		     (p->on_rq && !task_on_rq_migrating(p)));
1723 
1724 #ifdef CONFIG_LOCKDEP
1725 	/*
1726 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1727 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1728 	 *
1729 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1730 	 * see task_group().
1731 	 *
1732 	 * Furthermore, all task_rq users should acquire both locks, see
1733 	 * task_rq_lock().
1734 	 */
1735 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1736 				      lockdep_is_held(&task_rq(p)->lock)));
1737 #endif
1738 	/*
1739 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1740 	 */
1741 	WARN_ON_ONCE(!cpu_online(new_cpu));
1742 #endif
1743 
1744 	trace_sched_migrate_task(p, new_cpu);
1745 
1746 	if (task_cpu(p) != new_cpu) {
1747 		if (p->sched_class->migrate_task_rq)
1748 			p->sched_class->migrate_task_rq(p, new_cpu);
1749 		p->se.nr_migrations++;
1750 		rseq_migrate(p);
1751 		perf_event_task_migrate(p);
1752 	}
1753 
1754 	__set_task_cpu(p, new_cpu);
1755 }
1756 
1757 #ifdef CONFIG_NUMA_BALANCING
1758 static void __migrate_swap_task(struct task_struct *p, int cpu)
1759 {
1760 	if (task_on_rq_queued(p)) {
1761 		struct rq *src_rq, *dst_rq;
1762 		struct rq_flags srf, drf;
1763 
1764 		src_rq = task_rq(p);
1765 		dst_rq = cpu_rq(cpu);
1766 
1767 		rq_pin_lock(src_rq, &srf);
1768 		rq_pin_lock(dst_rq, &drf);
1769 
1770 		deactivate_task(src_rq, p, 0);
1771 		set_task_cpu(p, cpu);
1772 		activate_task(dst_rq, p, 0);
1773 		check_preempt_curr(dst_rq, p, 0);
1774 
1775 		rq_unpin_lock(dst_rq, &drf);
1776 		rq_unpin_lock(src_rq, &srf);
1777 
1778 	} else {
1779 		/*
1780 		 * Task isn't running anymore; make it appear like we migrated
1781 		 * it before it went to sleep. This means on wakeup we make the
1782 		 * previous CPU our target instead of where it really is.
1783 		 */
1784 		p->wake_cpu = cpu;
1785 	}
1786 }
1787 
1788 struct migration_swap_arg {
1789 	struct task_struct *src_task, *dst_task;
1790 	int src_cpu, dst_cpu;
1791 };
1792 
1793 static int migrate_swap_stop(void *data)
1794 {
1795 	struct migration_swap_arg *arg = data;
1796 	struct rq *src_rq, *dst_rq;
1797 	int ret = -EAGAIN;
1798 
1799 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1800 		return -EAGAIN;
1801 
1802 	src_rq = cpu_rq(arg->src_cpu);
1803 	dst_rq = cpu_rq(arg->dst_cpu);
1804 
1805 	double_raw_lock(&arg->src_task->pi_lock,
1806 			&arg->dst_task->pi_lock);
1807 	double_rq_lock(src_rq, dst_rq);
1808 
1809 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1810 		goto unlock;
1811 
1812 	if (task_cpu(arg->src_task) != arg->src_cpu)
1813 		goto unlock;
1814 
1815 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1816 		goto unlock;
1817 
1818 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1819 		goto unlock;
1820 
1821 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1822 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1823 
1824 	ret = 0;
1825 
1826 unlock:
1827 	double_rq_unlock(src_rq, dst_rq);
1828 	raw_spin_unlock(&arg->dst_task->pi_lock);
1829 	raw_spin_unlock(&arg->src_task->pi_lock);
1830 
1831 	return ret;
1832 }
1833 
1834 /*
1835  * Cross migrate two tasks
1836  */
1837 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1838 		int target_cpu, int curr_cpu)
1839 {
1840 	struct migration_swap_arg arg;
1841 	int ret = -EINVAL;
1842 
1843 	arg = (struct migration_swap_arg){
1844 		.src_task = cur,
1845 		.src_cpu = curr_cpu,
1846 		.dst_task = p,
1847 		.dst_cpu = target_cpu,
1848 	};
1849 
1850 	if (arg.src_cpu == arg.dst_cpu)
1851 		goto out;
1852 
1853 	/*
1854 	 * These three tests are all lockless; this is OK since all of them
1855 	 * will be re-checked with proper locks held further down the line.
1856 	 */
1857 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1858 		goto out;
1859 
1860 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1861 		goto out;
1862 
1863 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1864 		goto out;
1865 
1866 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1867 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1868 
1869 out:
1870 	return ret;
1871 }
1872 #endif /* CONFIG_NUMA_BALANCING */
1873 
1874 /*
1875  * wait_task_inactive - wait for a thread to unschedule.
1876  *
1877  * If @match_state is nonzero, it's the @p->state value just checked and
1878  * not expected to change.  If it changes, i.e. @p might have woken up,
1879  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1880  * we return a positive number (its total switch count).  If a second call
1881  * a short while later returns the same number, the caller can be sure that
1882  * @p has remained unscheduled the whole time.
1883  *
1884  * The caller must ensure that the task *will* unschedule sometime soon,
1885  * else this function might spin for a *long* time. This function can't
1886  * be called with interrupts off, or it may introduce deadlock with
1887  * smp_call_function() if an IPI is sent by the same process we are
1888  * waiting to become inactive.
1889  */
1890 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1891 {
1892 	int running, queued;
1893 	struct rq_flags rf;
1894 	unsigned long ncsw;
1895 	struct rq *rq;
1896 
1897 	for (;;) {
1898 		/*
1899 		 * We do the initial early heuristics without holding
1900 		 * any task-queue locks at all. We'll only try to get
1901 		 * the runqueue lock when things look like they will
1902 		 * work out!
1903 		 */
1904 		rq = task_rq(p);
1905 
1906 		/*
1907 		 * If the task is actively running on another CPU
1908 		 * still, just relax and busy-wait without holding
1909 		 * any locks.
1910 		 *
1911 		 * NOTE! Since we don't hold any locks, it's not
1912 		 * even sure that "rq" stays as the right runqueue!
1913 		 * But we don't care, since "task_running()" will
1914 		 * return false if the runqueue has changed and p
1915 		 * is actually now running somewhere else!
1916 		 */
1917 		while (task_running(rq, p)) {
1918 			if (match_state && unlikely(p->state != match_state))
1919 				return 0;
1920 			cpu_relax();
1921 		}
1922 
1923 		/*
1924 		 * Ok, time to look more closely! We need the rq
1925 		 * lock now, to be *sure*. If we're wrong, we'll
1926 		 * just go back and repeat.
1927 		 */
1928 		rq = task_rq_lock(p, &rf);
1929 		trace_sched_wait_task(p);
1930 		running = task_running(rq, p);
1931 		queued = task_on_rq_queued(p);
1932 		ncsw = 0;
1933 		if (!match_state || p->state == match_state)
1934 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1935 		task_rq_unlock(rq, p, &rf);
1936 
1937 		/*
1938 		 * If it changed from the expected state, bail out now.
1939 		 */
1940 		if (unlikely(!ncsw))
1941 			break;
1942 
1943 		/*
1944 		 * Was it really running after all now that we
1945 		 * checked with the proper locks actually held?
1946 		 *
1947 		 * Oops. Go back and try again..
1948 		 */
1949 		if (unlikely(running)) {
1950 			cpu_relax();
1951 			continue;
1952 		}
1953 
1954 		/*
1955 		 * It's not enough that it's not actively running,
1956 		 * it must be off the runqueue _entirely_, and not
1957 		 * preempted!
1958 		 *
1959 		 * So if it was still runnable (but just not actively
1960 		 * running right now), it's preempted, and we should
1961 		 * yield - it could be a while.
1962 		 */
1963 		if (unlikely(queued)) {
1964 			ktime_t to = NSEC_PER_SEC / HZ;
1965 
1966 			set_current_state(TASK_UNINTERRUPTIBLE);
1967 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1968 			continue;
1969 		}
1970 
1971 		/*
1972 		 * Ahh, all good. It wasn't running, and it wasn't
1973 		 * runnable, which means that it will never become
1974 		 * running in the future either. We're all done!
1975 		 */
1976 		break;
1977 	}
1978 
1979 	return ncsw;
1980 }
1981 
1982 /***
1983  * kick_process - kick a running thread to enter/exit the kernel
1984  * @p: the to-be-kicked thread
1985  *
1986  * Cause a process which is running on another CPU to enter
1987  * kernel-mode, without any delay. (to get signals handled.)
1988  *
1989  * NOTE: this function doesn't have to take the runqueue lock,
1990  * because all it wants to ensure is that the remote task enters
1991  * the kernel. If the IPI races and the task has been migrated
1992  * to another CPU then no harm is done and the purpose has been
1993  * achieved as well.
1994  */
1995 void kick_process(struct task_struct *p)
1996 {
1997 	int cpu;
1998 
1999 	preempt_disable();
2000 	cpu = task_cpu(p);
2001 	if ((cpu != smp_processor_id()) && task_curr(p))
2002 		smp_send_reschedule(cpu);
2003 	preempt_enable();
2004 }
2005 EXPORT_SYMBOL_GPL(kick_process);
2006 
2007 /*
2008  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2009  *
2010  * A few notes on cpu_active vs cpu_online:
2011  *
2012  *  - cpu_active must be a subset of cpu_online
2013  *
2014  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2015  *    see __set_cpus_allowed_ptr(). At this point the newly online
2016  *    CPU isn't yet part of the sched domains, and balancing will not
2017  *    see it.
2018  *
2019  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2020  *    avoid the load balancer to place new tasks on the to be removed
2021  *    CPU. Existing tasks will remain running there and will be taken
2022  *    off.
2023  *
2024  * This means that fallback selection must not select !active CPUs.
2025  * And can assume that any active CPU must be online. Conversely
2026  * select_task_rq() below may allow selection of !active CPUs in order
2027  * to satisfy the above rules.
2028  */
2029 static int select_fallback_rq(int cpu, struct task_struct *p)
2030 {
2031 	int nid = cpu_to_node(cpu);
2032 	const struct cpumask *nodemask = NULL;
2033 	enum { cpuset, possible, fail } state = cpuset;
2034 	int dest_cpu;
2035 
2036 	/*
2037 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2038 	 * will return -1. There is no CPU on the node, and we should
2039 	 * select the CPU on the other node.
2040 	 */
2041 	if (nid != -1) {
2042 		nodemask = cpumask_of_node(nid);
2043 
2044 		/* Look for allowed, online CPU in same node. */
2045 		for_each_cpu(dest_cpu, nodemask) {
2046 			if (!cpu_active(dest_cpu))
2047 				continue;
2048 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2049 				return dest_cpu;
2050 		}
2051 	}
2052 
2053 	for (;;) {
2054 		/* Any allowed, online CPU? */
2055 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2056 			if (!is_cpu_allowed(p, dest_cpu))
2057 				continue;
2058 
2059 			goto out;
2060 		}
2061 
2062 		/* No more Mr. Nice Guy. */
2063 		switch (state) {
2064 		case cpuset:
2065 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2066 				cpuset_cpus_allowed_fallback(p);
2067 				state = possible;
2068 				break;
2069 			}
2070 			/* Fall-through */
2071 		case possible:
2072 			do_set_cpus_allowed(p, cpu_possible_mask);
2073 			state = fail;
2074 			break;
2075 
2076 		case fail:
2077 			BUG();
2078 			break;
2079 		}
2080 	}
2081 
2082 out:
2083 	if (state != cpuset) {
2084 		/*
2085 		 * Don't tell them about moving exiting tasks or
2086 		 * kernel threads (both mm NULL), since they never
2087 		 * leave kernel.
2088 		 */
2089 		if (p->mm && printk_ratelimit()) {
2090 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2091 					task_pid_nr(p), p->comm, cpu);
2092 		}
2093 	}
2094 
2095 	return dest_cpu;
2096 }
2097 
2098 /*
2099  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2100  */
2101 static inline
2102 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2103 {
2104 	lockdep_assert_held(&p->pi_lock);
2105 
2106 	if (p->nr_cpus_allowed > 1)
2107 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2108 	else
2109 		cpu = cpumask_any(p->cpus_ptr);
2110 
2111 	/*
2112 	 * In order not to call set_task_cpu() on a blocking task we need
2113 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2114 	 * CPU.
2115 	 *
2116 	 * Since this is common to all placement strategies, this lives here.
2117 	 *
2118 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2119 	 *   not worry about this generic constraint ]
2120 	 */
2121 	if (unlikely(!is_cpu_allowed(p, cpu)))
2122 		cpu = select_fallback_rq(task_cpu(p), p);
2123 
2124 	return cpu;
2125 }
2126 
2127 static void update_avg(u64 *avg, u64 sample)
2128 {
2129 	s64 diff = sample - *avg;
2130 	*avg += diff >> 3;
2131 }
2132 
2133 void sched_set_stop_task(int cpu, struct task_struct *stop)
2134 {
2135 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2136 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2137 
2138 	if (stop) {
2139 		/*
2140 		 * Make it appear like a SCHED_FIFO task, its something
2141 		 * userspace knows about and won't get confused about.
2142 		 *
2143 		 * Also, it will make PI more or less work without too
2144 		 * much confusion -- but then, stop work should not
2145 		 * rely on PI working anyway.
2146 		 */
2147 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2148 
2149 		stop->sched_class = &stop_sched_class;
2150 	}
2151 
2152 	cpu_rq(cpu)->stop = stop;
2153 
2154 	if (old_stop) {
2155 		/*
2156 		 * Reset it back to a normal scheduling class so that
2157 		 * it can die in pieces.
2158 		 */
2159 		old_stop->sched_class = &rt_sched_class;
2160 	}
2161 }
2162 
2163 #else
2164 
2165 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2166 					 const struct cpumask *new_mask, bool check)
2167 {
2168 	return set_cpus_allowed_ptr(p, new_mask);
2169 }
2170 
2171 #endif /* CONFIG_SMP */
2172 
2173 static void
2174 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2175 {
2176 	struct rq *rq;
2177 
2178 	if (!schedstat_enabled())
2179 		return;
2180 
2181 	rq = this_rq();
2182 
2183 #ifdef CONFIG_SMP
2184 	if (cpu == rq->cpu) {
2185 		__schedstat_inc(rq->ttwu_local);
2186 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2187 	} else {
2188 		struct sched_domain *sd;
2189 
2190 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2191 		rcu_read_lock();
2192 		for_each_domain(rq->cpu, sd) {
2193 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2194 				__schedstat_inc(sd->ttwu_wake_remote);
2195 				break;
2196 			}
2197 		}
2198 		rcu_read_unlock();
2199 	}
2200 
2201 	if (wake_flags & WF_MIGRATED)
2202 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2203 #endif /* CONFIG_SMP */
2204 
2205 	__schedstat_inc(rq->ttwu_count);
2206 	__schedstat_inc(p->se.statistics.nr_wakeups);
2207 
2208 	if (wake_flags & WF_SYNC)
2209 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2210 }
2211 
2212 /*
2213  * Mark the task runnable and perform wakeup-preemption.
2214  */
2215 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2216 			   struct rq_flags *rf)
2217 {
2218 	check_preempt_curr(rq, p, wake_flags);
2219 	p->state = TASK_RUNNING;
2220 	trace_sched_wakeup(p);
2221 
2222 #ifdef CONFIG_SMP
2223 	if (p->sched_class->task_woken) {
2224 		/*
2225 		 * Our task @p is fully woken up and running; so its safe to
2226 		 * drop the rq->lock, hereafter rq is only used for statistics.
2227 		 */
2228 		rq_unpin_lock(rq, rf);
2229 		p->sched_class->task_woken(rq, p);
2230 		rq_repin_lock(rq, rf);
2231 	}
2232 
2233 	if (rq->idle_stamp) {
2234 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2235 		u64 max = 2*rq->max_idle_balance_cost;
2236 
2237 		update_avg(&rq->avg_idle, delta);
2238 
2239 		if (rq->avg_idle > max)
2240 			rq->avg_idle = max;
2241 
2242 		rq->idle_stamp = 0;
2243 	}
2244 #endif
2245 }
2246 
2247 static void
2248 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2249 		 struct rq_flags *rf)
2250 {
2251 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2252 
2253 	lockdep_assert_held(&rq->lock);
2254 
2255 #ifdef CONFIG_SMP
2256 	if (p->sched_contributes_to_load)
2257 		rq->nr_uninterruptible--;
2258 
2259 	if (wake_flags & WF_MIGRATED)
2260 		en_flags |= ENQUEUE_MIGRATED;
2261 #endif
2262 
2263 	activate_task(rq, p, en_flags);
2264 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2265 }
2266 
2267 /*
2268  * Called in case the task @p isn't fully descheduled from its runqueue,
2269  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2270  * since all we need to do is flip p->state to TASK_RUNNING, since
2271  * the task is still ->on_rq.
2272  */
2273 static int ttwu_remote(struct task_struct *p, int wake_flags)
2274 {
2275 	struct rq_flags rf;
2276 	struct rq *rq;
2277 	int ret = 0;
2278 
2279 	rq = __task_rq_lock(p, &rf);
2280 	if (task_on_rq_queued(p)) {
2281 		/* check_preempt_curr() may use rq clock */
2282 		update_rq_clock(rq);
2283 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2284 		ret = 1;
2285 	}
2286 	__task_rq_unlock(rq, &rf);
2287 
2288 	return ret;
2289 }
2290 
2291 #ifdef CONFIG_SMP
2292 void sched_ttwu_pending(void)
2293 {
2294 	struct rq *rq = this_rq();
2295 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2296 	struct task_struct *p, *t;
2297 	struct rq_flags rf;
2298 
2299 	if (!llist)
2300 		return;
2301 
2302 	rq_lock_irqsave(rq, &rf);
2303 	update_rq_clock(rq);
2304 
2305 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2306 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2307 
2308 	rq_unlock_irqrestore(rq, &rf);
2309 }
2310 
2311 void scheduler_ipi(void)
2312 {
2313 	/*
2314 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2315 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2316 	 * this IPI.
2317 	 */
2318 	preempt_fold_need_resched();
2319 
2320 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2321 		return;
2322 
2323 	/*
2324 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2325 	 * traditionally all their work was done from the interrupt return
2326 	 * path. Now that we actually do some work, we need to make sure
2327 	 * we do call them.
2328 	 *
2329 	 * Some archs already do call them, luckily irq_enter/exit nest
2330 	 * properly.
2331 	 *
2332 	 * Arguably we should visit all archs and update all handlers,
2333 	 * however a fair share of IPIs are still resched only so this would
2334 	 * somewhat pessimize the simple resched case.
2335 	 */
2336 	irq_enter();
2337 	sched_ttwu_pending();
2338 
2339 	/*
2340 	 * Check if someone kicked us for doing the nohz idle load balance.
2341 	 */
2342 	if (unlikely(got_nohz_idle_kick())) {
2343 		this_rq()->idle_balance = 1;
2344 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2345 	}
2346 	irq_exit();
2347 }
2348 
2349 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2350 {
2351 	struct rq *rq = cpu_rq(cpu);
2352 
2353 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2354 
2355 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2356 		if (!set_nr_if_polling(rq->idle))
2357 			smp_send_reschedule(cpu);
2358 		else
2359 			trace_sched_wake_idle_without_ipi(cpu);
2360 	}
2361 }
2362 
2363 void wake_up_if_idle(int cpu)
2364 {
2365 	struct rq *rq = cpu_rq(cpu);
2366 	struct rq_flags rf;
2367 
2368 	rcu_read_lock();
2369 
2370 	if (!is_idle_task(rcu_dereference(rq->curr)))
2371 		goto out;
2372 
2373 	if (set_nr_if_polling(rq->idle)) {
2374 		trace_sched_wake_idle_without_ipi(cpu);
2375 	} else {
2376 		rq_lock_irqsave(rq, &rf);
2377 		if (is_idle_task(rq->curr))
2378 			smp_send_reschedule(cpu);
2379 		/* Else CPU is not idle, do nothing here: */
2380 		rq_unlock_irqrestore(rq, &rf);
2381 	}
2382 
2383 out:
2384 	rcu_read_unlock();
2385 }
2386 
2387 bool cpus_share_cache(int this_cpu, int that_cpu)
2388 {
2389 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2390 }
2391 #endif /* CONFIG_SMP */
2392 
2393 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2394 {
2395 	struct rq *rq = cpu_rq(cpu);
2396 	struct rq_flags rf;
2397 
2398 #if defined(CONFIG_SMP)
2399 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2400 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2401 		ttwu_queue_remote(p, cpu, wake_flags);
2402 		return;
2403 	}
2404 #endif
2405 
2406 	rq_lock(rq, &rf);
2407 	update_rq_clock(rq);
2408 	ttwu_do_activate(rq, p, wake_flags, &rf);
2409 	rq_unlock(rq, &rf);
2410 }
2411 
2412 /*
2413  * Notes on Program-Order guarantees on SMP systems.
2414  *
2415  *  MIGRATION
2416  *
2417  * The basic program-order guarantee on SMP systems is that when a task [t]
2418  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2419  * execution on its new CPU [c1].
2420  *
2421  * For migration (of runnable tasks) this is provided by the following means:
2422  *
2423  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2424  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2425  *     rq(c1)->lock (if not at the same time, then in that order).
2426  *  C) LOCK of the rq(c1)->lock scheduling in task
2427  *
2428  * Release/acquire chaining guarantees that B happens after A and C after B.
2429  * Note: the CPU doing B need not be c0 or c1
2430  *
2431  * Example:
2432  *
2433  *   CPU0            CPU1            CPU2
2434  *
2435  *   LOCK rq(0)->lock
2436  *   sched-out X
2437  *   sched-in Y
2438  *   UNLOCK rq(0)->lock
2439  *
2440  *                                   LOCK rq(0)->lock // orders against CPU0
2441  *                                   dequeue X
2442  *                                   UNLOCK rq(0)->lock
2443  *
2444  *                                   LOCK rq(1)->lock
2445  *                                   enqueue X
2446  *                                   UNLOCK rq(1)->lock
2447  *
2448  *                   LOCK rq(1)->lock // orders against CPU2
2449  *                   sched-out Z
2450  *                   sched-in X
2451  *                   UNLOCK rq(1)->lock
2452  *
2453  *
2454  *  BLOCKING -- aka. SLEEP + WAKEUP
2455  *
2456  * For blocking we (obviously) need to provide the same guarantee as for
2457  * migration. However the means are completely different as there is no lock
2458  * chain to provide order. Instead we do:
2459  *
2460  *   1) smp_store_release(X->on_cpu, 0)
2461  *   2) smp_cond_load_acquire(!X->on_cpu)
2462  *
2463  * Example:
2464  *
2465  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2466  *
2467  *   LOCK rq(0)->lock LOCK X->pi_lock
2468  *   dequeue X
2469  *   sched-out X
2470  *   smp_store_release(X->on_cpu, 0);
2471  *
2472  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2473  *                    X->state = WAKING
2474  *                    set_task_cpu(X,2)
2475  *
2476  *                    LOCK rq(2)->lock
2477  *                    enqueue X
2478  *                    X->state = RUNNING
2479  *                    UNLOCK rq(2)->lock
2480  *
2481  *                                          LOCK rq(2)->lock // orders against CPU1
2482  *                                          sched-out Z
2483  *                                          sched-in X
2484  *                                          UNLOCK rq(2)->lock
2485  *
2486  *                    UNLOCK X->pi_lock
2487  *   UNLOCK rq(0)->lock
2488  *
2489  *
2490  * However, for wakeups there is a second guarantee we must provide, namely we
2491  * must ensure that CONDITION=1 done by the caller can not be reordered with
2492  * accesses to the task state; see try_to_wake_up() and set_current_state().
2493  */
2494 
2495 /**
2496  * try_to_wake_up - wake up a thread
2497  * @p: the thread to be awakened
2498  * @state: the mask of task states that can be woken
2499  * @wake_flags: wake modifier flags (WF_*)
2500  *
2501  * If (@state & @p->state) @p->state = TASK_RUNNING.
2502  *
2503  * If the task was not queued/runnable, also place it back on a runqueue.
2504  *
2505  * Atomic against schedule() which would dequeue a task, also see
2506  * set_current_state().
2507  *
2508  * This function executes a full memory barrier before accessing the task
2509  * state; see set_current_state().
2510  *
2511  * Return: %true if @p->state changes (an actual wakeup was done),
2512  *	   %false otherwise.
2513  */
2514 static int
2515 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2516 {
2517 	unsigned long flags;
2518 	int cpu, success = 0;
2519 
2520 	preempt_disable();
2521 	if (p == current) {
2522 		/*
2523 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2524 		 * == smp_processor_id()'. Together this means we can special
2525 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2526 		 * without taking any locks.
2527 		 *
2528 		 * In particular:
2529 		 *  - we rely on Program-Order guarantees for all the ordering,
2530 		 *  - we're serialized against set_special_state() by virtue of
2531 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2532 		 */
2533 		if (!(p->state & state))
2534 			goto out;
2535 
2536 		success = 1;
2537 		cpu = task_cpu(p);
2538 		trace_sched_waking(p);
2539 		p->state = TASK_RUNNING;
2540 		trace_sched_wakeup(p);
2541 		goto out;
2542 	}
2543 
2544 	/*
2545 	 * If we are going to wake up a thread waiting for CONDITION we
2546 	 * need to ensure that CONDITION=1 done by the caller can not be
2547 	 * reordered with p->state check below. This pairs with mb() in
2548 	 * set_current_state() the waiting thread does.
2549 	 */
2550 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2551 	smp_mb__after_spinlock();
2552 	if (!(p->state & state))
2553 		goto unlock;
2554 
2555 	trace_sched_waking(p);
2556 
2557 	/* We're going to change ->state: */
2558 	success = 1;
2559 	cpu = task_cpu(p);
2560 
2561 	/*
2562 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2563 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2564 	 * in smp_cond_load_acquire() below.
2565 	 *
2566 	 * sched_ttwu_pending()			try_to_wake_up()
2567 	 *   STORE p->on_rq = 1			  LOAD p->state
2568 	 *   UNLOCK rq->lock
2569 	 *
2570 	 * __schedule() (switch to task 'p')
2571 	 *   LOCK rq->lock			  smp_rmb();
2572 	 *   smp_mb__after_spinlock();
2573 	 *   UNLOCK rq->lock
2574 	 *
2575 	 * [task p]
2576 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2577 	 *
2578 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2579 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2580 	 */
2581 	smp_rmb();
2582 	if (p->on_rq && ttwu_remote(p, wake_flags))
2583 		goto unlock;
2584 
2585 #ifdef CONFIG_SMP
2586 	/*
2587 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2588 	 * possible to, falsely, observe p->on_cpu == 0.
2589 	 *
2590 	 * One must be running (->on_cpu == 1) in order to remove oneself
2591 	 * from the runqueue.
2592 	 *
2593 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2594 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2595 	 *   UNLOCK rq->lock
2596 	 *
2597 	 * __schedule() (put 'p' to sleep)
2598 	 *   LOCK rq->lock			  smp_rmb();
2599 	 *   smp_mb__after_spinlock();
2600 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2601 	 *
2602 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2603 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2604 	 */
2605 	smp_rmb();
2606 
2607 	/*
2608 	 * If the owning (remote) CPU is still in the middle of schedule() with
2609 	 * this task as prev, wait until its done referencing the task.
2610 	 *
2611 	 * Pairs with the smp_store_release() in finish_task().
2612 	 *
2613 	 * This ensures that tasks getting woken will be fully ordered against
2614 	 * their previous state and preserve Program Order.
2615 	 */
2616 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2617 
2618 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2619 	p->state = TASK_WAKING;
2620 
2621 	if (p->in_iowait) {
2622 		delayacct_blkio_end(p);
2623 		atomic_dec(&task_rq(p)->nr_iowait);
2624 	}
2625 
2626 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2627 	if (task_cpu(p) != cpu) {
2628 		wake_flags |= WF_MIGRATED;
2629 		psi_ttwu_dequeue(p);
2630 		set_task_cpu(p, cpu);
2631 	}
2632 
2633 #else /* CONFIG_SMP */
2634 
2635 	if (p->in_iowait) {
2636 		delayacct_blkio_end(p);
2637 		atomic_dec(&task_rq(p)->nr_iowait);
2638 	}
2639 
2640 #endif /* CONFIG_SMP */
2641 
2642 	ttwu_queue(p, cpu, wake_flags);
2643 unlock:
2644 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2645 out:
2646 	if (success)
2647 		ttwu_stat(p, cpu, wake_flags);
2648 	preempt_enable();
2649 
2650 	return success;
2651 }
2652 
2653 /**
2654  * wake_up_process - Wake up a specific process
2655  * @p: The process to be woken up.
2656  *
2657  * Attempt to wake up the nominated process and move it to the set of runnable
2658  * processes.
2659  *
2660  * Return: 1 if the process was woken up, 0 if it was already running.
2661  *
2662  * This function executes a full memory barrier before accessing the task state.
2663  */
2664 int wake_up_process(struct task_struct *p)
2665 {
2666 	return try_to_wake_up(p, TASK_NORMAL, 0);
2667 }
2668 EXPORT_SYMBOL(wake_up_process);
2669 
2670 int wake_up_state(struct task_struct *p, unsigned int state)
2671 {
2672 	return try_to_wake_up(p, state, 0);
2673 }
2674 
2675 /*
2676  * Perform scheduler related setup for a newly forked process p.
2677  * p is forked by current.
2678  *
2679  * __sched_fork() is basic setup used by init_idle() too:
2680  */
2681 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2682 {
2683 	p->on_rq			= 0;
2684 
2685 	p->se.on_rq			= 0;
2686 	p->se.exec_start		= 0;
2687 	p->se.sum_exec_runtime		= 0;
2688 	p->se.prev_sum_exec_runtime	= 0;
2689 	p->se.nr_migrations		= 0;
2690 	p->se.vruntime			= 0;
2691 	INIT_LIST_HEAD(&p->se.group_node);
2692 
2693 #ifdef CONFIG_FAIR_GROUP_SCHED
2694 	p->se.cfs_rq			= NULL;
2695 #endif
2696 
2697 #ifdef CONFIG_SCHEDSTATS
2698 	/* Even if schedstat is disabled, there should not be garbage */
2699 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2700 #endif
2701 
2702 	RB_CLEAR_NODE(&p->dl.rb_node);
2703 	init_dl_task_timer(&p->dl);
2704 	init_dl_inactive_task_timer(&p->dl);
2705 	__dl_clear_params(p);
2706 
2707 	INIT_LIST_HEAD(&p->rt.run_list);
2708 	p->rt.timeout		= 0;
2709 	p->rt.time_slice	= sched_rr_timeslice;
2710 	p->rt.on_rq		= 0;
2711 	p->rt.on_list		= 0;
2712 
2713 #ifdef CONFIG_PREEMPT_NOTIFIERS
2714 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2715 #endif
2716 
2717 #ifdef CONFIG_COMPACTION
2718 	p->capture_control = NULL;
2719 #endif
2720 	init_numa_balancing(clone_flags, p);
2721 }
2722 
2723 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2724 
2725 #ifdef CONFIG_NUMA_BALANCING
2726 
2727 void set_numabalancing_state(bool enabled)
2728 {
2729 	if (enabled)
2730 		static_branch_enable(&sched_numa_balancing);
2731 	else
2732 		static_branch_disable(&sched_numa_balancing);
2733 }
2734 
2735 #ifdef CONFIG_PROC_SYSCTL
2736 int sysctl_numa_balancing(struct ctl_table *table, int write,
2737 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2738 {
2739 	struct ctl_table t;
2740 	int err;
2741 	int state = static_branch_likely(&sched_numa_balancing);
2742 
2743 	if (write && !capable(CAP_SYS_ADMIN))
2744 		return -EPERM;
2745 
2746 	t = *table;
2747 	t.data = &state;
2748 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2749 	if (err < 0)
2750 		return err;
2751 	if (write)
2752 		set_numabalancing_state(state);
2753 	return err;
2754 }
2755 #endif
2756 #endif
2757 
2758 #ifdef CONFIG_SCHEDSTATS
2759 
2760 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2761 static bool __initdata __sched_schedstats = false;
2762 
2763 static void set_schedstats(bool enabled)
2764 {
2765 	if (enabled)
2766 		static_branch_enable(&sched_schedstats);
2767 	else
2768 		static_branch_disable(&sched_schedstats);
2769 }
2770 
2771 void force_schedstat_enabled(void)
2772 {
2773 	if (!schedstat_enabled()) {
2774 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2775 		static_branch_enable(&sched_schedstats);
2776 	}
2777 }
2778 
2779 static int __init setup_schedstats(char *str)
2780 {
2781 	int ret = 0;
2782 	if (!str)
2783 		goto out;
2784 
2785 	/*
2786 	 * This code is called before jump labels have been set up, so we can't
2787 	 * change the static branch directly just yet.  Instead set a temporary
2788 	 * variable so init_schedstats() can do it later.
2789 	 */
2790 	if (!strcmp(str, "enable")) {
2791 		__sched_schedstats = true;
2792 		ret = 1;
2793 	} else if (!strcmp(str, "disable")) {
2794 		__sched_schedstats = false;
2795 		ret = 1;
2796 	}
2797 out:
2798 	if (!ret)
2799 		pr_warn("Unable to parse schedstats=\n");
2800 
2801 	return ret;
2802 }
2803 __setup("schedstats=", setup_schedstats);
2804 
2805 static void __init init_schedstats(void)
2806 {
2807 	set_schedstats(__sched_schedstats);
2808 }
2809 
2810 #ifdef CONFIG_PROC_SYSCTL
2811 int sysctl_schedstats(struct ctl_table *table, int write,
2812 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2813 {
2814 	struct ctl_table t;
2815 	int err;
2816 	int state = static_branch_likely(&sched_schedstats);
2817 
2818 	if (write && !capable(CAP_SYS_ADMIN))
2819 		return -EPERM;
2820 
2821 	t = *table;
2822 	t.data = &state;
2823 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2824 	if (err < 0)
2825 		return err;
2826 	if (write)
2827 		set_schedstats(state);
2828 	return err;
2829 }
2830 #endif /* CONFIG_PROC_SYSCTL */
2831 #else  /* !CONFIG_SCHEDSTATS */
2832 static inline void init_schedstats(void) {}
2833 #endif /* CONFIG_SCHEDSTATS */
2834 
2835 /*
2836  * fork()/clone()-time setup:
2837  */
2838 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2839 {
2840 	unsigned long flags;
2841 
2842 	__sched_fork(clone_flags, p);
2843 	/*
2844 	 * We mark the process as NEW here. This guarantees that
2845 	 * nobody will actually run it, and a signal or other external
2846 	 * event cannot wake it up and insert it on the runqueue either.
2847 	 */
2848 	p->state = TASK_NEW;
2849 
2850 	/*
2851 	 * Make sure we do not leak PI boosting priority to the child.
2852 	 */
2853 	p->prio = current->normal_prio;
2854 
2855 	uclamp_fork(p);
2856 
2857 	/*
2858 	 * Revert to default priority/policy on fork if requested.
2859 	 */
2860 	if (unlikely(p->sched_reset_on_fork)) {
2861 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2862 			p->policy = SCHED_NORMAL;
2863 			p->static_prio = NICE_TO_PRIO(0);
2864 			p->rt_priority = 0;
2865 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2866 			p->static_prio = NICE_TO_PRIO(0);
2867 
2868 		p->prio = p->normal_prio = __normal_prio(p);
2869 		set_load_weight(p, false);
2870 
2871 		/*
2872 		 * We don't need the reset flag anymore after the fork. It has
2873 		 * fulfilled its duty:
2874 		 */
2875 		p->sched_reset_on_fork = 0;
2876 	}
2877 
2878 	if (dl_prio(p->prio))
2879 		return -EAGAIN;
2880 	else if (rt_prio(p->prio))
2881 		p->sched_class = &rt_sched_class;
2882 	else
2883 		p->sched_class = &fair_sched_class;
2884 
2885 	init_entity_runnable_average(&p->se);
2886 
2887 	/*
2888 	 * The child is not yet in the pid-hash so no cgroup attach races,
2889 	 * and the cgroup is pinned to this child due to cgroup_fork()
2890 	 * is ran before sched_fork().
2891 	 *
2892 	 * Silence PROVE_RCU.
2893 	 */
2894 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2895 	/*
2896 	 * We're setting the CPU for the first time, we don't migrate,
2897 	 * so use __set_task_cpu().
2898 	 */
2899 	__set_task_cpu(p, smp_processor_id());
2900 	if (p->sched_class->task_fork)
2901 		p->sched_class->task_fork(p);
2902 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2903 
2904 #ifdef CONFIG_SCHED_INFO
2905 	if (likely(sched_info_on()))
2906 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2907 #endif
2908 #if defined(CONFIG_SMP)
2909 	p->on_cpu = 0;
2910 #endif
2911 	init_task_preempt_count(p);
2912 #ifdef CONFIG_SMP
2913 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2914 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2915 #endif
2916 	return 0;
2917 }
2918 
2919 unsigned long to_ratio(u64 period, u64 runtime)
2920 {
2921 	if (runtime == RUNTIME_INF)
2922 		return BW_UNIT;
2923 
2924 	/*
2925 	 * Doing this here saves a lot of checks in all
2926 	 * the calling paths, and returning zero seems
2927 	 * safe for them anyway.
2928 	 */
2929 	if (period == 0)
2930 		return 0;
2931 
2932 	return div64_u64(runtime << BW_SHIFT, period);
2933 }
2934 
2935 /*
2936  * wake_up_new_task - wake up a newly created task for the first time.
2937  *
2938  * This function will do some initial scheduler statistics housekeeping
2939  * that must be done for every newly created context, then puts the task
2940  * on the runqueue and wakes it.
2941  */
2942 void wake_up_new_task(struct task_struct *p)
2943 {
2944 	struct rq_flags rf;
2945 	struct rq *rq;
2946 
2947 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2948 	p->state = TASK_RUNNING;
2949 #ifdef CONFIG_SMP
2950 	/*
2951 	 * Fork balancing, do it here and not earlier because:
2952 	 *  - cpus_ptr can change in the fork path
2953 	 *  - any previously selected CPU might disappear through hotplug
2954 	 *
2955 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2956 	 * as we're not fully set-up yet.
2957 	 */
2958 	p->recent_used_cpu = task_cpu(p);
2959 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2960 #endif
2961 	rq = __task_rq_lock(p, &rf);
2962 	update_rq_clock(rq);
2963 	post_init_entity_util_avg(p);
2964 
2965 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2966 	trace_sched_wakeup_new(p);
2967 	check_preempt_curr(rq, p, WF_FORK);
2968 #ifdef CONFIG_SMP
2969 	if (p->sched_class->task_woken) {
2970 		/*
2971 		 * Nothing relies on rq->lock after this, so its fine to
2972 		 * drop it.
2973 		 */
2974 		rq_unpin_lock(rq, &rf);
2975 		p->sched_class->task_woken(rq, p);
2976 		rq_repin_lock(rq, &rf);
2977 	}
2978 #endif
2979 	task_rq_unlock(rq, p, &rf);
2980 }
2981 
2982 #ifdef CONFIG_PREEMPT_NOTIFIERS
2983 
2984 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2985 
2986 void preempt_notifier_inc(void)
2987 {
2988 	static_branch_inc(&preempt_notifier_key);
2989 }
2990 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2991 
2992 void preempt_notifier_dec(void)
2993 {
2994 	static_branch_dec(&preempt_notifier_key);
2995 }
2996 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2997 
2998 /**
2999  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3000  * @notifier: notifier struct to register
3001  */
3002 void preempt_notifier_register(struct preempt_notifier *notifier)
3003 {
3004 	if (!static_branch_unlikely(&preempt_notifier_key))
3005 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3006 
3007 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3008 }
3009 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3010 
3011 /**
3012  * preempt_notifier_unregister - no longer interested in preemption notifications
3013  * @notifier: notifier struct to unregister
3014  *
3015  * This is *not* safe to call from within a preemption notifier.
3016  */
3017 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3018 {
3019 	hlist_del(&notifier->link);
3020 }
3021 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3022 
3023 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3024 {
3025 	struct preempt_notifier *notifier;
3026 
3027 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3028 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3029 }
3030 
3031 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3032 {
3033 	if (static_branch_unlikely(&preempt_notifier_key))
3034 		__fire_sched_in_preempt_notifiers(curr);
3035 }
3036 
3037 static void
3038 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3039 				   struct task_struct *next)
3040 {
3041 	struct preempt_notifier *notifier;
3042 
3043 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3044 		notifier->ops->sched_out(notifier, next);
3045 }
3046 
3047 static __always_inline void
3048 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3049 				 struct task_struct *next)
3050 {
3051 	if (static_branch_unlikely(&preempt_notifier_key))
3052 		__fire_sched_out_preempt_notifiers(curr, next);
3053 }
3054 
3055 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3056 
3057 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3058 {
3059 }
3060 
3061 static inline void
3062 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3063 				 struct task_struct *next)
3064 {
3065 }
3066 
3067 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3068 
3069 static inline void prepare_task(struct task_struct *next)
3070 {
3071 #ifdef CONFIG_SMP
3072 	/*
3073 	 * Claim the task as running, we do this before switching to it
3074 	 * such that any running task will have this set.
3075 	 */
3076 	next->on_cpu = 1;
3077 #endif
3078 }
3079 
3080 static inline void finish_task(struct task_struct *prev)
3081 {
3082 #ifdef CONFIG_SMP
3083 	/*
3084 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3085 	 * We must ensure this doesn't happen until the switch is completely
3086 	 * finished.
3087 	 *
3088 	 * In particular, the load of prev->state in finish_task_switch() must
3089 	 * happen before this.
3090 	 *
3091 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3092 	 */
3093 	smp_store_release(&prev->on_cpu, 0);
3094 #endif
3095 }
3096 
3097 static inline void
3098 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3099 {
3100 	/*
3101 	 * Since the runqueue lock will be released by the next
3102 	 * task (which is an invalid locking op but in the case
3103 	 * of the scheduler it's an obvious special-case), so we
3104 	 * do an early lockdep release here:
3105 	 */
3106 	rq_unpin_lock(rq, rf);
3107 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3108 #ifdef CONFIG_DEBUG_SPINLOCK
3109 	/* this is a valid case when another task releases the spinlock */
3110 	rq->lock.owner = next;
3111 #endif
3112 }
3113 
3114 static inline void finish_lock_switch(struct rq *rq)
3115 {
3116 	/*
3117 	 * If we are tracking spinlock dependencies then we have to
3118 	 * fix up the runqueue lock - which gets 'carried over' from
3119 	 * prev into current:
3120 	 */
3121 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3122 	raw_spin_unlock_irq(&rq->lock);
3123 }
3124 
3125 /*
3126  * NOP if the arch has not defined these:
3127  */
3128 
3129 #ifndef prepare_arch_switch
3130 # define prepare_arch_switch(next)	do { } while (0)
3131 #endif
3132 
3133 #ifndef finish_arch_post_lock_switch
3134 # define finish_arch_post_lock_switch()	do { } while (0)
3135 #endif
3136 
3137 /**
3138  * prepare_task_switch - prepare to switch tasks
3139  * @rq: the runqueue preparing to switch
3140  * @prev: the current task that is being switched out
3141  * @next: the task we are going to switch to.
3142  *
3143  * This is called with the rq lock held and interrupts off. It must
3144  * be paired with a subsequent finish_task_switch after the context
3145  * switch.
3146  *
3147  * prepare_task_switch sets up locking and calls architecture specific
3148  * hooks.
3149  */
3150 static inline void
3151 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3152 		    struct task_struct *next)
3153 {
3154 	kcov_prepare_switch(prev);
3155 	sched_info_switch(rq, prev, next);
3156 	perf_event_task_sched_out(prev, next);
3157 	rseq_preempt(prev);
3158 	fire_sched_out_preempt_notifiers(prev, next);
3159 	prepare_task(next);
3160 	prepare_arch_switch(next);
3161 }
3162 
3163 /**
3164  * finish_task_switch - clean up after a task-switch
3165  * @prev: the thread we just switched away from.
3166  *
3167  * finish_task_switch must be called after the context switch, paired
3168  * with a prepare_task_switch call before the context switch.
3169  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3170  * and do any other architecture-specific cleanup actions.
3171  *
3172  * Note that we may have delayed dropping an mm in context_switch(). If
3173  * so, we finish that here outside of the runqueue lock. (Doing it
3174  * with the lock held can cause deadlocks; see schedule() for
3175  * details.)
3176  *
3177  * The context switch have flipped the stack from under us and restored the
3178  * local variables which were saved when this task called schedule() in the
3179  * past. prev == current is still correct but we need to recalculate this_rq
3180  * because prev may have moved to another CPU.
3181  */
3182 static struct rq *finish_task_switch(struct task_struct *prev)
3183 	__releases(rq->lock)
3184 {
3185 	struct rq *rq = this_rq();
3186 	struct mm_struct *mm = rq->prev_mm;
3187 	long prev_state;
3188 
3189 	/*
3190 	 * The previous task will have left us with a preempt_count of 2
3191 	 * because it left us after:
3192 	 *
3193 	 *	schedule()
3194 	 *	  preempt_disable();			// 1
3195 	 *	  __schedule()
3196 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3197 	 *
3198 	 * Also, see FORK_PREEMPT_COUNT.
3199 	 */
3200 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3201 		      "corrupted preempt_count: %s/%d/0x%x\n",
3202 		      current->comm, current->pid, preempt_count()))
3203 		preempt_count_set(FORK_PREEMPT_COUNT);
3204 
3205 	rq->prev_mm = NULL;
3206 
3207 	/*
3208 	 * A task struct has one reference for the use as "current".
3209 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3210 	 * schedule one last time. The schedule call will never return, and
3211 	 * the scheduled task must drop that reference.
3212 	 *
3213 	 * We must observe prev->state before clearing prev->on_cpu (in
3214 	 * finish_task), otherwise a concurrent wakeup can get prev
3215 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3216 	 * transition, resulting in a double drop.
3217 	 */
3218 	prev_state = prev->state;
3219 	vtime_task_switch(prev);
3220 	perf_event_task_sched_in(prev, current);
3221 	finish_task(prev);
3222 	finish_lock_switch(rq);
3223 	finish_arch_post_lock_switch();
3224 	kcov_finish_switch(current);
3225 
3226 	fire_sched_in_preempt_notifiers(current);
3227 	/*
3228 	 * When switching through a kernel thread, the loop in
3229 	 * membarrier_{private,global}_expedited() may have observed that
3230 	 * kernel thread and not issued an IPI. It is therefore possible to
3231 	 * schedule between user->kernel->user threads without passing though
3232 	 * switch_mm(). Membarrier requires a barrier after storing to
3233 	 * rq->curr, before returning to userspace, so provide them here:
3234 	 *
3235 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3236 	 *   provided by mmdrop(),
3237 	 * - a sync_core for SYNC_CORE.
3238 	 */
3239 	if (mm) {
3240 		membarrier_mm_sync_core_before_usermode(mm);
3241 		mmdrop(mm);
3242 	}
3243 	if (unlikely(prev_state == TASK_DEAD)) {
3244 		if (prev->sched_class->task_dead)
3245 			prev->sched_class->task_dead(prev);
3246 
3247 		/*
3248 		 * Remove function-return probe instances associated with this
3249 		 * task and put them back on the free list.
3250 		 */
3251 		kprobe_flush_task(prev);
3252 
3253 		/* Task is done with its stack. */
3254 		put_task_stack(prev);
3255 
3256 		put_task_struct_rcu_user(prev);
3257 	}
3258 
3259 	tick_nohz_task_switch();
3260 	return rq;
3261 }
3262 
3263 #ifdef CONFIG_SMP
3264 
3265 /* rq->lock is NOT held, but preemption is disabled */
3266 static void __balance_callback(struct rq *rq)
3267 {
3268 	struct callback_head *head, *next;
3269 	void (*func)(struct rq *rq);
3270 	unsigned long flags;
3271 
3272 	raw_spin_lock_irqsave(&rq->lock, flags);
3273 	head = rq->balance_callback;
3274 	rq->balance_callback = NULL;
3275 	while (head) {
3276 		func = (void (*)(struct rq *))head->func;
3277 		next = head->next;
3278 		head->next = NULL;
3279 		head = next;
3280 
3281 		func(rq);
3282 	}
3283 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3284 }
3285 
3286 static inline void balance_callback(struct rq *rq)
3287 {
3288 	if (unlikely(rq->balance_callback))
3289 		__balance_callback(rq);
3290 }
3291 
3292 #else
3293 
3294 static inline void balance_callback(struct rq *rq)
3295 {
3296 }
3297 
3298 #endif
3299 
3300 /**
3301  * schedule_tail - first thing a freshly forked thread must call.
3302  * @prev: the thread we just switched away from.
3303  */
3304 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3305 	__releases(rq->lock)
3306 {
3307 	struct rq *rq;
3308 
3309 	/*
3310 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3311 	 * finish_task_switch() for details.
3312 	 *
3313 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3314 	 * and the preempt_enable() will end up enabling preemption (on
3315 	 * PREEMPT_COUNT kernels).
3316 	 */
3317 
3318 	rq = finish_task_switch(prev);
3319 	balance_callback(rq);
3320 	preempt_enable();
3321 
3322 	if (current->set_child_tid)
3323 		put_user(task_pid_vnr(current), current->set_child_tid);
3324 
3325 	calculate_sigpending();
3326 }
3327 
3328 /*
3329  * context_switch - switch to the new MM and the new thread's register state.
3330  */
3331 static __always_inline struct rq *
3332 context_switch(struct rq *rq, struct task_struct *prev,
3333 	       struct task_struct *next, struct rq_flags *rf)
3334 {
3335 	prepare_task_switch(rq, prev, next);
3336 
3337 	/*
3338 	 * For paravirt, this is coupled with an exit in switch_to to
3339 	 * combine the page table reload and the switch backend into
3340 	 * one hypercall.
3341 	 */
3342 	arch_start_context_switch(prev);
3343 
3344 	/*
3345 	 * kernel -> kernel   lazy + transfer active
3346 	 *   user -> kernel   lazy + mmgrab() active
3347 	 *
3348 	 * kernel ->   user   switch + mmdrop() active
3349 	 *   user ->   user   switch
3350 	 */
3351 	if (!next->mm) {                                // to kernel
3352 		enter_lazy_tlb(prev->active_mm, next);
3353 
3354 		next->active_mm = prev->active_mm;
3355 		if (prev->mm)                           // from user
3356 			mmgrab(prev->active_mm);
3357 		else
3358 			prev->active_mm = NULL;
3359 	} else {                                        // to user
3360 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3361 		/*
3362 		 * sys_membarrier() requires an smp_mb() between setting
3363 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3364 		 *
3365 		 * The below provides this either through switch_mm(), or in
3366 		 * case 'prev->active_mm == next->mm' through
3367 		 * finish_task_switch()'s mmdrop().
3368 		 */
3369 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3370 
3371 		if (!prev->mm) {                        // from kernel
3372 			/* will mmdrop() in finish_task_switch(). */
3373 			rq->prev_mm = prev->active_mm;
3374 			prev->active_mm = NULL;
3375 		}
3376 	}
3377 
3378 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3379 
3380 	prepare_lock_switch(rq, next, rf);
3381 
3382 	/* Here we just switch the register state and the stack. */
3383 	switch_to(prev, next, prev);
3384 	barrier();
3385 
3386 	return finish_task_switch(prev);
3387 }
3388 
3389 /*
3390  * nr_running and nr_context_switches:
3391  *
3392  * externally visible scheduler statistics: current number of runnable
3393  * threads, total number of context switches performed since bootup.
3394  */
3395 unsigned long nr_running(void)
3396 {
3397 	unsigned long i, sum = 0;
3398 
3399 	for_each_online_cpu(i)
3400 		sum += cpu_rq(i)->nr_running;
3401 
3402 	return sum;
3403 }
3404 
3405 /*
3406  * Check if only the current task is running on the CPU.
3407  *
3408  * Caution: this function does not check that the caller has disabled
3409  * preemption, thus the result might have a time-of-check-to-time-of-use
3410  * race.  The caller is responsible to use it correctly, for example:
3411  *
3412  * - from a non-preemptible section (of course)
3413  *
3414  * - from a thread that is bound to a single CPU
3415  *
3416  * - in a loop with very short iterations (e.g. a polling loop)
3417  */
3418 bool single_task_running(void)
3419 {
3420 	return raw_rq()->nr_running == 1;
3421 }
3422 EXPORT_SYMBOL(single_task_running);
3423 
3424 unsigned long long nr_context_switches(void)
3425 {
3426 	int i;
3427 	unsigned long long sum = 0;
3428 
3429 	for_each_possible_cpu(i)
3430 		sum += cpu_rq(i)->nr_switches;
3431 
3432 	return sum;
3433 }
3434 
3435 /*
3436  * Consumers of these two interfaces, like for example the cpuidle menu
3437  * governor, are using nonsensical data. Preferring shallow idle state selection
3438  * for a CPU that has IO-wait which might not even end up running the task when
3439  * it does become runnable.
3440  */
3441 
3442 unsigned long nr_iowait_cpu(int cpu)
3443 {
3444 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3445 }
3446 
3447 /*
3448  * IO-wait accounting, and how its mostly bollocks (on SMP).
3449  *
3450  * The idea behind IO-wait account is to account the idle time that we could
3451  * have spend running if it were not for IO. That is, if we were to improve the
3452  * storage performance, we'd have a proportional reduction in IO-wait time.
3453  *
3454  * This all works nicely on UP, where, when a task blocks on IO, we account
3455  * idle time as IO-wait, because if the storage were faster, it could've been
3456  * running and we'd not be idle.
3457  *
3458  * This has been extended to SMP, by doing the same for each CPU. This however
3459  * is broken.
3460  *
3461  * Imagine for instance the case where two tasks block on one CPU, only the one
3462  * CPU will have IO-wait accounted, while the other has regular idle. Even
3463  * though, if the storage were faster, both could've ran at the same time,
3464  * utilising both CPUs.
3465  *
3466  * This means, that when looking globally, the current IO-wait accounting on
3467  * SMP is a lower bound, by reason of under accounting.
3468  *
3469  * Worse, since the numbers are provided per CPU, they are sometimes
3470  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3471  * associated with any one particular CPU, it can wake to another CPU than it
3472  * blocked on. This means the per CPU IO-wait number is meaningless.
3473  *
3474  * Task CPU affinities can make all that even more 'interesting'.
3475  */
3476 
3477 unsigned long nr_iowait(void)
3478 {
3479 	unsigned long i, sum = 0;
3480 
3481 	for_each_possible_cpu(i)
3482 		sum += nr_iowait_cpu(i);
3483 
3484 	return sum;
3485 }
3486 
3487 #ifdef CONFIG_SMP
3488 
3489 /*
3490  * sched_exec - execve() is a valuable balancing opportunity, because at
3491  * this point the task has the smallest effective memory and cache footprint.
3492  */
3493 void sched_exec(void)
3494 {
3495 	struct task_struct *p = current;
3496 	unsigned long flags;
3497 	int dest_cpu;
3498 
3499 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3500 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3501 	if (dest_cpu == smp_processor_id())
3502 		goto unlock;
3503 
3504 	if (likely(cpu_active(dest_cpu))) {
3505 		struct migration_arg arg = { p, dest_cpu };
3506 
3507 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3508 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3509 		return;
3510 	}
3511 unlock:
3512 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3513 }
3514 
3515 #endif
3516 
3517 DEFINE_PER_CPU(struct kernel_stat, kstat);
3518 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3519 
3520 EXPORT_PER_CPU_SYMBOL(kstat);
3521 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3522 
3523 /*
3524  * The function fair_sched_class.update_curr accesses the struct curr
3525  * and its field curr->exec_start; when called from task_sched_runtime(),
3526  * we observe a high rate of cache misses in practice.
3527  * Prefetching this data results in improved performance.
3528  */
3529 static inline void prefetch_curr_exec_start(struct task_struct *p)
3530 {
3531 #ifdef CONFIG_FAIR_GROUP_SCHED
3532 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3533 #else
3534 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3535 #endif
3536 	prefetch(curr);
3537 	prefetch(&curr->exec_start);
3538 }
3539 
3540 /*
3541  * Return accounted runtime for the task.
3542  * In case the task is currently running, return the runtime plus current's
3543  * pending runtime that have not been accounted yet.
3544  */
3545 unsigned long long task_sched_runtime(struct task_struct *p)
3546 {
3547 	struct rq_flags rf;
3548 	struct rq *rq;
3549 	u64 ns;
3550 
3551 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3552 	/*
3553 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3554 	 * So we have a optimization chance when the task's delta_exec is 0.
3555 	 * Reading ->on_cpu is racy, but this is ok.
3556 	 *
3557 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3558 	 * If we race with it entering CPU, unaccounted time is 0. This is
3559 	 * indistinguishable from the read occurring a few cycles earlier.
3560 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3561 	 * been accounted, so we're correct here as well.
3562 	 */
3563 	if (!p->on_cpu || !task_on_rq_queued(p))
3564 		return p->se.sum_exec_runtime;
3565 #endif
3566 
3567 	rq = task_rq_lock(p, &rf);
3568 	/*
3569 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3570 	 * project cycles that may never be accounted to this
3571 	 * thread, breaking clock_gettime().
3572 	 */
3573 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3574 		prefetch_curr_exec_start(p);
3575 		update_rq_clock(rq);
3576 		p->sched_class->update_curr(rq);
3577 	}
3578 	ns = p->se.sum_exec_runtime;
3579 	task_rq_unlock(rq, p, &rf);
3580 
3581 	return ns;
3582 }
3583 
3584 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3585 
3586 void arch_set_thermal_pressure(struct cpumask *cpus,
3587 			       unsigned long th_pressure)
3588 {
3589 	int cpu;
3590 
3591 	for_each_cpu(cpu, cpus)
3592 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3593 }
3594 
3595 /*
3596  * This function gets called by the timer code, with HZ frequency.
3597  * We call it with interrupts disabled.
3598  */
3599 void scheduler_tick(void)
3600 {
3601 	int cpu = smp_processor_id();
3602 	struct rq *rq = cpu_rq(cpu);
3603 	struct task_struct *curr = rq->curr;
3604 	struct rq_flags rf;
3605 	unsigned long thermal_pressure;
3606 
3607 	arch_scale_freq_tick();
3608 	sched_clock_tick();
3609 
3610 	rq_lock(rq, &rf);
3611 
3612 	update_rq_clock(rq);
3613 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3614 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3615 	curr->sched_class->task_tick(rq, curr, 0);
3616 	calc_global_load_tick(rq);
3617 	psi_task_tick(rq);
3618 
3619 	rq_unlock(rq, &rf);
3620 
3621 	perf_event_task_tick();
3622 
3623 #ifdef CONFIG_SMP
3624 	rq->idle_balance = idle_cpu(cpu);
3625 	trigger_load_balance(rq);
3626 #endif
3627 }
3628 
3629 #ifdef CONFIG_NO_HZ_FULL
3630 
3631 struct tick_work {
3632 	int			cpu;
3633 	atomic_t		state;
3634 	struct delayed_work	work;
3635 };
3636 /* Values for ->state, see diagram below. */
3637 #define TICK_SCHED_REMOTE_OFFLINE	0
3638 #define TICK_SCHED_REMOTE_OFFLINING	1
3639 #define TICK_SCHED_REMOTE_RUNNING	2
3640 
3641 /*
3642  * State diagram for ->state:
3643  *
3644  *
3645  *          TICK_SCHED_REMOTE_OFFLINE
3646  *                    |   ^
3647  *                    |   |
3648  *                    |   | sched_tick_remote()
3649  *                    |   |
3650  *                    |   |
3651  *                    +--TICK_SCHED_REMOTE_OFFLINING
3652  *                    |   ^
3653  *                    |   |
3654  * sched_tick_start() |   | sched_tick_stop()
3655  *                    |   |
3656  *                    V   |
3657  *          TICK_SCHED_REMOTE_RUNNING
3658  *
3659  *
3660  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3661  * and sched_tick_start() are happy to leave the state in RUNNING.
3662  */
3663 
3664 static struct tick_work __percpu *tick_work_cpu;
3665 
3666 static void sched_tick_remote(struct work_struct *work)
3667 {
3668 	struct delayed_work *dwork = to_delayed_work(work);
3669 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3670 	int cpu = twork->cpu;
3671 	struct rq *rq = cpu_rq(cpu);
3672 	struct task_struct *curr;
3673 	struct rq_flags rf;
3674 	u64 delta;
3675 	int os;
3676 
3677 	/*
3678 	 * Handle the tick only if it appears the remote CPU is running in full
3679 	 * dynticks mode. The check is racy by nature, but missing a tick or
3680 	 * having one too much is no big deal because the scheduler tick updates
3681 	 * statistics and checks timeslices in a time-independent way, regardless
3682 	 * of when exactly it is running.
3683 	 */
3684 	if (!tick_nohz_tick_stopped_cpu(cpu))
3685 		goto out_requeue;
3686 
3687 	rq_lock_irq(rq, &rf);
3688 	curr = rq->curr;
3689 	if (cpu_is_offline(cpu))
3690 		goto out_unlock;
3691 
3692 	update_rq_clock(rq);
3693 
3694 	if (!is_idle_task(curr)) {
3695 		/*
3696 		 * Make sure the next tick runs within a reasonable
3697 		 * amount of time.
3698 		 */
3699 		delta = rq_clock_task(rq) - curr->se.exec_start;
3700 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3701 	}
3702 	curr->sched_class->task_tick(rq, curr, 0);
3703 
3704 	calc_load_nohz_remote(rq);
3705 out_unlock:
3706 	rq_unlock_irq(rq, &rf);
3707 out_requeue:
3708 
3709 	/*
3710 	 * Run the remote tick once per second (1Hz). This arbitrary
3711 	 * frequency is large enough to avoid overload but short enough
3712 	 * to keep scheduler internal stats reasonably up to date.  But
3713 	 * first update state to reflect hotplug activity if required.
3714 	 */
3715 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3716 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3717 	if (os == TICK_SCHED_REMOTE_RUNNING)
3718 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3719 }
3720 
3721 static void sched_tick_start(int cpu)
3722 {
3723 	int os;
3724 	struct tick_work *twork;
3725 
3726 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3727 		return;
3728 
3729 	WARN_ON_ONCE(!tick_work_cpu);
3730 
3731 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3732 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3733 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3734 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3735 		twork->cpu = cpu;
3736 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3737 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3738 	}
3739 }
3740 
3741 #ifdef CONFIG_HOTPLUG_CPU
3742 static void sched_tick_stop(int cpu)
3743 {
3744 	struct tick_work *twork;
3745 	int os;
3746 
3747 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3748 		return;
3749 
3750 	WARN_ON_ONCE(!tick_work_cpu);
3751 
3752 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3753 	/* There cannot be competing actions, but don't rely on stop-machine. */
3754 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3755 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3756 	/* Don't cancel, as this would mess up the state machine. */
3757 }
3758 #endif /* CONFIG_HOTPLUG_CPU */
3759 
3760 int __init sched_tick_offload_init(void)
3761 {
3762 	tick_work_cpu = alloc_percpu(struct tick_work);
3763 	BUG_ON(!tick_work_cpu);
3764 	return 0;
3765 }
3766 
3767 #else /* !CONFIG_NO_HZ_FULL */
3768 static inline void sched_tick_start(int cpu) { }
3769 static inline void sched_tick_stop(int cpu) { }
3770 #endif
3771 
3772 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3773 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3774 /*
3775  * If the value passed in is equal to the current preempt count
3776  * then we just disabled preemption. Start timing the latency.
3777  */
3778 static inline void preempt_latency_start(int val)
3779 {
3780 	if (preempt_count() == val) {
3781 		unsigned long ip = get_lock_parent_ip();
3782 #ifdef CONFIG_DEBUG_PREEMPT
3783 		current->preempt_disable_ip = ip;
3784 #endif
3785 		trace_preempt_off(CALLER_ADDR0, ip);
3786 	}
3787 }
3788 
3789 void preempt_count_add(int val)
3790 {
3791 #ifdef CONFIG_DEBUG_PREEMPT
3792 	/*
3793 	 * Underflow?
3794 	 */
3795 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3796 		return;
3797 #endif
3798 	__preempt_count_add(val);
3799 #ifdef CONFIG_DEBUG_PREEMPT
3800 	/*
3801 	 * Spinlock count overflowing soon?
3802 	 */
3803 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3804 				PREEMPT_MASK - 10);
3805 #endif
3806 	preempt_latency_start(val);
3807 }
3808 EXPORT_SYMBOL(preempt_count_add);
3809 NOKPROBE_SYMBOL(preempt_count_add);
3810 
3811 /*
3812  * If the value passed in equals to the current preempt count
3813  * then we just enabled preemption. Stop timing the latency.
3814  */
3815 static inline void preempt_latency_stop(int val)
3816 {
3817 	if (preempt_count() == val)
3818 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3819 }
3820 
3821 void preempt_count_sub(int val)
3822 {
3823 #ifdef CONFIG_DEBUG_PREEMPT
3824 	/*
3825 	 * Underflow?
3826 	 */
3827 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3828 		return;
3829 	/*
3830 	 * Is the spinlock portion underflowing?
3831 	 */
3832 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3833 			!(preempt_count() & PREEMPT_MASK)))
3834 		return;
3835 #endif
3836 
3837 	preempt_latency_stop(val);
3838 	__preempt_count_sub(val);
3839 }
3840 EXPORT_SYMBOL(preempt_count_sub);
3841 NOKPROBE_SYMBOL(preempt_count_sub);
3842 
3843 #else
3844 static inline void preempt_latency_start(int val) { }
3845 static inline void preempt_latency_stop(int val) { }
3846 #endif
3847 
3848 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3849 {
3850 #ifdef CONFIG_DEBUG_PREEMPT
3851 	return p->preempt_disable_ip;
3852 #else
3853 	return 0;
3854 #endif
3855 }
3856 
3857 /*
3858  * Print scheduling while atomic bug:
3859  */
3860 static noinline void __schedule_bug(struct task_struct *prev)
3861 {
3862 	/* Save this before calling printk(), since that will clobber it */
3863 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3864 
3865 	if (oops_in_progress)
3866 		return;
3867 
3868 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3869 		prev->comm, prev->pid, preempt_count());
3870 
3871 	debug_show_held_locks(prev);
3872 	print_modules();
3873 	if (irqs_disabled())
3874 		print_irqtrace_events(prev);
3875 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3876 	    && in_atomic_preempt_off()) {
3877 		pr_err("Preemption disabled at:");
3878 		print_ip_sym(preempt_disable_ip);
3879 		pr_cont("\n");
3880 	}
3881 	if (panic_on_warn)
3882 		panic("scheduling while atomic\n");
3883 
3884 	dump_stack();
3885 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3886 }
3887 
3888 /*
3889  * Various schedule()-time debugging checks and statistics:
3890  */
3891 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3892 {
3893 #ifdef CONFIG_SCHED_STACK_END_CHECK
3894 	if (task_stack_end_corrupted(prev))
3895 		panic("corrupted stack end detected inside scheduler\n");
3896 #endif
3897 
3898 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3899 	if (!preempt && prev->state && prev->non_block_count) {
3900 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3901 			prev->comm, prev->pid, prev->non_block_count);
3902 		dump_stack();
3903 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3904 	}
3905 #endif
3906 
3907 	if (unlikely(in_atomic_preempt_off())) {
3908 		__schedule_bug(prev);
3909 		preempt_count_set(PREEMPT_DISABLED);
3910 	}
3911 	rcu_sleep_check();
3912 
3913 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3914 
3915 	schedstat_inc(this_rq()->sched_count);
3916 }
3917 
3918 /*
3919  * Pick up the highest-prio task:
3920  */
3921 static inline struct task_struct *
3922 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3923 {
3924 	const struct sched_class *class;
3925 	struct task_struct *p;
3926 
3927 	/*
3928 	 * Optimization: we know that if all tasks are in the fair class we can
3929 	 * call that function directly, but only if the @prev task wasn't of a
3930 	 * higher scheduling class, because otherwise those loose the
3931 	 * opportunity to pull in more work from other CPUs.
3932 	 */
3933 	if (likely((prev->sched_class == &idle_sched_class ||
3934 		    prev->sched_class == &fair_sched_class) &&
3935 		   rq->nr_running == rq->cfs.h_nr_running)) {
3936 
3937 		p = pick_next_task_fair(rq, prev, rf);
3938 		if (unlikely(p == RETRY_TASK))
3939 			goto restart;
3940 
3941 		/* Assumes fair_sched_class->next == idle_sched_class */
3942 		if (!p) {
3943 			put_prev_task(rq, prev);
3944 			p = pick_next_task_idle(rq);
3945 		}
3946 
3947 		return p;
3948 	}
3949 
3950 restart:
3951 #ifdef CONFIG_SMP
3952 	/*
3953 	 * We must do the balancing pass before put_next_task(), such
3954 	 * that when we release the rq->lock the task is in the same
3955 	 * state as before we took rq->lock.
3956 	 *
3957 	 * We can terminate the balance pass as soon as we know there is
3958 	 * a runnable task of @class priority or higher.
3959 	 */
3960 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3961 		if (class->balance(rq, prev, rf))
3962 			break;
3963 	}
3964 #endif
3965 
3966 	put_prev_task(rq, prev);
3967 
3968 	for_each_class(class) {
3969 		p = class->pick_next_task(rq);
3970 		if (p)
3971 			return p;
3972 	}
3973 
3974 	/* The idle class should always have a runnable task: */
3975 	BUG();
3976 }
3977 
3978 /*
3979  * __schedule() is the main scheduler function.
3980  *
3981  * The main means of driving the scheduler and thus entering this function are:
3982  *
3983  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3984  *
3985  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3986  *      paths. For example, see arch/x86/entry_64.S.
3987  *
3988  *      To drive preemption between tasks, the scheduler sets the flag in timer
3989  *      interrupt handler scheduler_tick().
3990  *
3991  *   3. Wakeups don't really cause entry into schedule(). They add a
3992  *      task to the run-queue and that's it.
3993  *
3994  *      Now, if the new task added to the run-queue preempts the current
3995  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3996  *      called on the nearest possible occasion:
3997  *
3998  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3999  *
4000  *         - in syscall or exception context, at the next outmost
4001  *           preempt_enable(). (this might be as soon as the wake_up()'s
4002  *           spin_unlock()!)
4003  *
4004  *         - in IRQ context, return from interrupt-handler to
4005  *           preemptible context
4006  *
4007  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4008  *         then at the next:
4009  *
4010  *          - cond_resched() call
4011  *          - explicit schedule() call
4012  *          - return from syscall or exception to user-space
4013  *          - return from interrupt-handler to user-space
4014  *
4015  * WARNING: must be called with preemption disabled!
4016  */
4017 static void __sched notrace __schedule(bool preempt)
4018 {
4019 	struct task_struct *prev, *next;
4020 	unsigned long *switch_count;
4021 	struct rq_flags rf;
4022 	struct rq *rq;
4023 	int cpu;
4024 
4025 	cpu = smp_processor_id();
4026 	rq = cpu_rq(cpu);
4027 	prev = rq->curr;
4028 
4029 	schedule_debug(prev, preempt);
4030 
4031 	if (sched_feat(HRTICK))
4032 		hrtick_clear(rq);
4033 
4034 	local_irq_disable();
4035 	rcu_note_context_switch(preempt);
4036 
4037 	/*
4038 	 * Make sure that signal_pending_state()->signal_pending() below
4039 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4040 	 * done by the caller to avoid the race with signal_wake_up().
4041 	 *
4042 	 * The membarrier system call requires a full memory barrier
4043 	 * after coming from user-space, before storing to rq->curr.
4044 	 */
4045 	rq_lock(rq, &rf);
4046 	smp_mb__after_spinlock();
4047 
4048 	/* Promote REQ to ACT */
4049 	rq->clock_update_flags <<= 1;
4050 	update_rq_clock(rq);
4051 
4052 	switch_count = &prev->nivcsw;
4053 	if (!preempt && prev->state) {
4054 		if (signal_pending_state(prev->state, prev)) {
4055 			prev->state = TASK_RUNNING;
4056 		} else {
4057 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4058 
4059 			if (prev->in_iowait) {
4060 				atomic_inc(&rq->nr_iowait);
4061 				delayacct_blkio_start();
4062 			}
4063 		}
4064 		switch_count = &prev->nvcsw;
4065 	}
4066 
4067 	next = pick_next_task(rq, prev, &rf);
4068 	clear_tsk_need_resched(prev);
4069 	clear_preempt_need_resched();
4070 
4071 	if (likely(prev != next)) {
4072 		rq->nr_switches++;
4073 		/*
4074 		 * RCU users of rcu_dereference(rq->curr) may not see
4075 		 * changes to task_struct made by pick_next_task().
4076 		 */
4077 		RCU_INIT_POINTER(rq->curr, next);
4078 		/*
4079 		 * The membarrier system call requires each architecture
4080 		 * to have a full memory barrier after updating
4081 		 * rq->curr, before returning to user-space.
4082 		 *
4083 		 * Here are the schemes providing that barrier on the
4084 		 * various architectures:
4085 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4086 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4087 		 * - finish_lock_switch() for weakly-ordered
4088 		 *   architectures where spin_unlock is a full barrier,
4089 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4090 		 *   is a RELEASE barrier),
4091 		 */
4092 		++*switch_count;
4093 
4094 		trace_sched_switch(preempt, prev, next);
4095 
4096 		/* Also unlocks the rq: */
4097 		rq = context_switch(rq, prev, next, &rf);
4098 	} else {
4099 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4100 		rq_unlock_irq(rq, &rf);
4101 	}
4102 
4103 	balance_callback(rq);
4104 }
4105 
4106 void __noreturn do_task_dead(void)
4107 {
4108 	/* Causes final put_task_struct in finish_task_switch(): */
4109 	set_special_state(TASK_DEAD);
4110 
4111 	/* Tell freezer to ignore us: */
4112 	current->flags |= PF_NOFREEZE;
4113 
4114 	__schedule(false);
4115 	BUG();
4116 
4117 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4118 	for (;;)
4119 		cpu_relax();
4120 }
4121 
4122 static inline void sched_submit_work(struct task_struct *tsk)
4123 {
4124 	if (!tsk->state)
4125 		return;
4126 
4127 	/*
4128 	 * If a worker went to sleep, notify and ask workqueue whether
4129 	 * it wants to wake up a task to maintain concurrency.
4130 	 * As this function is called inside the schedule() context,
4131 	 * we disable preemption to avoid it calling schedule() again
4132 	 * in the possible wakeup of a kworker.
4133 	 */
4134 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4135 		preempt_disable();
4136 		if (tsk->flags & PF_WQ_WORKER)
4137 			wq_worker_sleeping(tsk);
4138 		else
4139 			io_wq_worker_sleeping(tsk);
4140 		preempt_enable_no_resched();
4141 	}
4142 
4143 	if (tsk_is_pi_blocked(tsk))
4144 		return;
4145 
4146 	/*
4147 	 * If we are going to sleep and we have plugged IO queued,
4148 	 * make sure to submit it to avoid deadlocks.
4149 	 */
4150 	if (blk_needs_flush_plug(tsk))
4151 		blk_schedule_flush_plug(tsk);
4152 }
4153 
4154 static void sched_update_worker(struct task_struct *tsk)
4155 {
4156 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4157 		if (tsk->flags & PF_WQ_WORKER)
4158 			wq_worker_running(tsk);
4159 		else
4160 			io_wq_worker_running(tsk);
4161 	}
4162 }
4163 
4164 asmlinkage __visible void __sched schedule(void)
4165 {
4166 	struct task_struct *tsk = current;
4167 
4168 	sched_submit_work(tsk);
4169 	do {
4170 		preempt_disable();
4171 		__schedule(false);
4172 		sched_preempt_enable_no_resched();
4173 	} while (need_resched());
4174 	sched_update_worker(tsk);
4175 }
4176 EXPORT_SYMBOL(schedule);
4177 
4178 /*
4179  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4180  * state (have scheduled out non-voluntarily) by making sure that all
4181  * tasks have either left the run queue or have gone into user space.
4182  * As idle tasks do not do either, they must not ever be preempted
4183  * (schedule out non-voluntarily).
4184  *
4185  * schedule_idle() is similar to schedule_preempt_disable() except that it
4186  * never enables preemption because it does not call sched_submit_work().
4187  */
4188 void __sched schedule_idle(void)
4189 {
4190 	/*
4191 	 * As this skips calling sched_submit_work(), which the idle task does
4192 	 * regardless because that function is a nop when the task is in a
4193 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4194 	 * current task can be in any other state. Note, idle is always in the
4195 	 * TASK_RUNNING state.
4196 	 */
4197 	WARN_ON_ONCE(current->state);
4198 	do {
4199 		__schedule(false);
4200 	} while (need_resched());
4201 }
4202 
4203 #ifdef CONFIG_CONTEXT_TRACKING
4204 asmlinkage __visible void __sched schedule_user(void)
4205 {
4206 	/*
4207 	 * If we come here after a random call to set_need_resched(),
4208 	 * or we have been woken up remotely but the IPI has not yet arrived,
4209 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4210 	 * we find a better solution.
4211 	 *
4212 	 * NB: There are buggy callers of this function.  Ideally we
4213 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4214 	 * too frequently to make sense yet.
4215 	 */
4216 	enum ctx_state prev_state = exception_enter();
4217 	schedule();
4218 	exception_exit(prev_state);
4219 }
4220 #endif
4221 
4222 /**
4223  * schedule_preempt_disabled - called with preemption disabled
4224  *
4225  * Returns with preemption disabled. Note: preempt_count must be 1
4226  */
4227 void __sched schedule_preempt_disabled(void)
4228 {
4229 	sched_preempt_enable_no_resched();
4230 	schedule();
4231 	preempt_disable();
4232 }
4233 
4234 static void __sched notrace preempt_schedule_common(void)
4235 {
4236 	do {
4237 		/*
4238 		 * Because the function tracer can trace preempt_count_sub()
4239 		 * and it also uses preempt_enable/disable_notrace(), if
4240 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4241 		 * by the function tracer will call this function again and
4242 		 * cause infinite recursion.
4243 		 *
4244 		 * Preemption must be disabled here before the function
4245 		 * tracer can trace. Break up preempt_disable() into two
4246 		 * calls. One to disable preemption without fear of being
4247 		 * traced. The other to still record the preemption latency,
4248 		 * which can also be traced by the function tracer.
4249 		 */
4250 		preempt_disable_notrace();
4251 		preempt_latency_start(1);
4252 		__schedule(true);
4253 		preempt_latency_stop(1);
4254 		preempt_enable_no_resched_notrace();
4255 
4256 		/*
4257 		 * Check again in case we missed a preemption opportunity
4258 		 * between schedule and now.
4259 		 */
4260 	} while (need_resched());
4261 }
4262 
4263 #ifdef CONFIG_PREEMPTION
4264 /*
4265  * This is the entry point to schedule() from in-kernel preemption
4266  * off of preempt_enable.
4267  */
4268 asmlinkage __visible void __sched notrace preempt_schedule(void)
4269 {
4270 	/*
4271 	 * If there is a non-zero preempt_count or interrupts are disabled,
4272 	 * we do not want to preempt the current task. Just return..
4273 	 */
4274 	if (likely(!preemptible()))
4275 		return;
4276 
4277 	preempt_schedule_common();
4278 }
4279 NOKPROBE_SYMBOL(preempt_schedule);
4280 EXPORT_SYMBOL(preempt_schedule);
4281 
4282 /**
4283  * preempt_schedule_notrace - preempt_schedule called by tracing
4284  *
4285  * The tracing infrastructure uses preempt_enable_notrace to prevent
4286  * recursion and tracing preempt enabling caused by the tracing
4287  * infrastructure itself. But as tracing can happen in areas coming
4288  * from userspace or just about to enter userspace, a preempt enable
4289  * can occur before user_exit() is called. This will cause the scheduler
4290  * to be called when the system is still in usermode.
4291  *
4292  * To prevent this, the preempt_enable_notrace will use this function
4293  * instead of preempt_schedule() to exit user context if needed before
4294  * calling the scheduler.
4295  */
4296 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4297 {
4298 	enum ctx_state prev_ctx;
4299 
4300 	if (likely(!preemptible()))
4301 		return;
4302 
4303 	do {
4304 		/*
4305 		 * Because the function tracer can trace preempt_count_sub()
4306 		 * and it also uses preempt_enable/disable_notrace(), if
4307 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4308 		 * by the function tracer will call this function again and
4309 		 * cause infinite recursion.
4310 		 *
4311 		 * Preemption must be disabled here before the function
4312 		 * tracer can trace. Break up preempt_disable() into two
4313 		 * calls. One to disable preemption without fear of being
4314 		 * traced. The other to still record the preemption latency,
4315 		 * which can also be traced by the function tracer.
4316 		 */
4317 		preempt_disable_notrace();
4318 		preempt_latency_start(1);
4319 		/*
4320 		 * Needs preempt disabled in case user_exit() is traced
4321 		 * and the tracer calls preempt_enable_notrace() causing
4322 		 * an infinite recursion.
4323 		 */
4324 		prev_ctx = exception_enter();
4325 		__schedule(true);
4326 		exception_exit(prev_ctx);
4327 
4328 		preempt_latency_stop(1);
4329 		preempt_enable_no_resched_notrace();
4330 	} while (need_resched());
4331 }
4332 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4333 
4334 #endif /* CONFIG_PREEMPTION */
4335 
4336 /*
4337  * This is the entry point to schedule() from kernel preemption
4338  * off of irq context.
4339  * Note, that this is called and return with irqs disabled. This will
4340  * protect us against recursive calling from irq.
4341  */
4342 asmlinkage __visible void __sched preempt_schedule_irq(void)
4343 {
4344 	enum ctx_state prev_state;
4345 
4346 	/* Catch callers which need to be fixed */
4347 	BUG_ON(preempt_count() || !irqs_disabled());
4348 
4349 	prev_state = exception_enter();
4350 
4351 	do {
4352 		preempt_disable();
4353 		local_irq_enable();
4354 		__schedule(true);
4355 		local_irq_disable();
4356 		sched_preempt_enable_no_resched();
4357 	} while (need_resched());
4358 
4359 	exception_exit(prev_state);
4360 }
4361 
4362 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4363 			  void *key)
4364 {
4365 	return try_to_wake_up(curr->private, mode, wake_flags);
4366 }
4367 EXPORT_SYMBOL(default_wake_function);
4368 
4369 #ifdef CONFIG_RT_MUTEXES
4370 
4371 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4372 {
4373 	if (pi_task)
4374 		prio = min(prio, pi_task->prio);
4375 
4376 	return prio;
4377 }
4378 
4379 static inline int rt_effective_prio(struct task_struct *p, int prio)
4380 {
4381 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4382 
4383 	return __rt_effective_prio(pi_task, prio);
4384 }
4385 
4386 /*
4387  * rt_mutex_setprio - set the current priority of a task
4388  * @p: task to boost
4389  * @pi_task: donor task
4390  *
4391  * This function changes the 'effective' priority of a task. It does
4392  * not touch ->normal_prio like __setscheduler().
4393  *
4394  * Used by the rt_mutex code to implement priority inheritance
4395  * logic. Call site only calls if the priority of the task changed.
4396  */
4397 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4398 {
4399 	int prio, oldprio, queued, running, queue_flag =
4400 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4401 	const struct sched_class *prev_class;
4402 	struct rq_flags rf;
4403 	struct rq *rq;
4404 
4405 	/* XXX used to be waiter->prio, not waiter->task->prio */
4406 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4407 
4408 	/*
4409 	 * If nothing changed; bail early.
4410 	 */
4411 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4412 		return;
4413 
4414 	rq = __task_rq_lock(p, &rf);
4415 	update_rq_clock(rq);
4416 	/*
4417 	 * Set under pi_lock && rq->lock, such that the value can be used under
4418 	 * either lock.
4419 	 *
4420 	 * Note that there is loads of tricky to make this pointer cache work
4421 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4422 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4423 	 * task is allowed to run again (and can exit). This ensures the pointer
4424 	 * points to a blocked task -- which guaratees the task is present.
4425 	 */
4426 	p->pi_top_task = pi_task;
4427 
4428 	/*
4429 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4430 	 */
4431 	if (prio == p->prio && !dl_prio(prio))
4432 		goto out_unlock;
4433 
4434 	/*
4435 	 * Idle task boosting is a nono in general. There is one
4436 	 * exception, when PREEMPT_RT and NOHZ is active:
4437 	 *
4438 	 * The idle task calls get_next_timer_interrupt() and holds
4439 	 * the timer wheel base->lock on the CPU and another CPU wants
4440 	 * to access the timer (probably to cancel it). We can safely
4441 	 * ignore the boosting request, as the idle CPU runs this code
4442 	 * with interrupts disabled and will complete the lock
4443 	 * protected section without being interrupted. So there is no
4444 	 * real need to boost.
4445 	 */
4446 	if (unlikely(p == rq->idle)) {
4447 		WARN_ON(p != rq->curr);
4448 		WARN_ON(p->pi_blocked_on);
4449 		goto out_unlock;
4450 	}
4451 
4452 	trace_sched_pi_setprio(p, pi_task);
4453 	oldprio = p->prio;
4454 
4455 	if (oldprio == prio)
4456 		queue_flag &= ~DEQUEUE_MOVE;
4457 
4458 	prev_class = p->sched_class;
4459 	queued = task_on_rq_queued(p);
4460 	running = task_current(rq, p);
4461 	if (queued)
4462 		dequeue_task(rq, p, queue_flag);
4463 	if (running)
4464 		put_prev_task(rq, p);
4465 
4466 	/*
4467 	 * Boosting condition are:
4468 	 * 1. -rt task is running and holds mutex A
4469 	 *      --> -dl task blocks on mutex A
4470 	 *
4471 	 * 2. -dl task is running and holds mutex A
4472 	 *      --> -dl task blocks on mutex A and could preempt the
4473 	 *          running task
4474 	 */
4475 	if (dl_prio(prio)) {
4476 		if (!dl_prio(p->normal_prio) ||
4477 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4478 			p->dl.dl_boosted = 1;
4479 			queue_flag |= ENQUEUE_REPLENISH;
4480 		} else
4481 			p->dl.dl_boosted = 0;
4482 		p->sched_class = &dl_sched_class;
4483 	} else if (rt_prio(prio)) {
4484 		if (dl_prio(oldprio))
4485 			p->dl.dl_boosted = 0;
4486 		if (oldprio < prio)
4487 			queue_flag |= ENQUEUE_HEAD;
4488 		p->sched_class = &rt_sched_class;
4489 	} else {
4490 		if (dl_prio(oldprio))
4491 			p->dl.dl_boosted = 0;
4492 		if (rt_prio(oldprio))
4493 			p->rt.timeout = 0;
4494 		p->sched_class = &fair_sched_class;
4495 	}
4496 
4497 	p->prio = prio;
4498 
4499 	if (queued)
4500 		enqueue_task(rq, p, queue_flag);
4501 	if (running)
4502 		set_next_task(rq, p);
4503 
4504 	check_class_changed(rq, p, prev_class, oldprio);
4505 out_unlock:
4506 	/* Avoid rq from going away on us: */
4507 	preempt_disable();
4508 	__task_rq_unlock(rq, &rf);
4509 
4510 	balance_callback(rq);
4511 	preempt_enable();
4512 }
4513 #else
4514 static inline int rt_effective_prio(struct task_struct *p, int prio)
4515 {
4516 	return prio;
4517 }
4518 #endif
4519 
4520 void set_user_nice(struct task_struct *p, long nice)
4521 {
4522 	bool queued, running;
4523 	int old_prio;
4524 	struct rq_flags rf;
4525 	struct rq *rq;
4526 
4527 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4528 		return;
4529 	/*
4530 	 * We have to be careful, if called from sys_setpriority(),
4531 	 * the task might be in the middle of scheduling on another CPU.
4532 	 */
4533 	rq = task_rq_lock(p, &rf);
4534 	update_rq_clock(rq);
4535 
4536 	/*
4537 	 * The RT priorities are set via sched_setscheduler(), but we still
4538 	 * allow the 'normal' nice value to be set - but as expected
4539 	 * it wont have any effect on scheduling until the task is
4540 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4541 	 */
4542 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4543 		p->static_prio = NICE_TO_PRIO(nice);
4544 		goto out_unlock;
4545 	}
4546 	queued = task_on_rq_queued(p);
4547 	running = task_current(rq, p);
4548 	if (queued)
4549 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4550 	if (running)
4551 		put_prev_task(rq, p);
4552 
4553 	p->static_prio = NICE_TO_PRIO(nice);
4554 	set_load_weight(p, true);
4555 	old_prio = p->prio;
4556 	p->prio = effective_prio(p);
4557 
4558 	if (queued)
4559 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4560 	if (running)
4561 		set_next_task(rq, p);
4562 
4563 	/*
4564 	 * If the task increased its priority or is running and
4565 	 * lowered its priority, then reschedule its CPU:
4566 	 */
4567 	p->sched_class->prio_changed(rq, p, old_prio);
4568 
4569 out_unlock:
4570 	task_rq_unlock(rq, p, &rf);
4571 }
4572 EXPORT_SYMBOL(set_user_nice);
4573 
4574 /*
4575  * can_nice - check if a task can reduce its nice value
4576  * @p: task
4577  * @nice: nice value
4578  */
4579 int can_nice(const struct task_struct *p, const int nice)
4580 {
4581 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4582 	int nice_rlim = nice_to_rlimit(nice);
4583 
4584 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4585 		capable(CAP_SYS_NICE));
4586 }
4587 
4588 #ifdef __ARCH_WANT_SYS_NICE
4589 
4590 /*
4591  * sys_nice - change the priority of the current process.
4592  * @increment: priority increment
4593  *
4594  * sys_setpriority is a more generic, but much slower function that
4595  * does similar things.
4596  */
4597 SYSCALL_DEFINE1(nice, int, increment)
4598 {
4599 	long nice, retval;
4600 
4601 	/*
4602 	 * Setpriority might change our priority at the same moment.
4603 	 * We don't have to worry. Conceptually one call occurs first
4604 	 * and we have a single winner.
4605 	 */
4606 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4607 	nice = task_nice(current) + increment;
4608 
4609 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4610 	if (increment < 0 && !can_nice(current, nice))
4611 		return -EPERM;
4612 
4613 	retval = security_task_setnice(current, nice);
4614 	if (retval)
4615 		return retval;
4616 
4617 	set_user_nice(current, nice);
4618 	return 0;
4619 }
4620 
4621 #endif
4622 
4623 /**
4624  * task_prio - return the priority value of a given task.
4625  * @p: the task in question.
4626  *
4627  * Return: The priority value as seen by users in /proc.
4628  * RT tasks are offset by -200. Normal tasks are centered
4629  * around 0, value goes from -16 to +15.
4630  */
4631 int task_prio(const struct task_struct *p)
4632 {
4633 	return p->prio - MAX_RT_PRIO;
4634 }
4635 
4636 /**
4637  * idle_cpu - is a given CPU idle currently?
4638  * @cpu: the processor in question.
4639  *
4640  * Return: 1 if the CPU is currently idle. 0 otherwise.
4641  */
4642 int idle_cpu(int cpu)
4643 {
4644 	struct rq *rq = cpu_rq(cpu);
4645 
4646 	if (rq->curr != rq->idle)
4647 		return 0;
4648 
4649 	if (rq->nr_running)
4650 		return 0;
4651 
4652 #ifdef CONFIG_SMP
4653 	if (!llist_empty(&rq->wake_list))
4654 		return 0;
4655 #endif
4656 
4657 	return 1;
4658 }
4659 
4660 /**
4661  * available_idle_cpu - is a given CPU idle for enqueuing work.
4662  * @cpu: the CPU in question.
4663  *
4664  * Return: 1 if the CPU is currently idle. 0 otherwise.
4665  */
4666 int available_idle_cpu(int cpu)
4667 {
4668 	if (!idle_cpu(cpu))
4669 		return 0;
4670 
4671 	if (vcpu_is_preempted(cpu))
4672 		return 0;
4673 
4674 	return 1;
4675 }
4676 
4677 /**
4678  * idle_task - return the idle task for a given CPU.
4679  * @cpu: the processor in question.
4680  *
4681  * Return: The idle task for the CPU @cpu.
4682  */
4683 struct task_struct *idle_task(int cpu)
4684 {
4685 	return cpu_rq(cpu)->idle;
4686 }
4687 
4688 /**
4689  * find_process_by_pid - find a process with a matching PID value.
4690  * @pid: the pid in question.
4691  *
4692  * The task of @pid, if found. %NULL otherwise.
4693  */
4694 static struct task_struct *find_process_by_pid(pid_t pid)
4695 {
4696 	return pid ? find_task_by_vpid(pid) : current;
4697 }
4698 
4699 /*
4700  * sched_setparam() passes in -1 for its policy, to let the functions
4701  * it calls know not to change it.
4702  */
4703 #define SETPARAM_POLICY	-1
4704 
4705 static void __setscheduler_params(struct task_struct *p,
4706 		const struct sched_attr *attr)
4707 {
4708 	int policy = attr->sched_policy;
4709 
4710 	if (policy == SETPARAM_POLICY)
4711 		policy = p->policy;
4712 
4713 	p->policy = policy;
4714 
4715 	if (dl_policy(policy))
4716 		__setparam_dl(p, attr);
4717 	else if (fair_policy(policy))
4718 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4719 
4720 	/*
4721 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4722 	 * !rt_policy. Always setting this ensures that things like
4723 	 * getparam()/getattr() don't report silly values for !rt tasks.
4724 	 */
4725 	p->rt_priority = attr->sched_priority;
4726 	p->normal_prio = normal_prio(p);
4727 	set_load_weight(p, true);
4728 }
4729 
4730 /* Actually do priority change: must hold pi & rq lock. */
4731 static void __setscheduler(struct rq *rq, struct task_struct *p,
4732 			   const struct sched_attr *attr, bool keep_boost)
4733 {
4734 	/*
4735 	 * If params can't change scheduling class changes aren't allowed
4736 	 * either.
4737 	 */
4738 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4739 		return;
4740 
4741 	__setscheduler_params(p, attr);
4742 
4743 	/*
4744 	 * Keep a potential priority boosting if called from
4745 	 * sched_setscheduler().
4746 	 */
4747 	p->prio = normal_prio(p);
4748 	if (keep_boost)
4749 		p->prio = rt_effective_prio(p, p->prio);
4750 
4751 	if (dl_prio(p->prio))
4752 		p->sched_class = &dl_sched_class;
4753 	else if (rt_prio(p->prio))
4754 		p->sched_class = &rt_sched_class;
4755 	else
4756 		p->sched_class = &fair_sched_class;
4757 }
4758 
4759 /*
4760  * Check the target process has a UID that matches the current process's:
4761  */
4762 static bool check_same_owner(struct task_struct *p)
4763 {
4764 	const struct cred *cred = current_cred(), *pcred;
4765 	bool match;
4766 
4767 	rcu_read_lock();
4768 	pcred = __task_cred(p);
4769 	match = (uid_eq(cred->euid, pcred->euid) ||
4770 		 uid_eq(cred->euid, pcred->uid));
4771 	rcu_read_unlock();
4772 	return match;
4773 }
4774 
4775 static int __sched_setscheduler(struct task_struct *p,
4776 				const struct sched_attr *attr,
4777 				bool user, bool pi)
4778 {
4779 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4780 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4781 	int retval, oldprio, oldpolicy = -1, queued, running;
4782 	int new_effective_prio, policy = attr->sched_policy;
4783 	const struct sched_class *prev_class;
4784 	struct rq_flags rf;
4785 	int reset_on_fork;
4786 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4787 	struct rq *rq;
4788 
4789 	/* The pi code expects interrupts enabled */
4790 	BUG_ON(pi && in_interrupt());
4791 recheck:
4792 	/* Double check policy once rq lock held: */
4793 	if (policy < 0) {
4794 		reset_on_fork = p->sched_reset_on_fork;
4795 		policy = oldpolicy = p->policy;
4796 	} else {
4797 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4798 
4799 		if (!valid_policy(policy))
4800 			return -EINVAL;
4801 	}
4802 
4803 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4804 		return -EINVAL;
4805 
4806 	/*
4807 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4808 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4809 	 * SCHED_BATCH and SCHED_IDLE is 0.
4810 	 */
4811 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4812 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4813 		return -EINVAL;
4814 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4815 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4816 		return -EINVAL;
4817 
4818 	/*
4819 	 * Allow unprivileged RT tasks to decrease priority:
4820 	 */
4821 	if (user && !capable(CAP_SYS_NICE)) {
4822 		if (fair_policy(policy)) {
4823 			if (attr->sched_nice < task_nice(p) &&
4824 			    !can_nice(p, attr->sched_nice))
4825 				return -EPERM;
4826 		}
4827 
4828 		if (rt_policy(policy)) {
4829 			unsigned long rlim_rtprio =
4830 					task_rlimit(p, RLIMIT_RTPRIO);
4831 
4832 			/* Can't set/change the rt policy: */
4833 			if (policy != p->policy && !rlim_rtprio)
4834 				return -EPERM;
4835 
4836 			/* Can't increase priority: */
4837 			if (attr->sched_priority > p->rt_priority &&
4838 			    attr->sched_priority > rlim_rtprio)
4839 				return -EPERM;
4840 		}
4841 
4842 		 /*
4843 		  * Can't set/change SCHED_DEADLINE policy at all for now
4844 		  * (safest behavior); in the future we would like to allow
4845 		  * unprivileged DL tasks to increase their relative deadline
4846 		  * or reduce their runtime (both ways reducing utilization)
4847 		  */
4848 		if (dl_policy(policy))
4849 			return -EPERM;
4850 
4851 		/*
4852 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4853 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4854 		 */
4855 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4856 			if (!can_nice(p, task_nice(p)))
4857 				return -EPERM;
4858 		}
4859 
4860 		/* Can't change other user's priorities: */
4861 		if (!check_same_owner(p))
4862 			return -EPERM;
4863 
4864 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4865 		if (p->sched_reset_on_fork && !reset_on_fork)
4866 			return -EPERM;
4867 	}
4868 
4869 	if (user) {
4870 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4871 			return -EINVAL;
4872 
4873 		retval = security_task_setscheduler(p);
4874 		if (retval)
4875 			return retval;
4876 	}
4877 
4878 	/* Update task specific "requested" clamps */
4879 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4880 		retval = uclamp_validate(p, attr);
4881 		if (retval)
4882 			return retval;
4883 	}
4884 
4885 	if (pi)
4886 		cpuset_read_lock();
4887 
4888 	/*
4889 	 * Make sure no PI-waiters arrive (or leave) while we are
4890 	 * changing the priority of the task:
4891 	 *
4892 	 * To be able to change p->policy safely, the appropriate
4893 	 * runqueue lock must be held.
4894 	 */
4895 	rq = task_rq_lock(p, &rf);
4896 	update_rq_clock(rq);
4897 
4898 	/*
4899 	 * Changing the policy of the stop threads its a very bad idea:
4900 	 */
4901 	if (p == rq->stop) {
4902 		retval = -EINVAL;
4903 		goto unlock;
4904 	}
4905 
4906 	/*
4907 	 * If not changing anything there's no need to proceed further,
4908 	 * but store a possible modification of reset_on_fork.
4909 	 */
4910 	if (unlikely(policy == p->policy)) {
4911 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4912 			goto change;
4913 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4914 			goto change;
4915 		if (dl_policy(policy) && dl_param_changed(p, attr))
4916 			goto change;
4917 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4918 			goto change;
4919 
4920 		p->sched_reset_on_fork = reset_on_fork;
4921 		retval = 0;
4922 		goto unlock;
4923 	}
4924 change:
4925 
4926 	if (user) {
4927 #ifdef CONFIG_RT_GROUP_SCHED
4928 		/*
4929 		 * Do not allow realtime tasks into groups that have no runtime
4930 		 * assigned.
4931 		 */
4932 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4933 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4934 				!task_group_is_autogroup(task_group(p))) {
4935 			retval = -EPERM;
4936 			goto unlock;
4937 		}
4938 #endif
4939 #ifdef CONFIG_SMP
4940 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4941 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4942 			cpumask_t *span = rq->rd->span;
4943 
4944 			/*
4945 			 * Don't allow tasks with an affinity mask smaller than
4946 			 * the entire root_domain to become SCHED_DEADLINE. We
4947 			 * will also fail if there's no bandwidth available.
4948 			 */
4949 			if (!cpumask_subset(span, p->cpus_ptr) ||
4950 			    rq->rd->dl_bw.bw == 0) {
4951 				retval = -EPERM;
4952 				goto unlock;
4953 			}
4954 		}
4955 #endif
4956 	}
4957 
4958 	/* Re-check policy now with rq lock held: */
4959 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4960 		policy = oldpolicy = -1;
4961 		task_rq_unlock(rq, p, &rf);
4962 		if (pi)
4963 			cpuset_read_unlock();
4964 		goto recheck;
4965 	}
4966 
4967 	/*
4968 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4969 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4970 	 * is available.
4971 	 */
4972 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4973 		retval = -EBUSY;
4974 		goto unlock;
4975 	}
4976 
4977 	p->sched_reset_on_fork = reset_on_fork;
4978 	oldprio = p->prio;
4979 
4980 	if (pi) {
4981 		/*
4982 		 * Take priority boosted tasks into account. If the new
4983 		 * effective priority is unchanged, we just store the new
4984 		 * normal parameters and do not touch the scheduler class and
4985 		 * the runqueue. This will be done when the task deboost
4986 		 * itself.
4987 		 */
4988 		new_effective_prio = rt_effective_prio(p, newprio);
4989 		if (new_effective_prio == oldprio)
4990 			queue_flags &= ~DEQUEUE_MOVE;
4991 	}
4992 
4993 	queued = task_on_rq_queued(p);
4994 	running = task_current(rq, p);
4995 	if (queued)
4996 		dequeue_task(rq, p, queue_flags);
4997 	if (running)
4998 		put_prev_task(rq, p);
4999 
5000 	prev_class = p->sched_class;
5001 
5002 	__setscheduler(rq, p, attr, pi);
5003 	__setscheduler_uclamp(p, attr);
5004 
5005 	if (queued) {
5006 		/*
5007 		 * We enqueue to tail when the priority of a task is
5008 		 * increased (user space view).
5009 		 */
5010 		if (oldprio < p->prio)
5011 			queue_flags |= ENQUEUE_HEAD;
5012 
5013 		enqueue_task(rq, p, queue_flags);
5014 	}
5015 	if (running)
5016 		set_next_task(rq, p);
5017 
5018 	check_class_changed(rq, p, prev_class, oldprio);
5019 
5020 	/* Avoid rq from going away on us: */
5021 	preempt_disable();
5022 	task_rq_unlock(rq, p, &rf);
5023 
5024 	if (pi) {
5025 		cpuset_read_unlock();
5026 		rt_mutex_adjust_pi(p);
5027 	}
5028 
5029 	/* Run balance callbacks after we've adjusted the PI chain: */
5030 	balance_callback(rq);
5031 	preempt_enable();
5032 
5033 	return 0;
5034 
5035 unlock:
5036 	task_rq_unlock(rq, p, &rf);
5037 	if (pi)
5038 		cpuset_read_unlock();
5039 	return retval;
5040 }
5041 
5042 static int _sched_setscheduler(struct task_struct *p, int policy,
5043 			       const struct sched_param *param, bool check)
5044 {
5045 	struct sched_attr attr = {
5046 		.sched_policy   = policy,
5047 		.sched_priority = param->sched_priority,
5048 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5049 	};
5050 
5051 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5052 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5053 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5054 		policy &= ~SCHED_RESET_ON_FORK;
5055 		attr.sched_policy = policy;
5056 	}
5057 
5058 	return __sched_setscheduler(p, &attr, check, true);
5059 }
5060 /**
5061  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5062  * @p: the task in question.
5063  * @policy: new policy.
5064  * @param: structure containing the new RT priority.
5065  *
5066  * Return: 0 on success. An error code otherwise.
5067  *
5068  * NOTE that the task may be already dead.
5069  */
5070 int sched_setscheduler(struct task_struct *p, int policy,
5071 		       const struct sched_param *param)
5072 {
5073 	return _sched_setscheduler(p, policy, param, true);
5074 }
5075 EXPORT_SYMBOL_GPL(sched_setscheduler);
5076 
5077 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5078 {
5079 	return __sched_setscheduler(p, attr, true, true);
5080 }
5081 EXPORT_SYMBOL_GPL(sched_setattr);
5082 
5083 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5084 {
5085 	return __sched_setscheduler(p, attr, false, true);
5086 }
5087 
5088 /**
5089  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5090  * @p: the task in question.
5091  * @policy: new policy.
5092  * @param: structure containing the new RT priority.
5093  *
5094  * Just like sched_setscheduler, only don't bother checking if the
5095  * current context has permission.  For example, this is needed in
5096  * stop_machine(): we create temporary high priority worker threads,
5097  * but our caller might not have that capability.
5098  *
5099  * Return: 0 on success. An error code otherwise.
5100  */
5101 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5102 			       const struct sched_param *param)
5103 {
5104 	return _sched_setscheduler(p, policy, param, false);
5105 }
5106 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5107 
5108 static int
5109 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5110 {
5111 	struct sched_param lparam;
5112 	struct task_struct *p;
5113 	int retval;
5114 
5115 	if (!param || pid < 0)
5116 		return -EINVAL;
5117 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5118 		return -EFAULT;
5119 
5120 	rcu_read_lock();
5121 	retval = -ESRCH;
5122 	p = find_process_by_pid(pid);
5123 	if (likely(p))
5124 		get_task_struct(p);
5125 	rcu_read_unlock();
5126 
5127 	if (likely(p)) {
5128 		retval = sched_setscheduler(p, policy, &lparam);
5129 		put_task_struct(p);
5130 	}
5131 
5132 	return retval;
5133 }
5134 
5135 /*
5136  * Mimics kernel/events/core.c perf_copy_attr().
5137  */
5138 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5139 {
5140 	u32 size;
5141 	int ret;
5142 
5143 	/* Zero the full structure, so that a short copy will be nice: */
5144 	memset(attr, 0, sizeof(*attr));
5145 
5146 	ret = get_user(size, &uattr->size);
5147 	if (ret)
5148 		return ret;
5149 
5150 	/* ABI compatibility quirk: */
5151 	if (!size)
5152 		size = SCHED_ATTR_SIZE_VER0;
5153 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5154 		goto err_size;
5155 
5156 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5157 	if (ret) {
5158 		if (ret == -E2BIG)
5159 			goto err_size;
5160 		return ret;
5161 	}
5162 
5163 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5164 	    size < SCHED_ATTR_SIZE_VER1)
5165 		return -EINVAL;
5166 
5167 	/*
5168 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5169 	 * to be strict and return an error on out-of-bounds values?
5170 	 */
5171 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5172 
5173 	return 0;
5174 
5175 err_size:
5176 	put_user(sizeof(*attr), &uattr->size);
5177 	return -E2BIG;
5178 }
5179 
5180 /**
5181  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5182  * @pid: the pid in question.
5183  * @policy: new policy.
5184  * @param: structure containing the new RT priority.
5185  *
5186  * Return: 0 on success. An error code otherwise.
5187  */
5188 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5189 {
5190 	if (policy < 0)
5191 		return -EINVAL;
5192 
5193 	return do_sched_setscheduler(pid, policy, param);
5194 }
5195 
5196 /**
5197  * sys_sched_setparam - set/change the RT priority of a thread
5198  * @pid: the pid in question.
5199  * @param: structure containing the new RT priority.
5200  *
5201  * Return: 0 on success. An error code otherwise.
5202  */
5203 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5204 {
5205 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5206 }
5207 
5208 /**
5209  * sys_sched_setattr - same as above, but with extended sched_attr
5210  * @pid: the pid in question.
5211  * @uattr: structure containing the extended parameters.
5212  * @flags: for future extension.
5213  */
5214 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5215 			       unsigned int, flags)
5216 {
5217 	struct sched_attr attr;
5218 	struct task_struct *p;
5219 	int retval;
5220 
5221 	if (!uattr || pid < 0 || flags)
5222 		return -EINVAL;
5223 
5224 	retval = sched_copy_attr(uattr, &attr);
5225 	if (retval)
5226 		return retval;
5227 
5228 	if ((int)attr.sched_policy < 0)
5229 		return -EINVAL;
5230 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5231 		attr.sched_policy = SETPARAM_POLICY;
5232 
5233 	rcu_read_lock();
5234 	retval = -ESRCH;
5235 	p = find_process_by_pid(pid);
5236 	if (likely(p))
5237 		get_task_struct(p);
5238 	rcu_read_unlock();
5239 
5240 	if (likely(p)) {
5241 		retval = sched_setattr(p, &attr);
5242 		put_task_struct(p);
5243 	}
5244 
5245 	return retval;
5246 }
5247 
5248 /**
5249  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5250  * @pid: the pid in question.
5251  *
5252  * Return: On success, the policy of the thread. Otherwise, a negative error
5253  * code.
5254  */
5255 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5256 {
5257 	struct task_struct *p;
5258 	int retval;
5259 
5260 	if (pid < 0)
5261 		return -EINVAL;
5262 
5263 	retval = -ESRCH;
5264 	rcu_read_lock();
5265 	p = find_process_by_pid(pid);
5266 	if (p) {
5267 		retval = security_task_getscheduler(p);
5268 		if (!retval)
5269 			retval = p->policy
5270 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5271 	}
5272 	rcu_read_unlock();
5273 	return retval;
5274 }
5275 
5276 /**
5277  * sys_sched_getparam - get the RT priority of a thread
5278  * @pid: the pid in question.
5279  * @param: structure containing the RT priority.
5280  *
5281  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5282  * code.
5283  */
5284 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5285 {
5286 	struct sched_param lp = { .sched_priority = 0 };
5287 	struct task_struct *p;
5288 	int retval;
5289 
5290 	if (!param || pid < 0)
5291 		return -EINVAL;
5292 
5293 	rcu_read_lock();
5294 	p = find_process_by_pid(pid);
5295 	retval = -ESRCH;
5296 	if (!p)
5297 		goto out_unlock;
5298 
5299 	retval = security_task_getscheduler(p);
5300 	if (retval)
5301 		goto out_unlock;
5302 
5303 	if (task_has_rt_policy(p))
5304 		lp.sched_priority = p->rt_priority;
5305 	rcu_read_unlock();
5306 
5307 	/*
5308 	 * This one might sleep, we cannot do it with a spinlock held ...
5309 	 */
5310 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5311 
5312 	return retval;
5313 
5314 out_unlock:
5315 	rcu_read_unlock();
5316 	return retval;
5317 }
5318 
5319 /*
5320  * Copy the kernel size attribute structure (which might be larger
5321  * than what user-space knows about) to user-space.
5322  *
5323  * Note that all cases are valid: user-space buffer can be larger or
5324  * smaller than the kernel-space buffer. The usual case is that both
5325  * have the same size.
5326  */
5327 static int
5328 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5329 			struct sched_attr *kattr,
5330 			unsigned int usize)
5331 {
5332 	unsigned int ksize = sizeof(*kattr);
5333 
5334 	if (!access_ok(uattr, usize))
5335 		return -EFAULT;
5336 
5337 	/*
5338 	 * sched_getattr() ABI forwards and backwards compatibility:
5339 	 *
5340 	 * If usize == ksize then we just copy everything to user-space and all is good.
5341 	 *
5342 	 * If usize < ksize then we only copy as much as user-space has space for,
5343 	 * this keeps ABI compatibility as well. We skip the rest.
5344 	 *
5345 	 * If usize > ksize then user-space is using a newer version of the ABI,
5346 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5347 	 * detect the kernel's knowledge of attributes from the attr->size value
5348 	 * which is set to ksize in this case.
5349 	 */
5350 	kattr->size = min(usize, ksize);
5351 
5352 	if (copy_to_user(uattr, kattr, kattr->size))
5353 		return -EFAULT;
5354 
5355 	return 0;
5356 }
5357 
5358 /**
5359  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5360  * @pid: the pid in question.
5361  * @uattr: structure containing the extended parameters.
5362  * @usize: sizeof(attr) for fwd/bwd comp.
5363  * @flags: for future extension.
5364  */
5365 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5366 		unsigned int, usize, unsigned int, flags)
5367 {
5368 	struct sched_attr kattr = { };
5369 	struct task_struct *p;
5370 	int retval;
5371 
5372 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5373 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5374 		return -EINVAL;
5375 
5376 	rcu_read_lock();
5377 	p = find_process_by_pid(pid);
5378 	retval = -ESRCH;
5379 	if (!p)
5380 		goto out_unlock;
5381 
5382 	retval = security_task_getscheduler(p);
5383 	if (retval)
5384 		goto out_unlock;
5385 
5386 	kattr.sched_policy = p->policy;
5387 	if (p->sched_reset_on_fork)
5388 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5389 	if (task_has_dl_policy(p))
5390 		__getparam_dl(p, &kattr);
5391 	else if (task_has_rt_policy(p))
5392 		kattr.sched_priority = p->rt_priority;
5393 	else
5394 		kattr.sched_nice = task_nice(p);
5395 
5396 #ifdef CONFIG_UCLAMP_TASK
5397 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5398 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5399 #endif
5400 
5401 	rcu_read_unlock();
5402 
5403 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5404 
5405 out_unlock:
5406 	rcu_read_unlock();
5407 	return retval;
5408 }
5409 
5410 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5411 {
5412 	cpumask_var_t cpus_allowed, new_mask;
5413 	struct task_struct *p;
5414 	int retval;
5415 
5416 	rcu_read_lock();
5417 
5418 	p = find_process_by_pid(pid);
5419 	if (!p) {
5420 		rcu_read_unlock();
5421 		return -ESRCH;
5422 	}
5423 
5424 	/* Prevent p going away */
5425 	get_task_struct(p);
5426 	rcu_read_unlock();
5427 
5428 	if (p->flags & PF_NO_SETAFFINITY) {
5429 		retval = -EINVAL;
5430 		goto out_put_task;
5431 	}
5432 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5433 		retval = -ENOMEM;
5434 		goto out_put_task;
5435 	}
5436 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5437 		retval = -ENOMEM;
5438 		goto out_free_cpus_allowed;
5439 	}
5440 	retval = -EPERM;
5441 	if (!check_same_owner(p)) {
5442 		rcu_read_lock();
5443 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5444 			rcu_read_unlock();
5445 			goto out_free_new_mask;
5446 		}
5447 		rcu_read_unlock();
5448 	}
5449 
5450 	retval = security_task_setscheduler(p);
5451 	if (retval)
5452 		goto out_free_new_mask;
5453 
5454 
5455 	cpuset_cpus_allowed(p, cpus_allowed);
5456 	cpumask_and(new_mask, in_mask, cpus_allowed);
5457 
5458 	/*
5459 	 * Since bandwidth control happens on root_domain basis,
5460 	 * if admission test is enabled, we only admit -deadline
5461 	 * tasks allowed to run on all the CPUs in the task's
5462 	 * root_domain.
5463 	 */
5464 #ifdef CONFIG_SMP
5465 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5466 		rcu_read_lock();
5467 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5468 			retval = -EBUSY;
5469 			rcu_read_unlock();
5470 			goto out_free_new_mask;
5471 		}
5472 		rcu_read_unlock();
5473 	}
5474 #endif
5475 again:
5476 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5477 
5478 	if (!retval) {
5479 		cpuset_cpus_allowed(p, cpus_allowed);
5480 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5481 			/*
5482 			 * We must have raced with a concurrent cpuset
5483 			 * update. Just reset the cpus_allowed to the
5484 			 * cpuset's cpus_allowed
5485 			 */
5486 			cpumask_copy(new_mask, cpus_allowed);
5487 			goto again;
5488 		}
5489 	}
5490 out_free_new_mask:
5491 	free_cpumask_var(new_mask);
5492 out_free_cpus_allowed:
5493 	free_cpumask_var(cpus_allowed);
5494 out_put_task:
5495 	put_task_struct(p);
5496 	return retval;
5497 }
5498 
5499 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5500 			     struct cpumask *new_mask)
5501 {
5502 	if (len < cpumask_size())
5503 		cpumask_clear(new_mask);
5504 	else if (len > cpumask_size())
5505 		len = cpumask_size();
5506 
5507 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5508 }
5509 
5510 /**
5511  * sys_sched_setaffinity - set the CPU affinity of a process
5512  * @pid: pid of the process
5513  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5514  * @user_mask_ptr: user-space pointer to the new CPU mask
5515  *
5516  * Return: 0 on success. An error code otherwise.
5517  */
5518 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5519 		unsigned long __user *, user_mask_ptr)
5520 {
5521 	cpumask_var_t new_mask;
5522 	int retval;
5523 
5524 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5525 		return -ENOMEM;
5526 
5527 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5528 	if (retval == 0)
5529 		retval = sched_setaffinity(pid, new_mask);
5530 	free_cpumask_var(new_mask);
5531 	return retval;
5532 }
5533 
5534 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5535 {
5536 	struct task_struct *p;
5537 	unsigned long flags;
5538 	int retval;
5539 
5540 	rcu_read_lock();
5541 
5542 	retval = -ESRCH;
5543 	p = find_process_by_pid(pid);
5544 	if (!p)
5545 		goto out_unlock;
5546 
5547 	retval = security_task_getscheduler(p);
5548 	if (retval)
5549 		goto out_unlock;
5550 
5551 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5552 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5553 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5554 
5555 out_unlock:
5556 	rcu_read_unlock();
5557 
5558 	return retval;
5559 }
5560 
5561 /**
5562  * sys_sched_getaffinity - get the CPU affinity of a process
5563  * @pid: pid of the process
5564  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5565  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5566  *
5567  * Return: size of CPU mask copied to user_mask_ptr on success. An
5568  * error code otherwise.
5569  */
5570 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5571 		unsigned long __user *, user_mask_ptr)
5572 {
5573 	int ret;
5574 	cpumask_var_t mask;
5575 
5576 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5577 		return -EINVAL;
5578 	if (len & (sizeof(unsigned long)-1))
5579 		return -EINVAL;
5580 
5581 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5582 		return -ENOMEM;
5583 
5584 	ret = sched_getaffinity(pid, mask);
5585 	if (ret == 0) {
5586 		unsigned int retlen = min(len, cpumask_size());
5587 
5588 		if (copy_to_user(user_mask_ptr, mask, retlen))
5589 			ret = -EFAULT;
5590 		else
5591 			ret = retlen;
5592 	}
5593 	free_cpumask_var(mask);
5594 
5595 	return ret;
5596 }
5597 
5598 /**
5599  * sys_sched_yield - yield the current processor to other threads.
5600  *
5601  * This function yields the current CPU to other tasks. If there are no
5602  * other threads running on this CPU then this function will return.
5603  *
5604  * Return: 0.
5605  */
5606 static void do_sched_yield(void)
5607 {
5608 	struct rq_flags rf;
5609 	struct rq *rq;
5610 
5611 	rq = this_rq_lock_irq(&rf);
5612 
5613 	schedstat_inc(rq->yld_count);
5614 	current->sched_class->yield_task(rq);
5615 
5616 	/*
5617 	 * Since we are going to call schedule() anyway, there's
5618 	 * no need to preempt or enable interrupts:
5619 	 */
5620 	preempt_disable();
5621 	rq_unlock(rq, &rf);
5622 	sched_preempt_enable_no_resched();
5623 
5624 	schedule();
5625 }
5626 
5627 SYSCALL_DEFINE0(sched_yield)
5628 {
5629 	do_sched_yield();
5630 	return 0;
5631 }
5632 
5633 #ifndef CONFIG_PREEMPTION
5634 int __sched _cond_resched(void)
5635 {
5636 	if (should_resched(0)) {
5637 		preempt_schedule_common();
5638 		return 1;
5639 	}
5640 	rcu_all_qs();
5641 	return 0;
5642 }
5643 EXPORT_SYMBOL(_cond_resched);
5644 #endif
5645 
5646 /*
5647  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5648  * call schedule, and on return reacquire the lock.
5649  *
5650  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5651  * operations here to prevent schedule() from being called twice (once via
5652  * spin_unlock(), once by hand).
5653  */
5654 int __cond_resched_lock(spinlock_t *lock)
5655 {
5656 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5657 	int ret = 0;
5658 
5659 	lockdep_assert_held(lock);
5660 
5661 	if (spin_needbreak(lock) || resched) {
5662 		spin_unlock(lock);
5663 		if (resched)
5664 			preempt_schedule_common();
5665 		else
5666 			cpu_relax();
5667 		ret = 1;
5668 		spin_lock(lock);
5669 	}
5670 	return ret;
5671 }
5672 EXPORT_SYMBOL(__cond_resched_lock);
5673 
5674 /**
5675  * yield - yield the current processor to other threads.
5676  *
5677  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5678  *
5679  * The scheduler is at all times free to pick the calling task as the most
5680  * eligible task to run, if removing the yield() call from your code breaks
5681  * it, its already broken.
5682  *
5683  * Typical broken usage is:
5684  *
5685  * while (!event)
5686  *	yield();
5687  *
5688  * where one assumes that yield() will let 'the other' process run that will
5689  * make event true. If the current task is a SCHED_FIFO task that will never
5690  * happen. Never use yield() as a progress guarantee!!
5691  *
5692  * If you want to use yield() to wait for something, use wait_event().
5693  * If you want to use yield() to be 'nice' for others, use cond_resched().
5694  * If you still want to use yield(), do not!
5695  */
5696 void __sched yield(void)
5697 {
5698 	set_current_state(TASK_RUNNING);
5699 	do_sched_yield();
5700 }
5701 EXPORT_SYMBOL(yield);
5702 
5703 /**
5704  * yield_to - yield the current processor to another thread in
5705  * your thread group, or accelerate that thread toward the
5706  * processor it's on.
5707  * @p: target task
5708  * @preempt: whether task preemption is allowed or not
5709  *
5710  * It's the caller's job to ensure that the target task struct
5711  * can't go away on us before we can do any checks.
5712  *
5713  * Return:
5714  *	true (>0) if we indeed boosted the target task.
5715  *	false (0) if we failed to boost the target.
5716  *	-ESRCH if there's no task to yield to.
5717  */
5718 int __sched yield_to(struct task_struct *p, bool preempt)
5719 {
5720 	struct task_struct *curr = current;
5721 	struct rq *rq, *p_rq;
5722 	unsigned long flags;
5723 	int yielded = 0;
5724 
5725 	local_irq_save(flags);
5726 	rq = this_rq();
5727 
5728 again:
5729 	p_rq = task_rq(p);
5730 	/*
5731 	 * If we're the only runnable task on the rq and target rq also
5732 	 * has only one task, there's absolutely no point in yielding.
5733 	 */
5734 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5735 		yielded = -ESRCH;
5736 		goto out_irq;
5737 	}
5738 
5739 	double_rq_lock(rq, p_rq);
5740 	if (task_rq(p) != p_rq) {
5741 		double_rq_unlock(rq, p_rq);
5742 		goto again;
5743 	}
5744 
5745 	if (!curr->sched_class->yield_to_task)
5746 		goto out_unlock;
5747 
5748 	if (curr->sched_class != p->sched_class)
5749 		goto out_unlock;
5750 
5751 	if (task_running(p_rq, p) || p->state)
5752 		goto out_unlock;
5753 
5754 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5755 	if (yielded) {
5756 		schedstat_inc(rq->yld_count);
5757 		/*
5758 		 * Make p's CPU reschedule; pick_next_entity takes care of
5759 		 * fairness.
5760 		 */
5761 		if (preempt && rq != p_rq)
5762 			resched_curr(p_rq);
5763 	}
5764 
5765 out_unlock:
5766 	double_rq_unlock(rq, p_rq);
5767 out_irq:
5768 	local_irq_restore(flags);
5769 
5770 	if (yielded > 0)
5771 		schedule();
5772 
5773 	return yielded;
5774 }
5775 EXPORT_SYMBOL_GPL(yield_to);
5776 
5777 int io_schedule_prepare(void)
5778 {
5779 	int old_iowait = current->in_iowait;
5780 
5781 	current->in_iowait = 1;
5782 	blk_schedule_flush_plug(current);
5783 
5784 	return old_iowait;
5785 }
5786 
5787 void io_schedule_finish(int token)
5788 {
5789 	current->in_iowait = token;
5790 }
5791 
5792 /*
5793  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5794  * that process accounting knows that this is a task in IO wait state.
5795  */
5796 long __sched io_schedule_timeout(long timeout)
5797 {
5798 	int token;
5799 	long ret;
5800 
5801 	token = io_schedule_prepare();
5802 	ret = schedule_timeout(timeout);
5803 	io_schedule_finish(token);
5804 
5805 	return ret;
5806 }
5807 EXPORT_SYMBOL(io_schedule_timeout);
5808 
5809 void __sched io_schedule(void)
5810 {
5811 	int token;
5812 
5813 	token = io_schedule_prepare();
5814 	schedule();
5815 	io_schedule_finish(token);
5816 }
5817 EXPORT_SYMBOL(io_schedule);
5818 
5819 /**
5820  * sys_sched_get_priority_max - return maximum RT priority.
5821  * @policy: scheduling class.
5822  *
5823  * Return: On success, this syscall returns the maximum
5824  * rt_priority that can be used by a given scheduling class.
5825  * On failure, a negative error code is returned.
5826  */
5827 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5828 {
5829 	int ret = -EINVAL;
5830 
5831 	switch (policy) {
5832 	case SCHED_FIFO:
5833 	case SCHED_RR:
5834 		ret = MAX_USER_RT_PRIO-1;
5835 		break;
5836 	case SCHED_DEADLINE:
5837 	case SCHED_NORMAL:
5838 	case SCHED_BATCH:
5839 	case SCHED_IDLE:
5840 		ret = 0;
5841 		break;
5842 	}
5843 	return ret;
5844 }
5845 
5846 /**
5847  * sys_sched_get_priority_min - return minimum RT priority.
5848  * @policy: scheduling class.
5849  *
5850  * Return: On success, this syscall returns the minimum
5851  * rt_priority that can be used by a given scheduling class.
5852  * On failure, a negative error code is returned.
5853  */
5854 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5855 {
5856 	int ret = -EINVAL;
5857 
5858 	switch (policy) {
5859 	case SCHED_FIFO:
5860 	case SCHED_RR:
5861 		ret = 1;
5862 		break;
5863 	case SCHED_DEADLINE:
5864 	case SCHED_NORMAL:
5865 	case SCHED_BATCH:
5866 	case SCHED_IDLE:
5867 		ret = 0;
5868 	}
5869 	return ret;
5870 }
5871 
5872 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5873 {
5874 	struct task_struct *p;
5875 	unsigned int time_slice;
5876 	struct rq_flags rf;
5877 	struct rq *rq;
5878 	int retval;
5879 
5880 	if (pid < 0)
5881 		return -EINVAL;
5882 
5883 	retval = -ESRCH;
5884 	rcu_read_lock();
5885 	p = find_process_by_pid(pid);
5886 	if (!p)
5887 		goto out_unlock;
5888 
5889 	retval = security_task_getscheduler(p);
5890 	if (retval)
5891 		goto out_unlock;
5892 
5893 	rq = task_rq_lock(p, &rf);
5894 	time_slice = 0;
5895 	if (p->sched_class->get_rr_interval)
5896 		time_slice = p->sched_class->get_rr_interval(rq, p);
5897 	task_rq_unlock(rq, p, &rf);
5898 
5899 	rcu_read_unlock();
5900 	jiffies_to_timespec64(time_slice, t);
5901 	return 0;
5902 
5903 out_unlock:
5904 	rcu_read_unlock();
5905 	return retval;
5906 }
5907 
5908 /**
5909  * sys_sched_rr_get_interval - return the default timeslice of a process.
5910  * @pid: pid of the process.
5911  * @interval: userspace pointer to the timeslice value.
5912  *
5913  * this syscall writes the default timeslice value of a given process
5914  * into the user-space timespec buffer. A value of '0' means infinity.
5915  *
5916  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5917  * an error code.
5918  */
5919 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5920 		struct __kernel_timespec __user *, interval)
5921 {
5922 	struct timespec64 t;
5923 	int retval = sched_rr_get_interval(pid, &t);
5924 
5925 	if (retval == 0)
5926 		retval = put_timespec64(&t, interval);
5927 
5928 	return retval;
5929 }
5930 
5931 #ifdef CONFIG_COMPAT_32BIT_TIME
5932 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5933 		struct old_timespec32 __user *, interval)
5934 {
5935 	struct timespec64 t;
5936 	int retval = sched_rr_get_interval(pid, &t);
5937 
5938 	if (retval == 0)
5939 		retval = put_old_timespec32(&t, interval);
5940 	return retval;
5941 }
5942 #endif
5943 
5944 void sched_show_task(struct task_struct *p)
5945 {
5946 	unsigned long free = 0;
5947 	int ppid;
5948 
5949 	if (!try_get_task_stack(p))
5950 		return;
5951 
5952 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5953 
5954 	if (p->state == TASK_RUNNING)
5955 		printk(KERN_CONT "  running task    ");
5956 #ifdef CONFIG_DEBUG_STACK_USAGE
5957 	free = stack_not_used(p);
5958 #endif
5959 	ppid = 0;
5960 	rcu_read_lock();
5961 	if (pid_alive(p))
5962 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5963 	rcu_read_unlock();
5964 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5965 		task_pid_nr(p), ppid,
5966 		(unsigned long)task_thread_info(p)->flags);
5967 
5968 	print_worker_info(KERN_INFO, p);
5969 	show_stack(p, NULL);
5970 	put_task_stack(p);
5971 }
5972 EXPORT_SYMBOL_GPL(sched_show_task);
5973 
5974 static inline bool
5975 state_filter_match(unsigned long state_filter, struct task_struct *p)
5976 {
5977 	/* no filter, everything matches */
5978 	if (!state_filter)
5979 		return true;
5980 
5981 	/* filter, but doesn't match */
5982 	if (!(p->state & state_filter))
5983 		return false;
5984 
5985 	/*
5986 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5987 	 * TASK_KILLABLE).
5988 	 */
5989 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5990 		return false;
5991 
5992 	return true;
5993 }
5994 
5995 
5996 void show_state_filter(unsigned long state_filter)
5997 {
5998 	struct task_struct *g, *p;
5999 
6000 #if BITS_PER_LONG == 32
6001 	printk(KERN_INFO
6002 		"  task                PC stack   pid father\n");
6003 #else
6004 	printk(KERN_INFO
6005 		"  task                        PC stack   pid father\n");
6006 #endif
6007 	rcu_read_lock();
6008 	for_each_process_thread(g, p) {
6009 		/*
6010 		 * reset the NMI-timeout, listing all files on a slow
6011 		 * console might take a lot of time:
6012 		 * Also, reset softlockup watchdogs on all CPUs, because
6013 		 * another CPU might be blocked waiting for us to process
6014 		 * an IPI.
6015 		 */
6016 		touch_nmi_watchdog();
6017 		touch_all_softlockup_watchdogs();
6018 		if (state_filter_match(state_filter, p))
6019 			sched_show_task(p);
6020 	}
6021 
6022 #ifdef CONFIG_SCHED_DEBUG
6023 	if (!state_filter)
6024 		sysrq_sched_debug_show();
6025 #endif
6026 	rcu_read_unlock();
6027 	/*
6028 	 * Only show locks if all tasks are dumped:
6029 	 */
6030 	if (!state_filter)
6031 		debug_show_all_locks();
6032 }
6033 
6034 /**
6035  * init_idle - set up an idle thread for a given CPU
6036  * @idle: task in question
6037  * @cpu: CPU the idle task belongs to
6038  *
6039  * NOTE: this function does not set the idle thread's NEED_RESCHED
6040  * flag, to make booting more robust.
6041  */
6042 void init_idle(struct task_struct *idle, int cpu)
6043 {
6044 	struct rq *rq = cpu_rq(cpu);
6045 	unsigned long flags;
6046 
6047 	__sched_fork(0, idle);
6048 
6049 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6050 	raw_spin_lock(&rq->lock);
6051 
6052 	idle->state = TASK_RUNNING;
6053 	idle->se.exec_start = sched_clock();
6054 	idle->flags |= PF_IDLE;
6055 
6056 	kasan_unpoison_task_stack(idle);
6057 
6058 #ifdef CONFIG_SMP
6059 	/*
6060 	 * Its possible that init_idle() gets called multiple times on a task,
6061 	 * in that case do_set_cpus_allowed() will not do the right thing.
6062 	 *
6063 	 * And since this is boot we can forgo the serialization.
6064 	 */
6065 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6066 #endif
6067 	/*
6068 	 * We're having a chicken and egg problem, even though we are
6069 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6070 	 * lockdep check in task_group() will fail.
6071 	 *
6072 	 * Similar case to sched_fork(). / Alternatively we could
6073 	 * use task_rq_lock() here and obtain the other rq->lock.
6074 	 *
6075 	 * Silence PROVE_RCU
6076 	 */
6077 	rcu_read_lock();
6078 	__set_task_cpu(idle, cpu);
6079 	rcu_read_unlock();
6080 
6081 	rq->idle = idle;
6082 	rcu_assign_pointer(rq->curr, idle);
6083 	idle->on_rq = TASK_ON_RQ_QUEUED;
6084 #ifdef CONFIG_SMP
6085 	idle->on_cpu = 1;
6086 #endif
6087 	raw_spin_unlock(&rq->lock);
6088 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6089 
6090 	/* Set the preempt count _outside_ the spinlocks! */
6091 	init_idle_preempt_count(idle, cpu);
6092 
6093 	/*
6094 	 * The idle tasks have their own, simple scheduling class:
6095 	 */
6096 	idle->sched_class = &idle_sched_class;
6097 	ftrace_graph_init_idle_task(idle, cpu);
6098 	vtime_init_idle(idle, cpu);
6099 #ifdef CONFIG_SMP
6100 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6101 #endif
6102 }
6103 
6104 #ifdef CONFIG_SMP
6105 
6106 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6107 			      const struct cpumask *trial)
6108 {
6109 	int ret = 1;
6110 
6111 	if (!cpumask_weight(cur))
6112 		return ret;
6113 
6114 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6115 
6116 	return ret;
6117 }
6118 
6119 int task_can_attach(struct task_struct *p,
6120 		    const struct cpumask *cs_cpus_allowed)
6121 {
6122 	int ret = 0;
6123 
6124 	/*
6125 	 * Kthreads which disallow setaffinity shouldn't be moved
6126 	 * to a new cpuset; we don't want to change their CPU
6127 	 * affinity and isolating such threads by their set of
6128 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6129 	 * applicable for such threads.  This prevents checking for
6130 	 * success of set_cpus_allowed_ptr() on all attached tasks
6131 	 * before cpus_mask may be changed.
6132 	 */
6133 	if (p->flags & PF_NO_SETAFFINITY) {
6134 		ret = -EINVAL;
6135 		goto out;
6136 	}
6137 
6138 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6139 					      cs_cpus_allowed))
6140 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6141 
6142 out:
6143 	return ret;
6144 }
6145 
6146 bool sched_smp_initialized __read_mostly;
6147 
6148 #ifdef CONFIG_NUMA_BALANCING
6149 /* Migrate current task p to target_cpu */
6150 int migrate_task_to(struct task_struct *p, int target_cpu)
6151 {
6152 	struct migration_arg arg = { p, target_cpu };
6153 	int curr_cpu = task_cpu(p);
6154 
6155 	if (curr_cpu == target_cpu)
6156 		return 0;
6157 
6158 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6159 		return -EINVAL;
6160 
6161 	/* TODO: This is not properly updating schedstats */
6162 
6163 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6164 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6165 }
6166 
6167 /*
6168  * Requeue a task on a given node and accurately track the number of NUMA
6169  * tasks on the runqueues
6170  */
6171 void sched_setnuma(struct task_struct *p, int nid)
6172 {
6173 	bool queued, running;
6174 	struct rq_flags rf;
6175 	struct rq *rq;
6176 
6177 	rq = task_rq_lock(p, &rf);
6178 	queued = task_on_rq_queued(p);
6179 	running = task_current(rq, p);
6180 
6181 	if (queued)
6182 		dequeue_task(rq, p, DEQUEUE_SAVE);
6183 	if (running)
6184 		put_prev_task(rq, p);
6185 
6186 	p->numa_preferred_nid = nid;
6187 
6188 	if (queued)
6189 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6190 	if (running)
6191 		set_next_task(rq, p);
6192 	task_rq_unlock(rq, p, &rf);
6193 }
6194 #endif /* CONFIG_NUMA_BALANCING */
6195 
6196 #ifdef CONFIG_HOTPLUG_CPU
6197 /*
6198  * Ensure that the idle task is using init_mm right before its CPU goes
6199  * offline.
6200  */
6201 void idle_task_exit(void)
6202 {
6203 	struct mm_struct *mm = current->active_mm;
6204 
6205 	BUG_ON(cpu_online(smp_processor_id()));
6206 
6207 	if (mm != &init_mm) {
6208 		switch_mm(mm, &init_mm, current);
6209 		current->active_mm = &init_mm;
6210 		finish_arch_post_lock_switch();
6211 	}
6212 	mmdrop(mm);
6213 }
6214 
6215 /*
6216  * Since this CPU is going 'away' for a while, fold any nr_active delta
6217  * we might have. Assumes we're called after migrate_tasks() so that the
6218  * nr_active count is stable. We need to take the teardown thread which
6219  * is calling this into account, so we hand in adjust = 1 to the load
6220  * calculation.
6221  *
6222  * Also see the comment "Global load-average calculations".
6223  */
6224 static void calc_load_migrate(struct rq *rq)
6225 {
6226 	long delta = calc_load_fold_active(rq, 1);
6227 	if (delta)
6228 		atomic_long_add(delta, &calc_load_tasks);
6229 }
6230 
6231 static struct task_struct *__pick_migrate_task(struct rq *rq)
6232 {
6233 	const struct sched_class *class;
6234 	struct task_struct *next;
6235 
6236 	for_each_class(class) {
6237 		next = class->pick_next_task(rq);
6238 		if (next) {
6239 			next->sched_class->put_prev_task(rq, next);
6240 			return next;
6241 		}
6242 	}
6243 
6244 	/* The idle class should always have a runnable task */
6245 	BUG();
6246 }
6247 
6248 /*
6249  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6250  * try_to_wake_up()->select_task_rq().
6251  *
6252  * Called with rq->lock held even though we'er in stop_machine() and
6253  * there's no concurrency possible, we hold the required locks anyway
6254  * because of lock validation efforts.
6255  */
6256 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6257 {
6258 	struct rq *rq = dead_rq;
6259 	struct task_struct *next, *stop = rq->stop;
6260 	struct rq_flags orf = *rf;
6261 	int dest_cpu;
6262 
6263 	/*
6264 	 * Fudge the rq selection such that the below task selection loop
6265 	 * doesn't get stuck on the currently eligible stop task.
6266 	 *
6267 	 * We're currently inside stop_machine() and the rq is either stuck
6268 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6269 	 * either way we should never end up calling schedule() until we're
6270 	 * done here.
6271 	 */
6272 	rq->stop = NULL;
6273 
6274 	/*
6275 	 * put_prev_task() and pick_next_task() sched
6276 	 * class method both need to have an up-to-date
6277 	 * value of rq->clock[_task]
6278 	 */
6279 	update_rq_clock(rq);
6280 
6281 	for (;;) {
6282 		/*
6283 		 * There's this thread running, bail when that's the only
6284 		 * remaining thread:
6285 		 */
6286 		if (rq->nr_running == 1)
6287 			break;
6288 
6289 		next = __pick_migrate_task(rq);
6290 
6291 		/*
6292 		 * Rules for changing task_struct::cpus_mask are holding
6293 		 * both pi_lock and rq->lock, such that holding either
6294 		 * stabilizes the mask.
6295 		 *
6296 		 * Drop rq->lock is not quite as disastrous as it usually is
6297 		 * because !cpu_active at this point, which means load-balance
6298 		 * will not interfere. Also, stop-machine.
6299 		 */
6300 		rq_unlock(rq, rf);
6301 		raw_spin_lock(&next->pi_lock);
6302 		rq_relock(rq, rf);
6303 
6304 		/*
6305 		 * Since we're inside stop-machine, _nothing_ should have
6306 		 * changed the task, WARN if weird stuff happened, because in
6307 		 * that case the above rq->lock drop is a fail too.
6308 		 */
6309 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6310 			raw_spin_unlock(&next->pi_lock);
6311 			continue;
6312 		}
6313 
6314 		/* Find suitable destination for @next, with force if needed. */
6315 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6316 		rq = __migrate_task(rq, rf, next, dest_cpu);
6317 		if (rq != dead_rq) {
6318 			rq_unlock(rq, rf);
6319 			rq = dead_rq;
6320 			*rf = orf;
6321 			rq_relock(rq, rf);
6322 		}
6323 		raw_spin_unlock(&next->pi_lock);
6324 	}
6325 
6326 	rq->stop = stop;
6327 }
6328 #endif /* CONFIG_HOTPLUG_CPU */
6329 
6330 void set_rq_online(struct rq *rq)
6331 {
6332 	if (!rq->online) {
6333 		const struct sched_class *class;
6334 
6335 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6336 		rq->online = 1;
6337 
6338 		for_each_class(class) {
6339 			if (class->rq_online)
6340 				class->rq_online(rq);
6341 		}
6342 	}
6343 }
6344 
6345 void set_rq_offline(struct rq *rq)
6346 {
6347 	if (rq->online) {
6348 		const struct sched_class *class;
6349 
6350 		for_each_class(class) {
6351 			if (class->rq_offline)
6352 				class->rq_offline(rq);
6353 		}
6354 
6355 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6356 		rq->online = 0;
6357 	}
6358 }
6359 
6360 /*
6361  * used to mark begin/end of suspend/resume:
6362  */
6363 static int num_cpus_frozen;
6364 
6365 /*
6366  * Update cpusets according to cpu_active mask.  If cpusets are
6367  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6368  * around partition_sched_domains().
6369  *
6370  * If we come here as part of a suspend/resume, don't touch cpusets because we
6371  * want to restore it back to its original state upon resume anyway.
6372  */
6373 static void cpuset_cpu_active(void)
6374 {
6375 	if (cpuhp_tasks_frozen) {
6376 		/*
6377 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6378 		 * resume sequence. As long as this is not the last online
6379 		 * operation in the resume sequence, just build a single sched
6380 		 * domain, ignoring cpusets.
6381 		 */
6382 		partition_sched_domains(1, NULL, NULL);
6383 		if (--num_cpus_frozen)
6384 			return;
6385 		/*
6386 		 * This is the last CPU online operation. So fall through and
6387 		 * restore the original sched domains by considering the
6388 		 * cpuset configurations.
6389 		 */
6390 		cpuset_force_rebuild();
6391 	}
6392 	cpuset_update_active_cpus();
6393 }
6394 
6395 static int cpuset_cpu_inactive(unsigned int cpu)
6396 {
6397 	if (!cpuhp_tasks_frozen) {
6398 		if (dl_cpu_busy(cpu))
6399 			return -EBUSY;
6400 		cpuset_update_active_cpus();
6401 	} else {
6402 		num_cpus_frozen++;
6403 		partition_sched_domains(1, NULL, NULL);
6404 	}
6405 	return 0;
6406 }
6407 
6408 int sched_cpu_activate(unsigned int cpu)
6409 {
6410 	struct rq *rq = cpu_rq(cpu);
6411 	struct rq_flags rf;
6412 
6413 #ifdef CONFIG_SCHED_SMT
6414 	/*
6415 	 * When going up, increment the number of cores with SMT present.
6416 	 */
6417 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6418 		static_branch_inc_cpuslocked(&sched_smt_present);
6419 #endif
6420 	set_cpu_active(cpu, true);
6421 
6422 	if (sched_smp_initialized) {
6423 		sched_domains_numa_masks_set(cpu);
6424 		cpuset_cpu_active();
6425 	}
6426 
6427 	/*
6428 	 * Put the rq online, if not already. This happens:
6429 	 *
6430 	 * 1) In the early boot process, because we build the real domains
6431 	 *    after all CPUs have been brought up.
6432 	 *
6433 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6434 	 *    domains.
6435 	 */
6436 	rq_lock_irqsave(rq, &rf);
6437 	if (rq->rd) {
6438 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6439 		set_rq_online(rq);
6440 	}
6441 	rq_unlock_irqrestore(rq, &rf);
6442 
6443 	return 0;
6444 }
6445 
6446 int sched_cpu_deactivate(unsigned int cpu)
6447 {
6448 	int ret;
6449 
6450 	set_cpu_active(cpu, false);
6451 	/*
6452 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6453 	 * users of this state to go away such that all new such users will
6454 	 * observe it.
6455 	 *
6456 	 * Do sync before park smpboot threads to take care the rcu boost case.
6457 	 */
6458 	synchronize_rcu();
6459 
6460 #ifdef CONFIG_SCHED_SMT
6461 	/*
6462 	 * When going down, decrement the number of cores with SMT present.
6463 	 */
6464 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6465 		static_branch_dec_cpuslocked(&sched_smt_present);
6466 #endif
6467 
6468 	if (!sched_smp_initialized)
6469 		return 0;
6470 
6471 	ret = cpuset_cpu_inactive(cpu);
6472 	if (ret) {
6473 		set_cpu_active(cpu, true);
6474 		return ret;
6475 	}
6476 	sched_domains_numa_masks_clear(cpu);
6477 	return 0;
6478 }
6479 
6480 static void sched_rq_cpu_starting(unsigned int cpu)
6481 {
6482 	struct rq *rq = cpu_rq(cpu);
6483 
6484 	rq->calc_load_update = calc_load_update;
6485 	update_max_interval();
6486 }
6487 
6488 int sched_cpu_starting(unsigned int cpu)
6489 {
6490 	sched_rq_cpu_starting(cpu);
6491 	sched_tick_start(cpu);
6492 	return 0;
6493 }
6494 
6495 #ifdef CONFIG_HOTPLUG_CPU
6496 int sched_cpu_dying(unsigned int cpu)
6497 {
6498 	struct rq *rq = cpu_rq(cpu);
6499 	struct rq_flags rf;
6500 
6501 	/* Handle pending wakeups and then migrate everything off */
6502 	sched_ttwu_pending();
6503 	sched_tick_stop(cpu);
6504 
6505 	rq_lock_irqsave(rq, &rf);
6506 	if (rq->rd) {
6507 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6508 		set_rq_offline(rq);
6509 	}
6510 	migrate_tasks(rq, &rf);
6511 	BUG_ON(rq->nr_running != 1);
6512 	rq_unlock_irqrestore(rq, &rf);
6513 
6514 	calc_load_migrate(rq);
6515 	update_max_interval();
6516 	nohz_balance_exit_idle(rq);
6517 	hrtick_clear(rq);
6518 	return 0;
6519 }
6520 #endif
6521 
6522 void __init sched_init_smp(void)
6523 {
6524 	sched_init_numa();
6525 
6526 	/*
6527 	 * There's no userspace yet to cause hotplug operations; hence all the
6528 	 * CPU masks are stable and all blatant races in the below code cannot
6529 	 * happen.
6530 	 */
6531 	mutex_lock(&sched_domains_mutex);
6532 	sched_init_domains(cpu_active_mask);
6533 	mutex_unlock(&sched_domains_mutex);
6534 
6535 	/* Move init over to a non-isolated CPU */
6536 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6537 		BUG();
6538 	sched_init_granularity();
6539 
6540 	init_sched_rt_class();
6541 	init_sched_dl_class();
6542 
6543 	sched_smp_initialized = true;
6544 }
6545 
6546 static int __init migration_init(void)
6547 {
6548 	sched_cpu_starting(smp_processor_id());
6549 	return 0;
6550 }
6551 early_initcall(migration_init);
6552 
6553 #else
6554 void __init sched_init_smp(void)
6555 {
6556 	sched_init_granularity();
6557 }
6558 #endif /* CONFIG_SMP */
6559 
6560 int in_sched_functions(unsigned long addr)
6561 {
6562 	return in_lock_functions(addr) ||
6563 		(addr >= (unsigned long)__sched_text_start
6564 		&& addr < (unsigned long)__sched_text_end);
6565 }
6566 
6567 #ifdef CONFIG_CGROUP_SCHED
6568 /*
6569  * Default task group.
6570  * Every task in system belongs to this group at bootup.
6571  */
6572 struct task_group root_task_group;
6573 LIST_HEAD(task_groups);
6574 
6575 /* Cacheline aligned slab cache for task_group */
6576 static struct kmem_cache *task_group_cache __read_mostly;
6577 #endif
6578 
6579 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6580 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6581 
6582 void __init sched_init(void)
6583 {
6584 	unsigned long ptr = 0;
6585 	int i;
6586 
6587 	wait_bit_init();
6588 
6589 #ifdef CONFIG_FAIR_GROUP_SCHED
6590 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6591 #endif
6592 #ifdef CONFIG_RT_GROUP_SCHED
6593 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6594 #endif
6595 	if (ptr) {
6596 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6597 
6598 #ifdef CONFIG_FAIR_GROUP_SCHED
6599 		root_task_group.se = (struct sched_entity **)ptr;
6600 		ptr += nr_cpu_ids * sizeof(void **);
6601 
6602 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6603 		ptr += nr_cpu_ids * sizeof(void **);
6604 
6605 #endif /* CONFIG_FAIR_GROUP_SCHED */
6606 #ifdef CONFIG_RT_GROUP_SCHED
6607 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6608 		ptr += nr_cpu_ids * sizeof(void **);
6609 
6610 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6611 		ptr += nr_cpu_ids * sizeof(void **);
6612 
6613 #endif /* CONFIG_RT_GROUP_SCHED */
6614 	}
6615 #ifdef CONFIG_CPUMASK_OFFSTACK
6616 	for_each_possible_cpu(i) {
6617 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6618 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6619 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6620 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6621 	}
6622 #endif /* CONFIG_CPUMASK_OFFSTACK */
6623 
6624 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6625 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6626 
6627 #ifdef CONFIG_SMP
6628 	init_defrootdomain();
6629 #endif
6630 
6631 #ifdef CONFIG_RT_GROUP_SCHED
6632 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6633 			global_rt_period(), global_rt_runtime());
6634 #endif /* CONFIG_RT_GROUP_SCHED */
6635 
6636 #ifdef CONFIG_CGROUP_SCHED
6637 	task_group_cache = KMEM_CACHE(task_group, 0);
6638 
6639 	list_add(&root_task_group.list, &task_groups);
6640 	INIT_LIST_HEAD(&root_task_group.children);
6641 	INIT_LIST_HEAD(&root_task_group.siblings);
6642 	autogroup_init(&init_task);
6643 #endif /* CONFIG_CGROUP_SCHED */
6644 
6645 	for_each_possible_cpu(i) {
6646 		struct rq *rq;
6647 
6648 		rq = cpu_rq(i);
6649 		raw_spin_lock_init(&rq->lock);
6650 		rq->nr_running = 0;
6651 		rq->calc_load_active = 0;
6652 		rq->calc_load_update = jiffies + LOAD_FREQ;
6653 		init_cfs_rq(&rq->cfs);
6654 		init_rt_rq(&rq->rt);
6655 		init_dl_rq(&rq->dl);
6656 #ifdef CONFIG_FAIR_GROUP_SCHED
6657 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6658 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6659 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6660 		/*
6661 		 * How much CPU bandwidth does root_task_group get?
6662 		 *
6663 		 * In case of task-groups formed thr' the cgroup filesystem, it
6664 		 * gets 100% of the CPU resources in the system. This overall
6665 		 * system CPU resource is divided among the tasks of
6666 		 * root_task_group and its child task-groups in a fair manner,
6667 		 * based on each entity's (task or task-group's) weight
6668 		 * (se->load.weight).
6669 		 *
6670 		 * In other words, if root_task_group has 10 tasks of weight
6671 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6672 		 * then A0's share of the CPU resource is:
6673 		 *
6674 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6675 		 *
6676 		 * We achieve this by letting root_task_group's tasks sit
6677 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6678 		 */
6679 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6680 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6681 #endif /* CONFIG_FAIR_GROUP_SCHED */
6682 
6683 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6684 #ifdef CONFIG_RT_GROUP_SCHED
6685 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6686 #endif
6687 #ifdef CONFIG_SMP
6688 		rq->sd = NULL;
6689 		rq->rd = NULL;
6690 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6691 		rq->balance_callback = NULL;
6692 		rq->active_balance = 0;
6693 		rq->next_balance = jiffies;
6694 		rq->push_cpu = 0;
6695 		rq->cpu = i;
6696 		rq->online = 0;
6697 		rq->idle_stamp = 0;
6698 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6699 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6700 
6701 		INIT_LIST_HEAD(&rq->cfs_tasks);
6702 
6703 		rq_attach_root(rq, &def_root_domain);
6704 #ifdef CONFIG_NO_HZ_COMMON
6705 		rq->last_load_update_tick = jiffies;
6706 		rq->last_blocked_load_update_tick = jiffies;
6707 		atomic_set(&rq->nohz_flags, 0);
6708 #endif
6709 #endif /* CONFIG_SMP */
6710 		hrtick_rq_init(rq);
6711 		atomic_set(&rq->nr_iowait, 0);
6712 	}
6713 
6714 	set_load_weight(&init_task, false);
6715 
6716 	/*
6717 	 * The boot idle thread does lazy MMU switching as well:
6718 	 */
6719 	mmgrab(&init_mm);
6720 	enter_lazy_tlb(&init_mm, current);
6721 
6722 	/*
6723 	 * Make us the idle thread. Technically, schedule() should not be
6724 	 * called from this thread, however somewhere below it might be,
6725 	 * but because we are the idle thread, we just pick up running again
6726 	 * when this runqueue becomes "idle".
6727 	 */
6728 	init_idle(current, smp_processor_id());
6729 
6730 	calc_load_update = jiffies + LOAD_FREQ;
6731 
6732 #ifdef CONFIG_SMP
6733 	idle_thread_set_boot_cpu();
6734 #endif
6735 	init_sched_fair_class();
6736 
6737 	init_schedstats();
6738 
6739 	psi_init();
6740 
6741 	init_uclamp();
6742 
6743 	scheduler_running = 1;
6744 }
6745 
6746 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6747 static inline int preempt_count_equals(int preempt_offset)
6748 {
6749 	int nested = preempt_count() + rcu_preempt_depth();
6750 
6751 	return (nested == preempt_offset);
6752 }
6753 
6754 void __might_sleep(const char *file, int line, int preempt_offset)
6755 {
6756 	/*
6757 	 * Blocking primitives will set (and therefore destroy) current->state,
6758 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6759 	 * otherwise we will destroy state.
6760 	 */
6761 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6762 			"do not call blocking ops when !TASK_RUNNING; "
6763 			"state=%lx set at [<%p>] %pS\n",
6764 			current->state,
6765 			(void *)current->task_state_change,
6766 			(void *)current->task_state_change);
6767 
6768 	___might_sleep(file, line, preempt_offset);
6769 }
6770 EXPORT_SYMBOL(__might_sleep);
6771 
6772 void ___might_sleep(const char *file, int line, int preempt_offset)
6773 {
6774 	/* Ratelimiting timestamp: */
6775 	static unsigned long prev_jiffy;
6776 
6777 	unsigned long preempt_disable_ip;
6778 
6779 	/* WARN_ON_ONCE() by default, no rate limit required: */
6780 	rcu_sleep_check();
6781 
6782 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6783 	     !is_idle_task(current) && !current->non_block_count) ||
6784 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6785 	    oops_in_progress)
6786 		return;
6787 
6788 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6789 		return;
6790 	prev_jiffy = jiffies;
6791 
6792 	/* Save this before calling printk(), since that will clobber it: */
6793 	preempt_disable_ip = get_preempt_disable_ip(current);
6794 
6795 	printk(KERN_ERR
6796 		"BUG: sleeping function called from invalid context at %s:%d\n",
6797 			file, line);
6798 	printk(KERN_ERR
6799 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6800 			in_atomic(), irqs_disabled(), current->non_block_count,
6801 			current->pid, current->comm);
6802 
6803 	if (task_stack_end_corrupted(current))
6804 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6805 
6806 	debug_show_held_locks(current);
6807 	if (irqs_disabled())
6808 		print_irqtrace_events(current);
6809 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6810 	    && !preempt_count_equals(preempt_offset)) {
6811 		pr_err("Preemption disabled at:");
6812 		print_ip_sym(preempt_disable_ip);
6813 		pr_cont("\n");
6814 	}
6815 	dump_stack();
6816 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6817 }
6818 EXPORT_SYMBOL(___might_sleep);
6819 
6820 void __cant_sleep(const char *file, int line, int preempt_offset)
6821 {
6822 	static unsigned long prev_jiffy;
6823 
6824 	if (irqs_disabled())
6825 		return;
6826 
6827 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6828 		return;
6829 
6830 	if (preempt_count() > preempt_offset)
6831 		return;
6832 
6833 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6834 		return;
6835 	prev_jiffy = jiffies;
6836 
6837 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6838 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6839 			in_atomic(), irqs_disabled(),
6840 			current->pid, current->comm);
6841 
6842 	debug_show_held_locks(current);
6843 	dump_stack();
6844 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6845 }
6846 EXPORT_SYMBOL_GPL(__cant_sleep);
6847 #endif
6848 
6849 #ifdef CONFIG_MAGIC_SYSRQ
6850 void normalize_rt_tasks(void)
6851 {
6852 	struct task_struct *g, *p;
6853 	struct sched_attr attr = {
6854 		.sched_policy = SCHED_NORMAL,
6855 	};
6856 
6857 	read_lock(&tasklist_lock);
6858 	for_each_process_thread(g, p) {
6859 		/*
6860 		 * Only normalize user tasks:
6861 		 */
6862 		if (p->flags & PF_KTHREAD)
6863 			continue;
6864 
6865 		p->se.exec_start = 0;
6866 		schedstat_set(p->se.statistics.wait_start,  0);
6867 		schedstat_set(p->se.statistics.sleep_start, 0);
6868 		schedstat_set(p->se.statistics.block_start, 0);
6869 
6870 		if (!dl_task(p) && !rt_task(p)) {
6871 			/*
6872 			 * Renice negative nice level userspace
6873 			 * tasks back to 0:
6874 			 */
6875 			if (task_nice(p) < 0)
6876 				set_user_nice(p, 0);
6877 			continue;
6878 		}
6879 
6880 		__sched_setscheduler(p, &attr, false, false);
6881 	}
6882 	read_unlock(&tasklist_lock);
6883 }
6884 
6885 #endif /* CONFIG_MAGIC_SYSRQ */
6886 
6887 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6888 /*
6889  * These functions are only useful for the IA64 MCA handling, or kdb.
6890  *
6891  * They can only be called when the whole system has been
6892  * stopped - every CPU needs to be quiescent, and no scheduling
6893  * activity can take place. Using them for anything else would
6894  * be a serious bug, and as a result, they aren't even visible
6895  * under any other configuration.
6896  */
6897 
6898 /**
6899  * curr_task - return the current task for a given CPU.
6900  * @cpu: the processor in question.
6901  *
6902  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6903  *
6904  * Return: The current task for @cpu.
6905  */
6906 struct task_struct *curr_task(int cpu)
6907 {
6908 	return cpu_curr(cpu);
6909 }
6910 
6911 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6912 
6913 #ifdef CONFIG_IA64
6914 /**
6915  * ia64_set_curr_task - set the current task for a given CPU.
6916  * @cpu: the processor in question.
6917  * @p: the task pointer to set.
6918  *
6919  * Description: This function must only be used when non-maskable interrupts
6920  * are serviced on a separate stack. It allows the architecture to switch the
6921  * notion of the current task on a CPU in a non-blocking manner. This function
6922  * must be called with all CPU's synchronized, and interrupts disabled, the
6923  * and caller must save the original value of the current task (see
6924  * curr_task() above) and restore that value before reenabling interrupts and
6925  * re-starting the system.
6926  *
6927  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6928  */
6929 void ia64_set_curr_task(int cpu, struct task_struct *p)
6930 {
6931 	cpu_curr(cpu) = p;
6932 }
6933 
6934 #endif
6935 
6936 #ifdef CONFIG_CGROUP_SCHED
6937 /* task_group_lock serializes the addition/removal of task groups */
6938 static DEFINE_SPINLOCK(task_group_lock);
6939 
6940 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6941 					    struct task_group *parent)
6942 {
6943 #ifdef CONFIG_UCLAMP_TASK_GROUP
6944 	enum uclamp_id clamp_id;
6945 
6946 	for_each_clamp_id(clamp_id) {
6947 		uclamp_se_set(&tg->uclamp_req[clamp_id],
6948 			      uclamp_none(clamp_id), false);
6949 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6950 	}
6951 #endif
6952 }
6953 
6954 static void sched_free_group(struct task_group *tg)
6955 {
6956 	free_fair_sched_group(tg);
6957 	free_rt_sched_group(tg);
6958 	autogroup_free(tg);
6959 	kmem_cache_free(task_group_cache, tg);
6960 }
6961 
6962 /* allocate runqueue etc for a new task group */
6963 struct task_group *sched_create_group(struct task_group *parent)
6964 {
6965 	struct task_group *tg;
6966 
6967 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6968 	if (!tg)
6969 		return ERR_PTR(-ENOMEM);
6970 
6971 	if (!alloc_fair_sched_group(tg, parent))
6972 		goto err;
6973 
6974 	if (!alloc_rt_sched_group(tg, parent))
6975 		goto err;
6976 
6977 	alloc_uclamp_sched_group(tg, parent);
6978 
6979 	return tg;
6980 
6981 err:
6982 	sched_free_group(tg);
6983 	return ERR_PTR(-ENOMEM);
6984 }
6985 
6986 void sched_online_group(struct task_group *tg, struct task_group *parent)
6987 {
6988 	unsigned long flags;
6989 
6990 	spin_lock_irqsave(&task_group_lock, flags);
6991 	list_add_rcu(&tg->list, &task_groups);
6992 
6993 	/* Root should already exist: */
6994 	WARN_ON(!parent);
6995 
6996 	tg->parent = parent;
6997 	INIT_LIST_HEAD(&tg->children);
6998 	list_add_rcu(&tg->siblings, &parent->children);
6999 	spin_unlock_irqrestore(&task_group_lock, flags);
7000 
7001 	online_fair_sched_group(tg);
7002 }
7003 
7004 /* rcu callback to free various structures associated with a task group */
7005 static void sched_free_group_rcu(struct rcu_head *rhp)
7006 {
7007 	/* Now it should be safe to free those cfs_rqs: */
7008 	sched_free_group(container_of(rhp, struct task_group, rcu));
7009 }
7010 
7011 void sched_destroy_group(struct task_group *tg)
7012 {
7013 	/* Wait for possible concurrent references to cfs_rqs complete: */
7014 	call_rcu(&tg->rcu, sched_free_group_rcu);
7015 }
7016 
7017 void sched_offline_group(struct task_group *tg)
7018 {
7019 	unsigned long flags;
7020 
7021 	/* End participation in shares distribution: */
7022 	unregister_fair_sched_group(tg);
7023 
7024 	spin_lock_irqsave(&task_group_lock, flags);
7025 	list_del_rcu(&tg->list);
7026 	list_del_rcu(&tg->siblings);
7027 	spin_unlock_irqrestore(&task_group_lock, flags);
7028 }
7029 
7030 static void sched_change_group(struct task_struct *tsk, int type)
7031 {
7032 	struct task_group *tg;
7033 
7034 	/*
7035 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7036 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7037 	 * to prevent lockdep warnings.
7038 	 */
7039 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7040 			  struct task_group, css);
7041 	tg = autogroup_task_group(tsk, tg);
7042 	tsk->sched_task_group = tg;
7043 
7044 #ifdef CONFIG_FAIR_GROUP_SCHED
7045 	if (tsk->sched_class->task_change_group)
7046 		tsk->sched_class->task_change_group(tsk, type);
7047 	else
7048 #endif
7049 		set_task_rq(tsk, task_cpu(tsk));
7050 }
7051 
7052 /*
7053  * Change task's runqueue when it moves between groups.
7054  *
7055  * The caller of this function should have put the task in its new group by
7056  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7057  * its new group.
7058  */
7059 void sched_move_task(struct task_struct *tsk)
7060 {
7061 	int queued, running, queue_flags =
7062 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7063 	struct rq_flags rf;
7064 	struct rq *rq;
7065 
7066 	rq = task_rq_lock(tsk, &rf);
7067 	update_rq_clock(rq);
7068 
7069 	running = task_current(rq, tsk);
7070 	queued = task_on_rq_queued(tsk);
7071 
7072 	if (queued)
7073 		dequeue_task(rq, tsk, queue_flags);
7074 	if (running)
7075 		put_prev_task(rq, tsk);
7076 
7077 	sched_change_group(tsk, TASK_MOVE_GROUP);
7078 
7079 	if (queued)
7080 		enqueue_task(rq, tsk, queue_flags);
7081 	if (running) {
7082 		set_next_task(rq, tsk);
7083 		/*
7084 		 * After changing group, the running task may have joined a
7085 		 * throttled one but it's still the running task. Trigger a
7086 		 * resched to make sure that task can still run.
7087 		 */
7088 		resched_curr(rq);
7089 	}
7090 
7091 	task_rq_unlock(rq, tsk, &rf);
7092 }
7093 
7094 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7095 {
7096 	return css ? container_of(css, struct task_group, css) : NULL;
7097 }
7098 
7099 static struct cgroup_subsys_state *
7100 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7101 {
7102 	struct task_group *parent = css_tg(parent_css);
7103 	struct task_group *tg;
7104 
7105 	if (!parent) {
7106 		/* This is early initialization for the top cgroup */
7107 		return &root_task_group.css;
7108 	}
7109 
7110 	tg = sched_create_group(parent);
7111 	if (IS_ERR(tg))
7112 		return ERR_PTR(-ENOMEM);
7113 
7114 	return &tg->css;
7115 }
7116 
7117 /* Expose task group only after completing cgroup initialization */
7118 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7119 {
7120 	struct task_group *tg = css_tg(css);
7121 	struct task_group *parent = css_tg(css->parent);
7122 
7123 	if (parent)
7124 		sched_online_group(tg, parent);
7125 
7126 #ifdef CONFIG_UCLAMP_TASK_GROUP
7127 	/* Propagate the effective uclamp value for the new group */
7128 	cpu_util_update_eff(css);
7129 #endif
7130 
7131 	return 0;
7132 }
7133 
7134 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7135 {
7136 	struct task_group *tg = css_tg(css);
7137 
7138 	sched_offline_group(tg);
7139 }
7140 
7141 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7142 {
7143 	struct task_group *tg = css_tg(css);
7144 
7145 	/*
7146 	 * Relies on the RCU grace period between css_released() and this.
7147 	 */
7148 	sched_free_group(tg);
7149 }
7150 
7151 /*
7152  * This is called before wake_up_new_task(), therefore we really only
7153  * have to set its group bits, all the other stuff does not apply.
7154  */
7155 static void cpu_cgroup_fork(struct task_struct *task)
7156 {
7157 	struct rq_flags rf;
7158 	struct rq *rq;
7159 
7160 	rq = task_rq_lock(task, &rf);
7161 
7162 	update_rq_clock(rq);
7163 	sched_change_group(task, TASK_SET_GROUP);
7164 
7165 	task_rq_unlock(rq, task, &rf);
7166 }
7167 
7168 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7169 {
7170 	struct task_struct *task;
7171 	struct cgroup_subsys_state *css;
7172 	int ret = 0;
7173 
7174 	cgroup_taskset_for_each(task, css, tset) {
7175 #ifdef CONFIG_RT_GROUP_SCHED
7176 		if (!sched_rt_can_attach(css_tg(css), task))
7177 			return -EINVAL;
7178 #endif
7179 		/*
7180 		 * Serialize against wake_up_new_task() such that if its
7181 		 * running, we're sure to observe its full state.
7182 		 */
7183 		raw_spin_lock_irq(&task->pi_lock);
7184 		/*
7185 		 * Avoid calling sched_move_task() before wake_up_new_task()
7186 		 * has happened. This would lead to problems with PELT, due to
7187 		 * move wanting to detach+attach while we're not attached yet.
7188 		 */
7189 		if (task->state == TASK_NEW)
7190 			ret = -EINVAL;
7191 		raw_spin_unlock_irq(&task->pi_lock);
7192 
7193 		if (ret)
7194 			break;
7195 	}
7196 	return ret;
7197 }
7198 
7199 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7200 {
7201 	struct task_struct *task;
7202 	struct cgroup_subsys_state *css;
7203 
7204 	cgroup_taskset_for_each(task, css, tset)
7205 		sched_move_task(task);
7206 }
7207 
7208 #ifdef CONFIG_UCLAMP_TASK_GROUP
7209 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7210 {
7211 	struct cgroup_subsys_state *top_css = css;
7212 	struct uclamp_se *uc_parent = NULL;
7213 	struct uclamp_se *uc_se = NULL;
7214 	unsigned int eff[UCLAMP_CNT];
7215 	enum uclamp_id clamp_id;
7216 	unsigned int clamps;
7217 
7218 	css_for_each_descendant_pre(css, top_css) {
7219 		uc_parent = css_tg(css)->parent
7220 			? css_tg(css)->parent->uclamp : NULL;
7221 
7222 		for_each_clamp_id(clamp_id) {
7223 			/* Assume effective clamps matches requested clamps */
7224 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7225 			/* Cap effective clamps with parent's effective clamps */
7226 			if (uc_parent &&
7227 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7228 				eff[clamp_id] = uc_parent[clamp_id].value;
7229 			}
7230 		}
7231 		/* Ensure protection is always capped by limit */
7232 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7233 
7234 		/* Propagate most restrictive effective clamps */
7235 		clamps = 0x0;
7236 		uc_se = css_tg(css)->uclamp;
7237 		for_each_clamp_id(clamp_id) {
7238 			if (eff[clamp_id] == uc_se[clamp_id].value)
7239 				continue;
7240 			uc_se[clamp_id].value = eff[clamp_id];
7241 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7242 			clamps |= (0x1 << clamp_id);
7243 		}
7244 		if (!clamps) {
7245 			css = css_rightmost_descendant(css);
7246 			continue;
7247 		}
7248 
7249 		/* Immediately update descendants RUNNABLE tasks */
7250 		uclamp_update_active_tasks(css, clamps);
7251 	}
7252 }
7253 
7254 /*
7255  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7256  * C expression. Since there is no way to convert a macro argument (N) into a
7257  * character constant, use two levels of macros.
7258  */
7259 #define _POW10(exp) ((unsigned int)1e##exp)
7260 #define POW10(exp) _POW10(exp)
7261 
7262 struct uclamp_request {
7263 #define UCLAMP_PERCENT_SHIFT	2
7264 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7265 	s64 percent;
7266 	u64 util;
7267 	int ret;
7268 };
7269 
7270 static inline struct uclamp_request
7271 capacity_from_percent(char *buf)
7272 {
7273 	struct uclamp_request req = {
7274 		.percent = UCLAMP_PERCENT_SCALE,
7275 		.util = SCHED_CAPACITY_SCALE,
7276 		.ret = 0,
7277 	};
7278 
7279 	buf = strim(buf);
7280 	if (strcmp(buf, "max")) {
7281 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7282 					     &req.percent);
7283 		if (req.ret)
7284 			return req;
7285 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7286 			req.ret = -ERANGE;
7287 			return req;
7288 		}
7289 
7290 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7291 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7292 	}
7293 
7294 	return req;
7295 }
7296 
7297 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7298 				size_t nbytes, loff_t off,
7299 				enum uclamp_id clamp_id)
7300 {
7301 	struct uclamp_request req;
7302 	struct task_group *tg;
7303 
7304 	req = capacity_from_percent(buf);
7305 	if (req.ret)
7306 		return req.ret;
7307 
7308 	mutex_lock(&uclamp_mutex);
7309 	rcu_read_lock();
7310 
7311 	tg = css_tg(of_css(of));
7312 	if (tg->uclamp_req[clamp_id].value != req.util)
7313 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7314 
7315 	/*
7316 	 * Because of not recoverable conversion rounding we keep track of the
7317 	 * exact requested value
7318 	 */
7319 	tg->uclamp_pct[clamp_id] = req.percent;
7320 
7321 	/* Update effective clamps to track the most restrictive value */
7322 	cpu_util_update_eff(of_css(of));
7323 
7324 	rcu_read_unlock();
7325 	mutex_unlock(&uclamp_mutex);
7326 
7327 	return nbytes;
7328 }
7329 
7330 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7331 				    char *buf, size_t nbytes,
7332 				    loff_t off)
7333 {
7334 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7335 }
7336 
7337 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7338 				    char *buf, size_t nbytes,
7339 				    loff_t off)
7340 {
7341 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7342 }
7343 
7344 static inline void cpu_uclamp_print(struct seq_file *sf,
7345 				    enum uclamp_id clamp_id)
7346 {
7347 	struct task_group *tg;
7348 	u64 util_clamp;
7349 	u64 percent;
7350 	u32 rem;
7351 
7352 	rcu_read_lock();
7353 	tg = css_tg(seq_css(sf));
7354 	util_clamp = tg->uclamp_req[clamp_id].value;
7355 	rcu_read_unlock();
7356 
7357 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7358 		seq_puts(sf, "max\n");
7359 		return;
7360 	}
7361 
7362 	percent = tg->uclamp_pct[clamp_id];
7363 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7364 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7365 }
7366 
7367 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7368 {
7369 	cpu_uclamp_print(sf, UCLAMP_MIN);
7370 	return 0;
7371 }
7372 
7373 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7374 {
7375 	cpu_uclamp_print(sf, UCLAMP_MAX);
7376 	return 0;
7377 }
7378 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7379 
7380 #ifdef CONFIG_FAIR_GROUP_SCHED
7381 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7382 				struct cftype *cftype, u64 shareval)
7383 {
7384 	if (shareval > scale_load_down(ULONG_MAX))
7385 		shareval = MAX_SHARES;
7386 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7387 }
7388 
7389 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7390 			       struct cftype *cft)
7391 {
7392 	struct task_group *tg = css_tg(css);
7393 
7394 	return (u64) scale_load_down(tg->shares);
7395 }
7396 
7397 #ifdef CONFIG_CFS_BANDWIDTH
7398 static DEFINE_MUTEX(cfs_constraints_mutex);
7399 
7400 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7401 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7402 
7403 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7404 
7405 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7406 {
7407 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7408 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7409 
7410 	if (tg == &root_task_group)
7411 		return -EINVAL;
7412 
7413 	/*
7414 	 * Ensure we have at some amount of bandwidth every period.  This is
7415 	 * to prevent reaching a state of large arrears when throttled via
7416 	 * entity_tick() resulting in prolonged exit starvation.
7417 	 */
7418 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7419 		return -EINVAL;
7420 
7421 	/*
7422 	 * Likewise, bound things on the otherside by preventing insane quota
7423 	 * periods.  This also allows us to normalize in computing quota
7424 	 * feasibility.
7425 	 */
7426 	if (period > max_cfs_quota_period)
7427 		return -EINVAL;
7428 
7429 	/*
7430 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7431 	 * unthrottle_offline_cfs_rqs().
7432 	 */
7433 	get_online_cpus();
7434 	mutex_lock(&cfs_constraints_mutex);
7435 	ret = __cfs_schedulable(tg, period, quota);
7436 	if (ret)
7437 		goto out_unlock;
7438 
7439 	runtime_enabled = quota != RUNTIME_INF;
7440 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7441 	/*
7442 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7443 	 * before making related changes, and on->off must occur afterwards
7444 	 */
7445 	if (runtime_enabled && !runtime_was_enabled)
7446 		cfs_bandwidth_usage_inc();
7447 	raw_spin_lock_irq(&cfs_b->lock);
7448 	cfs_b->period = ns_to_ktime(period);
7449 	cfs_b->quota = quota;
7450 
7451 	__refill_cfs_bandwidth_runtime(cfs_b);
7452 
7453 	/* Restart the period timer (if active) to handle new period expiry: */
7454 	if (runtime_enabled)
7455 		start_cfs_bandwidth(cfs_b);
7456 
7457 	raw_spin_unlock_irq(&cfs_b->lock);
7458 
7459 	for_each_online_cpu(i) {
7460 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7461 		struct rq *rq = cfs_rq->rq;
7462 		struct rq_flags rf;
7463 
7464 		rq_lock_irq(rq, &rf);
7465 		cfs_rq->runtime_enabled = runtime_enabled;
7466 		cfs_rq->runtime_remaining = 0;
7467 
7468 		if (cfs_rq->throttled)
7469 			unthrottle_cfs_rq(cfs_rq);
7470 		rq_unlock_irq(rq, &rf);
7471 	}
7472 	if (runtime_was_enabled && !runtime_enabled)
7473 		cfs_bandwidth_usage_dec();
7474 out_unlock:
7475 	mutex_unlock(&cfs_constraints_mutex);
7476 	put_online_cpus();
7477 
7478 	return ret;
7479 }
7480 
7481 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7482 {
7483 	u64 quota, period;
7484 
7485 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7486 	if (cfs_quota_us < 0)
7487 		quota = RUNTIME_INF;
7488 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7489 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7490 	else
7491 		return -EINVAL;
7492 
7493 	return tg_set_cfs_bandwidth(tg, period, quota);
7494 }
7495 
7496 static long tg_get_cfs_quota(struct task_group *tg)
7497 {
7498 	u64 quota_us;
7499 
7500 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7501 		return -1;
7502 
7503 	quota_us = tg->cfs_bandwidth.quota;
7504 	do_div(quota_us, NSEC_PER_USEC);
7505 
7506 	return quota_us;
7507 }
7508 
7509 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7510 {
7511 	u64 quota, period;
7512 
7513 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7514 		return -EINVAL;
7515 
7516 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7517 	quota = tg->cfs_bandwidth.quota;
7518 
7519 	return tg_set_cfs_bandwidth(tg, period, quota);
7520 }
7521 
7522 static long tg_get_cfs_period(struct task_group *tg)
7523 {
7524 	u64 cfs_period_us;
7525 
7526 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7527 	do_div(cfs_period_us, NSEC_PER_USEC);
7528 
7529 	return cfs_period_us;
7530 }
7531 
7532 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7533 				  struct cftype *cft)
7534 {
7535 	return tg_get_cfs_quota(css_tg(css));
7536 }
7537 
7538 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7539 				   struct cftype *cftype, s64 cfs_quota_us)
7540 {
7541 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7542 }
7543 
7544 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7545 				   struct cftype *cft)
7546 {
7547 	return tg_get_cfs_period(css_tg(css));
7548 }
7549 
7550 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7551 				    struct cftype *cftype, u64 cfs_period_us)
7552 {
7553 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7554 }
7555 
7556 struct cfs_schedulable_data {
7557 	struct task_group *tg;
7558 	u64 period, quota;
7559 };
7560 
7561 /*
7562  * normalize group quota/period to be quota/max_period
7563  * note: units are usecs
7564  */
7565 static u64 normalize_cfs_quota(struct task_group *tg,
7566 			       struct cfs_schedulable_data *d)
7567 {
7568 	u64 quota, period;
7569 
7570 	if (tg == d->tg) {
7571 		period = d->period;
7572 		quota = d->quota;
7573 	} else {
7574 		period = tg_get_cfs_period(tg);
7575 		quota = tg_get_cfs_quota(tg);
7576 	}
7577 
7578 	/* note: these should typically be equivalent */
7579 	if (quota == RUNTIME_INF || quota == -1)
7580 		return RUNTIME_INF;
7581 
7582 	return to_ratio(period, quota);
7583 }
7584 
7585 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7586 {
7587 	struct cfs_schedulable_data *d = data;
7588 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7589 	s64 quota = 0, parent_quota = -1;
7590 
7591 	if (!tg->parent) {
7592 		quota = RUNTIME_INF;
7593 	} else {
7594 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7595 
7596 		quota = normalize_cfs_quota(tg, d);
7597 		parent_quota = parent_b->hierarchical_quota;
7598 
7599 		/*
7600 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7601 		 * always take the min.  On cgroup1, only inherit when no
7602 		 * limit is set:
7603 		 */
7604 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7605 			quota = min(quota, parent_quota);
7606 		} else {
7607 			if (quota == RUNTIME_INF)
7608 				quota = parent_quota;
7609 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7610 				return -EINVAL;
7611 		}
7612 	}
7613 	cfs_b->hierarchical_quota = quota;
7614 
7615 	return 0;
7616 }
7617 
7618 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7619 {
7620 	int ret;
7621 	struct cfs_schedulable_data data = {
7622 		.tg = tg,
7623 		.period = period,
7624 		.quota = quota,
7625 	};
7626 
7627 	if (quota != RUNTIME_INF) {
7628 		do_div(data.period, NSEC_PER_USEC);
7629 		do_div(data.quota, NSEC_PER_USEC);
7630 	}
7631 
7632 	rcu_read_lock();
7633 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7634 	rcu_read_unlock();
7635 
7636 	return ret;
7637 }
7638 
7639 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7640 {
7641 	struct task_group *tg = css_tg(seq_css(sf));
7642 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7643 
7644 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7645 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7646 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7647 
7648 	if (schedstat_enabled() && tg != &root_task_group) {
7649 		u64 ws = 0;
7650 		int i;
7651 
7652 		for_each_possible_cpu(i)
7653 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7654 
7655 		seq_printf(sf, "wait_sum %llu\n", ws);
7656 	}
7657 
7658 	return 0;
7659 }
7660 #endif /* CONFIG_CFS_BANDWIDTH */
7661 #endif /* CONFIG_FAIR_GROUP_SCHED */
7662 
7663 #ifdef CONFIG_RT_GROUP_SCHED
7664 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7665 				struct cftype *cft, s64 val)
7666 {
7667 	return sched_group_set_rt_runtime(css_tg(css), val);
7668 }
7669 
7670 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7671 			       struct cftype *cft)
7672 {
7673 	return sched_group_rt_runtime(css_tg(css));
7674 }
7675 
7676 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7677 				    struct cftype *cftype, u64 rt_period_us)
7678 {
7679 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7680 }
7681 
7682 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7683 				   struct cftype *cft)
7684 {
7685 	return sched_group_rt_period(css_tg(css));
7686 }
7687 #endif /* CONFIG_RT_GROUP_SCHED */
7688 
7689 static struct cftype cpu_legacy_files[] = {
7690 #ifdef CONFIG_FAIR_GROUP_SCHED
7691 	{
7692 		.name = "shares",
7693 		.read_u64 = cpu_shares_read_u64,
7694 		.write_u64 = cpu_shares_write_u64,
7695 	},
7696 #endif
7697 #ifdef CONFIG_CFS_BANDWIDTH
7698 	{
7699 		.name = "cfs_quota_us",
7700 		.read_s64 = cpu_cfs_quota_read_s64,
7701 		.write_s64 = cpu_cfs_quota_write_s64,
7702 	},
7703 	{
7704 		.name = "cfs_period_us",
7705 		.read_u64 = cpu_cfs_period_read_u64,
7706 		.write_u64 = cpu_cfs_period_write_u64,
7707 	},
7708 	{
7709 		.name = "stat",
7710 		.seq_show = cpu_cfs_stat_show,
7711 	},
7712 #endif
7713 #ifdef CONFIG_RT_GROUP_SCHED
7714 	{
7715 		.name = "rt_runtime_us",
7716 		.read_s64 = cpu_rt_runtime_read,
7717 		.write_s64 = cpu_rt_runtime_write,
7718 	},
7719 	{
7720 		.name = "rt_period_us",
7721 		.read_u64 = cpu_rt_period_read_uint,
7722 		.write_u64 = cpu_rt_period_write_uint,
7723 	},
7724 #endif
7725 #ifdef CONFIG_UCLAMP_TASK_GROUP
7726 	{
7727 		.name = "uclamp.min",
7728 		.flags = CFTYPE_NOT_ON_ROOT,
7729 		.seq_show = cpu_uclamp_min_show,
7730 		.write = cpu_uclamp_min_write,
7731 	},
7732 	{
7733 		.name = "uclamp.max",
7734 		.flags = CFTYPE_NOT_ON_ROOT,
7735 		.seq_show = cpu_uclamp_max_show,
7736 		.write = cpu_uclamp_max_write,
7737 	},
7738 #endif
7739 	{ }	/* Terminate */
7740 };
7741 
7742 static int cpu_extra_stat_show(struct seq_file *sf,
7743 			       struct cgroup_subsys_state *css)
7744 {
7745 #ifdef CONFIG_CFS_BANDWIDTH
7746 	{
7747 		struct task_group *tg = css_tg(css);
7748 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7749 		u64 throttled_usec;
7750 
7751 		throttled_usec = cfs_b->throttled_time;
7752 		do_div(throttled_usec, NSEC_PER_USEC);
7753 
7754 		seq_printf(sf, "nr_periods %d\n"
7755 			   "nr_throttled %d\n"
7756 			   "throttled_usec %llu\n",
7757 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7758 			   throttled_usec);
7759 	}
7760 #endif
7761 	return 0;
7762 }
7763 
7764 #ifdef CONFIG_FAIR_GROUP_SCHED
7765 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7766 			       struct cftype *cft)
7767 {
7768 	struct task_group *tg = css_tg(css);
7769 	u64 weight = scale_load_down(tg->shares);
7770 
7771 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7772 }
7773 
7774 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7775 				struct cftype *cft, u64 weight)
7776 {
7777 	/*
7778 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7779 	 * values which are 1, 100 and 10000 respectively.  While it loses
7780 	 * a bit of range on both ends, it maps pretty well onto the shares
7781 	 * value used by scheduler and the round-trip conversions preserve
7782 	 * the original value over the entire range.
7783 	 */
7784 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7785 		return -ERANGE;
7786 
7787 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7788 
7789 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7790 }
7791 
7792 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7793 				    struct cftype *cft)
7794 {
7795 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7796 	int last_delta = INT_MAX;
7797 	int prio, delta;
7798 
7799 	/* find the closest nice value to the current weight */
7800 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7801 		delta = abs(sched_prio_to_weight[prio] - weight);
7802 		if (delta >= last_delta)
7803 			break;
7804 		last_delta = delta;
7805 	}
7806 
7807 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7808 }
7809 
7810 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7811 				     struct cftype *cft, s64 nice)
7812 {
7813 	unsigned long weight;
7814 	int idx;
7815 
7816 	if (nice < MIN_NICE || nice > MAX_NICE)
7817 		return -ERANGE;
7818 
7819 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7820 	idx = array_index_nospec(idx, 40);
7821 	weight = sched_prio_to_weight[idx];
7822 
7823 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7824 }
7825 #endif
7826 
7827 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7828 						  long period, long quota)
7829 {
7830 	if (quota < 0)
7831 		seq_puts(sf, "max");
7832 	else
7833 		seq_printf(sf, "%ld", quota);
7834 
7835 	seq_printf(sf, " %ld\n", period);
7836 }
7837 
7838 /* caller should put the current value in *@periodp before calling */
7839 static int __maybe_unused cpu_period_quota_parse(char *buf,
7840 						 u64 *periodp, u64 *quotap)
7841 {
7842 	char tok[21];	/* U64_MAX */
7843 
7844 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7845 		return -EINVAL;
7846 
7847 	*periodp *= NSEC_PER_USEC;
7848 
7849 	if (sscanf(tok, "%llu", quotap))
7850 		*quotap *= NSEC_PER_USEC;
7851 	else if (!strcmp(tok, "max"))
7852 		*quotap = RUNTIME_INF;
7853 	else
7854 		return -EINVAL;
7855 
7856 	return 0;
7857 }
7858 
7859 #ifdef CONFIG_CFS_BANDWIDTH
7860 static int cpu_max_show(struct seq_file *sf, void *v)
7861 {
7862 	struct task_group *tg = css_tg(seq_css(sf));
7863 
7864 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7865 	return 0;
7866 }
7867 
7868 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7869 			     char *buf, size_t nbytes, loff_t off)
7870 {
7871 	struct task_group *tg = css_tg(of_css(of));
7872 	u64 period = tg_get_cfs_period(tg);
7873 	u64 quota;
7874 	int ret;
7875 
7876 	ret = cpu_period_quota_parse(buf, &period, &quota);
7877 	if (!ret)
7878 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7879 	return ret ?: nbytes;
7880 }
7881 #endif
7882 
7883 static struct cftype cpu_files[] = {
7884 #ifdef CONFIG_FAIR_GROUP_SCHED
7885 	{
7886 		.name = "weight",
7887 		.flags = CFTYPE_NOT_ON_ROOT,
7888 		.read_u64 = cpu_weight_read_u64,
7889 		.write_u64 = cpu_weight_write_u64,
7890 	},
7891 	{
7892 		.name = "weight.nice",
7893 		.flags = CFTYPE_NOT_ON_ROOT,
7894 		.read_s64 = cpu_weight_nice_read_s64,
7895 		.write_s64 = cpu_weight_nice_write_s64,
7896 	},
7897 #endif
7898 #ifdef CONFIG_CFS_BANDWIDTH
7899 	{
7900 		.name = "max",
7901 		.flags = CFTYPE_NOT_ON_ROOT,
7902 		.seq_show = cpu_max_show,
7903 		.write = cpu_max_write,
7904 	},
7905 #endif
7906 #ifdef CONFIG_UCLAMP_TASK_GROUP
7907 	{
7908 		.name = "uclamp.min",
7909 		.flags = CFTYPE_NOT_ON_ROOT,
7910 		.seq_show = cpu_uclamp_min_show,
7911 		.write = cpu_uclamp_min_write,
7912 	},
7913 	{
7914 		.name = "uclamp.max",
7915 		.flags = CFTYPE_NOT_ON_ROOT,
7916 		.seq_show = cpu_uclamp_max_show,
7917 		.write = cpu_uclamp_max_write,
7918 	},
7919 #endif
7920 	{ }	/* terminate */
7921 };
7922 
7923 struct cgroup_subsys cpu_cgrp_subsys = {
7924 	.css_alloc	= cpu_cgroup_css_alloc,
7925 	.css_online	= cpu_cgroup_css_online,
7926 	.css_released	= cpu_cgroup_css_released,
7927 	.css_free	= cpu_cgroup_css_free,
7928 	.css_extra_stat_show = cpu_extra_stat_show,
7929 	.fork		= cpu_cgroup_fork,
7930 	.can_attach	= cpu_cgroup_can_attach,
7931 	.attach		= cpu_cgroup_attach,
7932 	.legacy_cftypes	= cpu_legacy_files,
7933 	.dfl_cftypes	= cpu_files,
7934 	.early_init	= true,
7935 	.threaded	= true,
7936 };
7937 
7938 #endif	/* CONFIG_CGROUP_SCHED */
7939 
7940 void dump_cpu_task(int cpu)
7941 {
7942 	pr_info("Task dump for CPU %d:\n", cpu);
7943 	sched_show_task(cpu_curr(cpu));
7944 }
7945 
7946 /*
7947  * Nice levels are multiplicative, with a gentle 10% change for every
7948  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7949  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7950  * that remained on nice 0.
7951  *
7952  * The "10% effect" is relative and cumulative: from _any_ nice level,
7953  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7954  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7955  * If a task goes up by ~10% and another task goes down by ~10% then
7956  * the relative distance between them is ~25%.)
7957  */
7958 const int sched_prio_to_weight[40] = {
7959  /* -20 */     88761,     71755,     56483,     46273,     36291,
7960  /* -15 */     29154,     23254,     18705,     14949,     11916,
7961  /* -10 */      9548,      7620,      6100,      4904,      3906,
7962  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7963  /*   0 */      1024,       820,       655,       526,       423,
7964  /*   5 */       335,       272,       215,       172,       137,
7965  /*  10 */       110,        87,        70,        56,        45,
7966  /*  15 */        36,        29,        23,        18,        15,
7967 };
7968 
7969 /*
7970  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7971  *
7972  * In cases where the weight does not change often, we can use the
7973  * precalculated inverse to speed up arithmetics by turning divisions
7974  * into multiplications:
7975  */
7976 const u32 sched_prio_to_wmult[40] = {
7977  /* -20 */     48388,     59856,     76040,     92818,    118348,
7978  /* -15 */    147320,    184698,    229616,    287308,    360437,
7979  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7980  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7981  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7982  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7983  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7984  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7985 };
7986 
7987 #undef CREATE_TRACE_POINTS
7988