1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 #include <linux/blkdev.h> 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 45 46 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 47 48 #ifdef CONFIG_SCHED_DEBUG 49 /* 50 * Debugging: various feature bits 51 * 52 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 53 * sysctl_sched_features, defined in sched.h, to allow constants propagation 54 * at compile time and compiler optimization based on features default. 55 */ 56 #define SCHED_FEAT(name, enabled) \ 57 (1UL << __SCHED_FEAT_##name) * enabled | 58 const_debug unsigned int sysctl_sched_features = 59 #include "features.h" 60 0; 61 #undef SCHED_FEAT 62 63 /* 64 * Print a warning if need_resched is set for the given duration (if 65 * LATENCY_WARN is enabled). 66 * 67 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 68 * per boot. 69 */ 70 __read_mostly int sysctl_resched_latency_warn_ms = 100; 71 __read_mostly int sysctl_resched_latency_warn_once = 1; 72 #endif /* CONFIG_SCHED_DEBUG */ 73 74 /* 75 * Number of tasks to iterate in a single balance run. 76 * Limited because this is done with IRQs disabled. 77 */ 78 #ifdef CONFIG_PREEMPT_RT 79 const_debug unsigned int sysctl_sched_nr_migrate = 8; 80 #else 81 const_debug unsigned int sysctl_sched_nr_migrate = 32; 82 #endif 83 84 /* 85 * period over which we measure -rt task CPU usage in us. 86 * default: 1s 87 */ 88 unsigned int sysctl_sched_rt_period = 1000000; 89 90 __read_mostly int scheduler_running; 91 92 #ifdef CONFIG_SCHED_CORE 93 94 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 95 96 /* kernel prio, less is more */ 97 static inline int __task_prio(struct task_struct *p) 98 { 99 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 100 return -2; 101 102 if (rt_prio(p->prio)) /* includes deadline */ 103 return p->prio; /* [-1, 99] */ 104 105 if (p->sched_class == &idle_sched_class) 106 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 107 108 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 109 } 110 111 /* 112 * l(a,b) 113 * le(a,b) := !l(b,a) 114 * g(a,b) := l(b,a) 115 * ge(a,b) := !l(a,b) 116 */ 117 118 /* real prio, less is less */ 119 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 120 { 121 122 int pa = __task_prio(a), pb = __task_prio(b); 123 124 if (-pa < -pb) 125 return true; 126 127 if (-pb < -pa) 128 return false; 129 130 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 131 return !dl_time_before(a->dl.deadline, b->dl.deadline); 132 133 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 134 return cfs_prio_less(a, b, in_fi); 135 136 return false; 137 } 138 139 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 140 { 141 if (a->core_cookie < b->core_cookie) 142 return true; 143 144 if (a->core_cookie > b->core_cookie) 145 return false; 146 147 /* flip prio, so high prio is leftmost */ 148 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 149 return true; 150 151 return false; 152 } 153 154 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 155 156 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 157 { 158 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 159 } 160 161 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 162 { 163 const struct task_struct *p = __node_2_sc(node); 164 unsigned long cookie = (unsigned long)key; 165 166 if (cookie < p->core_cookie) 167 return -1; 168 169 if (cookie > p->core_cookie) 170 return 1; 171 172 return 0; 173 } 174 175 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 176 { 177 rq->core->core_task_seq++; 178 179 if (!p->core_cookie) 180 return; 181 182 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 183 } 184 185 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 186 { 187 rq->core->core_task_seq++; 188 189 if (sched_core_enqueued(p)) { 190 rb_erase(&p->core_node, &rq->core_tree); 191 RB_CLEAR_NODE(&p->core_node); 192 } 193 194 /* 195 * Migrating the last task off the cpu, with the cpu in forced idle 196 * state. Reschedule to create an accounting edge for forced idle, 197 * and re-examine whether the core is still in forced idle state. 198 */ 199 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 200 rq->core->core_forceidle_count && rq->curr == rq->idle) 201 resched_curr(rq); 202 } 203 204 /* 205 * Find left-most (aka, highest priority) task matching @cookie. 206 */ 207 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 208 { 209 struct rb_node *node; 210 211 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 212 /* 213 * The idle task always matches any cookie! 214 */ 215 if (!node) 216 return idle_sched_class.pick_task(rq); 217 218 return __node_2_sc(node); 219 } 220 221 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 222 { 223 struct rb_node *node = &p->core_node; 224 225 node = rb_next(node); 226 if (!node) 227 return NULL; 228 229 p = container_of(node, struct task_struct, core_node); 230 if (p->core_cookie != cookie) 231 return NULL; 232 233 return p; 234 } 235 236 /* 237 * Magic required such that: 238 * 239 * raw_spin_rq_lock(rq); 240 * ... 241 * raw_spin_rq_unlock(rq); 242 * 243 * ends up locking and unlocking the _same_ lock, and all CPUs 244 * always agree on what rq has what lock. 245 * 246 * XXX entirely possible to selectively enable cores, don't bother for now. 247 */ 248 249 static DEFINE_MUTEX(sched_core_mutex); 250 static atomic_t sched_core_count; 251 static struct cpumask sched_core_mask; 252 253 static void sched_core_lock(int cpu, unsigned long *flags) 254 { 255 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 256 int t, i = 0; 257 258 local_irq_save(*flags); 259 for_each_cpu(t, smt_mask) 260 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 261 } 262 263 static void sched_core_unlock(int cpu, unsigned long *flags) 264 { 265 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 266 int t; 267 268 for_each_cpu(t, smt_mask) 269 raw_spin_unlock(&cpu_rq(t)->__lock); 270 local_irq_restore(*flags); 271 } 272 273 static void __sched_core_flip(bool enabled) 274 { 275 unsigned long flags; 276 int cpu, t; 277 278 cpus_read_lock(); 279 280 /* 281 * Toggle the online cores, one by one. 282 */ 283 cpumask_copy(&sched_core_mask, cpu_online_mask); 284 for_each_cpu(cpu, &sched_core_mask) { 285 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 286 287 sched_core_lock(cpu, &flags); 288 289 for_each_cpu(t, smt_mask) 290 cpu_rq(t)->core_enabled = enabled; 291 292 cpu_rq(cpu)->core->core_forceidle_start = 0; 293 294 sched_core_unlock(cpu, &flags); 295 296 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 297 } 298 299 /* 300 * Toggle the offline CPUs. 301 */ 302 cpumask_copy(&sched_core_mask, cpu_possible_mask); 303 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask); 304 305 for_each_cpu(cpu, &sched_core_mask) 306 cpu_rq(cpu)->core_enabled = enabled; 307 308 cpus_read_unlock(); 309 } 310 311 static void sched_core_assert_empty(void) 312 { 313 int cpu; 314 315 for_each_possible_cpu(cpu) 316 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 317 } 318 319 static void __sched_core_enable(void) 320 { 321 static_branch_enable(&__sched_core_enabled); 322 /* 323 * Ensure all previous instances of raw_spin_rq_*lock() have finished 324 * and future ones will observe !sched_core_disabled(). 325 */ 326 synchronize_rcu(); 327 __sched_core_flip(true); 328 sched_core_assert_empty(); 329 } 330 331 static void __sched_core_disable(void) 332 { 333 sched_core_assert_empty(); 334 __sched_core_flip(false); 335 static_branch_disable(&__sched_core_enabled); 336 } 337 338 void sched_core_get(void) 339 { 340 if (atomic_inc_not_zero(&sched_core_count)) 341 return; 342 343 mutex_lock(&sched_core_mutex); 344 if (!atomic_read(&sched_core_count)) 345 __sched_core_enable(); 346 347 smp_mb__before_atomic(); 348 atomic_inc(&sched_core_count); 349 mutex_unlock(&sched_core_mutex); 350 } 351 352 static void __sched_core_put(struct work_struct *work) 353 { 354 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 355 __sched_core_disable(); 356 mutex_unlock(&sched_core_mutex); 357 } 358 } 359 360 void sched_core_put(void) 361 { 362 static DECLARE_WORK(_work, __sched_core_put); 363 364 /* 365 * "There can be only one" 366 * 367 * Either this is the last one, or we don't actually need to do any 368 * 'work'. If it is the last *again*, we rely on 369 * WORK_STRUCT_PENDING_BIT. 370 */ 371 if (!atomic_add_unless(&sched_core_count, -1, 1)) 372 schedule_work(&_work); 373 } 374 375 #else /* !CONFIG_SCHED_CORE */ 376 377 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 378 static inline void 379 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 380 381 #endif /* CONFIG_SCHED_CORE */ 382 383 /* 384 * part of the period that we allow rt tasks to run in us. 385 * default: 0.95s 386 */ 387 int sysctl_sched_rt_runtime = 950000; 388 389 390 /* 391 * Serialization rules: 392 * 393 * Lock order: 394 * 395 * p->pi_lock 396 * rq->lock 397 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 398 * 399 * rq1->lock 400 * rq2->lock where: rq1 < rq2 401 * 402 * Regular state: 403 * 404 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 405 * local CPU's rq->lock, it optionally removes the task from the runqueue and 406 * always looks at the local rq data structures to find the most eligible task 407 * to run next. 408 * 409 * Task enqueue is also under rq->lock, possibly taken from another CPU. 410 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 411 * the local CPU to avoid bouncing the runqueue state around [ see 412 * ttwu_queue_wakelist() ] 413 * 414 * Task wakeup, specifically wakeups that involve migration, are horribly 415 * complicated to avoid having to take two rq->locks. 416 * 417 * Special state: 418 * 419 * System-calls and anything external will use task_rq_lock() which acquires 420 * both p->pi_lock and rq->lock. As a consequence the state they change is 421 * stable while holding either lock: 422 * 423 * - sched_setaffinity()/ 424 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 425 * - set_user_nice(): p->se.load, p->*prio 426 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 427 * p->se.load, p->rt_priority, 428 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 429 * - sched_setnuma(): p->numa_preferred_nid 430 * - sched_move_task()/ 431 * cpu_cgroup_fork(): p->sched_task_group 432 * - uclamp_update_active() p->uclamp* 433 * 434 * p->state <- TASK_*: 435 * 436 * is changed locklessly using set_current_state(), __set_current_state() or 437 * set_special_state(), see their respective comments, or by 438 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 439 * concurrent self. 440 * 441 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 442 * 443 * is set by activate_task() and cleared by deactivate_task(), under 444 * rq->lock. Non-zero indicates the task is runnable, the special 445 * ON_RQ_MIGRATING state is used for migration without holding both 446 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 447 * 448 * p->on_cpu <- { 0, 1 }: 449 * 450 * is set by prepare_task() and cleared by finish_task() such that it will be 451 * set before p is scheduled-in and cleared after p is scheduled-out, both 452 * under rq->lock. Non-zero indicates the task is running on its CPU. 453 * 454 * [ The astute reader will observe that it is possible for two tasks on one 455 * CPU to have ->on_cpu = 1 at the same time. ] 456 * 457 * task_cpu(p): is changed by set_task_cpu(), the rules are: 458 * 459 * - Don't call set_task_cpu() on a blocked task: 460 * 461 * We don't care what CPU we're not running on, this simplifies hotplug, 462 * the CPU assignment of blocked tasks isn't required to be valid. 463 * 464 * - for try_to_wake_up(), called under p->pi_lock: 465 * 466 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 467 * 468 * - for migration called under rq->lock: 469 * [ see task_on_rq_migrating() in task_rq_lock() ] 470 * 471 * o move_queued_task() 472 * o detach_task() 473 * 474 * - for migration called under double_rq_lock(): 475 * 476 * o __migrate_swap_task() 477 * o push_rt_task() / pull_rt_task() 478 * o push_dl_task() / pull_dl_task() 479 * o dl_task_offline_migration() 480 * 481 */ 482 483 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 484 { 485 raw_spinlock_t *lock; 486 487 /* Matches synchronize_rcu() in __sched_core_enable() */ 488 preempt_disable(); 489 if (sched_core_disabled()) { 490 raw_spin_lock_nested(&rq->__lock, subclass); 491 /* preempt_count *MUST* be > 1 */ 492 preempt_enable_no_resched(); 493 return; 494 } 495 496 for (;;) { 497 lock = __rq_lockp(rq); 498 raw_spin_lock_nested(lock, subclass); 499 if (likely(lock == __rq_lockp(rq))) { 500 /* preempt_count *MUST* be > 1 */ 501 preempt_enable_no_resched(); 502 return; 503 } 504 raw_spin_unlock(lock); 505 } 506 } 507 508 bool raw_spin_rq_trylock(struct rq *rq) 509 { 510 raw_spinlock_t *lock; 511 bool ret; 512 513 /* Matches synchronize_rcu() in __sched_core_enable() */ 514 preempt_disable(); 515 if (sched_core_disabled()) { 516 ret = raw_spin_trylock(&rq->__lock); 517 preempt_enable(); 518 return ret; 519 } 520 521 for (;;) { 522 lock = __rq_lockp(rq); 523 ret = raw_spin_trylock(lock); 524 if (!ret || (likely(lock == __rq_lockp(rq)))) { 525 preempt_enable(); 526 return ret; 527 } 528 raw_spin_unlock(lock); 529 } 530 } 531 532 void raw_spin_rq_unlock(struct rq *rq) 533 { 534 raw_spin_unlock(rq_lockp(rq)); 535 } 536 537 #ifdef CONFIG_SMP 538 /* 539 * double_rq_lock - safely lock two runqueues 540 */ 541 void double_rq_lock(struct rq *rq1, struct rq *rq2) 542 { 543 lockdep_assert_irqs_disabled(); 544 545 if (rq_order_less(rq2, rq1)) 546 swap(rq1, rq2); 547 548 raw_spin_rq_lock(rq1); 549 if (__rq_lockp(rq1) == __rq_lockp(rq2)) 550 return; 551 552 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 553 } 554 #endif 555 556 /* 557 * __task_rq_lock - lock the rq @p resides on. 558 */ 559 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 560 __acquires(rq->lock) 561 { 562 struct rq *rq; 563 564 lockdep_assert_held(&p->pi_lock); 565 566 for (;;) { 567 rq = task_rq(p); 568 raw_spin_rq_lock(rq); 569 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 570 rq_pin_lock(rq, rf); 571 return rq; 572 } 573 raw_spin_rq_unlock(rq); 574 575 while (unlikely(task_on_rq_migrating(p))) 576 cpu_relax(); 577 } 578 } 579 580 /* 581 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 582 */ 583 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 584 __acquires(p->pi_lock) 585 __acquires(rq->lock) 586 { 587 struct rq *rq; 588 589 for (;;) { 590 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 591 rq = task_rq(p); 592 raw_spin_rq_lock(rq); 593 /* 594 * move_queued_task() task_rq_lock() 595 * 596 * ACQUIRE (rq->lock) 597 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 598 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 599 * [S] ->cpu = new_cpu [L] task_rq() 600 * [L] ->on_rq 601 * RELEASE (rq->lock) 602 * 603 * If we observe the old CPU in task_rq_lock(), the acquire of 604 * the old rq->lock will fully serialize against the stores. 605 * 606 * If we observe the new CPU in task_rq_lock(), the address 607 * dependency headed by '[L] rq = task_rq()' and the acquire 608 * will pair with the WMB to ensure we then also see migrating. 609 */ 610 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 611 rq_pin_lock(rq, rf); 612 return rq; 613 } 614 raw_spin_rq_unlock(rq); 615 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 616 617 while (unlikely(task_on_rq_migrating(p))) 618 cpu_relax(); 619 } 620 } 621 622 /* 623 * RQ-clock updating methods: 624 */ 625 626 static void update_rq_clock_task(struct rq *rq, s64 delta) 627 { 628 /* 629 * In theory, the compile should just see 0 here, and optimize out the call 630 * to sched_rt_avg_update. But I don't trust it... 631 */ 632 s64 __maybe_unused steal = 0, irq_delta = 0; 633 634 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 635 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 636 637 /* 638 * Since irq_time is only updated on {soft,}irq_exit, we might run into 639 * this case when a previous update_rq_clock() happened inside a 640 * {soft,}irq region. 641 * 642 * When this happens, we stop ->clock_task and only update the 643 * prev_irq_time stamp to account for the part that fit, so that a next 644 * update will consume the rest. This ensures ->clock_task is 645 * monotonic. 646 * 647 * It does however cause some slight miss-attribution of {soft,}irq 648 * time, a more accurate solution would be to update the irq_time using 649 * the current rq->clock timestamp, except that would require using 650 * atomic ops. 651 */ 652 if (irq_delta > delta) 653 irq_delta = delta; 654 655 rq->prev_irq_time += irq_delta; 656 delta -= irq_delta; 657 #endif 658 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 659 if (static_key_false((¶virt_steal_rq_enabled))) { 660 steal = paravirt_steal_clock(cpu_of(rq)); 661 steal -= rq->prev_steal_time_rq; 662 663 if (unlikely(steal > delta)) 664 steal = delta; 665 666 rq->prev_steal_time_rq += steal; 667 delta -= steal; 668 } 669 #endif 670 671 rq->clock_task += delta; 672 673 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 674 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 675 update_irq_load_avg(rq, irq_delta + steal); 676 #endif 677 update_rq_clock_pelt(rq, delta); 678 } 679 680 void update_rq_clock(struct rq *rq) 681 { 682 s64 delta; 683 684 lockdep_assert_rq_held(rq); 685 686 if (rq->clock_update_flags & RQCF_ACT_SKIP) 687 return; 688 689 #ifdef CONFIG_SCHED_DEBUG 690 if (sched_feat(WARN_DOUBLE_CLOCK)) 691 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 692 rq->clock_update_flags |= RQCF_UPDATED; 693 #endif 694 695 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 696 if (delta < 0) 697 return; 698 rq->clock += delta; 699 update_rq_clock_task(rq, delta); 700 } 701 702 #ifdef CONFIG_SCHED_HRTICK 703 /* 704 * Use HR-timers to deliver accurate preemption points. 705 */ 706 707 static void hrtick_clear(struct rq *rq) 708 { 709 if (hrtimer_active(&rq->hrtick_timer)) 710 hrtimer_cancel(&rq->hrtick_timer); 711 } 712 713 /* 714 * High-resolution timer tick. 715 * Runs from hardirq context with interrupts disabled. 716 */ 717 static enum hrtimer_restart hrtick(struct hrtimer *timer) 718 { 719 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 720 struct rq_flags rf; 721 722 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 723 724 rq_lock(rq, &rf); 725 update_rq_clock(rq); 726 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 727 rq_unlock(rq, &rf); 728 729 return HRTIMER_NORESTART; 730 } 731 732 #ifdef CONFIG_SMP 733 734 static void __hrtick_restart(struct rq *rq) 735 { 736 struct hrtimer *timer = &rq->hrtick_timer; 737 ktime_t time = rq->hrtick_time; 738 739 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 740 } 741 742 /* 743 * called from hardirq (IPI) context 744 */ 745 static void __hrtick_start(void *arg) 746 { 747 struct rq *rq = arg; 748 struct rq_flags rf; 749 750 rq_lock(rq, &rf); 751 __hrtick_restart(rq); 752 rq_unlock(rq, &rf); 753 } 754 755 /* 756 * Called to set the hrtick timer state. 757 * 758 * called with rq->lock held and irqs disabled 759 */ 760 void hrtick_start(struct rq *rq, u64 delay) 761 { 762 struct hrtimer *timer = &rq->hrtick_timer; 763 s64 delta; 764 765 /* 766 * Don't schedule slices shorter than 10000ns, that just 767 * doesn't make sense and can cause timer DoS. 768 */ 769 delta = max_t(s64, delay, 10000LL); 770 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 771 772 if (rq == this_rq()) 773 __hrtick_restart(rq); 774 else 775 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 776 } 777 778 #else 779 /* 780 * Called to set the hrtick timer state. 781 * 782 * called with rq->lock held and irqs disabled 783 */ 784 void hrtick_start(struct rq *rq, u64 delay) 785 { 786 /* 787 * Don't schedule slices shorter than 10000ns, that just 788 * doesn't make sense. Rely on vruntime for fairness. 789 */ 790 delay = max_t(u64, delay, 10000LL); 791 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 792 HRTIMER_MODE_REL_PINNED_HARD); 793 } 794 795 #endif /* CONFIG_SMP */ 796 797 static void hrtick_rq_init(struct rq *rq) 798 { 799 #ifdef CONFIG_SMP 800 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 801 #endif 802 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 803 rq->hrtick_timer.function = hrtick; 804 } 805 #else /* CONFIG_SCHED_HRTICK */ 806 static inline void hrtick_clear(struct rq *rq) 807 { 808 } 809 810 static inline void hrtick_rq_init(struct rq *rq) 811 { 812 } 813 #endif /* CONFIG_SCHED_HRTICK */ 814 815 /* 816 * cmpxchg based fetch_or, macro so it works for different integer types 817 */ 818 #define fetch_or(ptr, mask) \ 819 ({ \ 820 typeof(ptr) _ptr = (ptr); \ 821 typeof(mask) _mask = (mask); \ 822 typeof(*_ptr) _old, _val = *_ptr; \ 823 \ 824 for (;;) { \ 825 _old = cmpxchg(_ptr, _val, _val | _mask); \ 826 if (_old == _val) \ 827 break; \ 828 _val = _old; \ 829 } \ 830 _old; \ 831 }) 832 833 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 834 /* 835 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 836 * this avoids any races wrt polling state changes and thereby avoids 837 * spurious IPIs. 838 */ 839 static bool set_nr_and_not_polling(struct task_struct *p) 840 { 841 struct thread_info *ti = task_thread_info(p); 842 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 843 } 844 845 /* 846 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 847 * 848 * If this returns true, then the idle task promises to call 849 * sched_ttwu_pending() and reschedule soon. 850 */ 851 static bool set_nr_if_polling(struct task_struct *p) 852 { 853 struct thread_info *ti = task_thread_info(p); 854 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 855 856 for (;;) { 857 if (!(val & _TIF_POLLING_NRFLAG)) 858 return false; 859 if (val & _TIF_NEED_RESCHED) 860 return true; 861 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 862 if (old == val) 863 break; 864 val = old; 865 } 866 return true; 867 } 868 869 #else 870 static bool set_nr_and_not_polling(struct task_struct *p) 871 { 872 set_tsk_need_resched(p); 873 return true; 874 } 875 876 #ifdef CONFIG_SMP 877 static bool set_nr_if_polling(struct task_struct *p) 878 { 879 return false; 880 } 881 #endif 882 #endif 883 884 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 885 { 886 struct wake_q_node *node = &task->wake_q; 887 888 /* 889 * Atomically grab the task, if ->wake_q is !nil already it means 890 * it's already queued (either by us or someone else) and will get the 891 * wakeup due to that. 892 * 893 * In order to ensure that a pending wakeup will observe our pending 894 * state, even in the failed case, an explicit smp_mb() must be used. 895 */ 896 smp_mb__before_atomic(); 897 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 898 return false; 899 900 /* 901 * The head is context local, there can be no concurrency. 902 */ 903 *head->lastp = node; 904 head->lastp = &node->next; 905 return true; 906 } 907 908 /** 909 * wake_q_add() - queue a wakeup for 'later' waking. 910 * @head: the wake_q_head to add @task to 911 * @task: the task to queue for 'later' wakeup 912 * 913 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 914 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 915 * instantly. 916 * 917 * This function must be used as-if it were wake_up_process(); IOW the task 918 * must be ready to be woken at this location. 919 */ 920 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 921 { 922 if (__wake_q_add(head, task)) 923 get_task_struct(task); 924 } 925 926 /** 927 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 928 * @head: the wake_q_head to add @task to 929 * @task: the task to queue for 'later' wakeup 930 * 931 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 932 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 933 * instantly. 934 * 935 * This function must be used as-if it were wake_up_process(); IOW the task 936 * must be ready to be woken at this location. 937 * 938 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 939 * that already hold reference to @task can call the 'safe' version and trust 940 * wake_q to do the right thing depending whether or not the @task is already 941 * queued for wakeup. 942 */ 943 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 944 { 945 if (!__wake_q_add(head, task)) 946 put_task_struct(task); 947 } 948 949 void wake_up_q(struct wake_q_head *head) 950 { 951 struct wake_q_node *node = head->first; 952 953 while (node != WAKE_Q_TAIL) { 954 struct task_struct *task; 955 956 task = container_of(node, struct task_struct, wake_q); 957 /* Task can safely be re-inserted now: */ 958 node = node->next; 959 task->wake_q.next = NULL; 960 961 /* 962 * wake_up_process() executes a full barrier, which pairs with 963 * the queueing in wake_q_add() so as not to miss wakeups. 964 */ 965 wake_up_process(task); 966 put_task_struct(task); 967 } 968 } 969 970 /* 971 * resched_curr - mark rq's current task 'to be rescheduled now'. 972 * 973 * On UP this means the setting of the need_resched flag, on SMP it 974 * might also involve a cross-CPU call to trigger the scheduler on 975 * the target CPU. 976 */ 977 void resched_curr(struct rq *rq) 978 { 979 struct task_struct *curr = rq->curr; 980 int cpu; 981 982 lockdep_assert_rq_held(rq); 983 984 if (test_tsk_need_resched(curr)) 985 return; 986 987 cpu = cpu_of(rq); 988 989 if (cpu == smp_processor_id()) { 990 set_tsk_need_resched(curr); 991 set_preempt_need_resched(); 992 return; 993 } 994 995 if (set_nr_and_not_polling(curr)) 996 smp_send_reschedule(cpu); 997 else 998 trace_sched_wake_idle_without_ipi(cpu); 999 } 1000 1001 void resched_cpu(int cpu) 1002 { 1003 struct rq *rq = cpu_rq(cpu); 1004 unsigned long flags; 1005 1006 raw_spin_rq_lock_irqsave(rq, flags); 1007 if (cpu_online(cpu) || cpu == smp_processor_id()) 1008 resched_curr(rq); 1009 raw_spin_rq_unlock_irqrestore(rq, flags); 1010 } 1011 1012 #ifdef CONFIG_SMP 1013 #ifdef CONFIG_NO_HZ_COMMON 1014 /* 1015 * In the semi idle case, use the nearest busy CPU for migrating timers 1016 * from an idle CPU. This is good for power-savings. 1017 * 1018 * We don't do similar optimization for completely idle system, as 1019 * selecting an idle CPU will add more delays to the timers than intended 1020 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1021 */ 1022 int get_nohz_timer_target(void) 1023 { 1024 int i, cpu = smp_processor_id(), default_cpu = -1; 1025 struct sched_domain *sd; 1026 const struct cpumask *hk_mask; 1027 1028 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 1029 if (!idle_cpu(cpu)) 1030 return cpu; 1031 default_cpu = cpu; 1032 } 1033 1034 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER); 1035 1036 rcu_read_lock(); 1037 for_each_domain(cpu, sd) { 1038 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1039 if (cpu == i) 1040 continue; 1041 1042 if (!idle_cpu(i)) { 1043 cpu = i; 1044 goto unlock; 1045 } 1046 } 1047 } 1048 1049 if (default_cpu == -1) 1050 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 1051 cpu = default_cpu; 1052 unlock: 1053 rcu_read_unlock(); 1054 return cpu; 1055 } 1056 1057 /* 1058 * When add_timer_on() enqueues a timer into the timer wheel of an 1059 * idle CPU then this timer might expire before the next timer event 1060 * which is scheduled to wake up that CPU. In case of a completely 1061 * idle system the next event might even be infinite time into the 1062 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1063 * leaves the inner idle loop so the newly added timer is taken into 1064 * account when the CPU goes back to idle and evaluates the timer 1065 * wheel for the next timer event. 1066 */ 1067 static void wake_up_idle_cpu(int cpu) 1068 { 1069 struct rq *rq = cpu_rq(cpu); 1070 1071 if (cpu == smp_processor_id()) 1072 return; 1073 1074 if (set_nr_and_not_polling(rq->idle)) 1075 smp_send_reschedule(cpu); 1076 else 1077 trace_sched_wake_idle_without_ipi(cpu); 1078 } 1079 1080 static bool wake_up_full_nohz_cpu(int cpu) 1081 { 1082 /* 1083 * We just need the target to call irq_exit() and re-evaluate 1084 * the next tick. The nohz full kick at least implies that. 1085 * If needed we can still optimize that later with an 1086 * empty IRQ. 1087 */ 1088 if (cpu_is_offline(cpu)) 1089 return true; /* Don't try to wake offline CPUs. */ 1090 if (tick_nohz_full_cpu(cpu)) { 1091 if (cpu != smp_processor_id() || 1092 tick_nohz_tick_stopped()) 1093 tick_nohz_full_kick_cpu(cpu); 1094 return true; 1095 } 1096 1097 return false; 1098 } 1099 1100 /* 1101 * Wake up the specified CPU. If the CPU is going offline, it is the 1102 * caller's responsibility to deal with the lost wakeup, for example, 1103 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1104 */ 1105 void wake_up_nohz_cpu(int cpu) 1106 { 1107 if (!wake_up_full_nohz_cpu(cpu)) 1108 wake_up_idle_cpu(cpu); 1109 } 1110 1111 static void nohz_csd_func(void *info) 1112 { 1113 struct rq *rq = info; 1114 int cpu = cpu_of(rq); 1115 unsigned int flags; 1116 1117 /* 1118 * Release the rq::nohz_csd. 1119 */ 1120 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1121 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1122 1123 rq->idle_balance = idle_cpu(cpu); 1124 if (rq->idle_balance && !need_resched()) { 1125 rq->nohz_idle_balance = flags; 1126 raise_softirq_irqoff(SCHED_SOFTIRQ); 1127 } 1128 } 1129 1130 #endif /* CONFIG_NO_HZ_COMMON */ 1131 1132 #ifdef CONFIG_NO_HZ_FULL 1133 bool sched_can_stop_tick(struct rq *rq) 1134 { 1135 int fifo_nr_running; 1136 1137 /* Deadline tasks, even if single, need the tick */ 1138 if (rq->dl.dl_nr_running) 1139 return false; 1140 1141 /* 1142 * If there are more than one RR tasks, we need the tick to affect the 1143 * actual RR behaviour. 1144 */ 1145 if (rq->rt.rr_nr_running) { 1146 if (rq->rt.rr_nr_running == 1) 1147 return true; 1148 else 1149 return false; 1150 } 1151 1152 /* 1153 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1154 * forced preemption between FIFO tasks. 1155 */ 1156 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1157 if (fifo_nr_running) 1158 return true; 1159 1160 /* 1161 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1162 * if there's more than one we need the tick for involuntary 1163 * preemption. 1164 */ 1165 if (rq->nr_running > 1) 1166 return false; 1167 1168 return true; 1169 } 1170 #endif /* CONFIG_NO_HZ_FULL */ 1171 #endif /* CONFIG_SMP */ 1172 1173 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1174 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1175 /* 1176 * Iterate task_group tree rooted at *from, calling @down when first entering a 1177 * node and @up when leaving it for the final time. 1178 * 1179 * Caller must hold rcu_lock or sufficient equivalent. 1180 */ 1181 int walk_tg_tree_from(struct task_group *from, 1182 tg_visitor down, tg_visitor up, void *data) 1183 { 1184 struct task_group *parent, *child; 1185 int ret; 1186 1187 parent = from; 1188 1189 down: 1190 ret = (*down)(parent, data); 1191 if (ret) 1192 goto out; 1193 list_for_each_entry_rcu(child, &parent->children, siblings) { 1194 parent = child; 1195 goto down; 1196 1197 up: 1198 continue; 1199 } 1200 ret = (*up)(parent, data); 1201 if (ret || parent == from) 1202 goto out; 1203 1204 child = parent; 1205 parent = parent->parent; 1206 if (parent) 1207 goto up; 1208 out: 1209 return ret; 1210 } 1211 1212 int tg_nop(struct task_group *tg, void *data) 1213 { 1214 return 0; 1215 } 1216 #endif 1217 1218 static void set_load_weight(struct task_struct *p, bool update_load) 1219 { 1220 int prio = p->static_prio - MAX_RT_PRIO; 1221 struct load_weight *load = &p->se.load; 1222 1223 /* 1224 * SCHED_IDLE tasks get minimal weight: 1225 */ 1226 if (task_has_idle_policy(p)) { 1227 load->weight = scale_load(WEIGHT_IDLEPRIO); 1228 load->inv_weight = WMULT_IDLEPRIO; 1229 return; 1230 } 1231 1232 /* 1233 * SCHED_OTHER tasks have to update their load when changing their 1234 * weight 1235 */ 1236 if (update_load && p->sched_class == &fair_sched_class) { 1237 reweight_task(p, prio); 1238 } else { 1239 load->weight = scale_load(sched_prio_to_weight[prio]); 1240 load->inv_weight = sched_prio_to_wmult[prio]; 1241 } 1242 } 1243 1244 #ifdef CONFIG_UCLAMP_TASK 1245 /* 1246 * Serializes updates of utilization clamp values 1247 * 1248 * The (slow-path) user-space triggers utilization clamp value updates which 1249 * can require updates on (fast-path) scheduler's data structures used to 1250 * support enqueue/dequeue operations. 1251 * While the per-CPU rq lock protects fast-path update operations, user-space 1252 * requests are serialized using a mutex to reduce the risk of conflicting 1253 * updates or API abuses. 1254 */ 1255 static DEFINE_MUTEX(uclamp_mutex); 1256 1257 /* Max allowed minimum utilization */ 1258 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1259 1260 /* Max allowed maximum utilization */ 1261 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1262 1263 /* 1264 * By default RT tasks run at the maximum performance point/capacity of the 1265 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1266 * SCHED_CAPACITY_SCALE. 1267 * 1268 * This knob allows admins to change the default behavior when uclamp is being 1269 * used. In battery powered devices, particularly, running at the maximum 1270 * capacity and frequency will increase energy consumption and shorten the 1271 * battery life. 1272 * 1273 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1274 * 1275 * This knob will not override the system default sched_util_clamp_min defined 1276 * above. 1277 */ 1278 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1279 1280 /* All clamps are required to be less or equal than these values */ 1281 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1282 1283 /* 1284 * This static key is used to reduce the uclamp overhead in the fast path. It 1285 * primarily disables the call to uclamp_rq_{inc, dec}() in 1286 * enqueue/dequeue_task(). 1287 * 1288 * This allows users to continue to enable uclamp in their kernel config with 1289 * minimum uclamp overhead in the fast path. 1290 * 1291 * As soon as userspace modifies any of the uclamp knobs, the static key is 1292 * enabled, since we have an actual users that make use of uclamp 1293 * functionality. 1294 * 1295 * The knobs that would enable this static key are: 1296 * 1297 * * A task modifying its uclamp value with sched_setattr(). 1298 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1299 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1300 */ 1301 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1302 1303 /* Integer rounded range for each bucket */ 1304 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1305 1306 #define for_each_clamp_id(clamp_id) \ 1307 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1308 1309 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1310 { 1311 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1312 } 1313 1314 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1315 { 1316 if (clamp_id == UCLAMP_MIN) 1317 return 0; 1318 return SCHED_CAPACITY_SCALE; 1319 } 1320 1321 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1322 unsigned int value, bool user_defined) 1323 { 1324 uc_se->value = value; 1325 uc_se->bucket_id = uclamp_bucket_id(value); 1326 uc_se->user_defined = user_defined; 1327 } 1328 1329 static inline unsigned int 1330 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1331 unsigned int clamp_value) 1332 { 1333 /* 1334 * Avoid blocked utilization pushing up the frequency when we go 1335 * idle (which drops the max-clamp) by retaining the last known 1336 * max-clamp. 1337 */ 1338 if (clamp_id == UCLAMP_MAX) { 1339 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1340 return clamp_value; 1341 } 1342 1343 return uclamp_none(UCLAMP_MIN); 1344 } 1345 1346 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1347 unsigned int clamp_value) 1348 { 1349 /* Reset max-clamp retention only on idle exit */ 1350 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1351 return; 1352 1353 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1354 } 1355 1356 static inline 1357 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1358 unsigned int clamp_value) 1359 { 1360 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1361 int bucket_id = UCLAMP_BUCKETS - 1; 1362 1363 /* 1364 * Since both min and max clamps are max aggregated, find the 1365 * top most bucket with tasks in. 1366 */ 1367 for ( ; bucket_id >= 0; bucket_id--) { 1368 if (!bucket[bucket_id].tasks) 1369 continue; 1370 return bucket[bucket_id].value; 1371 } 1372 1373 /* No tasks -- default clamp values */ 1374 return uclamp_idle_value(rq, clamp_id, clamp_value); 1375 } 1376 1377 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1378 { 1379 unsigned int default_util_min; 1380 struct uclamp_se *uc_se; 1381 1382 lockdep_assert_held(&p->pi_lock); 1383 1384 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1385 1386 /* Only sync if user didn't override the default */ 1387 if (uc_se->user_defined) 1388 return; 1389 1390 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1391 uclamp_se_set(uc_se, default_util_min, false); 1392 } 1393 1394 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1395 { 1396 struct rq_flags rf; 1397 struct rq *rq; 1398 1399 if (!rt_task(p)) 1400 return; 1401 1402 /* Protect updates to p->uclamp_* */ 1403 rq = task_rq_lock(p, &rf); 1404 __uclamp_update_util_min_rt_default(p); 1405 task_rq_unlock(rq, p, &rf); 1406 } 1407 1408 static void uclamp_sync_util_min_rt_default(void) 1409 { 1410 struct task_struct *g, *p; 1411 1412 /* 1413 * copy_process() sysctl_uclamp 1414 * uclamp_min_rt = X; 1415 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1416 * // link thread smp_mb__after_spinlock() 1417 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1418 * sched_post_fork() for_each_process_thread() 1419 * __uclamp_sync_rt() __uclamp_sync_rt() 1420 * 1421 * Ensures that either sched_post_fork() will observe the new 1422 * uclamp_min_rt or for_each_process_thread() will observe the new 1423 * task. 1424 */ 1425 read_lock(&tasklist_lock); 1426 smp_mb__after_spinlock(); 1427 read_unlock(&tasklist_lock); 1428 1429 rcu_read_lock(); 1430 for_each_process_thread(g, p) 1431 uclamp_update_util_min_rt_default(p); 1432 rcu_read_unlock(); 1433 } 1434 1435 static inline struct uclamp_se 1436 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1437 { 1438 /* Copy by value as we could modify it */ 1439 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1440 #ifdef CONFIG_UCLAMP_TASK_GROUP 1441 unsigned int tg_min, tg_max, value; 1442 1443 /* 1444 * Tasks in autogroups or root task group will be 1445 * restricted by system defaults. 1446 */ 1447 if (task_group_is_autogroup(task_group(p))) 1448 return uc_req; 1449 if (task_group(p) == &root_task_group) 1450 return uc_req; 1451 1452 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1453 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1454 value = uc_req.value; 1455 value = clamp(value, tg_min, tg_max); 1456 uclamp_se_set(&uc_req, value, false); 1457 #endif 1458 1459 return uc_req; 1460 } 1461 1462 /* 1463 * The effective clamp bucket index of a task depends on, by increasing 1464 * priority: 1465 * - the task specific clamp value, when explicitly requested from userspace 1466 * - the task group effective clamp value, for tasks not either in the root 1467 * group or in an autogroup 1468 * - the system default clamp value, defined by the sysadmin 1469 */ 1470 static inline struct uclamp_se 1471 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1472 { 1473 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1474 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1475 1476 /* System default restrictions always apply */ 1477 if (unlikely(uc_req.value > uc_max.value)) 1478 return uc_max; 1479 1480 return uc_req; 1481 } 1482 1483 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1484 { 1485 struct uclamp_se uc_eff; 1486 1487 /* Task currently refcounted: use back-annotated (effective) value */ 1488 if (p->uclamp[clamp_id].active) 1489 return (unsigned long)p->uclamp[clamp_id].value; 1490 1491 uc_eff = uclamp_eff_get(p, clamp_id); 1492 1493 return (unsigned long)uc_eff.value; 1494 } 1495 1496 /* 1497 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1498 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1499 * updates the rq's clamp value if required. 1500 * 1501 * Tasks can have a task-specific value requested from user-space, track 1502 * within each bucket the maximum value for tasks refcounted in it. 1503 * This "local max aggregation" allows to track the exact "requested" value 1504 * for each bucket when all its RUNNABLE tasks require the same clamp. 1505 */ 1506 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1507 enum uclamp_id clamp_id) 1508 { 1509 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1510 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1511 struct uclamp_bucket *bucket; 1512 1513 lockdep_assert_rq_held(rq); 1514 1515 /* Update task effective clamp */ 1516 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1517 1518 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1519 bucket->tasks++; 1520 uc_se->active = true; 1521 1522 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1523 1524 /* 1525 * Local max aggregation: rq buckets always track the max 1526 * "requested" clamp value of its RUNNABLE tasks. 1527 */ 1528 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1529 bucket->value = uc_se->value; 1530 1531 if (uc_se->value > READ_ONCE(uc_rq->value)) 1532 WRITE_ONCE(uc_rq->value, uc_se->value); 1533 } 1534 1535 /* 1536 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1537 * is released. If this is the last task reference counting the rq's max 1538 * active clamp value, then the rq's clamp value is updated. 1539 * 1540 * Both refcounted tasks and rq's cached clamp values are expected to be 1541 * always valid. If it's detected they are not, as defensive programming, 1542 * enforce the expected state and warn. 1543 */ 1544 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1545 enum uclamp_id clamp_id) 1546 { 1547 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1548 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1549 struct uclamp_bucket *bucket; 1550 unsigned int bkt_clamp; 1551 unsigned int rq_clamp; 1552 1553 lockdep_assert_rq_held(rq); 1554 1555 /* 1556 * If sched_uclamp_used was enabled after task @p was enqueued, 1557 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1558 * 1559 * In this case the uc_se->active flag should be false since no uclamp 1560 * accounting was performed at enqueue time and we can just return 1561 * here. 1562 * 1563 * Need to be careful of the following enqueue/dequeue ordering 1564 * problem too 1565 * 1566 * enqueue(taskA) 1567 * // sched_uclamp_used gets enabled 1568 * enqueue(taskB) 1569 * dequeue(taskA) 1570 * // Must not decrement bucket->tasks here 1571 * dequeue(taskB) 1572 * 1573 * where we could end up with stale data in uc_se and 1574 * bucket[uc_se->bucket_id]. 1575 * 1576 * The following check here eliminates the possibility of such race. 1577 */ 1578 if (unlikely(!uc_se->active)) 1579 return; 1580 1581 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1582 1583 SCHED_WARN_ON(!bucket->tasks); 1584 if (likely(bucket->tasks)) 1585 bucket->tasks--; 1586 1587 uc_se->active = false; 1588 1589 /* 1590 * Keep "local max aggregation" simple and accept to (possibly) 1591 * overboost some RUNNABLE tasks in the same bucket. 1592 * The rq clamp bucket value is reset to its base value whenever 1593 * there are no more RUNNABLE tasks refcounting it. 1594 */ 1595 if (likely(bucket->tasks)) 1596 return; 1597 1598 rq_clamp = READ_ONCE(uc_rq->value); 1599 /* 1600 * Defensive programming: this should never happen. If it happens, 1601 * e.g. due to future modification, warn and fixup the expected value. 1602 */ 1603 SCHED_WARN_ON(bucket->value > rq_clamp); 1604 if (bucket->value >= rq_clamp) { 1605 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1606 WRITE_ONCE(uc_rq->value, bkt_clamp); 1607 } 1608 } 1609 1610 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1611 { 1612 enum uclamp_id clamp_id; 1613 1614 /* 1615 * Avoid any overhead until uclamp is actually used by the userspace. 1616 * 1617 * The condition is constructed such that a NOP is generated when 1618 * sched_uclamp_used is disabled. 1619 */ 1620 if (!static_branch_unlikely(&sched_uclamp_used)) 1621 return; 1622 1623 if (unlikely(!p->sched_class->uclamp_enabled)) 1624 return; 1625 1626 for_each_clamp_id(clamp_id) 1627 uclamp_rq_inc_id(rq, p, clamp_id); 1628 1629 /* Reset clamp idle holding when there is one RUNNABLE task */ 1630 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1631 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1632 } 1633 1634 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1635 { 1636 enum uclamp_id clamp_id; 1637 1638 /* 1639 * Avoid any overhead until uclamp is actually used by the userspace. 1640 * 1641 * The condition is constructed such that a NOP is generated when 1642 * sched_uclamp_used is disabled. 1643 */ 1644 if (!static_branch_unlikely(&sched_uclamp_used)) 1645 return; 1646 1647 if (unlikely(!p->sched_class->uclamp_enabled)) 1648 return; 1649 1650 for_each_clamp_id(clamp_id) 1651 uclamp_rq_dec_id(rq, p, clamp_id); 1652 } 1653 1654 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1655 enum uclamp_id clamp_id) 1656 { 1657 if (!p->uclamp[clamp_id].active) 1658 return; 1659 1660 uclamp_rq_dec_id(rq, p, clamp_id); 1661 uclamp_rq_inc_id(rq, p, clamp_id); 1662 1663 /* 1664 * Make sure to clear the idle flag if we've transiently reached 0 1665 * active tasks on rq. 1666 */ 1667 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1668 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1669 } 1670 1671 static inline void 1672 uclamp_update_active(struct task_struct *p) 1673 { 1674 enum uclamp_id clamp_id; 1675 struct rq_flags rf; 1676 struct rq *rq; 1677 1678 /* 1679 * Lock the task and the rq where the task is (or was) queued. 1680 * 1681 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1682 * price to pay to safely serialize util_{min,max} updates with 1683 * enqueues, dequeues and migration operations. 1684 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1685 */ 1686 rq = task_rq_lock(p, &rf); 1687 1688 /* 1689 * Setting the clamp bucket is serialized by task_rq_lock(). 1690 * If the task is not yet RUNNABLE and its task_struct is not 1691 * affecting a valid clamp bucket, the next time it's enqueued, 1692 * it will already see the updated clamp bucket value. 1693 */ 1694 for_each_clamp_id(clamp_id) 1695 uclamp_rq_reinc_id(rq, p, clamp_id); 1696 1697 task_rq_unlock(rq, p, &rf); 1698 } 1699 1700 #ifdef CONFIG_UCLAMP_TASK_GROUP 1701 static inline void 1702 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1703 { 1704 struct css_task_iter it; 1705 struct task_struct *p; 1706 1707 css_task_iter_start(css, 0, &it); 1708 while ((p = css_task_iter_next(&it))) 1709 uclamp_update_active(p); 1710 css_task_iter_end(&it); 1711 } 1712 1713 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1714 static void uclamp_update_root_tg(void) 1715 { 1716 struct task_group *tg = &root_task_group; 1717 1718 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1719 sysctl_sched_uclamp_util_min, false); 1720 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1721 sysctl_sched_uclamp_util_max, false); 1722 1723 rcu_read_lock(); 1724 cpu_util_update_eff(&root_task_group.css); 1725 rcu_read_unlock(); 1726 } 1727 #else 1728 static void uclamp_update_root_tg(void) { } 1729 #endif 1730 1731 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1732 void *buffer, size_t *lenp, loff_t *ppos) 1733 { 1734 bool update_root_tg = false; 1735 int old_min, old_max, old_min_rt; 1736 int result; 1737 1738 mutex_lock(&uclamp_mutex); 1739 old_min = sysctl_sched_uclamp_util_min; 1740 old_max = sysctl_sched_uclamp_util_max; 1741 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1742 1743 result = proc_dointvec(table, write, buffer, lenp, ppos); 1744 if (result) 1745 goto undo; 1746 if (!write) 1747 goto done; 1748 1749 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1750 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1751 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1752 1753 result = -EINVAL; 1754 goto undo; 1755 } 1756 1757 if (old_min != sysctl_sched_uclamp_util_min) { 1758 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1759 sysctl_sched_uclamp_util_min, false); 1760 update_root_tg = true; 1761 } 1762 if (old_max != sysctl_sched_uclamp_util_max) { 1763 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1764 sysctl_sched_uclamp_util_max, false); 1765 update_root_tg = true; 1766 } 1767 1768 if (update_root_tg) { 1769 static_branch_enable(&sched_uclamp_used); 1770 uclamp_update_root_tg(); 1771 } 1772 1773 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1774 static_branch_enable(&sched_uclamp_used); 1775 uclamp_sync_util_min_rt_default(); 1776 } 1777 1778 /* 1779 * We update all RUNNABLE tasks only when task groups are in use. 1780 * Otherwise, keep it simple and do just a lazy update at each next 1781 * task enqueue time. 1782 */ 1783 1784 goto done; 1785 1786 undo: 1787 sysctl_sched_uclamp_util_min = old_min; 1788 sysctl_sched_uclamp_util_max = old_max; 1789 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1790 done: 1791 mutex_unlock(&uclamp_mutex); 1792 1793 return result; 1794 } 1795 1796 static int uclamp_validate(struct task_struct *p, 1797 const struct sched_attr *attr) 1798 { 1799 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1800 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1801 1802 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1803 util_min = attr->sched_util_min; 1804 1805 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1806 return -EINVAL; 1807 } 1808 1809 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1810 util_max = attr->sched_util_max; 1811 1812 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1813 return -EINVAL; 1814 } 1815 1816 if (util_min != -1 && util_max != -1 && util_min > util_max) 1817 return -EINVAL; 1818 1819 /* 1820 * We have valid uclamp attributes; make sure uclamp is enabled. 1821 * 1822 * We need to do that here, because enabling static branches is a 1823 * blocking operation which obviously cannot be done while holding 1824 * scheduler locks. 1825 */ 1826 static_branch_enable(&sched_uclamp_used); 1827 1828 return 0; 1829 } 1830 1831 static bool uclamp_reset(const struct sched_attr *attr, 1832 enum uclamp_id clamp_id, 1833 struct uclamp_se *uc_se) 1834 { 1835 /* Reset on sched class change for a non user-defined clamp value. */ 1836 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1837 !uc_se->user_defined) 1838 return true; 1839 1840 /* Reset on sched_util_{min,max} == -1. */ 1841 if (clamp_id == UCLAMP_MIN && 1842 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1843 attr->sched_util_min == -1) { 1844 return true; 1845 } 1846 1847 if (clamp_id == UCLAMP_MAX && 1848 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1849 attr->sched_util_max == -1) { 1850 return true; 1851 } 1852 1853 return false; 1854 } 1855 1856 static void __setscheduler_uclamp(struct task_struct *p, 1857 const struct sched_attr *attr) 1858 { 1859 enum uclamp_id clamp_id; 1860 1861 for_each_clamp_id(clamp_id) { 1862 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1863 unsigned int value; 1864 1865 if (!uclamp_reset(attr, clamp_id, uc_se)) 1866 continue; 1867 1868 /* 1869 * RT by default have a 100% boost value that could be modified 1870 * at runtime. 1871 */ 1872 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1873 value = sysctl_sched_uclamp_util_min_rt_default; 1874 else 1875 value = uclamp_none(clamp_id); 1876 1877 uclamp_se_set(uc_se, value, false); 1878 1879 } 1880 1881 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1882 return; 1883 1884 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1885 attr->sched_util_min != -1) { 1886 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1887 attr->sched_util_min, true); 1888 } 1889 1890 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1891 attr->sched_util_max != -1) { 1892 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1893 attr->sched_util_max, true); 1894 } 1895 } 1896 1897 static void uclamp_fork(struct task_struct *p) 1898 { 1899 enum uclamp_id clamp_id; 1900 1901 /* 1902 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1903 * as the task is still at its early fork stages. 1904 */ 1905 for_each_clamp_id(clamp_id) 1906 p->uclamp[clamp_id].active = false; 1907 1908 if (likely(!p->sched_reset_on_fork)) 1909 return; 1910 1911 for_each_clamp_id(clamp_id) { 1912 uclamp_se_set(&p->uclamp_req[clamp_id], 1913 uclamp_none(clamp_id), false); 1914 } 1915 } 1916 1917 static void uclamp_post_fork(struct task_struct *p) 1918 { 1919 uclamp_update_util_min_rt_default(p); 1920 } 1921 1922 static void __init init_uclamp_rq(struct rq *rq) 1923 { 1924 enum uclamp_id clamp_id; 1925 struct uclamp_rq *uc_rq = rq->uclamp; 1926 1927 for_each_clamp_id(clamp_id) { 1928 uc_rq[clamp_id] = (struct uclamp_rq) { 1929 .value = uclamp_none(clamp_id) 1930 }; 1931 } 1932 1933 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1934 } 1935 1936 static void __init init_uclamp(void) 1937 { 1938 struct uclamp_se uc_max = {}; 1939 enum uclamp_id clamp_id; 1940 int cpu; 1941 1942 for_each_possible_cpu(cpu) 1943 init_uclamp_rq(cpu_rq(cpu)); 1944 1945 for_each_clamp_id(clamp_id) { 1946 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1947 uclamp_none(clamp_id), false); 1948 } 1949 1950 /* System defaults allow max clamp values for both indexes */ 1951 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1952 for_each_clamp_id(clamp_id) { 1953 uclamp_default[clamp_id] = uc_max; 1954 #ifdef CONFIG_UCLAMP_TASK_GROUP 1955 root_task_group.uclamp_req[clamp_id] = uc_max; 1956 root_task_group.uclamp[clamp_id] = uc_max; 1957 #endif 1958 } 1959 } 1960 1961 #else /* CONFIG_UCLAMP_TASK */ 1962 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1963 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1964 static inline int uclamp_validate(struct task_struct *p, 1965 const struct sched_attr *attr) 1966 { 1967 return -EOPNOTSUPP; 1968 } 1969 static void __setscheduler_uclamp(struct task_struct *p, 1970 const struct sched_attr *attr) { } 1971 static inline void uclamp_fork(struct task_struct *p) { } 1972 static inline void uclamp_post_fork(struct task_struct *p) { } 1973 static inline void init_uclamp(void) { } 1974 #endif /* CONFIG_UCLAMP_TASK */ 1975 1976 bool sched_task_on_rq(struct task_struct *p) 1977 { 1978 return task_on_rq_queued(p); 1979 } 1980 1981 unsigned long get_wchan(struct task_struct *p) 1982 { 1983 unsigned long ip = 0; 1984 unsigned int state; 1985 1986 if (!p || p == current) 1987 return 0; 1988 1989 /* Only get wchan if task is blocked and we can keep it that way. */ 1990 raw_spin_lock_irq(&p->pi_lock); 1991 state = READ_ONCE(p->__state); 1992 smp_rmb(); /* see try_to_wake_up() */ 1993 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1994 ip = __get_wchan(p); 1995 raw_spin_unlock_irq(&p->pi_lock); 1996 1997 return ip; 1998 } 1999 2000 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2001 { 2002 if (!(flags & ENQUEUE_NOCLOCK)) 2003 update_rq_clock(rq); 2004 2005 if (!(flags & ENQUEUE_RESTORE)) { 2006 sched_info_enqueue(rq, p); 2007 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 2008 } 2009 2010 uclamp_rq_inc(rq, p); 2011 p->sched_class->enqueue_task(rq, p, flags); 2012 2013 if (sched_core_enabled(rq)) 2014 sched_core_enqueue(rq, p); 2015 } 2016 2017 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2018 { 2019 if (sched_core_enabled(rq)) 2020 sched_core_dequeue(rq, p, flags); 2021 2022 if (!(flags & DEQUEUE_NOCLOCK)) 2023 update_rq_clock(rq); 2024 2025 if (!(flags & DEQUEUE_SAVE)) { 2026 sched_info_dequeue(rq, p); 2027 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2028 } 2029 2030 uclamp_rq_dec(rq, p); 2031 p->sched_class->dequeue_task(rq, p, flags); 2032 } 2033 2034 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2035 { 2036 enqueue_task(rq, p, flags); 2037 2038 p->on_rq = TASK_ON_RQ_QUEUED; 2039 } 2040 2041 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2042 { 2043 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2044 2045 dequeue_task(rq, p, flags); 2046 } 2047 2048 static inline int __normal_prio(int policy, int rt_prio, int nice) 2049 { 2050 int prio; 2051 2052 if (dl_policy(policy)) 2053 prio = MAX_DL_PRIO - 1; 2054 else if (rt_policy(policy)) 2055 prio = MAX_RT_PRIO - 1 - rt_prio; 2056 else 2057 prio = NICE_TO_PRIO(nice); 2058 2059 return prio; 2060 } 2061 2062 /* 2063 * Calculate the expected normal priority: i.e. priority 2064 * without taking RT-inheritance into account. Might be 2065 * boosted by interactivity modifiers. Changes upon fork, 2066 * setprio syscalls, and whenever the interactivity 2067 * estimator recalculates. 2068 */ 2069 static inline int normal_prio(struct task_struct *p) 2070 { 2071 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2072 } 2073 2074 /* 2075 * Calculate the current priority, i.e. the priority 2076 * taken into account by the scheduler. This value might 2077 * be boosted by RT tasks, or might be boosted by 2078 * interactivity modifiers. Will be RT if the task got 2079 * RT-boosted. If not then it returns p->normal_prio. 2080 */ 2081 static int effective_prio(struct task_struct *p) 2082 { 2083 p->normal_prio = normal_prio(p); 2084 /* 2085 * If we are RT tasks or we were boosted to RT priority, 2086 * keep the priority unchanged. Otherwise, update priority 2087 * to the normal priority: 2088 */ 2089 if (!rt_prio(p->prio)) 2090 return p->normal_prio; 2091 return p->prio; 2092 } 2093 2094 /** 2095 * task_curr - is this task currently executing on a CPU? 2096 * @p: the task in question. 2097 * 2098 * Return: 1 if the task is currently executing. 0 otherwise. 2099 */ 2100 inline int task_curr(const struct task_struct *p) 2101 { 2102 return cpu_curr(task_cpu(p)) == p; 2103 } 2104 2105 /* 2106 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2107 * use the balance_callback list if you want balancing. 2108 * 2109 * this means any call to check_class_changed() must be followed by a call to 2110 * balance_callback(). 2111 */ 2112 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2113 const struct sched_class *prev_class, 2114 int oldprio) 2115 { 2116 if (prev_class != p->sched_class) { 2117 if (prev_class->switched_from) 2118 prev_class->switched_from(rq, p); 2119 2120 p->sched_class->switched_to(rq, p); 2121 } else if (oldprio != p->prio || dl_task(p)) 2122 p->sched_class->prio_changed(rq, p, oldprio); 2123 } 2124 2125 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2126 { 2127 if (p->sched_class == rq->curr->sched_class) 2128 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2129 else if (p->sched_class > rq->curr->sched_class) 2130 resched_curr(rq); 2131 2132 /* 2133 * A queue event has occurred, and we're going to schedule. In 2134 * this case, we can save a useless back to back clock update. 2135 */ 2136 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2137 rq_clock_skip_update(rq); 2138 } 2139 2140 #ifdef CONFIG_SMP 2141 2142 static void 2143 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2144 2145 static int __set_cpus_allowed_ptr(struct task_struct *p, 2146 const struct cpumask *new_mask, 2147 u32 flags); 2148 2149 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2150 { 2151 if (likely(!p->migration_disabled)) 2152 return; 2153 2154 if (p->cpus_ptr != &p->cpus_mask) 2155 return; 2156 2157 /* 2158 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2159 */ 2160 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2161 } 2162 2163 void migrate_disable(void) 2164 { 2165 struct task_struct *p = current; 2166 2167 if (p->migration_disabled) { 2168 p->migration_disabled++; 2169 return; 2170 } 2171 2172 preempt_disable(); 2173 this_rq()->nr_pinned++; 2174 p->migration_disabled = 1; 2175 preempt_enable(); 2176 } 2177 EXPORT_SYMBOL_GPL(migrate_disable); 2178 2179 void migrate_enable(void) 2180 { 2181 struct task_struct *p = current; 2182 2183 if (p->migration_disabled > 1) { 2184 p->migration_disabled--; 2185 return; 2186 } 2187 2188 if (WARN_ON_ONCE(!p->migration_disabled)) 2189 return; 2190 2191 /* 2192 * Ensure stop_task runs either before or after this, and that 2193 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2194 */ 2195 preempt_disable(); 2196 if (p->cpus_ptr != &p->cpus_mask) 2197 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2198 /* 2199 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2200 * regular cpus_mask, otherwise things that race (eg. 2201 * select_fallback_rq) get confused. 2202 */ 2203 barrier(); 2204 p->migration_disabled = 0; 2205 this_rq()->nr_pinned--; 2206 preempt_enable(); 2207 } 2208 EXPORT_SYMBOL_GPL(migrate_enable); 2209 2210 static inline bool rq_has_pinned_tasks(struct rq *rq) 2211 { 2212 return rq->nr_pinned; 2213 } 2214 2215 /* 2216 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2217 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2218 */ 2219 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2220 { 2221 /* When not in the task's cpumask, no point in looking further. */ 2222 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2223 return false; 2224 2225 /* migrate_disabled() must be allowed to finish. */ 2226 if (is_migration_disabled(p)) 2227 return cpu_online(cpu); 2228 2229 /* Non kernel threads are not allowed during either online or offline. */ 2230 if (!(p->flags & PF_KTHREAD)) 2231 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2232 2233 /* KTHREAD_IS_PER_CPU is always allowed. */ 2234 if (kthread_is_per_cpu(p)) 2235 return cpu_online(cpu); 2236 2237 /* Regular kernel threads don't get to stay during offline. */ 2238 if (cpu_dying(cpu)) 2239 return false; 2240 2241 /* But are allowed during online. */ 2242 return cpu_online(cpu); 2243 } 2244 2245 /* 2246 * This is how migration works: 2247 * 2248 * 1) we invoke migration_cpu_stop() on the target CPU using 2249 * stop_one_cpu(). 2250 * 2) stopper starts to run (implicitly forcing the migrated thread 2251 * off the CPU) 2252 * 3) it checks whether the migrated task is still in the wrong runqueue. 2253 * 4) if it's in the wrong runqueue then the migration thread removes 2254 * it and puts it into the right queue. 2255 * 5) stopper completes and stop_one_cpu() returns and the migration 2256 * is done. 2257 */ 2258 2259 /* 2260 * move_queued_task - move a queued task to new rq. 2261 * 2262 * Returns (locked) new rq. Old rq's lock is released. 2263 */ 2264 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2265 struct task_struct *p, int new_cpu) 2266 { 2267 lockdep_assert_rq_held(rq); 2268 2269 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2270 set_task_cpu(p, new_cpu); 2271 rq_unlock(rq, rf); 2272 2273 rq = cpu_rq(new_cpu); 2274 2275 rq_lock(rq, rf); 2276 BUG_ON(task_cpu(p) != new_cpu); 2277 activate_task(rq, p, 0); 2278 check_preempt_curr(rq, p, 0); 2279 2280 return rq; 2281 } 2282 2283 struct migration_arg { 2284 struct task_struct *task; 2285 int dest_cpu; 2286 struct set_affinity_pending *pending; 2287 }; 2288 2289 /* 2290 * @refs: number of wait_for_completion() 2291 * @stop_pending: is @stop_work in use 2292 */ 2293 struct set_affinity_pending { 2294 refcount_t refs; 2295 unsigned int stop_pending; 2296 struct completion done; 2297 struct cpu_stop_work stop_work; 2298 struct migration_arg arg; 2299 }; 2300 2301 /* 2302 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2303 * this because either it can't run here any more (set_cpus_allowed() 2304 * away from this CPU, or CPU going down), or because we're 2305 * attempting to rebalance this task on exec (sched_exec). 2306 * 2307 * So we race with normal scheduler movements, but that's OK, as long 2308 * as the task is no longer on this CPU. 2309 */ 2310 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2311 struct task_struct *p, int dest_cpu) 2312 { 2313 /* Affinity changed (again). */ 2314 if (!is_cpu_allowed(p, dest_cpu)) 2315 return rq; 2316 2317 update_rq_clock(rq); 2318 rq = move_queued_task(rq, rf, p, dest_cpu); 2319 2320 return rq; 2321 } 2322 2323 /* 2324 * migration_cpu_stop - this will be executed by a highprio stopper thread 2325 * and performs thread migration by bumping thread off CPU then 2326 * 'pushing' onto another runqueue. 2327 */ 2328 static int migration_cpu_stop(void *data) 2329 { 2330 struct migration_arg *arg = data; 2331 struct set_affinity_pending *pending = arg->pending; 2332 struct task_struct *p = arg->task; 2333 struct rq *rq = this_rq(); 2334 bool complete = false; 2335 struct rq_flags rf; 2336 2337 /* 2338 * The original target CPU might have gone down and we might 2339 * be on another CPU but it doesn't matter. 2340 */ 2341 local_irq_save(rf.flags); 2342 /* 2343 * We need to explicitly wake pending tasks before running 2344 * __migrate_task() such that we will not miss enforcing cpus_ptr 2345 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2346 */ 2347 flush_smp_call_function_from_idle(); 2348 2349 raw_spin_lock(&p->pi_lock); 2350 rq_lock(rq, &rf); 2351 2352 /* 2353 * If we were passed a pending, then ->stop_pending was set, thus 2354 * p->migration_pending must have remained stable. 2355 */ 2356 WARN_ON_ONCE(pending && pending != p->migration_pending); 2357 2358 /* 2359 * If task_rq(p) != rq, it cannot be migrated here, because we're 2360 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2361 * we're holding p->pi_lock. 2362 */ 2363 if (task_rq(p) == rq) { 2364 if (is_migration_disabled(p)) 2365 goto out; 2366 2367 if (pending) { 2368 p->migration_pending = NULL; 2369 complete = true; 2370 2371 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2372 goto out; 2373 } 2374 2375 if (task_on_rq_queued(p)) 2376 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2377 else 2378 p->wake_cpu = arg->dest_cpu; 2379 2380 /* 2381 * XXX __migrate_task() can fail, at which point we might end 2382 * up running on a dodgy CPU, AFAICT this can only happen 2383 * during CPU hotplug, at which point we'll get pushed out 2384 * anyway, so it's probably not a big deal. 2385 */ 2386 2387 } else if (pending) { 2388 /* 2389 * This happens when we get migrated between migrate_enable()'s 2390 * preempt_enable() and scheduling the stopper task. At that 2391 * point we're a regular task again and not current anymore. 2392 * 2393 * A !PREEMPT kernel has a giant hole here, which makes it far 2394 * more likely. 2395 */ 2396 2397 /* 2398 * The task moved before the stopper got to run. We're holding 2399 * ->pi_lock, so the allowed mask is stable - if it got 2400 * somewhere allowed, we're done. 2401 */ 2402 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2403 p->migration_pending = NULL; 2404 complete = true; 2405 goto out; 2406 } 2407 2408 /* 2409 * When migrate_enable() hits a rq mis-match we can't reliably 2410 * determine is_migration_disabled() and so have to chase after 2411 * it. 2412 */ 2413 WARN_ON_ONCE(!pending->stop_pending); 2414 task_rq_unlock(rq, p, &rf); 2415 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2416 &pending->arg, &pending->stop_work); 2417 return 0; 2418 } 2419 out: 2420 if (pending) 2421 pending->stop_pending = false; 2422 task_rq_unlock(rq, p, &rf); 2423 2424 if (complete) 2425 complete_all(&pending->done); 2426 2427 return 0; 2428 } 2429 2430 int push_cpu_stop(void *arg) 2431 { 2432 struct rq *lowest_rq = NULL, *rq = this_rq(); 2433 struct task_struct *p = arg; 2434 2435 raw_spin_lock_irq(&p->pi_lock); 2436 raw_spin_rq_lock(rq); 2437 2438 if (task_rq(p) != rq) 2439 goto out_unlock; 2440 2441 if (is_migration_disabled(p)) { 2442 p->migration_flags |= MDF_PUSH; 2443 goto out_unlock; 2444 } 2445 2446 p->migration_flags &= ~MDF_PUSH; 2447 2448 if (p->sched_class->find_lock_rq) 2449 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2450 2451 if (!lowest_rq) 2452 goto out_unlock; 2453 2454 // XXX validate p is still the highest prio task 2455 if (task_rq(p) == rq) { 2456 deactivate_task(rq, p, 0); 2457 set_task_cpu(p, lowest_rq->cpu); 2458 activate_task(lowest_rq, p, 0); 2459 resched_curr(lowest_rq); 2460 } 2461 2462 double_unlock_balance(rq, lowest_rq); 2463 2464 out_unlock: 2465 rq->push_busy = false; 2466 raw_spin_rq_unlock(rq); 2467 raw_spin_unlock_irq(&p->pi_lock); 2468 2469 put_task_struct(p); 2470 return 0; 2471 } 2472 2473 /* 2474 * sched_class::set_cpus_allowed must do the below, but is not required to 2475 * actually call this function. 2476 */ 2477 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2478 { 2479 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2480 p->cpus_ptr = new_mask; 2481 return; 2482 } 2483 2484 cpumask_copy(&p->cpus_mask, new_mask); 2485 p->nr_cpus_allowed = cpumask_weight(new_mask); 2486 } 2487 2488 static void 2489 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2490 { 2491 struct rq *rq = task_rq(p); 2492 bool queued, running; 2493 2494 /* 2495 * This here violates the locking rules for affinity, since we're only 2496 * supposed to change these variables while holding both rq->lock and 2497 * p->pi_lock. 2498 * 2499 * HOWEVER, it magically works, because ttwu() is the only code that 2500 * accesses these variables under p->pi_lock and only does so after 2501 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2502 * before finish_task(). 2503 * 2504 * XXX do further audits, this smells like something putrid. 2505 */ 2506 if (flags & SCA_MIGRATE_DISABLE) 2507 SCHED_WARN_ON(!p->on_cpu); 2508 else 2509 lockdep_assert_held(&p->pi_lock); 2510 2511 queued = task_on_rq_queued(p); 2512 running = task_current(rq, p); 2513 2514 if (queued) { 2515 /* 2516 * Because __kthread_bind() calls this on blocked tasks without 2517 * holding rq->lock. 2518 */ 2519 lockdep_assert_rq_held(rq); 2520 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2521 } 2522 if (running) 2523 put_prev_task(rq, p); 2524 2525 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2526 2527 if (queued) 2528 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2529 if (running) 2530 set_next_task(rq, p); 2531 } 2532 2533 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2534 { 2535 __do_set_cpus_allowed(p, new_mask, 0); 2536 } 2537 2538 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2539 int node) 2540 { 2541 if (!src->user_cpus_ptr) 2542 return 0; 2543 2544 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2545 if (!dst->user_cpus_ptr) 2546 return -ENOMEM; 2547 2548 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2549 return 0; 2550 } 2551 2552 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2553 { 2554 struct cpumask *user_mask = NULL; 2555 2556 swap(p->user_cpus_ptr, user_mask); 2557 2558 return user_mask; 2559 } 2560 2561 void release_user_cpus_ptr(struct task_struct *p) 2562 { 2563 kfree(clear_user_cpus_ptr(p)); 2564 } 2565 2566 /* 2567 * This function is wildly self concurrent; here be dragons. 2568 * 2569 * 2570 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2571 * designated task is enqueued on an allowed CPU. If that task is currently 2572 * running, we have to kick it out using the CPU stopper. 2573 * 2574 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2575 * Consider: 2576 * 2577 * Initial conditions: P0->cpus_mask = [0, 1] 2578 * 2579 * P0@CPU0 P1 2580 * 2581 * migrate_disable(); 2582 * <preempted> 2583 * set_cpus_allowed_ptr(P0, [1]); 2584 * 2585 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2586 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2587 * This means we need the following scheme: 2588 * 2589 * P0@CPU0 P1 2590 * 2591 * migrate_disable(); 2592 * <preempted> 2593 * set_cpus_allowed_ptr(P0, [1]); 2594 * <blocks> 2595 * <resumes> 2596 * migrate_enable(); 2597 * __set_cpus_allowed_ptr(); 2598 * <wakes local stopper> 2599 * `--> <woken on migration completion> 2600 * 2601 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2602 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2603 * task p are serialized by p->pi_lock, which we can leverage: the one that 2604 * should come into effect at the end of the Migrate-Disable region is the last 2605 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2606 * but we still need to properly signal those waiting tasks at the appropriate 2607 * moment. 2608 * 2609 * This is implemented using struct set_affinity_pending. The first 2610 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2611 * setup an instance of that struct and install it on the targeted task_struct. 2612 * Any and all further callers will reuse that instance. Those then wait for 2613 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2614 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2615 * 2616 * 2617 * (1) In the cases covered above. There is one more where the completion is 2618 * signaled within affine_move_task() itself: when a subsequent affinity request 2619 * occurs after the stopper bailed out due to the targeted task still being 2620 * Migrate-Disable. Consider: 2621 * 2622 * Initial conditions: P0->cpus_mask = [0, 1] 2623 * 2624 * CPU0 P1 P2 2625 * <P0> 2626 * migrate_disable(); 2627 * <preempted> 2628 * set_cpus_allowed_ptr(P0, [1]); 2629 * <blocks> 2630 * <migration/0> 2631 * migration_cpu_stop() 2632 * is_migration_disabled() 2633 * <bails> 2634 * set_cpus_allowed_ptr(P0, [0, 1]); 2635 * <signal completion> 2636 * <awakes> 2637 * 2638 * Note that the above is safe vs a concurrent migrate_enable(), as any 2639 * pending affinity completion is preceded by an uninstallation of 2640 * p->migration_pending done with p->pi_lock held. 2641 */ 2642 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2643 int dest_cpu, unsigned int flags) 2644 { 2645 struct set_affinity_pending my_pending = { }, *pending = NULL; 2646 bool stop_pending, complete = false; 2647 2648 /* Can the task run on the task's current CPU? If so, we're done */ 2649 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2650 struct task_struct *push_task = NULL; 2651 2652 if ((flags & SCA_MIGRATE_ENABLE) && 2653 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2654 rq->push_busy = true; 2655 push_task = get_task_struct(p); 2656 } 2657 2658 /* 2659 * If there are pending waiters, but no pending stop_work, 2660 * then complete now. 2661 */ 2662 pending = p->migration_pending; 2663 if (pending && !pending->stop_pending) { 2664 p->migration_pending = NULL; 2665 complete = true; 2666 } 2667 2668 task_rq_unlock(rq, p, rf); 2669 2670 if (push_task) { 2671 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2672 p, &rq->push_work); 2673 } 2674 2675 if (complete) 2676 complete_all(&pending->done); 2677 2678 return 0; 2679 } 2680 2681 if (!(flags & SCA_MIGRATE_ENABLE)) { 2682 /* serialized by p->pi_lock */ 2683 if (!p->migration_pending) { 2684 /* Install the request */ 2685 refcount_set(&my_pending.refs, 1); 2686 init_completion(&my_pending.done); 2687 my_pending.arg = (struct migration_arg) { 2688 .task = p, 2689 .dest_cpu = dest_cpu, 2690 .pending = &my_pending, 2691 }; 2692 2693 p->migration_pending = &my_pending; 2694 } else { 2695 pending = p->migration_pending; 2696 refcount_inc(&pending->refs); 2697 /* 2698 * Affinity has changed, but we've already installed a 2699 * pending. migration_cpu_stop() *must* see this, else 2700 * we risk a completion of the pending despite having a 2701 * task on a disallowed CPU. 2702 * 2703 * Serialized by p->pi_lock, so this is safe. 2704 */ 2705 pending->arg.dest_cpu = dest_cpu; 2706 } 2707 } 2708 pending = p->migration_pending; 2709 /* 2710 * - !MIGRATE_ENABLE: 2711 * we'll have installed a pending if there wasn't one already. 2712 * 2713 * - MIGRATE_ENABLE: 2714 * we're here because the current CPU isn't matching anymore, 2715 * the only way that can happen is because of a concurrent 2716 * set_cpus_allowed_ptr() call, which should then still be 2717 * pending completion. 2718 * 2719 * Either way, we really should have a @pending here. 2720 */ 2721 if (WARN_ON_ONCE(!pending)) { 2722 task_rq_unlock(rq, p, rf); 2723 return -EINVAL; 2724 } 2725 2726 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2727 /* 2728 * MIGRATE_ENABLE gets here because 'p == current', but for 2729 * anything else we cannot do is_migration_disabled(), punt 2730 * and have the stopper function handle it all race-free. 2731 */ 2732 stop_pending = pending->stop_pending; 2733 if (!stop_pending) 2734 pending->stop_pending = true; 2735 2736 if (flags & SCA_MIGRATE_ENABLE) 2737 p->migration_flags &= ~MDF_PUSH; 2738 2739 task_rq_unlock(rq, p, rf); 2740 2741 if (!stop_pending) { 2742 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2743 &pending->arg, &pending->stop_work); 2744 } 2745 2746 if (flags & SCA_MIGRATE_ENABLE) 2747 return 0; 2748 } else { 2749 2750 if (!is_migration_disabled(p)) { 2751 if (task_on_rq_queued(p)) 2752 rq = move_queued_task(rq, rf, p, dest_cpu); 2753 2754 if (!pending->stop_pending) { 2755 p->migration_pending = NULL; 2756 complete = true; 2757 } 2758 } 2759 task_rq_unlock(rq, p, rf); 2760 2761 if (complete) 2762 complete_all(&pending->done); 2763 } 2764 2765 wait_for_completion(&pending->done); 2766 2767 if (refcount_dec_and_test(&pending->refs)) 2768 wake_up_var(&pending->refs); /* No UaF, just an address */ 2769 2770 /* 2771 * Block the original owner of &pending until all subsequent callers 2772 * have seen the completion and decremented the refcount 2773 */ 2774 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2775 2776 /* ARGH */ 2777 WARN_ON_ONCE(my_pending.stop_pending); 2778 2779 return 0; 2780 } 2781 2782 /* 2783 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2784 */ 2785 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2786 const struct cpumask *new_mask, 2787 u32 flags, 2788 struct rq *rq, 2789 struct rq_flags *rf) 2790 __releases(rq->lock) 2791 __releases(p->pi_lock) 2792 { 2793 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2794 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2795 bool kthread = p->flags & PF_KTHREAD; 2796 struct cpumask *user_mask = NULL; 2797 unsigned int dest_cpu; 2798 int ret = 0; 2799 2800 update_rq_clock(rq); 2801 2802 if (kthread || is_migration_disabled(p)) { 2803 /* 2804 * Kernel threads are allowed on online && !active CPUs, 2805 * however, during cpu-hot-unplug, even these might get pushed 2806 * away if not KTHREAD_IS_PER_CPU. 2807 * 2808 * Specifically, migration_disabled() tasks must not fail the 2809 * cpumask_any_and_distribute() pick below, esp. so on 2810 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2811 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2812 */ 2813 cpu_valid_mask = cpu_online_mask; 2814 } 2815 2816 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2817 ret = -EINVAL; 2818 goto out; 2819 } 2820 2821 /* 2822 * Must re-check here, to close a race against __kthread_bind(), 2823 * sched_setaffinity() is not guaranteed to observe the flag. 2824 */ 2825 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2826 ret = -EINVAL; 2827 goto out; 2828 } 2829 2830 if (!(flags & SCA_MIGRATE_ENABLE)) { 2831 if (cpumask_equal(&p->cpus_mask, new_mask)) 2832 goto out; 2833 2834 if (WARN_ON_ONCE(p == current && 2835 is_migration_disabled(p) && 2836 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2837 ret = -EBUSY; 2838 goto out; 2839 } 2840 } 2841 2842 /* 2843 * Picking a ~random cpu helps in cases where we are changing affinity 2844 * for groups of tasks (ie. cpuset), so that load balancing is not 2845 * immediately required to distribute the tasks within their new mask. 2846 */ 2847 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2848 if (dest_cpu >= nr_cpu_ids) { 2849 ret = -EINVAL; 2850 goto out; 2851 } 2852 2853 __do_set_cpus_allowed(p, new_mask, flags); 2854 2855 if (flags & SCA_USER) 2856 user_mask = clear_user_cpus_ptr(p); 2857 2858 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2859 2860 kfree(user_mask); 2861 2862 return ret; 2863 2864 out: 2865 task_rq_unlock(rq, p, rf); 2866 2867 return ret; 2868 } 2869 2870 /* 2871 * Change a given task's CPU affinity. Migrate the thread to a 2872 * proper CPU and schedule it away if the CPU it's executing on 2873 * is removed from the allowed bitmask. 2874 * 2875 * NOTE: the caller must have a valid reference to the task, the 2876 * task must not exit() & deallocate itself prematurely. The 2877 * call is not atomic; no spinlocks may be held. 2878 */ 2879 static int __set_cpus_allowed_ptr(struct task_struct *p, 2880 const struct cpumask *new_mask, u32 flags) 2881 { 2882 struct rq_flags rf; 2883 struct rq *rq; 2884 2885 rq = task_rq_lock(p, &rf); 2886 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2887 } 2888 2889 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2890 { 2891 return __set_cpus_allowed_ptr(p, new_mask, 0); 2892 } 2893 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2894 2895 /* 2896 * Change a given task's CPU affinity to the intersection of its current 2897 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2898 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2899 * If the resulting mask is empty, leave the affinity unchanged and return 2900 * -EINVAL. 2901 */ 2902 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2903 struct cpumask *new_mask, 2904 const struct cpumask *subset_mask) 2905 { 2906 struct cpumask *user_mask = NULL; 2907 struct rq_flags rf; 2908 struct rq *rq; 2909 int err; 2910 2911 if (!p->user_cpus_ptr) { 2912 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2913 if (!user_mask) 2914 return -ENOMEM; 2915 } 2916 2917 rq = task_rq_lock(p, &rf); 2918 2919 /* 2920 * Forcefully restricting the affinity of a deadline task is 2921 * likely to cause problems, so fail and noisily override the 2922 * mask entirely. 2923 */ 2924 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2925 err = -EPERM; 2926 goto err_unlock; 2927 } 2928 2929 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2930 err = -EINVAL; 2931 goto err_unlock; 2932 } 2933 2934 /* 2935 * We're about to butcher the task affinity, so keep track of what 2936 * the user asked for in case we're able to restore it later on. 2937 */ 2938 if (user_mask) { 2939 cpumask_copy(user_mask, p->cpus_ptr); 2940 p->user_cpus_ptr = user_mask; 2941 } 2942 2943 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 2944 2945 err_unlock: 2946 task_rq_unlock(rq, p, &rf); 2947 kfree(user_mask); 2948 return err; 2949 } 2950 2951 /* 2952 * Restrict the CPU affinity of task @p so that it is a subset of 2953 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 2954 * old affinity mask. If the resulting mask is empty, we warn and walk 2955 * up the cpuset hierarchy until we find a suitable mask. 2956 */ 2957 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 2958 { 2959 cpumask_var_t new_mask; 2960 const struct cpumask *override_mask = task_cpu_possible_mask(p); 2961 2962 alloc_cpumask_var(&new_mask, GFP_KERNEL); 2963 2964 /* 2965 * __migrate_task() can fail silently in the face of concurrent 2966 * offlining of the chosen destination CPU, so take the hotplug 2967 * lock to ensure that the migration succeeds. 2968 */ 2969 cpus_read_lock(); 2970 if (!cpumask_available(new_mask)) 2971 goto out_set_mask; 2972 2973 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 2974 goto out_free_mask; 2975 2976 /* 2977 * We failed to find a valid subset of the affinity mask for the 2978 * task, so override it based on its cpuset hierarchy. 2979 */ 2980 cpuset_cpus_allowed(p, new_mask); 2981 override_mask = new_mask; 2982 2983 out_set_mask: 2984 if (printk_ratelimit()) { 2985 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 2986 task_pid_nr(p), p->comm, 2987 cpumask_pr_args(override_mask)); 2988 } 2989 2990 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 2991 out_free_mask: 2992 cpus_read_unlock(); 2993 free_cpumask_var(new_mask); 2994 } 2995 2996 static int 2997 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 2998 2999 /* 3000 * Restore the affinity of a task @p which was previously restricted by a 3001 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 3002 * @p->user_cpus_ptr. 3003 * 3004 * It is the caller's responsibility to serialise this with any calls to 3005 * force_compatible_cpus_allowed_ptr(@p). 3006 */ 3007 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3008 { 3009 struct cpumask *user_mask = p->user_cpus_ptr; 3010 unsigned long flags; 3011 3012 /* 3013 * Try to restore the old affinity mask. If this fails, then 3014 * we free the mask explicitly to avoid it being inherited across 3015 * a subsequent fork(). 3016 */ 3017 if (!user_mask || !__sched_setaffinity(p, user_mask)) 3018 return; 3019 3020 raw_spin_lock_irqsave(&p->pi_lock, flags); 3021 user_mask = clear_user_cpus_ptr(p); 3022 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3023 3024 kfree(user_mask); 3025 } 3026 3027 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3028 { 3029 #ifdef CONFIG_SCHED_DEBUG 3030 unsigned int state = READ_ONCE(p->__state); 3031 3032 /* 3033 * We should never call set_task_cpu() on a blocked task, 3034 * ttwu() will sort out the placement. 3035 */ 3036 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3037 3038 /* 3039 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3040 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3041 * time relying on p->on_rq. 3042 */ 3043 WARN_ON_ONCE(state == TASK_RUNNING && 3044 p->sched_class == &fair_sched_class && 3045 (p->on_rq && !task_on_rq_migrating(p))); 3046 3047 #ifdef CONFIG_LOCKDEP 3048 /* 3049 * The caller should hold either p->pi_lock or rq->lock, when changing 3050 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3051 * 3052 * sched_move_task() holds both and thus holding either pins the cgroup, 3053 * see task_group(). 3054 * 3055 * Furthermore, all task_rq users should acquire both locks, see 3056 * task_rq_lock(). 3057 */ 3058 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3059 lockdep_is_held(__rq_lockp(task_rq(p))))); 3060 #endif 3061 /* 3062 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3063 */ 3064 WARN_ON_ONCE(!cpu_online(new_cpu)); 3065 3066 WARN_ON_ONCE(is_migration_disabled(p)); 3067 #endif 3068 3069 trace_sched_migrate_task(p, new_cpu); 3070 3071 if (task_cpu(p) != new_cpu) { 3072 if (p->sched_class->migrate_task_rq) 3073 p->sched_class->migrate_task_rq(p, new_cpu); 3074 p->se.nr_migrations++; 3075 rseq_migrate(p); 3076 perf_event_task_migrate(p); 3077 } 3078 3079 __set_task_cpu(p, new_cpu); 3080 } 3081 3082 #ifdef CONFIG_NUMA_BALANCING 3083 static void __migrate_swap_task(struct task_struct *p, int cpu) 3084 { 3085 if (task_on_rq_queued(p)) { 3086 struct rq *src_rq, *dst_rq; 3087 struct rq_flags srf, drf; 3088 3089 src_rq = task_rq(p); 3090 dst_rq = cpu_rq(cpu); 3091 3092 rq_pin_lock(src_rq, &srf); 3093 rq_pin_lock(dst_rq, &drf); 3094 3095 deactivate_task(src_rq, p, 0); 3096 set_task_cpu(p, cpu); 3097 activate_task(dst_rq, p, 0); 3098 check_preempt_curr(dst_rq, p, 0); 3099 3100 rq_unpin_lock(dst_rq, &drf); 3101 rq_unpin_lock(src_rq, &srf); 3102 3103 } else { 3104 /* 3105 * Task isn't running anymore; make it appear like we migrated 3106 * it before it went to sleep. This means on wakeup we make the 3107 * previous CPU our target instead of where it really is. 3108 */ 3109 p->wake_cpu = cpu; 3110 } 3111 } 3112 3113 struct migration_swap_arg { 3114 struct task_struct *src_task, *dst_task; 3115 int src_cpu, dst_cpu; 3116 }; 3117 3118 static int migrate_swap_stop(void *data) 3119 { 3120 struct migration_swap_arg *arg = data; 3121 struct rq *src_rq, *dst_rq; 3122 int ret = -EAGAIN; 3123 3124 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3125 return -EAGAIN; 3126 3127 src_rq = cpu_rq(arg->src_cpu); 3128 dst_rq = cpu_rq(arg->dst_cpu); 3129 3130 double_raw_lock(&arg->src_task->pi_lock, 3131 &arg->dst_task->pi_lock); 3132 double_rq_lock(src_rq, dst_rq); 3133 3134 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3135 goto unlock; 3136 3137 if (task_cpu(arg->src_task) != arg->src_cpu) 3138 goto unlock; 3139 3140 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3141 goto unlock; 3142 3143 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3144 goto unlock; 3145 3146 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3147 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3148 3149 ret = 0; 3150 3151 unlock: 3152 double_rq_unlock(src_rq, dst_rq); 3153 raw_spin_unlock(&arg->dst_task->pi_lock); 3154 raw_spin_unlock(&arg->src_task->pi_lock); 3155 3156 return ret; 3157 } 3158 3159 /* 3160 * Cross migrate two tasks 3161 */ 3162 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3163 int target_cpu, int curr_cpu) 3164 { 3165 struct migration_swap_arg arg; 3166 int ret = -EINVAL; 3167 3168 arg = (struct migration_swap_arg){ 3169 .src_task = cur, 3170 .src_cpu = curr_cpu, 3171 .dst_task = p, 3172 .dst_cpu = target_cpu, 3173 }; 3174 3175 if (arg.src_cpu == arg.dst_cpu) 3176 goto out; 3177 3178 /* 3179 * These three tests are all lockless; this is OK since all of them 3180 * will be re-checked with proper locks held further down the line. 3181 */ 3182 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3183 goto out; 3184 3185 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3186 goto out; 3187 3188 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3189 goto out; 3190 3191 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3192 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3193 3194 out: 3195 return ret; 3196 } 3197 #endif /* CONFIG_NUMA_BALANCING */ 3198 3199 /* 3200 * wait_task_inactive - wait for a thread to unschedule. 3201 * 3202 * If @match_state is nonzero, it's the @p->state value just checked and 3203 * not expected to change. If it changes, i.e. @p might have woken up, 3204 * then return zero. When we succeed in waiting for @p to be off its CPU, 3205 * we return a positive number (its total switch count). If a second call 3206 * a short while later returns the same number, the caller can be sure that 3207 * @p has remained unscheduled the whole time. 3208 * 3209 * The caller must ensure that the task *will* unschedule sometime soon, 3210 * else this function might spin for a *long* time. This function can't 3211 * be called with interrupts off, or it may introduce deadlock with 3212 * smp_call_function() if an IPI is sent by the same process we are 3213 * waiting to become inactive. 3214 */ 3215 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3216 { 3217 int running, queued; 3218 struct rq_flags rf; 3219 unsigned long ncsw; 3220 struct rq *rq; 3221 3222 for (;;) { 3223 /* 3224 * We do the initial early heuristics without holding 3225 * any task-queue locks at all. We'll only try to get 3226 * the runqueue lock when things look like they will 3227 * work out! 3228 */ 3229 rq = task_rq(p); 3230 3231 /* 3232 * If the task is actively running on another CPU 3233 * still, just relax and busy-wait without holding 3234 * any locks. 3235 * 3236 * NOTE! Since we don't hold any locks, it's not 3237 * even sure that "rq" stays as the right runqueue! 3238 * But we don't care, since "task_running()" will 3239 * return false if the runqueue has changed and p 3240 * is actually now running somewhere else! 3241 */ 3242 while (task_running(rq, p)) { 3243 if (match_state && unlikely(READ_ONCE(p->__state) != match_state)) 3244 return 0; 3245 cpu_relax(); 3246 } 3247 3248 /* 3249 * Ok, time to look more closely! We need the rq 3250 * lock now, to be *sure*. If we're wrong, we'll 3251 * just go back and repeat. 3252 */ 3253 rq = task_rq_lock(p, &rf); 3254 trace_sched_wait_task(p); 3255 running = task_running(rq, p); 3256 queued = task_on_rq_queued(p); 3257 ncsw = 0; 3258 if (!match_state || READ_ONCE(p->__state) == match_state) 3259 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3260 task_rq_unlock(rq, p, &rf); 3261 3262 /* 3263 * If it changed from the expected state, bail out now. 3264 */ 3265 if (unlikely(!ncsw)) 3266 break; 3267 3268 /* 3269 * Was it really running after all now that we 3270 * checked with the proper locks actually held? 3271 * 3272 * Oops. Go back and try again.. 3273 */ 3274 if (unlikely(running)) { 3275 cpu_relax(); 3276 continue; 3277 } 3278 3279 /* 3280 * It's not enough that it's not actively running, 3281 * it must be off the runqueue _entirely_, and not 3282 * preempted! 3283 * 3284 * So if it was still runnable (but just not actively 3285 * running right now), it's preempted, and we should 3286 * yield - it could be a while. 3287 */ 3288 if (unlikely(queued)) { 3289 ktime_t to = NSEC_PER_SEC / HZ; 3290 3291 set_current_state(TASK_UNINTERRUPTIBLE); 3292 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3293 continue; 3294 } 3295 3296 /* 3297 * Ahh, all good. It wasn't running, and it wasn't 3298 * runnable, which means that it will never become 3299 * running in the future either. We're all done! 3300 */ 3301 break; 3302 } 3303 3304 return ncsw; 3305 } 3306 3307 /*** 3308 * kick_process - kick a running thread to enter/exit the kernel 3309 * @p: the to-be-kicked thread 3310 * 3311 * Cause a process which is running on another CPU to enter 3312 * kernel-mode, without any delay. (to get signals handled.) 3313 * 3314 * NOTE: this function doesn't have to take the runqueue lock, 3315 * because all it wants to ensure is that the remote task enters 3316 * the kernel. If the IPI races and the task has been migrated 3317 * to another CPU then no harm is done and the purpose has been 3318 * achieved as well. 3319 */ 3320 void kick_process(struct task_struct *p) 3321 { 3322 int cpu; 3323 3324 preempt_disable(); 3325 cpu = task_cpu(p); 3326 if ((cpu != smp_processor_id()) && task_curr(p)) 3327 smp_send_reschedule(cpu); 3328 preempt_enable(); 3329 } 3330 EXPORT_SYMBOL_GPL(kick_process); 3331 3332 /* 3333 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3334 * 3335 * A few notes on cpu_active vs cpu_online: 3336 * 3337 * - cpu_active must be a subset of cpu_online 3338 * 3339 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3340 * see __set_cpus_allowed_ptr(). At this point the newly online 3341 * CPU isn't yet part of the sched domains, and balancing will not 3342 * see it. 3343 * 3344 * - on CPU-down we clear cpu_active() to mask the sched domains and 3345 * avoid the load balancer to place new tasks on the to be removed 3346 * CPU. Existing tasks will remain running there and will be taken 3347 * off. 3348 * 3349 * This means that fallback selection must not select !active CPUs. 3350 * And can assume that any active CPU must be online. Conversely 3351 * select_task_rq() below may allow selection of !active CPUs in order 3352 * to satisfy the above rules. 3353 */ 3354 static int select_fallback_rq(int cpu, struct task_struct *p) 3355 { 3356 int nid = cpu_to_node(cpu); 3357 const struct cpumask *nodemask = NULL; 3358 enum { cpuset, possible, fail } state = cpuset; 3359 int dest_cpu; 3360 3361 /* 3362 * If the node that the CPU is on has been offlined, cpu_to_node() 3363 * will return -1. There is no CPU on the node, and we should 3364 * select the CPU on the other node. 3365 */ 3366 if (nid != -1) { 3367 nodemask = cpumask_of_node(nid); 3368 3369 /* Look for allowed, online CPU in same node. */ 3370 for_each_cpu(dest_cpu, nodemask) { 3371 if (is_cpu_allowed(p, dest_cpu)) 3372 return dest_cpu; 3373 } 3374 } 3375 3376 for (;;) { 3377 /* Any allowed, online CPU? */ 3378 for_each_cpu(dest_cpu, p->cpus_ptr) { 3379 if (!is_cpu_allowed(p, dest_cpu)) 3380 continue; 3381 3382 goto out; 3383 } 3384 3385 /* No more Mr. Nice Guy. */ 3386 switch (state) { 3387 case cpuset: 3388 if (cpuset_cpus_allowed_fallback(p)) { 3389 state = possible; 3390 break; 3391 } 3392 fallthrough; 3393 case possible: 3394 /* 3395 * XXX When called from select_task_rq() we only 3396 * hold p->pi_lock and again violate locking order. 3397 * 3398 * More yuck to audit. 3399 */ 3400 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3401 state = fail; 3402 break; 3403 case fail: 3404 BUG(); 3405 break; 3406 } 3407 } 3408 3409 out: 3410 if (state != cpuset) { 3411 /* 3412 * Don't tell them about moving exiting tasks or 3413 * kernel threads (both mm NULL), since they never 3414 * leave kernel. 3415 */ 3416 if (p->mm && printk_ratelimit()) { 3417 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3418 task_pid_nr(p), p->comm, cpu); 3419 } 3420 } 3421 3422 return dest_cpu; 3423 } 3424 3425 /* 3426 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3427 */ 3428 static inline 3429 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3430 { 3431 lockdep_assert_held(&p->pi_lock); 3432 3433 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3434 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3435 else 3436 cpu = cpumask_any(p->cpus_ptr); 3437 3438 /* 3439 * In order not to call set_task_cpu() on a blocking task we need 3440 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3441 * CPU. 3442 * 3443 * Since this is common to all placement strategies, this lives here. 3444 * 3445 * [ this allows ->select_task() to simply return task_cpu(p) and 3446 * not worry about this generic constraint ] 3447 */ 3448 if (unlikely(!is_cpu_allowed(p, cpu))) 3449 cpu = select_fallback_rq(task_cpu(p), p); 3450 3451 return cpu; 3452 } 3453 3454 void sched_set_stop_task(int cpu, struct task_struct *stop) 3455 { 3456 static struct lock_class_key stop_pi_lock; 3457 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3458 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3459 3460 if (stop) { 3461 /* 3462 * Make it appear like a SCHED_FIFO task, its something 3463 * userspace knows about and won't get confused about. 3464 * 3465 * Also, it will make PI more or less work without too 3466 * much confusion -- but then, stop work should not 3467 * rely on PI working anyway. 3468 */ 3469 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3470 3471 stop->sched_class = &stop_sched_class; 3472 3473 /* 3474 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3475 * adjust the effective priority of a task. As a result, 3476 * rt_mutex_setprio() can trigger (RT) balancing operations, 3477 * which can then trigger wakeups of the stop thread to push 3478 * around the current task. 3479 * 3480 * The stop task itself will never be part of the PI-chain, it 3481 * never blocks, therefore that ->pi_lock recursion is safe. 3482 * Tell lockdep about this by placing the stop->pi_lock in its 3483 * own class. 3484 */ 3485 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3486 } 3487 3488 cpu_rq(cpu)->stop = stop; 3489 3490 if (old_stop) { 3491 /* 3492 * Reset it back to a normal scheduling class so that 3493 * it can die in pieces. 3494 */ 3495 old_stop->sched_class = &rt_sched_class; 3496 } 3497 } 3498 3499 #else /* CONFIG_SMP */ 3500 3501 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3502 const struct cpumask *new_mask, 3503 u32 flags) 3504 { 3505 return set_cpus_allowed_ptr(p, new_mask); 3506 } 3507 3508 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3509 3510 static inline bool rq_has_pinned_tasks(struct rq *rq) 3511 { 3512 return false; 3513 } 3514 3515 #endif /* !CONFIG_SMP */ 3516 3517 static void 3518 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3519 { 3520 struct rq *rq; 3521 3522 if (!schedstat_enabled()) 3523 return; 3524 3525 rq = this_rq(); 3526 3527 #ifdef CONFIG_SMP 3528 if (cpu == rq->cpu) { 3529 __schedstat_inc(rq->ttwu_local); 3530 __schedstat_inc(p->stats.nr_wakeups_local); 3531 } else { 3532 struct sched_domain *sd; 3533 3534 __schedstat_inc(p->stats.nr_wakeups_remote); 3535 rcu_read_lock(); 3536 for_each_domain(rq->cpu, sd) { 3537 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3538 __schedstat_inc(sd->ttwu_wake_remote); 3539 break; 3540 } 3541 } 3542 rcu_read_unlock(); 3543 } 3544 3545 if (wake_flags & WF_MIGRATED) 3546 __schedstat_inc(p->stats.nr_wakeups_migrate); 3547 #endif /* CONFIG_SMP */ 3548 3549 __schedstat_inc(rq->ttwu_count); 3550 __schedstat_inc(p->stats.nr_wakeups); 3551 3552 if (wake_flags & WF_SYNC) 3553 __schedstat_inc(p->stats.nr_wakeups_sync); 3554 } 3555 3556 /* 3557 * Mark the task runnable and perform wakeup-preemption. 3558 */ 3559 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3560 struct rq_flags *rf) 3561 { 3562 check_preempt_curr(rq, p, wake_flags); 3563 WRITE_ONCE(p->__state, TASK_RUNNING); 3564 trace_sched_wakeup(p); 3565 3566 #ifdef CONFIG_SMP 3567 if (p->sched_class->task_woken) { 3568 /* 3569 * Our task @p is fully woken up and running; so it's safe to 3570 * drop the rq->lock, hereafter rq is only used for statistics. 3571 */ 3572 rq_unpin_lock(rq, rf); 3573 p->sched_class->task_woken(rq, p); 3574 rq_repin_lock(rq, rf); 3575 } 3576 3577 if (rq->idle_stamp) { 3578 u64 delta = rq_clock(rq) - rq->idle_stamp; 3579 u64 max = 2*rq->max_idle_balance_cost; 3580 3581 update_avg(&rq->avg_idle, delta); 3582 3583 if (rq->avg_idle > max) 3584 rq->avg_idle = max; 3585 3586 rq->wake_stamp = jiffies; 3587 rq->wake_avg_idle = rq->avg_idle / 2; 3588 3589 rq->idle_stamp = 0; 3590 } 3591 #endif 3592 } 3593 3594 static void 3595 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3596 struct rq_flags *rf) 3597 { 3598 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3599 3600 lockdep_assert_rq_held(rq); 3601 3602 if (p->sched_contributes_to_load) 3603 rq->nr_uninterruptible--; 3604 3605 #ifdef CONFIG_SMP 3606 if (wake_flags & WF_MIGRATED) 3607 en_flags |= ENQUEUE_MIGRATED; 3608 else 3609 #endif 3610 if (p->in_iowait) { 3611 delayacct_blkio_end(p); 3612 atomic_dec(&task_rq(p)->nr_iowait); 3613 } 3614 3615 activate_task(rq, p, en_flags); 3616 ttwu_do_wakeup(rq, p, wake_flags, rf); 3617 } 3618 3619 /* 3620 * Consider @p being inside a wait loop: 3621 * 3622 * for (;;) { 3623 * set_current_state(TASK_UNINTERRUPTIBLE); 3624 * 3625 * if (CONDITION) 3626 * break; 3627 * 3628 * schedule(); 3629 * } 3630 * __set_current_state(TASK_RUNNING); 3631 * 3632 * between set_current_state() and schedule(). In this case @p is still 3633 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3634 * an atomic manner. 3635 * 3636 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3637 * then schedule() must still happen and p->state can be changed to 3638 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3639 * need to do a full wakeup with enqueue. 3640 * 3641 * Returns: %true when the wakeup is done, 3642 * %false otherwise. 3643 */ 3644 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3645 { 3646 struct rq_flags rf; 3647 struct rq *rq; 3648 int ret = 0; 3649 3650 rq = __task_rq_lock(p, &rf); 3651 if (task_on_rq_queued(p)) { 3652 /* check_preempt_curr() may use rq clock */ 3653 update_rq_clock(rq); 3654 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3655 ret = 1; 3656 } 3657 __task_rq_unlock(rq, &rf); 3658 3659 return ret; 3660 } 3661 3662 #ifdef CONFIG_SMP 3663 void sched_ttwu_pending(void *arg) 3664 { 3665 struct llist_node *llist = arg; 3666 struct rq *rq = this_rq(); 3667 struct task_struct *p, *t; 3668 struct rq_flags rf; 3669 3670 if (!llist) 3671 return; 3672 3673 /* 3674 * rq::ttwu_pending racy indication of out-standing wakeups. 3675 * Races such that false-negatives are possible, since they 3676 * are shorter lived that false-positives would be. 3677 */ 3678 WRITE_ONCE(rq->ttwu_pending, 0); 3679 3680 rq_lock_irqsave(rq, &rf); 3681 update_rq_clock(rq); 3682 3683 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3684 if (WARN_ON_ONCE(p->on_cpu)) 3685 smp_cond_load_acquire(&p->on_cpu, !VAL); 3686 3687 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3688 set_task_cpu(p, cpu_of(rq)); 3689 3690 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3691 } 3692 3693 rq_unlock_irqrestore(rq, &rf); 3694 } 3695 3696 void send_call_function_single_ipi(int cpu) 3697 { 3698 struct rq *rq = cpu_rq(cpu); 3699 3700 if (!set_nr_if_polling(rq->idle)) 3701 arch_send_call_function_single_ipi(cpu); 3702 else 3703 trace_sched_wake_idle_without_ipi(cpu); 3704 } 3705 3706 /* 3707 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3708 * necessary. The wakee CPU on receipt of the IPI will queue the task 3709 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3710 * of the wakeup instead of the waker. 3711 */ 3712 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3713 { 3714 struct rq *rq = cpu_rq(cpu); 3715 3716 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3717 3718 WRITE_ONCE(rq->ttwu_pending, 1); 3719 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3720 } 3721 3722 void wake_up_if_idle(int cpu) 3723 { 3724 struct rq *rq = cpu_rq(cpu); 3725 struct rq_flags rf; 3726 3727 rcu_read_lock(); 3728 3729 if (!is_idle_task(rcu_dereference(rq->curr))) 3730 goto out; 3731 3732 rq_lock_irqsave(rq, &rf); 3733 if (is_idle_task(rq->curr)) 3734 resched_curr(rq); 3735 /* Else CPU is not idle, do nothing here: */ 3736 rq_unlock_irqrestore(rq, &rf); 3737 3738 out: 3739 rcu_read_unlock(); 3740 } 3741 3742 bool cpus_share_cache(int this_cpu, int that_cpu) 3743 { 3744 if (this_cpu == that_cpu) 3745 return true; 3746 3747 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3748 } 3749 3750 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3751 { 3752 /* 3753 * Do not complicate things with the async wake_list while the CPU is 3754 * in hotplug state. 3755 */ 3756 if (!cpu_active(cpu)) 3757 return false; 3758 3759 /* 3760 * If the CPU does not share cache, then queue the task on the 3761 * remote rqs wakelist to avoid accessing remote data. 3762 */ 3763 if (!cpus_share_cache(smp_processor_id(), cpu)) 3764 return true; 3765 3766 /* 3767 * If the task is descheduling and the only running task on the 3768 * CPU then use the wakelist to offload the task activation to 3769 * the soon-to-be-idle CPU as the current CPU is likely busy. 3770 * nr_running is checked to avoid unnecessary task stacking. 3771 */ 3772 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3773 return true; 3774 3775 return false; 3776 } 3777 3778 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3779 { 3780 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3781 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3782 return false; 3783 3784 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3785 __ttwu_queue_wakelist(p, cpu, wake_flags); 3786 return true; 3787 } 3788 3789 return false; 3790 } 3791 3792 #else /* !CONFIG_SMP */ 3793 3794 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3795 { 3796 return false; 3797 } 3798 3799 #endif /* CONFIG_SMP */ 3800 3801 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3802 { 3803 struct rq *rq = cpu_rq(cpu); 3804 struct rq_flags rf; 3805 3806 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3807 return; 3808 3809 rq_lock(rq, &rf); 3810 update_rq_clock(rq); 3811 ttwu_do_activate(rq, p, wake_flags, &rf); 3812 rq_unlock(rq, &rf); 3813 } 3814 3815 /* 3816 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3817 * 3818 * The caller holds p::pi_lock if p != current or has preemption 3819 * disabled when p == current. 3820 * 3821 * The rules of PREEMPT_RT saved_state: 3822 * 3823 * The related locking code always holds p::pi_lock when updating 3824 * p::saved_state, which means the code is fully serialized in both cases. 3825 * 3826 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3827 * bits set. This allows to distinguish all wakeup scenarios. 3828 */ 3829 static __always_inline 3830 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3831 { 3832 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3833 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3834 state != TASK_RTLOCK_WAIT); 3835 } 3836 3837 if (READ_ONCE(p->__state) & state) { 3838 *success = 1; 3839 return true; 3840 } 3841 3842 #ifdef CONFIG_PREEMPT_RT 3843 /* 3844 * Saved state preserves the task state across blocking on 3845 * an RT lock. If the state matches, set p::saved_state to 3846 * TASK_RUNNING, but do not wake the task because it waits 3847 * for a lock wakeup. Also indicate success because from 3848 * the regular waker's point of view this has succeeded. 3849 * 3850 * After acquiring the lock the task will restore p::__state 3851 * from p::saved_state which ensures that the regular 3852 * wakeup is not lost. The restore will also set 3853 * p::saved_state to TASK_RUNNING so any further tests will 3854 * not result in false positives vs. @success 3855 */ 3856 if (p->saved_state & state) { 3857 p->saved_state = TASK_RUNNING; 3858 *success = 1; 3859 } 3860 #endif 3861 return false; 3862 } 3863 3864 /* 3865 * Notes on Program-Order guarantees on SMP systems. 3866 * 3867 * MIGRATION 3868 * 3869 * The basic program-order guarantee on SMP systems is that when a task [t] 3870 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3871 * execution on its new CPU [c1]. 3872 * 3873 * For migration (of runnable tasks) this is provided by the following means: 3874 * 3875 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3876 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3877 * rq(c1)->lock (if not at the same time, then in that order). 3878 * C) LOCK of the rq(c1)->lock scheduling in task 3879 * 3880 * Release/acquire chaining guarantees that B happens after A and C after B. 3881 * Note: the CPU doing B need not be c0 or c1 3882 * 3883 * Example: 3884 * 3885 * CPU0 CPU1 CPU2 3886 * 3887 * LOCK rq(0)->lock 3888 * sched-out X 3889 * sched-in Y 3890 * UNLOCK rq(0)->lock 3891 * 3892 * LOCK rq(0)->lock // orders against CPU0 3893 * dequeue X 3894 * UNLOCK rq(0)->lock 3895 * 3896 * LOCK rq(1)->lock 3897 * enqueue X 3898 * UNLOCK rq(1)->lock 3899 * 3900 * LOCK rq(1)->lock // orders against CPU2 3901 * sched-out Z 3902 * sched-in X 3903 * UNLOCK rq(1)->lock 3904 * 3905 * 3906 * BLOCKING -- aka. SLEEP + WAKEUP 3907 * 3908 * For blocking we (obviously) need to provide the same guarantee as for 3909 * migration. However the means are completely different as there is no lock 3910 * chain to provide order. Instead we do: 3911 * 3912 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3913 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3914 * 3915 * Example: 3916 * 3917 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3918 * 3919 * LOCK rq(0)->lock LOCK X->pi_lock 3920 * dequeue X 3921 * sched-out X 3922 * smp_store_release(X->on_cpu, 0); 3923 * 3924 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3925 * X->state = WAKING 3926 * set_task_cpu(X,2) 3927 * 3928 * LOCK rq(2)->lock 3929 * enqueue X 3930 * X->state = RUNNING 3931 * UNLOCK rq(2)->lock 3932 * 3933 * LOCK rq(2)->lock // orders against CPU1 3934 * sched-out Z 3935 * sched-in X 3936 * UNLOCK rq(2)->lock 3937 * 3938 * UNLOCK X->pi_lock 3939 * UNLOCK rq(0)->lock 3940 * 3941 * 3942 * However, for wakeups there is a second guarantee we must provide, namely we 3943 * must ensure that CONDITION=1 done by the caller can not be reordered with 3944 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3945 */ 3946 3947 /** 3948 * try_to_wake_up - wake up a thread 3949 * @p: the thread to be awakened 3950 * @state: the mask of task states that can be woken 3951 * @wake_flags: wake modifier flags (WF_*) 3952 * 3953 * Conceptually does: 3954 * 3955 * If (@state & @p->state) @p->state = TASK_RUNNING. 3956 * 3957 * If the task was not queued/runnable, also place it back on a runqueue. 3958 * 3959 * This function is atomic against schedule() which would dequeue the task. 3960 * 3961 * It issues a full memory barrier before accessing @p->state, see the comment 3962 * with set_current_state(). 3963 * 3964 * Uses p->pi_lock to serialize against concurrent wake-ups. 3965 * 3966 * Relies on p->pi_lock stabilizing: 3967 * - p->sched_class 3968 * - p->cpus_ptr 3969 * - p->sched_task_group 3970 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3971 * 3972 * Tries really hard to only take one task_rq(p)->lock for performance. 3973 * Takes rq->lock in: 3974 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3975 * - ttwu_queue() -- new rq, for enqueue of the task; 3976 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3977 * 3978 * As a consequence we race really badly with just about everything. See the 3979 * many memory barriers and their comments for details. 3980 * 3981 * Return: %true if @p->state changes (an actual wakeup was done), 3982 * %false otherwise. 3983 */ 3984 static int 3985 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3986 { 3987 unsigned long flags; 3988 int cpu, success = 0; 3989 3990 preempt_disable(); 3991 if (p == current) { 3992 /* 3993 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3994 * == smp_processor_id()'. Together this means we can special 3995 * case the whole 'p->on_rq && ttwu_runnable()' case below 3996 * without taking any locks. 3997 * 3998 * In particular: 3999 * - we rely on Program-Order guarantees for all the ordering, 4000 * - we're serialized against set_special_state() by virtue of 4001 * it disabling IRQs (this allows not taking ->pi_lock). 4002 */ 4003 if (!ttwu_state_match(p, state, &success)) 4004 goto out; 4005 4006 trace_sched_waking(p); 4007 WRITE_ONCE(p->__state, TASK_RUNNING); 4008 trace_sched_wakeup(p); 4009 goto out; 4010 } 4011 4012 /* 4013 * If we are going to wake up a thread waiting for CONDITION we 4014 * need to ensure that CONDITION=1 done by the caller can not be 4015 * reordered with p->state check below. This pairs with smp_store_mb() 4016 * in set_current_state() that the waiting thread does. 4017 */ 4018 raw_spin_lock_irqsave(&p->pi_lock, flags); 4019 smp_mb__after_spinlock(); 4020 if (!ttwu_state_match(p, state, &success)) 4021 goto unlock; 4022 4023 trace_sched_waking(p); 4024 4025 /* 4026 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4027 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4028 * in smp_cond_load_acquire() below. 4029 * 4030 * sched_ttwu_pending() try_to_wake_up() 4031 * STORE p->on_rq = 1 LOAD p->state 4032 * UNLOCK rq->lock 4033 * 4034 * __schedule() (switch to task 'p') 4035 * LOCK rq->lock smp_rmb(); 4036 * smp_mb__after_spinlock(); 4037 * UNLOCK rq->lock 4038 * 4039 * [task p] 4040 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4041 * 4042 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4043 * __schedule(). See the comment for smp_mb__after_spinlock(). 4044 * 4045 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4046 */ 4047 smp_rmb(); 4048 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4049 goto unlock; 4050 4051 #ifdef CONFIG_SMP 4052 /* 4053 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4054 * possible to, falsely, observe p->on_cpu == 0. 4055 * 4056 * One must be running (->on_cpu == 1) in order to remove oneself 4057 * from the runqueue. 4058 * 4059 * __schedule() (switch to task 'p') try_to_wake_up() 4060 * STORE p->on_cpu = 1 LOAD p->on_rq 4061 * UNLOCK rq->lock 4062 * 4063 * __schedule() (put 'p' to sleep) 4064 * LOCK rq->lock smp_rmb(); 4065 * smp_mb__after_spinlock(); 4066 * STORE p->on_rq = 0 LOAD p->on_cpu 4067 * 4068 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4069 * __schedule(). See the comment for smp_mb__after_spinlock(). 4070 * 4071 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4072 * schedule()'s deactivate_task() has 'happened' and p will no longer 4073 * care about it's own p->state. See the comment in __schedule(). 4074 */ 4075 smp_acquire__after_ctrl_dep(); 4076 4077 /* 4078 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4079 * == 0), which means we need to do an enqueue, change p->state to 4080 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4081 * enqueue, such as ttwu_queue_wakelist(). 4082 */ 4083 WRITE_ONCE(p->__state, TASK_WAKING); 4084 4085 /* 4086 * If the owning (remote) CPU is still in the middle of schedule() with 4087 * this task as prev, considering queueing p on the remote CPUs wake_list 4088 * which potentially sends an IPI instead of spinning on p->on_cpu to 4089 * let the waker make forward progress. This is safe because IRQs are 4090 * disabled and the IPI will deliver after on_cpu is cleared. 4091 * 4092 * Ensure we load task_cpu(p) after p->on_cpu: 4093 * 4094 * set_task_cpu(p, cpu); 4095 * STORE p->cpu = @cpu 4096 * __schedule() (switch to task 'p') 4097 * LOCK rq->lock 4098 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4099 * STORE p->on_cpu = 1 LOAD p->cpu 4100 * 4101 * to ensure we observe the correct CPU on which the task is currently 4102 * scheduling. 4103 */ 4104 if (smp_load_acquire(&p->on_cpu) && 4105 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 4106 goto unlock; 4107 4108 /* 4109 * If the owning (remote) CPU is still in the middle of schedule() with 4110 * this task as prev, wait until it's done referencing the task. 4111 * 4112 * Pairs with the smp_store_release() in finish_task(). 4113 * 4114 * This ensures that tasks getting woken will be fully ordered against 4115 * their previous state and preserve Program Order. 4116 */ 4117 smp_cond_load_acquire(&p->on_cpu, !VAL); 4118 4119 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4120 if (task_cpu(p) != cpu) { 4121 if (p->in_iowait) { 4122 delayacct_blkio_end(p); 4123 atomic_dec(&task_rq(p)->nr_iowait); 4124 } 4125 4126 wake_flags |= WF_MIGRATED; 4127 psi_ttwu_dequeue(p); 4128 set_task_cpu(p, cpu); 4129 } 4130 #else 4131 cpu = task_cpu(p); 4132 #endif /* CONFIG_SMP */ 4133 4134 ttwu_queue(p, cpu, wake_flags); 4135 unlock: 4136 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4137 out: 4138 if (success) 4139 ttwu_stat(p, task_cpu(p), wake_flags); 4140 preempt_enable(); 4141 4142 return success; 4143 } 4144 4145 /** 4146 * task_call_func - Invoke a function on task in fixed state 4147 * @p: Process for which the function is to be invoked, can be @current. 4148 * @func: Function to invoke. 4149 * @arg: Argument to function. 4150 * 4151 * Fix the task in it's current state by avoiding wakeups and or rq operations 4152 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4153 * to work out what the state is, if required. Given that @func can be invoked 4154 * with a runqueue lock held, it had better be quite lightweight. 4155 * 4156 * Returns: 4157 * Whatever @func returns 4158 */ 4159 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4160 { 4161 struct rq *rq = NULL; 4162 unsigned int state; 4163 struct rq_flags rf; 4164 int ret; 4165 4166 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4167 4168 state = READ_ONCE(p->__state); 4169 4170 /* 4171 * Ensure we load p->on_rq after p->__state, otherwise it would be 4172 * possible to, falsely, observe p->on_rq == 0. 4173 * 4174 * See try_to_wake_up() for a longer comment. 4175 */ 4176 smp_rmb(); 4177 4178 /* 4179 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4180 * the task is blocked. Make sure to check @state since ttwu() can drop 4181 * locks at the end, see ttwu_queue_wakelist(). 4182 */ 4183 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq) 4184 rq = __task_rq_lock(p, &rf); 4185 4186 /* 4187 * At this point the task is pinned; either: 4188 * - blocked and we're holding off wakeups (pi->lock) 4189 * - woken, and we're holding off enqueue (rq->lock) 4190 * - queued, and we're holding off schedule (rq->lock) 4191 * - running, and we're holding off de-schedule (rq->lock) 4192 * 4193 * The called function (@func) can use: task_curr(), p->on_rq and 4194 * p->__state to differentiate between these states. 4195 */ 4196 ret = func(p, arg); 4197 4198 if (rq) 4199 rq_unlock(rq, &rf); 4200 4201 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4202 return ret; 4203 } 4204 4205 /** 4206 * wake_up_process - Wake up a specific process 4207 * @p: The process to be woken up. 4208 * 4209 * Attempt to wake up the nominated process and move it to the set of runnable 4210 * processes. 4211 * 4212 * Return: 1 if the process was woken up, 0 if it was already running. 4213 * 4214 * This function executes a full memory barrier before accessing the task state. 4215 */ 4216 int wake_up_process(struct task_struct *p) 4217 { 4218 return try_to_wake_up(p, TASK_NORMAL, 0); 4219 } 4220 EXPORT_SYMBOL(wake_up_process); 4221 4222 int wake_up_state(struct task_struct *p, unsigned int state) 4223 { 4224 return try_to_wake_up(p, state, 0); 4225 } 4226 4227 /* 4228 * Perform scheduler related setup for a newly forked process p. 4229 * p is forked by current. 4230 * 4231 * __sched_fork() is basic setup used by init_idle() too: 4232 */ 4233 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4234 { 4235 p->on_rq = 0; 4236 4237 p->se.on_rq = 0; 4238 p->se.exec_start = 0; 4239 p->se.sum_exec_runtime = 0; 4240 p->se.prev_sum_exec_runtime = 0; 4241 p->se.nr_migrations = 0; 4242 p->se.vruntime = 0; 4243 INIT_LIST_HEAD(&p->se.group_node); 4244 4245 #ifdef CONFIG_FAIR_GROUP_SCHED 4246 p->se.cfs_rq = NULL; 4247 #endif 4248 4249 #ifdef CONFIG_SCHEDSTATS 4250 /* Even if schedstat is disabled, there should not be garbage */ 4251 memset(&p->stats, 0, sizeof(p->stats)); 4252 #endif 4253 4254 RB_CLEAR_NODE(&p->dl.rb_node); 4255 init_dl_task_timer(&p->dl); 4256 init_dl_inactive_task_timer(&p->dl); 4257 __dl_clear_params(p); 4258 4259 INIT_LIST_HEAD(&p->rt.run_list); 4260 p->rt.timeout = 0; 4261 p->rt.time_slice = sched_rr_timeslice; 4262 p->rt.on_rq = 0; 4263 p->rt.on_list = 0; 4264 4265 #ifdef CONFIG_PREEMPT_NOTIFIERS 4266 INIT_HLIST_HEAD(&p->preempt_notifiers); 4267 #endif 4268 4269 #ifdef CONFIG_COMPACTION 4270 p->capture_control = NULL; 4271 #endif 4272 init_numa_balancing(clone_flags, p); 4273 #ifdef CONFIG_SMP 4274 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4275 p->migration_pending = NULL; 4276 #endif 4277 } 4278 4279 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4280 4281 #ifdef CONFIG_NUMA_BALANCING 4282 4283 void set_numabalancing_state(bool enabled) 4284 { 4285 if (enabled) 4286 static_branch_enable(&sched_numa_balancing); 4287 else 4288 static_branch_disable(&sched_numa_balancing); 4289 } 4290 4291 #ifdef CONFIG_PROC_SYSCTL 4292 int sysctl_numa_balancing(struct ctl_table *table, int write, 4293 void *buffer, size_t *lenp, loff_t *ppos) 4294 { 4295 struct ctl_table t; 4296 int err; 4297 int state = static_branch_likely(&sched_numa_balancing); 4298 4299 if (write && !capable(CAP_SYS_ADMIN)) 4300 return -EPERM; 4301 4302 t = *table; 4303 t.data = &state; 4304 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4305 if (err < 0) 4306 return err; 4307 if (write) 4308 set_numabalancing_state(state); 4309 return err; 4310 } 4311 #endif 4312 #endif 4313 4314 #ifdef CONFIG_SCHEDSTATS 4315 4316 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4317 4318 static void set_schedstats(bool enabled) 4319 { 4320 if (enabled) 4321 static_branch_enable(&sched_schedstats); 4322 else 4323 static_branch_disable(&sched_schedstats); 4324 } 4325 4326 void force_schedstat_enabled(void) 4327 { 4328 if (!schedstat_enabled()) { 4329 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4330 static_branch_enable(&sched_schedstats); 4331 } 4332 } 4333 4334 static int __init setup_schedstats(char *str) 4335 { 4336 int ret = 0; 4337 if (!str) 4338 goto out; 4339 4340 if (!strcmp(str, "enable")) { 4341 set_schedstats(true); 4342 ret = 1; 4343 } else if (!strcmp(str, "disable")) { 4344 set_schedstats(false); 4345 ret = 1; 4346 } 4347 out: 4348 if (!ret) 4349 pr_warn("Unable to parse schedstats=\n"); 4350 4351 return ret; 4352 } 4353 __setup("schedstats=", setup_schedstats); 4354 4355 #ifdef CONFIG_PROC_SYSCTL 4356 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4357 size_t *lenp, loff_t *ppos) 4358 { 4359 struct ctl_table t; 4360 int err; 4361 int state = static_branch_likely(&sched_schedstats); 4362 4363 if (write && !capable(CAP_SYS_ADMIN)) 4364 return -EPERM; 4365 4366 t = *table; 4367 t.data = &state; 4368 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4369 if (err < 0) 4370 return err; 4371 if (write) 4372 set_schedstats(state); 4373 return err; 4374 } 4375 #endif /* CONFIG_PROC_SYSCTL */ 4376 #endif /* CONFIG_SCHEDSTATS */ 4377 4378 /* 4379 * fork()/clone()-time setup: 4380 */ 4381 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4382 { 4383 __sched_fork(clone_flags, p); 4384 /* 4385 * We mark the process as NEW here. This guarantees that 4386 * nobody will actually run it, and a signal or other external 4387 * event cannot wake it up and insert it on the runqueue either. 4388 */ 4389 p->__state = TASK_NEW; 4390 4391 /* 4392 * Make sure we do not leak PI boosting priority to the child. 4393 */ 4394 p->prio = current->normal_prio; 4395 4396 uclamp_fork(p); 4397 4398 /* 4399 * Revert to default priority/policy on fork if requested. 4400 */ 4401 if (unlikely(p->sched_reset_on_fork)) { 4402 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4403 p->policy = SCHED_NORMAL; 4404 p->static_prio = NICE_TO_PRIO(0); 4405 p->rt_priority = 0; 4406 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4407 p->static_prio = NICE_TO_PRIO(0); 4408 4409 p->prio = p->normal_prio = p->static_prio; 4410 set_load_weight(p, false); 4411 4412 /* 4413 * We don't need the reset flag anymore after the fork. It has 4414 * fulfilled its duty: 4415 */ 4416 p->sched_reset_on_fork = 0; 4417 } 4418 4419 if (dl_prio(p->prio)) 4420 return -EAGAIN; 4421 else if (rt_prio(p->prio)) 4422 p->sched_class = &rt_sched_class; 4423 else 4424 p->sched_class = &fair_sched_class; 4425 4426 init_entity_runnable_average(&p->se); 4427 4428 #ifdef CONFIG_SCHED_INFO 4429 if (likely(sched_info_on())) 4430 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4431 #endif 4432 #if defined(CONFIG_SMP) 4433 p->on_cpu = 0; 4434 #endif 4435 init_task_preempt_count(p); 4436 #ifdef CONFIG_SMP 4437 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4438 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4439 #endif 4440 return 0; 4441 } 4442 4443 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4444 { 4445 unsigned long flags; 4446 #ifdef CONFIG_CGROUP_SCHED 4447 struct task_group *tg; 4448 #endif 4449 4450 raw_spin_lock_irqsave(&p->pi_lock, flags); 4451 #ifdef CONFIG_CGROUP_SCHED 4452 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4453 struct task_group, css); 4454 p->sched_task_group = autogroup_task_group(p, tg); 4455 #endif 4456 rseq_migrate(p); 4457 /* 4458 * We're setting the CPU for the first time, we don't migrate, 4459 * so use __set_task_cpu(). 4460 */ 4461 __set_task_cpu(p, smp_processor_id()); 4462 if (p->sched_class->task_fork) 4463 p->sched_class->task_fork(p); 4464 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4465 4466 uclamp_post_fork(p); 4467 } 4468 4469 unsigned long to_ratio(u64 period, u64 runtime) 4470 { 4471 if (runtime == RUNTIME_INF) 4472 return BW_UNIT; 4473 4474 /* 4475 * Doing this here saves a lot of checks in all 4476 * the calling paths, and returning zero seems 4477 * safe for them anyway. 4478 */ 4479 if (period == 0) 4480 return 0; 4481 4482 return div64_u64(runtime << BW_SHIFT, period); 4483 } 4484 4485 /* 4486 * wake_up_new_task - wake up a newly created task for the first time. 4487 * 4488 * This function will do some initial scheduler statistics housekeeping 4489 * that must be done for every newly created context, then puts the task 4490 * on the runqueue and wakes it. 4491 */ 4492 void wake_up_new_task(struct task_struct *p) 4493 { 4494 struct rq_flags rf; 4495 struct rq *rq; 4496 4497 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4498 WRITE_ONCE(p->__state, TASK_RUNNING); 4499 #ifdef CONFIG_SMP 4500 /* 4501 * Fork balancing, do it here and not earlier because: 4502 * - cpus_ptr can change in the fork path 4503 * - any previously selected CPU might disappear through hotplug 4504 * 4505 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4506 * as we're not fully set-up yet. 4507 */ 4508 p->recent_used_cpu = task_cpu(p); 4509 rseq_migrate(p); 4510 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4511 #endif 4512 rq = __task_rq_lock(p, &rf); 4513 update_rq_clock(rq); 4514 post_init_entity_util_avg(p); 4515 4516 activate_task(rq, p, ENQUEUE_NOCLOCK); 4517 trace_sched_wakeup_new(p); 4518 check_preempt_curr(rq, p, WF_FORK); 4519 #ifdef CONFIG_SMP 4520 if (p->sched_class->task_woken) { 4521 /* 4522 * Nothing relies on rq->lock after this, so it's fine to 4523 * drop it. 4524 */ 4525 rq_unpin_lock(rq, &rf); 4526 p->sched_class->task_woken(rq, p); 4527 rq_repin_lock(rq, &rf); 4528 } 4529 #endif 4530 task_rq_unlock(rq, p, &rf); 4531 } 4532 4533 #ifdef CONFIG_PREEMPT_NOTIFIERS 4534 4535 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4536 4537 void preempt_notifier_inc(void) 4538 { 4539 static_branch_inc(&preempt_notifier_key); 4540 } 4541 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4542 4543 void preempt_notifier_dec(void) 4544 { 4545 static_branch_dec(&preempt_notifier_key); 4546 } 4547 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4548 4549 /** 4550 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4551 * @notifier: notifier struct to register 4552 */ 4553 void preempt_notifier_register(struct preempt_notifier *notifier) 4554 { 4555 if (!static_branch_unlikely(&preempt_notifier_key)) 4556 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4557 4558 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4559 } 4560 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4561 4562 /** 4563 * preempt_notifier_unregister - no longer interested in preemption notifications 4564 * @notifier: notifier struct to unregister 4565 * 4566 * This is *not* safe to call from within a preemption notifier. 4567 */ 4568 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4569 { 4570 hlist_del(¬ifier->link); 4571 } 4572 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4573 4574 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4575 { 4576 struct preempt_notifier *notifier; 4577 4578 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4579 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4580 } 4581 4582 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4583 { 4584 if (static_branch_unlikely(&preempt_notifier_key)) 4585 __fire_sched_in_preempt_notifiers(curr); 4586 } 4587 4588 static void 4589 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4590 struct task_struct *next) 4591 { 4592 struct preempt_notifier *notifier; 4593 4594 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4595 notifier->ops->sched_out(notifier, next); 4596 } 4597 4598 static __always_inline void 4599 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4600 struct task_struct *next) 4601 { 4602 if (static_branch_unlikely(&preempt_notifier_key)) 4603 __fire_sched_out_preempt_notifiers(curr, next); 4604 } 4605 4606 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4607 4608 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4609 { 4610 } 4611 4612 static inline void 4613 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4614 struct task_struct *next) 4615 { 4616 } 4617 4618 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4619 4620 static inline void prepare_task(struct task_struct *next) 4621 { 4622 #ifdef CONFIG_SMP 4623 /* 4624 * Claim the task as running, we do this before switching to it 4625 * such that any running task will have this set. 4626 * 4627 * See the ttwu() WF_ON_CPU case and its ordering comment. 4628 */ 4629 WRITE_ONCE(next->on_cpu, 1); 4630 #endif 4631 } 4632 4633 static inline void finish_task(struct task_struct *prev) 4634 { 4635 #ifdef CONFIG_SMP 4636 /* 4637 * This must be the very last reference to @prev from this CPU. After 4638 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4639 * must ensure this doesn't happen until the switch is completely 4640 * finished. 4641 * 4642 * In particular, the load of prev->state in finish_task_switch() must 4643 * happen before this. 4644 * 4645 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4646 */ 4647 smp_store_release(&prev->on_cpu, 0); 4648 #endif 4649 } 4650 4651 #ifdef CONFIG_SMP 4652 4653 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4654 { 4655 void (*func)(struct rq *rq); 4656 struct callback_head *next; 4657 4658 lockdep_assert_rq_held(rq); 4659 4660 while (head) { 4661 func = (void (*)(struct rq *))head->func; 4662 next = head->next; 4663 head->next = NULL; 4664 head = next; 4665 4666 func(rq); 4667 } 4668 } 4669 4670 static void balance_push(struct rq *rq); 4671 4672 struct callback_head balance_push_callback = { 4673 .next = NULL, 4674 .func = (void (*)(struct callback_head *))balance_push, 4675 }; 4676 4677 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4678 { 4679 struct callback_head *head = rq->balance_callback; 4680 4681 lockdep_assert_rq_held(rq); 4682 if (head) 4683 rq->balance_callback = NULL; 4684 4685 return head; 4686 } 4687 4688 static void __balance_callbacks(struct rq *rq) 4689 { 4690 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4691 } 4692 4693 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4694 { 4695 unsigned long flags; 4696 4697 if (unlikely(head)) { 4698 raw_spin_rq_lock_irqsave(rq, flags); 4699 do_balance_callbacks(rq, head); 4700 raw_spin_rq_unlock_irqrestore(rq, flags); 4701 } 4702 } 4703 4704 #else 4705 4706 static inline void __balance_callbacks(struct rq *rq) 4707 { 4708 } 4709 4710 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4711 { 4712 return NULL; 4713 } 4714 4715 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4716 { 4717 } 4718 4719 #endif 4720 4721 static inline void 4722 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4723 { 4724 /* 4725 * Since the runqueue lock will be released by the next 4726 * task (which is an invalid locking op but in the case 4727 * of the scheduler it's an obvious special-case), so we 4728 * do an early lockdep release here: 4729 */ 4730 rq_unpin_lock(rq, rf); 4731 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4732 #ifdef CONFIG_DEBUG_SPINLOCK 4733 /* this is a valid case when another task releases the spinlock */ 4734 rq_lockp(rq)->owner = next; 4735 #endif 4736 } 4737 4738 static inline void finish_lock_switch(struct rq *rq) 4739 { 4740 /* 4741 * If we are tracking spinlock dependencies then we have to 4742 * fix up the runqueue lock - which gets 'carried over' from 4743 * prev into current: 4744 */ 4745 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4746 __balance_callbacks(rq); 4747 raw_spin_rq_unlock_irq(rq); 4748 } 4749 4750 /* 4751 * NOP if the arch has not defined these: 4752 */ 4753 4754 #ifndef prepare_arch_switch 4755 # define prepare_arch_switch(next) do { } while (0) 4756 #endif 4757 4758 #ifndef finish_arch_post_lock_switch 4759 # define finish_arch_post_lock_switch() do { } while (0) 4760 #endif 4761 4762 static inline void kmap_local_sched_out(void) 4763 { 4764 #ifdef CONFIG_KMAP_LOCAL 4765 if (unlikely(current->kmap_ctrl.idx)) 4766 __kmap_local_sched_out(); 4767 #endif 4768 } 4769 4770 static inline void kmap_local_sched_in(void) 4771 { 4772 #ifdef CONFIG_KMAP_LOCAL 4773 if (unlikely(current->kmap_ctrl.idx)) 4774 __kmap_local_sched_in(); 4775 #endif 4776 } 4777 4778 /** 4779 * prepare_task_switch - prepare to switch tasks 4780 * @rq: the runqueue preparing to switch 4781 * @prev: the current task that is being switched out 4782 * @next: the task we are going to switch to. 4783 * 4784 * This is called with the rq lock held and interrupts off. It must 4785 * be paired with a subsequent finish_task_switch after the context 4786 * switch. 4787 * 4788 * prepare_task_switch sets up locking and calls architecture specific 4789 * hooks. 4790 */ 4791 static inline void 4792 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4793 struct task_struct *next) 4794 { 4795 kcov_prepare_switch(prev); 4796 sched_info_switch(rq, prev, next); 4797 perf_event_task_sched_out(prev, next); 4798 rseq_preempt(prev); 4799 fire_sched_out_preempt_notifiers(prev, next); 4800 kmap_local_sched_out(); 4801 prepare_task(next); 4802 prepare_arch_switch(next); 4803 } 4804 4805 /** 4806 * finish_task_switch - clean up after a task-switch 4807 * @prev: the thread we just switched away from. 4808 * 4809 * finish_task_switch must be called after the context switch, paired 4810 * with a prepare_task_switch call before the context switch. 4811 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4812 * and do any other architecture-specific cleanup actions. 4813 * 4814 * Note that we may have delayed dropping an mm in context_switch(). If 4815 * so, we finish that here outside of the runqueue lock. (Doing it 4816 * with the lock held can cause deadlocks; see schedule() for 4817 * details.) 4818 * 4819 * The context switch have flipped the stack from under us and restored the 4820 * local variables which were saved when this task called schedule() in the 4821 * past. prev == current is still correct but we need to recalculate this_rq 4822 * because prev may have moved to another CPU. 4823 */ 4824 static struct rq *finish_task_switch(struct task_struct *prev) 4825 __releases(rq->lock) 4826 { 4827 struct rq *rq = this_rq(); 4828 struct mm_struct *mm = rq->prev_mm; 4829 long prev_state; 4830 4831 /* 4832 * The previous task will have left us with a preempt_count of 2 4833 * because it left us after: 4834 * 4835 * schedule() 4836 * preempt_disable(); // 1 4837 * __schedule() 4838 * raw_spin_lock_irq(&rq->lock) // 2 4839 * 4840 * Also, see FORK_PREEMPT_COUNT. 4841 */ 4842 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4843 "corrupted preempt_count: %s/%d/0x%x\n", 4844 current->comm, current->pid, preempt_count())) 4845 preempt_count_set(FORK_PREEMPT_COUNT); 4846 4847 rq->prev_mm = NULL; 4848 4849 /* 4850 * A task struct has one reference for the use as "current". 4851 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4852 * schedule one last time. The schedule call will never return, and 4853 * the scheduled task must drop that reference. 4854 * 4855 * We must observe prev->state before clearing prev->on_cpu (in 4856 * finish_task), otherwise a concurrent wakeup can get prev 4857 * running on another CPU and we could rave with its RUNNING -> DEAD 4858 * transition, resulting in a double drop. 4859 */ 4860 prev_state = READ_ONCE(prev->__state); 4861 vtime_task_switch(prev); 4862 perf_event_task_sched_in(prev, current); 4863 finish_task(prev); 4864 tick_nohz_task_switch(); 4865 finish_lock_switch(rq); 4866 finish_arch_post_lock_switch(); 4867 kcov_finish_switch(current); 4868 /* 4869 * kmap_local_sched_out() is invoked with rq::lock held and 4870 * interrupts disabled. There is no requirement for that, but the 4871 * sched out code does not have an interrupt enabled section. 4872 * Restoring the maps on sched in does not require interrupts being 4873 * disabled either. 4874 */ 4875 kmap_local_sched_in(); 4876 4877 fire_sched_in_preempt_notifiers(current); 4878 /* 4879 * When switching through a kernel thread, the loop in 4880 * membarrier_{private,global}_expedited() may have observed that 4881 * kernel thread and not issued an IPI. It is therefore possible to 4882 * schedule between user->kernel->user threads without passing though 4883 * switch_mm(). Membarrier requires a barrier after storing to 4884 * rq->curr, before returning to userspace, so provide them here: 4885 * 4886 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4887 * provided by mmdrop(), 4888 * - a sync_core for SYNC_CORE. 4889 */ 4890 if (mm) { 4891 membarrier_mm_sync_core_before_usermode(mm); 4892 mmdrop_sched(mm); 4893 } 4894 if (unlikely(prev_state == TASK_DEAD)) { 4895 if (prev->sched_class->task_dead) 4896 prev->sched_class->task_dead(prev); 4897 4898 /* Task is done with its stack. */ 4899 put_task_stack(prev); 4900 4901 put_task_struct_rcu_user(prev); 4902 } 4903 4904 return rq; 4905 } 4906 4907 /** 4908 * schedule_tail - first thing a freshly forked thread must call. 4909 * @prev: the thread we just switched away from. 4910 */ 4911 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4912 __releases(rq->lock) 4913 { 4914 /* 4915 * New tasks start with FORK_PREEMPT_COUNT, see there and 4916 * finish_task_switch() for details. 4917 * 4918 * finish_task_switch() will drop rq->lock() and lower preempt_count 4919 * and the preempt_enable() will end up enabling preemption (on 4920 * PREEMPT_COUNT kernels). 4921 */ 4922 4923 finish_task_switch(prev); 4924 preempt_enable(); 4925 4926 if (current->set_child_tid) 4927 put_user(task_pid_vnr(current), current->set_child_tid); 4928 4929 calculate_sigpending(); 4930 } 4931 4932 /* 4933 * context_switch - switch to the new MM and the new thread's register state. 4934 */ 4935 static __always_inline struct rq * 4936 context_switch(struct rq *rq, struct task_struct *prev, 4937 struct task_struct *next, struct rq_flags *rf) 4938 { 4939 prepare_task_switch(rq, prev, next); 4940 4941 /* 4942 * For paravirt, this is coupled with an exit in switch_to to 4943 * combine the page table reload and the switch backend into 4944 * one hypercall. 4945 */ 4946 arch_start_context_switch(prev); 4947 4948 /* 4949 * kernel -> kernel lazy + transfer active 4950 * user -> kernel lazy + mmgrab() active 4951 * 4952 * kernel -> user switch + mmdrop() active 4953 * user -> user switch 4954 */ 4955 if (!next->mm) { // to kernel 4956 enter_lazy_tlb(prev->active_mm, next); 4957 4958 next->active_mm = prev->active_mm; 4959 if (prev->mm) // from user 4960 mmgrab(prev->active_mm); 4961 else 4962 prev->active_mm = NULL; 4963 } else { // to user 4964 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4965 /* 4966 * sys_membarrier() requires an smp_mb() between setting 4967 * rq->curr / membarrier_switch_mm() and returning to userspace. 4968 * 4969 * The below provides this either through switch_mm(), or in 4970 * case 'prev->active_mm == next->mm' through 4971 * finish_task_switch()'s mmdrop(). 4972 */ 4973 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4974 4975 if (!prev->mm) { // from kernel 4976 /* will mmdrop() in finish_task_switch(). */ 4977 rq->prev_mm = prev->active_mm; 4978 prev->active_mm = NULL; 4979 } 4980 } 4981 4982 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4983 4984 prepare_lock_switch(rq, next, rf); 4985 4986 /* Here we just switch the register state and the stack. */ 4987 switch_to(prev, next, prev); 4988 barrier(); 4989 4990 return finish_task_switch(prev); 4991 } 4992 4993 /* 4994 * nr_running and nr_context_switches: 4995 * 4996 * externally visible scheduler statistics: current number of runnable 4997 * threads, total number of context switches performed since bootup. 4998 */ 4999 unsigned int nr_running(void) 5000 { 5001 unsigned int i, sum = 0; 5002 5003 for_each_online_cpu(i) 5004 sum += cpu_rq(i)->nr_running; 5005 5006 return sum; 5007 } 5008 5009 /* 5010 * Check if only the current task is running on the CPU. 5011 * 5012 * Caution: this function does not check that the caller has disabled 5013 * preemption, thus the result might have a time-of-check-to-time-of-use 5014 * race. The caller is responsible to use it correctly, for example: 5015 * 5016 * - from a non-preemptible section (of course) 5017 * 5018 * - from a thread that is bound to a single CPU 5019 * 5020 * - in a loop with very short iterations (e.g. a polling loop) 5021 */ 5022 bool single_task_running(void) 5023 { 5024 return raw_rq()->nr_running == 1; 5025 } 5026 EXPORT_SYMBOL(single_task_running); 5027 5028 unsigned long long nr_context_switches(void) 5029 { 5030 int i; 5031 unsigned long long sum = 0; 5032 5033 for_each_possible_cpu(i) 5034 sum += cpu_rq(i)->nr_switches; 5035 5036 return sum; 5037 } 5038 5039 /* 5040 * Consumers of these two interfaces, like for example the cpuidle menu 5041 * governor, are using nonsensical data. Preferring shallow idle state selection 5042 * for a CPU that has IO-wait which might not even end up running the task when 5043 * it does become runnable. 5044 */ 5045 5046 unsigned int nr_iowait_cpu(int cpu) 5047 { 5048 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5049 } 5050 5051 /* 5052 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5053 * 5054 * The idea behind IO-wait account is to account the idle time that we could 5055 * have spend running if it were not for IO. That is, if we were to improve the 5056 * storage performance, we'd have a proportional reduction in IO-wait time. 5057 * 5058 * This all works nicely on UP, where, when a task blocks on IO, we account 5059 * idle time as IO-wait, because if the storage were faster, it could've been 5060 * running and we'd not be idle. 5061 * 5062 * This has been extended to SMP, by doing the same for each CPU. This however 5063 * is broken. 5064 * 5065 * Imagine for instance the case where two tasks block on one CPU, only the one 5066 * CPU will have IO-wait accounted, while the other has regular idle. Even 5067 * though, if the storage were faster, both could've ran at the same time, 5068 * utilising both CPUs. 5069 * 5070 * This means, that when looking globally, the current IO-wait accounting on 5071 * SMP is a lower bound, by reason of under accounting. 5072 * 5073 * Worse, since the numbers are provided per CPU, they are sometimes 5074 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5075 * associated with any one particular CPU, it can wake to another CPU than it 5076 * blocked on. This means the per CPU IO-wait number is meaningless. 5077 * 5078 * Task CPU affinities can make all that even more 'interesting'. 5079 */ 5080 5081 unsigned int nr_iowait(void) 5082 { 5083 unsigned int i, sum = 0; 5084 5085 for_each_possible_cpu(i) 5086 sum += nr_iowait_cpu(i); 5087 5088 return sum; 5089 } 5090 5091 #ifdef CONFIG_SMP 5092 5093 /* 5094 * sched_exec - execve() is a valuable balancing opportunity, because at 5095 * this point the task has the smallest effective memory and cache footprint. 5096 */ 5097 void sched_exec(void) 5098 { 5099 struct task_struct *p = current; 5100 unsigned long flags; 5101 int dest_cpu; 5102 5103 raw_spin_lock_irqsave(&p->pi_lock, flags); 5104 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5105 if (dest_cpu == smp_processor_id()) 5106 goto unlock; 5107 5108 if (likely(cpu_active(dest_cpu))) { 5109 struct migration_arg arg = { p, dest_cpu }; 5110 5111 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5112 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5113 return; 5114 } 5115 unlock: 5116 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5117 } 5118 5119 #endif 5120 5121 DEFINE_PER_CPU(struct kernel_stat, kstat); 5122 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5123 5124 EXPORT_PER_CPU_SYMBOL(kstat); 5125 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5126 5127 /* 5128 * The function fair_sched_class.update_curr accesses the struct curr 5129 * and its field curr->exec_start; when called from task_sched_runtime(), 5130 * we observe a high rate of cache misses in practice. 5131 * Prefetching this data results in improved performance. 5132 */ 5133 static inline void prefetch_curr_exec_start(struct task_struct *p) 5134 { 5135 #ifdef CONFIG_FAIR_GROUP_SCHED 5136 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5137 #else 5138 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5139 #endif 5140 prefetch(curr); 5141 prefetch(&curr->exec_start); 5142 } 5143 5144 /* 5145 * Return accounted runtime for the task. 5146 * In case the task is currently running, return the runtime plus current's 5147 * pending runtime that have not been accounted yet. 5148 */ 5149 unsigned long long task_sched_runtime(struct task_struct *p) 5150 { 5151 struct rq_flags rf; 5152 struct rq *rq; 5153 u64 ns; 5154 5155 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5156 /* 5157 * 64-bit doesn't need locks to atomically read a 64-bit value. 5158 * So we have a optimization chance when the task's delta_exec is 0. 5159 * Reading ->on_cpu is racy, but this is ok. 5160 * 5161 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5162 * If we race with it entering CPU, unaccounted time is 0. This is 5163 * indistinguishable from the read occurring a few cycles earlier. 5164 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5165 * been accounted, so we're correct here as well. 5166 */ 5167 if (!p->on_cpu || !task_on_rq_queued(p)) 5168 return p->se.sum_exec_runtime; 5169 #endif 5170 5171 rq = task_rq_lock(p, &rf); 5172 /* 5173 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5174 * project cycles that may never be accounted to this 5175 * thread, breaking clock_gettime(). 5176 */ 5177 if (task_current(rq, p) && task_on_rq_queued(p)) { 5178 prefetch_curr_exec_start(p); 5179 update_rq_clock(rq); 5180 p->sched_class->update_curr(rq); 5181 } 5182 ns = p->se.sum_exec_runtime; 5183 task_rq_unlock(rq, p, &rf); 5184 5185 return ns; 5186 } 5187 5188 #ifdef CONFIG_SCHED_DEBUG 5189 static u64 cpu_resched_latency(struct rq *rq) 5190 { 5191 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5192 u64 resched_latency, now = rq_clock(rq); 5193 static bool warned_once; 5194 5195 if (sysctl_resched_latency_warn_once && warned_once) 5196 return 0; 5197 5198 if (!need_resched() || !latency_warn_ms) 5199 return 0; 5200 5201 if (system_state == SYSTEM_BOOTING) 5202 return 0; 5203 5204 if (!rq->last_seen_need_resched_ns) { 5205 rq->last_seen_need_resched_ns = now; 5206 rq->ticks_without_resched = 0; 5207 return 0; 5208 } 5209 5210 rq->ticks_without_resched++; 5211 resched_latency = now - rq->last_seen_need_resched_ns; 5212 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5213 return 0; 5214 5215 warned_once = true; 5216 5217 return resched_latency; 5218 } 5219 5220 static int __init setup_resched_latency_warn_ms(char *str) 5221 { 5222 long val; 5223 5224 if ((kstrtol(str, 0, &val))) { 5225 pr_warn("Unable to set resched_latency_warn_ms\n"); 5226 return 1; 5227 } 5228 5229 sysctl_resched_latency_warn_ms = val; 5230 return 1; 5231 } 5232 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5233 #else 5234 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5235 #endif /* CONFIG_SCHED_DEBUG */ 5236 5237 /* 5238 * This function gets called by the timer code, with HZ frequency. 5239 * We call it with interrupts disabled. 5240 */ 5241 void scheduler_tick(void) 5242 { 5243 int cpu = smp_processor_id(); 5244 struct rq *rq = cpu_rq(cpu); 5245 struct task_struct *curr = rq->curr; 5246 struct rq_flags rf; 5247 unsigned long thermal_pressure; 5248 u64 resched_latency; 5249 5250 arch_scale_freq_tick(); 5251 sched_clock_tick(); 5252 5253 rq_lock(rq, &rf); 5254 5255 update_rq_clock(rq); 5256 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5257 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5258 curr->sched_class->task_tick(rq, curr, 0); 5259 if (sched_feat(LATENCY_WARN)) 5260 resched_latency = cpu_resched_latency(rq); 5261 calc_global_load_tick(rq); 5262 sched_core_tick(rq); 5263 5264 rq_unlock(rq, &rf); 5265 5266 if (sched_feat(LATENCY_WARN) && resched_latency) 5267 resched_latency_warn(cpu, resched_latency); 5268 5269 perf_event_task_tick(); 5270 5271 #ifdef CONFIG_SMP 5272 rq->idle_balance = idle_cpu(cpu); 5273 trigger_load_balance(rq); 5274 #endif 5275 } 5276 5277 #ifdef CONFIG_NO_HZ_FULL 5278 5279 struct tick_work { 5280 int cpu; 5281 atomic_t state; 5282 struct delayed_work work; 5283 }; 5284 /* Values for ->state, see diagram below. */ 5285 #define TICK_SCHED_REMOTE_OFFLINE 0 5286 #define TICK_SCHED_REMOTE_OFFLINING 1 5287 #define TICK_SCHED_REMOTE_RUNNING 2 5288 5289 /* 5290 * State diagram for ->state: 5291 * 5292 * 5293 * TICK_SCHED_REMOTE_OFFLINE 5294 * | ^ 5295 * | | 5296 * | | sched_tick_remote() 5297 * | | 5298 * | | 5299 * +--TICK_SCHED_REMOTE_OFFLINING 5300 * | ^ 5301 * | | 5302 * sched_tick_start() | | sched_tick_stop() 5303 * | | 5304 * V | 5305 * TICK_SCHED_REMOTE_RUNNING 5306 * 5307 * 5308 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5309 * and sched_tick_start() are happy to leave the state in RUNNING. 5310 */ 5311 5312 static struct tick_work __percpu *tick_work_cpu; 5313 5314 static void sched_tick_remote(struct work_struct *work) 5315 { 5316 struct delayed_work *dwork = to_delayed_work(work); 5317 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5318 int cpu = twork->cpu; 5319 struct rq *rq = cpu_rq(cpu); 5320 struct task_struct *curr; 5321 struct rq_flags rf; 5322 u64 delta; 5323 int os; 5324 5325 /* 5326 * Handle the tick only if it appears the remote CPU is running in full 5327 * dynticks mode. The check is racy by nature, but missing a tick or 5328 * having one too much is no big deal because the scheduler tick updates 5329 * statistics and checks timeslices in a time-independent way, regardless 5330 * of when exactly it is running. 5331 */ 5332 if (!tick_nohz_tick_stopped_cpu(cpu)) 5333 goto out_requeue; 5334 5335 rq_lock_irq(rq, &rf); 5336 curr = rq->curr; 5337 if (cpu_is_offline(cpu)) 5338 goto out_unlock; 5339 5340 update_rq_clock(rq); 5341 5342 if (!is_idle_task(curr)) { 5343 /* 5344 * Make sure the next tick runs within a reasonable 5345 * amount of time. 5346 */ 5347 delta = rq_clock_task(rq) - curr->se.exec_start; 5348 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5349 } 5350 curr->sched_class->task_tick(rq, curr, 0); 5351 5352 calc_load_nohz_remote(rq); 5353 out_unlock: 5354 rq_unlock_irq(rq, &rf); 5355 out_requeue: 5356 5357 /* 5358 * Run the remote tick once per second (1Hz). This arbitrary 5359 * frequency is large enough to avoid overload but short enough 5360 * to keep scheduler internal stats reasonably up to date. But 5361 * first update state to reflect hotplug activity if required. 5362 */ 5363 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5364 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5365 if (os == TICK_SCHED_REMOTE_RUNNING) 5366 queue_delayed_work(system_unbound_wq, dwork, HZ); 5367 } 5368 5369 static void sched_tick_start(int cpu) 5370 { 5371 int os; 5372 struct tick_work *twork; 5373 5374 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5375 return; 5376 5377 WARN_ON_ONCE(!tick_work_cpu); 5378 5379 twork = per_cpu_ptr(tick_work_cpu, cpu); 5380 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5381 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5382 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5383 twork->cpu = cpu; 5384 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5385 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5386 } 5387 } 5388 5389 #ifdef CONFIG_HOTPLUG_CPU 5390 static void sched_tick_stop(int cpu) 5391 { 5392 struct tick_work *twork; 5393 int os; 5394 5395 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5396 return; 5397 5398 WARN_ON_ONCE(!tick_work_cpu); 5399 5400 twork = per_cpu_ptr(tick_work_cpu, cpu); 5401 /* There cannot be competing actions, but don't rely on stop-machine. */ 5402 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5403 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5404 /* Don't cancel, as this would mess up the state machine. */ 5405 } 5406 #endif /* CONFIG_HOTPLUG_CPU */ 5407 5408 int __init sched_tick_offload_init(void) 5409 { 5410 tick_work_cpu = alloc_percpu(struct tick_work); 5411 BUG_ON(!tick_work_cpu); 5412 return 0; 5413 } 5414 5415 #else /* !CONFIG_NO_HZ_FULL */ 5416 static inline void sched_tick_start(int cpu) { } 5417 static inline void sched_tick_stop(int cpu) { } 5418 #endif 5419 5420 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5421 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5422 /* 5423 * If the value passed in is equal to the current preempt count 5424 * then we just disabled preemption. Start timing the latency. 5425 */ 5426 static inline void preempt_latency_start(int val) 5427 { 5428 if (preempt_count() == val) { 5429 unsigned long ip = get_lock_parent_ip(); 5430 #ifdef CONFIG_DEBUG_PREEMPT 5431 current->preempt_disable_ip = ip; 5432 #endif 5433 trace_preempt_off(CALLER_ADDR0, ip); 5434 } 5435 } 5436 5437 void preempt_count_add(int val) 5438 { 5439 #ifdef CONFIG_DEBUG_PREEMPT 5440 /* 5441 * Underflow? 5442 */ 5443 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5444 return; 5445 #endif 5446 __preempt_count_add(val); 5447 #ifdef CONFIG_DEBUG_PREEMPT 5448 /* 5449 * Spinlock count overflowing soon? 5450 */ 5451 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5452 PREEMPT_MASK - 10); 5453 #endif 5454 preempt_latency_start(val); 5455 } 5456 EXPORT_SYMBOL(preempt_count_add); 5457 NOKPROBE_SYMBOL(preempt_count_add); 5458 5459 /* 5460 * If the value passed in equals to the current preempt count 5461 * then we just enabled preemption. Stop timing the latency. 5462 */ 5463 static inline void preempt_latency_stop(int val) 5464 { 5465 if (preempt_count() == val) 5466 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5467 } 5468 5469 void preempt_count_sub(int val) 5470 { 5471 #ifdef CONFIG_DEBUG_PREEMPT 5472 /* 5473 * Underflow? 5474 */ 5475 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5476 return; 5477 /* 5478 * Is the spinlock portion underflowing? 5479 */ 5480 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5481 !(preempt_count() & PREEMPT_MASK))) 5482 return; 5483 #endif 5484 5485 preempt_latency_stop(val); 5486 __preempt_count_sub(val); 5487 } 5488 EXPORT_SYMBOL(preempt_count_sub); 5489 NOKPROBE_SYMBOL(preempt_count_sub); 5490 5491 #else 5492 static inline void preempt_latency_start(int val) { } 5493 static inline void preempt_latency_stop(int val) { } 5494 #endif 5495 5496 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5497 { 5498 #ifdef CONFIG_DEBUG_PREEMPT 5499 return p->preempt_disable_ip; 5500 #else 5501 return 0; 5502 #endif 5503 } 5504 5505 /* 5506 * Print scheduling while atomic bug: 5507 */ 5508 static noinline void __schedule_bug(struct task_struct *prev) 5509 { 5510 /* Save this before calling printk(), since that will clobber it */ 5511 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5512 5513 if (oops_in_progress) 5514 return; 5515 5516 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5517 prev->comm, prev->pid, preempt_count()); 5518 5519 debug_show_held_locks(prev); 5520 print_modules(); 5521 if (irqs_disabled()) 5522 print_irqtrace_events(prev); 5523 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5524 && in_atomic_preempt_off()) { 5525 pr_err("Preemption disabled at:"); 5526 print_ip_sym(KERN_ERR, preempt_disable_ip); 5527 } 5528 if (panic_on_warn) 5529 panic("scheduling while atomic\n"); 5530 5531 dump_stack(); 5532 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5533 } 5534 5535 /* 5536 * Various schedule()-time debugging checks and statistics: 5537 */ 5538 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5539 { 5540 #ifdef CONFIG_SCHED_STACK_END_CHECK 5541 if (task_stack_end_corrupted(prev)) 5542 panic("corrupted stack end detected inside scheduler\n"); 5543 5544 if (task_scs_end_corrupted(prev)) 5545 panic("corrupted shadow stack detected inside scheduler\n"); 5546 #endif 5547 5548 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5549 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5550 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5551 prev->comm, prev->pid, prev->non_block_count); 5552 dump_stack(); 5553 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5554 } 5555 #endif 5556 5557 if (unlikely(in_atomic_preempt_off())) { 5558 __schedule_bug(prev); 5559 preempt_count_set(PREEMPT_DISABLED); 5560 } 5561 rcu_sleep_check(); 5562 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5563 5564 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5565 5566 schedstat_inc(this_rq()->sched_count); 5567 } 5568 5569 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5570 struct rq_flags *rf) 5571 { 5572 #ifdef CONFIG_SMP 5573 const struct sched_class *class; 5574 /* 5575 * We must do the balancing pass before put_prev_task(), such 5576 * that when we release the rq->lock the task is in the same 5577 * state as before we took rq->lock. 5578 * 5579 * We can terminate the balance pass as soon as we know there is 5580 * a runnable task of @class priority or higher. 5581 */ 5582 for_class_range(class, prev->sched_class, &idle_sched_class) { 5583 if (class->balance(rq, prev, rf)) 5584 break; 5585 } 5586 #endif 5587 5588 put_prev_task(rq, prev); 5589 } 5590 5591 /* 5592 * Pick up the highest-prio task: 5593 */ 5594 static inline struct task_struct * 5595 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5596 { 5597 const struct sched_class *class; 5598 struct task_struct *p; 5599 5600 /* 5601 * Optimization: we know that if all tasks are in the fair class we can 5602 * call that function directly, but only if the @prev task wasn't of a 5603 * higher scheduling class, because otherwise those lose the 5604 * opportunity to pull in more work from other CPUs. 5605 */ 5606 if (likely(prev->sched_class <= &fair_sched_class && 5607 rq->nr_running == rq->cfs.h_nr_running)) { 5608 5609 p = pick_next_task_fair(rq, prev, rf); 5610 if (unlikely(p == RETRY_TASK)) 5611 goto restart; 5612 5613 /* Assume the next prioritized class is idle_sched_class */ 5614 if (!p) { 5615 put_prev_task(rq, prev); 5616 p = pick_next_task_idle(rq); 5617 } 5618 5619 return p; 5620 } 5621 5622 restart: 5623 put_prev_task_balance(rq, prev, rf); 5624 5625 for_each_class(class) { 5626 p = class->pick_next_task(rq); 5627 if (p) 5628 return p; 5629 } 5630 5631 BUG(); /* The idle class should always have a runnable task. */ 5632 } 5633 5634 #ifdef CONFIG_SCHED_CORE 5635 static inline bool is_task_rq_idle(struct task_struct *t) 5636 { 5637 return (task_rq(t)->idle == t); 5638 } 5639 5640 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5641 { 5642 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5643 } 5644 5645 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5646 { 5647 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5648 return true; 5649 5650 return a->core_cookie == b->core_cookie; 5651 } 5652 5653 static inline struct task_struct *pick_task(struct rq *rq) 5654 { 5655 const struct sched_class *class; 5656 struct task_struct *p; 5657 5658 for_each_class(class) { 5659 p = class->pick_task(rq); 5660 if (p) 5661 return p; 5662 } 5663 5664 BUG(); /* The idle class should always have a runnable task. */ 5665 } 5666 5667 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5668 5669 static struct task_struct * 5670 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5671 { 5672 struct task_struct *next, *p, *max = NULL; 5673 const struct cpumask *smt_mask; 5674 bool fi_before = false; 5675 bool core_clock_updated = (rq == rq->core); 5676 unsigned long cookie; 5677 int i, cpu, occ = 0; 5678 struct rq *rq_i; 5679 bool need_sync; 5680 5681 if (!sched_core_enabled(rq)) 5682 return __pick_next_task(rq, prev, rf); 5683 5684 cpu = cpu_of(rq); 5685 5686 /* Stopper task is switching into idle, no need core-wide selection. */ 5687 if (cpu_is_offline(cpu)) { 5688 /* 5689 * Reset core_pick so that we don't enter the fastpath when 5690 * coming online. core_pick would already be migrated to 5691 * another cpu during offline. 5692 */ 5693 rq->core_pick = NULL; 5694 return __pick_next_task(rq, prev, rf); 5695 } 5696 5697 /* 5698 * If there were no {en,de}queues since we picked (IOW, the task 5699 * pointers are all still valid), and we haven't scheduled the last 5700 * pick yet, do so now. 5701 * 5702 * rq->core_pick can be NULL if no selection was made for a CPU because 5703 * it was either offline or went offline during a sibling's core-wide 5704 * selection. In this case, do a core-wide selection. 5705 */ 5706 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5707 rq->core->core_pick_seq != rq->core_sched_seq && 5708 rq->core_pick) { 5709 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5710 5711 next = rq->core_pick; 5712 if (next != prev) { 5713 put_prev_task(rq, prev); 5714 set_next_task(rq, next); 5715 } 5716 5717 rq->core_pick = NULL; 5718 return next; 5719 } 5720 5721 put_prev_task_balance(rq, prev, rf); 5722 5723 smt_mask = cpu_smt_mask(cpu); 5724 need_sync = !!rq->core->core_cookie; 5725 5726 /* reset state */ 5727 rq->core->core_cookie = 0UL; 5728 if (rq->core->core_forceidle_count) { 5729 if (!core_clock_updated) { 5730 update_rq_clock(rq->core); 5731 core_clock_updated = true; 5732 } 5733 sched_core_account_forceidle(rq); 5734 /* reset after accounting force idle */ 5735 rq->core->core_forceidle_start = 0; 5736 rq->core->core_forceidle_count = 0; 5737 rq->core->core_forceidle_occupation = 0; 5738 need_sync = true; 5739 fi_before = true; 5740 } 5741 5742 /* 5743 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5744 * 5745 * @task_seq guards the task state ({en,de}queues) 5746 * @pick_seq is the @task_seq we did a selection on 5747 * @sched_seq is the @pick_seq we scheduled 5748 * 5749 * However, preemptions can cause multiple picks on the same task set. 5750 * 'Fix' this by also increasing @task_seq for every pick. 5751 */ 5752 rq->core->core_task_seq++; 5753 5754 /* 5755 * Optimize for common case where this CPU has no cookies 5756 * and there are no cookied tasks running on siblings. 5757 */ 5758 if (!need_sync) { 5759 next = pick_task(rq); 5760 if (!next->core_cookie) { 5761 rq->core_pick = NULL; 5762 /* 5763 * For robustness, update the min_vruntime_fi for 5764 * unconstrained picks as well. 5765 */ 5766 WARN_ON_ONCE(fi_before); 5767 task_vruntime_update(rq, next, false); 5768 goto done; 5769 } 5770 } 5771 5772 /* 5773 * For each thread: do the regular task pick and find the max prio task 5774 * amongst them. 5775 * 5776 * Tie-break prio towards the current CPU 5777 */ 5778 for_each_cpu_wrap(i, smt_mask, cpu) { 5779 rq_i = cpu_rq(i); 5780 5781 /* 5782 * Current cpu always has its clock updated on entrance to 5783 * pick_next_task(). If the current cpu is not the core, 5784 * the core may also have been updated above. 5785 */ 5786 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 5787 update_rq_clock(rq_i); 5788 5789 p = rq_i->core_pick = pick_task(rq_i); 5790 if (!max || prio_less(max, p, fi_before)) 5791 max = p; 5792 } 5793 5794 cookie = rq->core->core_cookie = max->core_cookie; 5795 5796 /* 5797 * For each thread: try and find a runnable task that matches @max or 5798 * force idle. 5799 */ 5800 for_each_cpu(i, smt_mask) { 5801 rq_i = cpu_rq(i); 5802 p = rq_i->core_pick; 5803 5804 if (!cookie_equals(p, cookie)) { 5805 p = NULL; 5806 if (cookie) 5807 p = sched_core_find(rq_i, cookie); 5808 if (!p) 5809 p = idle_sched_class.pick_task(rq_i); 5810 } 5811 5812 rq_i->core_pick = p; 5813 5814 if (p == rq_i->idle) { 5815 if (rq_i->nr_running) { 5816 rq->core->core_forceidle_count++; 5817 if (!fi_before) 5818 rq->core->core_forceidle_seq++; 5819 } 5820 } else { 5821 occ++; 5822 } 5823 } 5824 5825 if (schedstat_enabled() && rq->core->core_forceidle_count) { 5826 if (cookie) 5827 rq->core->core_forceidle_start = rq_clock(rq->core); 5828 rq->core->core_forceidle_occupation = occ; 5829 } 5830 5831 rq->core->core_pick_seq = rq->core->core_task_seq; 5832 next = rq->core_pick; 5833 rq->core_sched_seq = rq->core->core_pick_seq; 5834 5835 /* Something should have been selected for current CPU */ 5836 WARN_ON_ONCE(!next); 5837 5838 /* 5839 * Reschedule siblings 5840 * 5841 * NOTE: L1TF -- at this point we're no longer running the old task and 5842 * sending an IPI (below) ensures the sibling will no longer be running 5843 * their task. This ensures there is no inter-sibling overlap between 5844 * non-matching user state. 5845 */ 5846 for_each_cpu(i, smt_mask) { 5847 rq_i = cpu_rq(i); 5848 5849 /* 5850 * An online sibling might have gone offline before a task 5851 * could be picked for it, or it might be offline but later 5852 * happen to come online, but its too late and nothing was 5853 * picked for it. That's Ok - it will pick tasks for itself, 5854 * so ignore it. 5855 */ 5856 if (!rq_i->core_pick) 5857 continue; 5858 5859 /* 5860 * Update for new !FI->FI transitions, or if continuing to be in !FI: 5861 * fi_before fi update? 5862 * 0 0 1 5863 * 0 1 1 5864 * 1 0 1 5865 * 1 1 0 5866 */ 5867 if (!(fi_before && rq->core->core_forceidle_count)) 5868 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 5869 5870 rq_i->core_pick->core_occupation = occ; 5871 5872 if (i == cpu) { 5873 rq_i->core_pick = NULL; 5874 continue; 5875 } 5876 5877 /* Did we break L1TF mitigation requirements? */ 5878 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 5879 5880 if (rq_i->curr == rq_i->core_pick) { 5881 rq_i->core_pick = NULL; 5882 continue; 5883 } 5884 5885 resched_curr(rq_i); 5886 } 5887 5888 done: 5889 set_next_task(rq, next); 5890 return next; 5891 } 5892 5893 static bool try_steal_cookie(int this, int that) 5894 { 5895 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 5896 struct task_struct *p; 5897 unsigned long cookie; 5898 bool success = false; 5899 5900 local_irq_disable(); 5901 double_rq_lock(dst, src); 5902 5903 cookie = dst->core->core_cookie; 5904 if (!cookie) 5905 goto unlock; 5906 5907 if (dst->curr != dst->idle) 5908 goto unlock; 5909 5910 p = sched_core_find(src, cookie); 5911 if (p == src->idle) 5912 goto unlock; 5913 5914 do { 5915 if (p == src->core_pick || p == src->curr) 5916 goto next; 5917 5918 if (!cpumask_test_cpu(this, &p->cpus_mask)) 5919 goto next; 5920 5921 if (p->core_occupation > dst->idle->core_occupation) 5922 goto next; 5923 5924 deactivate_task(src, p, 0); 5925 set_task_cpu(p, this); 5926 activate_task(dst, p, 0); 5927 5928 resched_curr(dst); 5929 5930 success = true; 5931 break; 5932 5933 next: 5934 p = sched_core_next(p, cookie); 5935 } while (p); 5936 5937 unlock: 5938 double_rq_unlock(dst, src); 5939 local_irq_enable(); 5940 5941 return success; 5942 } 5943 5944 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 5945 { 5946 int i; 5947 5948 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 5949 if (i == cpu) 5950 continue; 5951 5952 if (need_resched()) 5953 break; 5954 5955 if (try_steal_cookie(cpu, i)) 5956 return true; 5957 } 5958 5959 return false; 5960 } 5961 5962 static void sched_core_balance(struct rq *rq) 5963 { 5964 struct sched_domain *sd; 5965 int cpu = cpu_of(rq); 5966 5967 preempt_disable(); 5968 rcu_read_lock(); 5969 raw_spin_rq_unlock_irq(rq); 5970 for_each_domain(cpu, sd) { 5971 if (need_resched()) 5972 break; 5973 5974 if (steal_cookie_task(cpu, sd)) 5975 break; 5976 } 5977 raw_spin_rq_lock_irq(rq); 5978 rcu_read_unlock(); 5979 preempt_enable(); 5980 } 5981 5982 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 5983 5984 void queue_core_balance(struct rq *rq) 5985 { 5986 if (!sched_core_enabled(rq)) 5987 return; 5988 5989 if (!rq->core->core_cookie) 5990 return; 5991 5992 if (!rq->nr_running) /* not forced idle */ 5993 return; 5994 5995 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 5996 } 5997 5998 static void sched_core_cpu_starting(unsigned int cpu) 5999 { 6000 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6001 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6002 unsigned long flags; 6003 int t; 6004 6005 sched_core_lock(cpu, &flags); 6006 6007 WARN_ON_ONCE(rq->core != rq); 6008 6009 /* if we're the first, we'll be our own leader */ 6010 if (cpumask_weight(smt_mask) == 1) 6011 goto unlock; 6012 6013 /* find the leader */ 6014 for_each_cpu(t, smt_mask) { 6015 if (t == cpu) 6016 continue; 6017 rq = cpu_rq(t); 6018 if (rq->core == rq) { 6019 core_rq = rq; 6020 break; 6021 } 6022 } 6023 6024 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6025 goto unlock; 6026 6027 /* install and validate core_rq */ 6028 for_each_cpu(t, smt_mask) { 6029 rq = cpu_rq(t); 6030 6031 if (t == cpu) 6032 rq->core = core_rq; 6033 6034 WARN_ON_ONCE(rq->core != core_rq); 6035 } 6036 6037 unlock: 6038 sched_core_unlock(cpu, &flags); 6039 } 6040 6041 static void sched_core_cpu_deactivate(unsigned int cpu) 6042 { 6043 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6044 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6045 unsigned long flags; 6046 int t; 6047 6048 sched_core_lock(cpu, &flags); 6049 6050 /* if we're the last man standing, nothing to do */ 6051 if (cpumask_weight(smt_mask) == 1) { 6052 WARN_ON_ONCE(rq->core != rq); 6053 goto unlock; 6054 } 6055 6056 /* if we're not the leader, nothing to do */ 6057 if (rq->core != rq) 6058 goto unlock; 6059 6060 /* find a new leader */ 6061 for_each_cpu(t, smt_mask) { 6062 if (t == cpu) 6063 continue; 6064 core_rq = cpu_rq(t); 6065 break; 6066 } 6067 6068 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6069 goto unlock; 6070 6071 /* copy the shared state to the new leader */ 6072 core_rq->core_task_seq = rq->core_task_seq; 6073 core_rq->core_pick_seq = rq->core_pick_seq; 6074 core_rq->core_cookie = rq->core_cookie; 6075 core_rq->core_forceidle_count = rq->core_forceidle_count; 6076 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6077 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6078 6079 /* 6080 * Accounting edge for forced idle is handled in pick_next_task(). 6081 * Don't need another one here, since the hotplug thread shouldn't 6082 * have a cookie. 6083 */ 6084 core_rq->core_forceidle_start = 0; 6085 6086 /* install new leader */ 6087 for_each_cpu(t, smt_mask) { 6088 rq = cpu_rq(t); 6089 rq->core = core_rq; 6090 } 6091 6092 unlock: 6093 sched_core_unlock(cpu, &flags); 6094 } 6095 6096 static inline void sched_core_cpu_dying(unsigned int cpu) 6097 { 6098 struct rq *rq = cpu_rq(cpu); 6099 6100 if (rq->core != rq) 6101 rq->core = rq; 6102 } 6103 6104 #else /* !CONFIG_SCHED_CORE */ 6105 6106 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6107 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6108 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6109 6110 static struct task_struct * 6111 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6112 { 6113 return __pick_next_task(rq, prev, rf); 6114 } 6115 6116 #endif /* CONFIG_SCHED_CORE */ 6117 6118 /* 6119 * Constants for the sched_mode argument of __schedule(). 6120 * 6121 * The mode argument allows RT enabled kernels to differentiate a 6122 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6123 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6124 * optimize the AND operation out and just check for zero. 6125 */ 6126 #define SM_NONE 0x0 6127 #define SM_PREEMPT 0x1 6128 #define SM_RTLOCK_WAIT 0x2 6129 6130 #ifndef CONFIG_PREEMPT_RT 6131 # define SM_MASK_PREEMPT (~0U) 6132 #else 6133 # define SM_MASK_PREEMPT SM_PREEMPT 6134 #endif 6135 6136 /* 6137 * __schedule() is the main scheduler function. 6138 * 6139 * The main means of driving the scheduler and thus entering this function are: 6140 * 6141 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6142 * 6143 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6144 * paths. For example, see arch/x86/entry_64.S. 6145 * 6146 * To drive preemption between tasks, the scheduler sets the flag in timer 6147 * interrupt handler scheduler_tick(). 6148 * 6149 * 3. Wakeups don't really cause entry into schedule(). They add a 6150 * task to the run-queue and that's it. 6151 * 6152 * Now, if the new task added to the run-queue preempts the current 6153 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6154 * called on the nearest possible occasion: 6155 * 6156 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6157 * 6158 * - in syscall or exception context, at the next outmost 6159 * preempt_enable(). (this might be as soon as the wake_up()'s 6160 * spin_unlock()!) 6161 * 6162 * - in IRQ context, return from interrupt-handler to 6163 * preemptible context 6164 * 6165 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6166 * then at the next: 6167 * 6168 * - cond_resched() call 6169 * - explicit schedule() call 6170 * - return from syscall or exception to user-space 6171 * - return from interrupt-handler to user-space 6172 * 6173 * WARNING: must be called with preemption disabled! 6174 */ 6175 static void __sched notrace __schedule(unsigned int sched_mode) 6176 { 6177 struct task_struct *prev, *next; 6178 unsigned long *switch_count; 6179 unsigned long prev_state; 6180 struct rq_flags rf; 6181 struct rq *rq; 6182 int cpu; 6183 6184 cpu = smp_processor_id(); 6185 rq = cpu_rq(cpu); 6186 prev = rq->curr; 6187 6188 schedule_debug(prev, !!sched_mode); 6189 6190 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6191 hrtick_clear(rq); 6192 6193 local_irq_disable(); 6194 rcu_note_context_switch(!!sched_mode); 6195 6196 /* 6197 * Make sure that signal_pending_state()->signal_pending() below 6198 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6199 * done by the caller to avoid the race with signal_wake_up(): 6200 * 6201 * __set_current_state(@state) signal_wake_up() 6202 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6203 * wake_up_state(p, state) 6204 * LOCK rq->lock LOCK p->pi_state 6205 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6206 * if (signal_pending_state()) if (p->state & @state) 6207 * 6208 * Also, the membarrier system call requires a full memory barrier 6209 * after coming from user-space, before storing to rq->curr. 6210 */ 6211 rq_lock(rq, &rf); 6212 smp_mb__after_spinlock(); 6213 6214 /* Promote REQ to ACT */ 6215 rq->clock_update_flags <<= 1; 6216 update_rq_clock(rq); 6217 6218 switch_count = &prev->nivcsw; 6219 6220 /* 6221 * We must load prev->state once (task_struct::state is volatile), such 6222 * that: 6223 * 6224 * - we form a control dependency vs deactivate_task() below. 6225 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 6226 */ 6227 prev_state = READ_ONCE(prev->__state); 6228 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6229 if (signal_pending_state(prev_state, prev)) { 6230 WRITE_ONCE(prev->__state, TASK_RUNNING); 6231 } else { 6232 prev->sched_contributes_to_load = 6233 (prev_state & TASK_UNINTERRUPTIBLE) && 6234 !(prev_state & TASK_NOLOAD) && 6235 !(prev->flags & PF_FROZEN); 6236 6237 if (prev->sched_contributes_to_load) 6238 rq->nr_uninterruptible++; 6239 6240 /* 6241 * __schedule() ttwu() 6242 * prev_state = prev->state; if (p->on_rq && ...) 6243 * if (prev_state) goto out; 6244 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6245 * p->state = TASK_WAKING 6246 * 6247 * Where __schedule() and ttwu() have matching control dependencies. 6248 * 6249 * After this, schedule() must not care about p->state any more. 6250 */ 6251 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6252 6253 if (prev->in_iowait) { 6254 atomic_inc(&rq->nr_iowait); 6255 delayacct_blkio_start(); 6256 } 6257 } 6258 switch_count = &prev->nvcsw; 6259 } 6260 6261 next = pick_next_task(rq, prev, &rf); 6262 clear_tsk_need_resched(prev); 6263 clear_preempt_need_resched(); 6264 #ifdef CONFIG_SCHED_DEBUG 6265 rq->last_seen_need_resched_ns = 0; 6266 #endif 6267 6268 if (likely(prev != next)) { 6269 rq->nr_switches++; 6270 /* 6271 * RCU users of rcu_dereference(rq->curr) may not see 6272 * changes to task_struct made by pick_next_task(). 6273 */ 6274 RCU_INIT_POINTER(rq->curr, next); 6275 /* 6276 * The membarrier system call requires each architecture 6277 * to have a full memory barrier after updating 6278 * rq->curr, before returning to user-space. 6279 * 6280 * Here are the schemes providing that barrier on the 6281 * various architectures: 6282 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6283 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6284 * - finish_lock_switch() for weakly-ordered 6285 * architectures where spin_unlock is a full barrier, 6286 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6287 * is a RELEASE barrier), 6288 */ 6289 ++*switch_count; 6290 6291 migrate_disable_switch(rq, prev); 6292 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6293 6294 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next); 6295 6296 /* Also unlocks the rq: */ 6297 rq = context_switch(rq, prev, next, &rf); 6298 } else { 6299 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6300 6301 rq_unpin_lock(rq, &rf); 6302 __balance_callbacks(rq); 6303 raw_spin_rq_unlock_irq(rq); 6304 } 6305 } 6306 6307 void __noreturn do_task_dead(void) 6308 { 6309 /* Causes final put_task_struct in finish_task_switch(): */ 6310 set_special_state(TASK_DEAD); 6311 6312 /* Tell freezer to ignore us: */ 6313 current->flags |= PF_NOFREEZE; 6314 6315 __schedule(SM_NONE); 6316 BUG(); 6317 6318 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6319 for (;;) 6320 cpu_relax(); 6321 } 6322 6323 static inline void sched_submit_work(struct task_struct *tsk) 6324 { 6325 unsigned int task_flags; 6326 6327 if (task_is_running(tsk)) 6328 return; 6329 6330 task_flags = tsk->flags; 6331 /* 6332 * If a worker goes to sleep, notify and ask workqueue whether it 6333 * wants to wake up a task to maintain concurrency. 6334 */ 6335 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6336 if (task_flags & PF_WQ_WORKER) 6337 wq_worker_sleeping(tsk); 6338 else 6339 io_wq_worker_sleeping(tsk); 6340 } 6341 6342 if (tsk_is_pi_blocked(tsk)) 6343 return; 6344 6345 /* 6346 * If we are going to sleep and we have plugged IO queued, 6347 * make sure to submit it to avoid deadlocks. 6348 */ 6349 if (blk_needs_flush_plug(tsk)) 6350 blk_flush_plug(tsk->plug, true); 6351 } 6352 6353 static void sched_update_worker(struct task_struct *tsk) 6354 { 6355 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6356 if (tsk->flags & PF_WQ_WORKER) 6357 wq_worker_running(tsk); 6358 else 6359 io_wq_worker_running(tsk); 6360 } 6361 } 6362 6363 asmlinkage __visible void __sched schedule(void) 6364 { 6365 struct task_struct *tsk = current; 6366 6367 sched_submit_work(tsk); 6368 do { 6369 preempt_disable(); 6370 __schedule(SM_NONE); 6371 sched_preempt_enable_no_resched(); 6372 } while (need_resched()); 6373 sched_update_worker(tsk); 6374 } 6375 EXPORT_SYMBOL(schedule); 6376 6377 /* 6378 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6379 * state (have scheduled out non-voluntarily) by making sure that all 6380 * tasks have either left the run queue or have gone into user space. 6381 * As idle tasks do not do either, they must not ever be preempted 6382 * (schedule out non-voluntarily). 6383 * 6384 * schedule_idle() is similar to schedule_preempt_disable() except that it 6385 * never enables preemption because it does not call sched_submit_work(). 6386 */ 6387 void __sched schedule_idle(void) 6388 { 6389 /* 6390 * As this skips calling sched_submit_work(), which the idle task does 6391 * regardless because that function is a nop when the task is in a 6392 * TASK_RUNNING state, make sure this isn't used someplace that the 6393 * current task can be in any other state. Note, idle is always in the 6394 * TASK_RUNNING state. 6395 */ 6396 WARN_ON_ONCE(current->__state); 6397 do { 6398 __schedule(SM_NONE); 6399 } while (need_resched()); 6400 } 6401 6402 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 6403 asmlinkage __visible void __sched schedule_user(void) 6404 { 6405 /* 6406 * If we come here after a random call to set_need_resched(), 6407 * or we have been woken up remotely but the IPI has not yet arrived, 6408 * we haven't yet exited the RCU idle mode. Do it here manually until 6409 * we find a better solution. 6410 * 6411 * NB: There are buggy callers of this function. Ideally we 6412 * should warn if prev_state != CONTEXT_USER, but that will trigger 6413 * too frequently to make sense yet. 6414 */ 6415 enum ctx_state prev_state = exception_enter(); 6416 schedule(); 6417 exception_exit(prev_state); 6418 } 6419 #endif 6420 6421 /** 6422 * schedule_preempt_disabled - called with preemption disabled 6423 * 6424 * Returns with preemption disabled. Note: preempt_count must be 1 6425 */ 6426 void __sched schedule_preempt_disabled(void) 6427 { 6428 sched_preempt_enable_no_resched(); 6429 schedule(); 6430 preempt_disable(); 6431 } 6432 6433 #ifdef CONFIG_PREEMPT_RT 6434 void __sched notrace schedule_rtlock(void) 6435 { 6436 do { 6437 preempt_disable(); 6438 __schedule(SM_RTLOCK_WAIT); 6439 sched_preempt_enable_no_resched(); 6440 } while (need_resched()); 6441 } 6442 NOKPROBE_SYMBOL(schedule_rtlock); 6443 #endif 6444 6445 static void __sched notrace preempt_schedule_common(void) 6446 { 6447 do { 6448 /* 6449 * Because the function tracer can trace preempt_count_sub() 6450 * and it also uses preempt_enable/disable_notrace(), if 6451 * NEED_RESCHED is set, the preempt_enable_notrace() called 6452 * by the function tracer will call this function again and 6453 * cause infinite recursion. 6454 * 6455 * Preemption must be disabled here before the function 6456 * tracer can trace. Break up preempt_disable() into two 6457 * calls. One to disable preemption without fear of being 6458 * traced. The other to still record the preemption latency, 6459 * which can also be traced by the function tracer. 6460 */ 6461 preempt_disable_notrace(); 6462 preempt_latency_start(1); 6463 __schedule(SM_PREEMPT); 6464 preempt_latency_stop(1); 6465 preempt_enable_no_resched_notrace(); 6466 6467 /* 6468 * Check again in case we missed a preemption opportunity 6469 * between schedule and now. 6470 */ 6471 } while (need_resched()); 6472 } 6473 6474 #ifdef CONFIG_PREEMPTION 6475 /* 6476 * This is the entry point to schedule() from in-kernel preemption 6477 * off of preempt_enable. 6478 */ 6479 asmlinkage __visible void __sched notrace preempt_schedule(void) 6480 { 6481 /* 6482 * If there is a non-zero preempt_count or interrupts are disabled, 6483 * we do not want to preempt the current task. Just return.. 6484 */ 6485 if (likely(!preemptible())) 6486 return; 6487 6488 preempt_schedule_common(); 6489 } 6490 NOKPROBE_SYMBOL(preempt_schedule); 6491 EXPORT_SYMBOL(preempt_schedule); 6492 6493 #ifdef CONFIG_PREEMPT_DYNAMIC 6494 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 6495 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6496 #endif 6497 6498 6499 /** 6500 * preempt_schedule_notrace - preempt_schedule called by tracing 6501 * 6502 * The tracing infrastructure uses preempt_enable_notrace to prevent 6503 * recursion and tracing preempt enabling caused by the tracing 6504 * infrastructure itself. But as tracing can happen in areas coming 6505 * from userspace or just about to enter userspace, a preempt enable 6506 * can occur before user_exit() is called. This will cause the scheduler 6507 * to be called when the system is still in usermode. 6508 * 6509 * To prevent this, the preempt_enable_notrace will use this function 6510 * instead of preempt_schedule() to exit user context if needed before 6511 * calling the scheduler. 6512 */ 6513 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6514 { 6515 enum ctx_state prev_ctx; 6516 6517 if (likely(!preemptible())) 6518 return; 6519 6520 do { 6521 /* 6522 * Because the function tracer can trace preempt_count_sub() 6523 * and it also uses preempt_enable/disable_notrace(), if 6524 * NEED_RESCHED is set, the preempt_enable_notrace() called 6525 * by the function tracer will call this function again and 6526 * cause infinite recursion. 6527 * 6528 * Preemption must be disabled here before the function 6529 * tracer can trace. Break up preempt_disable() into two 6530 * calls. One to disable preemption without fear of being 6531 * traced. The other to still record the preemption latency, 6532 * which can also be traced by the function tracer. 6533 */ 6534 preempt_disable_notrace(); 6535 preempt_latency_start(1); 6536 /* 6537 * Needs preempt disabled in case user_exit() is traced 6538 * and the tracer calls preempt_enable_notrace() causing 6539 * an infinite recursion. 6540 */ 6541 prev_ctx = exception_enter(); 6542 __schedule(SM_PREEMPT); 6543 exception_exit(prev_ctx); 6544 6545 preempt_latency_stop(1); 6546 preempt_enable_no_resched_notrace(); 6547 } while (need_resched()); 6548 } 6549 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6550 6551 #ifdef CONFIG_PREEMPT_DYNAMIC 6552 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6553 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6554 #endif 6555 6556 #endif /* CONFIG_PREEMPTION */ 6557 6558 #ifdef CONFIG_PREEMPT_DYNAMIC 6559 6560 #include <linux/entry-common.h> 6561 6562 /* 6563 * SC:cond_resched 6564 * SC:might_resched 6565 * SC:preempt_schedule 6566 * SC:preempt_schedule_notrace 6567 * SC:irqentry_exit_cond_resched 6568 * 6569 * 6570 * NONE: 6571 * cond_resched <- __cond_resched 6572 * might_resched <- RET0 6573 * preempt_schedule <- NOP 6574 * preempt_schedule_notrace <- NOP 6575 * irqentry_exit_cond_resched <- NOP 6576 * 6577 * VOLUNTARY: 6578 * cond_resched <- __cond_resched 6579 * might_resched <- __cond_resched 6580 * preempt_schedule <- NOP 6581 * preempt_schedule_notrace <- NOP 6582 * irqentry_exit_cond_resched <- NOP 6583 * 6584 * FULL: 6585 * cond_resched <- RET0 6586 * might_resched <- RET0 6587 * preempt_schedule <- preempt_schedule 6588 * preempt_schedule_notrace <- preempt_schedule_notrace 6589 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 6590 */ 6591 6592 enum { 6593 preempt_dynamic_undefined = -1, 6594 preempt_dynamic_none, 6595 preempt_dynamic_voluntary, 6596 preempt_dynamic_full, 6597 }; 6598 6599 int preempt_dynamic_mode = preempt_dynamic_undefined; 6600 6601 int sched_dynamic_mode(const char *str) 6602 { 6603 if (!strcmp(str, "none")) 6604 return preempt_dynamic_none; 6605 6606 if (!strcmp(str, "voluntary")) 6607 return preempt_dynamic_voluntary; 6608 6609 if (!strcmp(str, "full")) 6610 return preempt_dynamic_full; 6611 6612 return -EINVAL; 6613 } 6614 6615 void sched_dynamic_update(int mode) 6616 { 6617 /* 6618 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 6619 * the ZERO state, which is invalid. 6620 */ 6621 static_call_update(cond_resched, __cond_resched); 6622 static_call_update(might_resched, __cond_resched); 6623 static_call_update(preempt_schedule, __preempt_schedule_func); 6624 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6625 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6626 6627 switch (mode) { 6628 case preempt_dynamic_none: 6629 static_call_update(cond_resched, __cond_resched); 6630 static_call_update(might_resched, (void *)&__static_call_return0); 6631 static_call_update(preempt_schedule, NULL); 6632 static_call_update(preempt_schedule_notrace, NULL); 6633 static_call_update(irqentry_exit_cond_resched, NULL); 6634 pr_info("Dynamic Preempt: none\n"); 6635 break; 6636 6637 case preempt_dynamic_voluntary: 6638 static_call_update(cond_resched, __cond_resched); 6639 static_call_update(might_resched, __cond_resched); 6640 static_call_update(preempt_schedule, NULL); 6641 static_call_update(preempt_schedule_notrace, NULL); 6642 static_call_update(irqentry_exit_cond_resched, NULL); 6643 pr_info("Dynamic Preempt: voluntary\n"); 6644 break; 6645 6646 case preempt_dynamic_full: 6647 static_call_update(cond_resched, (void *)&__static_call_return0); 6648 static_call_update(might_resched, (void *)&__static_call_return0); 6649 static_call_update(preempt_schedule, __preempt_schedule_func); 6650 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6651 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6652 pr_info("Dynamic Preempt: full\n"); 6653 break; 6654 } 6655 6656 preempt_dynamic_mode = mode; 6657 } 6658 6659 static int __init setup_preempt_mode(char *str) 6660 { 6661 int mode = sched_dynamic_mode(str); 6662 if (mode < 0) { 6663 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 6664 return 0; 6665 } 6666 6667 sched_dynamic_update(mode); 6668 return 1; 6669 } 6670 __setup("preempt=", setup_preempt_mode); 6671 6672 static void __init preempt_dynamic_init(void) 6673 { 6674 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 6675 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 6676 sched_dynamic_update(preempt_dynamic_none); 6677 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 6678 sched_dynamic_update(preempt_dynamic_voluntary); 6679 } else { 6680 /* Default static call setting, nothing to do */ 6681 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 6682 preempt_dynamic_mode = preempt_dynamic_full; 6683 pr_info("Dynamic Preempt: full\n"); 6684 } 6685 } 6686 } 6687 6688 #else /* !CONFIG_PREEMPT_DYNAMIC */ 6689 6690 static inline void preempt_dynamic_init(void) { } 6691 6692 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 6693 6694 /* 6695 * This is the entry point to schedule() from kernel preemption 6696 * off of irq context. 6697 * Note, that this is called and return with irqs disabled. This will 6698 * protect us against recursive calling from irq. 6699 */ 6700 asmlinkage __visible void __sched preempt_schedule_irq(void) 6701 { 6702 enum ctx_state prev_state; 6703 6704 /* Catch callers which need to be fixed */ 6705 BUG_ON(preempt_count() || !irqs_disabled()); 6706 6707 prev_state = exception_enter(); 6708 6709 do { 6710 preempt_disable(); 6711 local_irq_enable(); 6712 __schedule(SM_PREEMPT); 6713 local_irq_disable(); 6714 sched_preempt_enable_no_resched(); 6715 } while (need_resched()); 6716 6717 exception_exit(prev_state); 6718 } 6719 6720 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6721 void *key) 6722 { 6723 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6724 return try_to_wake_up(curr->private, mode, wake_flags); 6725 } 6726 EXPORT_SYMBOL(default_wake_function); 6727 6728 static void __setscheduler_prio(struct task_struct *p, int prio) 6729 { 6730 if (dl_prio(prio)) 6731 p->sched_class = &dl_sched_class; 6732 else if (rt_prio(prio)) 6733 p->sched_class = &rt_sched_class; 6734 else 6735 p->sched_class = &fair_sched_class; 6736 6737 p->prio = prio; 6738 } 6739 6740 #ifdef CONFIG_RT_MUTEXES 6741 6742 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6743 { 6744 if (pi_task) 6745 prio = min(prio, pi_task->prio); 6746 6747 return prio; 6748 } 6749 6750 static inline int rt_effective_prio(struct task_struct *p, int prio) 6751 { 6752 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6753 6754 return __rt_effective_prio(pi_task, prio); 6755 } 6756 6757 /* 6758 * rt_mutex_setprio - set the current priority of a task 6759 * @p: task to boost 6760 * @pi_task: donor task 6761 * 6762 * This function changes the 'effective' priority of a task. It does 6763 * not touch ->normal_prio like __setscheduler(). 6764 * 6765 * Used by the rt_mutex code to implement priority inheritance 6766 * logic. Call site only calls if the priority of the task changed. 6767 */ 6768 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6769 { 6770 int prio, oldprio, queued, running, queue_flag = 6771 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6772 const struct sched_class *prev_class; 6773 struct rq_flags rf; 6774 struct rq *rq; 6775 6776 /* XXX used to be waiter->prio, not waiter->task->prio */ 6777 prio = __rt_effective_prio(pi_task, p->normal_prio); 6778 6779 /* 6780 * If nothing changed; bail early. 6781 */ 6782 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6783 return; 6784 6785 rq = __task_rq_lock(p, &rf); 6786 update_rq_clock(rq); 6787 /* 6788 * Set under pi_lock && rq->lock, such that the value can be used under 6789 * either lock. 6790 * 6791 * Note that there is loads of tricky to make this pointer cache work 6792 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6793 * ensure a task is de-boosted (pi_task is set to NULL) before the 6794 * task is allowed to run again (and can exit). This ensures the pointer 6795 * points to a blocked task -- which guarantees the task is present. 6796 */ 6797 p->pi_top_task = pi_task; 6798 6799 /* 6800 * For FIFO/RR we only need to set prio, if that matches we're done. 6801 */ 6802 if (prio == p->prio && !dl_prio(prio)) 6803 goto out_unlock; 6804 6805 /* 6806 * Idle task boosting is a nono in general. There is one 6807 * exception, when PREEMPT_RT and NOHZ is active: 6808 * 6809 * The idle task calls get_next_timer_interrupt() and holds 6810 * the timer wheel base->lock on the CPU and another CPU wants 6811 * to access the timer (probably to cancel it). We can safely 6812 * ignore the boosting request, as the idle CPU runs this code 6813 * with interrupts disabled and will complete the lock 6814 * protected section without being interrupted. So there is no 6815 * real need to boost. 6816 */ 6817 if (unlikely(p == rq->idle)) { 6818 WARN_ON(p != rq->curr); 6819 WARN_ON(p->pi_blocked_on); 6820 goto out_unlock; 6821 } 6822 6823 trace_sched_pi_setprio(p, pi_task); 6824 oldprio = p->prio; 6825 6826 if (oldprio == prio) 6827 queue_flag &= ~DEQUEUE_MOVE; 6828 6829 prev_class = p->sched_class; 6830 queued = task_on_rq_queued(p); 6831 running = task_current(rq, p); 6832 if (queued) 6833 dequeue_task(rq, p, queue_flag); 6834 if (running) 6835 put_prev_task(rq, p); 6836 6837 /* 6838 * Boosting condition are: 6839 * 1. -rt task is running and holds mutex A 6840 * --> -dl task blocks on mutex A 6841 * 6842 * 2. -dl task is running and holds mutex A 6843 * --> -dl task blocks on mutex A and could preempt the 6844 * running task 6845 */ 6846 if (dl_prio(prio)) { 6847 if (!dl_prio(p->normal_prio) || 6848 (pi_task && dl_prio(pi_task->prio) && 6849 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6850 p->dl.pi_se = pi_task->dl.pi_se; 6851 queue_flag |= ENQUEUE_REPLENISH; 6852 } else { 6853 p->dl.pi_se = &p->dl; 6854 } 6855 } else if (rt_prio(prio)) { 6856 if (dl_prio(oldprio)) 6857 p->dl.pi_se = &p->dl; 6858 if (oldprio < prio) 6859 queue_flag |= ENQUEUE_HEAD; 6860 } else { 6861 if (dl_prio(oldprio)) 6862 p->dl.pi_se = &p->dl; 6863 if (rt_prio(oldprio)) 6864 p->rt.timeout = 0; 6865 } 6866 6867 __setscheduler_prio(p, prio); 6868 6869 if (queued) 6870 enqueue_task(rq, p, queue_flag); 6871 if (running) 6872 set_next_task(rq, p); 6873 6874 check_class_changed(rq, p, prev_class, oldprio); 6875 out_unlock: 6876 /* Avoid rq from going away on us: */ 6877 preempt_disable(); 6878 6879 rq_unpin_lock(rq, &rf); 6880 __balance_callbacks(rq); 6881 raw_spin_rq_unlock(rq); 6882 6883 preempt_enable(); 6884 } 6885 #else 6886 static inline int rt_effective_prio(struct task_struct *p, int prio) 6887 { 6888 return prio; 6889 } 6890 #endif 6891 6892 void set_user_nice(struct task_struct *p, long nice) 6893 { 6894 bool queued, running; 6895 int old_prio; 6896 struct rq_flags rf; 6897 struct rq *rq; 6898 6899 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 6900 return; 6901 /* 6902 * We have to be careful, if called from sys_setpriority(), 6903 * the task might be in the middle of scheduling on another CPU. 6904 */ 6905 rq = task_rq_lock(p, &rf); 6906 update_rq_clock(rq); 6907 6908 /* 6909 * The RT priorities are set via sched_setscheduler(), but we still 6910 * allow the 'normal' nice value to be set - but as expected 6911 * it won't have any effect on scheduling until the task is 6912 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 6913 */ 6914 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 6915 p->static_prio = NICE_TO_PRIO(nice); 6916 goto out_unlock; 6917 } 6918 queued = task_on_rq_queued(p); 6919 running = task_current(rq, p); 6920 if (queued) 6921 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 6922 if (running) 6923 put_prev_task(rq, p); 6924 6925 p->static_prio = NICE_TO_PRIO(nice); 6926 set_load_weight(p, true); 6927 old_prio = p->prio; 6928 p->prio = effective_prio(p); 6929 6930 if (queued) 6931 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6932 if (running) 6933 set_next_task(rq, p); 6934 6935 /* 6936 * If the task increased its priority or is running and 6937 * lowered its priority, then reschedule its CPU: 6938 */ 6939 p->sched_class->prio_changed(rq, p, old_prio); 6940 6941 out_unlock: 6942 task_rq_unlock(rq, p, &rf); 6943 } 6944 EXPORT_SYMBOL(set_user_nice); 6945 6946 /* 6947 * can_nice - check if a task can reduce its nice value 6948 * @p: task 6949 * @nice: nice value 6950 */ 6951 int can_nice(const struct task_struct *p, const int nice) 6952 { 6953 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 6954 int nice_rlim = nice_to_rlimit(nice); 6955 6956 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 6957 capable(CAP_SYS_NICE)); 6958 } 6959 6960 #ifdef __ARCH_WANT_SYS_NICE 6961 6962 /* 6963 * sys_nice - change the priority of the current process. 6964 * @increment: priority increment 6965 * 6966 * sys_setpriority is a more generic, but much slower function that 6967 * does similar things. 6968 */ 6969 SYSCALL_DEFINE1(nice, int, increment) 6970 { 6971 long nice, retval; 6972 6973 /* 6974 * Setpriority might change our priority at the same moment. 6975 * We don't have to worry. Conceptually one call occurs first 6976 * and we have a single winner. 6977 */ 6978 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 6979 nice = task_nice(current) + increment; 6980 6981 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 6982 if (increment < 0 && !can_nice(current, nice)) 6983 return -EPERM; 6984 6985 retval = security_task_setnice(current, nice); 6986 if (retval) 6987 return retval; 6988 6989 set_user_nice(current, nice); 6990 return 0; 6991 } 6992 6993 #endif 6994 6995 /** 6996 * task_prio - return the priority value of a given task. 6997 * @p: the task in question. 6998 * 6999 * Return: The priority value as seen by users in /proc. 7000 * 7001 * sched policy return value kernel prio user prio/nice 7002 * 7003 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7004 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7005 * deadline -101 -1 0 7006 */ 7007 int task_prio(const struct task_struct *p) 7008 { 7009 return p->prio - MAX_RT_PRIO; 7010 } 7011 7012 /** 7013 * idle_cpu - is a given CPU idle currently? 7014 * @cpu: the processor in question. 7015 * 7016 * Return: 1 if the CPU is currently idle. 0 otherwise. 7017 */ 7018 int idle_cpu(int cpu) 7019 { 7020 struct rq *rq = cpu_rq(cpu); 7021 7022 if (rq->curr != rq->idle) 7023 return 0; 7024 7025 if (rq->nr_running) 7026 return 0; 7027 7028 #ifdef CONFIG_SMP 7029 if (rq->ttwu_pending) 7030 return 0; 7031 #endif 7032 7033 return 1; 7034 } 7035 7036 /** 7037 * available_idle_cpu - is a given CPU idle for enqueuing work. 7038 * @cpu: the CPU in question. 7039 * 7040 * Return: 1 if the CPU is currently idle. 0 otherwise. 7041 */ 7042 int available_idle_cpu(int cpu) 7043 { 7044 if (!idle_cpu(cpu)) 7045 return 0; 7046 7047 if (vcpu_is_preempted(cpu)) 7048 return 0; 7049 7050 return 1; 7051 } 7052 7053 /** 7054 * idle_task - return the idle task for a given CPU. 7055 * @cpu: the processor in question. 7056 * 7057 * Return: The idle task for the CPU @cpu. 7058 */ 7059 struct task_struct *idle_task(int cpu) 7060 { 7061 return cpu_rq(cpu)->idle; 7062 } 7063 7064 #ifdef CONFIG_SMP 7065 /* 7066 * This function computes an effective utilization for the given CPU, to be 7067 * used for frequency selection given the linear relation: f = u * f_max. 7068 * 7069 * The scheduler tracks the following metrics: 7070 * 7071 * cpu_util_{cfs,rt,dl,irq}() 7072 * cpu_bw_dl() 7073 * 7074 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7075 * synchronized windows and are thus directly comparable. 7076 * 7077 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7078 * which excludes things like IRQ and steal-time. These latter are then accrued 7079 * in the irq utilization. 7080 * 7081 * The DL bandwidth number otoh is not a measured metric but a value computed 7082 * based on the task model parameters and gives the minimal utilization 7083 * required to meet deadlines. 7084 */ 7085 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7086 unsigned long max, enum cpu_util_type type, 7087 struct task_struct *p) 7088 { 7089 unsigned long dl_util, util, irq; 7090 struct rq *rq = cpu_rq(cpu); 7091 7092 if (!uclamp_is_used() && 7093 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7094 return max; 7095 } 7096 7097 /* 7098 * Early check to see if IRQ/steal time saturates the CPU, can be 7099 * because of inaccuracies in how we track these -- see 7100 * update_irq_load_avg(). 7101 */ 7102 irq = cpu_util_irq(rq); 7103 if (unlikely(irq >= max)) 7104 return max; 7105 7106 /* 7107 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7108 * CFS tasks and we use the same metric to track the effective 7109 * utilization (PELT windows are synchronized) we can directly add them 7110 * to obtain the CPU's actual utilization. 7111 * 7112 * CFS and RT utilization can be boosted or capped, depending on 7113 * utilization clamp constraints requested by currently RUNNABLE 7114 * tasks. 7115 * When there are no CFS RUNNABLE tasks, clamps are released and 7116 * frequency will be gracefully reduced with the utilization decay. 7117 */ 7118 util = util_cfs + cpu_util_rt(rq); 7119 if (type == FREQUENCY_UTIL) 7120 util = uclamp_rq_util_with(rq, util, p); 7121 7122 dl_util = cpu_util_dl(rq); 7123 7124 /* 7125 * For frequency selection we do not make cpu_util_dl() a permanent part 7126 * of this sum because we want to use cpu_bw_dl() later on, but we need 7127 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7128 * that we select f_max when there is no idle time. 7129 * 7130 * NOTE: numerical errors or stop class might cause us to not quite hit 7131 * saturation when we should -- something for later. 7132 */ 7133 if (util + dl_util >= max) 7134 return max; 7135 7136 /* 7137 * OTOH, for energy computation we need the estimated running time, so 7138 * include util_dl and ignore dl_bw. 7139 */ 7140 if (type == ENERGY_UTIL) 7141 util += dl_util; 7142 7143 /* 7144 * There is still idle time; further improve the number by using the 7145 * irq metric. Because IRQ/steal time is hidden from the task clock we 7146 * need to scale the task numbers: 7147 * 7148 * max - irq 7149 * U' = irq + --------- * U 7150 * max 7151 */ 7152 util = scale_irq_capacity(util, irq, max); 7153 util += irq; 7154 7155 /* 7156 * Bandwidth required by DEADLINE must always be granted while, for 7157 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7158 * to gracefully reduce the frequency when no tasks show up for longer 7159 * periods of time. 7160 * 7161 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7162 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7163 * an interface. So, we only do the latter for now. 7164 */ 7165 if (type == FREQUENCY_UTIL) 7166 util += cpu_bw_dl(rq); 7167 7168 return min(max, util); 7169 } 7170 7171 unsigned long sched_cpu_util(int cpu, unsigned long max) 7172 { 7173 return effective_cpu_util(cpu, cpu_util_cfs(cpu), max, 7174 ENERGY_UTIL, NULL); 7175 } 7176 #endif /* CONFIG_SMP */ 7177 7178 /** 7179 * find_process_by_pid - find a process with a matching PID value. 7180 * @pid: the pid in question. 7181 * 7182 * The task of @pid, if found. %NULL otherwise. 7183 */ 7184 static struct task_struct *find_process_by_pid(pid_t pid) 7185 { 7186 return pid ? find_task_by_vpid(pid) : current; 7187 } 7188 7189 /* 7190 * sched_setparam() passes in -1 for its policy, to let the functions 7191 * it calls know not to change it. 7192 */ 7193 #define SETPARAM_POLICY -1 7194 7195 static void __setscheduler_params(struct task_struct *p, 7196 const struct sched_attr *attr) 7197 { 7198 int policy = attr->sched_policy; 7199 7200 if (policy == SETPARAM_POLICY) 7201 policy = p->policy; 7202 7203 p->policy = policy; 7204 7205 if (dl_policy(policy)) 7206 __setparam_dl(p, attr); 7207 else if (fair_policy(policy)) 7208 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7209 7210 /* 7211 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7212 * !rt_policy. Always setting this ensures that things like 7213 * getparam()/getattr() don't report silly values for !rt tasks. 7214 */ 7215 p->rt_priority = attr->sched_priority; 7216 p->normal_prio = normal_prio(p); 7217 set_load_weight(p, true); 7218 } 7219 7220 /* 7221 * Check the target process has a UID that matches the current process's: 7222 */ 7223 static bool check_same_owner(struct task_struct *p) 7224 { 7225 const struct cred *cred = current_cred(), *pcred; 7226 bool match; 7227 7228 rcu_read_lock(); 7229 pcred = __task_cred(p); 7230 match = (uid_eq(cred->euid, pcred->euid) || 7231 uid_eq(cred->euid, pcred->uid)); 7232 rcu_read_unlock(); 7233 return match; 7234 } 7235 7236 static int __sched_setscheduler(struct task_struct *p, 7237 const struct sched_attr *attr, 7238 bool user, bool pi) 7239 { 7240 int oldpolicy = -1, policy = attr->sched_policy; 7241 int retval, oldprio, newprio, queued, running; 7242 const struct sched_class *prev_class; 7243 struct callback_head *head; 7244 struct rq_flags rf; 7245 int reset_on_fork; 7246 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7247 struct rq *rq; 7248 7249 /* The pi code expects interrupts enabled */ 7250 BUG_ON(pi && in_interrupt()); 7251 recheck: 7252 /* Double check policy once rq lock held: */ 7253 if (policy < 0) { 7254 reset_on_fork = p->sched_reset_on_fork; 7255 policy = oldpolicy = p->policy; 7256 } else { 7257 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7258 7259 if (!valid_policy(policy)) 7260 return -EINVAL; 7261 } 7262 7263 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7264 return -EINVAL; 7265 7266 /* 7267 * Valid priorities for SCHED_FIFO and SCHED_RR are 7268 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7269 * SCHED_BATCH and SCHED_IDLE is 0. 7270 */ 7271 if (attr->sched_priority > MAX_RT_PRIO-1) 7272 return -EINVAL; 7273 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7274 (rt_policy(policy) != (attr->sched_priority != 0))) 7275 return -EINVAL; 7276 7277 /* 7278 * Allow unprivileged RT tasks to decrease priority: 7279 */ 7280 if (user && !capable(CAP_SYS_NICE)) { 7281 if (fair_policy(policy)) { 7282 if (attr->sched_nice < task_nice(p) && 7283 !can_nice(p, attr->sched_nice)) 7284 return -EPERM; 7285 } 7286 7287 if (rt_policy(policy)) { 7288 unsigned long rlim_rtprio = 7289 task_rlimit(p, RLIMIT_RTPRIO); 7290 7291 /* Can't set/change the rt policy: */ 7292 if (policy != p->policy && !rlim_rtprio) 7293 return -EPERM; 7294 7295 /* Can't increase priority: */ 7296 if (attr->sched_priority > p->rt_priority && 7297 attr->sched_priority > rlim_rtprio) 7298 return -EPERM; 7299 } 7300 7301 /* 7302 * Can't set/change SCHED_DEADLINE policy at all for now 7303 * (safest behavior); in the future we would like to allow 7304 * unprivileged DL tasks to increase their relative deadline 7305 * or reduce their runtime (both ways reducing utilization) 7306 */ 7307 if (dl_policy(policy)) 7308 return -EPERM; 7309 7310 /* 7311 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7312 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7313 */ 7314 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7315 if (!can_nice(p, task_nice(p))) 7316 return -EPERM; 7317 } 7318 7319 /* Can't change other user's priorities: */ 7320 if (!check_same_owner(p)) 7321 return -EPERM; 7322 7323 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7324 if (p->sched_reset_on_fork && !reset_on_fork) 7325 return -EPERM; 7326 } 7327 7328 if (user) { 7329 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7330 return -EINVAL; 7331 7332 retval = security_task_setscheduler(p); 7333 if (retval) 7334 return retval; 7335 } 7336 7337 /* Update task specific "requested" clamps */ 7338 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7339 retval = uclamp_validate(p, attr); 7340 if (retval) 7341 return retval; 7342 } 7343 7344 if (pi) 7345 cpuset_read_lock(); 7346 7347 /* 7348 * Make sure no PI-waiters arrive (or leave) while we are 7349 * changing the priority of the task: 7350 * 7351 * To be able to change p->policy safely, the appropriate 7352 * runqueue lock must be held. 7353 */ 7354 rq = task_rq_lock(p, &rf); 7355 update_rq_clock(rq); 7356 7357 /* 7358 * Changing the policy of the stop threads its a very bad idea: 7359 */ 7360 if (p == rq->stop) { 7361 retval = -EINVAL; 7362 goto unlock; 7363 } 7364 7365 /* 7366 * If not changing anything there's no need to proceed further, 7367 * but store a possible modification of reset_on_fork. 7368 */ 7369 if (unlikely(policy == p->policy)) { 7370 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7371 goto change; 7372 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7373 goto change; 7374 if (dl_policy(policy) && dl_param_changed(p, attr)) 7375 goto change; 7376 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7377 goto change; 7378 7379 p->sched_reset_on_fork = reset_on_fork; 7380 retval = 0; 7381 goto unlock; 7382 } 7383 change: 7384 7385 if (user) { 7386 #ifdef CONFIG_RT_GROUP_SCHED 7387 /* 7388 * Do not allow realtime tasks into groups that have no runtime 7389 * assigned. 7390 */ 7391 if (rt_bandwidth_enabled() && rt_policy(policy) && 7392 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7393 !task_group_is_autogroup(task_group(p))) { 7394 retval = -EPERM; 7395 goto unlock; 7396 } 7397 #endif 7398 #ifdef CONFIG_SMP 7399 if (dl_bandwidth_enabled() && dl_policy(policy) && 7400 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7401 cpumask_t *span = rq->rd->span; 7402 7403 /* 7404 * Don't allow tasks with an affinity mask smaller than 7405 * the entire root_domain to become SCHED_DEADLINE. We 7406 * will also fail if there's no bandwidth available. 7407 */ 7408 if (!cpumask_subset(span, p->cpus_ptr) || 7409 rq->rd->dl_bw.bw == 0) { 7410 retval = -EPERM; 7411 goto unlock; 7412 } 7413 } 7414 #endif 7415 } 7416 7417 /* Re-check policy now with rq lock held: */ 7418 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7419 policy = oldpolicy = -1; 7420 task_rq_unlock(rq, p, &rf); 7421 if (pi) 7422 cpuset_read_unlock(); 7423 goto recheck; 7424 } 7425 7426 /* 7427 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7428 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7429 * is available. 7430 */ 7431 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7432 retval = -EBUSY; 7433 goto unlock; 7434 } 7435 7436 p->sched_reset_on_fork = reset_on_fork; 7437 oldprio = p->prio; 7438 7439 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7440 if (pi) { 7441 /* 7442 * Take priority boosted tasks into account. If the new 7443 * effective priority is unchanged, we just store the new 7444 * normal parameters and do not touch the scheduler class and 7445 * the runqueue. This will be done when the task deboost 7446 * itself. 7447 */ 7448 newprio = rt_effective_prio(p, newprio); 7449 if (newprio == oldprio) 7450 queue_flags &= ~DEQUEUE_MOVE; 7451 } 7452 7453 queued = task_on_rq_queued(p); 7454 running = task_current(rq, p); 7455 if (queued) 7456 dequeue_task(rq, p, queue_flags); 7457 if (running) 7458 put_prev_task(rq, p); 7459 7460 prev_class = p->sched_class; 7461 7462 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7463 __setscheduler_params(p, attr); 7464 __setscheduler_prio(p, newprio); 7465 } 7466 __setscheduler_uclamp(p, attr); 7467 7468 if (queued) { 7469 /* 7470 * We enqueue to tail when the priority of a task is 7471 * increased (user space view). 7472 */ 7473 if (oldprio < p->prio) 7474 queue_flags |= ENQUEUE_HEAD; 7475 7476 enqueue_task(rq, p, queue_flags); 7477 } 7478 if (running) 7479 set_next_task(rq, p); 7480 7481 check_class_changed(rq, p, prev_class, oldprio); 7482 7483 /* Avoid rq from going away on us: */ 7484 preempt_disable(); 7485 head = splice_balance_callbacks(rq); 7486 task_rq_unlock(rq, p, &rf); 7487 7488 if (pi) { 7489 cpuset_read_unlock(); 7490 rt_mutex_adjust_pi(p); 7491 } 7492 7493 /* Run balance callbacks after we've adjusted the PI chain: */ 7494 balance_callbacks(rq, head); 7495 preempt_enable(); 7496 7497 return 0; 7498 7499 unlock: 7500 task_rq_unlock(rq, p, &rf); 7501 if (pi) 7502 cpuset_read_unlock(); 7503 return retval; 7504 } 7505 7506 static int _sched_setscheduler(struct task_struct *p, int policy, 7507 const struct sched_param *param, bool check) 7508 { 7509 struct sched_attr attr = { 7510 .sched_policy = policy, 7511 .sched_priority = param->sched_priority, 7512 .sched_nice = PRIO_TO_NICE(p->static_prio), 7513 }; 7514 7515 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7516 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7517 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7518 policy &= ~SCHED_RESET_ON_FORK; 7519 attr.sched_policy = policy; 7520 } 7521 7522 return __sched_setscheduler(p, &attr, check, true); 7523 } 7524 /** 7525 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7526 * @p: the task in question. 7527 * @policy: new policy. 7528 * @param: structure containing the new RT priority. 7529 * 7530 * Use sched_set_fifo(), read its comment. 7531 * 7532 * Return: 0 on success. An error code otherwise. 7533 * 7534 * NOTE that the task may be already dead. 7535 */ 7536 int sched_setscheduler(struct task_struct *p, int policy, 7537 const struct sched_param *param) 7538 { 7539 return _sched_setscheduler(p, policy, param, true); 7540 } 7541 7542 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7543 { 7544 return __sched_setscheduler(p, attr, true, true); 7545 } 7546 7547 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7548 { 7549 return __sched_setscheduler(p, attr, false, true); 7550 } 7551 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7552 7553 /** 7554 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7555 * @p: the task in question. 7556 * @policy: new policy. 7557 * @param: structure containing the new RT priority. 7558 * 7559 * Just like sched_setscheduler, only don't bother checking if the 7560 * current context has permission. For example, this is needed in 7561 * stop_machine(): we create temporary high priority worker threads, 7562 * but our caller might not have that capability. 7563 * 7564 * Return: 0 on success. An error code otherwise. 7565 */ 7566 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7567 const struct sched_param *param) 7568 { 7569 return _sched_setscheduler(p, policy, param, false); 7570 } 7571 7572 /* 7573 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7574 * incapable of resource management, which is the one thing an OS really should 7575 * be doing. 7576 * 7577 * This is of course the reason it is limited to privileged users only. 7578 * 7579 * Worse still; it is fundamentally impossible to compose static priority 7580 * workloads. You cannot take two correctly working static prio workloads 7581 * and smash them together and still expect them to work. 7582 * 7583 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7584 * 7585 * MAX_RT_PRIO / 2 7586 * 7587 * The administrator _MUST_ configure the system, the kernel simply doesn't 7588 * know enough information to make a sensible choice. 7589 */ 7590 void sched_set_fifo(struct task_struct *p) 7591 { 7592 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7593 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7594 } 7595 EXPORT_SYMBOL_GPL(sched_set_fifo); 7596 7597 /* 7598 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7599 */ 7600 void sched_set_fifo_low(struct task_struct *p) 7601 { 7602 struct sched_param sp = { .sched_priority = 1 }; 7603 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7604 } 7605 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7606 7607 void sched_set_normal(struct task_struct *p, int nice) 7608 { 7609 struct sched_attr attr = { 7610 .sched_policy = SCHED_NORMAL, 7611 .sched_nice = nice, 7612 }; 7613 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7614 } 7615 EXPORT_SYMBOL_GPL(sched_set_normal); 7616 7617 static int 7618 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7619 { 7620 struct sched_param lparam; 7621 struct task_struct *p; 7622 int retval; 7623 7624 if (!param || pid < 0) 7625 return -EINVAL; 7626 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7627 return -EFAULT; 7628 7629 rcu_read_lock(); 7630 retval = -ESRCH; 7631 p = find_process_by_pid(pid); 7632 if (likely(p)) 7633 get_task_struct(p); 7634 rcu_read_unlock(); 7635 7636 if (likely(p)) { 7637 retval = sched_setscheduler(p, policy, &lparam); 7638 put_task_struct(p); 7639 } 7640 7641 return retval; 7642 } 7643 7644 /* 7645 * Mimics kernel/events/core.c perf_copy_attr(). 7646 */ 7647 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7648 { 7649 u32 size; 7650 int ret; 7651 7652 /* Zero the full structure, so that a short copy will be nice: */ 7653 memset(attr, 0, sizeof(*attr)); 7654 7655 ret = get_user(size, &uattr->size); 7656 if (ret) 7657 return ret; 7658 7659 /* ABI compatibility quirk: */ 7660 if (!size) 7661 size = SCHED_ATTR_SIZE_VER0; 7662 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7663 goto err_size; 7664 7665 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7666 if (ret) { 7667 if (ret == -E2BIG) 7668 goto err_size; 7669 return ret; 7670 } 7671 7672 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7673 size < SCHED_ATTR_SIZE_VER1) 7674 return -EINVAL; 7675 7676 /* 7677 * XXX: Do we want to be lenient like existing syscalls; or do we want 7678 * to be strict and return an error on out-of-bounds values? 7679 */ 7680 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7681 7682 return 0; 7683 7684 err_size: 7685 put_user(sizeof(*attr), &uattr->size); 7686 return -E2BIG; 7687 } 7688 7689 static void get_params(struct task_struct *p, struct sched_attr *attr) 7690 { 7691 if (task_has_dl_policy(p)) 7692 __getparam_dl(p, attr); 7693 else if (task_has_rt_policy(p)) 7694 attr->sched_priority = p->rt_priority; 7695 else 7696 attr->sched_nice = task_nice(p); 7697 } 7698 7699 /** 7700 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7701 * @pid: the pid in question. 7702 * @policy: new policy. 7703 * @param: structure containing the new RT priority. 7704 * 7705 * Return: 0 on success. An error code otherwise. 7706 */ 7707 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7708 { 7709 if (policy < 0) 7710 return -EINVAL; 7711 7712 return do_sched_setscheduler(pid, policy, param); 7713 } 7714 7715 /** 7716 * sys_sched_setparam - set/change the RT priority of a thread 7717 * @pid: the pid in question. 7718 * @param: structure containing the new RT priority. 7719 * 7720 * Return: 0 on success. An error code otherwise. 7721 */ 7722 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7723 { 7724 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7725 } 7726 7727 /** 7728 * sys_sched_setattr - same as above, but with extended sched_attr 7729 * @pid: the pid in question. 7730 * @uattr: structure containing the extended parameters. 7731 * @flags: for future extension. 7732 */ 7733 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7734 unsigned int, flags) 7735 { 7736 struct sched_attr attr; 7737 struct task_struct *p; 7738 int retval; 7739 7740 if (!uattr || pid < 0 || flags) 7741 return -EINVAL; 7742 7743 retval = sched_copy_attr(uattr, &attr); 7744 if (retval) 7745 return retval; 7746 7747 if ((int)attr.sched_policy < 0) 7748 return -EINVAL; 7749 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7750 attr.sched_policy = SETPARAM_POLICY; 7751 7752 rcu_read_lock(); 7753 retval = -ESRCH; 7754 p = find_process_by_pid(pid); 7755 if (likely(p)) 7756 get_task_struct(p); 7757 rcu_read_unlock(); 7758 7759 if (likely(p)) { 7760 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7761 get_params(p, &attr); 7762 retval = sched_setattr(p, &attr); 7763 put_task_struct(p); 7764 } 7765 7766 return retval; 7767 } 7768 7769 /** 7770 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7771 * @pid: the pid in question. 7772 * 7773 * Return: On success, the policy of the thread. Otherwise, a negative error 7774 * code. 7775 */ 7776 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7777 { 7778 struct task_struct *p; 7779 int retval; 7780 7781 if (pid < 0) 7782 return -EINVAL; 7783 7784 retval = -ESRCH; 7785 rcu_read_lock(); 7786 p = find_process_by_pid(pid); 7787 if (p) { 7788 retval = security_task_getscheduler(p); 7789 if (!retval) 7790 retval = p->policy 7791 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7792 } 7793 rcu_read_unlock(); 7794 return retval; 7795 } 7796 7797 /** 7798 * sys_sched_getparam - get the RT priority of a thread 7799 * @pid: the pid in question. 7800 * @param: structure containing the RT priority. 7801 * 7802 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7803 * code. 7804 */ 7805 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7806 { 7807 struct sched_param lp = { .sched_priority = 0 }; 7808 struct task_struct *p; 7809 int retval; 7810 7811 if (!param || pid < 0) 7812 return -EINVAL; 7813 7814 rcu_read_lock(); 7815 p = find_process_by_pid(pid); 7816 retval = -ESRCH; 7817 if (!p) 7818 goto out_unlock; 7819 7820 retval = security_task_getscheduler(p); 7821 if (retval) 7822 goto out_unlock; 7823 7824 if (task_has_rt_policy(p)) 7825 lp.sched_priority = p->rt_priority; 7826 rcu_read_unlock(); 7827 7828 /* 7829 * This one might sleep, we cannot do it with a spinlock held ... 7830 */ 7831 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7832 7833 return retval; 7834 7835 out_unlock: 7836 rcu_read_unlock(); 7837 return retval; 7838 } 7839 7840 /* 7841 * Copy the kernel size attribute structure (which might be larger 7842 * than what user-space knows about) to user-space. 7843 * 7844 * Note that all cases are valid: user-space buffer can be larger or 7845 * smaller than the kernel-space buffer. The usual case is that both 7846 * have the same size. 7847 */ 7848 static int 7849 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7850 struct sched_attr *kattr, 7851 unsigned int usize) 7852 { 7853 unsigned int ksize = sizeof(*kattr); 7854 7855 if (!access_ok(uattr, usize)) 7856 return -EFAULT; 7857 7858 /* 7859 * sched_getattr() ABI forwards and backwards compatibility: 7860 * 7861 * If usize == ksize then we just copy everything to user-space and all is good. 7862 * 7863 * If usize < ksize then we only copy as much as user-space has space for, 7864 * this keeps ABI compatibility as well. We skip the rest. 7865 * 7866 * If usize > ksize then user-space is using a newer version of the ABI, 7867 * which part the kernel doesn't know about. Just ignore it - tooling can 7868 * detect the kernel's knowledge of attributes from the attr->size value 7869 * which is set to ksize in this case. 7870 */ 7871 kattr->size = min(usize, ksize); 7872 7873 if (copy_to_user(uattr, kattr, kattr->size)) 7874 return -EFAULT; 7875 7876 return 0; 7877 } 7878 7879 /** 7880 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 7881 * @pid: the pid in question. 7882 * @uattr: structure containing the extended parameters. 7883 * @usize: sizeof(attr) for fwd/bwd comp. 7884 * @flags: for future extension. 7885 */ 7886 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 7887 unsigned int, usize, unsigned int, flags) 7888 { 7889 struct sched_attr kattr = { }; 7890 struct task_struct *p; 7891 int retval; 7892 7893 if (!uattr || pid < 0 || usize > PAGE_SIZE || 7894 usize < SCHED_ATTR_SIZE_VER0 || flags) 7895 return -EINVAL; 7896 7897 rcu_read_lock(); 7898 p = find_process_by_pid(pid); 7899 retval = -ESRCH; 7900 if (!p) 7901 goto out_unlock; 7902 7903 retval = security_task_getscheduler(p); 7904 if (retval) 7905 goto out_unlock; 7906 7907 kattr.sched_policy = p->policy; 7908 if (p->sched_reset_on_fork) 7909 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7910 get_params(p, &kattr); 7911 kattr.sched_flags &= SCHED_FLAG_ALL; 7912 7913 #ifdef CONFIG_UCLAMP_TASK 7914 /* 7915 * This could race with another potential updater, but this is fine 7916 * because it'll correctly read the old or the new value. We don't need 7917 * to guarantee who wins the race as long as it doesn't return garbage. 7918 */ 7919 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 7920 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 7921 #endif 7922 7923 rcu_read_unlock(); 7924 7925 return sched_attr_copy_to_user(uattr, &kattr, usize); 7926 7927 out_unlock: 7928 rcu_read_unlock(); 7929 return retval; 7930 } 7931 7932 #ifdef CONFIG_SMP 7933 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 7934 { 7935 int ret = 0; 7936 7937 /* 7938 * If the task isn't a deadline task or admission control is 7939 * disabled then we don't care about affinity changes. 7940 */ 7941 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 7942 return 0; 7943 7944 /* 7945 * Since bandwidth control happens on root_domain basis, 7946 * if admission test is enabled, we only admit -deadline 7947 * tasks allowed to run on all the CPUs in the task's 7948 * root_domain. 7949 */ 7950 rcu_read_lock(); 7951 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 7952 ret = -EBUSY; 7953 rcu_read_unlock(); 7954 return ret; 7955 } 7956 #endif 7957 7958 static int 7959 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 7960 { 7961 int retval; 7962 cpumask_var_t cpus_allowed, new_mask; 7963 7964 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 7965 return -ENOMEM; 7966 7967 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 7968 retval = -ENOMEM; 7969 goto out_free_cpus_allowed; 7970 } 7971 7972 cpuset_cpus_allowed(p, cpus_allowed); 7973 cpumask_and(new_mask, mask, cpus_allowed); 7974 7975 retval = dl_task_check_affinity(p, new_mask); 7976 if (retval) 7977 goto out_free_new_mask; 7978 again: 7979 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 7980 if (retval) 7981 goto out_free_new_mask; 7982 7983 cpuset_cpus_allowed(p, cpus_allowed); 7984 if (!cpumask_subset(new_mask, cpus_allowed)) { 7985 /* 7986 * We must have raced with a concurrent cpuset update. 7987 * Just reset the cpumask to the cpuset's cpus_allowed. 7988 */ 7989 cpumask_copy(new_mask, cpus_allowed); 7990 goto again; 7991 } 7992 7993 out_free_new_mask: 7994 free_cpumask_var(new_mask); 7995 out_free_cpus_allowed: 7996 free_cpumask_var(cpus_allowed); 7997 return retval; 7998 } 7999 8000 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8001 { 8002 struct task_struct *p; 8003 int retval; 8004 8005 rcu_read_lock(); 8006 8007 p = find_process_by_pid(pid); 8008 if (!p) { 8009 rcu_read_unlock(); 8010 return -ESRCH; 8011 } 8012 8013 /* Prevent p going away */ 8014 get_task_struct(p); 8015 rcu_read_unlock(); 8016 8017 if (p->flags & PF_NO_SETAFFINITY) { 8018 retval = -EINVAL; 8019 goto out_put_task; 8020 } 8021 8022 if (!check_same_owner(p)) { 8023 rcu_read_lock(); 8024 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8025 rcu_read_unlock(); 8026 retval = -EPERM; 8027 goto out_put_task; 8028 } 8029 rcu_read_unlock(); 8030 } 8031 8032 retval = security_task_setscheduler(p); 8033 if (retval) 8034 goto out_put_task; 8035 8036 retval = __sched_setaffinity(p, in_mask); 8037 out_put_task: 8038 put_task_struct(p); 8039 return retval; 8040 } 8041 8042 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8043 struct cpumask *new_mask) 8044 { 8045 if (len < cpumask_size()) 8046 cpumask_clear(new_mask); 8047 else if (len > cpumask_size()) 8048 len = cpumask_size(); 8049 8050 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8051 } 8052 8053 /** 8054 * sys_sched_setaffinity - set the CPU affinity of a process 8055 * @pid: pid of the process 8056 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8057 * @user_mask_ptr: user-space pointer to the new CPU mask 8058 * 8059 * Return: 0 on success. An error code otherwise. 8060 */ 8061 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8062 unsigned long __user *, user_mask_ptr) 8063 { 8064 cpumask_var_t new_mask; 8065 int retval; 8066 8067 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8068 return -ENOMEM; 8069 8070 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8071 if (retval == 0) 8072 retval = sched_setaffinity(pid, new_mask); 8073 free_cpumask_var(new_mask); 8074 return retval; 8075 } 8076 8077 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8078 { 8079 struct task_struct *p; 8080 unsigned long flags; 8081 int retval; 8082 8083 rcu_read_lock(); 8084 8085 retval = -ESRCH; 8086 p = find_process_by_pid(pid); 8087 if (!p) 8088 goto out_unlock; 8089 8090 retval = security_task_getscheduler(p); 8091 if (retval) 8092 goto out_unlock; 8093 8094 raw_spin_lock_irqsave(&p->pi_lock, flags); 8095 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8096 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8097 8098 out_unlock: 8099 rcu_read_unlock(); 8100 8101 return retval; 8102 } 8103 8104 /** 8105 * sys_sched_getaffinity - get the CPU affinity of a process 8106 * @pid: pid of the process 8107 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8108 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8109 * 8110 * Return: size of CPU mask copied to user_mask_ptr on success. An 8111 * error code otherwise. 8112 */ 8113 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8114 unsigned long __user *, user_mask_ptr) 8115 { 8116 int ret; 8117 cpumask_var_t mask; 8118 8119 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8120 return -EINVAL; 8121 if (len & (sizeof(unsigned long)-1)) 8122 return -EINVAL; 8123 8124 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8125 return -ENOMEM; 8126 8127 ret = sched_getaffinity(pid, mask); 8128 if (ret == 0) { 8129 unsigned int retlen = min(len, cpumask_size()); 8130 8131 if (copy_to_user(user_mask_ptr, mask, retlen)) 8132 ret = -EFAULT; 8133 else 8134 ret = retlen; 8135 } 8136 free_cpumask_var(mask); 8137 8138 return ret; 8139 } 8140 8141 static void do_sched_yield(void) 8142 { 8143 struct rq_flags rf; 8144 struct rq *rq; 8145 8146 rq = this_rq_lock_irq(&rf); 8147 8148 schedstat_inc(rq->yld_count); 8149 current->sched_class->yield_task(rq); 8150 8151 preempt_disable(); 8152 rq_unlock_irq(rq, &rf); 8153 sched_preempt_enable_no_resched(); 8154 8155 schedule(); 8156 } 8157 8158 /** 8159 * sys_sched_yield - yield the current processor to other threads. 8160 * 8161 * This function yields the current CPU to other tasks. If there are no 8162 * other threads running on this CPU then this function will return. 8163 * 8164 * Return: 0. 8165 */ 8166 SYSCALL_DEFINE0(sched_yield) 8167 { 8168 do_sched_yield(); 8169 return 0; 8170 } 8171 8172 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8173 int __sched __cond_resched(void) 8174 { 8175 if (should_resched(0)) { 8176 preempt_schedule_common(); 8177 return 1; 8178 } 8179 /* 8180 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8181 * whether the current CPU is in an RCU read-side critical section, 8182 * so the tick can report quiescent states even for CPUs looping 8183 * in kernel context. In contrast, in non-preemptible kernels, 8184 * RCU readers leave no in-memory hints, which means that CPU-bound 8185 * processes executing in kernel context might never report an 8186 * RCU quiescent state. Therefore, the following code causes 8187 * cond_resched() to report a quiescent state, but only when RCU 8188 * is in urgent need of one. 8189 */ 8190 #ifndef CONFIG_PREEMPT_RCU 8191 rcu_all_qs(); 8192 #endif 8193 return 0; 8194 } 8195 EXPORT_SYMBOL(__cond_resched); 8196 #endif 8197 8198 #ifdef CONFIG_PREEMPT_DYNAMIC 8199 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8200 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8201 8202 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8203 EXPORT_STATIC_CALL_TRAMP(might_resched); 8204 #endif 8205 8206 /* 8207 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8208 * call schedule, and on return reacquire the lock. 8209 * 8210 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8211 * operations here to prevent schedule() from being called twice (once via 8212 * spin_unlock(), once by hand). 8213 */ 8214 int __cond_resched_lock(spinlock_t *lock) 8215 { 8216 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8217 int ret = 0; 8218 8219 lockdep_assert_held(lock); 8220 8221 if (spin_needbreak(lock) || resched) { 8222 spin_unlock(lock); 8223 if (resched) 8224 preempt_schedule_common(); 8225 else 8226 cpu_relax(); 8227 ret = 1; 8228 spin_lock(lock); 8229 } 8230 return ret; 8231 } 8232 EXPORT_SYMBOL(__cond_resched_lock); 8233 8234 int __cond_resched_rwlock_read(rwlock_t *lock) 8235 { 8236 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8237 int ret = 0; 8238 8239 lockdep_assert_held_read(lock); 8240 8241 if (rwlock_needbreak(lock) || resched) { 8242 read_unlock(lock); 8243 if (resched) 8244 preempt_schedule_common(); 8245 else 8246 cpu_relax(); 8247 ret = 1; 8248 read_lock(lock); 8249 } 8250 return ret; 8251 } 8252 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8253 8254 int __cond_resched_rwlock_write(rwlock_t *lock) 8255 { 8256 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8257 int ret = 0; 8258 8259 lockdep_assert_held_write(lock); 8260 8261 if (rwlock_needbreak(lock) || resched) { 8262 write_unlock(lock); 8263 if (resched) 8264 preempt_schedule_common(); 8265 else 8266 cpu_relax(); 8267 ret = 1; 8268 write_lock(lock); 8269 } 8270 return ret; 8271 } 8272 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8273 8274 /** 8275 * yield - yield the current processor to other threads. 8276 * 8277 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8278 * 8279 * The scheduler is at all times free to pick the calling task as the most 8280 * eligible task to run, if removing the yield() call from your code breaks 8281 * it, it's already broken. 8282 * 8283 * Typical broken usage is: 8284 * 8285 * while (!event) 8286 * yield(); 8287 * 8288 * where one assumes that yield() will let 'the other' process run that will 8289 * make event true. If the current task is a SCHED_FIFO task that will never 8290 * happen. Never use yield() as a progress guarantee!! 8291 * 8292 * If you want to use yield() to wait for something, use wait_event(). 8293 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8294 * If you still want to use yield(), do not! 8295 */ 8296 void __sched yield(void) 8297 { 8298 set_current_state(TASK_RUNNING); 8299 do_sched_yield(); 8300 } 8301 EXPORT_SYMBOL(yield); 8302 8303 /** 8304 * yield_to - yield the current processor to another thread in 8305 * your thread group, or accelerate that thread toward the 8306 * processor it's on. 8307 * @p: target task 8308 * @preempt: whether task preemption is allowed or not 8309 * 8310 * It's the caller's job to ensure that the target task struct 8311 * can't go away on us before we can do any checks. 8312 * 8313 * Return: 8314 * true (>0) if we indeed boosted the target task. 8315 * false (0) if we failed to boost the target. 8316 * -ESRCH if there's no task to yield to. 8317 */ 8318 int __sched yield_to(struct task_struct *p, bool preempt) 8319 { 8320 struct task_struct *curr = current; 8321 struct rq *rq, *p_rq; 8322 unsigned long flags; 8323 int yielded = 0; 8324 8325 local_irq_save(flags); 8326 rq = this_rq(); 8327 8328 again: 8329 p_rq = task_rq(p); 8330 /* 8331 * If we're the only runnable task on the rq and target rq also 8332 * has only one task, there's absolutely no point in yielding. 8333 */ 8334 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8335 yielded = -ESRCH; 8336 goto out_irq; 8337 } 8338 8339 double_rq_lock(rq, p_rq); 8340 if (task_rq(p) != p_rq) { 8341 double_rq_unlock(rq, p_rq); 8342 goto again; 8343 } 8344 8345 if (!curr->sched_class->yield_to_task) 8346 goto out_unlock; 8347 8348 if (curr->sched_class != p->sched_class) 8349 goto out_unlock; 8350 8351 if (task_running(p_rq, p) || !task_is_running(p)) 8352 goto out_unlock; 8353 8354 yielded = curr->sched_class->yield_to_task(rq, p); 8355 if (yielded) { 8356 schedstat_inc(rq->yld_count); 8357 /* 8358 * Make p's CPU reschedule; pick_next_entity takes care of 8359 * fairness. 8360 */ 8361 if (preempt && rq != p_rq) 8362 resched_curr(p_rq); 8363 } 8364 8365 out_unlock: 8366 double_rq_unlock(rq, p_rq); 8367 out_irq: 8368 local_irq_restore(flags); 8369 8370 if (yielded > 0) 8371 schedule(); 8372 8373 return yielded; 8374 } 8375 EXPORT_SYMBOL_GPL(yield_to); 8376 8377 int io_schedule_prepare(void) 8378 { 8379 int old_iowait = current->in_iowait; 8380 8381 current->in_iowait = 1; 8382 if (current->plug) 8383 blk_flush_plug(current->plug, true); 8384 8385 return old_iowait; 8386 } 8387 8388 void io_schedule_finish(int token) 8389 { 8390 current->in_iowait = token; 8391 } 8392 8393 /* 8394 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8395 * that process accounting knows that this is a task in IO wait state. 8396 */ 8397 long __sched io_schedule_timeout(long timeout) 8398 { 8399 int token; 8400 long ret; 8401 8402 token = io_schedule_prepare(); 8403 ret = schedule_timeout(timeout); 8404 io_schedule_finish(token); 8405 8406 return ret; 8407 } 8408 EXPORT_SYMBOL(io_schedule_timeout); 8409 8410 void __sched io_schedule(void) 8411 { 8412 int token; 8413 8414 token = io_schedule_prepare(); 8415 schedule(); 8416 io_schedule_finish(token); 8417 } 8418 EXPORT_SYMBOL(io_schedule); 8419 8420 /** 8421 * sys_sched_get_priority_max - return maximum RT priority. 8422 * @policy: scheduling class. 8423 * 8424 * Return: On success, this syscall returns the maximum 8425 * rt_priority that can be used by a given scheduling class. 8426 * On failure, a negative error code is returned. 8427 */ 8428 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8429 { 8430 int ret = -EINVAL; 8431 8432 switch (policy) { 8433 case SCHED_FIFO: 8434 case SCHED_RR: 8435 ret = MAX_RT_PRIO-1; 8436 break; 8437 case SCHED_DEADLINE: 8438 case SCHED_NORMAL: 8439 case SCHED_BATCH: 8440 case SCHED_IDLE: 8441 ret = 0; 8442 break; 8443 } 8444 return ret; 8445 } 8446 8447 /** 8448 * sys_sched_get_priority_min - return minimum RT priority. 8449 * @policy: scheduling class. 8450 * 8451 * Return: On success, this syscall returns the minimum 8452 * rt_priority that can be used by a given scheduling class. 8453 * On failure, a negative error code is returned. 8454 */ 8455 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8456 { 8457 int ret = -EINVAL; 8458 8459 switch (policy) { 8460 case SCHED_FIFO: 8461 case SCHED_RR: 8462 ret = 1; 8463 break; 8464 case SCHED_DEADLINE: 8465 case SCHED_NORMAL: 8466 case SCHED_BATCH: 8467 case SCHED_IDLE: 8468 ret = 0; 8469 } 8470 return ret; 8471 } 8472 8473 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8474 { 8475 struct task_struct *p; 8476 unsigned int time_slice; 8477 struct rq_flags rf; 8478 struct rq *rq; 8479 int retval; 8480 8481 if (pid < 0) 8482 return -EINVAL; 8483 8484 retval = -ESRCH; 8485 rcu_read_lock(); 8486 p = find_process_by_pid(pid); 8487 if (!p) 8488 goto out_unlock; 8489 8490 retval = security_task_getscheduler(p); 8491 if (retval) 8492 goto out_unlock; 8493 8494 rq = task_rq_lock(p, &rf); 8495 time_slice = 0; 8496 if (p->sched_class->get_rr_interval) 8497 time_slice = p->sched_class->get_rr_interval(rq, p); 8498 task_rq_unlock(rq, p, &rf); 8499 8500 rcu_read_unlock(); 8501 jiffies_to_timespec64(time_slice, t); 8502 return 0; 8503 8504 out_unlock: 8505 rcu_read_unlock(); 8506 return retval; 8507 } 8508 8509 /** 8510 * sys_sched_rr_get_interval - return the default timeslice of a process. 8511 * @pid: pid of the process. 8512 * @interval: userspace pointer to the timeslice value. 8513 * 8514 * this syscall writes the default timeslice value of a given process 8515 * into the user-space timespec buffer. A value of '0' means infinity. 8516 * 8517 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8518 * an error code. 8519 */ 8520 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8521 struct __kernel_timespec __user *, interval) 8522 { 8523 struct timespec64 t; 8524 int retval = sched_rr_get_interval(pid, &t); 8525 8526 if (retval == 0) 8527 retval = put_timespec64(&t, interval); 8528 8529 return retval; 8530 } 8531 8532 #ifdef CONFIG_COMPAT_32BIT_TIME 8533 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8534 struct old_timespec32 __user *, interval) 8535 { 8536 struct timespec64 t; 8537 int retval = sched_rr_get_interval(pid, &t); 8538 8539 if (retval == 0) 8540 retval = put_old_timespec32(&t, interval); 8541 return retval; 8542 } 8543 #endif 8544 8545 void sched_show_task(struct task_struct *p) 8546 { 8547 unsigned long free = 0; 8548 int ppid; 8549 8550 if (!try_get_task_stack(p)) 8551 return; 8552 8553 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8554 8555 if (task_is_running(p)) 8556 pr_cont(" running task "); 8557 #ifdef CONFIG_DEBUG_STACK_USAGE 8558 free = stack_not_used(p); 8559 #endif 8560 ppid = 0; 8561 rcu_read_lock(); 8562 if (pid_alive(p)) 8563 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8564 rcu_read_unlock(); 8565 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 8566 free, task_pid_nr(p), ppid, 8567 read_task_thread_flags(p)); 8568 8569 print_worker_info(KERN_INFO, p); 8570 print_stop_info(KERN_INFO, p); 8571 show_stack(p, NULL, KERN_INFO); 8572 put_task_stack(p); 8573 } 8574 EXPORT_SYMBOL_GPL(sched_show_task); 8575 8576 static inline bool 8577 state_filter_match(unsigned long state_filter, struct task_struct *p) 8578 { 8579 unsigned int state = READ_ONCE(p->__state); 8580 8581 /* no filter, everything matches */ 8582 if (!state_filter) 8583 return true; 8584 8585 /* filter, but doesn't match */ 8586 if (!(state & state_filter)) 8587 return false; 8588 8589 /* 8590 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8591 * TASK_KILLABLE). 8592 */ 8593 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE) 8594 return false; 8595 8596 return true; 8597 } 8598 8599 8600 void show_state_filter(unsigned int state_filter) 8601 { 8602 struct task_struct *g, *p; 8603 8604 rcu_read_lock(); 8605 for_each_process_thread(g, p) { 8606 /* 8607 * reset the NMI-timeout, listing all files on a slow 8608 * console might take a lot of time: 8609 * Also, reset softlockup watchdogs on all CPUs, because 8610 * another CPU might be blocked waiting for us to process 8611 * an IPI. 8612 */ 8613 touch_nmi_watchdog(); 8614 touch_all_softlockup_watchdogs(); 8615 if (state_filter_match(state_filter, p)) 8616 sched_show_task(p); 8617 } 8618 8619 #ifdef CONFIG_SCHED_DEBUG 8620 if (!state_filter) 8621 sysrq_sched_debug_show(); 8622 #endif 8623 rcu_read_unlock(); 8624 /* 8625 * Only show locks if all tasks are dumped: 8626 */ 8627 if (!state_filter) 8628 debug_show_all_locks(); 8629 } 8630 8631 /** 8632 * init_idle - set up an idle thread for a given CPU 8633 * @idle: task in question 8634 * @cpu: CPU the idle task belongs to 8635 * 8636 * NOTE: this function does not set the idle thread's NEED_RESCHED 8637 * flag, to make booting more robust. 8638 */ 8639 void __init init_idle(struct task_struct *idle, int cpu) 8640 { 8641 struct rq *rq = cpu_rq(cpu); 8642 unsigned long flags; 8643 8644 __sched_fork(0, idle); 8645 8646 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8647 raw_spin_rq_lock(rq); 8648 8649 idle->__state = TASK_RUNNING; 8650 idle->se.exec_start = sched_clock(); 8651 /* 8652 * PF_KTHREAD should already be set at this point; regardless, make it 8653 * look like a proper per-CPU kthread. 8654 */ 8655 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8656 kthread_set_per_cpu(idle, cpu); 8657 8658 #ifdef CONFIG_SMP 8659 /* 8660 * It's possible that init_idle() gets called multiple times on a task, 8661 * in that case do_set_cpus_allowed() will not do the right thing. 8662 * 8663 * And since this is boot we can forgo the serialization. 8664 */ 8665 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8666 #endif 8667 /* 8668 * We're having a chicken and egg problem, even though we are 8669 * holding rq->lock, the CPU isn't yet set to this CPU so the 8670 * lockdep check in task_group() will fail. 8671 * 8672 * Similar case to sched_fork(). / Alternatively we could 8673 * use task_rq_lock() here and obtain the other rq->lock. 8674 * 8675 * Silence PROVE_RCU 8676 */ 8677 rcu_read_lock(); 8678 __set_task_cpu(idle, cpu); 8679 rcu_read_unlock(); 8680 8681 rq->idle = idle; 8682 rcu_assign_pointer(rq->curr, idle); 8683 idle->on_rq = TASK_ON_RQ_QUEUED; 8684 #ifdef CONFIG_SMP 8685 idle->on_cpu = 1; 8686 #endif 8687 raw_spin_rq_unlock(rq); 8688 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8689 8690 /* Set the preempt count _outside_ the spinlocks! */ 8691 init_idle_preempt_count(idle, cpu); 8692 8693 /* 8694 * The idle tasks have their own, simple scheduling class: 8695 */ 8696 idle->sched_class = &idle_sched_class; 8697 ftrace_graph_init_idle_task(idle, cpu); 8698 vtime_init_idle(idle, cpu); 8699 #ifdef CONFIG_SMP 8700 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8701 #endif 8702 } 8703 8704 #ifdef CONFIG_SMP 8705 8706 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8707 const struct cpumask *trial) 8708 { 8709 int ret = 1; 8710 8711 if (cpumask_empty(cur)) 8712 return ret; 8713 8714 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 8715 8716 return ret; 8717 } 8718 8719 int task_can_attach(struct task_struct *p, 8720 const struct cpumask *cs_cpus_allowed) 8721 { 8722 int ret = 0; 8723 8724 /* 8725 * Kthreads which disallow setaffinity shouldn't be moved 8726 * to a new cpuset; we don't want to change their CPU 8727 * affinity and isolating such threads by their set of 8728 * allowed nodes is unnecessary. Thus, cpusets are not 8729 * applicable for such threads. This prevents checking for 8730 * success of set_cpus_allowed_ptr() on all attached tasks 8731 * before cpus_mask may be changed. 8732 */ 8733 if (p->flags & PF_NO_SETAFFINITY) { 8734 ret = -EINVAL; 8735 goto out; 8736 } 8737 8738 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 8739 cs_cpus_allowed)) 8740 ret = dl_task_can_attach(p, cs_cpus_allowed); 8741 8742 out: 8743 return ret; 8744 } 8745 8746 bool sched_smp_initialized __read_mostly; 8747 8748 #ifdef CONFIG_NUMA_BALANCING 8749 /* Migrate current task p to target_cpu */ 8750 int migrate_task_to(struct task_struct *p, int target_cpu) 8751 { 8752 struct migration_arg arg = { p, target_cpu }; 8753 int curr_cpu = task_cpu(p); 8754 8755 if (curr_cpu == target_cpu) 8756 return 0; 8757 8758 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8759 return -EINVAL; 8760 8761 /* TODO: This is not properly updating schedstats */ 8762 8763 trace_sched_move_numa(p, curr_cpu, target_cpu); 8764 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8765 } 8766 8767 /* 8768 * Requeue a task on a given node and accurately track the number of NUMA 8769 * tasks on the runqueues 8770 */ 8771 void sched_setnuma(struct task_struct *p, int nid) 8772 { 8773 bool queued, running; 8774 struct rq_flags rf; 8775 struct rq *rq; 8776 8777 rq = task_rq_lock(p, &rf); 8778 queued = task_on_rq_queued(p); 8779 running = task_current(rq, p); 8780 8781 if (queued) 8782 dequeue_task(rq, p, DEQUEUE_SAVE); 8783 if (running) 8784 put_prev_task(rq, p); 8785 8786 p->numa_preferred_nid = nid; 8787 8788 if (queued) 8789 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 8790 if (running) 8791 set_next_task(rq, p); 8792 task_rq_unlock(rq, p, &rf); 8793 } 8794 #endif /* CONFIG_NUMA_BALANCING */ 8795 8796 #ifdef CONFIG_HOTPLUG_CPU 8797 /* 8798 * Ensure that the idle task is using init_mm right before its CPU goes 8799 * offline. 8800 */ 8801 void idle_task_exit(void) 8802 { 8803 struct mm_struct *mm = current->active_mm; 8804 8805 BUG_ON(cpu_online(smp_processor_id())); 8806 BUG_ON(current != this_rq()->idle); 8807 8808 if (mm != &init_mm) { 8809 switch_mm(mm, &init_mm, current); 8810 finish_arch_post_lock_switch(); 8811 } 8812 8813 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8814 } 8815 8816 static int __balance_push_cpu_stop(void *arg) 8817 { 8818 struct task_struct *p = arg; 8819 struct rq *rq = this_rq(); 8820 struct rq_flags rf; 8821 int cpu; 8822 8823 raw_spin_lock_irq(&p->pi_lock); 8824 rq_lock(rq, &rf); 8825 8826 update_rq_clock(rq); 8827 8828 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8829 cpu = select_fallback_rq(rq->cpu, p); 8830 rq = __migrate_task(rq, &rf, p, cpu); 8831 } 8832 8833 rq_unlock(rq, &rf); 8834 raw_spin_unlock_irq(&p->pi_lock); 8835 8836 put_task_struct(p); 8837 8838 return 0; 8839 } 8840 8841 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8842 8843 /* 8844 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8845 * 8846 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8847 * effective when the hotplug motion is down. 8848 */ 8849 static void balance_push(struct rq *rq) 8850 { 8851 struct task_struct *push_task = rq->curr; 8852 8853 lockdep_assert_rq_held(rq); 8854 8855 /* 8856 * Ensure the thing is persistent until balance_push_set(.on = false); 8857 */ 8858 rq->balance_callback = &balance_push_callback; 8859 8860 /* 8861 * Only active while going offline and when invoked on the outgoing 8862 * CPU. 8863 */ 8864 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8865 return; 8866 8867 /* 8868 * Both the cpu-hotplug and stop task are in this case and are 8869 * required to complete the hotplug process. 8870 */ 8871 if (kthread_is_per_cpu(push_task) || 8872 is_migration_disabled(push_task)) { 8873 8874 /* 8875 * If this is the idle task on the outgoing CPU try to wake 8876 * up the hotplug control thread which might wait for the 8877 * last task to vanish. The rcuwait_active() check is 8878 * accurate here because the waiter is pinned on this CPU 8879 * and can't obviously be running in parallel. 8880 * 8881 * On RT kernels this also has to check whether there are 8882 * pinned and scheduled out tasks on the runqueue. They 8883 * need to leave the migrate disabled section first. 8884 */ 8885 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8886 rcuwait_active(&rq->hotplug_wait)) { 8887 raw_spin_rq_unlock(rq); 8888 rcuwait_wake_up(&rq->hotplug_wait); 8889 raw_spin_rq_lock(rq); 8890 } 8891 return; 8892 } 8893 8894 get_task_struct(push_task); 8895 /* 8896 * Temporarily drop rq->lock such that we can wake-up the stop task. 8897 * Both preemption and IRQs are still disabled. 8898 */ 8899 raw_spin_rq_unlock(rq); 8900 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8901 this_cpu_ptr(&push_work)); 8902 /* 8903 * At this point need_resched() is true and we'll take the loop in 8904 * schedule(). The next pick is obviously going to be the stop task 8905 * which kthread_is_per_cpu() and will push this task away. 8906 */ 8907 raw_spin_rq_lock(rq); 8908 } 8909 8910 static void balance_push_set(int cpu, bool on) 8911 { 8912 struct rq *rq = cpu_rq(cpu); 8913 struct rq_flags rf; 8914 8915 rq_lock_irqsave(rq, &rf); 8916 if (on) { 8917 WARN_ON_ONCE(rq->balance_callback); 8918 rq->balance_callback = &balance_push_callback; 8919 } else if (rq->balance_callback == &balance_push_callback) { 8920 rq->balance_callback = NULL; 8921 } 8922 rq_unlock_irqrestore(rq, &rf); 8923 } 8924 8925 /* 8926 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8927 * inactive. All tasks which are not per CPU kernel threads are either 8928 * pushed off this CPU now via balance_push() or placed on a different CPU 8929 * during wakeup. Wait until the CPU is quiescent. 8930 */ 8931 static void balance_hotplug_wait(void) 8932 { 8933 struct rq *rq = this_rq(); 8934 8935 rcuwait_wait_event(&rq->hotplug_wait, 8936 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8937 TASK_UNINTERRUPTIBLE); 8938 } 8939 8940 #else 8941 8942 static inline void balance_push(struct rq *rq) 8943 { 8944 } 8945 8946 static inline void balance_push_set(int cpu, bool on) 8947 { 8948 } 8949 8950 static inline void balance_hotplug_wait(void) 8951 { 8952 } 8953 8954 #endif /* CONFIG_HOTPLUG_CPU */ 8955 8956 void set_rq_online(struct rq *rq) 8957 { 8958 if (!rq->online) { 8959 const struct sched_class *class; 8960 8961 cpumask_set_cpu(rq->cpu, rq->rd->online); 8962 rq->online = 1; 8963 8964 for_each_class(class) { 8965 if (class->rq_online) 8966 class->rq_online(rq); 8967 } 8968 } 8969 } 8970 8971 void set_rq_offline(struct rq *rq) 8972 { 8973 if (rq->online) { 8974 const struct sched_class *class; 8975 8976 for_each_class(class) { 8977 if (class->rq_offline) 8978 class->rq_offline(rq); 8979 } 8980 8981 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8982 rq->online = 0; 8983 } 8984 } 8985 8986 /* 8987 * used to mark begin/end of suspend/resume: 8988 */ 8989 static int num_cpus_frozen; 8990 8991 /* 8992 * Update cpusets according to cpu_active mask. If cpusets are 8993 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8994 * around partition_sched_domains(). 8995 * 8996 * If we come here as part of a suspend/resume, don't touch cpusets because we 8997 * want to restore it back to its original state upon resume anyway. 8998 */ 8999 static void cpuset_cpu_active(void) 9000 { 9001 if (cpuhp_tasks_frozen) { 9002 /* 9003 * num_cpus_frozen tracks how many CPUs are involved in suspend 9004 * resume sequence. As long as this is not the last online 9005 * operation in the resume sequence, just build a single sched 9006 * domain, ignoring cpusets. 9007 */ 9008 partition_sched_domains(1, NULL, NULL); 9009 if (--num_cpus_frozen) 9010 return; 9011 /* 9012 * This is the last CPU online operation. So fall through and 9013 * restore the original sched domains by considering the 9014 * cpuset configurations. 9015 */ 9016 cpuset_force_rebuild(); 9017 } 9018 cpuset_update_active_cpus(); 9019 } 9020 9021 static int cpuset_cpu_inactive(unsigned int cpu) 9022 { 9023 if (!cpuhp_tasks_frozen) { 9024 if (dl_cpu_busy(cpu)) 9025 return -EBUSY; 9026 cpuset_update_active_cpus(); 9027 } else { 9028 num_cpus_frozen++; 9029 partition_sched_domains(1, NULL, NULL); 9030 } 9031 return 0; 9032 } 9033 9034 int sched_cpu_activate(unsigned int cpu) 9035 { 9036 struct rq *rq = cpu_rq(cpu); 9037 struct rq_flags rf; 9038 9039 /* 9040 * Clear the balance_push callback and prepare to schedule 9041 * regular tasks. 9042 */ 9043 balance_push_set(cpu, false); 9044 9045 #ifdef CONFIG_SCHED_SMT 9046 /* 9047 * When going up, increment the number of cores with SMT present. 9048 */ 9049 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9050 static_branch_inc_cpuslocked(&sched_smt_present); 9051 #endif 9052 set_cpu_active(cpu, true); 9053 9054 if (sched_smp_initialized) { 9055 sched_update_numa(cpu, true); 9056 sched_domains_numa_masks_set(cpu); 9057 cpuset_cpu_active(); 9058 } 9059 9060 /* 9061 * Put the rq online, if not already. This happens: 9062 * 9063 * 1) In the early boot process, because we build the real domains 9064 * after all CPUs have been brought up. 9065 * 9066 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9067 * domains. 9068 */ 9069 rq_lock_irqsave(rq, &rf); 9070 if (rq->rd) { 9071 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9072 set_rq_online(rq); 9073 } 9074 rq_unlock_irqrestore(rq, &rf); 9075 9076 return 0; 9077 } 9078 9079 int sched_cpu_deactivate(unsigned int cpu) 9080 { 9081 struct rq *rq = cpu_rq(cpu); 9082 struct rq_flags rf; 9083 int ret; 9084 9085 /* 9086 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9087 * load balancing when not active 9088 */ 9089 nohz_balance_exit_idle(rq); 9090 9091 set_cpu_active(cpu, false); 9092 9093 /* 9094 * From this point forward, this CPU will refuse to run any task that 9095 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9096 * push those tasks away until this gets cleared, see 9097 * sched_cpu_dying(). 9098 */ 9099 balance_push_set(cpu, true); 9100 9101 /* 9102 * We've cleared cpu_active_mask / set balance_push, wait for all 9103 * preempt-disabled and RCU users of this state to go away such that 9104 * all new such users will observe it. 9105 * 9106 * Specifically, we rely on ttwu to no longer target this CPU, see 9107 * ttwu_queue_cond() and is_cpu_allowed(). 9108 * 9109 * Do sync before park smpboot threads to take care the rcu boost case. 9110 */ 9111 synchronize_rcu(); 9112 9113 rq_lock_irqsave(rq, &rf); 9114 if (rq->rd) { 9115 update_rq_clock(rq); 9116 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9117 set_rq_offline(rq); 9118 } 9119 rq_unlock_irqrestore(rq, &rf); 9120 9121 #ifdef CONFIG_SCHED_SMT 9122 /* 9123 * When going down, decrement the number of cores with SMT present. 9124 */ 9125 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9126 static_branch_dec_cpuslocked(&sched_smt_present); 9127 9128 sched_core_cpu_deactivate(cpu); 9129 #endif 9130 9131 if (!sched_smp_initialized) 9132 return 0; 9133 9134 sched_update_numa(cpu, false); 9135 ret = cpuset_cpu_inactive(cpu); 9136 if (ret) { 9137 balance_push_set(cpu, false); 9138 set_cpu_active(cpu, true); 9139 sched_update_numa(cpu, true); 9140 return ret; 9141 } 9142 sched_domains_numa_masks_clear(cpu); 9143 return 0; 9144 } 9145 9146 static void sched_rq_cpu_starting(unsigned int cpu) 9147 { 9148 struct rq *rq = cpu_rq(cpu); 9149 9150 rq->calc_load_update = calc_load_update; 9151 update_max_interval(); 9152 } 9153 9154 int sched_cpu_starting(unsigned int cpu) 9155 { 9156 sched_core_cpu_starting(cpu); 9157 sched_rq_cpu_starting(cpu); 9158 sched_tick_start(cpu); 9159 return 0; 9160 } 9161 9162 #ifdef CONFIG_HOTPLUG_CPU 9163 9164 /* 9165 * Invoked immediately before the stopper thread is invoked to bring the 9166 * CPU down completely. At this point all per CPU kthreads except the 9167 * hotplug thread (current) and the stopper thread (inactive) have been 9168 * either parked or have been unbound from the outgoing CPU. Ensure that 9169 * any of those which might be on the way out are gone. 9170 * 9171 * If after this point a bound task is being woken on this CPU then the 9172 * responsible hotplug callback has failed to do it's job. 9173 * sched_cpu_dying() will catch it with the appropriate fireworks. 9174 */ 9175 int sched_cpu_wait_empty(unsigned int cpu) 9176 { 9177 balance_hotplug_wait(); 9178 return 0; 9179 } 9180 9181 /* 9182 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9183 * might have. Called from the CPU stopper task after ensuring that the 9184 * stopper is the last running task on the CPU, so nr_active count is 9185 * stable. We need to take the teardown thread which is calling this into 9186 * account, so we hand in adjust = 1 to the load calculation. 9187 * 9188 * Also see the comment "Global load-average calculations". 9189 */ 9190 static void calc_load_migrate(struct rq *rq) 9191 { 9192 long delta = calc_load_fold_active(rq, 1); 9193 9194 if (delta) 9195 atomic_long_add(delta, &calc_load_tasks); 9196 } 9197 9198 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9199 { 9200 struct task_struct *g, *p; 9201 int cpu = cpu_of(rq); 9202 9203 lockdep_assert_rq_held(rq); 9204 9205 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9206 for_each_process_thread(g, p) { 9207 if (task_cpu(p) != cpu) 9208 continue; 9209 9210 if (!task_on_rq_queued(p)) 9211 continue; 9212 9213 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9214 } 9215 } 9216 9217 int sched_cpu_dying(unsigned int cpu) 9218 { 9219 struct rq *rq = cpu_rq(cpu); 9220 struct rq_flags rf; 9221 9222 /* Handle pending wakeups and then migrate everything off */ 9223 sched_tick_stop(cpu); 9224 9225 rq_lock_irqsave(rq, &rf); 9226 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9227 WARN(true, "Dying CPU not properly vacated!"); 9228 dump_rq_tasks(rq, KERN_WARNING); 9229 } 9230 rq_unlock_irqrestore(rq, &rf); 9231 9232 calc_load_migrate(rq); 9233 update_max_interval(); 9234 hrtick_clear(rq); 9235 sched_core_cpu_dying(cpu); 9236 return 0; 9237 } 9238 #endif 9239 9240 void __init sched_init_smp(void) 9241 { 9242 sched_init_numa(NUMA_NO_NODE); 9243 9244 /* 9245 * There's no userspace yet to cause hotplug operations; hence all the 9246 * CPU masks are stable and all blatant races in the below code cannot 9247 * happen. 9248 */ 9249 mutex_lock(&sched_domains_mutex); 9250 sched_init_domains(cpu_active_mask); 9251 mutex_unlock(&sched_domains_mutex); 9252 9253 /* Move init over to a non-isolated CPU */ 9254 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 9255 BUG(); 9256 current->flags &= ~PF_NO_SETAFFINITY; 9257 sched_init_granularity(); 9258 9259 init_sched_rt_class(); 9260 init_sched_dl_class(); 9261 9262 sched_smp_initialized = true; 9263 } 9264 9265 static int __init migration_init(void) 9266 { 9267 sched_cpu_starting(smp_processor_id()); 9268 return 0; 9269 } 9270 early_initcall(migration_init); 9271 9272 #else 9273 void __init sched_init_smp(void) 9274 { 9275 sched_init_granularity(); 9276 } 9277 #endif /* CONFIG_SMP */ 9278 9279 int in_sched_functions(unsigned long addr) 9280 { 9281 return in_lock_functions(addr) || 9282 (addr >= (unsigned long)__sched_text_start 9283 && addr < (unsigned long)__sched_text_end); 9284 } 9285 9286 #ifdef CONFIG_CGROUP_SCHED 9287 /* 9288 * Default task group. 9289 * Every task in system belongs to this group at bootup. 9290 */ 9291 struct task_group root_task_group; 9292 LIST_HEAD(task_groups); 9293 9294 /* Cacheline aligned slab cache for task_group */ 9295 static struct kmem_cache *task_group_cache __read_mostly; 9296 #endif 9297 9298 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 9299 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 9300 9301 void __init sched_init(void) 9302 { 9303 unsigned long ptr = 0; 9304 int i; 9305 9306 /* Make sure the linker didn't screw up */ 9307 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 9308 &fair_sched_class + 1 != &rt_sched_class || 9309 &rt_sched_class + 1 != &dl_sched_class); 9310 #ifdef CONFIG_SMP 9311 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 9312 #endif 9313 9314 wait_bit_init(); 9315 9316 #ifdef CONFIG_FAIR_GROUP_SCHED 9317 ptr += 2 * nr_cpu_ids * sizeof(void **); 9318 #endif 9319 #ifdef CONFIG_RT_GROUP_SCHED 9320 ptr += 2 * nr_cpu_ids * sizeof(void **); 9321 #endif 9322 if (ptr) { 9323 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9324 9325 #ifdef CONFIG_FAIR_GROUP_SCHED 9326 root_task_group.se = (struct sched_entity **)ptr; 9327 ptr += nr_cpu_ids * sizeof(void **); 9328 9329 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9330 ptr += nr_cpu_ids * sizeof(void **); 9331 9332 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9333 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9334 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9335 #ifdef CONFIG_RT_GROUP_SCHED 9336 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9337 ptr += nr_cpu_ids * sizeof(void **); 9338 9339 root_task_group.rt_rq = (struct rt_rq **)ptr; 9340 ptr += nr_cpu_ids * sizeof(void **); 9341 9342 #endif /* CONFIG_RT_GROUP_SCHED */ 9343 } 9344 #ifdef CONFIG_CPUMASK_OFFSTACK 9345 for_each_possible_cpu(i) { 9346 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 9347 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9348 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 9349 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9350 } 9351 #endif /* CONFIG_CPUMASK_OFFSTACK */ 9352 9353 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9354 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 9355 9356 #ifdef CONFIG_SMP 9357 init_defrootdomain(); 9358 #endif 9359 9360 #ifdef CONFIG_RT_GROUP_SCHED 9361 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9362 global_rt_period(), global_rt_runtime()); 9363 #endif /* CONFIG_RT_GROUP_SCHED */ 9364 9365 #ifdef CONFIG_CGROUP_SCHED 9366 task_group_cache = KMEM_CACHE(task_group, 0); 9367 9368 list_add(&root_task_group.list, &task_groups); 9369 INIT_LIST_HEAD(&root_task_group.children); 9370 INIT_LIST_HEAD(&root_task_group.siblings); 9371 autogroup_init(&init_task); 9372 #endif /* CONFIG_CGROUP_SCHED */ 9373 9374 for_each_possible_cpu(i) { 9375 struct rq *rq; 9376 9377 rq = cpu_rq(i); 9378 raw_spin_lock_init(&rq->__lock); 9379 rq->nr_running = 0; 9380 rq->calc_load_active = 0; 9381 rq->calc_load_update = jiffies + LOAD_FREQ; 9382 init_cfs_rq(&rq->cfs); 9383 init_rt_rq(&rq->rt); 9384 init_dl_rq(&rq->dl); 9385 #ifdef CONFIG_FAIR_GROUP_SCHED 9386 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9387 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9388 /* 9389 * How much CPU bandwidth does root_task_group get? 9390 * 9391 * In case of task-groups formed thr' the cgroup filesystem, it 9392 * gets 100% of the CPU resources in the system. This overall 9393 * system CPU resource is divided among the tasks of 9394 * root_task_group and its child task-groups in a fair manner, 9395 * based on each entity's (task or task-group's) weight 9396 * (se->load.weight). 9397 * 9398 * In other words, if root_task_group has 10 tasks of weight 9399 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9400 * then A0's share of the CPU resource is: 9401 * 9402 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9403 * 9404 * We achieve this by letting root_task_group's tasks sit 9405 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9406 */ 9407 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9408 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9409 9410 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9411 #ifdef CONFIG_RT_GROUP_SCHED 9412 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9413 #endif 9414 #ifdef CONFIG_SMP 9415 rq->sd = NULL; 9416 rq->rd = NULL; 9417 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9418 rq->balance_callback = &balance_push_callback; 9419 rq->active_balance = 0; 9420 rq->next_balance = jiffies; 9421 rq->push_cpu = 0; 9422 rq->cpu = i; 9423 rq->online = 0; 9424 rq->idle_stamp = 0; 9425 rq->avg_idle = 2*sysctl_sched_migration_cost; 9426 rq->wake_stamp = jiffies; 9427 rq->wake_avg_idle = rq->avg_idle; 9428 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9429 9430 INIT_LIST_HEAD(&rq->cfs_tasks); 9431 9432 rq_attach_root(rq, &def_root_domain); 9433 #ifdef CONFIG_NO_HZ_COMMON 9434 rq->last_blocked_load_update_tick = jiffies; 9435 atomic_set(&rq->nohz_flags, 0); 9436 9437 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9438 #endif 9439 #ifdef CONFIG_HOTPLUG_CPU 9440 rcuwait_init(&rq->hotplug_wait); 9441 #endif 9442 #endif /* CONFIG_SMP */ 9443 hrtick_rq_init(rq); 9444 atomic_set(&rq->nr_iowait, 0); 9445 9446 #ifdef CONFIG_SCHED_CORE 9447 rq->core = rq; 9448 rq->core_pick = NULL; 9449 rq->core_enabled = 0; 9450 rq->core_tree = RB_ROOT; 9451 rq->core_forceidle_count = 0; 9452 rq->core_forceidle_occupation = 0; 9453 rq->core_forceidle_start = 0; 9454 9455 rq->core_cookie = 0UL; 9456 #endif 9457 } 9458 9459 set_load_weight(&init_task, false); 9460 9461 /* 9462 * The boot idle thread does lazy MMU switching as well: 9463 */ 9464 mmgrab(&init_mm); 9465 enter_lazy_tlb(&init_mm, current); 9466 9467 /* 9468 * The idle task doesn't need the kthread struct to function, but it 9469 * is dressed up as a per-CPU kthread and thus needs to play the part 9470 * if we want to avoid special-casing it in code that deals with per-CPU 9471 * kthreads. 9472 */ 9473 WARN_ON(!set_kthread_struct(current)); 9474 9475 /* 9476 * Make us the idle thread. Technically, schedule() should not be 9477 * called from this thread, however somewhere below it might be, 9478 * but because we are the idle thread, we just pick up running again 9479 * when this runqueue becomes "idle". 9480 */ 9481 init_idle(current, smp_processor_id()); 9482 9483 calc_load_update = jiffies + LOAD_FREQ; 9484 9485 #ifdef CONFIG_SMP 9486 idle_thread_set_boot_cpu(); 9487 balance_push_set(smp_processor_id(), false); 9488 #endif 9489 init_sched_fair_class(); 9490 9491 psi_init(); 9492 9493 init_uclamp(); 9494 9495 preempt_dynamic_init(); 9496 9497 scheduler_running = 1; 9498 } 9499 9500 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9501 9502 void __might_sleep(const char *file, int line) 9503 { 9504 unsigned int state = get_current_state(); 9505 /* 9506 * Blocking primitives will set (and therefore destroy) current->state, 9507 * since we will exit with TASK_RUNNING make sure we enter with it, 9508 * otherwise we will destroy state. 9509 */ 9510 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9511 "do not call blocking ops when !TASK_RUNNING; " 9512 "state=%x set at [<%p>] %pS\n", state, 9513 (void *)current->task_state_change, 9514 (void *)current->task_state_change); 9515 9516 __might_resched(file, line, 0); 9517 } 9518 EXPORT_SYMBOL(__might_sleep); 9519 9520 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9521 { 9522 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9523 return; 9524 9525 if (preempt_count() == preempt_offset) 9526 return; 9527 9528 pr_err("Preemption disabled at:"); 9529 print_ip_sym(KERN_ERR, ip); 9530 } 9531 9532 static inline bool resched_offsets_ok(unsigned int offsets) 9533 { 9534 unsigned int nested = preempt_count(); 9535 9536 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9537 9538 return nested == offsets; 9539 } 9540 9541 void __might_resched(const char *file, int line, unsigned int offsets) 9542 { 9543 /* Ratelimiting timestamp: */ 9544 static unsigned long prev_jiffy; 9545 9546 unsigned long preempt_disable_ip; 9547 9548 /* WARN_ON_ONCE() by default, no rate limit required: */ 9549 rcu_sleep_check(); 9550 9551 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9552 !is_idle_task(current) && !current->non_block_count) || 9553 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9554 oops_in_progress) 9555 return; 9556 9557 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9558 return; 9559 prev_jiffy = jiffies; 9560 9561 /* Save this before calling printk(), since that will clobber it: */ 9562 preempt_disable_ip = get_preempt_disable_ip(current); 9563 9564 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9565 file, line); 9566 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9567 in_atomic(), irqs_disabled(), current->non_block_count, 9568 current->pid, current->comm); 9569 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9570 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9571 9572 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9573 pr_err("RCU nest depth: %d, expected: %u\n", 9574 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9575 } 9576 9577 if (task_stack_end_corrupted(current)) 9578 pr_emerg("Thread overran stack, or stack corrupted\n"); 9579 9580 debug_show_held_locks(current); 9581 if (irqs_disabled()) 9582 print_irqtrace_events(current); 9583 9584 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9585 preempt_disable_ip); 9586 9587 dump_stack(); 9588 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9589 } 9590 EXPORT_SYMBOL(__might_resched); 9591 9592 void __cant_sleep(const char *file, int line, int preempt_offset) 9593 { 9594 static unsigned long prev_jiffy; 9595 9596 if (irqs_disabled()) 9597 return; 9598 9599 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9600 return; 9601 9602 if (preempt_count() > preempt_offset) 9603 return; 9604 9605 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9606 return; 9607 prev_jiffy = jiffies; 9608 9609 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9610 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9611 in_atomic(), irqs_disabled(), 9612 current->pid, current->comm); 9613 9614 debug_show_held_locks(current); 9615 dump_stack(); 9616 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9617 } 9618 EXPORT_SYMBOL_GPL(__cant_sleep); 9619 9620 #ifdef CONFIG_SMP 9621 void __cant_migrate(const char *file, int line) 9622 { 9623 static unsigned long prev_jiffy; 9624 9625 if (irqs_disabled()) 9626 return; 9627 9628 if (is_migration_disabled(current)) 9629 return; 9630 9631 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9632 return; 9633 9634 if (preempt_count() > 0) 9635 return; 9636 9637 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9638 return; 9639 prev_jiffy = jiffies; 9640 9641 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9642 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9643 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9644 current->pid, current->comm); 9645 9646 debug_show_held_locks(current); 9647 dump_stack(); 9648 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9649 } 9650 EXPORT_SYMBOL_GPL(__cant_migrate); 9651 #endif 9652 #endif 9653 9654 #ifdef CONFIG_MAGIC_SYSRQ 9655 void normalize_rt_tasks(void) 9656 { 9657 struct task_struct *g, *p; 9658 struct sched_attr attr = { 9659 .sched_policy = SCHED_NORMAL, 9660 }; 9661 9662 read_lock(&tasklist_lock); 9663 for_each_process_thread(g, p) { 9664 /* 9665 * Only normalize user tasks: 9666 */ 9667 if (p->flags & PF_KTHREAD) 9668 continue; 9669 9670 p->se.exec_start = 0; 9671 schedstat_set(p->stats.wait_start, 0); 9672 schedstat_set(p->stats.sleep_start, 0); 9673 schedstat_set(p->stats.block_start, 0); 9674 9675 if (!dl_task(p) && !rt_task(p)) { 9676 /* 9677 * Renice negative nice level userspace 9678 * tasks back to 0: 9679 */ 9680 if (task_nice(p) < 0) 9681 set_user_nice(p, 0); 9682 continue; 9683 } 9684 9685 __sched_setscheduler(p, &attr, false, false); 9686 } 9687 read_unlock(&tasklist_lock); 9688 } 9689 9690 #endif /* CONFIG_MAGIC_SYSRQ */ 9691 9692 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9693 /* 9694 * These functions are only useful for the IA64 MCA handling, or kdb. 9695 * 9696 * They can only be called when the whole system has been 9697 * stopped - every CPU needs to be quiescent, and no scheduling 9698 * activity can take place. Using them for anything else would 9699 * be a serious bug, and as a result, they aren't even visible 9700 * under any other configuration. 9701 */ 9702 9703 /** 9704 * curr_task - return the current task for a given CPU. 9705 * @cpu: the processor in question. 9706 * 9707 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9708 * 9709 * Return: The current task for @cpu. 9710 */ 9711 struct task_struct *curr_task(int cpu) 9712 { 9713 return cpu_curr(cpu); 9714 } 9715 9716 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 9717 9718 #ifdef CONFIG_IA64 9719 /** 9720 * ia64_set_curr_task - set the current task for a given CPU. 9721 * @cpu: the processor in question. 9722 * @p: the task pointer to set. 9723 * 9724 * Description: This function must only be used when non-maskable interrupts 9725 * are serviced on a separate stack. It allows the architecture to switch the 9726 * notion of the current task on a CPU in a non-blocking manner. This function 9727 * must be called with all CPU's synchronized, and interrupts disabled, the 9728 * and caller must save the original value of the current task (see 9729 * curr_task() above) and restore that value before reenabling interrupts and 9730 * re-starting the system. 9731 * 9732 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9733 */ 9734 void ia64_set_curr_task(int cpu, struct task_struct *p) 9735 { 9736 cpu_curr(cpu) = p; 9737 } 9738 9739 #endif 9740 9741 #ifdef CONFIG_CGROUP_SCHED 9742 /* task_group_lock serializes the addition/removal of task groups */ 9743 static DEFINE_SPINLOCK(task_group_lock); 9744 9745 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9746 struct task_group *parent) 9747 { 9748 #ifdef CONFIG_UCLAMP_TASK_GROUP 9749 enum uclamp_id clamp_id; 9750 9751 for_each_clamp_id(clamp_id) { 9752 uclamp_se_set(&tg->uclamp_req[clamp_id], 9753 uclamp_none(clamp_id), false); 9754 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9755 } 9756 #endif 9757 } 9758 9759 static void sched_free_group(struct task_group *tg) 9760 { 9761 free_fair_sched_group(tg); 9762 free_rt_sched_group(tg); 9763 autogroup_free(tg); 9764 kmem_cache_free(task_group_cache, tg); 9765 } 9766 9767 static void sched_free_group_rcu(struct rcu_head *rcu) 9768 { 9769 sched_free_group(container_of(rcu, struct task_group, rcu)); 9770 } 9771 9772 static void sched_unregister_group(struct task_group *tg) 9773 { 9774 unregister_fair_sched_group(tg); 9775 unregister_rt_sched_group(tg); 9776 /* 9777 * We have to wait for yet another RCU grace period to expire, as 9778 * print_cfs_stats() might run concurrently. 9779 */ 9780 call_rcu(&tg->rcu, sched_free_group_rcu); 9781 } 9782 9783 /* allocate runqueue etc for a new task group */ 9784 struct task_group *sched_create_group(struct task_group *parent) 9785 { 9786 struct task_group *tg; 9787 9788 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9789 if (!tg) 9790 return ERR_PTR(-ENOMEM); 9791 9792 if (!alloc_fair_sched_group(tg, parent)) 9793 goto err; 9794 9795 if (!alloc_rt_sched_group(tg, parent)) 9796 goto err; 9797 9798 alloc_uclamp_sched_group(tg, parent); 9799 9800 return tg; 9801 9802 err: 9803 sched_free_group(tg); 9804 return ERR_PTR(-ENOMEM); 9805 } 9806 9807 void sched_online_group(struct task_group *tg, struct task_group *parent) 9808 { 9809 unsigned long flags; 9810 9811 spin_lock_irqsave(&task_group_lock, flags); 9812 list_add_rcu(&tg->list, &task_groups); 9813 9814 /* Root should already exist: */ 9815 WARN_ON(!parent); 9816 9817 tg->parent = parent; 9818 INIT_LIST_HEAD(&tg->children); 9819 list_add_rcu(&tg->siblings, &parent->children); 9820 spin_unlock_irqrestore(&task_group_lock, flags); 9821 9822 online_fair_sched_group(tg); 9823 } 9824 9825 /* rcu callback to free various structures associated with a task group */ 9826 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9827 { 9828 /* Now it should be safe to free those cfs_rqs: */ 9829 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9830 } 9831 9832 void sched_destroy_group(struct task_group *tg) 9833 { 9834 /* Wait for possible concurrent references to cfs_rqs complete: */ 9835 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9836 } 9837 9838 void sched_release_group(struct task_group *tg) 9839 { 9840 unsigned long flags; 9841 9842 /* 9843 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9844 * sched_cfs_period_timer()). 9845 * 9846 * For this to be effective, we have to wait for all pending users of 9847 * this task group to leave their RCU critical section to ensure no new 9848 * user will see our dying task group any more. Specifically ensure 9849 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9850 * 9851 * We therefore defer calling unregister_fair_sched_group() to 9852 * sched_unregister_group() which is guarantied to get called only after the 9853 * current RCU grace period has expired. 9854 */ 9855 spin_lock_irqsave(&task_group_lock, flags); 9856 list_del_rcu(&tg->list); 9857 list_del_rcu(&tg->siblings); 9858 spin_unlock_irqrestore(&task_group_lock, flags); 9859 } 9860 9861 static void sched_change_group(struct task_struct *tsk, int type) 9862 { 9863 struct task_group *tg; 9864 9865 /* 9866 * All callers are synchronized by task_rq_lock(); we do not use RCU 9867 * which is pointless here. Thus, we pass "true" to task_css_check() 9868 * to prevent lockdep warnings. 9869 */ 9870 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9871 struct task_group, css); 9872 tg = autogroup_task_group(tsk, tg); 9873 tsk->sched_task_group = tg; 9874 9875 #ifdef CONFIG_FAIR_GROUP_SCHED 9876 if (tsk->sched_class->task_change_group) 9877 tsk->sched_class->task_change_group(tsk, type); 9878 else 9879 #endif 9880 set_task_rq(tsk, task_cpu(tsk)); 9881 } 9882 9883 /* 9884 * Change task's runqueue when it moves between groups. 9885 * 9886 * The caller of this function should have put the task in its new group by 9887 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9888 * its new group. 9889 */ 9890 void sched_move_task(struct task_struct *tsk) 9891 { 9892 int queued, running, queue_flags = 9893 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9894 struct rq_flags rf; 9895 struct rq *rq; 9896 9897 rq = task_rq_lock(tsk, &rf); 9898 update_rq_clock(rq); 9899 9900 running = task_current(rq, tsk); 9901 queued = task_on_rq_queued(tsk); 9902 9903 if (queued) 9904 dequeue_task(rq, tsk, queue_flags); 9905 if (running) 9906 put_prev_task(rq, tsk); 9907 9908 sched_change_group(tsk, TASK_MOVE_GROUP); 9909 9910 if (queued) 9911 enqueue_task(rq, tsk, queue_flags); 9912 if (running) { 9913 set_next_task(rq, tsk); 9914 /* 9915 * After changing group, the running task may have joined a 9916 * throttled one but it's still the running task. Trigger a 9917 * resched to make sure that task can still run. 9918 */ 9919 resched_curr(rq); 9920 } 9921 9922 task_rq_unlock(rq, tsk, &rf); 9923 } 9924 9925 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 9926 { 9927 return css ? container_of(css, struct task_group, css) : NULL; 9928 } 9929 9930 static struct cgroup_subsys_state * 9931 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9932 { 9933 struct task_group *parent = css_tg(parent_css); 9934 struct task_group *tg; 9935 9936 if (!parent) { 9937 /* This is early initialization for the top cgroup */ 9938 return &root_task_group.css; 9939 } 9940 9941 tg = sched_create_group(parent); 9942 if (IS_ERR(tg)) 9943 return ERR_PTR(-ENOMEM); 9944 9945 return &tg->css; 9946 } 9947 9948 /* Expose task group only after completing cgroup initialization */ 9949 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9950 { 9951 struct task_group *tg = css_tg(css); 9952 struct task_group *parent = css_tg(css->parent); 9953 9954 if (parent) 9955 sched_online_group(tg, parent); 9956 9957 #ifdef CONFIG_UCLAMP_TASK_GROUP 9958 /* Propagate the effective uclamp value for the new group */ 9959 mutex_lock(&uclamp_mutex); 9960 rcu_read_lock(); 9961 cpu_util_update_eff(css); 9962 rcu_read_unlock(); 9963 mutex_unlock(&uclamp_mutex); 9964 #endif 9965 9966 return 0; 9967 } 9968 9969 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9970 { 9971 struct task_group *tg = css_tg(css); 9972 9973 sched_release_group(tg); 9974 } 9975 9976 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9977 { 9978 struct task_group *tg = css_tg(css); 9979 9980 /* 9981 * Relies on the RCU grace period between css_released() and this. 9982 */ 9983 sched_unregister_group(tg); 9984 } 9985 9986 /* 9987 * This is called before wake_up_new_task(), therefore we really only 9988 * have to set its group bits, all the other stuff does not apply. 9989 */ 9990 static void cpu_cgroup_fork(struct task_struct *task) 9991 { 9992 struct rq_flags rf; 9993 struct rq *rq; 9994 9995 rq = task_rq_lock(task, &rf); 9996 9997 update_rq_clock(rq); 9998 sched_change_group(task, TASK_SET_GROUP); 9999 10000 task_rq_unlock(rq, task, &rf); 10001 } 10002 10003 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10004 { 10005 struct task_struct *task; 10006 struct cgroup_subsys_state *css; 10007 int ret = 0; 10008 10009 cgroup_taskset_for_each(task, css, tset) { 10010 #ifdef CONFIG_RT_GROUP_SCHED 10011 if (!sched_rt_can_attach(css_tg(css), task)) 10012 return -EINVAL; 10013 #endif 10014 /* 10015 * Serialize against wake_up_new_task() such that if it's 10016 * running, we're sure to observe its full state. 10017 */ 10018 raw_spin_lock_irq(&task->pi_lock); 10019 /* 10020 * Avoid calling sched_move_task() before wake_up_new_task() 10021 * has happened. This would lead to problems with PELT, due to 10022 * move wanting to detach+attach while we're not attached yet. 10023 */ 10024 if (READ_ONCE(task->__state) == TASK_NEW) 10025 ret = -EINVAL; 10026 raw_spin_unlock_irq(&task->pi_lock); 10027 10028 if (ret) 10029 break; 10030 } 10031 return ret; 10032 } 10033 10034 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10035 { 10036 struct task_struct *task; 10037 struct cgroup_subsys_state *css; 10038 10039 cgroup_taskset_for_each(task, css, tset) 10040 sched_move_task(task); 10041 } 10042 10043 #ifdef CONFIG_UCLAMP_TASK_GROUP 10044 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10045 { 10046 struct cgroup_subsys_state *top_css = css; 10047 struct uclamp_se *uc_parent = NULL; 10048 struct uclamp_se *uc_se = NULL; 10049 unsigned int eff[UCLAMP_CNT]; 10050 enum uclamp_id clamp_id; 10051 unsigned int clamps; 10052 10053 lockdep_assert_held(&uclamp_mutex); 10054 SCHED_WARN_ON(!rcu_read_lock_held()); 10055 10056 css_for_each_descendant_pre(css, top_css) { 10057 uc_parent = css_tg(css)->parent 10058 ? css_tg(css)->parent->uclamp : NULL; 10059 10060 for_each_clamp_id(clamp_id) { 10061 /* Assume effective clamps matches requested clamps */ 10062 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10063 /* Cap effective clamps with parent's effective clamps */ 10064 if (uc_parent && 10065 eff[clamp_id] > uc_parent[clamp_id].value) { 10066 eff[clamp_id] = uc_parent[clamp_id].value; 10067 } 10068 } 10069 /* Ensure protection is always capped by limit */ 10070 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10071 10072 /* Propagate most restrictive effective clamps */ 10073 clamps = 0x0; 10074 uc_se = css_tg(css)->uclamp; 10075 for_each_clamp_id(clamp_id) { 10076 if (eff[clamp_id] == uc_se[clamp_id].value) 10077 continue; 10078 uc_se[clamp_id].value = eff[clamp_id]; 10079 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10080 clamps |= (0x1 << clamp_id); 10081 } 10082 if (!clamps) { 10083 css = css_rightmost_descendant(css); 10084 continue; 10085 } 10086 10087 /* Immediately update descendants RUNNABLE tasks */ 10088 uclamp_update_active_tasks(css); 10089 } 10090 } 10091 10092 /* 10093 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10094 * C expression. Since there is no way to convert a macro argument (N) into a 10095 * character constant, use two levels of macros. 10096 */ 10097 #define _POW10(exp) ((unsigned int)1e##exp) 10098 #define POW10(exp) _POW10(exp) 10099 10100 struct uclamp_request { 10101 #define UCLAMP_PERCENT_SHIFT 2 10102 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10103 s64 percent; 10104 u64 util; 10105 int ret; 10106 }; 10107 10108 static inline struct uclamp_request 10109 capacity_from_percent(char *buf) 10110 { 10111 struct uclamp_request req = { 10112 .percent = UCLAMP_PERCENT_SCALE, 10113 .util = SCHED_CAPACITY_SCALE, 10114 .ret = 0, 10115 }; 10116 10117 buf = strim(buf); 10118 if (strcmp(buf, "max")) { 10119 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10120 &req.percent); 10121 if (req.ret) 10122 return req; 10123 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10124 req.ret = -ERANGE; 10125 return req; 10126 } 10127 10128 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10129 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10130 } 10131 10132 return req; 10133 } 10134 10135 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10136 size_t nbytes, loff_t off, 10137 enum uclamp_id clamp_id) 10138 { 10139 struct uclamp_request req; 10140 struct task_group *tg; 10141 10142 req = capacity_from_percent(buf); 10143 if (req.ret) 10144 return req.ret; 10145 10146 static_branch_enable(&sched_uclamp_used); 10147 10148 mutex_lock(&uclamp_mutex); 10149 rcu_read_lock(); 10150 10151 tg = css_tg(of_css(of)); 10152 if (tg->uclamp_req[clamp_id].value != req.util) 10153 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10154 10155 /* 10156 * Because of not recoverable conversion rounding we keep track of the 10157 * exact requested value 10158 */ 10159 tg->uclamp_pct[clamp_id] = req.percent; 10160 10161 /* Update effective clamps to track the most restrictive value */ 10162 cpu_util_update_eff(of_css(of)); 10163 10164 rcu_read_unlock(); 10165 mutex_unlock(&uclamp_mutex); 10166 10167 return nbytes; 10168 } 10169 10170 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10171 char *buf, size_t nbytes, 10172 loff_t off) 10173 { 10174 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10175 } 10176 10177 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10178 char *buf, size_t nbytes, 10179 loff_t off) 10180 { 10181 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10182 } 10183 10184 static inline void cpu_uclamp_print(struct seq_file *sf, 10185 enum uclamp_id clamp_id) 10186 { 10187 struct task_group *tg; 10188 u64 util_clamp; 10189 u64 percent; 10190 u32 rem; 10191 10192 rcu_read_lock(); 10193 tg = css_tg(seq_css(sf)); 10194 util_clamp = tg->uclamp_req[clamp_id].value; 10195 rcu_read_unlock(); 10196 10197 if (util_clamp == SCHED_CAPACITY_SCALE) { 10198 seq_puts(sf, "max\n"); 10199 return; 10200 } 10201 10202 percent = tg->uclamp_pct[clamp_id]; 10203 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10204 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10205 } 10206 10207 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10208 { 10209 cpu_uclamp_print(sf, UCLAMP_MIN); 10210 return 0; 10211 } 10212 10213 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10214 { 10215 cpu_uclamp_print(sf, UCLAMP_MAX); 10216 return 0; 10217 } 10218 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10219 10220 #ifdef CONFIG_FAIR_GROUP_SCHED 10221 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10222 struct cftype *cftype, u64 shareval) 10223 { 10224 if (shareval > scale_load_down(ULONG_MAX)) 10225 shareval = MAX_SHARES; 10226 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10227 } 10228 10229 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10230 struct cftype *cft) 10231 { 10232 struct task_group *tg = css_tg(css); 10233 10234 return (u64) scale_load_down(tg->shares); 10235 } 10236 10237 #ifdef CONFIG_CFS_BANDWIDTH 10238 static DEFINE_MUTEX(cfs_constraints_mutex); 10239 10240 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10241 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10242 /* More than 203 days if BW_SHIFT equals 20. */ 10243 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10244 10245 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10246 10247 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10248 u64 burst) 10249 { 10250 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10251 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10252 10253 if (tg == &root_task_group) 10254 return -EINVAL; 10255 10256 /* 10257 * Ensure we have at some amount of bandwidth every period. This is 10258 * to prevent reaching a state of large arrears when throttled via 10259 * entity_tick() resulting in prolonged exit starvation. 10260 */ 10261 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10262 return -EINVAL; 10263 10264 /* 10265 * Likewise, bound things on the other side by preventing insane quota 10266 * periods. This also allows us to normalize in computing quota 10267 * feasibility. 10268 */ 10269 if (period > max_cfs_quota_period) 10270 return -EINVAL; 10271 10272 /* 10273 * Bound quota to defend quota against overflow during bandwidth shift. 10274 */ 10275 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10276 return -EINVAL; 10277 10278 if (quota != RUNTIME_INF && (burst > quota || 10279 burst + quota > max_cfs_runtime)) 10280 return -EINVAL; 10281 10282 /* 10283 * Prevent race between setting of cfs_rq->runtime_enabled and 10284 * unthrottle_offline_cfs_rqs(). 10285 */ 10286 cpus_read_lock(); 10287 mutex_lock(&cfs_constraints_mutex); 10288 ret = __cfs_schedulable(tg, period, quota); 10289 if (ret) 10290 goto out_unlock; 10291 10292 runtime_enabled = quota != RUNTIME_INF; 10293 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10294 /* 10295 * If we need to toggle cfs_bandwidth_used, off->on must occur 10296 * before making related changes, and on->off must occur afterwards 10297 */ 10298 if (runtime_enabled && !runtime_was_enabled) 10299 cfs_bandwidth_usage_inc(); 10300 raw_spin_lock_irq(&cfs_b->lock); 10301 cfs_b->period = ns_to_ktime(period); 10302 cfs_b->quota = quota; 10303 cfs_b->burst = burst; 10304 10305 __refill_cfs_bandwidth_runtime(cfs_b); 10306 10307 /* Restart the period timer (if active) to handle new period expiry: */ 10308 if (runtime_enabled) 10309 start_cfs_bandwidth(cfs_b); 10310 10311 raw_spin_unlock_irq(&cfs_b->lock); 10312 10313 for_each_online_cpu(i) { 10314 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10315 struct rq *rq = cfs_rq->rq; 10316 struct rq_flags rf; 10317 10318 rq_lock_irq(rq, &rf); 10319 cfs_rq->runtime_enabled = runtime_enabled; 10320 cfs_rq->runtime_remaining = 0; 10321 10322 if (cfs_rq->throttled) 10323 unthrottle_cfs_rq(cfs_rq); 10324 rq_unlock_irq(rq, &rf); 10325 } 10326 if (runtime_was_enabled && !runtime_enabled) 10327 cfs_bandwidth_usage_dec(); 10328 out_unlock: 10329 mutex_unlock(&cfs_constraints_mutex); 10330 cpus_read_unlock(); 10331 10332 return ret; 10333 } 10334 10335 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10336 { 10337 u64 quota, period, burst; 10338 10339 period = ktime_to_ns(tg->cfs_bandwidth.period); 10340 burst = tg->cfs_bandwidth.burst; 10341 if (cfs_quota_us < 0) 10342 quota = RUNTIME_INF; 10343 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10344 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10345 else 10346 return -EINVAL; 10347 10348 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10349 } 10350 10351 static long tg_get_cfs_quota(struct task_group *tg) 10352 { 10353 u64 quota_us; 10354 10355 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10356 return -1; 10357 10358 quota_us = tg->cfs_bandwidth.quota; 10359 do_div(quota_us, NSEC_PER_USEC); 10360 10361 return quota_us; 10362 } 10363 10364 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10365 { 10366 u64 quota, period, burst; 10367 10368 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10369 return -EINVAL; 10370 10371 period = (u64)cfs_period_us * NSEC_PER_USEC; 10372 quota = tg->cfs_bandwidth.quota; 10373 burst = tg->cfs_bandwidth.burst; 10374 10375 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10376 } 10377 10378 static long tg_get_cfs_period(struct task_group *tg) 10379 { 10380 u64 cfs_period_us; 10381 10382 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10383 do_div(cfs_period_us, NSEC_PER_USEC); 10384 10385 return cfs_period_us; 10386 } 10387 10388 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10389 { 10390 u64 quota, period, burst; 10391 10392 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10393 return -EINVAL; 10394 10395 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10396 period = ktime_to_ns(tg->cfs_bandwidth.period); 10397 quota = tg->cfs_bandwidth.quota; 10398 10399 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10400 } 10401 10402 static long tg_get_cfs_burst(struct task_group *tg) 10403 { 10404 u64 burst_us; 10405 10406 burst_us = tg->cfs_bandwidth.burst; 10407 do_div(burst_us, NSEC_PER_USEC); 10408 10409 return burst_us; 10410 } 10411 10412 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10413 struct cftype *cft) 10414 { 10415 return tg_get_cfs_quota(css_tg(css)); 10416 } 10417 10418 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10419 struct cftype *cftype, s64 cfs_quota_us) 10420 { 10421 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10422 } 10423 10424 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10425 struct cftype *cft) 10426 { 10427 return tg_get_cfs_period(css_tg(css)); 10428 } 10429 10430 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10431 struct cftype *cftype, u64 cfs_period_us) 10432 { 10433 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10434 } 10435 10436 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10437 struct cftype *cft) 10438 { 10439 return tg_get_cfs_burst(css_tg(css)); 10440 } 10441 10442 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10443 struct cftype *cftype, u64 cfs_burst_us) 10444 { 10445 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10446 } 10447 10448 struct cfs_schedulable_data { 10449 struct task_group *tg; 10450 u64 period, quota; 10451 }; 10452 10453 /* 10454 * normalize group quota/period to be quota/max_period 10455 * note: units are usecs 10456 */ 10457 static u64 normalize_cfs_quota(struct task_group *tg, 10458 struct cfs_schedulable_data *d) 10459 { 10460 u64 quota, period; 10461 10462 if (tg == d->tg) { 10463 period = d->period; 10464 quota = d->quota; 10465 } else { 10466 period = tg_get_cfs_period(tg); 10467 quota = tg_get_cfs_quota(tg); 10468 } 10469 10470 /* note: these should typically be equivalent */ 10471 if (quota == RUNTIME_INF || quota == -1) 10472 return RUNTIME_INF; 10473 10474 return to_ratio(period, quota); 10475 } 10476 10477 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10478 { 10479 struct cfs_schedulable_data *d = data; 10480 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10481 s64 quota = 0, parent_quota = -1; 10482 10483 if (!tg->parent) { 10484 quota = RUNTIME_INF; 10485 } else { 10486 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10487 10488 quota = normalize_cfs_quota(tg, d); 10489 parent_quota = parent_b->hierarchical_quota; 10490 10491 /* 10492 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10493 * always take the min. On cgroup1, only inherit when no 10494 * limit is set: 10495 */ 10496 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10497 quota = min(quota, parent_quota); 10498 } else { 10499 if (quota == RUNTIME_INF) 10500 quota = parent_quota; 10501 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10502 return -EINVAL; 10503 } 10504 } 10505 cfs_b->hierarchical_quota = quota; 10506 10507 return 0; 10508 } 10509 10510 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10511 { 10512 int ret; 10513 struct cfs_schedulable_data data = { 10514 .tg = tg, 10515 .period = period, 10516 .quota = quota, 10517 }; 10518 10519 if (quota != RUNTIME_INF) { 10520 do_div(data.period, NSEC_PER_USEC); 10521 do_div(data.quota, NSEC_PER_USEC); 10522 } 10523 10524 rcu_read_lock(); 10525 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10526 rcu_read_unlock(); 10527 10528 return ret; 10529 } 10530 10531 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10532 { 10533 struct task_group *tg = css_tg(seq_css(sf)); 10534 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10535 10536 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10537 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10538 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10539 10540 if (schedstat_enabled() && tg != &root_task_group) { 10541 struct sched_statistics *stats; 10542 u64 ws = 0; 10543 int i; 10544 10545 for_each_possible_cpu(i) { 10546 stats = __schedstats_from_se(tg->se[i]); 10547 ws += schedstat_val(stats->wait_sum); 10548 } 10549 10550 seq_printf(sf, "wait_sum %llu\n", ws); 10551 } 10552 10553 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10554 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10555 10556 return 0; 10557 } 10558 #endif /* CONFIG_CFS_BANDWIDTH */ 10559 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10560 10561 #ifdef CONFIG_RT_GROUP_SCHED 10562 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10563 struct cftype *cft, s64 val) 10564 { 10565 return sched_group_set_rt_runtime(css_tg(css), val); 10566 } 10567 10568 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10569 struct cftype *cft) 10570 { 10571 return sched_group_rt_runtime(css_tg(css)); 10572 } 10573 10574 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10575 struct cftype *cftype, u64 rt_period_us) 10576 { 10577 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10578 } 10579 10580 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10581 struct cftype *cft) 10582 { 10583 return sched_group_rt_period(css_tg(css)); 10584 } 10585 #endif /* CONFIG_RT_GROUP_SCHED */ 10586 10587 #ifdef CONFIG_FAIR_GROUP_SCHED 10588 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10589 struct cftype *cft) 10590 { 10591 return css_tg(css)->idle; 10592 } 10593 10594 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10595 struct cftype *cft, s64 idle) 10596 { 10597 return sched_group_set_idle(css_tg(css), idle); 10598 } 10599 #endif 10600 10601 static struct cftype cpu_legacy_files[] = { 10602 #ifdef CONFIG_FAIR_GROUP_SCHED 10603 { 10604 .name = "shares", 10605 .read_u64 = cpu_shares_read_u64, 10606 .write_u64 = cpu_shares_write_u64, 10607 }, 10608 { 10609 .name = "idle", 10610 .read_s64 = cpu_idle_read_s64, 10611 .write_s64 = cpu_idle_write_s64, 10612 }, 10613 #endif 10614 #ifdef CONFIG_CFS_BANDWIDTH 10615 { 10616 .name = "cfs_quota_us", 10617 .read_s64 = cpu_cfs_quota_read_s64, 10618 .write_s64 = cpu_cfs_quota_write_s64, 10619 }, 10620 { 10621 .name = "cfs_period_us", 10622 .read_u64 = cpu_cfs_period_read_u64, 10623 .write_u64 = cpu_cfs_period_write_u64, 10624 }, 10625 { 10626 .name = "cfs_burst_us", 10627 .read_u64 = cpu_cfs_burst_read_u64, 10628 .write_u64 = cpu_cfs_burst_write_u64, 10629 }, 10630 { 10631 .name = "stat", 10632 .seq_show = cpu_cfs_stat_show, 10633 }, 10634 #endif 10635 #ifdef CONFIG_RT_GROUP_SCHED 10636 { 10637 .name = "rt_runtime_us", 10638 .read_s64 = cpu_rt_runtime_read, 10639 .write_s64 = cpu_rt_runtime_write, 10640 }, 10641 { 10642 .name = "rt_period_us", 10643 .read_u64 = cpu_rt_period_read_uint, 10644 .write_u64 = cpu_rt_period_write_uint, 10645 }, 10646 #endif 10647 #ifdef CONFIG_UCLAMP_TASK_GROUP 10648 { 10649 .name = "uclamp.min", 10650 .flags = CFTYPE_NOT_ON_ROOT, 10651 .seq_show = cpu_uclamp_min_show, 10652 .write = cpu_uclamp_min_write, 10653 }, 10654 { 10655 .name = "uclamp.max", 10656 .flags = CFTYPE_NOT_ON_ROOT, 10657 .seq_show = cpu_uclamp_max_show, 10658 .write = cpu_uclamp_max_write, 10659 }, 10660 #endif 10661 { } /* Terminate */ 10662 }; 10663 10664 static int cpu_extra_stat_show(struct seq_file *sf, 10665 struct cgroup_subsys_state *css) 10666 { 10667 #ifdef CONFIG_CFS_BANDWIDTH 10668 { 10669 struct task_group *tg = css_tg(css); 10670 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10671 u64 throttled_usec, burst_usec; 10672 10673 throttled_usec = cfs_b->throttled_time; 10674 do_div(throttled_usec, NSEC_PER_USEC); 10675 burst_usec = cfs_b->burst_time; 10676 do_div(burst_usec, NSEC_PER_USEC); 10677 10678 seq_printf(sf, "nr_periods %d\n" 10679 "nr_throttled %d\n" 10680 "throttled_usec %llu\n" 10681 "nr_bursts %d\n" 10682 "burst_usec %llu\n", 10683 cfs_b->nr_periods, cfs_b->nr_throttled, 10684 throttled_usec, cfs_b->nr_burst, burst_usec); 10685 } 10686 #endif 10687 return 0; 10688 } 10689 10690 #ifdef CONFIG_FAIR_GROUP_SCHED 10691 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10692 struct cftype *cft) 10693 { 10694 struct task_group *tg = css_tg(css); 10695 u64 weight = scale_load_down(tg->shares); 10696 10697 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10698 } 10699 10700 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10701 struct cftype *cft, u64 weight) 10702 { 10703 /* 10704 * cgroup weight knobs should use the common MIN, DFL and MAX 10705 * values which are 1, 100 and 10000 respectively. While it loses 10706 * a bit of range on both ends, it maps pretty well onto the shares 10707 * value used by scheduler and the round-trip conversions preserve 10708 * the original value over the entire range. 10709 */ 10710 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10711 return -ERANGE; 10712 10713 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10714 10715 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10716 } 10717 10718 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10719 struct cftype *cft) 10720 { 10721 unsigned long weight = scale_load_down(css_tg(css)->shares); 10722 int last_delta = INT_MAX; 10723 int prio, delta; 10724 10725 /* find the closest nice value to the current weight */ 10726 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10727 delta = abs(sched_prio_to_weight[prio] - weight); 10728 if (delta >= last_delta) 10729 break; 10730 last_delta = delta; 10731 } 10732 10733 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10734 } 10735 10736 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10737 struct cftype *cft, s64 nice) 10738 { 10739 unsigned long weight; 10740 int idx; 10741 10742 if (nice < MIN_NICE || nice > MAX_NICE) 10743 return -ERANGE; 10744 10745 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10746 idx = array_index_nospec(idx, 40); 10747 weight = sched_prio_to_weight[idx]; 10748 10749 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10750 } 10751 #endif 10752 10753 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10754 long period, long quota) 10755 { 10756 if (quota < 0) 10757 seq_puts(sf, "max"); 10758 else 10759 seq_printf(sf, "%ld", quota); 10760 10761 seq_printf(sf, " %ld\n", period); 10762 } 10763 10764 /* caller should put the current value in *@periodp before calling */ 10765 static int __maybe_unused cpu_period_quota_parse(char *buf, 10766 u64 *periodp, u64 *quotap) 10767 { 10768 char tok[21]; /* U64_MAX */ 10769 10770 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10771 return -EINVAL; 10772 10773 *periodp *= NSEC_PER_USEC; 10774 10775 if (sscanf(tok, "%llu", quotap)) 10776 *quotap *= NSEC_PER_USEC; 10777 else if (!strcmp(tok, "max")) 10778 *quotap = RUNTIME_INF; 10779 else 10780 return -EINVAL; 10781 10782 return 0; 10783 } 10784 10785 #ifdef CONFIG_CFS_BANDWIDTH 10786 static int cpu_max_show(struct seq_file *sf, void *v) 10787 { 10788 struct task_group *tg = css_tg(seq_css(sf)); 10789 10790 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10791 return 0; 10792 } 10793 10794 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10795 char *buf, size_t nbytes, loff_t off) 10796 { 10797 struct task_group *tg = css_tg(of_css(of)); 10798 u64 period = tg_get_cfs_period(tg); 10799 u64 burst = tg_get_cfs_burst(tg); 10800 u64 quota; 10801 int ret; 10802 10803 ret = cpu_period_quota_parse(buf, &period, "a); 10804 if (!ret) 10805 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10806 return ret ?: nbytes; 10807 } 10808 #endif 10809 10810 static struct cftype cpu_files[] = { 10811 #ifdef CONFIG_FAIR_GROUP_SCHED 10812 { 10813 .name = "weight", 10814 .flags = CFTYPE_NOT_ON_ROOT, 10815 .read_u64 = cpu_weight_read_u64, 10816 .write_u64 = cpu_weight_write_u64, 10817 }, 10818 { 10819 .name = "weight.nice", 10820 .flags = CFTYPE_NOT_ON_ROOT, 10821 .read_s64 = cpu_weight_nice_read_s64, 10822 .write_s64 = cpu_weight_nice_write_s64, 10823 }, 10824 { 10825 .name = "idle", 10826 .flags = CFTYPE_NOT_ON_ROOT, 10827 .read_s64 = cpu_idle_read_s64, 10828 .write_s64 = cpu_idle_write_s64, 10829 }, 10830 #endif 10831 #ifdef CONFIG_CFS_BANDWIDTH 10832 { 10833 .name = "max", 10834 .flags = CFTYPE_NOT_ON_ROOT, 10835 .seq_show = cpu_max_show, 10836 .write = cpu_max_write, 10837 }, 10838 { 10839 .name = "max.burst", 10840 .flags = CFTYPE_NOT_ON_ROOT, 10841 .read_u64 = cpu_cfs_burst_read_u64, 10842 .write_u64 = cpu_cfs_burst_write_u64, 10843 }, 10844 #endif 10845 #ifdef CONFIG_UCLAMP_TASK_GROUP 10846 { 10847 .name = "uclamp.min", 10848 .flags = CFTYPE_NOT_ON_ROOT, 10849 .seq_show = cpu_uclamp_min_show, 10850 .write = cpu_uclamp_min_write, 10851 }, 10852 { 10853 .name = "uclamp.max", 10854 .flags = CFTYPE_NOT_ON_ROOT, 10855 .seq_show = cpu_uclamp_max_show, 10856 .write = cpu_uclamp_max_write, 10857 }, 10858 #endif 10859 { } /* terminate */ 10860 }; 10861 10862 struct cgroup_subsys cpu_cgrp_subsys = { 10863 .css_alloc = cpu_cgroup_css_alloc, 10864 .css_online = cpu_cgroup_css_online, 10865 .css_released = cpu_cgroup_css_released, 10866 .css_free = cpu_cgroup_css_free, 10867 .css_extra_stat_show = cpu_extra_stat_show, 10868 .fork = cpu_cgroup_fork, 10869 .can_attach = cpu_cgroup_can_attach, 10870 .attach = cpu_cgroup_attach, 10871 .legacy_cftypes = cpu_legacy_files, 10872 .dfl_cftypes = cpu_files, 10873 .early_init = true, 10874 .threaded = true, 10875 }; 10876 10877 #endif /* CONFIG_CGROUP_SCHED */ 10878 10879 void dump_cpu_task(int cpu) 10880 { 10881 pr_info("Task dump for CPU %d:\n", cpu); 10882 sched_show_task(cpu_curr(cpu)); 10883 } 10884 10885 /* 10886 * Nice levels are multiplicative, with a gentle 10% change for every 10887 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10888 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10889 * that remained on nice 0. 10890 * 10891 * The "10% effect" is relative and cumulative: from _any_ nice level, 10892 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10893 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10894 * If a task goes up by ~10% and another task goes down by ~10% then 10895 * the relative distance between them is ~25%.) 10896 */ 10897 const int sched_prio_to_weight[40] = { 10898 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10899 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10900 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10901 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10902 /* 0 */ 1024, 820, 655, 526, 423, 10903 /* 5 */ 335, 272, 215, 172, 137, 10904 /* 10 */ 110, 87, 70, 56, 45, 10905 /* 15 */ 36, 29, 23, 18, 15, 10906 }; 10907 10908 /* 10909 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 10910 * 10911 * In cases where the weight does not change often, we can use the 10912 * precalculated inverse to speed up arithmetics by turning divisions 10913 * into multiplications: 10914 */ 10915 const u32 sched_prio_to_wmult[40] = { 10916 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10917 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10918 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10919 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10920 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10921 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10922 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10923 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10924 }; 10925 10926 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10927 { 10928 trace_sched_update_nr_running_tp(rq, count); 10929 } 10930