xref: /openbmc/linux/kernel/sched/core.c (revision 0fb3978b0aac3a5c08637aed03cc2d65f793508f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 #include <linux/blkdev.h>
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
45 
46 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
47 
48 #ifdef CONFIG_SCHED_DEBUG
49 /*
50  * Debugging: various feature bits
51  *
52  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
53  * sysctl_sched_features, defined in sched.h, to allow constants propagation
54  * at compile time and compiler optimization based on features default.
55  */
56 #define SCHED_FEAT(name, enabled)	\
57 	(1UL << __SCHED_FEAT_##name) * enabled |
58 const_debug unsigned int sysctl_sched_features =
59 #include "features.h"
60 	0;
61 #undef SCHED_FEAT
62 
63 /*
64  * Print a warning if need_resched is set for the given duration (if
65  * LATENCY_WARN is enabled).
66  *
67  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
68  * per boot.
69  */
70 __read_mostly int sysctl_resched_latency_warn_ms = 100;
71 __read_mostly int sysctl_resched_latency_warn_once = 1;
72 #endif /* CONFIG_SCHED_DEBUG */
73 
74 /*
75  * Number of tasks to iterate in a single balance run.
76  * Limited because this is done with IRQs disabled.
77  */
78 #ifdef CONFIG_PREEMPT_RT
79 const_debug unsigned int sysctl_sched_nr_migrate = 8;
80 #else
81 const_debug unsigned int sysctl_sched_nr_migrate = 32;
82 #endif
83 
84 /*
85  * period over which we measure -rt task CPU usage in us.
86  * default: 1s
87  */
88 unsigned int sysctl_sched_rt_period = 1000000;
89 
90 __read_mostly int scheduler_running;
91 
92 #ifdef CONFIG_SCHED_CORE
93 
94 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
95 
96 /* kernel prio, less is more */
97 static inline int __task_prio(struct task_struct *p)
98 {
99 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
100 		return -2;
101 
102 	if (rt_prio(p->prio)) /* includes deadline */
103 		return p->prio; /* [-1, 99] */
104 
105 	if (p->sched_class == &idle_sched_class)
106 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
107 
108 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
109 }
110 
111 /*
112  * l(a,b)
113  * le(a,b) := !l(b,a)
114  * g(a,b)  := l(b,a)
115  * ge(a,b) := !l(a,b)
116  */
117 
118 /* real prio, less is less */
119 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
120 {
121 
122 	int pa = __task_prio(a), pb = __task_prio(b);
123 
124 	if (-pa < -pb)
125 		return true;
126 
127 	if (-pb < -pa)
128 		return false;
129 
130 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
131 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
132 
133 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
134 		return cfs_prio_less(a, b, in_fi);
135 
136 	return false;
137 }
138 
139 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
140 {
141 	if (a->core_cookie < b->core_cookie)
142 		return true;
143 
144 	if (a->core_cookie > b->core_cookie)
145 		return false;
146 
147 	/* flip prio, so high prio is leftmost */
148 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
149 		return true;
150 
151 	return false;
152 }
153 
154 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
155 
156 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
157 {
158 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
159 }
160 
161 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
162 {
163 	const struct task_struct *p = __node_2_sc(node);
164 	unsigned long cookie = (unsigned long)key;
165 
166 	if (cookie < p->core_cookie)
167 		return -1;
168 
169 	if (cookie > p->core_cookie)
170 		return 1;
171 
172 	return 0;
173 }
174 
175 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
176 {
177 	rq->core->core_task_seq++;
178 
179 	if (!p->core_cookie)
180 		return;
181 
182 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
183 }
184 
185 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
186 {
187 	rq->core->core_task_seq++;
188 
189 	if (sched_core_enqueued(p)) {
190 		rb_erase(&p->core_node, &rq->core_tree);
191 		RB_CLEAR_NODE(&p->core_node);
192 	}
193 
194 	/*
195 	 * Migrating the last task off the cpu, with the cpu in forced idle
196 	 * state. Reschedule to create an accounting edge for forced idle,
197 	 * and re-examine whether the core is still in forced idle state.
198 	 */
199 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
200 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
201 		resched_curr(rq);
202 }
203 
204 /*
205  * Find left-most (aka, highest priority) task matching @cookie.
206  */
207 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
208 {
209 	struct rb_node *node;
210 
211 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
212 	/*
213 	 * The idle task always matches any cookie!
214 	 */
215 	if (!node)
216 		return idle_sched_class.pick_task(rq);
217 
218 	return __node_2_sc(node);
219 }
220 
221 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
222 {
223 	struct rb_node *node = &p->core_node;
224 
225 	node = rb_next(node);
226 	if (!node)
227 		return NULL;
228 
229 	p = container_of(node, struct task_struct, core_node);
230 	if (p->core_cookie != cookie)
231 		return NULL;
232 
233 	return p;
234 }
235 
236 /*
237  * Magic required such that:
238  *
239  *	raw_spin_rq_lock(rq);
240  *	...
241  *	raw_spin_rq_unlock(rq);
242  *
243  * ends up locking and unlocking the _same_ lock, and all CPUs
244  * always agree on what rq has what lock.
245  *
246  * XXX entirely possible to selectively enable cores, don't bother for now.
247  */
248 
249 static DEFINE_MUTEX(sched_core_mutex);
250 static atomic_t sched_core_count;
251 static struct cpumask sched_core_mask;
252 
253 static void sched_core_lock(int cpu, unsigned long *flags)
254 {
255 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
256 	int t, i = 0;
257 
258 	local_irq_save(*flags);
259 	for_each_cpu(t, smt_mask)
260 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
261 }
262 
263 static void sched_core_unlock(int cpu, unsigned long *flags)
264 {
265 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
266 	int t;
267 
268 	for_each_cpu(t, smt_mask)
269 		raw_spin_unlock(&cpu_rq(t)->__lock);
270 	local_irq_restore(*flags);
271 }
272 
273 static void __sched_core_flip(bool enabled)
274 {
275 	unsigned long flags;
276 	int cpu, t;
277 
278 	cpus_read_lock();
279 
280 	/*
281 	 * Toggle the online cores, one by one.
282 	 */
283 	cpumask_copy(&sched_core_mask, cpu_online_mask);
284 	for_each_cpu(cpu, &sched_core_mask) {
285 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
286 
287 		sched_core_lock(cpu, &flags);
288 
289 		for_each_cpu(t, smt_mask)
290 			cpu_rq(t)->core_enabled = enabled;
291 
292 		cpu_rq(cpu)->core->core_forceidle_start = 0;
293 
294 		sched_core_unlock(cpu, &flags);
295 
296 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
297 	}
298 
299 	/*
300 	 * Toggle the offline CPUs.
301 	 */
302 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
303 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
304 
305 	for_each_cpu(cpu, &sched_core_mask)
306 		cpu_rq(cpu)->core_enabled = enabled;
307 
308 	cpus_read_unlock();
309 }
310 
311 static void sched_core_assert_empty(void)
312 {
313 	int cpu;
314 
315 	for_each_possible_cpu(cpu)
316 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
317 }
318 
319 static void __sched_core_enable(void)
320 {
321 	static_branch_enable(&__sched_core_enabled);
322 	/*
323 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
324 	 * and future ones will observe !sched_core_disabled().
325 	 */
326 	synchronize_rcu();
327 	__sched_core_flip(true);
328 	sched_core_assert_empty();
329 }
330 
331 static void __sched_core_disable(void)
332 {
333 	sched_core_assert_empty();
334 	__sched_core_flip(false);
335 	static_branch_disable(&__sched_core_enabled);
336 }
337 
338 void sched_core_get(void)
339 {
340 	if (atomic_inc_not_zero(&sched_core_count))
341 		return;
342 
343 	mutex_lock(&sched_core_mutex);
344 	if (!atomic_read(&sched_core_count))
345 		__sched_core_enable();
346 
347 	smp_mb__before_atomic();
348 	atomic_inc(&sched_core_count);
349 	mutex_unlock(&sched_core_mutex);
350 }
351 
352 static void __sched_core_put(struct work_struct *work)
353 {
354 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
355 		__sched_core_disable();
356 		mutex_unlock(&sched_core_mutex);
357 	}
358 }
359 
360 void sched_core_put(void)
361 {
362 	static DECLARE_WORK(_work, __sched_core_put);
363 
364 	/*
365 	 * "There can be only one"
366 	 *
367 	 * Either this is the last one, or we don't actually need to do any
368 	 * 'work'. If it is the last *again*, we rely on
369 	 * WORK_STRUCT_PENDING_BIT.
370 	 */
371 	if (!atomic_add_unless(&sched_core_count, -1, 1))
372 		schedule_work(&_work);
373 }
374 
375 #else /* !CONFIG_SCHED_CORE */
376 
377 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
378 static inline void
379 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
380 
381 #endif /* CONFIG_SCHED_CORE */
382 
383 /*
384  * part of the period that we allow rt tasks to run in us.
385  * default: 0.95s
386  */
387 int sysctl_sched_rt_runtime = 950000;
388 
389 
390 /*
391  * Serialization rules:
392  *
393  * Lock order:
394  *
395  *   p->pi_lock
396  *     rq->lock
397  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
398  *
399  *  rq1->lock
400  *    rq2->lock  where: rq1 < rq2
401  *
402  * Regular state:
403  *
404  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
405  * local CPU's rq->lock, it optionally removes the task from the runqueue and
406  * always looks at the local rq data structures to find the most eligible task
407  * to run next.
408  *
409  * Task enqueue is also under rq->lock, possibly taken from another CPU.
410  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
411  * the local CPU to avoid bouncing the runqueue state around [ see
412  * ttwu_queue_wakelist() ]
413  *
414  * Task wakeup, specifically wakeups that involve migration, are horribly
415  * complicated to avoid having to take two rq->locks.
416  *
417  * Special state:
418  *
419  * System-calls and anything external will use task_rq_lock() which acquires
420  * both p->pi_lock and rq->lock. As a consequence the state they change is
421  * stable while holding either lock:
422  *
423  *  - sched_setaffinity()/
424  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
425  *  - set_user_nice():		p->se.load, p->*prio
426  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
427  *				p->se.load, p->rt_priority,
428  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
429  *  - sched_setnuma():		p->numa_preferred_nid
430  *  - sched_move_task()/
431  *    cpu_cgroup_fork():	p->sched_task_group
432  *  - uclamp_update_active()	p->uclamp*
433  *
434  * p->state <- TASK_*:
435  *
436  *   is changed locklessly using set_current_state(), __set_current_state() or
437  *   set_special_state(), see their respective comments, or by
438  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
439  *   concurrent self.
440  *
441  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
442  *
443  *   is set by activate_task() and cleared by deactivate_task(), under
444  *   rq->lock. Non-zero indicates the task is runnable, the special
445  *   ON_RQ_MIGRATING state is used for migration without holding both
446  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
447  *
448  * p->on_cpu <- { 0, 1 }:
449  *
450  *   is set by prepare_task() and cleared by finish_task() such that it will be
451  *   set before p is scheduled-in and cleared after p is scheduled-out, both
452  *   under rq->lock. Non-zero indicates the task is running on its CPU.
453  *
454  *   [ The astute reader will observe that it is possible for two tasks on one
455  *     CPU to have ->on_cpu = 1 at the same time. ]
456  *
457  * task_cpu(p): is changed by set_task_cpu(), the rules are:
458  *
459  *  - Don't call set_task_cpu() on a blocked task:
460  *
461  *    We don't care what CPU we're not running on, this simplifies hotplug,
462  *    the CPU assignment of blocked tasks isn't required to be valid.
463  *
464  *  - for try_to_wake_up(), called under p->pi_lock:
465  *
466  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
467  *
468  *  - for migration called under rq->lock:
469  *    [ see task_on_rq_migrating() in task_rq_lock() ]
470  *
471  *    o move_queued_task()
472  *    o detach_task()
473  *
474  *  - for migration called under double_rq_lock():
475  *
476  *    o __migrate_swap_task()
477  *    o push_rt_task() / pull_rt_task()
478  *    o push_dl_task() / pull_dl_task()
479  *    o dl_task_offline_migration()
480  *
481  */
482 
483 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
484 {
485 	raw_spinlock_t *lock;
486 
487 	/* Matches synchronize_rcu() in __sched_core_enable() */
488 	preempt_disable();
489 	if (sched_core_disabled()) {
490 		raw_spin_lock_nested(&rq->__lock, subclass);
491 		/* preempt_count *MUST* be > 1 */
492 		preempt_enable_no_resched();
493 		return;
494 	}
495 
496 	for (;;) {
497 		lock = __rq_lockp(rq);
498 		raw_spin_lock_nested(lock, subclass);
499 		if (likely(lock == __rq_lockp(rq))) {
500 			/* preempt_count *MUST* be > 1 */
501 			preempt_enable_no_resched();
502 			return;
503 		}
504 		raw_spin_unlock(lock);
505 	}
506 }
507 
508 bool raw_spin_rq_trylock(struct rq *rq)
509 {
510 	raw_spinlock_t *lock;
511 	bool ret;
512 
513 	/* Matches synchronize_rcu() in __sched_core_enable() */
514 	preempt_disable();
515 	if (sched_core_disabled()) {
516 		ret = raw_spin_trylock(&rq->__lock);
517 		preempt_enable();
518 		return ret;
519 	}
520 
521 	for (;;) {
522 		lock = __rq_lockp(rq);
523 		ret = raw_spin_trylock(lock);
524 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
525 			preempt_enable();
526 			return ret;
527 		}
528 		raw_spin_unlock(lock);
529 	}
530 }
531 
532 void raw_spin_rq_unlock(struct rq *rq)
533 {
534 	raw_spin_unlock(rq_lockp(rq));
535 }
536 
537 #ifdef CONFIG_SMP
538 /*
539  * double_rq_lock - safely lock two runqueues
540  */
541 void double_rq_lock(struct rq *rq1, struct rq *rq2)
542 {
543 	lockdep_assert_irqs_disabled();
544 
545 	if (rq_order_less(rq2, rq1))
546 		swap(rq1, rq2);
547 
548 	raw_spin_rq_lock(rq1);
549 	if (__rq_lockp(rq1) == __rq_lockp(rq2))
550 		return;
551 
552 	raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
553 }
554 #endif
555 
556 /*
557  * __task_rq_lock - lock the rq @p resides on.
558  */
559 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
560 	__acquires(rq->lock)
561 {
562 	struct rq *rq;
563 
564 	lockdep_assert_held(&p->pi_lock);
565 
566 	for (;;) {
567 		rq = task_rq(p);
568 		raw_spin_rq_lock(rq);
569 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
570 			rq_pin_lock(rq, rf);
571 			return rq;
572 		}
573 		raw_spin_rq_unlock(rq);
574 
575 		while (unlikely(task_on_rq_migrating(p)))
576 			cpu_relax();
577 	}
578 }
579 
580 /*
581  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
582  */
583 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
584 	__acquires(p->pi_lock)
585 	__acquires(rq->lock)
586 {
587 	struct rq *rq;
588 
589 	for (;;) {
590 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
591 		rq = task_rq(p);
592 		raw_spin_rq_lock(rq);
593 		/*
594 		 *	move_queued_task()		task_rq_lock()
595 		 *
596 		 *	ACQUIRE (rq->lock)
597 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
598 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
599 		 *	[S] ->cpu = new_cpu		[L] task_rq()
600 		 *					[L] ->on_rq
601 		 *	RELEASE (rq->lock)
602 		 *
603 		 * If we observe the old CPU in task_rq_lock(), the acquire of
604 		 * the old rq->lock will fully serialize against the stores.
605 		 *
606 		 * If we observe the new CPU in task_rq_lock(), the address
607 		 * dependency headed by '[L] rq = task_rq()' and the acquire
608 		 * will pair with the WMB to ensure we then also see migrating.
609 		 */
610 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
611 			rq_pin_lock(rq, rf);
612 			return rq;
613 		}
614 		raw_spin_rq_unlock(rq);
615 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
616 
617 		while (unlikely(task_on_rq_migrating(p)))
618 			cpu_relax();
619 	}
620 }
621 
622 /*
623  * RQ-clock updating methods:
624  */
625 
626 static void update_rq_clock_task(struct rq *rq, s64 delta)
627 {
628 /*
629  * In theory, the compile should just see 0 here, and optimize out the call
630  * to sched_rt_avg_update. But I don't trust it...
631  */
632 	s64 __maybe_unused steal = 0, irq_delta = 0;
633 
634 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
635 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
636 
637 	/*
638 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
639 	 * this case when a previous update_rq_clock() happened inside a
640 	 * {soft,}irq region.
641 	 *
642 	 * When this happens, we stop ->clock_task and only update the
643 	 * prev_irq_time stamp to account for the part that fit, so that a next
644 	 * update will consume the rest. This ensures ->clock_task is
645 	 * monotonic.
646 	 *
647 	 * It does however cause some slight miss-attribution of {soft,}irq
648 	 * time, a more accurate solution would be to update the irq_time using
649 	 * the current rq->clock timestamp, except that would require using
650 	 * atomic ops.
651 	 */
652 	if (irq_delta > delta)
653 		irq_delta = delta;
654 
655 	rq->prev_irq_time += irq_delta;
656 	delta -= irq_delta;
657 #endif
658 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
659 	if (static_key_false((&paravirt_steal_rq_enabled))) {
660 		steal = paravirt_steal_clock(cpu_of(rq));
661 		steal -= rq->prev_steal_time_rq;
662 
663 		if (unlikely(steal > delta))
664 			steal = delta;
665 
666 		rq->prev_steal_time_rq += steal;
667 		delta -= steal;
668 	}
669 #endif
670 
671 	rq->clock_task += delta;
672 
673 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
674 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
675 		update_irq_load_avg(rq, irq_delta + steal);
676 #endif
677 	update_rq_clock_pelt(rq, delta);
678 }
679 
680 void update_rq_clock(struct rq *rq)
681 {
682 	s64 delta;
683 
684 	lockdep_assert_rq_held(rq);
685 
686 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
687 		return;
688 
689 #ifdef CONFIG_SCHED_DEBUG
690 	if (sched_feat(WARN_DOUBLE_CLOCK))
691 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
692 	rq->clock_update_flags |= RQCF_UPDATED;
693 #endif
694 
695 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
696 	if (delta < 0)
697 		return;
698 	rq->clock += delta;
699 	update_rq_clock_task(rq, delta);
700 }
701 
702 #ifdef CONFIG_SCHED_HRTICK
703 /*
704  * Use HR-timers to deliver accurate preemption points.
705  */
706 
707 static void hrtick_clear(struct rq *rq)
708 {
709 	if (hrtimer_active(&rq->hrtick_timer))
710 		hrtimer_cancel(&rq->hrtick_timer);
711 }
712 
713 /*
714  * High-resolution timer tick.
715  * Runs from hardirq context with interrupts disabled.
716  */
717 static enum hrtimer_restart hrtick(struct hrtimer *timer)
718 {
719 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
720 	struct rq_flags rf;
721 
722 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
723 
724 	rq_lock(rq, &rf);
725 	update_rq_clock(rq);
726 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
727 	rq_unlock(rq, &rf);
728 
729 	return HRTIMER_NORESTART;
730 }
731 
732 #ifdef CONFIG_SMP
733 
734 static void __hrtick_restart(struct rq *rq)
735 {
736 	struct hrtimer *timer = &rq->hrtick_timer;
737 	ktime_t time = rq->hrtick_time;
738 
739 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
740 }
741 
742 /*
743  * called from hardirq (IPI) context
744  */
745 static void __hrtick_start(void *arg)
746 {
747 	struct rq *rq = arg;
748 	struct rq_flags rf;
749 
750 	rq_lock(rq, &rf);
751 	__hrtick_restart(rq);
752 	rq_unlock(rq, &rf);
753 }
754 
755 /*
756  * Called to set the hrtick timer state.
757  *
758  * called with rq->lock held and irqs disabled
759  */
760 void hrtick_start(struct rq *rq, u64 delay)
761 {
762 	struct hrtimer *timer = &rq->hrtick_timer;
763 	s64 delta;
764 
765 	/*
766 	 * Don't schedule slices shorter than 10000ns, that just
767 	 * doesn't make sense and can cause timer DoS.
768 	 */
769 	delta = max_t(s64, delay, 10000LL);
770 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
771 
772 	if (rq == this_rq())
773 		__hrtick_restart(rq);
774 	else
775 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
776 }
777 
778 #else
779 /*
780  * Called to set the hrtick timer state.
781  *
782  * called with rq->lock held and irqs disabled
783  */
784 void hrtick_start(struct rq *rq, u64 delay)
785 {
786 	/*
787 	 * Don't schedule slices shorter than 10000ns, that just
788 	 * doesn't make sense. Rely on vruntime for fairness.
789 	 */
790 	delay = max_t(u64, delay, 10000LL);
791 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
792 		      HRTIMER_MODE_REL_PINNED_HARD);
793 }
794 
795 #endif /* CONFIG_SMP */
796 
797 static void hrtick_rq_init(struct rq *rq)
798 {
799 #ifdef CONFIG_SMP
800 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
801 #endif
802 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
803 	rq->hrtick_timer.function = hrtick;
804 }
805 #else	/* CONFIG_SCHED_HRTICK */
806 static inline void hrtick_clear(struct rq *rq)
807 {
808 }
809 
810 static inline void hrtick_rq_init(struct rq *rq)
811 {
812 }
813 #endif	/* CONFIG_SCHED_HRTICK */
814 
815 /*
816  * cmpxchg based fetch_or, macro so it works for different integer types
817  */
818 #define fetch_or(ptr, mask)						\
819 	({								\
820 		typeof(ptr) _ptr = (ptr);				\
821 		typeof(mask) _mask = (mask);				\
822 		typeof(*_ptr) _old, _val = *_ptr;			\
823 									\
824 		for (;;) {						\
825 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
826 			if (_old == _val)				\
827 				break;					\
828 			_val = _old;					\
829 		}							\
830 	_old;								\
831 })
832 
833 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
834 /*
835  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
836  * this avoids any races wrt polling state changes and thereby avoids
837  * spurious IPIs.
838  */
839 static bool set_nr_and_not_polling(struct task_struct *p)
840 {
841 	struct thread_info *ti = task_thread_info(p);
842 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
843 }
844 
845 /*
846  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
847  *
848  * If this returns true, then the idle task promises to call
849  * sched_ttwu_pending() and reschedule soon.
850  */
851 static bool set_nr_if_polling(struct task_struct *p)
852 {
853 	struct thread_info *ti = task_thread_info(p);
854 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
855 
856 	for (;;) {
857 		if (!(val & _TIF_POLLING_NRFLAG))
858 			return false;
859 		if (val & _TIF_NEED_RESCHED)
860 			return true;
861 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
862 		if (old == val)
863 			break;
864 		val = old;
865 	}
866 	return true;
867 }
868 
869 #else
870 static bool set_nr_and_not_polling(struct task_struct *p)
871 {
872 	set_tsk_need_resched(p);
873 	return true;
874 }
875 
876 #ifdef CONFIG_SMP
877 static bool set_nr_if_polling(struct task_struct *p)
878 {
879 	return false;
880 }
881 #endif
882 #endif
883 
884 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
885 {
886 	struct wake_q_node *node = &task->wake_q;
887 
888 	/*
889 	 * Atomically grab the task, if ->wake_q is !nil already it means
890 	 * it's already queued (either by us or someone else) and will get the
891 	 * wakeup due to that.
892 	 *
893 	 * In order to ensure that a pending wakeup will observe our pending
894 	 * state, even in the failed case, an explicit smp_mb() must be used.
895 	 */
896 	smp_mb__before_atomic();
897 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
898 		return false;
899 
900 	/*
901 	 * The head is context local, there can be no concurrency.
902 	 */
903 	*head->lastp = node;
904 	head->lastp = &node->next;
905 	return true;
906 }
907 
908 /**
909  * wake_q_add() - queue a wakeup for 'later' waking.
910  * @head: the wake_q_head to add @task to
911  * @task: the task to queue for 'later' wakeup
912  *
913  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
914  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
915  * instantly.
916  *
917  * This function must be used as-if it were wake_up_process(); IOW the task
918  * must be ready to be woken at this location.
919  */
920 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
921 {
922 	if (__wake_q_add(head, task))
923 		get_task_struct(task);
924 }
925 
926 /**
927  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
928  * @head: the wake_q_head to add @task to
929  * @task: the task to queue for 'later' wakeup
930  *
931  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
932  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
933  * instantly.
934  *
935  * This function must be used as-if it were wake_up_process(); IOW the task
936  * must be ready to be woken at this location.
937  *
938  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
939  * that already hold reference to @task can call the 'safe' version and trust
940  * wake_q to do the right thing depending whether or not the @task is already
941  * queued for wakeup.
942  */
943 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
944 {
945 	if (!__wake_q_add(head, task))
946 		put_task_struct(task);
947 }
948 
949 void wake_up_q(struct wake_q_head *head)
950 {
951 	struct wake_q_node *node = head->first;
952 
953 	while (node != WAKE_Q_TAIL) {
954 		struct task_struct *task;
955 
956 		task = container_of(node, struct task_struct, wake_q);
957 		/* Task can safely be re-inserted now: */
958 		node = node->next;
959 		task->wake_q.next = NULL;
960 
961 		/*
962 		 * wake_up_process() executes a full barrier, which pairs with
963 		 * the queueing in wake_q_add() so as not to miss wakeups.
964 		 */
965 		wake_up_process(task);
966 		put_task_struct(task);
967 	}
968 }
969 
970 /*
971  * resched_curr - mark rq's current task 'to be rescheduled now'.
972  *
973  * On UP this means the setting of the need_resched flag, on SMP it
974  * might also involve a cross-CPU call to trigger the scheduler on
975  * the target CPU.
976  */
977 void resched_curr(struct rq *rq)
978 {
979 	struct task_struct *curr = rq->curr;
980 	int cpu;
981 
982 	lockdep_assert_rq_held(rq);
983 
984 	if (test_tsk_need_resched(curr))
985 		return;
986 
987 	cpu = cpu_of(rq);
988 
989 	if (cpu == smp_processor_id()) {
990 		set_tsk_need_resched(curr);
991 		set_preempt_need_resched();
992 		return;
993 	}
994 
995 	if (set_nr_and_not_polling(curr))
996 		smp_send_reschedule(cpu);
997 	else
998 		trace_sched_wake_idle_without_ipi(cpu);
999 }
1000 
1001 void resched_cpu(int cpu)
1002 {
1003 	struct rq *rq = cpu_rq(cpu);
1004 	unsigned long flags;
1005 
1006 	raw_spin_rq_lock_irqsave(rq, flags);
1007 	if (cpu_online(cpu) || cpu == smp_processor_id())
1008 		resched_curr(rq);
1009 	raw_spin_rq_unlock_irqrestore(rq, flags);
1010 }
1011 
1012 #ifdef CONFIG_SMP
1013 #ifdef CONFIG_NO_HZ_COMMON
1014 /*
1015  * In the semi idle case, use the nearest busy CPU for migrating timers
1016  * from an idle CPU.  This is good for power-savings.
1017  *
1018  * We don't do similar optimization for completely idle system, as
1019  * selecting an idle CPU will add more delays to the timers than intended
1020  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1021  */
1022 int get_nohz_timer_target(void)
1023 {
1024 	int i, cpu = smp_processor_id(), default_cpu = -1;
1025 	struct sched_domain *sd;
1026 	const struct cpumask *hk_mask;
1027 
1028 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1029 		if (!idle_cpu(cpu))
1030 			return cpu;
1031 		default_cpu = cpu;
1032 	}
1033 
1034 	hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1035 
1036 	rcu_read_lock();
1037 	for_each_domain(cpu, sd) {
1038 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1039 			if (cpu == i)
1040 				continue;
1041 
1042 			if (!idle_cpu(i)) {
1043 				cpu = i;
1044 				goto unlock;
1045 			}
1046 		}
1047 	}
1048 
1049 	if (default_cpu == -1)
1050 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1051 	cpu = default_cpu;
1052 unlock:
1053 	rcu_read_unlock();
1054 	return cpu;
1055 }
1056 
1057 /*
1058  * When add_timer_on() enqueues a timer into the timer wheel of an
1059  * idle CPU then this timer might expire before the next timer event
1060  * which is scheduled to wake up that CPU. In case of a completely
1061  * idle system the next event might even be infinite time into the
1062  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1063  * leaves the inner idle loop so the newly added timer is taken into
1064  * account when the CPU goes back to idle and evaluates the timer
1065  * wheel for the next timer event.
1066  */
1067 static void wake_up_idle_cpu(int cpu)
1068 {
1069 	struct rq *rq = cpu_rq(cpu);
1070 
1071 	if (cpu == smp_processor_id())
1072 		return;
1073 
1074 	if (set_nr_and_not_polling(rq->idle))
1075 		smp_send_reschedule(cpu);
1076 	else
1077 		trace_sched_wake_idle_without_ipi(cpu);
1078 }
1079 
1080 static bool wake_up_full_nohz_cpu(int cpu)
1081 {
1082 	/*
1083 	 * We just need the target to call irq_exit() and re-evaluate
1084 	 * the next tick. The nohz full kick at least implies that.
1085 	 * If needed we can still optimize that later with an
1086 	 * empty IRQ.
1087 	 */
1088 	if (cpu_is_offline(cpu))
1089 		return true;  /* Don't try to wake offline CPUs. */
1090 	if (tick_nohz_full_cpu(cpu)) {
1091 		if (cpu != smp_processor_id() ||
1092 		    tick_nohz_tick_stopped())
1093 			tick_nohz_full_kick_cpu(cpu);
1094 		return true;
1095 	}
1096 
1097 	return false;
1098 }
1099 
1100 /*
1101  * Wake up the specified CPU.  If the CPU is going offline, it is the
1102  * caller's responsibility to deal with the lost wakeup, for example,
1103  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1104  */
1105 void wake_up_nohz_cpu(int cpu)
1106 {
1107 	if (!wake_up_full_nohz_cpu(cpu))
1108 		wake_up_idle_cpu(cpu);
1109 }
1110 
1111 static void nohz_csd_func(void *info)
1112 {
1113 	struct rq *rq = info;
1114 	int cpu = cpu_of(rq);
1115 	unsigned int flags;
1116 
1117 	/*
1118 	 * Release the rq::nohz_csd.
1119 	 */
1120 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1121 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1122 
1123 	rq->idle_balance = idle_cpu(cpu);
1124 	if (rq->idle_balance && !need_resched()) {
1125 		rq->nohz_idle_balance = flags;
1126 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1127 	}
1128 }
1129 
1130 #endif /* CONFIG_NO_HZ_COMMON */
1131 
1132 #ifdef CONFIG_NO_HZ_FULL
1133 bool sched_can_stop_tick(struct rq *rq)
1134 {
1135 	int fifo_nr_running;
1136 
1137 	/* Deadline tasks, even if single, need the tick */
1138 	if (rq->dl.dl_nr_running)
1139 		return false;
1140 
1141 	/*
1142 	 * If there are more than one RR tasks, we need the tick to affect the
1143 	 * actual RR behaviour.
1144 	 */
1145 	if (rq->rt.rr_nr_running) {
1146 		if (rq->rt.rr_nr_running == 1)
1147 			return true;
1148 		else
1149 			return false;
1150 	}
1151 
1152 	/*
1153 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1154 	 * forced preemption between FIFO tasks.
1155 	 */
1156 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1157 	if (fifo_nr_running)
1158 		return true;
1159 
1160 	/*
1161 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1162 	 * if there's more than one we need the tick for involuntary
1163 	 * preemption.
1164 	 */
1165 	if (rq->nr_running > 1)
1166 		return false;
1167 
1168 	return true;
1169 }
1170 #endif /* CONFIG_NO_HZ_FULL */
1171 #endif /* CONFIG_SMP */
1172 
1173 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1174 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1175 /*
1176  * Iterate task_group tree rooted at *from, calling @down when first entering a
1177  * node and @up when leaving it for the final time.
1178  *
1179  * Caller must hold rcu_lock or sufficient equivalent.
1180  */
1181 int walk_tg_tree_from(struct task_group *from,
1182 			     tg_visitor down, tg_visitor up, void *data)
1183 {
1184 	struct task_group *parent, *child;
1185 	int ret;
1186 
1187 	parent = from;
1188 
1189 down:
1190 	ret = (*down)(parent, data);
1191 	if (ret)
1192 		goto out;
1193 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1194 		parent = child;
1195 		goto down;
1196 
1197 up:
1198 		continue;
1199 	}
1200 	ret = (*up)(parent, data);
1201 	if (ret || parent == from)
1202 		goto out;
1203 
1204 	child = parent;
1205 	parent = parent->parent;
1206 	if (parent)
1207 		goto up;
1208 out:
1209 	return ret;
1210 }
1211 
1212 int tg_nop(struct task_group *tg, void *data)
1213 {
1214 	return 0;
1215 }
1216 #endif
1217 
1218 static void set_load_weight(struct task_struct *p, bool update_load)
1219 {
1220 	int prio = p->static_prio - MAX_RT_PRIO;
1221 	struct load_weight *load = &p->se.load;
1222 
1223 	/*
1224 	 * SCHED_IDLE tasks get minimal weight:
1225 	 */
1226 	if (task_has_idle_policy(p)) {
1227 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1228 		load->inv_weight = WMULT_IDLEPRIO;
1229 		return;
1230 	}
1231 
1232 	/*
1233 	 * SCHED_OTHER tasks have to update their load when changing their
1234 	 * weight
1235 	 */
1236 	if (update_load && p->sched_class == &fair_sched_class) {
1237 		reweight_task(p, prio);
1238 	} else {
1239 		load->weight = scale_load(sched_prio_to_weight[prio]);
1240 		load->inv_weight = sched_prio_to_wmult[prio];
1241 	}
1242 }
1243 
1244 #ifdef CONFIG_UCLAMP_TASK
1245 /*
1246  * Serializes updates of utilization clamp values
1247  *
1248  * The (slow-path) user-space triggers utilization clamp value updates which
1249  * can require updates on (fast-path) scheduler's data structures used to
1250  * support enqueue/dequeue operations.
1251  * While the per-CPU rq lock protects fast-path update operations, user-space
1252  * requests are serialized using a mutex to reduce the risk of conflicting
1253  * updates or API abuses.
1254  */
1255 static DEFINE_MUTEX(uclamp_mutex);
1256 
1257 /* Max allowed minimum utilization */
1258 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1259 
1260 /* Max allowed maximum utilization */
1261 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1262 
1263 /*
1264  * By default RT tasks run at the maximum performance point/capacity of the
1265  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1266  * SCHED_CAPACITY_SCALE.
1267  *
1268  * This knob allows admins to change the default behavior when uclamp is being
1269  * used. In battery powered devices, particularly, running at the maximum
1270  * capacity and frequency will increase energy consumption and shorten the
1271  * battery life.
1272  *
1273  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1274  *
1275  * This knob will not override the system default sched_util_clamp_min defined
1276  * above.
1277  */
1278 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1279 
1280 /* All clamps are required to be less or equal than these values */
1281 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1282 
1283 /*
1284  * This static key is used to reduce the uclamp overhead in the fast path. It
1285  * primarily disables the call to uclamp_rq_{inc, dec}() in
1286  * enqueue/dequeue_task().
1287  *
1288  * This allows users to continue to enable uclamp in their kernel config with
1289  * minimum uclamp overhead in the fast path.
1290  *
1291  * As soon as userspace modifies any of the uclamp knobs, the static key is
1292  * enabled, since we have an actual users that make use of uclamp
1293  * functionality.
1294  *
1295  * The knobs that would enable this static key are:
1296  *
1297  *   * A task modifying its uclamp value with sched_setattr().
1298  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1299  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1300  */
1301 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1302 
1303 /* Integer rounded range for each bucket */
1304 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1305 
1306 #define for_each_clamp_id(clamp_id) \
1307 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1308 
1309 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1310 {
1311 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1312 }
1313 
1314 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1315 {
1316 	if (clamp_id == UCLAMP_MIN)
1317 		return 0;
1318 	return SCHED_CAPACITY_SCALE;
1319 }
1320 
1321 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1322 				 unsigned int value, bool user_defined)
1323 {
1324 	uc_se->value = value;
1325 	uc_se->bucket_id = uclamp_bucket_id(value);
1326 	uc_se->user_defined = user_defined;
1327 }
1328 
1329 static inline unsigned int
1330 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1331 		  unsigned int clamp_value)
1332 {
1333 	/*
1334 	 * Avoid blocked utilization pushing up the frequency when we go
1335 	 * idle (which drops the max-clamp) by retaining the last known
1336 	 * max-clamp.
1337 	 */
1338 	if (clamp_id == UCLAMP_MAX) {
1339 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1340 		return clamp_value;
1341 	}
1342 
1343 	return uclamp_none(UCLAMP_MIN);
1344 }
1345 
1346 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1347 				     unsigned int clamp_value)
1348 {
1349 	/* Reset max-clamp retention only on idle exit */
1350 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1351 		return;
1352 
1353 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1354 }
1355 
1356 static inline
1357 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1358 				   unsigned int clamp_value)
1359 {
1360 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1361 	int bucket_id = UCLAMP_BUCKETS - 1;
1362 
1363 	/*
1364 	 * Since both min and max clamps are max aggregated, find the
1365 	 * top most bucket with tasks in.
1366 	 */
1367 	for ( ; bucket_id >= 0; bucket_id--) {
1368 		if (!bucket[bucket_id].tasks)
1369 			continue;
1370 		return bucket[bucket_id].value;
1371 	}
1372 
1373 	/* No tasks -- default clamp values */
1374 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1375 }
1376 
1377 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1378 {
1379 	unsigned int default_util_min;
1380 	struct uclamp_se *uc_se;
1381 
1382 	lockdep_assert_held(&p->pi_lock);
1383 
1384 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1385 
1386 	/* Only sync if user didn't override the default */
1387 	if (uc_se->user_defined)
1388 		return;
1389 
1390 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1391 	uclamp_se_set(uc_se, default_util_min, false);
1392 }
1393 
1394 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1395 {
1396 	struct rq_flags rf;
1397 	struct rq *rq;
1398 
1399 	if (!rt_task(p))
1400 		return;
1401 
1402 	/* Protect updates to p->uclamp_* */
1403 	rq = task_rq_lock(p, &rf);
1404 	__uclamp_update_util_min_rt_default(p);
1405 	task_rq_unlock(rq, p, &rf);
1406 }
1407 
1408 static void uclamp_sync_util_min_rt_default(void)
1409 {
1410 	struct task_struct *g, *p;
1411 
1412 	/*
1413 	 * copy_process()			sysctl_uclamp
1414 	 *					  uclamp_min_rt = X;
1415 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1416 	 *   // link thread			  smp_mb__after_spinlock()
1417 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1418 	 *   sched_post_fork()			  for_each_process_thread()
1419 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1420 	 *
1421 	 * Ensures that either sched_post_fork() will observe the new
1422 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1423 	 * task.
1424 	 */
1425 	read_lock(&tasklist_lock);
1426 	smp_mb__after_spinlock();
1427 	read_unlock(&tasklist_lock);
1428 
1429 	rcu_read_lock();
1430 	for_each_process_thread(g, p)
1431 		uclamp_update_util_min_rt_default(p);
1432 	rcu_read_unlock();
1433 }
1434 
1435 static inline struct uclamp_se
1436 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1437 {
1438 	/* Copy by value as we could modify it */
1439 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1440 #ifdef CONFIG_UCLAMP_TASK_GROUP
1441 	unsigned int tg_min, tg_max, value;
1442 
1443 	/*
1444 	 * Tasks in autogroups or root task group will be
1445 	 * restricted by system defaults.
1446 	 */
1447 	if (task_group_is_autogroup(task_group(p)))
1448 		return uc_req;
1449 	if (task_group(p) == &root_task_group)
1450 		return uc_req;
1451 
1452 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1453 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1454 	value = uc_req.value;
1455 	value = clamp(value, tg_min, tg_max);
1456 	uclamp_se_set(&uc_req, value, false);
1457 #endif
1458 
1459 	return uc_req;
1460 }
1461 
1462 /*
1463  * The effective clamp bucket index of a task depends on, by increasing
1464  * priority:
1465  * - the task specific clamp value, when explicitly requested from userspace
1466  * - the task group effective clamp value, for tasks not either in the root
1467  *   group or in an autogroup
1468  * - the system default clamp value, defined by the sysadmin
1469  */
1470 static inline struct uclamp_se
1471 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1472 {
1473 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1474 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1475 
1476 	/* System default restrictions always apply */
1477 	if (unlikely(uc_req.value > uc_max.value))
1478 		return uc_max;
1479 
1480 	return uc_req;
1481 }
1482 
1483 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1484 {
1485 	struct uclamp_se uc_eff;
1486 
1487 	/* Task currently refcounted: use back-annotated (effective) value */
1488 	if (p->uclamp[clamp_id].active)
1489 		return (unsigned long)p->uclamp[clamp_id].value;
1490 
1491 	uc_eff = uclamp_eff_get(p, clamp_id);
1492 
1493 	return (unsigned long)uc_eff.value;
1494 }
1495 
1496 /*
1497  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1498  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1499  * updates the rq's clamp value if required.
1500  *
1501  * Tasks can have a task-specific value requested from user-space, track
1502  * within each bucket the maximum value for tasks refcounted in it.
1503  * This "local max aggregation" allows to track the exact "requested" value
1504  * for each bucket when all its RUNNABLE tasks require the same clamp.
1505  */
1506 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1507 				    enum uclamp_id clamp_id)
1508 {
1509 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1510 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1511 	struct uclamp_bucket *bucket;
1512 
1513 	lockdep_assert_rq_held(rq);
1514 
1515 	/* Update task effective clamp */
1516 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1517 
1518 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1519 	bucket->tasks++;
1520 	uc_se->active = true;
1521 
1522 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1523 
1524 	/*
1525 	 * Local max aggregation: rq buckets always track the max
1526 	 * "requested" clamp value of its RUNNABLE tasks.
1527 	 */
1528 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1529 		bucket->value = uc_se->value;
1530 
1531 	if (uc_se->value > READ_ONCE(uc_rq->value))
1532 		WRITE_ONCE(uc_rq->value, uc_se->value);
1533 }
1534 
1535 /*
1536  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1537  * is released. If this is the last task reference counting the rq's max
1538  * active clamp value, then the rq's clamp value is updated.
1539  *
1540  * Both refcounted tasks and rq's cached clamp values are expected to be
1541  * always valid. If it's detected they are not, as defensive programming,
1542  * enforce the expected state and warn.
1543  */
1544 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1545 				    enum uclamp_id clamp_id)
1546 {
1547 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1548 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1549 	struct uclamp_bucket *bucket;
1550 	unsigned int bkt_clamp;
1551 	unsigned int rq_clamp;
1552 
1553 	lockdep_assert_rq_held(rq);
1554 
1555 	/*
1556 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1557 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1558 	 *
1559 	 * In this case the uc_se->active flag should be false since no uclamp
1560 	 * accounting was performed at enqueue time and we can just return
1561 	 * here.
1562 	 *
1563 	 * Need to be careful of the following enqueue/dequeue ordering
1564 	 * problem too
1565 	 *
1566 	 *	enqueue(taskA)
1567 	 *	// sched_uclamp_used gets enabled
1568 	 *	enqueue(taskB)
1569 	 *	dequeue(taskA)
1570 	 *	// Must not decrement bucket->tasks here
1571 	 *	dequeue(taskB)
1572 	 *
1573 	 * where we could end up with stale data in uc_se and
1574 	 * bucket[uc_se->bucket_id].
1575 	 *
1576 	 * The following check here eliminates the possibility of such race.
1577 	 */
1578 	if (unlikely(!uc_se->active))
1579 		return;
1580 
1581 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1582 
1583 	SCHED_WARN_ON(!bucket->tasks);
1584 	if (likely(bucket->tasks))
1585 		bucket->tasks--;
1586 
1587 	uc_se->active = false;
1588 
1589 	/*
1590 	 * Keep "local max aggregation" simple and accept to (possibly)
1591 	 * overboost some RUNNABLE tasks in the same bucket.
1592 	 * The rq clamp bucket value is reset to its base value whenever
1593 	 * there are no more RUNNABLE tasks refcounting it.
1594 	 */
1595 	if (likely(bucket->tasks))
1596 		return;
1597 
1598 	rq_clamp = READ_ONCE(uc_rq->value);
1599 	/*
1600 	 * Defensive programming: this should never happen. If it happens,
1601 	 * e.g. due to future modification, warn and fixup the expected value.
1602 	 */
1603 	SCHED_WARN_ON(bucket->value > rq_clamp);
1604 	if (bucket->value >= rq_clamp) {
1605 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1606 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1607 	}
1608 }
1609 
1610 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1611 {
1612 	enum uclamp_id clamp_id;
1613 
1614 	/*
1615 	 * Avoid any overhead until uclamp is actually used by the userspace.
1616 	 *
1617 	 * The condition is constructed such that a NOP is generated when
1618 	 * sched_uclamp_used is disabled.
1619 	 */
1620 	if (!static_branch_unlikely(&sched_uclamp_used))
1621 		return;
1622 
1623 	if (unlikely(!p->sched_class->uclamp_enabled))
1624 		return;
1625 
1626 	for_each_clamp_id(clamp_id)
1627 		uclamp_rq_inc_id(rq, p, clamp_id);
1628 
1629 	/* Reset clamp idle holding when there is one RUNNABLE task */
1630 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1631 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1632 }
1633 
1634 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1635 {
1636 	enum uclamp_id clamp_id;
1637 
1638 	/*
1639 	 * Avoid any overhead until uclamp is actually used by the userspace.
1640 	 *
1641 	 * The condition is constructed such that a NOP is generated when
1642 	 * sched_uclamp_used is disabled.
1643 	 */
1644 	if (!static_branch_unlikely(&sched_uclamp_used))
1645 		return;
1646 
1647 	if (unlikely(!p->sched_class->uclamp_enabled))
1648 		return;
1649 
1650 	for_each_clamp_id(clamp_id)
1651 		uclamp_rq_dec_id(rq, p, clamp_id);
1652 }
1653 
1654 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1655 				      enum uclamp_id clamp_id)
1656 {
1657 	if (!p->uclamp[clamp_id].active)
1658 		return;
1659 
1660 	uclamp_rq_dec_id(rq, p, clamp_id);
1661 	uclamp_rq_inc_id(rq, p, clamp_id);
1662 
1663 	/*
1664 	 * Make sure to clear the idle flag if we've transiently reached 0
1665 	 * active tasks on rq.
1666 	 */
1667 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1668 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1669 }
1670 
1671 static inline void
1672 uclamp_update_active(struct task_struct *p)
1673 {
1674 	enum uclamp_id clamp_id;
1675 	struct rq_flags rf;
1676 	struct rq *rq;
1677 
1678 	/*
1679 	 * Lock the task and the rq where the task is (or was) queued.
1680 	 *
1681 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1682 	 * price to pay to safely serialize util_{min,max} updates with
1683 	 * enqueues, dequeues and migration operations.
1684 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1685 	 */
1686 	rq = task_rq_lock(p, &rf);
1687 
1688 	/*
1689 	 * Setting the clamp bucket is serialized by task_rq_lock().
1690 	 * If the task is not yet RUNNABLE and its task_struct is not
1691 	 * affecting a valid clamp bucket, the next time it's enqueued,
1692 	 * it will already see the updated clamp bucket value.
1693 	 */
1694 	for_each_clamp_id(clamp_id)
1695 		uclamp_rq_reinc_id(rq, p, clamp_id);
1696 
1697 	task_rq_unlock(rq, p, &rf);
1698 }
1699 
1700 #ifdef CONFIG_UCLAMP_TASK_GROUP
1701 static inline void
1702 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1703 {
1704 	struct css_task_iter it;
1705 	struct task_struct *p;
1706 
1707 	css_task_iter_start(css, 0, &it);
1708 	while ((p = css_task_iter_next(&it)))
1709 		uclamp_update_active(p);
1710 	css_task_iter_end(&it);
1711 }
1712 
1713 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1714 static void uclamp_update_root_tg(void)
1715 {
1716 	struct task_group *tg = &root_task_group;
1717 
1718 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1719 		      sysctl_sched_uclamp_util_min, false);
1720 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1721 		      sysctl_sched_uclamp_util_max, false);
1722 
1723 	rcu_read_lock();
1724 	cpu_util_update_eff(&root_task_group.css);
1725 	rcu_read_unlock();
1726 }
1727 #else
1728 static void uclamp_update_root_tg(void) { }
1729 #endif
1730 
1731 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1732 				void *buffer, size_t *lenp, loff_t *ppos)
1733 {
1734 	bool update_root_tg = false;
1735 	int old_min, old_max, old_min_rt;
1736 	int result;
1737 
1738 	mutex_lock(&uclamp_mutex);
1739 	old_min = sysctl_sched_uclamp_util_min;
1740 	old_max = sysctl_sched_uclamp_util_max;
1741 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1742 
1743 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1744 	if (result)
1745 		goto undo;
1746 	if (!write)
1747 		goto done;
1748 
1749 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1750 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1751 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1752 
1753 		result = -EINVAL;
1754 		goto undo;
1755 	}
1756 
1757 	if (old_min != sysctl_sched_uclamp_util_min) {
1758 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1759 			      sysctl_sched_uclamp_util_min, false);
1760 		update_root_tg = true;
1761 	}
1762 	if (old_max != sysctl_sched_uclamp_util_max) {
1763 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1764 			      sysctl_sched_uclamp_util_max, false);
1765 		update_root_tg = true;
1766 	}
1767 
1768 	if (update_root_tg) {
1769 		static_branch_enable(&sched_uclamp_used);
1770 		uclamp_update_root_tg();
1771 	}
1772 
1773 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1774 		static_branch_enable(&sched_uclamp_used);
1775 		uclamp_sync_util_min_rt_default();
1776 	}
1777 
1778 	/*
1779 	 * We update all RUNNABLE tasks only when task groups are in use.
1780 	 * Otherwise, keep it simple and do just a lazy update at each next
1781 	 * task enqueue time.
1782 	 */
1783 
1784 	goto done;
1785 
1786 undo:
1787 	sysctl_sched_uclamp_util_min = old_min;
1788 	sysctl_sched_uclamp_util_max = old_max;
1789 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1790 done:
1791 	mutex_unlock(&uclamp_mutex);
1792 
1793 	return result;
1794 }
1795 
1796 static int uclamp_validate(struct task_struct *p,
1797 			   const struct sched_attr *attr)
1798 {
1799 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1800 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1801 
1802 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1803 		util_min = attr->sched_util_min;
1804 
1805 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1806 			return -EINVAL;
1807 	}
1808 
1809 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1810 		util_max = attr->sched_util_max;
1811 
1812 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1813 			return -EINVAL;
1814 	}
1815 
1816 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1817 		return -EINVAL;
1818 
1819 	/*
1820 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1821 	 *
1822 	 * We need to do that here, because enabling static branches is a
1823 	 * blocking operation which obviously cannot be done while holding
1824 	 * scheduler locks.
1825 	 */
1826 	static_branch_enable(&sched_uclamp_used);
1827 
1828 	return 0;
1829 }
1830 
1831 static bool uclamp_reset(const struct sched_attr *attr,
1832 			 enum uclamp_id clamp_id,
1833 			 struct uclamp_se *uc_se)
1834 {
1835 	/* Reset on sched class change for a non user-defined clamp value. */
1836 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1837 	    !uc_se->user_defined)
1838 		return true;
1839 
1840 	/* Reset on sched_util_{min,max} == -1. */
1841 	if (clamp_id == UCLAMP_MIN &&
1842 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1843 	    attr->sched_util_min == -1) {
1844 		return true;
1845 	}
1846 
1847 	if (clamp_id == UCLAMP_MAX &&
1848 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1849 	    attr->sched_util_max == -1) {
1850 		return true;
1851 	}
1852 
1853 	return false;
1854 }
1855 
1856 static void __setscheduler_uclamp(struct task_struct *p,
1857 				  const struct sched_attr *attr)
1858 {
1859 	enum uclamp_id clamp_id;
1860 
1861 	for_each_clamp_id(clamp_id) {
1862 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1863 		unsigned int value;
1864 
1865 		if (!uclamp_reset(attr, clamp_id, uc_se))
1866 			continue;
1867 
1868 		/*
1869 		 * RT by default have a 100% boost value that could be modified
1870 		 * at runtime.
1871 		 */
1872 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1873 			value = sysctl_sched_uclamp_util_min_rt_default;
1874 		else
1875 			value = uclamp_none(clamp_id);
1876 
1877 		uclamp_se_set(uc_se, value, false);
1878 
1879 	}
1880 
1881 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1882 		return;
1883 
1884 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1885 	    attr->sched_util_min != -1) {
1886 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1887 			      attr->sched_util_min, true);
1888 	}
1889 
1890 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1891 	    attr->sched_util_max != -1) {
1892 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1893 			      attr->sched_util_max, true);
1894 	}
1895 }
1896 
1897 static void uclamp_fork(struct task_struct *p)
1898 {
1899 	enum uclamp_id clamp_id;
1900 
1901 	/*
1902 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1903 	 * as the task is still at its early fork stages.
1904 	 */
1905 	for_each_clamp_id(clamp_id)
1906 		p->uclamp[clamp_id].active = false;
1907 
1908 	if (likely(!p->sched_reset_on_fork))
1909 		return;
1910 
1911 	for_each_clamp_id(clamp_id) {
1912 		uclamp_se_set(&p->uclamp_req[clamp_id],
1913 			      uclamp_none(clamp_id), false);
1914 	}
1915 }
1916 
1917 static void uclamp_post_fork(struct task_struct *p)
1918 {
1919 	uclamp_update_util_min_rt_default(p);
1920 }
1921 
1922 static void __init init_uclamp_rq(struct rq *rq)
1923 {
1924 	enum uclamp_id clamp_id;
1925 	struct uclamp_rq *uc_rq = rq->uclamp;
1926 
1927 	for_each_clamp_id(clamp_id) {
1928 		uc_rq[clamp_id] = (struct uclamp_rq) {
1929 			.value = uclamp_none(clamp_id)
1930 		};
1931 	}
1932 
1933 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1934 }
1935 
1936 static void __init init_uclamp(void)
1937 {
1938 	struct uclamp_se uc_max = {};
1939 	enum uclamp_id clamp_id;
1940 	int cpu;
1941 
1942 	for_each_possible_cpu(cpu)
1943 		init_uclamp_rq(cpu_rq(cpu));
1944 
1945 	for_each_clamp_id(clamp_id) {
1946 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1947 			      uclamp_none(clamp_id), false);
1948 	}
1949 
1950 	/* System defaults allow max clamp values for both indexes */
1951 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1952 	for_each_clamp_id(clamp_id) {
1953 		uclamp_default[clamp_id] = uc_max;
1954 #ifdef CONFIG_UCLAMP_TASK_GROUP
1955 		root_task_group.uclamp_req[clamp_id] = uc_max;
1956 		root_task_group.uclamp[clamp_id] = uc_max;
1957 #endif
1958 	}
1959 }
1960 
1961 #else /* CONFIG_UCLAMP_TASK */
1962 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1963 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1964 static inline int uclamp_validate(struct task_struct *p,
1965 				  const struct sched_attr *attr)
1966 {
1967 	return -EOPNOTSUPP;
1968 }
1969 static void __setscheduler_uclamp(struct task_struct *p,
1970 				  const struct sched_attr *attr) { }
1971 static inline void uclamp_fork(struct task_struct *p) { }
1972 static inline void uclamp_post_fork(struct task_struct *p) { }
1973 static inline void init_uclamp(void) { }
1974 #endif /* CONFIG_UCLAMP_TASK */
1975 
1976 bool sched_task_on_rq(struct task_struct *p)
1977 {
1978 	return task_on_rq_queued(p);
1979 }
1980 
1981 unsigned long get_wchan(struct task_struct *p)
1982 {
1983 	unsigned long ip = 0;
1984 	unsigned int state;
1985 
1986 	if (!p || p == current)
1987 		return 0;
1988 
1989 	/* Only get wchan if task is blocked and we can keep it that way. */
1990 	raw_spin_lock_irq(&p->pi_lock);
1991 	state = READ_ONCE(p->__state);
1992 	smp_rmb(); /* see try_to_wake_up() */
1993 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
1994 		ip = __get_wchan(p);
1995 	raw_spin_unlock_irq(&p->pi_lock);
1996 
1997 	return ip;
1998 }
1999 
2000 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2001 {
2002 	if (!(flags & ENQUEUE_NOCLOCK))
2003 		update_rq_clock(rq);
2004 
2005 	if (!(flags & ENQUEUE_RESTORE)) {
2006 		sched_info_enqueue(rq, p);
2007 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2008 	}
2009 
2010 	uclamp_rq_inc(rq, p);
2011 	p->sched_class->enqueue_task(rq, p, flags);
2012 
2013 	if (sched_core_enabled(rq))
2014 		sched_core_enqueue(rq, p);
2015 }
2016 
2017 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2018 {
2019 	if (sched_core_enabled(rq))
2020 		sched_core_dequeue(rq, p, flags);
2021 
2022 	if (!(flags & DEQUEUE_NOCLOCK))
2023 		update_rq_clock(rq);
2024 
2025 	if (!(flags & DEQUEUE_SAVE)) {
2026 		sched_info_dequeue(rq, p);
2027 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2028 	}
2029 
2030 	uclamp_rq_dec(rq, p);
2031 	p->sched_class->dequeue_task(rq, p, flags);
2032 }
2033 
2034 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2035 {
2036 	enqueue_task(rq, p, flags);
2037 
2038 	p->on_rq = TASK_ON_RQ_QUEUED;
2039 }
2040 
2041 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2042 {
2043 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2044 
2045 	dequeue_task(rq, p, flags);
2046 }
2047 
2048 static inline int __normal_prio(int policy, int rt_prio, int nice)
2049 {
2050 	int prio;
2051 
2052 	if (dl_policy(policy))
2053 		prio = MAX_DL_PRIO - 1;
2054 	else if (rt_policy(policy))
2055 		prio = MAX_RT_PRIO - 1 - rt_prio;
2056 	else
2057 		prio = NICE_TO_PRIO(nice);
2058 
2059 	return prio;
2060 }
2061 
2062 /*
2063  * Calculate the expected normal priority: i.e. priority
2064  * without taking RT-inheritance into account. Might be
2065  * boosted by interactivity modifiers. Changes upon fork,
2066  * setprio syscalls, and whenever the interactivity
2067  * estimator recalculates.
2068  */
2069 static inline int normal_prio(struct task_struct *p)
2070 {
2071 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2072 }
2073 
2074 /*
2075  * Calculate the current priority, i.e. the priority
2076  * taken into account by the scheduler. This value might
2077  * be boosted by RT tasks, or might be boosted by
2078  * interactivity modifiers. Will be RT if the task got
2079  * RT-boosted. If not then it returns p->normal_prio.
2080  */
2081 static int effective_prio(struct task_struct *p)
2082 {
2083 	p->normal_prio = normal_prio(p);
2084 	/*
2085 	 * If we are RT tasks or we were boosted to RT priority,
2086 	 * keep the priority unchanged. Otherwise, update priority
2087 	 * to the normal priority:
2088 	 */
2089 	if (!rt_prio(p->prio))
2090 		return p->normal_prio;
2091 	return p->prio;
2092 }
2093 
2094 /**
2095  * task_curr - is this task currently executing on a CPU?
2096  * @p: the task in question.
2097  *
2098  * Return: 1 if the task is currently executing. 0 otherwise.
2099  */
2100 inline int task_curr(const struct task_struct *p)
2101 {
2102 	return cpu_curr(task_cpu(p)) == p;
2103 }
2104 
2105 /*
2106  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2107  * use the balance_callback list if you want balancing.
2108  *
2109  * this means any call to check_class_changed() must be followed by a call to
2110  * balance_callback().
2111  */
2112 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2113 				       const struct sched_class *prev_class,
2114 				       int oldprio)
2115 {
2116 	if (prev_class != p->sched_class) {
2117 		if (prev_class->switched_from)
2118 			prev_class->switched_from(rq, p);
2119 
2120 		p->sched_class->switched_to(rq, p);
2121 	} else if (oldprio != p->prio || dl_task(p))
2122 		p->sched_class->prio_changed(rq, p, oldprio);
2123 }
2124 
2125 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2126 {
2127 	if (p->sched_class == rq->curr->sched_class)
2128 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2129 	else if (p->sched_class > rq->curr->sched_class)
2130 		resched_curr(rq);
2131 
2132 	/*
2133 	 * A queue event has occurred, and we're going to schedule.  In
2134 	 * this case, we can save a useless back to back clock update.
2135 	 */
2136 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2137 		rq_clock_skip_update(rq);
2138 }
2139 
2140 #ifdef CONFIG_SMP
2141 
2142 static void
2143 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2144 
2145 static int __set_cpus_allowed_ptr(struct task_struct *p,
2146 				  const struct cpumask *new_mask,
2147 				  u32 flags);
2148 
2149 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2150 {
2151 	if (likely(!p->migration_disabled))
2152 		return;
2153 
2154 	if (p->cpus_ptr != &p->cpus_mask)
2155 		return;
2156 
2157 	/*
2158 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2159 	 */
2160 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2161 }
2162 
2163 void migrate_disable(void)
2164 {
2165 	struct task_struct *p = current;
2166 
2167 	if (p->migration_disabled) {
2168 		p->migration_disabled++;
2169 		return;
2170 	}
2171 
2172 	preempt_disable();
2173 	this_rq()->nr_pinned++;
2174 	p->migration_disabled = 1;
2175 	preempt_enable();
2176 }
2177 EXPORT_SYMBOL_GPL(migrate_disable);
2178 
2179 void migrate_enable(void)
2180 {
2181 	struct task_struct *p = current;
2182 
2183 	if (p->migration_disabled > 1) {
2184 		p->migration_disabled--;
2185 		return;
2186 	}
2187 
2188 	if (WARN_ON_ONCE(!p->migration_disabled))
2189 		return;
2190 
2191 	/*
2192 	 * Ensure stop_task runs either before or after this, and that
2193 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2194 	 */
2195 	preempt_disable();
2196 	if (p->cpus_ptr != &p->cpus_mask)
2197 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2198 	/*
2199 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2200 	 * regular cpus_mask, otherwise things that race (eg.
2201 	 * select_fallback_rq) get confused.
2202 	 */
2203 	barrier();
2204 	p->migration_disabled = 0;
2205 	this_rq()->nr_pinned--;
2206 	preempt_enable();
2207 }
2208 EXPORT_SYMBOL_GPL(migrate_enable);
2209 
2210 static inline bool rq_has_pinned_tasks(struct rq *rq)
2211 {
2212 	return rq->nr_pinned;
2213 }
2214 
2215 /*
2216  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2217  * __set_cpus_allowed_ptr() and select_fallback_rq().
2218  */
2219 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2220 {
2221 	/* When not in the task's cpumask, no point in looking further. */
2222 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2223 		return false;
2224 
2225 	/* migrate_disabled() must be allowed to finish. */
2226 	if (is_migration_disabled(p))
2227 		return cpu_online(cpu);
2228 
2229 	/* Non kernel threads are not allowed during either online or offline. */
2230 	if (!(p->flags & PF_KTHREAD))
2231 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2232 
2233 	/* KTHREAD_IS_PER_CPU is always allowed. */
2234 	if (kthread_is_per_cpu(p))
2235 		return cpu_online(cpu);
2236 
2237 	/* Regular kernel threads don't get to stay during offline. */
2238 	if (cpu_dying(cpu))
2239 		return false;
2240 
2241 	/* But are allowed during online. */
2242 	return cpu_online(cpu);
2243 }
2244 
2245 /*
2246  * This is how migration works:
2247  *
2248  * 1) we invoke migration_cpu_stop() on the target CPU using
2249  *    stop_one_cpu().
2250  * 2) stopper starts to run (implicitly forcing the migrated thread
2251  *    off the CPU)
2252  * 3) it checks whether the migrated task is still in the wrong runqueue.
2253  * 4) if it's in the wrong runqueue then the migration thread removes
2254  *    it and puts it into the right queue.
2255  * 5) stopper completes and stop_one_cpu() returns and the migration
2256  *    is done.
2257  */
2258 
2259 /*
2260  * move_queued_task - move a queued task to new rq.
2261  *
2262  * Returns (locked) new rq. Old rq's lock is released.
2263  */
2264 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2265 				   struct task_struct *p, int new_cpu)
2266 {
2267 	lockdep_assert_rq_held(rq);
2268 
2269 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2270 	set_task_cpu(p, new_cpu);
2271 	rq_unlock(rq, rf);
2272 
2273 	rq = cpu_rq(new_cpu);
2274 
2275 	rq_lock(rq, rf);
2276 	BUG_ON(task_cpu(p) != new_cpu);
2277 	activate_task(rq, p, 0);
2278 	check_preempt_curr(rq, p, 0);
2279 
2280 	return rq;
2281 }
2282 
2283 struct migration_arg {
2284 	struct task_struct		*task;
2285 	int				dest_cpu;
2286 	struct set_affinity_pending	*pending;
2287 };
2288 
2289 /*
2290  * @refs: number of wait_for_completion()
2291  * @stop_pending: is @stop_work in use
2292  */
2293 struct set_affinity_pending {
2294 	refcount_t		refs;
2295 	unsigned int		stop_pending;
2296 	struct completion	done;
2297 	struct cpu_stop_work	stop_work;
2298 	struct migration_arg	arg;
2299 };
2300 
2301 /*
2302  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2303  * this because either it can't run here any more (set_cpus_allowed()
2304  * away from this CPU, or CPU going down), or because we're
2305  * attempting to rebalance this task on exec (sched_exec).
2306  *
2307  * So we race with normal scheduler movements, but that's OK, as long
2308  * as the task is no longer on this CPU.
2309  */
2310 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2311 				 struct task_struct *p, int dest_cpu)
2312 {
2313 	/* Affinity changed (again). */
2314 	if (!is_cpu_allowed(p, dest_cpu))
2315 		return rq;
2316 
2317 	update_rq_clock(rq);
2318 	rq = move_queued_task(rq, rf, p, dest_cpu);
2319 
2320 	return rq;
2321 }
2322 
2323 /*
2324  * migration_cpu_stop - this will be executed by a highprio stopper thread
2325  * and performs thread migration by bumping thread off CPU then
2326  * 'pushing' onto another runqueue.
2327  */
2328 static int migration_cpu_stop(void *data)
2329 {
2330 	struct migration_arg *arg = data;
2331 	struct set_affinity_pending *pending = arg->pending;
2332 	struct task_struct *p = arg->task;
2333 	struct rq *rq = this_rq();
2334 	bool complete = false;
2335 	struct rq_flags rf;
2336 
2337 	/*
2338 	 * The original target CPU might have gone down and we might
2339 	 * be on another CPU but it doesn't matter.
2340 	 */
2341 	local_irq_save(rf.flags);
2342 	/*
2343 	 * We need to explicitly wake pending tasks before running
2344 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2345 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2346 	 */
2347 	flush_smp_call_function_from_idle();
2348 
2349 	raw_spin_lock(&p->pi_lock);
2350 	rq_lock(rq, &rf);
2351 
2352 	/*
2353 	 * If we were passed a pending, then ->stop_pending was set, thus
2354 	 * p->migration_pending must have remained stable.
2355 	 */
2356 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2357 
2358 	/*
2359 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2360 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2361 	 * we're holding p->pi_lock.
2362 	 */
2363 	if (task_rq(p) == rq) {
2364 		if (is_migration_disabled(p))
2365 			goto out;
2366 
2367 		if (pending) {
2368 			p->migration_pending = NULL;
2369 			complete = true;
2370 
2371 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2372 				goto out;
2373 		}
2374 
2375 		if (task_on_rq_queued(p))
2376 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2377 		else
2378 			p->wake_cpu = arg->dest_cpu;
2379 
2380 		/*
2381 		 * XXX __migrate_task() can fail, at which point we might end
2382 		 * up running on a dodgy CPU, AFAICT this can only happen
2383 		 * during CPU hotplug, at which point we'll get pushed out
2384 		 * anyway, so it's probably not a big deal.
2385 		 */
2386 
2387 	} else if (pending) {
2388 		/*
2389 		 * This happens when we get migrated between migrate_enable()'s
2390 		 * preempt_enable() and scheduling the stopper task. At that
2391 		 * point we're a regular task again and not current anymore.
2392 		 *
2393 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2394 		 * more likely.
2395 		 */
2396 
2397 		/*
2398 		 * The task moved before the stopper got to run. We're holding
2399 		 * ->pi_lock, so the allowed mask is stable - if it got
2400 		 * somewhere allowed, we're done.
2401 		 */
2402 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2403 			p->migration_pending = NULL;
2404 			complete = true;
2405 			goto out;
2406 		}
2407 
2408 		/*
2409 		 * When migrate_enable() hits a rq mis-match we can't reliably
2410 		 * determine is_migration_disabled() and so have to chase after
2411 		 * it.
2412 		 */
2413 		WARN_ON_ONCE(!pending->stop_pending);
2414 		task_rq_unlock(rq, p, &rf);
2415 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2416 				    &pending->arg, &pending->stop_work);
2417 		return 0;
2418 	}
2419 out:
2420 	if (pending)
2421 		pending->stop_pending = false;
2422 	task_rq_unlock(rq, p, &rf);
2423 
2424 	if (complete)
2425 		complete_all(&pending->done);
2426 
2427 	return 0;
2428 }
2429 
2430 int push_cpu_stop(void *arg)
2431 {
2432 	struct rq *lowest_rq = NULL, *rq = this_rq();
2433 	struct task_struct *p = arg;
2434 
2435 	raw_spin_lock_irq(&p->pi_lock);
2436 	raw_spin_rq_lock(rq);
2437 
2438 	if (task_rq(p) != rq)
2439 		goto out_unlock;
2440 
2441 	if (is_migration_disabled(p)) {
2442 		p->migration_flags |= MDF_PUSH;
2443 		goto out_unlock;
2444 	}
2445 
2446 	p->migration_flags &= ~MDF_PUSH;
2447 
2448 	if (p->sched_class->find_lock_rq)
2449 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2450 
2451 	if (!lowest_rq)
2452 		goto out_unlock;
2453 
2454 	// XXX validate p is still the highest prio task
2455 	if (task_rq(p) == rq) {
2456 		deactivate_task(rq, p, 0);
2457 		set_task_cpu(p, lowest_rq->cpu);
2458 		activate_task(lowest_rq, p, 0);
2459 		resched_curr(lowest_rq);
2460 	}
2461 
2462 	double_unlock_balance(rq, lowest_rq);
2463 
2464 out_unlock:
2465 	rq->push_busy = false;
2466 	raw_spin_rq_unlock(rq);
2467 	raw_spin_unlock_irq(&p->pi_lock);
2468 
2469 	put_task_struct(p);
2470 	return 0;
2471 }
2472 
2473 /*
2474  * sched_class::set_cpus_allowed must do the below, but is not required to
2475  * actually call this function.
2476  */
2477 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2478 {
2479 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2480 		p->cpus_ptr = new_mask;
2481 		return;
2482 	}
2483 
2484 	cpumask_copy(&p->cpus_mask, new_mask);
2485 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2486 }
2487 
2488 static void
2489 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2490 {
2491 	struct rq *rq = task_rq(p);
2492 	bool queued, running;
2493 
2494 	/*
2495 	 * This here violates the locking rules for affinity, since we're only
2496 	 * supposed to change these variables while holding both rq->lock and
2497 	 * p->pi_lock.
2498 	 *
2499 	 * HOWEVER, it magically works, because ttwu() is the only code that
2500 	 * accesses these variables under p->pi_lock and only does so after
2501 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2502 	 * before finish_task().
2503 	 *
2504 	 * XXX do further audits, this smells like something putrid.
2505 	 */
2506 	if (flags & SCA_MIGRATE_DISABLE)
2507 		SCHED_WARN_ON(!p->on_cpu);
2508 	else
2509 		lockdep_assert_held(&p->pi_lock);
2510 
2511 	queued = task_on_rq_queued(p);
2512 	running = task_current(rq, p);
2513 
2514 	if (queued) {
2515 		/*
2516 		 * Because __kthread_bind() calls this on blocked tasks without
2517 		 * holding rq->lock.
2518 		 */
2519 		lockdep_assert_rq_held(rq);
2520 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2521 	}
2522 	if (running)
2523 		put_prev_task(rq, p);
2524 
2525 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2526 
2527 	if (queued)
2528 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2529 	if (running)
2530 		set_next_task(rq, p);
2531 }
2532 
2533 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2534 {
2535 	__do_set_cpus_allowed(p, new_mask, 0);
2536 }
2537 
2538 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2539 		      int node)
2540 {
2541 	if (!src->user_cpus_ptr)
2542 		return 0;
2543 
2544 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2545 	if (!dst->user_cpus_ptr)
2546 		return -ENOMEM;
2547 
2548 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2549 	return 0;
2550 }
2551 
2552 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2553 {
2554 	struct cpumask *user_mask = NULL;
2555 
2556 	swap(p->user_cpus_ptr, user_mask);
2557 
2558 	return user_mask;
2559 }
2560 
2561 void release_user_cpus_ptr(struct task_struct *p)
2562 {
2563 	kfree(clear_user_cpus_ptr(p));
2564 }
2565 
2566 /*
2567  * This function is wildly self concurrent; here be dragons.
2568  *
2569  *
2570  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2571  * designated task is enqueued on an allowed CPU. If that task is currently
2572  * running, we have to kick it out using the CPU stopper.
2573  *
2574  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2575  * Consider:
2576  *
2577  *     Initial conditions: P0->cpus_mask = [0, 1]
2578  *
2579  *     P0@CPU0                  P1
2580  *
2581  *     migrate_disable();
2582  *     <preempted>
2583  *                              set_cpus_allowed_ptr(P0, [1]);
2584  *
2585  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2586  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2587  * This means we need the following scheme:
2588  *
2589  *     P0@CPU0                  P1
2590  *
2591  *     migrate_disable();
2592  *     <preempted>
2593  *                              set_cpus_allowed_ptr(P0, [1]);
2594  *                                <blocks>
2595  *     <resumes>
2596  *     migrate_enable();
2597  *       __set_cpus_allowed_ptr();
2598  *       <wakes local stopper>
2599  *                         `--> <woken on migration completion>
2600  *
2601  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2602  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2603  * task p are serialized by p->pi_lock, which we can leverage: the one that
2604  * should come into effect at the end of the Migrate-Disable region is the last
2605  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2606  * but we still need to properly signal those waiting tasks at the appropriate
2607  * moment.
2608  *
2609  * This is implemented using struct set_affinity_pending. The first
2610  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2611  * setup an instance of that struct and install it on the targeted task_struct.
2612  * Any and all further callers will reuse that instance. Those then wait for
2613  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2614  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2615  *
2616  *
2617  * (1) In the cases covered above. There is one more where the completion is
2618  * signaled within affine_move_task() itself: when a subsequent affinity request
2619  * occurs after the stopper bailed out due to the targeted task still being
2620  * Migrate-Disable. Consider:
2621  *
2622  *     Initial conditions: P0->cpus_mask = [0, 1]
2623  *
2624  *     CPU0		  P1				P2
2625  *     <P0>
2626  *       migrate_disable();
2627  *       <preempted>
2628  *                        set_cpus_allowed_ptr(P0, [1]);
2629  *                          <blocks>
2630  *     <migration/0>
2631  *       migration_cpu_stop()
2632  *         is_migration_disabled()
2633  *           <bails>
2634  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2635  *                                                         <signal completion>
2636  *                          <awakes>
2637  *
2638  * Note that the above is safe vs a concurrent migrate_enable(), as any
2639  * pending affinity completion is preceded by an uninstallation of
2640  * p->migration_pending done with p->pi_lock held.
2641  */
2642 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2643 			    int dest_cpu, unsigned int flags)
2644 {
2645 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2646 	bool stop_pending, complete = false;
2647 
2648 	/* Can the task run on the task's current CPU? If so, we're done */
2649 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2650 		struct task_struct *push_task = NULL;
2651 
2652 		if ((flags & SCA_MIGRATE_ENABLE) &&
2653 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2654 			rq->push_busy = true;
2655 			push_task = get_task_struct(p);
2656 		}
2657 
2658 		/*
2659 		 * If there are pending waiters, but no pending stop_work,
2660 		 * then complete now.
2661 		 */
2662 		pending = p->migration_pending;
2663 		if (pending && !pending->stop_pending) {
2664 			p->migration_pending = NULL;
2665 			complete = true;
2666 		}
2667 
2668 		task_rq_unlock(rq, p, rf);
2669 
2670 		if (push_task) {
2671 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2672 					    p, &rq->push_work);
2673 		}
2674 
2675 		if (complete)
2676 			complete_all(&pending->done);
2677 
2678 		return 0;
2679 	}
2680 
2681 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2682 		/* serialized by p->pi_lock */
2683 		if (!p->migration_pending) {
2684 			/* Install the request */
2685 			refcount_set(&my_pending.refs, 1);
2686 			init_completion(&my_pending.done);
2687 			my_pending.arg = (struct migration_arg) {
2688 				.task = p,
2689 				.dest_cpu = dest_cpu,
2690 				.pending = &my_pending,
2691 			};
2692 
2693 			p->migration_pending = &my_pending;
2694 		} else {
2695 			pending = p->migration_pending;
2696 			refcount_inc(&pending->refs);
2697 			/*
2698 			 * Affinity has changed, but we've already installed a
2699 			 * pending. migration_cpu_stop() *must* see this, else
2700 			 * we risk a completion of the pending despite having a
2701 			 * task on a disallowed CPU.
2702 			 *
2703 			 * Serialized by p->pi_lock, so this is safe.
2704 			 */
2705 			pending->arg.dest_cpu = dest_cpu;
2706 		}
2707 	}
2708 	pending = p->migration_pending;
2709 	/*
2710 	 * - !MIGRATE_ENABLE:
2711 	 *   we'll have installed a pending if there wasn't one already.
2712 	 *
2713 	 * - MIGRATE_ENABLE:
2714 	 *   we're here because the current CPU isn't matching anymore,
2715 	 *   the only way that can happen is because of a concurrent
2716 	 *   set_cpus_allowed_ptr() call, which should then still be
2717 	 *   pending completion.
2718 	 *
2719 	 * Either way, we really should have a @pending here.
2720 	 */
2721 	if (WARN_ON_ONCE(!pending)) {
2722 		task_rq_unlock(rq, p, rf);
2723 		return -EINVAL;
2724 	}
2725 
2726 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2727 		/*
2728 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2729 		 * anything else we cannot do is_migration_disabled(), punt
2730 		 * and have the stopper function handle it all race-free.
2731 		 */
2732 		stop_pending = pending->stop_pending;
2733 		if (!stop_pending)
2734 			pending->stop_pending = true;
2735 
2736 		if (flags & SCA_MIGRATE_ENABLE)
2737 			p->migration_flags &= ~MDF_PUSH;
2738 
2739 		task_rq_unlock(rq, p, rf);
2740 
2741 		if (!stop_pending) {
2742 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2743 					    &pending->arg, &pending->stop_work);
2744 		}
2745 
2746 		if (flags & SCA_MIGRATE_ENABLE)
2747 			return 0;
2748 	} else {
2749 
2750 		if (!is_migration_disabled(p)) {
2751 			if (task_on_rq_queued(p))
2752 				rq = move_queued_task(rq, rf, p, dest_cpu);
2753 
2754 			if (!pending->stop_pending) {
2755 				p->migration_pending = NULL;
2756 				complete = true;
2757 			}
2758 		}
2759 		task_rq_unlock(rq, p, rf);
2760 
2761 		if (complete)
2762 			complete_all(&pending->done);
2763 	}
2764 
2765 	wait_for_completion(&pending->done);
2766 
2767 	if (refcount_dec_and_test(&pending->refs))
2768 		wake_up_var(&pending->refs); /* No UaF, just an address */
2769 
2770 	/*
2771 	 * Block the original owner of &pending until all subsequent callers
2772 	 * have seen the completion and decremented the refcount
2773 	 */
2774 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2775 
2776 	/* ARGH */
2777 	WARN_ON_ONCE(my_pending.stop_pending);
2778 
2779 	return 0;
2780 }
2781 
2782 /*
2783  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2784  */
2785 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2786 					 const struct cpumask *new_mask,
2787 					 u32 flags,
2788 					 struct rq *rq,
2789 					 struct rq_flags *rf)
2790 	__releases(rq->lock)
2791 	__releases(p->pi_lock)
2792 {
2793 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2794 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2795 	bool kthread = p->flags & PF_KTHREAD;
2796 	struct cpumask *user_mask = NULL;
2797 	unsigned int dest_cpu;
2798 	int ret = 0;
2799 
2800 	update_rq_clock(rq);
2801 
2802 	if (kthread || is_migration_disabled(p)) {
2803 		/*
2804 		 * Kernel threads are allowed on online && !active CPUs,
2805 		 * however, during cpu-hot-unplug, even these might get pushed
2806 		 * away if not KTHREAD_IS_PER_CPU.
2807 		 *
2808 		 * Specifically, migration_disabled() tasks must not fail the
2809 		 * cpumask_any_and_distribute() pick below, esp. so on
2810 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2811 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2812 		 */
2813 		cpu_valid_mask = cpu_online_mask;
2814 	}
2815 
2816 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2817 		ret = -EINVAL;
2818 		goto out;
2819 	}
2820 
2821 	/*
2822 	 * Must re-check here, to close a race against __kthread_bind(),
2823 	 * sched_setaffinity() is not guaranteed to observe the flag.
2824 	 */
2825 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2826 		ret = -EINVAL;
2827 		goto out;
2828 	}
2829 
2830 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2831 		if (cpumask_equal(&p->cpus_mask, new_mask))
2832 			goto out;
2833 
2834 		if (WARN_ON_ONCE(p == current &&
2835 				 is_migration_disabled(p) &&
2836 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2837 			ret = -EBUSY;
2838 			goto out;
2839 		}
2840 	}
2841 
2842 	/*
2843 	 * Picking a ~random cpu helps in cases where we are changing affinity
2844 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2845 	 * immediately required to distribute the tasks within their new mask.
2846 	 */
2847 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2848 	if (dest_cpu >= nr_cpu_ids) {
2849 		ret = -EINVAL;
2850 		goto out;
2851 	}
2852 
2853 	__do_set_cpus_allowed(p, new_mask, flags);
2854 
2855 	if (flags & SCA_USER)
2856 		user_mask = clear_user_cpus_ptr(p);
2857 
2858 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2859 
2860 	kfree(user_mask);
2861 
2862 	return ret;
2863 
2864 out:
2865 	task_rq_unlock(rq, p, rf);
2866 
2867 	return ret;
2868 }
2869 
2870 /*
2871  * Change a given task's CPU affinity. Migrate the thread to a
2872  * proper CPU and schedule it away if the CPU it's executing on
2873  * is removed from the allowed bitmask.
2874  *
2875  * NOTE: the caller must have a valid reference to the task, the
2876  * task must not exit() & deallocate itself prematurely. The
2877  * call is not atomic; no spinlocks may be held.
2878  */
2879 static int __set_cpus_allowed_ptr(struct task_struct *p,
2880 				  const struct cpumask *new_mask, u32 flags)
2881 {
2882 	struct rq_flags rf;
2883 	struct rq *rq;
2884 
2885 	rq = task_rq_lock(p, &rf);
2886 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2887 }
2888 
2889 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2890 {
2891 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2892 }
2893 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2894 
2895 /*
2896  * Change a given task's CPU affinity to the intersection of its current
2897  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2898  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2899  * If the resulting mask is empty, leave the affinity unchanged and return
2900  * -EINVAL.
2901  */
2902 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2903 				     struct cpumask *new_mask,
2904 				     const struct cpumask *subset_mask)
2905 {
2906 	struct cpumask *user_mask = NULL;
2907 	struct rq_flags rf;
2908 	struct rq *rq;
2909 	int err;
2910 
2911 	if (!p->user_cpus_ptr) {
2912 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2913 		if (!user_mask)
2914 			return -ENOMEM;
2915 	}
2916 
2917 	rq = task_rq_lock(p, &rf);
2918 
2919 	/*
2920 	 * Forcefully restricting the affinity of a deadline task is
2921 	 * likely to cause problems, so fail and noisily override the
2922 	 * mask entirely.
2923 	 */
2924 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2925 		err = -EPERM;
2926 		goto err_unlock;
2927 	}
2928 
2929 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2930 		err = -EINVAL;
2931 		goto err_unlock;
2932 	}
2933 
2934 	/*
2935 	 * We're about to butcher the task affinity, so keep track of what
2936 	 * the user asked for in case we're able to restore it later on.
2937 	 */
2938 	if (user_mask) {
2939 		cpumask_copy(user_mask, p->cpus_ptr);
2940 		p->user_cpus_ptr = user_mask;
2941 	}
2942 
2943 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2944 
2945 err_unlock:
2946 	task_rq_unlock(rq, p, &rf);
2947 	kfree(user_mask);
2948 	return err;
2949 }
2950 
2951 /*
2952  * Restrict the CPU affinity of task @p so that it is a subset of
2953  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2954  * old affinity mask. If the resulting mask is empty, we warn and walk
2955  * up the cpuset hierarchy until we find a suitable mask.
2956  */
2957 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2958 {
2959 	cpumask_var_t new_mask;
2960 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
2961 
2962 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
2963 
2964 	/*
2965 	 * __migrate_task() can fail silently in the face of concurrent
2966 	 * offlining of the chosen destination CPU, so take the hotplug
2967 	 * lock to ensure that the migration succeeds.
2968 	 */
2969 	cpus_read_lock();
2970 	if (!cpumask_available(new_mask))
2971 		goto out_set_mask;
2972 
2973 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2974 		goto out_free_mask;
2975 
2976 	/*
2977 	 * We failed to find a valid subset of the affinity mask for the
2978 	 * task, so override it based on its cpuset hierarchy.
2979 	 */
2980 	cpuset_cpus_allowed(p, new_mask);
2981 	override_mask = new_mask;
2982 
2983 out_set_mask:
2984 	if (printk_ratelimit()) {
2985 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2986 				task_pid_nr(p), p->comm,
2987 				cpumask_pr_args(override_mask));
2988 	}
2989 
2990 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2991 out_free_mask:
2992 	cpus_read_unlock();
2993 	free_cpumask_var(new_mask);
2994 }
2995 
2996 static int
2997 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2998 
2999 /*
3000  * Restore the affinity of a task @p which was previously restricted by a
3001  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3002  * @p->user_cpus_ptr.
3003  *
3004  * It is the caller's responsibility to serialise this with any calls to
3005  * force_compatible_cpus_allowed_ptr(@p).
3006  */
3007 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3008 {
3009 	struct cpumask *user_mask = p->user_cpus_ptr;
3010 	unsigned long flags;
3011 
3012 	/*
3013 	 * Try to restore the old affinity mask. If this fails, then
3014 	 * we free the mask explicitly to avoid it being inherited across
3015 	 * a subsequent fork().
3016 	 */
3017 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3018 		return;
3019 
3020 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3021 	user_mask = clear_user_cpus_ptr(p);
3022 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3023 
3024 	kfree(user_mask);
3025 }
3026 
3027 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3028 {
3029 #ifdef CONFIG_SCHED_DEBUG
3030 	unsigned int state = READ_ONCE(p->__state);
3031 
3032 	/*
3033 	 * We should never call set_task_cpu() on a blocked task,
3034 	 * ttwu() will sort out the placement.
3035 	 */
3036 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3037 
3038 	/*
3039 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3040 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3041 	 * time relying on p->on_rq.
3042 	 */
3043 	WARN_ON_ONCE(state == TASK_RUNNING &&
3044 		     p->sched_class == &fair_sched_class &&
3045 		     (p->on_rq && !task_on_rq_migrating(p)));
3046 
3047 #ifdef CONFIG_LOCKDEP
3048 	/*
3049 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3050 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3051 	 *
3052 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3053 	 * see task_group().
3054 	 *
3055 	 * Furthermore, all task_rq users should acquire both locks, see
3056 	 * task_rq_lock().
3057 	 */
3058 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3059 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3060 #endif
3061 	/*
3062 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3063 	 */
3064 	WARN_ON_ONCE(!cpu_online(new_cpu));
3065 
3066 	WARN_ON_ONCE(is_migration_disabled(p));
3067 #endif
3068 
3069 	trace_sched_migrate_task(p, new_cpu);
3070 
3071 	if (task_cpu(p) != new_cpu) {
3072 		if (p->sched_class->migrate_task_rq)
3073 			p->sched_class->migrate_task_rq(p, new_cpu);
3074 		p->se.nr_migrations++;
3075 		rseq_migrate(p);
3076 		perf_event_task_migrate(p);
3077 	}
3078 
3079 	__set_task_cpu(p, new_cpu);
3080 }
3081 
3082 #ifdef CONFIG_NUMA_BALANCING
3083 static void __migrate_swap_task(struct task_struct *p, int cpu)
3084 {
3085 	if (task_on_rq_queued(p)) {
3086 		struct rq *src_rq, *dst_rq;
3087 		struct rq_flags srf, drf;
3088 
3089 		src_rq = task_rq(p);
3090 		dst_rq = cpu_rq(cpu);
3091 
3092 		rq_pin_lock(src_rq, &srf);
3093 		rq_pin_lock(dst_rq, &drf);
3094 
3095 		deactivate_task(src_rq, p, 0);
3096 		set_task_cpu(p, cpu);
3097 		activate_task(dst_rq, p, 0);
3098 		check_preempt_curr(dst_rq, p, 0);
3099 
3100 		rq_unpin_lock(dst_rq, &drf);
3101 		rq_unpin_lock(src_rq, &srf);
3102 
3103 	} else {
3104 		/*
3105 		 * Task isn't running anymore; make it appear like we migrated
3106 		 * it before it went to sleep. This means on wakeup we make the
3107 		 * previous CPU our target instead of where it really is.
3108 		 */
3109 		p->wake_cpu = cpu;
3110 	}
3111 }
3112 
3113 struct migration_swap_arg {
3114 	struct task_struct *src_task, *dst_task;
3115 	int src_cpu, dst_cpu;
3116 };
3117 
3118 static int migrate_swap_stop(void *data)
3119 {
3120 	struct migration_swap_arg *arg = data;
3121 	struct rq *src_rq, *dst_rq;
3122 	int ret = -EAGAIN;
3123 
3124 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3125 		return -EAGAIN;
3126 
3127 	src_rq = cpu_rq(arg->src_cpu);
3128 	dst_rq = cpu_rq(arg->dst_cpu);
3129 
3130 	double_raw_lock(&arg->src_task->pi_lock,
3131 			&arg->dst_task->pi_lock);
3132 	double_rq_lock(src_rq, dst_rq);
3133 
3134 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3135 		goto unlock;
3136 
3137 	if (task_cpu(arg->src_task) != arg->src_cpu)
3138 		goto unlock;
3139 
3140 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3141 		goto unlock;
3142 
3143 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3144 		goto unlock;
3145 
3146 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3147 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3148 
3149 	ret = 0;
3150 
3151 unlock:
3152 	double_rq_unlock(src_rq, dst_rq);
3153 	raw_spin_unlock(&arg->dst_task->pi_lock);
3154 	raw_spin_unlock(&arg->src_task->pi_lock);
3155 
3156 	return ret;
3157 }
3158 
3159 /*
3160  * Cross migrate two tasks
3161  */
3162 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3163 		int target_cpu, int curr_cpu)
3164 {
3165 	struct migration_swap_arg arg;
3166 	int ret = -EINVAL;
3167 
3168 	arg = (struct migration_swap_arg){
3169 		.src_task = cur,
3170 		.src_cpu = curr_cpu,
3171 		.dst_task = p,
3172 		.dst_cpu = target_cpu,
3173 	};
3174 
3175 	if (arg.src_cpu == arg.dst_cpu)
3176 		goto out;
3177 
3178 	/*
3179 	 * These three tests are all lockless; this is OK since all of them
3180 	 * will be re-checked with proper locks held further down the line.
3181 	 */
3182 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3183 		goto out;
3184 
3185 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3186 		goto out;
3187 
3188 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3189 		goto out;
3190 
3191 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3192 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3193 
3194 out:
3195 	return ret;
3196 }
3197 #endif /* CONFIG_NUMA_BALANCING */
3198 
3199 /*
3200  * wait_task_inactive - wait for a thread to unschedule.
3201  *
3202  * If @match_state is nonzero, it's the @p->state value just checked and
3203  * not expected to change.  If it changes, i.e. @p might have woken up,
3204  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3205  * we return a positive number (its total switch count).  If a second call
3206  * a short while later returns the same number, the caller can be sure that
3207  * @p has remained unscheduled the whole time.
3208  *
3209  * The caller must ensure that the task *will* unschedule sometime soon,
3210  * else this function might spin for a *long* time. This function can't
3211  * be called with interrupts off, or it may introduce deadlock with
3212  * smp_call_function() if an IPI is sent by the same process we are
3213  * waiting to become inactive.
3214  */
3215 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3216 {
3217 	int running, queued;
3218 	struct rq_flags rf;
3219 	unsigned long ncsw;
3220 	struct rq *rq;
3221 
3222 	for (;;) {
3223 		/*
3224 		 * We do the initial early heuristics without holding
3225 		 * any task-queue locks at all. We'll only try to get
3226 		 * the runqueue lock when things look like they will
3227 		 * work out!
3228 		 */
3229 		rq = task_rq(p);
3230 
3231 		/*
3232 		 * If the task is actively running on another CPU
3233 		 * still, just relax and busy-wait without holding
3234 		 * any locks.
3235 		 *
3236 		 * NOTE! Since we don't hold any locks, it's not
3237 		 * even sure that "rq" stays as the right runqueue!
3238 		 * But we don't care, since "task_running()" will
3239 		 * return false if the runqueue has changed and p
3240 		 * is actually now running somewhere else!
3241 		 */
3242 		while (task_running(rq, p)) {
3243 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3244 				return 0;
3245 			cpu_relax();
3246 		}
3247 
3248 		/*
3249 		 * Ok, time to look more closely! We need the rq
3250 		 * lock now, to be *sure*. If we're wrong, we'll
3251 		 * just go back and repeat.
3252 		 */
3253 		rq = task_rq_lock(p, &rf);
3254 		trace_sched_wait_task(p);
3255 		running = task_running(rq, p);
3256 		queued = task_on_rq_queued(p);
3257 		ncsw = 0;
3258 		if (!match_state || READ_ONCE(p->__state) == match_state)
3259 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3260 		task_rq_unlock(rq, p, &rf);
3261 
3262 		/*
3263 		 * If it changed from the expected state, bail out now.
3264 		 */
3265 		if (unlikely(!ncsw))
3266 			break;
3267 
3268 		/*
3269 		 * Was it really running after all now that we
3270 		 * checked with the proper locks actually held?
3271 		 *
3272 		 * Oops. Go back and try again..
3273 		 */
3274 		if (unlikely(running)) {
3275 			cpu_relax();
3276 			continue;
3277 		}
3278 
3279 		/*
3280 		 * It's not enough that it's not actively running,
3281 		 * it must be off the runqueue _entirely_, and not
3282 		 * preempted!
3283 		 *
3284 		 * So if it was still runnable (but just not actively
3285 		 * running right now), it's preempted, and we should
3286 		 * yield - it could be a while.
3287 		 */
3288 		if (unlikely(queued)) {
3289 			ktime_t to = NSEC_PER_SEC / HZ;
3290 
3291 			set_current_state(TASK_UNINTERRUPTIBLE);
3292 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3293 			continue;
3294 		}
3295 
3296 		/*
3297 		 * Ahh, all good. It wasn't running, and it wasn't
3298 		 * runnable, which means that it will never become
3299 		 * running in the future either. We're all done!
3300 		 */
3301 		break;
3302 	}
3303 
3304 	return ncsw;
3305 }
3306 
3307 /***
3308  * kick_process - kick a running thread to enter/exit the kernel
3309  * @p: the to-be-kicked thread
3310  *
3311  * Cause a process which is running on another CPU to enter
3312  * kernel-mode, without any delay. (to get signals handled.)
3313  *
3314  * NOTE: this function doesn't have to take the runqueue lock,
3315  * because all it wants to ensure is that the remote task enters
3316  * the kernel. If the IPI races and the task has been migrated
3317  * to another CPU then no harm is done and the purpose has been
3318  * achieved as well.
3319  */
3320 void kick_process(struct task_struct *p)
3321 {
3322 	int cpu;
3323 
3324 	preempt_disable();
3325 	cpu = task_cpu(p);
3326 	if ((cpu != smp_processor_id()) && task_curr(p))
3327 		smp_send_reschedule(cpu);
3328 	preempt_enable();
3329 }
3330 EXPORT_SYMBOL_GPL(kick_process);
3331 
3332 /*
3333  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3334  *
3335  * A few notes on cpu_active vs cpu_online:
3336  *
3337  *  - cpu_active must be a subset of cpu_online
3338  *
3339  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3340  *    see __set_cpus_allowed_ptr(). At this point the newly online
3341  *    CPU isn't yet part of the sched domains, and balancing will not
3342  *    see it.
3343  *
3344  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3345  *    avoid the load balancer to place new tasks on the to be removed
3346  *    CPU. Existing tasks will remain running there and will be taken
3347  *    off.
3348  *
3349  * This means that fallback selection must not select !active CPUs.
3350  * And can assume that any active CPU must be online. Conversely
3351  * select_task_rq() below may allow selection of !active CPUs in order
3352  * to satisfy the above rules.
3353  */
3354 static int select_fallback_rq(int cpu, struct task_struct *p)
3355 {
3356 	int nid = cpu_to_node(cpu);
3357 	const struct cpumask *nodemask = NULL;
3358 	enum { cpuset, possible, fail } state = cpuset;
3359 	int dest_cpu;
3360 
3361 	/*
3362 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3363 	 * will return -1. There is no CPU on the node, and we should
3364 	 * select the CPU on the other node.
3365 	 */
3366 	if (nid != -1) {
3367 		nodemask = cpumask_of_node(nid);
3368 
3369 		/* Look for allowed, online CPU in same node. */
3370 		for_each_cpu(dest_cpu, nodemask) {
3371 			if (is_cpu_allowed(p, dest_cpu))
3372 				return dest_cpu;
3373 		}
3374 	}
3375 
3376 	for (;;) {
3377 		/* Any allowed, online CPU? */
3378 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3379 			if (!is_cpu_allowed(p, dest_cpu))
3380 				continue;
3381 
3382 			goto out;
3383 		}
3384 
3385 		/* No more Mr. Nice Guy. */
3386 		switch (state) {
3387 		case cpuset:
3388 			if (cpuset_cpus_allowed_fallback(p)) {
3389 				state = possible;
3390 				break;
3391 			}
3392 			fallthrough;
3393 		case possible:
3394 			/*
3395 			 * XXX When called from select_task_rq() we only
3396 			 * hold p->pi_lock and again violate locking order.
3397 			 *
3398 			 * More yuck to audit.
3399 			 */
3400 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3401 			state = fail;
3402 			break;
3403 		case fail:
3404 			BUG();
3405 			break;
3406 		}
3407 	}
3408 
3409 out:
3410 	if (state != cpuset) {
3411 		/*
3412 		 * Don't tell them about moving exiting tasks or
3413 		 * kernel threads (both mm NULL), since they never
3414 		 * leave kernel.
3415 		 */
3416 		if (p->mm && printk_ratelimit()) {
3417 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3418 					task_pid_nr(p), p->comm, cpu);
3419 		}
3420 	}
3421 
3422 	return dest_cpu;
3423 }
3424 
3425 /*
3426  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3427  */
3428 static inline
3429 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3430 {
3431 	lockdep_assert_held(&p->pi_lock);
3432 
3433 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3434 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3435 	else
3436 		cpu = cpumask_any(p->cpus_ptr);
3437 
3438 	/*
3439 	 * In order not to call set_task_cpu() on a blocking task we need
3440 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3441 	 * CPU.
3442 	 *
3443 	 * Since this is common to all placement strategies, this lives here.
3444 	 *
3445 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3446 	 *   not worry about this generic constraint ]
3447 	 */
3448 	if (unlikely(!is_cpu_allowed(p, cpu)))
3449 		cpu = select_fallback_rq(task_cpu(p), p);
3450 
3451 	return cpu;
3452 }
3453 
3454 void sched_set_stop_task(int cpu, struct task_struct *stop)
3455 {
3456 	static struct lock_class_key stop_pi_lock;
3457 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3458 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3459 
3460 	if (stop) {
3461 		/*
3462 		 * Make it appear like a SCHED_FIFO task, its something
3463 		 * userspace knows about and won't get confused about.
3464 		 *
3465 		 * Also, it will make PI more or less work without too
3466 		 * much confusion -- but then, stop work should not
3467 		 * rely on PI working anyway.
3468 		 */
3469 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3470 
3471 		stop->sched_class = &stop_sched_class;
3472 
3473 		/*
3474 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3475 		 * adjust the effective priority of a task. As a result,
3476 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3477 		 * which can then trigger wakeups of the stop thread to push
3478 		 * around the current task.
3479 		 *
3480 		 * The stop task itself will never be part of the PI-chain, it
3481 		 * never blocks, therefore that ->pi_lock recursion is safe.
3482 		 * Tell lockdep about this by placing the stop->pi_lock in its
3483 		 * own class.
3484 		 */
3485 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3486 	}
3487 
3488 	cpu_rq(cpu)->stop = stop;
3489 
3490 	if (old_stop) {
3491 		/*
3492 		 * Reset it back to a normal scheduling class so that
3493 		 * it can die in pieces.
3494 		 */
3495 		old_stop->sched_class = &rt_sched_class;
3496 	}
3497 }
3498 
3499 #else /* CONFIG_SMP */
3500 
3501 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3502 					 const struct cpumask *new_mask,
3503 					 u32 flags)
3504 {
3505 	return set_cpus_allowed_ptr(p, new_mask);
3506 }
3507 
3508 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3509 
3510 static inline bool rq_has_pinned_tasks(struct rq *rq)
3511 {
3512 	return false;
3513 }
3514 
3515 #endif /* !CONFIG_SMP */
3516 
3517 static void
3518 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3519 {
3520 	struct rq *rq;
3521 
3522 	if (!schedstat_enabled())
3523 		return;
3524 
3525 	rq = this_rq();
3526 
3527 #ifdef CONFIG_SMP
3528 	if (cpu == rq->cpu) {
3529 		__schedstat_inc(rq->ttwu_local);
3530 		__schedstat_inc(p->stats.nr_wakeups_local);
3531 	} else {
3532 		struct sched_domain *sd;
3533 
3534 		__schedstat_inc(p->stats.nr_wakeups_remote);
3535 		rcu_read_lock();
3536 		for_each_domain(rq->cpu, sd) {
3537 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3538 				__schedstat_inc(sd->ttwu_wake_remote);
3539 				break;
3540 			}
3541 		}
3542 		rcu_read_unlock();
3543 	}
3544 
3545 	if (wake_flags & WF_MIGRATED)
3546 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3547 #endif /* CONFIG_SMP */
3548 
3549 	__schedstat_inc(rq->ttwu_count);
3550 	__schedstat_inc(p->stats.nr_wakeups);
3551 
3552 	if (wake_flags & WF_SYNC)
3553 		__schedstat_inc(p->stats.nr_wakeups_sync);
3554 }
3555 
3556 /*
3557  * Mark the task runnable and perform wakeup-preemption.
3558  */
3559 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3560 			   struct rq_flags *rf)
3561 {
3562 	check_preempt_curr(rq, p, wake_flags);
3563 	WRITE_ONCE(p->__state, TASK_RUNNING);
3564 	trace_sched_wakeup(p);
3565 
3566 #ifdef CONFIG_SMP
3567 	if (p->sched_class->task_woken) {
3568 		/*
3569 		 * Our task @p is fully woken up and running; so it's safe to
3570 		 * drop the rq->lock, hereafter rq is only used for statistics.
3571 		 */
3572 		rq_unpin_lock(rq, rf);
3573 		p->sched_class->task_woken(rq, p);
3574 		rq_repin_lock(rq, rf);
3575 	}
3576 
3577 	if (rq->idle_stamp) {
3578 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3579 		u64 max = 2*rq->max_idle_balance_cost;
3580 
3581 		update_avg(&rq->avg_idle, delta);
3582 
3583 		if (rq->avg_idle > max)
3584 			rq->avg_idle = max;
3585 
3586 		rq->wake_stamp = jiffies;
3587 		rq->wake_avg_idle = rq->avg_idle / 2;
3588 
3589 		rq->idle_stamp = 0;
3590 	}
3591 #endif
3592 }
3593 
3594 static void
3595 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3596 		 struct rq_flags *rf)
3597 {
3598 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3599 
3600 	lockdep_assert_rq_held(rq);
3601 
3602 	if (p->sched_contributes_to_load)
3603 		rq->nr_uninterruptible--;
3604 
3605 #ifdef CONFIG_SMP
3606 	if (wake_flags & WF_MIGRATED)
3607 		en_flags |= ENQUEUE_MIGRATED;
3608 	else
3609 #endif
3610 	if (p->in_iowait) {
3611 		delayacct_blkio_end(p);
3612 		atomic_dec(&task_rq(p)->nr_iowait);
3613 	}
3614 
3615 	activate_task(rq, p, en_flags);
3616 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3617 }
3618 
3619 /*
3620  * Consider @p being inside a wait loop:
3621  *
3622  *   for (;;) {
3623  *      set_current_state(TASK_UNINTERRUPTIBLE);
3624  *
3625  *      if (CONDITION)
3626  *         break;
3627  *
3628  *      schedule();
3629  *   }
3630  *   __set_current_state(TASK_RUNNING);
3631  *
3632  * between set_current_state() and schedule(). In this case @p is still
3633  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3634  * an atomic manner.
3635  *
3636  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3637  * then schedule() must still happen and p->state can be changed to
3638  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3639  * need to do a full wakeup with enqueue.
3640  *
3641  * Returns: %true when the wakeup is done,
3642  *          %false otherwise.
3643  */
3644 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3645 {
3646 	struct rq_flags rf;
3647 	struct rq *rq;
3648 	int ret = 0;
3649 
3650 	rq = __task_rq_lock(p, &rf);
3651 	if (task_on_rq_queued(p)) {
3652 		/* check_preempt_curr() may use rq clock */
3653 		update_rq_clock(rq);
3654 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3655 		ret = 1;
3656 	}
3657 	__task_rq_unlock(rq, &rf);
3658 
3659 	return ret;
3660 }
3661 
3662 #ifdef CONFIG_SMP
3663 void sched_ttwu_pending(void *arg)
3664 {
3665 	struct llist_node *llist = arg;
3666 	struct rq *rq = this_rq();
3667 	struct task_struct *p, *t;
3668 	struct rq_flags rf;
3669 
3670 	if (!llist)
3671 		return;
3672 
3673 	/*
3674 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3675 	 * Races such that false-negatives are possible, since they
3676 	 * are shorter lived that false-positives would be.
3677 	 */
3678 	WRITE_ONCE(rq->ttwu_pending, 0);
3679 
3680 	rq_lock_irqsave(rq, &rf);
3681 	update_rq_clock(rq);
3682 
3683 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3684 		if (WARN_ON_ONCE(p->on_cpu))
3685 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3686 
3687 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3688 			set_task_cpu(p, cpu_of(rq));
3689 
3690 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3691 	}
3692 
3693 	rq_unlock_irqrestore(rq, &rf);
3694 }
3695 
3696 void send_call_function_single_ipi(int cpu)
3697 {
3698 	struct rq *rq = cpu_rq(cpu);
3699 
3700 	if (!set_nr_if_polling(rq->idle))
3701 		arch_send_call_function_single_ipi(cpu);
3702 	else
3703 		trace_sched_wake_idle_without_ipi(cpu);
3704 }
3705 
3706 /*
3707  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3708  * necessary. The wakee CPU on receipt of the IPI will queue the task
3709  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3710  * of the wakeup instead of the waker.
3711  */
3712 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3713 {
3714 	struct rq *rq = cpu_rq(cpu);
3715 
3716 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3717 
3718 	WRITE_ONCE(rq->ttwu_pending, 1);
3719 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3720 }
3721 
3722 void wake_up_if_idle(int cpu)
3723 {
3724 	struct rq *rq = cpu_rq(cpu);
3725 	struct rq_flags rf;
3726 
3727 	rcu_read_lock();
3728 
3729 	if (!is_idle_task(rcu_dereference(rq->curr)))
3730 		goto out;
3731 
3732 	rq_lock_irqsave(rq, &rf);
3733 	if (is_idle_task(rq->curr))
3734 		resched_curr(rq);
3735 	/* Else CPU is not idle, do nothing here: */
3736 	rq_unlock_irqrestore(rq, &rf);
3737 
3738 out:
3739 	rcu_read_unlock();
3740 }
3741 
3742 bool cpus_share_cache(int this_cpu, int that_cpu)
3743 {
3744 	if (this_cpu == that_cpu)
3745 		return true;
3746 
3747 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3748 }
3749 
3750 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3751 {
3752 	/*
3753 	 * Do not complicate things with the async wake_list while the CPU is
3754 	 * in hotplug state.
3755 	 */
3756 	if (!cpu_active(cpu))
3757 		return false;
3758 
3759 	/*
3760 	 * If the CPU does not share cache, then queue the task on the
3761 	 * remote rqs wakelist to avoid accessing remote data.
3762 	 */
3763 	if (!cpus_share_cache(smp_processor_id(), cpu))
3764 		return true;
3765 
3766 	/*
3767 	 * If the task is descheduling and the only running task on the
3768 	 * CPU then use the wakelist to offload the task activation to
3769 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3770 	 * nr_running is checked to avoid unnecessary task stacking.
3771 	 */
3772 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3773 		return true;
3774 
3775 	return false;
3776 }
3777 
3778 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3779 {
3780 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3781 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3782 			return false;
3783 
3784 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3785 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3786 		return true;
3787 	}
3788 
3789 	return false;
3790 }
3791 
3792 #else /* !CONFIG_SMP */
3793 
3794 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3795 {
3796 	return false;
3797 }
3798 
3799 #endif /* CONFIG_SMP */
3800 
3801 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3802 {
3803 	struct rq *rq = cpu_rq(cpu);
3804 	struct rq_flags rf;
3805 
3806 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3807 		return;
3808 
3809 	rq_lock(rq, &rf);
3810 	update_rq_clock(rq);
3811 	ttwu_do_activate(rq, p, wake_flags, &rf);
3812 	rq_unlock(rq, &rf);
3813 }
3814 
3815 /*
3816  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3817  *
3818  * The caller holds p::pi_lock if p != current or has preemption
3819  * disabled when p == current.
3820  *
3821  * The rules of PREEMPT_RT saved_state:
3822  *
3823  *   The related locking code always holds p::pi_lock when updating
3824  *   p::saved_state, which means the code is fully serialized in both cases.
3825  *
3826  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3827  *   bits set. This allows to distinguish all wakeup scenarios.
3828  */
3829 static __always_inline
3830 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3831 {
3832 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3833 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3834 			     state != TASK_RTLOCK_WAIT);
3835 	}
3836 
3837 	if (READ_ONCE(p->__state) & state) {
3838 		*success = 1;
3839 		return true;
3840 	}
3841 
3842 #ifdef CONFIG_PREEMPT_RT
3843 	/*
3844 	 * Saved state preserves the task state across blocking on
3845 	 * an RT lock.  If the state matches, set p::saved_state to
3846 	 * TASK_RUNNING, but do not wake the task because it waits
3847 	 * for a lock wakeup. Also indicate success because from
3848 	 * the regular waker's point of view this has succeeded.
3849 	 *
3850 	 * After acquiring the lock the task will restore p::__state
3851 	 * from p::saved_state which ensures that the regular
3852 	 * wakeup is not lost. The restore will also set
3853 	 * p::saved_state to TASK_RUNNING so any further tests will
3854 	 * not result in false positives vs. @success
3855 	 */
3856 	if (p->saved_state & state) {
3857 		p->saved_state = TASK_RUNNING;
3858 		*success = 1;
3859 	}
3860 #endif
3861 	return false;
3862 }
3863 
3864 /*
3865  * Notes on Program-Order guarantees on SMP systems.
3866  *
3867  *  MIGRATION
3868  *
3869  * The basic program-order guarantee on SMP systems is that when a task [t]
3870  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3871  * execution on its new CPU [c1].
3872  *
3873  * For migration (of runnable tasks) this is provided by the following means:
3874  *
3875  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3876  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3877  *     rq(c1)->lock (if not at the same time, then in that order).
3878  *  C) LOCK of the rq(c1)->lock scheduling in task
3879  *
3880  * Release/acquire chaining guarantees that B happens after A and C after B.
3881  * Note: the CPU doing B need not be c0 or c1
3882  *
3883  * Example:
3884  *
3885  *   CPU0            CPU1            CPU2
3886  *
3887  *   LOCK rq(0)->lock
3888  *   sched-out X
3889  *   sched-in Y
3890  *   UNLOCK rq(0)->lock
3891  *
3892  *                                   LOCK rq(0)->lock // orders against CPU0
3893  *                                   dequeue X
3894  *                                   UNLOCK rq(0)->lock
3895  *
3896  *                                   LOCK rq(1)->lock
3897  *                                   enqueue X
3898  *                                   UNLOCK rq(1)->lock
3899  *
3900  *                   LOCK rq(1)->lock // orders against CPU2
3901  *                   sched-out Z
3902  *                   sched-in X
3903  *                   UNLOCK rq(1)->lock
3904  *
3905  *
3906  *  BLOCKING -- aka. SLEEP + WAKEUP
3907  *
3908  * For blocking we (obviously) need to provide the same guarantee as for
3909  * migration. However the means are completely different as there is no lock
3910  * chain to provide order. Instead we do:
3911  *
3912  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3913  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3914  *
3915  * Example:
3916  *
3917  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3918  *
3919  *   LOCK rq(0)->lock LOCK X->pi_lock
3920  *   dequeue X
3921  *   sched-out X
3922  *   smp_store_release(X->on_cpu, 0);
3923  *
3924  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3925  *                    X->state = WAKING
3926  *                    set_task_cpu(X,2)
3927  *
3928  *                    LOCK rq(2)->lock
3929  *                    enqueue X
3930  *                    X->state = RUNNING
3931  *                    UNLOCK rq(2)->lock
3932  *
3933  *                                          LOCK rq(2)->lock // orders against CPU1
3934  *                                          sched-out Z
3935  *                                          sched-in X
3936  *                                          UNLOCK rq(2)->lock
3937  *
3938  *                    UNLOCK X->pi_lock
3939  *   UNLOCK rq(0)->lock
3940  *
3941  *
3942  * However, for wakeups there is a second guarantee we must provide, namely we
3943  * must ensure that CONDITION=1 done by the caller can not be reordered with
3944  * accesses to the task state; see try_to_wake_up() and set_current_state().
3945  */
3946 
3947 /**
3948  * try_to_wake_up - wake up a thread
3949  * @p: the thread to be awakened
3950  * @state: the mask of task states that can be woken
3951  * @wake_flags: wake modifier flags (WF_*)
3952  *
3953  * Conceptually does:
3954  *
3955  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3956  *
3957  * If the task was not queued/runnable, also place it back on a runqueue.
3958  *
3959  * This function is atomic against schedule() which would dequeue the task.
3960  *
3961  * It issues a full memory barrier before accessing @p->state, see the comment
3962  * with set_current_state().
3963  *
3964  * Uses p->pi_lock to serialize against concurrent wake-ups.
3965  *
3966  * Relies on p->pi_lock stabilizing:
3967  *  - p->sched_class
3968  *  - p->cpus_ptr
3969  *  - p->sched_task_group
3970  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3971  *
3972  * Tries really hard to only take one task_rq(p)->lock for performance.
3973  * Takes rq->lock in:
3974  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3975  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3976  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3977  *
3978  * As a consequence we race really badly with just about everything. See the
3979  * many memory barriers and their comments for details.
3980  *
3981  * Return: %true if @p->state changes (an actual wakeup was done),
3982  *	   %false otherwise.
3983  */
3984 static int
3985 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3986 {
3987 	unsigned long flags;
3988 	int cpu, success = 0;
3989 
3990 	preempt_disable();
3991 	if (p == current) {
3992 		/*
3993 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3994 		 * == smp_processor_id()'. Together this means we can special
3995 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3996 		 * without taking any locks.
3997 		 *
3998 		 * In particular:
3999 		 *  - we rely on Program-Order guarantees for all the ordering,
4000 		 *  - we're serialized against set_special_state() by virtue of
4001 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4002 		 */
4003 		if (!ttwu_state_match(p, state, &success))
4004 			goto out;
4005 
4006 		trace_sched_waking(p);
4007 		WRITE_ONCE(p->__state, TASK_RUNNING);
4008 		trace_sched_wakeup(p);
4009 		goto out;
4010 	}
4011 
4012 	/*
4013 	 * If we are going to wake up a thread waiting for CONDITION we
4014 	 * need to ensure that CONDITION=1 done by the caller can not be
4015 	 * reordered with p->state check below. This pairs with smp_store_mb()
4016 	 * in set_current_state() that the waiting thread does.
4017 	 */
4018 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4019 	smp_mb__after_spinlock();
4020 	if (!ttwu_state_match(p, state, &success))
4021 		goto unlock;
4022 
4023 	trace_sched_waking(p);
4024 
4025 	/*
4026 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4027 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4028 	 * in smp_cond_load_acquire() below.
4029 	 *
4030 	 * sched_ttwu_pending()			try_to_wake_up()
4031 	 *   STORE p->on_rq = 1			  LOAD p->state
4032 	 *   UNLOCK rq->lock
4033 	 *
4034 	 * __schedule() (switch to task 'p')
4035 	 *   LOCK rq->lock			  smp_rmb();
4036 	 *   smp_mb__after_spinlock();
4037 	 *   UNLOCK rq->lock
4038 	 *
4039 	 * [task p]
4040 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4041 	 *
4042 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4043 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4044 	 *
4045 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4046 	 */
4047 	smp_rmb();
4048 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4049 		goto unlock;
4050 
4051 #ifdef CONFIG_SMP
4052 	/*
4053 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4054 	 * possible to, falsely, observe p->on_cpu == 0.
4055 	 *
4056 	 * One must be running (->on_cpu == 1) in order to remove oneself
4057 	 * from the runqueue.
4058 	 *
4059 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4060 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4061 	 *   UNLOCK rq->lock
4062 	 *
4063 	 * __schedule() (put 'p' to sleep)
4064 	 *   LOCK rq->lock			  smp_rmb();
4065 	 *   smp_mb__after_spinlock();
4066 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4067 	 *
4068 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4069 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4070 	 *
4071 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4072 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4073 	 * care about it's own p->state. See the comment in __schedule().
4074 	 */
4075 	smp_acquire__after_ctrl_dep();
4076 
4077 	/*
4078 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4079 	 * == 0), which means we need to do an enqueue, change p->state to
4080 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4081 	 * enqueue, such as ttwu_queue_wakelist().
4082 	 */
4083 	WRITE_ONCE(p->__state, TASK_WAKING);
4084 
4085 	/*
4086 	 * If the owning (remote) CPU is still in the middle of schedule() with
4087 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4088 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4089 	 * let the waker make forward progress. This is safe because IRQs are
4090 	 * disabled and the IPI will deliver after on_cpu is cleared.
4091 	 *
4092 	 * Ensure we load task_cpu(p) after p->on_cpu:
4093 	 *
4094 	 * set_task_cpu(p, cpu);
4095 	 *   STORE p->cpu = @cpu
4096 	 * __schedule() (switch to task 'p')
4097 	 *   LOCK rq->lock
4098 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4099 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4100 	 *
4101 	 * to ensure we observe the correct CPU on which the task is currently
4102 	 * scheduling.
4103 	 */
4104 	if (smp_load_acquire(&p->on_cpu) &&
4105 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4106 		goto unlock;
4107 
4108 	/*
4109 	 * If the owning (remote) CPU is still in the middle of schedule() with
4110 	 * this task as prev, wait until it's done referencing the task.
4111 	 *
4112 	 * Pairs with the smp_store_release() in finish_task().
4113 	 *
4114 	 * This ensures that tasks getting woken will be fully ordered against
4115 	 * their previous state and preserve Program Order.
4116 	 */
4117 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4118 
4119 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4120 	if (task_cpu(p) != cpu) {
4121 		if (p->in_iowait) {
4122 			delayacct_blkio_end(p);
4123 			atomic_dec(&task_rq(p)->nr_iowait);
4124 		}
4125 
4126 		wake_flags |= WF_MIGRATED;
4127 		psi_ttwu_dequeue(p);
4128 		set_task_cpu(p, cpu);
4129 	}
4130 #else
4131 	cpu = task_cpu(p);
4132 #endif /* CONFIG_SMP */
4133 
4134 	ttwu_queue(p, cpu, wake_flags);
4135 unlock:
4136 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4137 out:
4138 	if (success)
4139 		ttwu_stat(p, task_cpu(p), wake_flags);
4140 	preempt_enable();
4141 
4142 	return success;
4143 }
4144 
4145 /**
4146  * task_call_func - Invoke a function on task in fixed state
4147  * @p: Process for which the function is to be invoked, can be @current.
4148  * @func: Function to invoke.
4149  * @arg: Argument to function.
4150  *
4151  * Fix the task in it's current state by avoiding wakeups and or rq operations
4152  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4153  * to work out what the state is, if required.  Given that @func can be invoked
4154  * with a runqueue lock held, it had better be quite lightweight.
4155  *
4156  * Returns:
4157  *   Whatever @func returns
4158  */
4159 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4160 {
4161 	struct rq *rq = NULL;
4162 	unsigned int state;
4163 	struct rq_flags rf;
4164 	int ret;
4165 
4166 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4167 
4168 	state = READ_ONCE(p->__state);
4169 
4170 	/*
4171 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4172 	 * possible to, falsely, observe p->on_rq == 0.
4173 	 *
4174 	 * See try_to_wake_up() for a longer comment.
4175 	 */
4176 	smp_rmb();
4177 
4178 	/*
4179 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4180 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4181 	 * locks at the end, see ttwu_queue_wakelist().
4182 	 */
4183 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4184 		rq = __task_rq_lock(p, &rf);
4185 
4186 	/*
4187 	 * At this point the task is pinned; either:
4188 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4189 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4190 	 *  - queued, and we're holding off schedule	 (rq->lock)
4191 	 *  - running, and we're holding off de-schedule (rq->lock)
4192 	 *
4193 	 * The called function (@func) can use: task_curr(), p->on_rq and
4194 	 * p->__state to differentiate between these states.
4195 	 */
4196 	ret = func(p, arg);
4197 
4198 	if (rq)
4199 		rq_unlock(rq, &rf);
4200 
4201 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4202 	return ret;
4203 }
4204 
4205 /**
4206  * wake_up_process - Wake up a specific process
4207  * @p: The process to be woken up.
4208  *
4209  * Attempt to wake up the nominated process and move it to the set of runnable
4210  * processes.
4211  *
4212  * Return: 1 if the process was woken up, 0 if it was already running.
4213  *
4214  * This function executes a full memory barrier before accessing the task state.
4215  */
4216 int wake_up_process(struct task_struct *p)
4217 {
4218 	return try_to_wake_up(p, TASK_NORMAL, 0);
4219 }
4220 EXPORT_SYMBOL(wake_up_process);
4221 
4222 int wake_up_state(struct task_struct *p, unsigned int state)
4223 {
4224 	return try_to_wake_up(p, state, 0);
4225 }
4226 
4227 /*
4228  * Perform scheduler related setup for a newly forked process p.
4229  * p is forked by current.
4230  *
4231  * __sched_fork() is basic setup used by init_idle() too:
4232  */
4233 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4234 {
4235 	p->on_rq			= 0;
4236 
4237 	p->se.on_rq			= 0;
4238 	p->se.exec_start		= 0;
4239 	p->se.sum_exec_runtime		= 0;
4240 	p->se.prev_sum_exec_runtime	= 0;
4241 	p->se.nr_migrations		= 0;
4242 	p->se.vruntime			= 0;
4243 	INIT_LIST_HEAD(&p->se.group_node);
4244 
4245 #ifdef CONFIG_FAIR_GROUP_SCHED
4246 	p->se.cfs_rq			= NULL;
4247 #endif
4248 
4249 #ifdef CONFIG_SCHEDSTATS
4250 	/* Even if schedstat is disabled, there should not be garbage */
4251 	memset(&p->stats, 0, sizeof(p->stats));
4252 #endif
4253 
4254 	RB_CLEAR_NODE(&p->dl.rb_node);
4255 	init_dl_task_timer(&p->dl);
4256 	init_dl_inactive_task_timer(&p->dl);
4257 	__dl_clear_params(p);
4258 
4259 	INIT_LIST_HEAD(&p->rt.run_list);
4260 	p->rt.timeout		= 0;
4261 	p->rt.time_slice	= sched_rr_timeslice;
4262 	p->rt.on_rq		= 0;
4263 	p->rt.on_list		= 0;
4264 
4265 #ifdef CONFIG_PREEMPT_NOTIFIERS
4266 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4267 #endif
4268 
4269 #ifdef CONFIG_COMPACTION
4270 	p->capture_control = NULL;
4271 #endif
4272 	init_numa_balancing(clone_flags, p);
4273 #ifdef CONFIG_SMP
4274 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4275 	p->migration_pending = NULL;
4276 #endif
4277 }
4278 
4279 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4280 
4281 #ifdef CONFIG_NUMA_BALANCING
4282 
4283 void set_numabalancing_state(bool enabled)
4284 {
4285 	if (enabled)
4286 		static_branch_enable(&sched_numa_balancing);
4287 	else
4288 		static_branch_disable(&sched_numa_balancing);
4289 }
4290 
4291 #ifdef CONFIG_PROC_SYSCTL
4292 int sysctl_numa_balancing(struct ctl_table *table, int write,
4293 			  void *buffer, size_t *lenp, loff_t *ppos)
4294 {
4295 	struct ctl_table t;
4296 	int err;
4297 	int state = static_branch_likely(&sched_numa_balancing);
4298 
4299 	if (write && !capable(CAP_SYS_ADMIN))
4300 		return -EPERM;
4301 
4302 	t = *table;
4303 	t.data = &state;
4304 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4305 	if (err < 0)
4306 		return err;
4307 	if (write)
4308 		set_numabalancing_state(state);
4309 	return err;
4310 }
4311 #endif
4312 #endif
4313 
4314 #ifdef CONFIG_SCHEDSTATS
4315 
4316 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4317 
4318 static void set_schedstats(bool enabled)
4319 {
4320 	if (enabled)
4321 		static_branch_enable(&sched_schedstats);
4322 	else
4323 		static_branch_disable(&sched_schedstats);
4324 }
4325 
4326 void force_schedstat_enabled(void)
4327 {
4328 	if (!schedstat_enabled()) {
4329 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4330 		static_branch_enable(&sched_schedstats);
4331 	}
4332 }
4333 
4334 static int __init setup_schedstats(char *str)
4335 {
4336 	int ret = 0;
4337 	if (!str)
4338 		goto out;
4339 
4340 	if (!strcmp(str, "enable")) {
4341 		set_schedstats(true);
4342 		ret = 1;
4343 	} else if (!strcmp(str, "disable")) {
4344 		set_schedstats(false);
4345 		ret = 1;
4346 	}
4347 out:
4348 	if (!ret)
4349 		pr_warn("Unable to parse schedstats=\n");
4350 
4351 	return ret;
4352 }
4353 __setup("schedstats=", setup_schedstats);
4354 
4355 #ifdef CONFIG_PROC_SYSCTL
4356 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4357 		size_t *lenp, loff_t *ppos)
4358 {
4359 	struct ctl_table t;
4360 	int err;
4361 	int state = static_branch_likely(&sched_schedstats);
4362 
4363 	if (write && !capable(CAP_SYS_ADMIN))
4364 		return -EPERM;
4365 
4366 	t = *table;
4367 	t.data = &state;
4368 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4369 	if (err < 0)
4370 		return err;
4371 	if (write)
4372 		set_schedstats(state);
4373 	return err;
4374 }
4375 #endif /* CONFIG_PROC_SYSCTL */
4376 #endif /* CONFIG_SCHEDSTATS */
4377 
4378 /*
4379  * fork()/clone()-time setup:
4380  */
4381 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4382 {
4383 	__sched_fork(clone_flags, p);
4384 	/*
4385 	 * We mark the process as NEW here. This guarantees that
4386 	 * nobody will actually run it, and a signal or other external
4387 	 * event cannot wake it up and insert it on the runqueue either.
4388 	 */
4389 	p->__state = TASK_NEW;
4390 
4391 	/*
4392 	 * Make sure we do not leak PI boosting priority to the child.
4393 	 */
4394 	p->prio = current->normal_prio;
4395 
4396 	uclamp_fork(p);
4397 
4398 	/*
4399 	 * Revert to default priority/policy on fork if requested.
4400 	 */
4401 	if (unlikely(p->sched_reset_on_fork)) {
4402 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4403 			p->policy = SCHED_NORMAL;
4404 			p->static_prio = NICE_TO_PRIO(0);
4405 			p->rt_priority = 0;
4406 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4407 			p->static_prio = NICE_TO_PRIO(0);
4408 
4409 		p->prio = p->normal_prio = p->static_prio;
4410 		set_load_weight(p, false);
4411 
4412 		/*
4413 		 * We don't need the reset flag anymore after the fork. It has
4414 		 * fulfilled its duty:
4415 		 */
4416 		p->sched_reset_on_fork = 0;
4417 	}
4418 
4419 	if (dl_prio(p->prio))
4420 		return -EAGAIN;
4421 	else if (rt_prio(p->prio))
4422 		p->sched_class = &rt_sched_class;
4423 	else
4424 		p->sched_class = &fair_sched_class;
4425 
4426 	init_entity_runnable_average(&p->se);
4427 
4428 #ifdef CONFIG_SCHED_INFO
4429 	if (likely(sched_info_on()))
4430 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4431 #endif
4432 #if defined(CONFIG_SMP)
4433 	p->on_cpu = 0;
4434 #endif
4435 	init_task_preempt_count(p);
4436 #ifdef CONFIG_SMP
4437 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4438 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4439 #endif
4440 	return 0;
4441 }
4442 
4443 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4444 {
4445 	unsigned long flags;
4446 #ifdef CONFIG_CGROUP_SCHED
4447 	struct task_group *tg;
4448 #endif
4449 
4450 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4451 #ifdef CONFIG_CGROUP_SCHED
4452 	tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4453 			  struct task_group, css);
4454 	p->sched_task_group = autogroup_task_group(p, tg);
4455 #endif
4456 	rseq_migrate(p);
4457 	/*
4458 	 * We're setting the CPU for the first time, we don't migrate,
4459 	 * so use __set_task_cpu().
4460 	 */
4461 	__set_task_cpu(p, smp_processor_id());
4462 	if (p->sched_class->task_fork)
4463 		p->sched_class->task_fork(p);
4464 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4465 
4466 	uclamp_post_fork(p);
4467 }
4468 
4469 unsigned long to_ratio(u64 period, u64 runtime)
4470 {
4471 	if (runtime == RUNTIME_INF)
4472 		return BW_UNIT;
4473 
4474 	/*
4475 	 * Doing this here saves a lot of checks in all
4476 	 * the calling paths, and returning zero seems
4477 	 * safe for them anyway.
4478 	 */
4479 	if (period == 0)
4480 		return 0;
4481 
4482 	return div64_u64(runtime << BW_SHIFT, period);
4483 }
4484 
4485 /*
4486  * wake_up_new_task - wake up a newly created task for the first time.
4487  *
4488  * This function will do some initial scheduler statistics housekeeping
4489  * that must be done for every newly created context, then puts the task
4490  * on the runqueue and wakes it.
4491  */
4492 void wake_up_new_task(struct task_struct *p)
4493 {
4494 	struct rq_flags rf;
4495 	struct rq *rq;
4496 
4497 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4498 	WRITE_ONCE(p->__state, TASK_RUNNING);
4499 #ifdef CONFIG_SMP
4500 	/*
4501 	 * Fork balancing, do it here and not earlier because:
4502 	 *  - cpus_ptr can change in the fork path
4503 	 *  - any previously selected CPU might disappear through hotplug
4504 	 *
4505 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4506 	 * as we're not fully set-up yet.
4507 	 */
4508 	p->recent_used_cpu = task_cpu(p);
4509 	rseq_migrate(p);
4510 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4511 #endif
4512 	rq = __task_rq_lock(p, &rf);
4513 	update_rq_clock(rq);
4514 	post_init_entity_util_avg(p);
4515 
4516 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4517 	trace_sched_wakeup_new(p);
4518 	check_preempt_curr(rq, p, WF_FORK);
4519 #ifdef CONFIG_SMP
4520 	if (p->sched_class->task_woken) {
4521 		/*
4522 		 * Nothing relies on rq->lock after this, so it's fine to
4523 		 * drop it.
4524 		 */
4525 		rq_unpin_lock(rq, &rf);
4526 		p->sched_class->task_woken(rq, p);
4527 		rq_repin_lock(rq, &rf);
4528 	}
4529 #endif
4530 	task_rq_unlock(rq, p, &rf);
4531 }
4532 
4533 #ifdef CONFIG_PREEMPT_NOTIFIERS
4534 
4535 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4536 
4537 void preempt_notifier_inc(void)
4538 {
4539 	static_branch_inc(&preempt_notifier_key);
4540 }
4541 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4542 
4543 void preempt_notifier_dec(void)
4544 {
4545 	static_branch_dec(&preempt_notifier_key);
4546 }
4547 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4548 
4549 /**
4550  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4551  * @notifier: notifier struct to register
4552  */
4553 void preempt_notifier_register(struct preempt_notifier *notifier)
4554 {
4555 	if (!static_branch_unlikely(&preempt_notifier_key))
4556 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4557 
4558 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4559 }
4560 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4561 
4562 /**
4563  * preempt_notifier_unregister - no longer interested in preemption notifications
4564  * @notifier: notifier struct to unregister
4565  *
4566  * This is *not* safe to call from within a preemption notifier.
4567  */
4568 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4569 {
4570 	hlist_del(&notifier->link);
4571 }
4572 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4573 
4574 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4575 {
4576 	struct preempt_notifier *notifier;
4577 
4578 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4579 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4580 }
4581 
4582 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4583 {
4584 	if (static_branch_unlikely(&preempt_notifier_key))
4585 		__fire_sched_in_preempt_notifiers(curr);
4586 }
4587 
4588 static void
4589 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4590 				   struct task_struct *next)
4591 {
4592 	struct preempt_notifier *notifier;
4593 
4594 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4595 		notifier->ops->sched_out(notifier, next);
4596 }
4597 
4598 static __always_inline void
4599 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4600 				 struct task_struct *next)
4601 {
4602 	if (static_branch_unlikely(&preempt_notifier_key))
4603 		__fire_sched_out_preempt_notifiers(curr, next);
4604 }
4605 
4606 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4607 
4608 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4609 {
4610 }
4611 
4612 static inline void
4613 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4614 				 struct task_struct *next)
4615 {
4616 }
4617 
4618 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4619 
4620 static inline void prepare_task(struct task_struct *next)
4621 {
4622 #ifdef CONFIG_SMP
4623 	/*
4624 	 * Claim the task as running, we do this before switching to it
4625 	 * such that any running task will have this set.
4626 	 *
4627 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
4628 	 */
4629 	WRITE_ONCE(next->on_cpu, 1);
4630 #endif
4631 }
4632 
4633 static inline void finish_task(struct task_struct *prev)
4634 {
4635 #ifdef CONFIG_SMP
4636 	/*
4637 	 * This must be the very last reference to @prev from this CPU. After
4638 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4639 	 * must ensure this doesn't happen until the switch is completely
4640 	 * finished.
4641 	 *
4642 	 * In particular, the load of prev->state in finish_task_switch() must
4643 	 * happen before this.
4644 	 *
4645 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4646 	 */
4647 	smp_store_release(&prev->on_cpu, 0);
4648 #endif
4649 }
4650 
4651 #ifdef CONFIG_SMP
4652 
4653 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4654 {
4655 	void (*func)(struct rq *rq);
4656 	struct callback_head *next;
4657 
4658 	lockdep_assert_rq_held(rq);
4659 
4660 	while (head) {
4661 		func = (void (*)(struct rq *))head->func;
4662 		next = head->next;
4663 		head->next = NULL;
4664 		head = next;
4665 
4666 		func(rq);
4667 	}
4668 }
4669 
4670 static void balance_push(struct rq *rq);
4671 
4672 struct callback_head balance_push_callback = {
4673 	.next = NULL,
4674 	.func = (void (*)(struct callback_head *))balance_push,
4675 };
4676 
4677 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4678 {
4679 	struct callback_head *head = rq->balance_callback;
4680 
4681 	lockdep_assert_rq_held(rq);
4682 	if (head)
4683 		rq->balance_callback = NULL;
4684 
4685 	return head;
4686 }
4687 
4688 static void __balance_callbacks(struct rq *rq)
4689 {
4690 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4691 }
4692 
4693 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4694 {
4695 	unsigned long flags;
4696 
4697 	if (unlikely(head)) {
4698 		raw_spin_rq_lock_irqsave(rq, flags);
4699 		do_balance_callbacks(rq, head);
4700 		raw_spin_rq_unlock_irqrestore(rq, flags);
4701 	}
4702 }
4703 
4704 #else
4705 
4706 static inline void __balance_callbacks(struct rq *rq)
4707 {
4708 }
4709 
4710 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4711 {
4712 	return NULL;
4713 }
4714 
4715 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4716 {
4717 }
4718 
4719 #endif
4720 
4721 static inline void
4722 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4723 {
4724 	/*
4725 	 * Since the runqueue lock will be released by the next
4726 	 * task (which is an invalid locking op but in the case
4727 	 * of the scheduler it's an obvious special-case), so we
4728 	 * do an early lockdep release here:
4729 	 */
4730 	rq_unpin_lock(rq, rf);
4731 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4732 #ifdef CONFIG_DEBUG_SPINLOCK
4733 	/* this is a valid case when another task releases the spinlock */
4734 	rq_lockp(rq)->owner = next;
4735 #endif
4736 }
4737 
4738 static inline void finish_lock_switch(struct rq *rq)
4739 {
4740 	/*
4741 	 * If we are tracking spinlock dependencies then we have to
4742 	 * fix up the runqueue lock - which gets 'carried over' from
4743 	 * prev into current:
4744 	 */
4745 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4746 	__balance_callbacks(rq);
4747 	raw_spin_rq_unlock_irq(rq);
4748 }
4749 
4750 /*
4751  * NOP if the arch has not defined these:
4752  */
4753 
4754 #ifndef prepare_arch_switch
4755 # define prepare_arch_switch(next)	do { } while (0)
4756 #endif
4757 
4758 #ifndef finish_arch_post_lock_switch
4759 # define finish_arch_post_lock_switch()	do { } while (0)
4760 #endif
4761 
4762 static inline void kmap_local_sched_out(void)
4763 {
4764 #ifdef CONFIG_KMAP_LOCAL
4765 	if (unlikely(current->kmap_ctrl.idx))
4766 		__kmap_local_sched_out();
4767 #endif
4768 }
4769 
4770 static inline void kmap_local_sched_in(void)
4771 {
4772 #ifdef CONFIG_KMAP_LOCAL
4773 	if (unlikely(current->kmap_ctrl.idx))
4774 		__kmap_local_sched_in();
4775 #endif
4776 }
4777 
4778 /**
4779  * prepare_task_switch - prepare to switch tasks
4780  * @rq: the runqueue preparing to switch
4781  * @prev: the current task that is being switched out
4782  * @next: the task we are going to switch to.
4783  *
4784  * This is called with the rq lock held and interrupts off. It must
4785  * be paired with a subsequent finish_task_switch after the context
4786  * switch.
4787  *
4788  * prepare_task_switch sets up locking and calls architecture specific
4789  * hooks.
4790  */
4791 static inline void
4792 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4793 		    struct task_struct *next)
4794 {
4795 	kcov_prepare_switch(prev);
4796 	sched_info_switch(rq, prev, next);
4797 	perf_event_task_sched_out(prev, next);
4798 	rseq_preempt(prev);
4799 	fire_sched_out_preempt_notifiers(prev, next);
4800 	kmap_local_sched_out();
4801 	prepare_task(next);
4802 	prepare_arch_switch(next);
4803 }
4804 
4805 /**
4806  * finish_task_switch - clean up after a task-switch
4807  * @prev: the thread we just switched away from.
4808  *
4809  * finish_task_switch must be called after the context switch, paired
4810  * with a prepare_task_switch call before the context switch.
4811  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4812  * and do any other architecture-specific cleanup actions.
4813  *
4814  * Note that we may have delayed dropping an mm in context_switch(). If
4815  * so, we finish that here outside of the runqueue lock. (Doing it
4816  * with the lock held can cause deadlocks; see schedule() for
4817  * details.)
4818  *
4819  * The context switch have flipped the stack from under us and restored the
4820  * local variables which were saved when this task called schedule() in the
4821  * past. prev == current is still correct but we need to recalculate this_rq
4822  * because prev may have moved to another CPU.
4823  */
4824 static struct rq *finish_task_switch(struct task_struct *prev)
4825 	__releases(rq->lock)
4826 {
4827 	struct rq *rq = this_rq();
4828 	struct mm_struct *mm = rq->prev_mm;
4829 	long prev_state;
4830 
4831 	/*
4832 	 * The previous task will have left us with a preempt_count of 2
4833 	 * because it left us after:
4834 	 *
4835 	 *	schedule()
4836 	 *	  preempt_disable();			// 1
4837 	 *	  __schedule()
4838 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4839 	 *
4840 	 * Also, see FORK_PREEMPT_COUNT.
4841 	 */
4842 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4843 		      "corrupted preempt_count: %s/%d/0x%x\n",
4844 		      current->comm, current->pid, preempt_count()))
4845 		preempt_count_set(FORK_PREEMPT_COUNT);
4846 
4847 	rq->prev_mm = NULL;
4848 
4849 	/*
4850 	 * A task struct has one reference for the use as "current".
4851 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4852 	 * schedule one last time. The schedule call will never return, and
4853 	 * the scheduled task must drop that reference.
4854 	 *
4855 	 * We must observe prev->state before clearing prev->on_cpu (in
4856 	 * finish_task), otherwise a concurrent wakeup can get prev
4857 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4858 	 * transition, resulting in a double drop.
4859 	 */
4860 	prev_state = READ_ONCE(prev->__state);
4861 	vtime_task_switch(prev);
4862 	perf_event_task_sched_in(prev, current);
4863 	finish_task(prev);
4864 	tick_nohz_task_switch();
4865 	finish_lock_switch(rq);
4866 	finish_arch_post_lock_switch();
4867 	kcov_finish_switch(current);
4868 	/*
4869 	 * kmap_local_sched_out() is invoked with rq::lock held and
4870 	 * interrupts disabled. There is no requirement for that, but the
4871 	 * sched out code does not have an interrupt enabled section.
4872 	 * Restoring the maps on sched in does not require interrupts being
4873 	 * disabled either.
4874 	 */
4875 	kmap_local_sched_in();
4876 
4877 	fire_sched_in_preempt_notifiers(current);
4878 	/*
4879 	 * When switching through a kernel thread, the loop in
4880 	 * membarrier_{private,global}_expedited() may have observed that
4881 	 * kernel thread and not issued an IPI. It is therefore possible to
4882 	 * schedule between user->kernel->user threads without passing though
4883 	 * switch_mm(). Membarrier requires a barrier after storing to
4884 	 * rq->curr, before returning to userspace, so provide them here:
4885 	 *
4886 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4887 	 *   provided by mmdrop(),
4888 	 * - a sync_core for SYNC_CORE.
4889 	 */
4890 	if (mm) {
4891 		membarrier_mm_sync_core_before_usermode(mm);
4892 		mmdrop_sched(mm);
4893 	}
4894 	if (unlikely(prev_state == TASK_DEAD)) {
4895 		if (prev->sched_class->task_dead)
4896 			prev->sched_class->task_dead(prev);
4897 
4898 		/* Task is done with its stack. */
4899 		put_task_stack(prev);
4900 
4901 		put_task_struct_rcu_user(prev);
4902 	}
4903 
4904 	return rq;
4905 }
4906 
4907 /**
4908  * schedule_tail - first thing a freshly forked thread must call.
4909  * @prev: the thread we just switched away from.
4910  */
4911 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4912 	__releases(rq->lock)
4913 {
4914 	/*
4915 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4916 	 * finish_task_switch() for details.
4917 	 *
4918 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4919 	 * and the preempt_enable() will end up enabling preemption (on
4920 	 * PREEMPT_COUNT kernels).
4921 	 */
4922 
4923 	finish_task_switch(prev);
4924 	preempt_enable();
4925 
4926 	if (current->set_child_tid)
4927 		put_user(task_pid_vnr(current), current->set_child_tid);
4928 
4929 	calculate_sigpending();
4930 }
4931 
4932 /*
4933  * context_switch - switch to the new MM and the new thread's register state.
4934  */
4935 static __always_inline struct rq *
4936 context_switch(struct rq *rq, struct task_struct *prev,
4937 	       struct task_struct *next, struct rq_flags *rf)
4938 {
4939 	prepare_task_switch(rq, prev, next);
4940 
4941 	/*
4942 	 * For paravirt, this is coupled with an exit in switch_to to
4943 	 * combine the page table reload and the switch backend into
4944 	 * one hypercall.
4945 	 */
4946 	arch_start_context_switch(prev);
4947 
4948 	/*
4949 	 * kernel -> kernel   lazy + transfer active
4950 	 *   user -> kernel   lazy + mmgrab() active
4951 	 *
4952 	 * kernel ->   user   switch + mmdrop() active
4953 	 *   user ->   user   switch
4954 	 */
4955 	if (!next->mm) {                                // to kernel
4956 		enter_lazy_tlb(prev->active_mm, next);
4957 
4958 		next->active_mm = prev->active_mm;
4959 		if (prev->mm)                           // from user
4960 			mmgrab(prev->active_mm);
4961 		else
4962 			prev->active_mm = NULL;
4963 	} else {                                        // to user
4964 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4965 		/*
4966 		 * sys_membarrier() requires an smp_mb() between setting
4967 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4968 		 *
4969 		 * The below provides this either through switch_mm(), or in
4970 		 * case 'prev->active_mm == next->mm' through
4971 		 * finish_task_switch()'s mmdrop().
4972 		 */
4973 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4974 
4975 		if (!prev->mm) {                        // from kernel
4976 			/* will mmdrop() in finish_task_switch(). */
4977 			rq->prev_mm = prev->active_mm;
4978 			prev->active_mm = NULL;
4979 		}
4980 	}
4981 
4982 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4983 
4984 	prepare_lock_switch(rq, next, rf);
4985 
4986 	/* Here we just switch the register state and the stack. */
4987 	switch_to(prev, next, prev);
4988 	barrier();
4989 
4990 	return finish_task_switch(prev);
4991 }
4992 
4993 /*
4994  * nr_running and nr_context_switches:
4995  *
4996  * externally visible scheduler statistics: current number of runnable
4997  * threads, total number of context switches performed since bootup.
4998  */
4999 unsigned int nr_running(void)
5000 {
5001 	unsigned int i, sum = 0;
5002 
5003 	for_each_online_cpu(i)
5004 		sum += cpu_rq(i)->nr_running;
5005 
5006 	return sum;
5007 }
5008 
5009 /*
5010  * Check if only the current task is running on the CPU.
5011  *
5012  * Caution: this function does not check that the caller has disabled
5013  * preemption, thus the result might have a time-of-check-to-time-of-use
5014  * race.  The caller is responsible to use it correctly, for example:
5015  *
5016  * - from a non-preemptible section (of course)
5017  *
5018  * - from a thread that is bound to a single CPU
5019  *
5020  * - in a loop with very short iterations (e.g. a polling loop)
5021  */
5022 bool single_task_running(void)
5023 {
5024 	return raw_rq()->nr_running == 1;
5025 }
5026 EXPORT_SYMBOL(single_task_running);
5027 
5028 unsigned long long nr_context_switches(void)
5029 {
5030 	int i;
5031 	unsigned long long sum = 0;
5032 
5033 	for_each_possible_cpu(i)
5034 		sum += cpu_rq(i)->nr_switches;
5035 
5036 	return sum;
5037 }
5038 
5039 /*
5040  * Consumers of these two interfaces, like for example the cpuidle menu
5041  * governor, are using nonsensical data. Preferring shallow idle state selection
5042  * for a CPU that has IO-wait which might not even end up running the task when
5043  * it does become runnable.
5044  */
5045 
5046 unsigned int nr_iowait_cpu(int cpu)
5047 {
5048 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5049 }
5050 
5051 /*
5052  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5053  *
5054  * The idea behind IO-wait account is to account the idle time that we could
5055  * have spend running if it were not for IO. That is, if we were to improve the
5056  * storage performance, we'd have a proportional reduction in IO-wait time.
5057  *
5058  * This all works nicely on UP, where, when a task blocks on IO, we account
5059  * idle time as IO-wait, because if the storage were faster, it could've been
5060  * running and we'd not be idle.
5061  *
5062  * This has been extended to SMP, by doing the same for each CPU. This however
5063  * is broken.
5064  *
5065  * Imagine for instance the case where two tasks block on one CPU, only the one
5066  * CPU will have IO-wait accounted, while the other has regular idle. Even
5067  * though, if the storage were faster, both could've ran at the same time,
5068  * utilising both CPUs.
5069  *
5070  * This means, that when looking globally, the current IO-wait accounting on
5071  * SMP is a lower bound, by reason of under accounting.
5072  *
5073  * Worse, since the numbers are provided per CPU, they are sometimes
5074  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5075  * associated with any one particular CPU, it can wake to another CPU than it
5076  * blocked on. This means the per CPU IO-wait number is meaningless.
5077  *
5078  * Task CPU affinities can make all that even more 'interesting'.
5079  */
5080 
5081 unsigned int nr_iowait(void)
5082 {
5083 	unsigned int i, sum = 0;
5084 
5085 	for_each_possible_cpu(i)
5086 		sum += nr_iowait_cpu(i);
5087 
5088 	return sum;
5089 }
5090 
5091 #ifdef CONFIG_SMP
5092 
5093 /*
5094  * sched_exec - execve() is a valuable balancing opportunity, because at
5095  * this point the task has the smallest effective memory and cache footprint.
5096  */
5097 void sched_exec(void)
5098 {
5099 	struct task_struct *p = current;
5100 	unsigned long flags;
5101 	int dest_cpu;
5102 
5103 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5104 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5105 	if (dest_cpu == smp_processor_id())
5106 		goto unlock;
5107 
5108 	if (likely(cpu_active(dest_cpu))) {
5109 		struct migration_arg arg = { p, dest_cpu };
5110 
5111 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5112 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5113 		return;
5114 	}
5115 unlock:
5116 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5117 }
5118 
5119 #endif
5120 
5121 DEFINE_PER_CPU(struct kernel_stat, kstat);
5122 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5123 
5124 EXPORT_PER_CPU_SYMBOL(kstat);
5125 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5126 
5127 /*
5128  * The function fair_sched_class.update_curr accesses the struct curr
5129  * and its field curr->exec_start; when called from task_sched_runtime(),
5130  * we observe a high rate of cache misses in practice.
5131  * Prefetching this data results in improved performance.
5132  */
5133 static inline void prefetch_curr_exec_start(struct task_struct *p)
5134 {
5135 #ifdef CONFIG_FAIR_GROUP_SCHED
5136 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5137 #else
5138 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5139 #endif
5140 	prefetch(curr);
5141 	prefetch(&curr->exec_start);
5142 }
5143 
5144 /*
5145  * Return accounted runtime for the task.
5146  * In case the task is currently running, return the runtime plus current's
5147  * pending runtime that have not been accounted yet.
5148  */
5149 unsigned long long task_sched_runtime(struct task_struct *p)
5150 {
5151 	struct rq_flags rf;
5152 	struct rq *rq;
5153 	u64 ns;
5154 
5155 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5156 	/*
5157 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5158 	 * So we have a optimization chance when the task's delta_exec is 0.
5159 	 * Reading ->on_cpu is racy, but this is ok.
5160 	 *
5161 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5162 	 * If we race with it entering CPU, unaccounted time is 0. This is
5163 	 * indistinguishable from the read occurring a few cycles earlier.
5164 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5165 	 * been accounted, so we're correct here as well.
5166 	 */
5167 	if (!p->on_cpu || !task_on_rq_queued(p))
5168 		return p->se.sum_exec_runtime;
5169 #endif
5170 
5171 	rq = task_rq_lock(p, &rf);
5172 	/*
5173 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5174 	 * project cycles that may never be accounted to this
5175 	 * thread, breaking clock_gettime().
5176 	 */
5177 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5178 		prefetch_curr_exec_start(p);
5179 		update_rq_clock(rq);
5180 		p->sched_class->update_curr(rq);
5181 	}
5182 	ns = p->se.sum_exec_runtime;
5183 	task_rq_unlock(rq, p, &rf);
5184 
5185 	return ns;
5186 }
5187 
5188 #ifdef CONFIG_SCHED_DEBUG
5189 static u64 cpu_resched_latency(struct rq *rq)
5190 {
5191 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5192 	u64 resched_latency, now = rq_clock(rq);
5193 	static bool warned_once;
5194 
5195 	if (sysctl_resched_latency_warn_once && warned_once)
5196 		return 0;
5197 
5198 	if (!need_resched() || !latency_warn_ms)
5199 		return 0;
5200 
5201 	if (system_state == SYSTEM_BOOTING)
5202 		return 0;
5203 
5204 	if (!rq->last_seen_need_resched_ns) {
5205 		rq->last_seen_need_resched_ns = now;
5206 		rq->ticks_without_resched = 0;
5207 		return 0;
5208 	}
5209 
5210 	rq->ticks_without_resched++;
5211 	resched_latency = now - rq->last_seen_need_resched_ns;
5212 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5213 		return 0;
5214 
5215 	warned_once = true;
5216 
5217 	return resched_latency;
5218 }
5219 
5220 static int __init setup_resched_latency_warn_ms(char *str)
5221 {
5222 	long val;
5223 
5224 	if ((kstrtol(str, 0, &val))) {
5225 		pr_warn("Unable to set resched_latency_warn_ms\n");
5226 		return 1;
5227 	}
5228 
5229 	sysctl_resched_latency_warn_ms = val;
5230 	return 1;
5231 }
5232 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5233 #else
5234 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5235 #endif /* CONFIG_SCHED_DEBUG */
5236 
5237 /*
5238  * This function gets called by the timer code, with HZ frequency.
5239  * We call it with interrupts disabled.
5240  */
5241 void scheduler_tick(void)
5242 {
5243 	int cpu = smp_processor_id();
5244 	struct rq *rq = cpu_rq(cpu);
5245 	struct task_struct *curr = rq->curr;
5246 	struct rq_flags rf;
5247 	unsigned long thermal_pressure;
5248 	u64 resched_latency;
5249 
5250 	arch_scale_freq_tick();
5251 	sched_clock_tick();
5252 
5253 	rq_lock(rq, &rf);
5254 
5255 	update_rq_clock(rq);
5256 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5257 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5258 	curr->sched_class->task_tick(rq, curr, 0);
5259 	if (sched_feat(LATENCY_WARN))
5260 		resched_latency = cpu_resched_latency(rq);
5261 	calc_global_load_tick(rq);
5262 	sched_core_tick(rq);
5263 
5264 	rq_unlock(rq, &rf);
5265 
5266 	if (sched_feat(LATENCY_WARN) && resched_latency)
5267 		resched_latency_warn(cpu, resched_latency);
5268 
5269 	perf_event_task_tick();
5270 
5271 #ifdef CONFIG_SMP
5272 	rq->idle_balance = idle_cpu(cpu);
5273 	trigger_load_balance(rq);
5274 #endif
5275 }
5276 
5277 #ifdef CONFIG_NO_HZ_FULL
5278 
5279 struct tick_work {
5280 	int			cpu;
5281 	atomic_t		state;
5282 	struct delayed_work	work;
5283 };
5284 /* Values for ->state, see diagram below. */
5285 #define TICK_SCHED_REMOTE_OFFLINE	0
5286 #define TICK_SCHED_REMOTE_OFFLINING	1
5287 #define TICK_SCHED_REMOTE_RUNNING	2
5288 
5289 /*
5290  * State diagram for ->state:
5291  *
5292  *
5293  *          TICK_SCHED_REMOTE_OFFLINE
5294  *                    |   ^
5295  *                    |   |
5296  *                    |   | sched_tick_remote()
5297  *                    |   |
5298  *                    |   |
5299  *                    +--TICK_SCHED_REMOTE_OFFLINING
5300  *                    |   ^
5301  *                    |   |
5302  * sched_tick_start() |   | sched_tick_stop()
5303  *                    |   |
5304  *                    V   |
5305  *          TICK_SCHED_REMOTE_RUNNING
5306  *
5307  *
5308  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5309  * and sched_tick_start() are happy to leave the state in RUNNING.
5310  */
5311 
5312 static struct tick_work __percpu *tick_work_cpu;
5313 
5314 static void sched_tick_remote(struct work_struct *work)
5315 {
5316 	struct delayed_work *dwork = to_delayed_work(work);
5317 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5318 	int cpu = twork->cpu;
5319 	struct rq *rq = cpu_rq(cpu);
5320 	struct task_struct *curr;
5321 	struct rq_flags rf;
5322 	u64 delta;
5323 	int os;
5324 
5325 	/*
5326 	 * Handle the tick only if it appears the remote CPU is running in full
5327 	 * dynticks mode. The check is racy by nature, but missing a tick or
5328 	 * having one too much is no big deal because the scheduler tick updates
5329 	 * statistics and checks timeslices in a time-independent way, regardless
5330 	 * of when exactly it is running.
5331 	 */
5332 	if (!tick_nohz_tick_stopped_cpu(cpu))
5333 		goto out_requeue;
5334 
5335 	rq_lock_irq(rq, &rf);
5336 	curr = rq->curr;
5337 	if (cpu_is_offline(cpu))
5338 		goto out_unlock;
5339 
5340 	update_rq_clock(rq);
5341 
5342 	if (!is_idle_task(curr)) {
5343 		/*
5344 		 * Make sure the next tick runs within a reasonable
5345 		 * amount of time.
5346 		 */
5347 		delta = rq_clock_task(rq) - curr->se.exec_start;
5348 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5349 	}
5350 	curr->sched_class->task_tick(rq, curr, 0);
5351 
5352 	calc_load_nohz_remote(rq);
5353 out_unlock:
5354 	rq_unlock_irq(rq, &rf);
5355 out_requeue:
5356 
5357 	/*
5358 	 * Run the remote tick once per second (1Hz). This arbitrary
5359 	 * frequency is large enough to avoid overload but short enough
5360 	 * to keep scheduler internal stats reasonably up to date.  But
5361 	 * first update state to reflect hotplug activity if required.
5362 	 */
5363 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5364 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5365 	if (os == TICK_SCHED_REMOTE_RUNNING)
5366 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5367 }
5368 
5369 static void sched_tick_start(int cpu)
5370 {
5371 	int os;
5372 	struct tick_work *twork;
5373 
5374 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5375 		return;
5376 
5377 	WARN_ON_ONCE(!tick_work_cpu);
5378 
5379 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5380 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5381 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5382 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5383 		twork->cpu = cpu;
5384 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5385 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5386 	}
5387 }
5388 
5389 #ifdef CONFIG_HOTPLUG_CPU
5390 static void sched_tick_stop(int cpu)
5391 {
5392 	struct tick_work *twork;
5393 	int os;
5394 
5395 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5396 		return;
5397 
5398 	WARN_ON_ONCE(!tick_work_cpu);
5399 
5400 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5401 	/* There cannot be competing actions, but don't rely on stop-machine. */
5402 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5403 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5404 	/* Don't cancel, as this would mess up the state machine. */
5405 }
5406 #endif /* CONFIG_HOTPLUG_CPU */
5407 
5408 int __init sched_tick_offload_init(void)
5409 {
5410 	tick_work_cpu = alloc_percpu(struct tick_work);
5411 	BUG_ON(!tick_work_cpu);
5412 	return 0;
5413 }
5414 
5415 #else /* !CONFIG_NO_HZ_FULL */
5416 static inline void sched_tick_start(int cpu) { }
5417 static inline void sched_tick_stop(int cpu) { }
5418 #endif
5419 
5420 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5421 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5422 /*
5423  * If the value passed in is equal to the current preempt count
5424  * then we just disabled preemption. Start timing the latency.
5425  */
5426 static inline void preempt_latency_start(int val)
5427 {
5428 	if (preempt_count() == val) {
5429 		unsigned long ip = get_lock_parent_ip();
5430 #ifdef CONFIG_DEBUG_PREEMPT
5431 		current->preempt_disable_ip = ip;
5432 #endif
5433 		trace_preempt_off(CALLER_ADDR0, ip);
5434 	}
5435 }
5436 
5437 void preempt_count_add(int val)
5438 {
5439 #ifdef CONFIG_DEBUG_PREEMPT
5440 	/*
5441 	 * Underflow?
5442 	 */
5443 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5444 		return;
5445 #endif
5446 	__preempt_count_add(val);
5447 #ifdef CONFIG_DEBUG_PREEMPT
5448 	/*
5449 	 * Spinlock count overflowing soon?
5450 	 */
5451 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5452 				PREEMPT_MASK - 10);
5453 #endif
5454 	preempt_latency_start(val);
5455 }
5456 EXPORT_SYMBOL(preempt_count_add);
5457 NOKPROBE_SYMBOL(preempt_count_add);
5458 
5459 /*
5460  * If the value passed in equals to the current preempt count
5461  * then we just enabled preemption. Stop timing the latency.
5462  */
5463 static inline void preempt_latency_stop(int val)
5464 {
5465 	if (preempt_count() == val)
5466 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5467 }
5468 
5469 void preempt_count_sub(int val)
5470 {
5471 #ifdef CONFIG_DEBUG_PREEMPT
5472 	/*
5473 	 * Underflow?
5474 	 */
5475 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5476 		return;
5477 	/*
5478 	 * Is the spinlock portion underflowing?
5479 	 */
5480 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5481 			!(preempt_count() & PREEMPT_MASK)))
5482 		return;
5483 #endif
5484 
5485 	preempt_latency_stop(val);
5486 	__preempt_count_sub(val);
5487 }
5488 EXPORT_SYMBOL(preempt_count_sub);
5489 NOKPROBE_SYMBOL(preempt_count_sub);
5490 
5491 #else
5492 static inline void preempt_latency_start(int val) { }
5493 static inline void preempt_latency_stop(int val) { }
5494 #endif
5495 
5496 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5497 {
5498 #ifdef CONFIG_DEBUG_PREEMPT
5499 	return p->preempt_disable_ip;
5500 #else
5501 	return 0;
5502 #endif
5503 }
5504 
5505 /*
5506  * Print scheduling while atomic bug:
5507  */
5508 static noinline void __schedule_bug(struct task_struct *prev)
5509 {
5510 	/* Save this before calling printk(), since that will clobber it */
5511 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5512 
5513 	if (oops_in_progress)
5514 		return;
5515 
5516 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5517 		prev->comm, prev->pid, preempt_count());
5518 
5519 	debug_show_held_locks(prev);
5520 	print_modules();
5521 	if (irqs_disabled())
5522 		print_irqtrace_events(prev);
5523 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5524 	    && in_atomic_preempt_off()) {
5525 		pr_err("Preemption disabled at:");
5526 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5527 	}
5528 	if (panic_on_warn)
5529 		panic("scheduling while atomic\n");
5530 
5531 	dump_stack();
5532 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5533 }
5534 
5535 /*
5536  * Various schedule()-time debugging checks and statistics:
5537  */
5538 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5539 {
5540 #ifdef CONFIG_SCHED_STACK_END_CHECK
5541 	if (task_stack_end_corrupted(prev))
5542 		panic("corrupted stack end detected inside scheduler\n");
5543 
5544 	if (task_scs_end_corrupted(prev))
5545 		panic("corrupted shadow stack detected inside scheduler\n");
5546 #endif
5547 
5548 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5549 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5550 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5551 			prev->comm, prev->pid, prev->non_block_count);
5552 		dump_stack();
5553 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5554 	}
5555 #endif
5556 
5557 	if (unlikely(in_atomic_preempt_off())) {
5558 		__schedule_bug(prev);
5559 		preempt_count_set(PREEMPT_DISABLED);
5560 	}
5561 	rcu_sleep_check();
5562 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5563 
5564 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5565 
5566 	schedstat_inc(this_rq()->sched_count);
5567 }
5568 
5569 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5570 				  struct rq_flags *rf)
5571 {
5572 #ifdef CONFIG_SMP
5573 	const struct sched_class *class;
5574 	/*
5575 	 * We must do the balancing pass before put_prev_task(), such
5576 	 * that when we release the rq->lock the task is in the same
5577 	 * state as before we took rq->lock.
5578 	 *
5579 	 * We can terminate the balance pass as soon as we know there is
5580 	 * a runnable task of @class priority or higher.
5581 	 */
5582 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5583 		if (class->balance(rq, prev, rf))
5584 			break;
5585 	}
5586 #endif
5587 
5588 	put_prev_task(rq, prev);
5589 }
5590 
5591 /*
5592  * Pick up the highest-prio task:
5593  */
5594 static inline struct task_struct *
5595 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5596 {
5597 	const struct sched_class *class;
5598 	struct task_struct *p;
5599 
5600 	/*
5601 	 * Optimization: we know that if all tasks are in the fair class we can
5602 	 * call that function directly, but only if the @prev task wasn't of a
5603 	 * higher scheduling class, because otherwise those lose the
5604 	 * opportunity to pull in more work from other CPUs.
5605 	 */
5606 	if (likely(prev->sched_class <= &fair_sched_class &&
5607 		   rq->nr_running == rq->cfs.h_nr_running)) {
5608 
5609 		p = pick_next_task_fair(rq, prev, rf);
5610 		if (unlikely(p == RETRY_TASK))
5611 			goto restart;
5612 
5613 		/* Assume the next prioritized class is idle_sched_class */
5614 		if (!p) {
5615 			put_prev_task(rq, prev);
5616 			p = pick_next_task_idle(rq);
5617 		}
5618 
5619 		return p;
5620 	}
5621 
5622 restart:
5623 	put_prev_task_balance(rq, prev, rf);
5624 
5625 	for_each_class(class) {
5626 		p = class->pick_next_task(rq);
5627 		if (p)
5628 			return p;
5629 	}
5630 
5631 	BUG(); /* The idle class should always have a runnable task. */
5632 }
5633 
5634 #ifdef CONFIG_SCHED_CORE
5635 static inline bool is_task_rq_idle(struct task_struct *t)
5636 {
5637 	return (task_rq(t)->idle == t);
5638 }
5639 
5640 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5641 {
5642 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5643 }
5644 
5645 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5646 {
5647 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5648 		return true;
5649 
5650 	return a->core_cookie == b->core_cookie;
5651 }
5652 
5653 static inline struct task_struct *pick_task(struct rq *rq)
5654 {
5655 	const struct sched_class *class;
5656 	struct task_struct *p;
5657 
5658 	for_each_class(class) {
5659 		p = class->pick_task(rq);
5660 		if (p)
5661 			return p;
5662 	}
5663 
5664 	BUG(); /* The idle class should always have a runnable task. */
5665 }
5666 
5667 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5668 
5669 static struct task_struct *
5670 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5671 {
5672 	struct task_struct *next, *p, *max = NULL;
5673 	const struct cpumask *smt_mask;
5674 	bool fi_before = false;
5675 	bool core_clock_updated = (rq == rq->core);
5676 	unsigned long cookie;
5677 	int i, cpu, occ = 0;
5678 	struct rq *rq_i;
5679 	bool need_sync;
5680 
5681 	if (!sched_core_enabled(rq))
5682 		return __pick_next_task(rq, prev, rf);
5683 
5684 	cpu = cpu_of(rq);
5685 
5686 	/* Stopper task is switching into idle, no need core-wide selection. */
5687 	if (cpu_is_offline(cpu)) {
5688 		/*
5689 		 * Reset core_pick so that we don't enter the fastpath when
5690 		 * coming online. core_pick would already be migrated to
5691 		 * another cpu during offline.
5692 		 */
5693 		rq->core_pick = NULL;
5694 		return __pick_next_task(rq, prev, rf);
5695 	}
5696 
5697 	/*
5698 	 * If there were no {en,de}queues since we picked (IOW, the task
5699 	 * pointers are all still valid), and we haven't scheduled the last
5700 	 * pick yet, do so now.
5701 	 *
5702 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5703 	 * it was either offline or went offline during a sibling's core-wide
5704 	 * selection. In this case, do a core-wide selection.
5705 	 */
5706 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5707 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5708 	    rq->core_pick) {
5709 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5710 
5711 		next = rq->core_pick;
5712 		if (next != prev) {
5713 			put_prev_task(rq, prev);
5714 			set_next_task(rq, next);
5715 		}
5716 
5717 		rq->core_pick = NULL;
5718 		return next;
5719 	}
5720 
5721 	put_prev_task_balance(rq, prev, rf);
5722 
5723 	smt_mask = cpu_smt_mask(cpu);
5724 	need_sync = !!rq->core->core_cookie;
5725 
5726 	/* reset state */
5727 	rq->core->core_cookie = 0UL;
5728 	if (rq->core->core_forceidle_count) {
5729 		if (!core_clock_updated) {
5730 			update_rq_clock(rq->core);
5731 			core_clock_updated = true;
5732 		}
5733 		sched_core_account_forceidle(rq);
5734 		/* reset after accounting force idle */
5735 		rq->core->core_forceidle_start = 0;
5736 		rq->core->core_forceidle_count = 0;
5737 		rq->core->core_forceidle_occupation = 0;
5738 		need_sync = true;
5739 		fi_before = true;
5740 	}
5741 
5742 	/*
5743 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5744 	 *
5745 	 * @task_seq guards the task state ({en,de}queues)
5746 	 * @pick_seq is the @task_seq we did a selection on
5747 	 * @sched_seq is the @pick_seq we scheduled
5748 	 *
5749 	 * However, preemptions can cause multiple picks on the same task set.
5750 	 * 'Fix' this by also increasing @task_seq for every pick.
5751 	 */
5752 	rq->core->core_task_seq++;
5753 
5754 	/*
5755 	 * Optimize for common case where this CPU has no cookies
5756 	 * and there are no cookied tasks running on siblings.
5757 	 */
5758 	if (!need_sync) {
5759 		next = pick_task(rq);
5760 		if (!next->core_cookie) {
5761 			rq->core_pick = NULL;
5762 			/*
5763 			 * For robustness, update the min_vruntime_fi for
5764 			 * unconstrained picks as well.
5765 			 */
5766 			WARN_ON_ONCE(fi_before);
5767 			task_vruntime_update(rq, next, false);
5768 			goto done;
5769 		}
5770 	}
5771 
5772 	/*
5773 	 * For each thread: do the regular task pick and find the max prio task
5774 	 * amongst them.
5775 	 *
5776 	 * Tie-break prio towards the current CPU
5777 	 */
5778 	for_each_cpu_wrap(i, smt_mask, cpu) {
5779 		rq_i = cpu_rq(i);
5780 
5781 		/*
5782 		 * Current cpu always has its clock updated on entrance to
5783 		 * pick_next_task(). If the current cpu is not the core,
5784 		 * the core may also have been updated above.
5785 		 */
5786 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
5787 			update_rq_clock(rq_i);
5788 
5789 		p = rq_i->core_pick = pick_task(rq_i);
5790 		if (!max || prio_less(max, p, fi_before))
5791 			max = p;
5792 	}
5793 
5794 	cookie = rq->core->core_cookie = max->core_cookie;
5795 
5796 	/*
5797 	 * For each thread: try and find a runnable task that matches @max or
5798 	 * force idle.
5799 	 */
5800 	for_each_cpu(i, smt_mask) {
5801 		rq_i = cpu_rq(i);
5802 		p = rq_i->core_pick;
5803 
5804 		if (!cookie_equals(p, cookie)) {
5805 			p = NULL;
5806 			if (cookie)
5807 				p = sched_core_find(rq_i, cookie);
5808 			if (!p)
5809 				p = idle_sched_class.pick_task(rq_i);
5810 		}
5811 
5812 		rq_i->core_pick = p;
5813 
5814 		if (p == rq_i->idle) {
5815 			if (rq_i->nr_running) {
5816 				rq->core->core_forceidle_count++;
5817 				if (!fi_before)
5818 					rq->core->core_forceidle_seq++;
5819 			}
5820 		} else {
5821 			occ++;
5822 		}
5823 	}
5824 
5825 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
5826 		if (cookie)
5827 			rq->core->core_forceidle_start = rq_clock(rq->core);
5828 		rq->core->core_forceidle_occupation = occ;
5829 	}
5830 
5831 	rq->core->core_pick_seq = rq->core->core_task_seq;
5832 	next = rq->core_pick;
5833 	rq->core_sched_seq = rq->core->core_pick_seq;
5834 
5835 	/* Something should have been selected for current CPU */
5836 	WARN_ON_ONCE(!next);
5837 
5838 	/*
5839 	 * Reschedule siblings
5840 	 *
5841 	 * NOTE: L1TF -- at this point we're no longer running the old task and
5842 	 * sending an IPI (below) ensures the sibling will no longer be running
5843 	 * their task. This ensures there is no inter-sibling overlap between
5844 	 * non-matching user state.
5845 	 */
5846 	for_each_cpu(i, smt_mask) {
5847 		rq_i = cpu_rq(i);
5848 
5849 		/*
5850 		 * An online sibling might have gone offline before a task
5851 		 * could be picked for it, or it might be offline but later
5852 		 * happen to come online, but its too late and nothing was
5853 		 * picked for it.  That's Ok - it will pick tasks for itself,
5854 		 * so ignore it.
5855 		 */
5856 		if (!rq_i->core_pick)
5857 			continue;
5858 
5859 		/*
5860 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5861 		 * fi_before     fi      update?
5862 		 *  0            0       1
5863 		 *  0            1       1
5864 		 *  1            0       1
5865 		 *  1            1       0
5866 		 */
5867 		if (!(fi_before && rq->core->core_forceidle_count))
5868 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
5869 
5870 		rq_i->core_pick->core_occupation = occ;
5871 
5872 		if (i == cpu) {
5873 			rq_i->core_pick = NULL;
5874 			continue;
5875 		}
5876 
5877 		/* Did we break L1TF mitigation requirements? */
5878 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5879 
5880 		if (rq_i->curr == rq_i->core_pick) {
5881 			rq_i->core_pick = NULL;
5882 			continue;
5883 		}
5884 
5885 		resched_curr(rq_i);
5886 	}
5887 
5888 done:
5889 	set_next_task(rq, next);
5890 	return next;
5891 }
5892 
5893 static bool try_steal_cookie(int this, int that)
5894 {
5895 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5896 	struct task_struct *p;
5897 	unsigned long cookie;
5898 	bool success = false;
5899 
5900 	local_irq_disable();
5901 	double_rq_lock(dst, src);
5902 
5903 	cookie = dst->core->core_cookie;
5904 	if (!cookie)
5905 		goto unlock;
5906 
5907 	if (dst->curr != dst->idle)
5908 		goto unlock;
5909 
5910 	p = sched_core_find(src, cookie);
5911 	if (p == src->idle)
5912 		goto unlock;
5913 
5914 	do {
5915 		if (p == src->core_pick || p == src->curr)
5916 			goto next;
5917 
5918 		if (!cpumask_test_cpu(this, &p->cpus_mask))
5919 			goto next;
5920 
5921 		if (p->core_occupation > dst->idle->core_occupation)
5922 			goto next;
5923 
5924 		deactivate_task(src, p, 0);
5925 		set_task_cpu(p, this);
5926 		activate_task(dst, p, 0);
5927 
5928 		resched_curr(dst);
5929 
5930 		success = true;
5931 		break;
5932 
5933 next:
5934 		p = sched_core_next(p, cookie);
5935 	} while (p);
5936 
5937 unlock:
5938 	double_rq_unlock(dst, src);
5939 	local_irq_enable();
5940 
5941 	return success;
5942 }
5943 
5944 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5945 {
5946 	int i;
5947 
5948 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5949 		if (i == cpu)
5950 			continue;
5951 
5952 		if (need_resched())
5953 			break;
5954 
5955 		if (try_steal_cookie(cpu, i))
5956 			return true;
5957 	}
5958 
5959 	return false;
5960 }
5961 
5962 static void sched_core_balance(struct rq *rq)
5963 {
5964 	struct sched_domain *sd;
5965 	int cpu = cpu_of(rq);
5966 
5967 	preempt_disable();
5968 	rcu_read_lock();
5969 	raw_spin_rq_unlock_irq(rq);
5970 	for_each_domain(cpu, sd) {
5971 		if (need_resched())
5972 			break;
5973 
5974 		if (steal_cookie_task(cpu, sd))
5975 			break;
5976 	}
5977 	raw_spin_rq_lock_irq(rq);
5978 	rcu_read_unlock();
5979 	preempt_enable();
5980 }
5981 
5982 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5983 
5984 void queue_core_balance(struct rq *rq)
5985 {
5986 	if (!sched_core_enabled(rq))
5987 		return;
5988 
5989 	if (!rq->core->core_cookie)
5990 		return;
5991 
5992 	if (!rq->nr_running) /* not forced idle */
5993 		return;
5994 
5995 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5996 }
5997 
5998 static void sched_core_cpu_starting(unsigned int cpu)
5999 {
6000 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6001 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6002 	unsigned long flags;
6003 	int t;
6004 
6005 	sched_core_lock(cpu, &flags);
6006 
6007 	WARN_ON_ONCE(rq->core != rq);
6008 
6009 	/* if we're the first, we'll be our own leader */
6010 	if (cpumask_weight(smt_mask) == 1)
6011 		goto unlock;
6012 
6013 	/* find the leader */
6014 	for_each_cpu(t, smt_mask) {
6015 		if (t == cpu)
6016 			continue;
6017 		rq = cpu_rq(t);
6018 		if (rq->core == rq) {
6019 			core_rq = rq;
6020 			break;
6021 		}
6022 	}
6023 
6024 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6025 		goto unlock;
6026 
6027 	/* install and validate core_rq */
6028 	for_each_cpu(t, smt_mask) {
6029 		rq = cpu_rq(t);
6030 
6031 		if (t == cpu)
6032 			rq->core = core_rq;
6033 
6034 		WARN_ON_ONCE(rq->core != core_rq);
6035 	}
6036 
6037 unlock:
6038 	sched_core_unlock(cpu, &flags);
6039 }
6040 
6041 static void sched_core_cpu_deactivate(unsigned int cpu)
6042 {
6043 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6044 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6045 	unsigned long flags;
6046 	int t;
6047 
6048 	sched_core_lock(cpu, &flags);
6049 
6050 	/* if we're the last man standing, nothing to do */
6051 	if (cpumask_weight(smt_mask) == 1) {
6052 		WARN_ON_ONCE(rq->core != rq);
6053 		goto unlock;
6054 	}
6055 
6056 	/* if we're not the leader, nothing to do */
6057 	if (rq->core != rq)
6058 		goto unlock;
6059 
6060 	/* find a new leader */
6061 	for_each_cpu(t, smt_mask) {
6062 		if (t == cpu)
6063 			continue;
6064 		core_rq = cpu_rq(t);
6065 		break;
6066 	}
6067 
6068 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6069 		goto unlock;
6070 
6071 	/* copy the shared state to the new leader */
6072 	core_rq->core_task_seq             = rq->core_task_seq;
6073 	core_rq->core_pick_seq             = rq->core_pick_seq;
6074 	core_rq->core_cookie               = rq->core_cookie;
6075 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6076 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6077 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6078 
6079 	/*
6080 	 * Accounting edge for forced idle is handled in pick_next_task().
6081 	 * Don't need another one here, since the hotplug thread shouldn't
6082 	 * have a cookie.
6083 	 */
6084 	core_rq->core_forceidle_start = 0;
6085 
6086 	/* install new leader */
6087 	for_each_cpu(t, smt_mask) {
6088 		rq = cpu_rq(t);
6089 		rq->core = core_rq;
6090 	}
6091 
6092 unlock:
6093 	sched_core_unlock(cpu, &flags);
6094 }
6095 
6096 static inline void sched_core_cpu_dying(unsigned int cpu)
6097 {
6098 	struct rq *rq = cpu_rq(cpu);
6099 
6100 	if (rq->core != rq)
6101 		rq->core = rq;
6102 }
6103 
6104 #else /* !CONFIG_SCHED_CORE */
6105 
6106 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6107 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6108 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6109 
6110 static struct task_struct *
6111 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6112 {
6113 	return __pick_next_task(rq, prev, rf);
6114 }
6115 
6116 #endif /* CONFIG_SCHED_CORE */
6117 
6118 /*
6119  * Constants for the sched_mode argument of __schedule().
6120  *
6121  * The mode argument allows RT enabled kernels to differentiate a
6122  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6123  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6124  * optimize the AND operation out and just check for zero.
6125  */
6126 #define SM_NONE			0x0
6127 #define SM_PREEMPT		0x1
6128 #define SM_RTLOCK_WAIT		0x2
6129 
6130 #ifndef CONFIG_PREEMPT_RT
6131 # define SM_MASK_PREEMPT	(~0U)
6132 #else
6133 # define SM_MASK_PREEMPT	SM_PREEMPT
6134 #endif
6135 
6136 /*
6137  * __schedule() is the main scheduler function.
6138  *
6139  * The main means of driving the scheduler and thus entering this function are:
6140  *
6141  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6142  *
6143  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6144  *      paths. For example, see arch/x86/entry_64.S.
6145  *
6146  *      To drive preemption between tasks, the scheduler sets the flag in timer
6147  *      interrupt handler scheduler_tick().
6148  *
6149  *   3. Wakeups don't really cause entry into schedule(). They add a
6150  *      task to the run-queue and that's it.
6151  *
6152  *      Now, if the new task added to the run-queue preempts the current
6153  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6154  *      called on the nearest possible occasion:
6155  *
6156  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6157  *
6158  *         - in syscall or exception context, at the next outmost
6159  *           preempt_enable(). (this might be as soon as the wake_up()'s
6160  *           spin_unlock()!)
6161  *
6162  *         - in IRQ context, return from interrupt-handler to
6163  *           preemptible context
6164  *
6165  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6166  *         then at the next:
6167  *
6168  *          - cond_resched() call
6169  *          - explicit schedule() call
6170  *          - return from syscall or exception to user-space
6171  *          - return from interrupt-handler to user-space
6172  *
6173  * WARNING: must be called with preemption disabled!
6174  */
6175 static void __sched notrace __schedule(unsigned int sched_mode)
6176 {
6177 	struct task_struct *prev, *next;
6178 	unsigned long *switch_count;
6179 	unsigned long prev_state;
6180 	struct rq_flags rf;
6181 	struct rq *rq;
6182 	int cpu;
6183 
6184 	cpu = smp_processor_id();
6185 	rq = cpu_rq(cpu);
6186 	prev = rq->curr;
6187 
6188 	schedule_debug(prev, !!sched_mode);
6189 
6190 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6191 		hrtick_clear(rq);
6192 
6193 	local_irq_disable();
6194 	rcu_note_context_switch(!!sched_mode);
6195 
6196 	/*
6197 	 * Make sure that signal_pending_state()->signal_pending() below
6198 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6199 	 * done by the caller to avoid the race with signal_wake_up():
6200 	 *
6201 	 * __set_current_state(@state)		signal_wake_up()
6202 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6203 	 *					  wake_up_state(p, state)
6204 	 *   LOCK rq->lock			    LOCK p->pi_state
6205 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6206 	 *     if (signal_pending_state())	    if (p->state & @state)
6207 	 *
6208 	 * Also, the membarrier system call requires a full memory barrier
6209 	 * after coming from user-space, before storing to rq->curr.
6210 	 */
6211 	rq_lock(rq, &rf);
6212 	smp_mb__after_spinlock();
6213 
6214 	/* Promote REQ to ACT */
6215 	rq->clock_update_flags <<= 1;
6216 	update_rq_clock(rq);
6217 
6218 	switch_count = &prev->nivcsw;
6219 
6220 	/*
6221 	 * We must load prev->state once (task_struct::state is volatile), such
6222 	 * that:
6223 	 *
6224 	 *  - we form a control dependency vs deactivate_task() below.
6225 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
6226 	 */
6227 	prev_state = READ_ONCE(prev->__state);
6228 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6229 		if (signal_pending_state(prev_state, prev)) {
6230 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6231 		} else {
6232 			prev->sched_contributes_to_load =
6233 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6234 				!(prev_state & TASK_NOLOAD) &&
6235 				!(prev->flags & PF_FROZEN);
6236 
6237 			if (prev->sched_contributes_to_load)
6238 				rq->nr_uninterruptible++;
6239 
6240 			/*
6241 			 * __schedule()			ttwu()
6242 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6243 			 *   if (prev_state)		    goto out;
6244 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6245 			 *				  p->state = TASK_WAKING
6246 			 *
6247 			 * Where __schedule() and ttwu() have matching control dependencies.
6248 			 *
6249 			 * After this, schedule() must not care about p->state any more.
6250 			 */
6251 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6252 
6253 			if (prev->in_iowait) {
6254 				atomic_inc(&rq->nr_iowait);
6255 				delayacct_blkio_start();
6256 			}
6257 		}
6258 		switch_count = &prev->nvcsw;
6259 	}
6260 
6261 	next = pick_next_task(rq, prev, &rf);
6262 	clear_tsk_need_resched(prev);
6263 	clear_preempt_need_resched();
6264 #ifdef CONFIG_SCHED_DEBUG
6265 	rq->last_seen_need_resched_ns = 0;
6266 #endif
6267 
6268 	if (likely(prev != next)) {
6269 		rq->nr_switches++;
6270 		/*
6271 		 * RCU users of rcu_dereference(rq->curr) may not see
6272 		 * changes to task_struct made by pick_next_task().
6273 		 */
6274 		RCU_INIT_POINTER(rq->curr, next);
6275 		/*
6276 		 * The membarrier system call requires each architecture
6277 		 * to have a full memory barrier after updating
6278 		 * rq->curr, before returning to user-space.
6279 		 *
6280 		 * Here are the schemes providing that barrier on the
6281 		 * various architectures:
6282 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6283 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6284 		 * - finish_lock_switch() for weakly-ordered
6285 		 *   architectures where spin_unlock is a full barrier,
6286 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6287 		 *   is a RELEASE barrier),
6288 		 */
6289 		++*switch_count;
6290 
6291 		migrate_disable_switch(rq, prev);
6292 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6293 
6294 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
6295 
6296 		/* Also unlocks the rq: */
6297 		rq = context_switch(rq, prev, next, &rf);
6298 	} else {
6299 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6300 
6301 		rq_unpin_lock(rq, &rf);
6302 		__balance_callbacks(rq);
6303 		raw_spin_rq_unlock_irq(rq);
6304 	}
6305 }
6306 
6307 void __noreturn do_task_dead(void)
6308 {
6309 	/* Causes final put_task_struct in finish_task_switch(): */
6310 	set_special_state(TASK_DEAD);
6311 
6312 	/* Tell freezer to ignore us: */
6313 	current->flags |= PF_NOFREEZE;
6314 
6315 	__schedule(SM_NONE);
6316 	BUG();
6317 
6318 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6319 	for (;;)
6320 		cpu_relax();
6321 }
6322 
6323 static inline void sched_submit_work(struct task_struct *tsk)
6324 {
6325 	unsigned int task_flags;
6326 
6327 	if (task_is_running(tsk))
6328 		return;
6329 
6330 	task_flags = tsk->flags;
6331 	/*
6332 	 * If a worker goes to sleep, notify and ask workqueue whether it
6333 	 * wants to wake up a task to maintain concurrency.
6334 	 */
6335 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6336 		if (task_flags & PF_WQ_WORKER)
6337 			wq_worker_sleeping(tsk);
6338 		else
6339 			io_wq_worker_sleeping(tsk);
6340 	}
6341 
6342 	if (tsk_is_pi_blocked(tsk))
6343 		return;
6344 
6345 	/*
6346 	 * If we are going to sleep and we have plugged IO queued,
6347 	 * make sure to submit it to avoid deadlocks.
6348 	 */
6349 	if (blk_needs_flush_plug(tsk))
6350 		blk_flush_plug(tsk->plug, true);
6351 }
6352 
6353 static void sched_update_worker(struct task_struct *tsk)
6354 {
6355 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6356 		if (tsk->flags & PF_WQ_WORKER)
6357 			wq_worker_running(tsk);
6358 		else
6359 			io_wq_worker_running(tsk);
6360 	}
6361 }
6362 
6363 asmlinkage __visible void __sched schedule(void)
6364 {
6365 	struct task_struct *tsk = current;
6366 
6367 	sched_submit_work(tsk);
6368 	do {
6369 		preempt_disable();
6370 		__schedule(SM_NONE);
6371 		sched_preempt_enable_no_resched();
6372 	} while (need_resched());
6373 	sched_update_worker(tsk);
6374 }
6375 EXPORT_SYMBOL(schedule);
6376 
6377 /*
6378  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6379  * state (have scheduled out non-voluntarily) by making sure that all
6380  * tasks have either left the run queue or have gone into user space.
6381  * As idle tasks do not do either, they must not ever be preempted
6382  * (schedule out non-voluntarily).
6383  *
6384  * schedule_idle() is similar to schedule_preempt_disable() except that it
6385  * never enables preemption because it does not call sched_submit_work().
6386  */
6387 void __sched schedule_idle(void)
6388 {
6389 	/*
6390 	 * As this skips calling sched_submit_work(), which the idle task does
6391 	 * regardless because that function is a nop when the task is in a
6392 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6393 	 * current task can be in any other state. Note, idle is always in the
6394 	 * TASK_RUNNING state.
6395 	 */
6396 	WARN_ON_ONCE(current->__state);
6397 	do {
6398 		__schedule(SM_NONE);
6399 	} while (need_resched());
6400 }
6401 
6402 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6403 asmlinkage __visible void __sched schedule_user(void)
6404 {
6405 	/*
6406 	 * If we come here after a random call to set_need_resched(),
6407 	 * or we have been woken up remotely but the IPI has not yet arrived,
6408 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6409 	 * we find a better solution.
6410 	 *
6411 	 * NB: There are buggy callers of this function.  Ideally we
6412 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6413 	 * too frequently to make sense yet.
6414 	 */
6415 	enum ctx_state prev_state = exception_enter();
6416 	schedule();
6417 	exception_exit(prev_state);
6418 }
6419 #endif
6420 
6421 /**
6422  * schedule_preempt_disabled - called with preemption disabled
6423  *
6424  * Returns with preemption disabled. Note: preempt_count must be 1
6425  */
6426 void __sched schedule_preempt_disabled(void)
6427 {
6428 	sched_preempt_enable_no_resched();
6429 	schedule();
6430 	preempt_disable();
6431 }
6432 
6433 #ifdef CONFIG_PREEMPT_RT
6434 void __sched notrace schedule_rtlock(void)
6435 {
6436 	do {
6437 		preempt_disable();
6438 		__schedule(SM_RTLOCK_WAIT);
6439 		sched_preempt_enable_no_resched();
6440 	} while (need_resched());
6441 }
6442 NOKPROBE_SYMBOL(schedule_rtlock);
6443 #endif
6444 
6445 static void __sched notrace preempt_schedule_common(void)
6446 {
6447 	do {
6448 		/*
6449 		 * Because the function tracer can trace preempt_count_sub()
6450 		 * and it also uses preempt_enable/disable_notrace(), if
6451 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6452 		 * by the function tracer will call this function again and
6453 		 * cause infinite recursion.
6454 		 *
6455 		 * Preemption must be disabled here before the function
6456 		 * tracer can trace. Break up preempt_disable() into two
6457 		 * calls. One to disable preemption without fear of being
6458 		 * traced. The other to still record the preemption latency,
6459 		 * which can also be traced by the function tracer.
6460 		 */
6461 		preempt_disable_notrace();
6462 		preempt_latency_start(1);
6463 		__schedule(SM_PREEMPT);
6464 		preempt_latency_stop(1);
6465 		preempt_enable_no_resched_notrace();
6466 
6467 		/*
6468 		 * Check again in case we missed a preemption opportunity
6469 		 * between schedule and now.
6470 		 */
6471 	} while (need_resched());
6472 }
6473 
6474 #ifdef CONFIG_PREEMPTION
6475 /*
6476  * This is the entry point to schedule() from in-kernel preemption
6477  * off of preempt_enable.
6478  */
6479 asmlinkage __visible void __sched notrace preempt_schedule(void)
6480 {
6481 	/*
6482 	 * If there is a non-zero preempt_count or interrupts are disabled,
6483 	 * we do not want to preempt the current task. Just return..
6484 	 */
6485 	if (likely(!preemptible()))
6486 		return;
6487 
6488 	preempt_schedule_common();
6489 }
6490 NOKPROBE_SYMBOL(preempt_schedule);
6491 EXPORT_SYMBOL(preempt_schedule);
6492 
6493 #ifdef CONFIG_PREEMPT_DYNAMIC
6494 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6495 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6496 #endif
6497 
6498 
6499 /**
6500  * preempt_schedule_notrace - preempt_schedule called by tracing
6501  *
6502  * The tracing infrastructure uses preempt_enable_notrace to prevent
6503  * recursion and tracing preempt enabling caused by the tracing
6504  * infrastructure itself. But as tracing can happen in areas coming
6505  * from userspace or just about to enter userspace, a preempt enable
6506  * can occur before user_exit() is called. This will cause the scheduler
6507  * to be called when the system is still in usermode.
6508  *
6509  * To prevent this, the preempt_enable_notrace will use this function
6510  * instead of preempt_schedule() to exit user context if needed before
6511  * calling the scheduler.
6512  */
6513 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6514 {
6515 	enum ctx_state prev_ctx;
6516 
6517 	if (likely(!preemptible()))
6518 		return;
6519 
6520 	do {
6521 		/*
6522 		 * Because the function tracer can trace preempt_count_sub()
6523 		 * and it also uses preempt_enable/disable_notrace(), if
6524 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6525 		 * by the function tracer will call this function again and
6526 		 * cause infinite recursion.
6527 		 *
6528 		 * Preemption must be disabled here before the function
6529 		 * tracer can trace. Break up preempt_disable() into two
6530 		 * calls. One to disable preemption without fear of being
6531 		 * traced. The other to still record the preemption latency,
6532 		 * which can also be traced by the function tracer.
6533 		 */
6534 		preempt_disable_notrace();
6535 		preempt_latency_start(1);
6536 		/*
6537 		 * Needs preempt disabled in case user_exit() is traced
6538 		 * and the tracer calls preempt_enable_notrace() causing
6539 		 * an infinite recursion.
6540 		 */
6541 		prev_ctx = exception_enter();
6542 		__schedule(SM_PREEMPT);
6543 		exception_exit(prev_ctx);
6544 
6545 		preempt_latency_stop(1);
6546 		preempt_enable_no_resched_notrace();
6547 	} while (need_resched());
6548 }
6549 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6550 
6551 #ifdef CONFIG_PREEMPT_DYNAMIC
6552 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6553 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6554 #endif
6555 
6556 #endif /* CONFIG_PREEMPTION */
6557 
6558 #ifdef CONFIG_PREEMPT_DYNAMIC
6559 
6560 #include <linux/entry-common.h>
6561 
6562 /*
6563  * SC:cond_resched
6564  * SC:might_resched
6565  * SC:preempt_schedule
6566  * SC:preempt_schedule_notrace
6567  * SC:irqentry_exit_cond_resched
6568  *
6569  *
6570  * NONE:
6571  *   cond_resched               <- __cond_resched
6572  *   might_resched              <- RET0
6573  *   preempt_schedule           <- NOP
6574  *   preempt_schedule_notrace   <- NOP
6575  *   irqentry_exit_cond_resched <- NOP
6576  *
6577  * VOLUNTARY:
6578  *   cond_resched               <- __cond_resched
6579  *   might_resched              <- __cond_resched
6580  *   preempt_schedule           <- NOP
6581  *   preempt_schedule_notrace   <- NOP
6582  *   irqentry_exit_cond_resched <- NOP
6583  *
6584  * FULL:
6585  *   cond_resched               <- RET0
6586  *   might_resched              <- RET0
6587  *   preempt_schedule           <- preempt_schedule
6588  *   preempt_schedule_notrace   <- preempt_schedule_notrace
6589  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6590  */
6591 
6592 enum {
6593 	preempt_dynamic_undefined = -1,
6594 	preempt_dynamic_none,
6595 	preempt_dynamic_voluntary,
6596 	preempt_dynamic_full,
6597 };
6598 
6599 int preempt_dynamic_mode = preempt_dynamic_undefined;
6600 
6601 int sched_dynamic_mode(const char *str)
6602 {
6603 	if (!strcmp(str, "none"))
6604 		return preempt_dynamic_none;
6605 
6606 	if (!strcmp(str, "voluntary"))
6607 		return preempt_dynamic_voluntary;
6608 
6609 	if (!strcmp(str, "full"))
6610 		return preempt_dynamic_full;
6611 
6612 	return -EINVAL;
6613 }
6614 
6615 void sched_dynamic_update(int mode)
6616 {
6617 	/*
6618 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6619 	 * the ZERO state, which is invalid.
6620 	 */
6621 	static_call_update(cond_resched, __cond_resched);
6622 	static_call_update(might_resched, __cond_resched);
6623 	static_call_update(preempt_schedule, __preempt_schedule_func);
6624 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6625 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6626 
6627 	switch (mode) {
6628 	case preempt_dynamic_none:
6629 		static_call_update(cond_resched, __cond_resched);
6630 		static_call_update(might_resched, (void *)&__static_call_return0);
6631 		static_call_update(preempt_schedule, NULL);
6632 		static_call_update(preempt_schedule_notrace, NULL);
6633 		static_call_update(irqentry_exit_cond_resched, NULL);
6634 		pr_info("Dynamic Preempt: none\n");
6635 		break;
6636 
6637 	case preempt_dynamic_voluntary:
6638 		static_call_update(cond_resched, __cond_resched);
6639 		static_call_update(might_resched, __cond_resched);
6640 		static_call_update(preempt_schedule, NULL);
6641 		static_call_update(preempt_schedule_notrace, NULL);
6642 		static_call_update(irqentry_exit_cond_resched, NULL);
6643 		pr_info("Dynamic Preempt: voluntary\n");
6644 		break;
6645 
6646 	case preempt_dynamic_full:
6647 		static_call_update(cond_resched, (void *)&__static_call_return0);
6648 		static_call_update(might_resched, (void *)&__static_call_return0);
6649 		static_call_update(preempt_schedule, __preempt_schedule_func);
6650 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6651 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6652 		pr_info("Dynamic Preempt: full\n");
6653 		break;
6654 	}
6655 
6656 	preempt_dynamic_mode = mode;
6657 }
6658 
6659 static int __init setup_preempt_mode(char *str)
6660 {
6661 	int mode = sched_dynamic_mode(str);
6662 	if (mode < 0) {
6663 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6664 		return 0;
6665 	}
6666 
6667 	sched_dynamic_update(mode);
6668 	return 1;
6669 }
6670 __setup("preempt=", setup_preempt_mode);
6671 
6672 static void __init preempt_dynamic_init(void)
6673 {
6674 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
6675 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
6676 			sched_dynamic_update(preempt_dynamic_none);
6677 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
6678 			sched_dynamic_update(preempt_dynamic_voluntary);
6679 		} else {
6680 			/* Default static call setting, nothing to do */
6681 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
6682 			preempt_dynamic_mode = preempt_dynamic_full;
6683 			pr_info("Dynamic Preempt: full\n");
6684 		}
6685 	}
6686 }
6687 
6688 #else /* !CONFIG_PREEMPT_DYNAMIC */
6689 
6690 static inline void preempt_dynamic_init(void) { }
6691 
6692 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
6693 
6694 /*
6695  * This is the entry point to schedule() from kernel preemption
6696  * off of irq context.
6697  * Note, that this is called and return with irqs disabled. This will
6698  * protect us against recursive calling from irq.
6699  */
6700 asmlinkage __visible void __sched preempt_schedule_irq(void)
6701 {
6702 	enum ctx_state prev_state;
6703 
6704 	/* Catch callers which need to be fixed */
6705 	BUG_ON(preempt_count() || !irqs_disabled());
6706 
6707 	prev_state = exception_enter();
6708 
6709 	do {
6710 		preempt_disable();
6711 		local_irq_enable();
6712 		__schedule(SM_PREEMPT);
6713 		local_irq_disable();
6714 		sched_preempt_enable_no_resched();
6715 	} while (need_resched());
6716 
6717 	exception_exit(prev_state);
6718 }
6719 
6720 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6721 			  void *key)
6722 {
6723 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6724 	return try_to_wake_up(curr->private, mode, wake_flags);
6725 }
6726 EXPORT_SYMBOL(default_wake_function);
6727 
6728 static void __setscheduler_prio(struct task_struct *p, int prio)
6729 {
6730 	if (dl_prio(prio))
6731 		p->sched_class = &dl_sched_class;
6732 	else if (rt_prio(prio))
6733 		p->sched_class = &rt_sched_class;
6734 	else
6735 		p->sched_class = &fair_sched_class;
6736 
6737 	p->prio = prio;
6738 }
6739 
6740 #ifdef CONFIG_RT_MUTEXES
6741 
6742 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6743 {
6744 	if (pi_task)
6745 		prio = min(prio, pi_task->prio);
6746 
6747 	return prio;
6748 }
6749 
6750 static inline int rt_effective_prio(struct task_struct *p, int prio)
6751 {
6752 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6753 
6754 	return __rt_effective_prio(pi_task, prio);
6755 }
6756 
6757 /*
6758  * rt_mutex_setprio - set the current priority of a task
6759  * @p: task to boost
6760  * @pi_task: donor task
6761  *
6762  * This function changes the 'effective' priority of a task. It does
6763  * not touch ->normal_prio like __setscheduler().
6764  *
6765  * Used by the rt_mutex code to implement priority inheritance
6766  * logic. Call site only calls if the priority of the task changed.
6767  */
6768 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6769 {
6770 	int prio, oldprio, queued, running, queue_flag =
6771 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6772 	const struct sched_class *prev_class;
6773 	struct rq_flags rf;
6774 	struct rq *rq;
6775 
6776 	/* XXX used to be waiter->prio, not waiter->task->prio */
6777 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6778 
6779 	/*
6780 	 * If nothing changed; bail early.
6781 	 */
6782 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6783 		return;
6784 
6785 	rq = __task_rq_lock(p, &rf);
6786 	update_rq_clock(rq);
6787 	/*
6788 	 * Set under pi_lock && rq->lock, such that the value can be used under
6789 	 * either lock.
6790 	 *
6791 	 * Note that there is loads of tricky to make this pointer cache work
6792 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6793 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6794 	 * task is allowed to run again (and can exit). This ensures the pointer
6795 	 * points to a blocked task -- which guarantees the task is present.
6796 	 */
6797 	p->pi_top_task = pi_task;
6798 
6799 	/*
6800 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6801 	 */
6802 	if (prio == p->prio && !dl_prio(prio))
6803 		goto out_unlock;
6804 
6805 	/*
6806 	 * Idle task boosting is a nono in general. There is one
6807 	 * exception, when PREEMPT_RT and NOHZ is active:
6808 	 *
6809 	 * The idle task calls get_next_timer_interrupt() and holds
6810 	 * the timer wheel base->lock on the CPU and another CPU wants
6811 	 * to access the timer (probably to cancel it). We can safely
6812 	 * ignore the boosting request, as the idle CPU runs this code
6813 	 * with interrupts disabled and will complete the lock
6814 	 * protected section without being interrupted. So there is no
6815 	 * real need to boost.
6816 	 */
6817 	if (unlikely(p == rq->idle)) {
6818 		WARN_ON(p != rq->curr);
6819 		WARN_ON(p->pi_blocked_on);
6820 		goto out_unlock;
6821 	}
6822 
6823 	trace_sched_pi_setprio(p, pi_task);
6824 	oldprio = p->prio;
6825 
6826 	if (oldprio == prio)
6827 		queue_flag &= ~DEQUEUE_MOVE;
6828 
6829 	prev_class = p->sched_class;
6830 	queued = task_on_rq_queued(p);
6831 	running = task_current(rq, p);
6832 	if (queued)
6833 		dequeue_task(rq, p, queue_flag);
6834 	if (running)
6835 		put_prev_task(rq, p);
6836 
6837 	/*
6838 	 * Boosting condition are:
6839 	 * 1. -rt task is running and holds mutex A
6840 	 *      --> -dl task blocks on mutex A
6841 	 *
6842 	 * 2. -dl task is running and holds mutex A
6843 	 *      --> -dl task blocks on mutex A and could preempt the
6844 	 *          running task
6845 	 */
6846 	if (dl_prio(prio)) {
6847 		if (!dl_prio(p->normal_prio) ||
6848 		    (pi_task && dl_prio(pi_task->prio) &&
6849 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6850 			p->dl.pi_se = pi_task->dl.pi_se;
6851 			queue_flag |= ENQUEUE_REPLENISH;
6852 		} else {
6853 			p->dl.pi_se = &p->dl;
6854 		}
6855 	} else if (rt_prio(prio)) {
6856 		if (dl_prio(oldprio))
6857 			p->dl.pi_se = &p->dl;
6858 		if (oldprio < prio)
6859 			queue_flag |= ENQUEUE_HEAD;
6860 	} else {
6861 		if (dl_prio(oldprio))
6862 			p->dl.pi_se = &p->dl;
6863 		if (rt_prio(oldprio))
6864 			p->rt.timeout = 0;
6865 	}
6866 
6867 	__setscheduler_prio(p, prio);
6868 
6869 	if (queued)
6870 		enqueue_task(rq, p, queue_flag);
6871 	if (running)
6872 		set_next_task(rq, p);
6873 
6874 	check_class_changed(rq, p, prev_class, oldprio);
6875 out_unlock:
6876 	/* Avoid rq from going away on us: */
6877 	preempt_disable();
6878 
6879 	rq_unpin_lock(rq, &rf);
6880 	__balance_callbacks(rq);
6881 	raw_spin_rq_unlock(rq);
6882 
6883 	preempt_enable();
6884 }
6885 #else
6886 static inline int rt_effective_prio(struct task_struct *p, int prio)
6887 {
6888 	return prio;
6889 }
6890 #endif
6891 
6892 void set_user_nice(struct task_struct *p, long nice)
6893 {
6894 	bool queued, running;
6895 	int old_prio;
6896 	struct rq_flags rf;
6897 	struct rq *rq;
6898 
6899 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6900 		return;
6901 	/*
6902 	 * We have to be careful, if called from sys_setpriority(),
6903 	 * the task might be in the middle of scheduling on another CPU.
6904 	 */
6905 	rq = task_rq_lock(p, &rf);
6906 	update_rq_clock(rq);
6907 
6908 	/*
6909 	 * The RT priorities are set via sched_setscheduler(), but we still
6910 	 * allow the 'normal' nice value to be set - but as expected
6911 	 * it won't have any effect on scheduling until the task is
6912 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6913 	 */
6914 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6915 		p->static_prio = NICE_TO_PRIO(nice);
6916 		goto out_unlock;
6917 	}
6918 	queued = task_on_rq_queued(p);
6919 	running = task_current(rq, p);
6920 	if (queued)
6921 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6922 	if (running)
6923 		put_prev_task(rq, p);
6924 
6925 	p->static_prio = NICE_TO_PRIO(nice);
6926 	set_load_weight(p, true);
6927 	old_prio = p->prio;
6928 	p->prio = effective_prio(p);
6929 
6930 	if (queued)
6931 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6932 	if (running)
6933 		set_next_task(rq, p);
6934 
6935 	/*
6936 	 * If the task increased its priority or is running and
6937 	 * lowered its priority, then reschedule its CPU:
6938 	 */
6939 	p->sched_class->prio_changed(rq, p, old_prio);
6940 
6941 out_unlock:
6942 	task_rq_unlock(rq, p, &rf);
6943 }
6944 EXPORT_SYMBOL(set_user_nice);
6945 
6946 /*
6947  * can_nice - check if a task can reduce its nice value
6948  * @p: task
6949  * @nice: nice value
6950  */
6951 int can_nice(const struct task_struct *p, const int nice)
6952 {
6953 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
6954 	int nice_rlim = nice_to_rlimit(nice);
6955 
6956 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6957 		capable(CAP_SYS_NICE));
6958 }
6959 
6960 #ifdef __ARCH_WANT_SYS_NICE
6961 
6962 /*
6963  * sys_nice - change the priority of the current process.
6964  * @increment: priority increment
6965  *
6966  * sys_setpriority is a more generic, but much slower function that
6967  * does similar things.
6968  */
6969 SYSCALL_DEFINE1(nice, int, increment)
6970 {
6971 	long nice, retval;
6972 
6973 	/*
6974 	 * Setpriority might change our priority at the same moment.
6975 	 * We don't have to worry. Conceptually one call occurs first
6976 	 * and we have a single winner.
6977 	 */
6978 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6979 	nice = task_nice(current) + increment;
6980 
6981 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6982 	if (increment < 0 && !can_nice(current, nice))
6983 		return -EPERM;
6984 
6985 	retval = security_task_setnice(current, nice);
6986 	if (retval)
6987 		return retval;
6988 
6989 	set_user_nice(current, nice);
6990 	return 0;
6991 }
6992 
6993 #endif
6994 
6995 /**
6996  * task_prio - return the priority value of a given task.
6997  * @p: the task in question.
6998  *
6999  * Return: The priority value as seen by users in /proc.
7000  *
7001  * sched policy         return value   kernel prio    user prio/nice
7002  *
7003  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7004  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7005  * deadline                     -101             -1           0
7006  */
7007 int task_prio(const struct task_struct *p)
7008 {
7009 	return p->prio - MAX_RT_PRIO;
7010 }
7011 
7012 /**
7013  * idle_cpu - is a given CPU idle currently?
7014  * @cpu: the processor in question.
7015  *
7016  * Return: 1 if the CPU is currently idle. 0 otherwise.
7017  */
7018 int idle_cpu(int cpu)
7019 {
7020 	struct rq *rq = cpu_rq(cpu);
7021 
7022 	if (rq->curr != rq->idle)
7023 		return 0;
7024 
7025 	if (rq->nr_running)
7026 		return 0;
7027 
7028 #ifdef CONFIG_SMP
7029 	if (rq->ttwu_pending)
7030 		return 0;
7031 #endif
7032 
7033 	return 1;
7034 }
7035 
7036 /**
7037  * available_idle_cpu - is a given CPU idle for enqueuing work.
7038  * @cpu: the CPU in question.
7039  *
7040  * Return: 1 if the CPU is currently idle. 0 otherwise.
7041  */
7042 int available_idle_cpu(int cpu)
7043 {
7044 	if (!idle_cpu(cpu))
7045 		return 0;
7046 
7047 	if (vcpu_is_preempted(cpu))
7048 		return 0;
7049 
7050 	return 1;
7051 }
7052 
7053 /**
7054  * idle_task - return the idle task for a given CPU.
7055  * @cpu: the processor in question.
7056  *
7057  * Return: The idle task for the CPU @cpu.
7058  */
7059 struct task_struct *idle_task(int cpu)
7060 {
7061 	return cpu_rq(cpu)->idle;
7062 }
7063 
7064 #ifdef CONFIG_SMP
7065 /*
7066  * This function computes an effective utilization for the given CPU, to be
7067  * used for frequency selection given the linear relation: f = u * f_max.
7068  *
7069  * The scheduler tracks the following metrics:
7070  *
7071  *   cpu_util_{cfs,rt,dl,irq}()
7072  *   cpu_bw_dl()
7073  *
7074  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7075  * synchronized windows and are thus directly comparable.
7076  *
7077  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7078  * which excludes things like IRQ and steal-time. These latter are then accrued
7079  * in the irq utilization.
7080  *
7081  * The DL bandwidth number otoh is not a measured metric but a value computed
7082  * based on the task model parameters and gives the minimal utilization
7083  * required to meet deadlines.
7084  */
7085 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7086 				 unsigned long max, enum cpu_util_type type,
7087 				 struct task_struct *p)
7088 {
7089 	unsigned long dl_util, util, irq;
7090 	struct rq *rq = cpu_rq(cpu);
7091 
7092 	if (!uclamp_is_used() &&
7093 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7094 		return max;
7095 	}
7096 
7097 	/*
7098 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7099 	 * because of inaccuracies in how we track these -- see
7100 	 * update_irq_load_avg().
7101 	 */
7102 	irq = cpu_util_irq(rq);
7103 	if (unlikely(irq >= max))
7104 		return max;
7105 
7106 	/*
7107 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7108 	 * CFS tasks and we use the same metric to track the effective
7109 	 * utilization (PELT windows are synchronized) we can directly add them
7110 	 * to obtain the CPU's actual utilization.
7111 	 *
7112 	 * CFS and RT utilization can be boosted or capped, depending on
7113 	 * utilization clamp constraints requested by currently RUNNABLE
7114 	 * tasks.
7115 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7116 	 * frequency will be gracefully reduced with the utilization decay.
7117 	 */
7118 	util = util_cfs + cpu_util_rt(rq);
7119 	if (type == FREQUENCY_UTIL)
7120 		util = uclamp_rq_util_with(rq, util, p);
7121 
7122 	dl_util = cpu_util_dl(rq);
7123 
7124 	/*
7125 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7126 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7127 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7128 	 * that we select f_max when there is no idle time.
7129 	 *
7130 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7131 	 * saturation when we should -- something for later.
7132 	 */
7133 	if (util + dl_util >= max)
7134 		return max;
7135 
7136 	/*
7137 	 * OTOH, for energy computation we need the estimated running time, so
7138 	 * include util_dl and ignore dl_bw.
7139 	 */
7140 	if (type == ENERGY_UTIL)
7141 		util += dl_util;
7142 
7143 	/*
7144 	 * There is still idle time; further improve the number by using the
7145 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7146 	 * need to scale the task numbers:
7147 	 *
7148 	 *              max - irq
7149 	 *   U' = irq + --------- * U
7150 	 *                 max
7151 	 */
7152 	util = scale_irq_capacity(util, irq, max);
7153 	util += irq;
7154 
7155 	/*
7156 	 * Bandwidth required by DEADLINE must always be granted while, for
7157 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7158 	 * to gracefully reduce the frequency when no tasks show up for longer
7159 	 * periods of time.
7160 	 *
7161 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7162 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7163 	 * an interface. So, we only do the latter for now.
7164 	 */
7165 	if (type == FREQUENCY_UTIL)
7166 		util += cpu_bw_dl(rq);
7167 
7168 	return min(max, util);
7169 }
7170 
7171 unsigned long sched_cpu_util(int cpu, unsigned long max)
7172 {
7173 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), max,
7174 				  ENERGY_UTIL, NULL);
7175 }
7176 #endif /* CONFIG_SMP */
7177 
7178 /**
7179  * find_process_by_pid - find a process with a matching PID value.
7180  * @pid: the pid in question.
7181  *
7182  * The task of @pid, if found. %NULL otherwise.
7183  */
7184 static struct task_struct *find_process_by_pid(pid_t pid)
7185 {
7186 	return pid ? find_task_by_vpid(pid) : current;
7187 }
7188 
7189 /*
7190  * sched_setparam() passes in -1 for its policy, to let the functions
7191  * it calls know not to change it.
7192  */
7193 #define SETPARAM_POLICY	-1
7194 
7195 static void __setscheduler_params(struct task_struct *p,
7196 		const struct sched_attr *attr)
7197 {
7198 	int policy = attr->sched_policy;
7199 
7200 	if (policy == SETPARAM_POLICY)
7201 		policy = p->policy;
7202 
7203 	p->policy = policy;
7204 
7205 	if (dl_policy(policy))
7206 		__setparam_dl(p, attr);
7207 	else if (fair_policy(policy))
7208 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7209 
7210 	/*
7211 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7212 	 * !rt_policy. Always setting this ensures that things like
7213 	 * getparam()/getattr() don't report silly values for !rt tasks.
7214 	 */
7215 	p->rt_priority = attr->sched_priority;
7216 	p->normal_prio = normal_prio(p);
7217 	set_load_weight(p, true);
7218 }
7219 
7220 /*
7221  * Check the target process has a UID that matches the current process's:
7222  */
7223 static bool check_same_owner(struct task_struct *p)
7224 {
7225 	const struct cred *cred = current_cred(), *pcred;
7226 	bool match;
7227 
7228 	rcu_read_lock();
7229 	pcred = __task_cred(p);
7230 	match = (uid_eq(cred->euid, pcred->euid) ||
7231 		 uid_eq(cred->euid, pcred->uid));
7232 	rcu_read_unlock();
7233 	return match;
7234 }
7235 
7236 static int __sched_setscheduler(struct task_struct *p,
7237 				const struct sched_attr *attr,
7238 				bool user, bool pi)
7239 {
7240 	int oldpolicy = -1, policy = attr->sched_policy;
7241 	int retval, oldprio, newprio, queued, running;
7242 	const struct sched_class *prev_class;
7243 	struct callback_head *head;
7244 	struct rq_flags rf;
7245 	int reset_on_fork;
7246 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7247 	struct rq *rq;
7248 
7249 	/* The pi code expects interrupts enabled */
7250 	BUG_ON(pi && in_interrupt());
7251 recheck:
7252 	/* Double check policy once rq lock held: */
7253 	if (policy < 0) {
7254 		reset_on_fork = p->sched_reset_on_fork;
7255 		policy = oldpolicy = p->policy;
7256 	} else {
7257 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7258 
7259 		if (!valid_policy(policy))
7260 			return -EINVAL;
7261 	}
7262 
7263 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7264 		return -EINVAL;
7265 
7266 	/*
7267 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7268 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7269 	 * SCHED_BATCH and SCHED_IDLE is 0.
7270 	 */
7271 	if (attr->sched_priority > MAX_RT_PRIO-1)
7272 		return -EINVAL;
7273 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7274 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7275 		return -EINVAL;
7276 
7277 	/*
7278 	 * Allow unprivileged RT tasks to decrease priority:
7279 	 */
7280 	if (user && !capable(CAP_SYS_NICE)) {
7281 		if (fair_policy(policy)) {
7282 			if (attr->sched_nice < task_nice(p) &&
7283 			    !can_nice(p, attr->sched_nice))
7284 				return -EPERM;
7285 		}
7286 
7287 		if (rt_policy(policy)) {
7288 			unsigned long rlim_rtprio =
7289 					task_rlimit(p, RLIMIT_RTPRIO);
7290 
7291 			/* Can't set/change the rt policy: */
7292 			if (policy != p->policy && !rlim_rtprio)
7293 				return -EPERM;
7294 
7295 			/* Can't increase priority: */
7296 			if (attr->sched_priority > p->rt_priority &&
7297 			    attr->sched_priority > rlim_rtprio)
7298 				return -EPERM;
7299 		}
7300 
7301 		 /*
7302 		  * Can't set/change SCHED_DEADLINE policy at all for now
7303 		  * (safest behavior); in the future we would like to allow
7304 		  * unprivileged DL tasks to increase their relative deadline
7305 		  * or reduce their runtime (both ways reducing utilization)
7306 		  */
7307 		if (dl_policy(policy))
7308 			return -EPERM;
7309 
7310 		/*
7311 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7312 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7313 		 */
7314 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
7315 			if (!can_nice(p, task_nice(p)))
7316 				return -EPERM;
7317 		}
7318 
7319 		/* Can't change other user's priorities: */
7320 		if (!check_same_owner(p))
7321 			return -EPERM;
7322 
7323 		/* Normal users shall not reset the sched_reset_on_fork flag: */
7324 		if (p->sched_reset_on_fork && !reset_on_fork)
7325 			return -EPERM;
7326 	}
7327 
7328 	if (user) {
7329 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7330 			return -EINVAL;
7331 
7332 		retval = security_task_setscheduler(p);
7333 		if (retval)
7334 			return retval;
7335 	}
7336 
7337 	/* Update task specific "requested" clamps */
7338 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7339 		retval = uclamp_validate(p, attr);
7340 		if (retval)
7341 			return retval;
7342 	}
7343 
7344 	if (pi)
7345 		cpuset_read_lock();
7346 
7347 	/*
7348 	 * Make sure no PI-waiters arrive (or leave) while we are
7349 	 * changing the priority of the task:
7350 	 *
7351 	 * To be able to change p->policy safely, the appropriate
7352 	 * runqueue lock must be held.
7353 	 */
7354 	rq = task_rq_lock(p, &rf);
7355 	update_rq_clock(rq);
7356 
7357 	/*
7358 	 * Changing the policy of the stop threads its a very bad idea:
7359 	 */
7360 	if (p == rq->stop) {
7361 		retval = -EINVAL;
7362 		goto unlock;
7363 	}
7364 
7365 	/*
7366 	 * If not changing anything there's no need to proceed further,
7367 	 * but store a possible modification of reset_on_fork.
7368 	 */
7369 	if (unlikely(policy == p->policy)) {
7370 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7371 			goto change;
7372 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7373 			goto change;
7374 		if (dl_policy(policy) && dl_param_changed(p, attr))
7375 			goto change;
7376 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7377 			goto change;
7378 
7379 		p->sched_reset_on_fork = reset_on_fork;
7380 		retval = 0;
7381 		goto unlock;
7382 	}
7383 change:
7384 
7385 	if (user) {
7386 #ifdef CONFIG_RT_GROUP_SCHED
7387 		/*
7388 		 * Do not allow realtime tasks into groups that have no runtime
7389 		 * assigned.
7390 		 */
7391 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7392 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7393 				!task_group_is_autogroup(task_group(p))) {
7394 			retval = -EPERM;
7395 			goto unlock;
7396 		}
7397 #endif
7398 #ifdef CONFIG_SMP
7399 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7400 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7401 			cpumask_t *span = rq->rd->span;
7402 
7403 			/*
7404 			 * Don't allow tasks with an affinity mask smaller than
7405 			 * the entire root_domain to become SCHED_DEADLINE. We
7406 			 * will also fail if there's no bandwidth available.
7407 			 */
7408 			if (!cpumask_subset(span, p->cpus_ptr) ||
7409 			    rq->rd->dl_bw.bw == 0) {
7410 				retval = -EPERM;
7411 				goto unlock;
7412 			}
7413 		}
7414 #endif
7415 	}
7416 
7417 	/* Re-check policy now with rq lock held: */
7418 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7419 		policy = oldpolicy = -1;
7420 		task_rq_unlock(rq, p, &rf);
7421 		if (pi)
7422 			cpuset_read_unlock();
7423 		goto recheck;
7424 	}
7425 
7426 	/*
7427 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7428 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7429 	 * is available.
7430 	 */
7431 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7432 		retval = -EBUSY;
7433 		goto unlock;
7434 	}
7435 
7436 	p->sched_reset_on_fork = reset_on_fork;
7437 	oldprio = p->prio;
7438 
7439 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7440 	if (pi) {
7441 		/*
7442 		 * Take priority boosted tasks into account. If the new
7443 		 * effective priority is unchanged, we just store the new
7444 		 * normal parameters and do not touch the scheduler class and
7445 		 * the runqueue. This will be done when the task deboost
7446 		 * itself.
7447 		 */
7448 		newprio = rt_effective_prio(p, newprio);
7449 		if (newprio == oldprio)
7450 			queue_flags &= ~DEQUEUE_MOVE;
7451 	}
7452 
7453 	queued = task_on_rq_queued(p);
7454 	running = task_current(rq, p);
7455 	if (queued)
7456 		dequeue_task(rq, p, queue_flags);
7457 	if (running)
7458 		put_prev_task(rq, p);
7459 
7460 	prev_class = p->sched_class;
7461 
7462 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7463 		__setscheduler_params(p, attr);
7464 		__setscheduler_prio(p, newprio);
7465 	}
7466 	__setscheduler_uclamp(p, attr);
7467 
7468 	if (queued) {
7469 		/*
7470 		 * We enqueue to tail when the priority of a task is
7471 		 * increased (user space view).
7472 		 */
7473 		if (oldprio < p->prio)
7474 			queue_flags |= ENQUEUE_HEAD;
7475 
7476 		enqueue_task(rq, p, queue_flags);
7477 	}
7478 	if (running)
7479 		set_next_task(rq, p);
7480 
7481 	check_class_changed(rq, p, prev_class, oldprio);
7482 
7483 	/* Avoid rq from going away on us: */
7484 	preempt_disable();
7485 	head = splice_balance_callbacks(rq);
7486 	task_rq_unlock(rq, p, &rf);
7487 
7488 	if (pi) {
7489 		cpuset_read_unlock();
7490 		rt_mutex_adjust_pi(p);
7491 	}
7492 
7493 	/* Run balance callbacks after we've adjusted the PI chain: */
7494 	balance_callbacks(rq, head);
7495 	preempt_enable();
7496 
7497 	return 0;
7498 
7499 unlock:
7500 	task_rq_unlock(rq, p, &rf);
7501 	if (pi)
7502 		cpuset_read_unlock();
7503 	return retval;
7504 }
7505 
7506 static int _sched_setscheduler(struct task_struct *p, int policy,
7507 			       const struct sched_param *param, bool check)
7508 {
7509 	struct sched_attr attr = {
7510 		.sched_policy   = policy,
7511 		.sched_priority = param->sched_priority,
7512 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7513 	};
7514 
7515 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7516 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7517 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7518 		policy &= ~SCHED_RESET_ON_FORK;
7519 		attr.sched_policy = policy;
7520 	}
7521 
7522 	return __sched_setscheduler(p, &attr, check, true);
7523 }
7524 /**
7525  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7526  * @p: the task in question.
7527  * @policy: new policy.
7528  * @param: structure containing the new RT priority.
7529  *
7530  * Use sched_set_fifo(), read its comment.
7531  *
7532  * Return: 0 on success. An error code otherwise.
7533  *
7534  * NOTE that the task may be already dead.
7535  */
7536 int sched_setscheduler(struct task_struct *p, int policy,
7537 		       const struct sched_param *param)
7538 {
7539 	return _sched_setscheduler(p, policy, param, true);
7540 }
7541 
7542 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7543 {
7544 	return __sched_setscheduler(p, attr, true, true);
7545 }
7546 
7547 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7548 {
7549 	return __sched_setscheduler(p, attr, false, true);
7550 }
7551 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7552 
7553 /**
7554  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7555  * @p: the task in question.
7556  * @policy: new policy.
7557  * @param: structure containing the new RT priority.
7558  *
7559  * Just like sched_setscheduler, only don't bother checking if the
7560  * current context has permission.  For example, this is needed in
7561  * stop_machine(): we create temporary high priority worker threads,
7562  * but our caller might not have that capability.
7563  *
7564  * Return: 0 on success. An error code otherwise.
7565  */
7566 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7567 			       const struct sched_param *param)
7568 {
7569 	return _sched_setscheduler(p, policy, param, false);
7570 }
7571 
7572 /*
7573  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7574  * incapable of resource management, which is the one thing an OS really should
7575  * be doing.
7576  *
7577  * This is of course the reason it is limited to privileged users only.
7578  *
7579  * Worse still; it is fundamentally impossible to compose static priority
7580  * workloads. You cannot take two correctly working static prio workloads
7581  * and smash them together and still expect them to work.
7582  *
7583  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7584  *
7585  *   MAX_RT_PRIO / 2
7586  *
7587  * The administrator _MUST_ configure the system, the kernel simply doesn't
7588  * know enough information to make a sensible choice.
7589  */
7590 void sched_set_fifo(struct task_struct *p)
7591 {
7592 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7593 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7594 }
7595 EXPORT_SYMBOL_GPL(sched_set_fifo);
7596 
7597 /*
7598  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7599  */
7600 void sched_set_fifo_low(struct task_struct *p)
7601 {
7602 	struct sched_param sp = { .sched_priority = 1 };
7603 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7604 }
7605 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7606 
7607 void sched_set_normal(struct task_struct *p, int nice)
7608 {
7609 	struct sched_attr attr = {
7610 		.sched_policy = SCHED_NORMAL,
7611 		.sched_nice = nice,
7612 	};
7613 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7614 }
7615 EXPORT_SYMBOL_GPL(sched_set_normal);
7616 
7617 static int
7618 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7619 {
7620 	struct sched_param lparam;
7621 	struct task_struct *p;
7622 	int retval;
7623 
7624 	if (!param || pid < 0)
7625 		return -EINVAL;
7626 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7627 		return -EFAULT;
7628 
7629 	rcu_read_lock();
7630 	retval = -ESRCH;
7631 	p = find_process_by_pid(pid);
7632 	if (likely(p))
7633 		get_task_struct(p);
7634 	rcu_read_unlock();
7635 
7636 	if (likely(p)) {
7637 		retval = sched_setscheduler(p, policy, &lparam);
7638 		put_task_struct(p);
7639 	}
7640 
7641 	return retval;
7642 }
7643 
7644 /*
7645  * Mimics kernel/events/core.c perf_copy_attr().
7646  */
7647 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7648 {
7649 	u32 size;
7650 	int ret;
7651 
7652 	/* Zero the full structure, so that a short copy will be nice: */
7653 	memset(attr, 0, sizeof(*attr));
7654 
7655 	ret = get_user(size, &uattr->size);
7656 	if (ret)
7657 		return ret;
7658 
7659 	/* ABI compatibility quirk: */
7660 	if (!size)
7661 		size = SCHED_ATTR_SIZE_VER0;
7662 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7663 		goto err_size;
7664 
7665 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7666 	if (ret) {
7667 		if (ret == -E2BIG)
7668 			goto err_size;
7669 		return ret;
7670 	}
7671 
7672 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7673 	    size < SCHED_ATTR_SIZE_VER1)
7674 		return -EINVAL;
7675 
7676 	/*
7677 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7678 	 * to be strict and return an error on out-of-bounds values?
7679 	 */
7680 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7681 
7682 	return 0;
7683 
7684 err_size:
7685 	put_user(sizeof(*attr), &uattr->size);
7686 	return -E2BIG;
7687 }
7688 
7689 static void get_params(struct task_struct *p, struct sched_attr *attr)
7690 {
7691 	if (task_has_dl_policy(p))
7692 		__getparam_dl(p, attr);
7693 	else if (task_has_rt_policy(p))
7694 		attr->sched_priority = p->rt_priority;
7695 	else
7696 		attr->sched_nice = task_nice(p);
7697 }
7698 
7699 /**
7700  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7701  * @pid: the pid in question.
7702  * @policy: new policy.
7703  * @param: structure containing the new RT priority.
7704  *
7705  * Return: 0 on success. An error code otherwise.
7706  */
7707 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7708 {
7709 	if (policy < 0)
7710 		return -EINVAL;
7711 
7712 	return do_sched_setscheduler(pid, policy, param);
7713 }
7714 
7715 /**
7716  * sys_sched_setparam - set/change the RT priority of a thread
7717  * @pid: the pid in question.
7718  * @param: structure containing the new RT priority.
7719  *
7720  * Return: 0 on success. An error code otherwise.
7721  */
7722 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7723 {
7724 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7725 }
7726 
7727 /**
7728  * sys_sched_setattr - same as above, but with extended sched_attr
7729  * @pid: the pid in question.
7730  * @uattr: structure containing the extended parameters.
7731  * @flags: for future extension.
7732  */
7733 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7734 			       unsigned int, flags)
7735 {
7736 	struct sched_attr attr;
7737 	struct task_struct *p;
7738 	int retval;
7739 
7740 	if (!uattr || pid < 0 || flags)
7741 		return -EINVAL;
7742 
7743 	retval = sched_copy_attr(uattr, &attr);
7744 	if (retval)
7745 		return retval;
7746 
7747 	if ((int)attr.sched_policy < 0)
7748 		return -EINVAL;
7749 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7750 		attr.sched_policy = SETPARAM_POLICY;
7751 
7752 	rcu_read_lock();
7753 	retval = -ESRCH;
7754 	p = find_process_by_pid(pid);
7755 	if (likely(p))
7756 		get_task_struct(p);
7757 	rcu_read_unlock();
7758 
7759 	if (likely(p)) {
7760 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7761 			get_params(p, &attr);
7762 		retval = sched_setattr(p, &attr);
7763 		put_task_struct(p);
7764 	}
7765 
7766 	return retval;
7767 }
7768 
7769 /**
7770  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7771  * @pid: the pid in question.
7772  *
7773  * Return: On success, the policy of the thread. Otherwise, a negative error
7774  * code.
7775  */
7776 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7777 {
7778 	struct task_struct *p;
7779 	int retval;
7780 
7781 	if (pid < 0)
7782 		return -EINVAL;
7783 
7784 	retval = -ESRCH;
7785 	rcu_read_lock();
7786 	p = find_process_by_pid(pid);
7787 	if (p) {
7788 		retval = security_task_getscheduler(p);
7789 		if (!retval)
7790 			retval = p->policy
7791 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7792 	}
7793 	rcu_read_unlock();
7794 	return retval;
7795 }
7796 
7797 /**
7798  * sys_sched_getparam - get the RT priority of a thread
7799  * @pid: the pid in question.
7800  * @param: structure containing the RT priority.
7801  *
7802  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7803  * code.
7804  */
7805 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7806 {
7807 	struct sched_param lp = { .sched_priority = 0 };
7808 	struct task_struct *p;
7809 	int retval;
7810 
7811 	if (!param || pid < 0)
7812 		return -EINVAL;
7813 
7814 	rcu_read_lock();
7815 	p = find_process_by_pid(pid);
7816 	retval = -ESRCH;
7817 	if (!p)
7818 		goto out_unlock;
7819 
7820 	retval = security_task_getscheduler(p);
7821 	if (retval)
7822 		goto out_unlock;
7823 
7824 	if (task_has_rt_policy(p))
7825 		lp.sched_priority = p->rt_priority;
7826 	rcu_read_unlock();
7827 
7828 	/*
7829 	 * This one might sleep, we cannot do it with a spinlock held ...
7830 	 */
7831 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7832 
7833 	return retval;
7834 
7835 out_unlock:
7836 	rcu_read_unlock();
7837 	return retval;
7838 }
7839 
7840 /*
7841  * Copy the kernel size attribute structure (which might be larger
7842  * than what user-space knows about) to user-space.
7843  *
7844  * Note that all cases are valid: user-space buffer can be larger or
7845  * smaller than the kernel-space buffer. The usual case is that both
7846  * have the same size.
7847  */
7848 static int
7849 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7850 			struct sched_attr *kattr,
7851 			unsigned int usize)
7852 {
7853 	unsigned int ksize = sizeof(*kattr);
7854 
7855 	if (!access_ok(uattr, usize))
7856 		return -EFAULT;
7857 
7858 	/*
7859 	 * sched_getattr() ABI forwards and backwards compatibility:
7860 	 *
7861 	 * If usize == ksize then we just copy everything to user-space and all is good.
7862 	 *
7863 	 * If usize < ksize then we only copy as much as user-space has space for,
7864 	 * this keeps ABI compatibility as well. We skip the rest.
7865 	 *
7866 	 * If usize > ksize then user-space is using a newer version of the ABI,
7867 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7868 	 * detect the kernel's knowledge of attributes from the attr->size value
7869 	 * which is set to ksize in this case.
7870 	 */
7871 	kattr->size = min(usize, ksize);
7872 
7873 	if (copy_to_user(uattr, kattr, kattr->size))
7874 		return -EFAULT;
7875 
7876 	return 0;
7877 }
7878 
7879 /**
7880  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7881  * @pid: the pid in question.
7882  * @uattr: structure containing the extended parameters.
7883  * @usize: sizeof(attr) for fwd/bwd comp.
7884  * @flags: for future extension.
7885  */
7886 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7887 		unsigned int, usize, unsigned int, flags)
7888 {
7889 	struct sched_attr kattr = { };
7890 	struct task_struct *p;
7891 	int retval;
7892 
7893 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7894 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
7895 		return -EINVAL;
7896 
7897 	rcu_read_lock();
7898 	p = find_process_by_pid(pid);
7899 	retval = -ESRCH;
7900 	if (!p)
7901 		goto out_unlock;
7902 
7903 	retval = security_task_getscheduler(p);
7904 	if (retval)
7905 		goto out_unlock;
7906 
7907 	kattr.sched_policy = p->policy;
7908 	if (p->sched_reset_on_fork)
7909 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7910 	get_params(p, &kattr);
7911 	kattr.sched_flags &= SCHED_FLAG_ALL;
7912 
7913 #ifdef CONFIG_UCLAMP_TASK
7914 	/*
7915 	 * This could race with another potential updater, but this is fine
7916 	 * because it'll correctly read the old or the new value. We don't need
7917 	 * to guarantee who wins the race as long as it doesn't return garbage.
7918 	 */
7919 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7920 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7921 #endif
7922 
7923 	rcu_read_unlock();
7924 
7925 	return sched_attr_copy_to_user(uattr, &kattr, usize);
7926 
7927 out_unlock:
7928 	rcu_read_unlock();
7929 	return retval;
7930 }
7931 
7932 #ifdef CONFIG_SMP
7933 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7934 {
7935 	int ret = 0;
7936 
7937 	/*
7938 	 * If the task isn't a deadline task or admission control is
7939 	 * disabled then we don't care about affinity changes.
7940 	 */
7941 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7942 		return 0;
7943 
7944 	/*
7945 	 * Since bandwidth control happens on root_domain basis,
7946 	 * if admission test is enabled, we only admit -deadline
7947 	 * tasks allowed to run on all the CPUs in the task's
7948 	 * root_domain.
7949 	 */
7950 	rcu_read_lock();
7951 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
7952 		ret = -EBUSY;
7953 	rcu_read_unlock();
7954 	return ret;
7955 }
7956 #endif
7957 
7958 static int
7959 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7960 {
7961 	int retval;
7962 	cpumask_var_t cpus_allowed, new_mask;
7963 
7964 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7965 		return -ENOMEM;
7966 
7967 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7968 		retval = -ENOMEM;
7969 		goto out_free_cpus_allowed;
7970 	}
7971 
7972 	cpuset_cpus_allowed(p, cpus_allowed);
7973 	cpumask_and(new_mask, mask, cpus_allowed);
7974 
7975 	retval = dl_task_check_affinity(p, new_mask);
7976 	if (retval)
7977 		goto out_free_new_mask;
7978 again:
7979 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7980 	if (retval)
7981 		goto out_free_new_mask;
7982 
7983 	cpuset_cpus_allowed(p, cpus_allowed);
7984 	if (!cpumask_subset(new_mask, cpus_allowed)) {
7985 		/*
7986 		 * We must have raced with a concurrent cpuset update.
7987 		 * Just reset the cpumask to the cpuset's cpus_allowed.
7988 		 */
7989 		cpumask_copy(new_mask, cpus_allowed);
7990 		goto again;
7991 	}
7992 
7993 out_free_new_mask:
7994 	free_cpumask_var(new_mask);
7995 out_free_cpus_allowed:
7996 	free_cpumask_var(cpus_allowed);
7997 	return retval;
7998 }
7999 
8000 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8001 {
8002 	struct task_struct *p;
8003 	int retval;
8004 
8005 	rcu_read_lock();
8006 
8007 	p = find_process_by_pid(pid);
8008 	if (!p) {
8009 		rcu_read_unlock();
8010 		return -ESRCH;
8011 	}
8012 
8013 	/* Prevent p going away */
8014 	get_task_struct(p);
8015 	rcu_read_unlock();
8016 
8017 	if (p->flags & PF_NO_SETAFFINITY) {
8018 		retval = -EINVAL;
8019 		goto out_put_task;
8020 	}
8021 
8022 	if (!check_same_owner(p)) {
8023 		rcu_read_lock();
8024 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8025 			rcu_read_unlock();
8026 			retval = -EPERM;
8027 			goto out_put_task;
8028 		}
8029 		rcu_read_unlock();
8030 	}
8031 
8032 	retval = security_task_setscheduler(p);
8033 	if (retval)
8034 		goto out_put_task;
8035 
8036 	retval = __sched_setaffinity(p, in_mask);
8037 out_put_task:
8038 	put_task_struct(p);
8039 	return retval;
8040 }
8041 
8042 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8043 			     struct cpumask *new_mask)
8044 {
8045 	if (len < cpumask_size())
8046 		cpumask_clear(new_mask);
8047 	else if (len > cpumask_size())
8048 		len = cpumask_size();
8049 
8050 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8051 }
8052 
8053 /**
8054  * sys_sched_setaffinity - set the CPU affinity of a process
8055  * @pid: pid of the process
8056  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8057  * @user_mask_ptr: user-space pointer to the new CPU mask
8058  *
8059  * Return: 0 on success. An error code otherwise.
8060  */
8061 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8062 		unsigned long __user *, user_mask_ptr)
8063 {
8064 	cpumask_var_t new_mask;
8065 	int retval;
8066 
8067 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8068 		return -ENOMEM;
8069 
8070 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8071 	if (retval == 0)
8072 		retval = sched_setaffinity(pid, new_mask);
8073 	free_cpumask_var(new_mask);
8074 	return retval;
8075 }
8076 
8077 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8078 {
8079 	struct task_struct *p;
8080 	unsigned long flags;
8081 	int retval;
8082 
8083 	rcu_read_lock();
8084 
8085 	retval = -ESRCH;
8086 	p = find_process_by_pid(pid);
8087 	if (!p)
8088 		goto out_unlock;
8089 
8090 	retval = security_task_getscheduler(p);
8091 	if (retval)
8092 		goto out_unlock;
8093 
8094 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8095 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8096 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8097 
8098 out_unlock:
8099 	rcu_read_unlock();
8100 
8101 	return retval;
8102 }
8103 
8104 /**
8105  * sys_sched_getaffinity - get the CPU affinity of a process
8106  * @pid: pid of the process
8107  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8108  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8109  *
8110  * Return: size of CPU mask copied to user_mask_ptr on success. An
8111  * error code otherwise.
8112  */
8113 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8114 		unsigned long __user *, user_mask_ptr)
8115 {
8116 	int ret;
8117 	cpumask_var_t mask;
8118 
8119 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8120 		return -EINVAL;
8121 	if (len & (sizeof(unsigned long)-1))
8122 		return -EINVAL;
8123 
8124 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8125 		return -ENOMEM;
8126 
8127 	ret = sched_getaffinity(pid, mask);
8128 	if (ret == 0) {
8129 		unsigned int retlen = min(len, cpumask_size());
8130 
8131 		if (copy_to_user(user_mask_ptr, mask, retlen))
8132 			ret = -EFAULT;
8133 		else
8134 			ret = retlen;
8135 	}
8136 	free_cpumask_var(mask);
8137 
8138 	return ret;
8139 }
8140 
8141 static void do_sched_yield(void)
8142 {
8143 	struct rq_flags rf;
8144 	struct rq *rq;
8145 
8146 	rq = this_rq_lock_irq(&rf);
8147 
8148 	schedstat_inc(rq->yld_count);
8149 	current->sched_class->yield_task(rq);
8150 
8151 	preempt_disable();
8152 	rq_unlock_irq(rq, &rf);
8153 	sched_preempt_enable_no_resched();
8154 
8155 	schedule();
8156 }
8157 
8158 /**
8159  * sys_sched_yield - yield the current processor to other threads.
8160  *
8161  * This function yields the current CPU to other tasks. If there are no
8162  * other threads running on this CPU then this function will return.
8163  *
8164  * Return: 0.
8165  */
8166 SYSCALL_DEFINE0(sched_yield)
8167 {
8168 	do_sched_yield();
8169 	return 0;
8170 }
8171 
8172 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8173 int __sched __cond_resched(void)
8174 {
8175 	if (should_resched(0)) {
8176 		preempt_schedule_common();
8177 		return 1;
8178 	}
8179 	/*
8180 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8181 	 * whether the current CPU is in an RCU read-side critical section,
8182 	 * so the tick can report quiescent states even for CPUs looping
8183 	 * in kernel context.  In contrast, in non-preemptible kernels,
8184 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8185 	 * processes executing in kernel context might never report an
8186 	 * RCU quiescent state.  Therefore, the following code causes
8187 	 * cond_resched() to report a quiescent state, but only when RCU
8188 	 * is in urgent need of one.
8189 	 */
8190 #ifndef CONFIG_PREEMPT_RCU
8191 	rcu_all_qs();
8192 #endif
8193 	return 0;
8194 }
8195 EXPORT_SYMBOL(__cond_resched);
8196 #endif
8197 
8198 #ifdef CONFIG_PREEMPT_DYNAMIC
8199 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8200 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8201 
8202 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8203 EXPORT_STATIC_CALL_TRAMP(might_resched);
8204 #endif
8205 
8206 /*
8207  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8208  * call schedule, and on return reacquire the lock.
8209  *
8210  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8211  * operations here to prevent schedule() from being called twice (once via
8212  * spin_unlock(), once by hand).
8213  */
8214 int __cond_resched_lock(spinlock_t *lock)
8215 {
8216 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8217 	int ret = 0;
8218 
8219 	lockdep_assert_held(lock);
8220 
8221 	if (spin_needbreak(lock) || resched) {
8222 		spin_unlock(lock);
8223 		if (resched)
8224 			preempt_schedule_common();
8225 		else
8226 			cpu_relax();
8227 		ret = 1;
8228 		spin_lock(lock);
8229 	}
8230 	return ret;
8231 }
8232 EXPORT_SYMBOL(__cond_resched_lock);
8233 
8234 int __cond_resched_rwlock_read(rwlock_t *lock)
8235 {
8236 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8237 	int ret = 0;
8238 
8239 	lockdep_assert_held_read(lock);
8240 
8241 	if (rwlock_needbreak(lock) || resched) {
8242 		read_unlock(lock);
8243 		if (resched)
8244 			preempt_schedule_common();
8245 		else
8246 			cpu_relax();
8247 		ret = 1;
8248 		read_lock(lock);
8249 	}
8250 	return ret;
8251 }
8252 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8253 
8254 int __cond_resched_rwlock_write(rwlock_t *lock)
8255 {
8256 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8257 	int ret = 0;
8258 
8259 	lockdep_assert_held_write(lock);
8260 
8261 	if (rwlock_needbreak(lock) || resched) {
8262 		write_unlock(lock);
8263 		if (resched)
8264 			preempt_schedule_common();
8265 		else
8266 			cpu_relax();
8267 		ret = 1;
8268 		write_lock(lock);
8269 	}
8270 	return ret;
8271 }
8272 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8273 
8274 /**
8275  * yield - yield the current processor to other threads.
8276  *
8277  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8278  *
8279  * The scheduler is at all times free to pick the calling task as the most
8280  * eligible task to run, if removing the yield() call from your code breaks
8281  * it, it's already broken.
8282  *
8283  * Typical broken usage is:
8284  *
8285  * while (!event)
8286  *	yield();
8287  *
8288  * where one assumes that yield() will let 'the other' process run that will
8289  * make event true. If the current task is a SCHED_FIFO task that will never
8290  * happen. Never use yield() as a progress guarantee!!
8291  *
8292  * If you want to use yield() to wait for something, use wait_event().
8293  * If you want to use yield() to be 'nice' for others, use cond_resched().
8294  * If you still want to use yield(), do not!
8295  */
8296 void __sched yield(void)
8297 {
8298 	set_current_state(TASK_RUNNING);
8299 	do_sched_yield();
8300 }
8301 EXPORT_SYMBOL(yield);
8302 
8303 /**
8304  * yield_to - yield the current processor to another thread in
8305  * your thread group, or accelerate that thread toward the
8306  * processor it's on.
8307  * @p: target task
8308  * @preempt: whether task preemption is allowed or not
8309  *
8310  * It's the caller's job to ensure that the target task struct
8311  * can't go away on us before we can do any checks.
8312  *
8313  * Return:
8314  *	true (>0) if we indeed boosted the target task.
8315  *	false (0) if we failed to boost the target.
8316  *	-ESRCH if there's no task to yield to.
8317  */
8318 int __sched yield_to(struct task_struct *p, bool preempt)
8319 {
8320 	struct task_struct *curr = current;
8321 	struct rq *rq, *p_rq;
8322 	unsigned long flags;
8323 	int yielded = 0;
8324 
8325 	local_irq_save(flags);
8326 	rq = this_rq();
8327 
8328 again:
8329 	p_rq = task_rq(p);
8330 	/*
8331 	 * If we're the only runnable task on the rq and target rq also
8332 	 * has only one task, there's absolutely no point in yielding.
8333 	 */
8334 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8335 		yielded = -ESRCH;
8336 		goto out_irq;
8337 	}
8338 
8339 	double_rq_lock(rq, p_rq);
8340 	if (task_rq(p) != p_rq) {
8341 		double_rq_unlock(rq, p_rq);
8342 		goto again;
8343 	}
8344 
8345 	if (!curr->sched_class->yield_to_task)
8346 		goto out_unlock;
8347 
8348 	if (curr->sched_class != p->sched_class)
8349 		goto out_unlock;
8350 
8351 	if (task_running(p_rq, p) || !task_is_running(p))
8352 		goto out_unlock;
8353 
8354 	yielded = curr->sched_class->yield_to_task(rq, p);
8355 	if (yielded) {
8356 		schedstat_inc(rq->yld_count);
8357 		/*
8358 		 * Make p's CPU reschedule; pick_next_entity takes care of
8359 		 * fairness.
8360 		 */
8361 		if (preempt && rq != p_rq)
8362 			resched_curr(p_rq);
8363 	}
8364 
8365 out_unlock:
8366 	double_rq_unlock(rq, p_rq);
8367 out_irq:
8368 	local_irq_restore(flags);
8369 
8370 	if (yielded > 0)
8371 		schedule();
8372 
8373 	return yielded;
8374 }
8375 EXPORT_SYMBOL_GPL(yield_to);
8376 
8377 int io_schedule_prepare(void)
8378 {
8379 	int old_iowait = current->in_iowait;
8380 
8381 	current->in_iowait = 1;
8382 	if (current->plug)
8383 		blk_flush_plug(current->plug, true);
8384 
8385 	return old_iowait;
8386 }
8387 
8388 void io_schedule_finish(int token)
8389 {
8390 	current->in_iowait = token;
8391 }
8392 
8393 /*
8394  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8395  * that process accounting knows that this is a task in IO wait state.
8396  */
8397 long __sched io_schedule_timeout(long timeout)
8398 {
8399 	int token;
8400 	long ret;
8401 
8402 	token = io_schedule_prepare();
8403 	ret = schedule_timeout(timeout);
8404 	io_schedule_finish(token);
8405 
8406 	return ret;
8407 }
8408 EXPORT_SYMBOL(io_schedule_timeout);
8409 
8410 void __sched io_schedule(void)
8411 {
8412 	int token;
8413 
8414 	token = io_schedule_prepare();
8415 	schedule();
8416 	io_schedule_finish(token);
8417 }
8418 EXPORT_SYMBOL(io_schedule);
8419 
8420 /**
8421  * sys_sched_get_priority_max - return maximum RT priority.
8422  * @policy: scheduling class.
8423  *
8424  * Return: On success, this syscall returns the maximum
8425  * rt_priority that can be used by a given scheduling class.
8426  * On failure, a negative error code is returned.
8427  */
8428 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8429 {
8430 	int ret = -EINVAL;
8431 
8432 	switch (policy) {
8433 	case SCHED_FIFO:
8434 	case SCHED_RR:
8435 		ret = MAX_RT_PRIO-1;
8436 		break;
8437 	case SCHED_DEADLINE:
8438 	case SCHED_NORMAL:
8439 	case SCHED_BATCH:
8440 	case SCHED_IDLE:
8441 		ret = 0;
8442 		break;
8443 	}
8444 	return ret;
8445 }
8446 
8447 /**
8448  * sys_sched_get_priority_min - return minimum RT priority.
8449  * @policy: scheduling class.
8450  *
8451  * Return: On success, this syscall returns the minimum
8452  * rt_priority that can be used by a given scheduling class.
8453  * On failure, a negative error code is returned.
8454  */
8455 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8456 {
8457 	int ret = -EINVAL;
8458 
8459 	switch (policy) {
8460 	case SCHED_FIFO:
8461 	case SCHED_RR:
8462 		ret = 1;
8463 		break;
8464 	case SCHED_DEADLINE:
8465 	case SCHED_NORMAL:
8466 	case SCHED_BATCH:
8467 	case SCHED_IDLE:
8468 		ret = 0;
8469 	}
8470 	return ret;
8471 }
8472 
8473 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8474 {
8475 	struct task_struct *p;
8476 	unsigned int time_slice;
8477 	struct rq_flags rf;
8478 	struct rq *rq;
8479 	int retval;
8480 
8481 	if (pid < 0)
8482 		return -EINVAL;
8483 
8484 	retval = -ESRCH;
8485 	rcu_read_lock();
8486 	p = find_process_by_pid(pid);
8487 	if (!p)
8488 		goto out_unlock;
8489 
8490 	retval = security_task_getscheduler(p);
8491 	if (retval)
8492 		goto out_unlock;
8493 
8494 	rq = task_rq_lock(p, &rf);
8495 	time_slice = 0;
8496 	if (p->sched_class->get_rr_interval)
8497 		time_slice = p->sched_class->get_rr_interval(rq, p);
8498 	task_rq_unlock(rq, p, &rf);
8499 
8500 	rcu_read_unlock();
8501 	jiffies_to_timespec64(time_slice, t);
8502 	return 0;
8503 
8504 out_unlock:
8505 	rcu_read_unlock();
8506 	return retval;
8507 }
8508 
8509 /**
8510  * sys_sched_rr_get_interval - return the default timeslice of a process.
8511  * @pid: pid of the process.
8512  * @interval: userspace pointer to the timeslice value.
8513  *
8514  * this syscall writes the default timeslice value of a given process
8515  * into the user-space timespec buffer. A value of '0' means infinity.
8516  *
8517  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8518  * an error code.
8519  */
8520 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8521 		struct __kernel_timespec __user *, interval)
8522 {
8523 	struct timespec64 t;
8524 	int retval = sched_rr_get_interval(pid, &t);
8525 
8526 	if (retval == 0)
8527 		retval = put_timespec64(&t, interval);
8528 
8529 	return retval;
8530 }
8531 
8532 #ifdef CONFIG_COMPAT_32BIT_TIME
8533 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8534 		struct old_timespec32 __user *, interval)
8535 {
8536 	struct timespec64 t;
8537 	int retval = sched_rr_get_interval(pid, &t);
8538 
8539 	if (retval == 0)
8540 		retval = put_old_timespec32(&t, interval);
8541 	return retval;
8542 }
8543 #endif
8544 
8545 void sched_show_task(struct task_struct *p)
8546 {
8547 	unsigned long free = 0;
8548 	int ppid;
8549 
8550 	if (!try_get_task_stack(p))
8551 		return;
8552 
8553 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8554 
8555 	if (task_is_running(p))
8556 		pr_cont("  running task    ");
8557 #ifdef CONFIG_DEBUG_STACK_USAGE
8558 	free = stack_not_used(p);
8559 #endif
8560 	ppid = 0;
8561 	rcu_read_lock();
8562 	if (pid_alive(p))
8563 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8564 	rcu_read_unlock();
8565 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8566 		free, task_pid_nr(p), ppid,
8567 		read_task_thread_flags(p));
8568 
8569 	print_worker_info(KERN_INFO, p);
8570 	print_stop_info(KERN_INFO, p);
8571 	show_stack(p, NULL, KERN_INFO);
8572 	put_task_stack(p);
8573 }
8574 EXPORT_SYMBOL_GPL(sched_show_task);
8575 
8576 static inline bool
8577 state_filter_match(unsigned long state_filter, struct task_struct *p)
8578 {
8579 	unsigned int state = READ_ONCE(p->__state);
8580 
8581 	/* no filter, everything matches */
8582 	if (!state_filter)
8583 		return true;
8584 
8585 	/* filter, but doesn't match */
8586 	if (!(state & state_filter))
8587 		return false;
8588 
8589 	/*
8590 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8591 	 * TASK_KILLABLE).
8592 	 */
8593 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8594 		return false;
8595 
8596 	return true;
8597 }
8598 
8599 
8600 void show_state_filter(unsigned int state_filter)
8601 {
8602 	struct task_struct *g, *p;
8603 
8604 	rcu_read_lock();
8605 	for_each_process_thread(g, p) {
8606 		/*
8607 		 * reset the NMI-timeout, listing all files on a slow
8608 		 * console might take a lot of time:
8609 		 * Also, reset softlockup watchdogs on all CPUs, because
8610 		 * another CPU might be blocked waiting for us to process
8611 		 * an IPI.
8612 		 */
8613 		touch_nmi_watchdog();
8614 		touch_all_softlockup_watchdogs();
8615 		if (state_filter_match(state_filter, p))
8616 			sched_show_task(p);
8617 	}
8618 
8619 #ifdef CONFIG_SCHED_DEBUG
8620 	if (!state_filter)
8621 		sysrq_sched_debug_show();
8622 #endif
8623 	rcu_read_unlock();
8624 	/*
8625 	 * Only show locks if all tasks are dumped:
8626 	 */
8627 	if (!state_filter)
8628 		debug_show_all_locks();
8629 }
8630 
8631 /**
8632  * init_idle - set up an idle thread for a given CPU
8633  * @idle: task in question
8634  * @cpu: CPU the idle task belongs to
8635  *
8636  * NOTE: this function does not set the idle thread's NEED_RESCHED
8637  * flag, to make booting more robust.
8638  */
8639 void __init init_idle(struct task_struct *idle, int cpu)
8640 {
8641 	struct rq *rq = cpu_rq(cpu);
8642 	unsigned long flags;
8643 
8644 	__sched_fork(0, idle);
8645 
8646 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8647 	raw_spin_rq_lock(rq);
8648 
8649 	idle->__state = TASK_RUNNING;
8650 	idle->se.exec_start = sched_clock();
8651 	/*
8652 	 * PF_KTHREAD should already be set at this point; regardless, make it
8653 	 * look like a proper per-CPU kthread.
8654 	 */
8655 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8656 	kthread_set_per_cpu(idle, cpu);
8657 
8658 #ifdef CONFIG_SMP
8659 	/*
8660 	 * It's possible that init_idle() gets called multiple times on a task,
8661 	 * in that case do_set_cpus_allowed() will not do the right thing.
8662 	 *
8663 	 * And since this is boot we can forgo the serialization.
8664 	 */
8665 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8666 #endif
8667 	/*
8668 	 * We're having a chicken and egg problem, even though we are
8669 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8670 	 * lockdep check in task_group() will fail.
8671 	 *
8672 	 * Similar case to sched_fork(). / Alternatively we could
8673 	 * use task_rq_lock() here and obtain the other rq->lock.
8674 	 *
8675 	 * Silence PROVE_RCU
8676 	 */
8677 	rcu_read_lock();
8678 	__set_task_cpu(idle, cpu);
8679 	rcu_read_unlock();
8680 
8681 	rq->idle = idle;
8682 	rcu_assign_pointer(rq->curr, idle);
8683 	idle->on_rq = TASK_ON_RQ_QUEUED;
8684 #ifdef CONFIG_SMP
8685 	idle->on_cpu = 1;
8686 #endif
8687 	raw_spin_rq_unlock(rq);
8688 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8689 
8690 	/* Set the preempt count _outside_ the spinlocks! */
8691 	init_idle_preempt_count(idle, cpu);
8692 
8693 	/*
8694 	 * The idle tasks have their own, simple scheduling class:
8695 	 */
8696 	idle->sched_class = &idle_sched_class;
8697 	ftrace_graph_init_idle_task(idle, cpu);
8698 	vtime_init_idle(idle, cpu);
8699 #ifdef CONFIG_SMP
8700 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8701 #endif
8702 }
8703 
8704 #ifdef CONFIG_SMP
8705 
8706 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8707 			      const struct cpumask *trial)
8708 {
8709 	int ret = 1;
8710 
8711 	if (cpumask_empty(cur))
8712 		return ret;
8713 
8714 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8715 
8716 	return ret;
8717 }
8718 
8719 int task_can_attach(struct task_struct *p,
8720 		    const struct cpumask *cs_cpus_allowed)
8721 {
8722 	int ret = 0;
8723 
8724 	/*
8725 	 * Kthreads which disallow setaffinity shouldn't be moved
8726 	 * to a new cpuset; we don't want to change their CPU
8727 	 * affinity and isolating such threads by their set of
8728 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8729 	 * applicable for such threads.  This prevents checking for
8730 	 * success of set_cpus_allowed_ptr() on all attached tasks
8731 	 * before cpus_mask may be changed.
8732 	 */
8733 	if (p->flags & PF_NO_SETAFFINITY) {
8734 		ret = -EINVAL;
8735 		goto out;
8736 	}
8737 
8738 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8739 					      cs_cpus_allowed))
8740 		ret = dl_task_can_attach(p, cs_cpus_allowed);
8741 
8742 out:
8743 	return ret;
8744 }
8745 
8746 bool sched_smp_initialized __read_mostly;
8747 
8748 #ifdef CONFIG_NUMA_BALANCING
8749 /* Migrate current task p to target_cpu */
8750 int migrate_task_to(struct task_struct *p, int target_cpu)
8751 {
8752 	struct migration_arg arg = { p, target_cpu };
8753 	int curr_cpu = task_cpu(p);
8754 
8755 	if (curr_cpu == target_cpu)
8756 		return 0;
8757 
8758 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8759 		return -EINVAL;
8760 
8761 	/* TODO: This is not properly updating schedstats */
8762 
8763 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8764 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8765 }
8766 
8767 /*
8768  * Requeue a task on a given node and accurately track the number of NUMA
8769  * tasks on the runqueues
8770  */
8771 void sched_setnuma(struct task_struct *p, int nid)
8772 {
8773 	bool queued, running;
8774 	struct rq_flags rf;
8775 	struct rq *rq;
8776 
8777 	rq = task_rq_lock(p, &rf);
8778 	queued = task_on_rq_queued(p);
8779 	running = task_current(rq, p);
8780 
8781 	if (queued)
8782 		dequeue_task(rq, p, DEQUEUE_SAVE);
8783 	if (running)
8784 		put_prev_task(rq, p);
8785 
8786 	p->numa_preferred_nid = nid;
8787 
8788 	if (queued)
8789 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8790 	if (running)
8791 		set_next_task(rq, p);
8792 	task_rq_unlock(rq, p, &rf);
8793 }
8794 #endif /* CONFIG_NUMA_BALANCING */
8795 
8796 #ifdef CONFIG_HOTPLUG_CPU
8797 /*
8798  * Ensure that the idle task is using init_mm right before its CPU goes
8799  * offline.
8800  */
8801 void idle_task_exit(void)
8802 {
8803 	struct mm_struct *mm = current->active_mm;
8804 
8805 	BUG_ON(cpu_online(smp_processor_id()));
8806 	BUG_ON(current != this_rq()->idle);
8807 
8808 	if (mm != &init_mm) {
8809 		switch_mm(mm, &init_mm, current);
8810 		finish_arch_post_lock_switch();
8811 	}
8812 
8813 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8814 }
8815 
8816 static int __balance_push_cpu_stop(void *arg)
8817 {
8818 	struct task_struct *p = arg;
8819 	struct rq *rq = this_rq();
8820 	struct rq_flags rf;
8821 	int cpu;
8822 
8823 	raw_spin_lock_irq(&p->pi_lock);
8824 	rq_lock(rq, &rf);
8825 
8826 	update_rq_clock(rq);
8827 
8828 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8829 		cpu = select_fallback_rq(rq->cpu, p);
8830 		rq = __migrate_task(rq, &rf, p, cpu);
8831 	}
8832 
8833 	rq_unlock(rq, &rf);
8834 	raw_spin_unlock_irq(&p->pi_lock);
8835 
8836 	put_task_struct(p);
8837 
8838 	return 0;
8839 }
8840 
8841 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8842 
8843 /*
8844  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8845  *
8846  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8847  * effective when the hotplug motion is down.
8848  */
8849 static void balance_push(struct rq *rq)
8850 {
8851 	struct task_struct *push_task = rq->curr;
8852 
8853 	lockdep_assert_rq_held(rq);
8854 
8855 	/*
8856 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8857 	 */
8858 	rq->balance_callback = &balance_push_callback;
8859 
8860 	/*
8861 	 * Only active while going offline and when invoked on the outgoing
8862 	 * CPU.
8863 	 */
8864 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8865 		return;
8866 
8867 	/*
8868 	 * Both the cpu-hotplug and stop task are in this case and are
8869 	 * required to complete the hotplug process.
8870 	 */
8871 	if (kthread_is_per_cpu(push_task) ||
8872 	    is_migration_disabled(push_task)) {
8873 
8874 		/*
8875 		 * If this is the idle task on the outgoing CPU try to wake
8876 		 * up the hotplug control thread which might wait for the
8877 		 * last task to vanish. The rcuwait_active() check is
8878 		 * accurate here because the waiter is pinned on this CPU
8879 		 * and can't obviously be running in parallel.
8880 		 *
8881 		 * On RT kernels this also has to check whether there are
8882 		 * pinned and scheduled out tasks on the runqueue. They
8883 		 * need to leave the migrate disabled section first.
8884 		 */
8885 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8886 		    rcuwait_active(&rq->hotplug_wait)) {
8887 			raw_spin_rq_unlock(rq);
8888 			rcuwait_wake_up(&rq->hotplug_wait);
8889 			raw_spin_rq_lock(rq);
8890 		}
8891 		return;
8892 	}
8893 
8894 	get_task_struct(push_task);
8895 	/*
8896 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8897 	 * Both preemption and IRQs are still disabled.
8898 	 */
8899 	raw_spin_rq_unlock(rq);
8900 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8901 			    this_cpu_ptr(&push_work));
8902 	/*
8903 	 * At this point need_resched() is true and we'll take the loop in
8904 	 * schedule(). The next pick is obviously going to be the stop task
8905 	 * which kthread_is_per_cpu() and will push this task away.
8906 	 */
8907 	raw_spin_rq_lock(rq);
8908 }
8909 
8910 static void balance_push_set(int cpu, bool on)
8911 {
8912 	struct rq *rq = cpu_rq(cpu);
8913 	struct rq_flags rf;
8914 
8915 	rq_lock_irqsave(rq, &rf);
8916 	if (on) {
8917 		WARN_ON_ONCE(rq->balance_callback);
8918 		rq->balance_callback = &balance_push_callback;
8919 	} else if (rq->balance_callback == &balance_push_callback) {
8920 		rq->balance_callback = NULL;
8921 	}
8922 	rq_unlock_irqrestore(rq, &rf);
8923 }
8924 
8925 /*
8926  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8927  * inactive. All tasks which are not per CPU kernel threads are either
8928  * pushed off this CPU now via balance_push() or placed on a different CPU
8929  * during wakeup. Wait until the CPU is quiescent.
8930  */
8931 static void balance_hotplug_wait(void)
8932 {
8933 	struct rq *rq = this_rq();
8934 
8935 	rcuwait_wait_event(&rq->hotplug_wait,
8936 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8937 			   TASK_UNINTERRUPTIBLE);
8938 }
8939 
8940 #else
8941 
8942 static inline void balance_push(struct rq *rq)
8943 {
8944 }
8945 
8946 static inline void balance_push_set(int cpu, bool on)
8947 {
8948 }
8949 
8950 static inline void balance_hotplug_wait(void)
8951 {
8952 }
8953 
8954 #endif /* CONFIG_HOTPLUG_CPU */
8955 
8956 void set_rq_online(struct rq *rq)
8957 {
8958 	if (!rq->online) {
8959 		const struct sched_class *class;
8960 
8961 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8962 		rq->online = 1;
8963 
8964 		for_each_class(class) {
8965 			if (class->rq_online)
8966 				class->rq_online(rq);
8967 		}
8968 	}
8969 }
8970 
8971 void set_rq_offline(struct rq *rq)
8972 {
8973 	if (rq->online) {
8974 		const struct sched_class *class;
8975 
8976 		for_each_class(class) {
8977 			if (class->rq_offline)
8978 				class->rq_offline(rq);
8979 		}
8980 
8981 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8982 		rq->online = 0;
8983 	}
8984 }
8985 
8986 /*
8987  * used to mark begin/end of suspend/resume:
8988  */
8989 static int num_cpus_frozen;
8990 
8991 /*
8992  * Update cpusets according to cpu_active mask.  If cpusets are
8993  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8994  * around partition_sched_domains().
8995  *
8996  * If we come here as part of a suspend/resume, don't touch cpusets because we
8997  * want to restore it back to its original state upon resume anyway.
8998  */
8999 static void cpuset_cpu_active(void)
9000 {
9001 	if (cpuhp_tasks_frozen) {
9002 		/*
9003 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9004 		 * resume sequence. As long as this is not the last online
9005 		 * operation in the resume sequence, just build a single sched
9006 		 * domain, ignoring cpusets.
9007 		 */
9008 		partition_sched_domains(1, NULL, NULL);
9009 		if (--num_cpus_frozen)
9010 			return;
9011 		/*
9012 		 * This is the last CPU online operation. So fall through and
9013 		 * restore the original sched domains by considering the
9014 		 * cpuset configurations.
9015 		 */
9016 		cpuset_force_rebuild();
9017 	}
9018 	cpuset_update_active_cpus();
9019 }
9020 
9021 static int cpuset_cpu_inactive(unsigned int cpu)
9022 {
9023 	if (!cpuhp_tasks_frozen) {
9024 		if (dl_cpu_busy(cpu))
9025 			return -EBUSY;
9026 		cpuset_update_active_cpus();
9027 	} else {
9028 		num_cpus_frozen++;
9029 		partition_sched_domains(1, NULL, NULL);
9030 	}
9031 	return 0;
9032 }
9033 
9034 int sched_cpu_activate(unsigned int cpu)
9035 {
9036 	struct rq *rq = cpu_rq(cpu);
9037 	struct rq_flags rf;
9038 
9039 	/*
9040 	 * Clear the balance_push callback and prepare to schedule
9041 	 * regular tasks.
9042 	 */
9043 	balance_push_set(cpu, false);
9044 
9045 #ifdef CONFIG_SCHED_SMT
9046 	/*
9047 	 * When going up, increment the number of cores with SMT present.
9048 	 */
9049 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9050 		static_branch_inc_cpuslocked(&sched_smt_present);
9051 #endif
9052 	set_cpu_active(cpu, true);
9053 
9054 	if (sched_smp_initialized) {
9055 		sched_update_numa(cpu, true);
9056 		sched_domains_numa_masks_set(cpu);
9057 		cpuset_cpu_active();
9058 	}
9059 
9060 	/*
9061 	 * Put the rq online, if not already. This happens:
9062 	 *
9063 	 * 1) In the early boot process, because we build the real domains
9064 	 *    after all CPUs have been brought up.
9065 	 *
9066 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9067 	 *    domains.
9068 	 */
9069 	rq_lock_irqsave(rq, &rf);
9070 	if (rq->rd) {
9071 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9072 		set_rq_online(rq);
9073 	}
9074 	rq_unlock_irqrestore(rq, &rf);
9075 
9076 	return 0;
9077 }
9078 
9079 int sched_cpu_deactivate(unsigned int cpu)
9080 {
9081 	struct rq *rq = cpu_rq(cpu);
9082 	struct rq_flags rf;
9083 	int ret;
9084 
9085 	/*
9086 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9087 	 * load balancing when not active
9088 	 */
9089 	nohz_balance_exit_idle(rq);
9090 
9091 	set_cpu_active(cpu, false);
9092 
9093 	/*
9094 	 * From this point forward, this CPU will refuse to run any task that
9095 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9096 	 * push those tasks away until this gets cleared, see
9097 	 * sched_cpu_dying().
9098 	 */
9099 	balance_push_set(cpu, true);
9100 
9101 	/*
9102 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9103 	 * preempt-disabled and RCU users of this state to go away such that
9104 	 * all new such users will observe it.
9105 	 *
9106 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9107 	 * ttwu_queue_cond() and is_cpu_allowed().
9108 	 *
9109 	 * Do sync before park smpboot threads to take care the rcu boost case.
9110 	 */
9111 	synchronize_rcu();
9112 
9113 	rq_lock_irqsave(rq, &rf);
9114 	if (rq->rd) {
9115 		update_rq_clock(rq);
9116 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9117 		set_rq_offline(rq);
9118 	}
9119 	rq_unlock_irqrestore(rq, &rf);
9120 
9121 #ifdef CONFIG_SCHED_SMT
9122 	/*
9123 	 * When going down, decrement the number of cores with SMT present.
9124 	 */
9125 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9126 		static_branch_dec_cpuslocked(&sched_smt_present);
9127 
9128 	sched_core_cpu_deactivate(cpu);
9129 #endif
9130 
9131 	if (!sched_smp_initialized)
9132 		return 0;
9133 
9134 	sched_update_numa(cpu, false);
9135 	ret = cpuset_cpu_inactive(cpu);
9136 	if (ret) {
9137 		balance_push_set(cpu, false);
9138 		set_cpu_active(cpu, true);
9139 		sched_update_numa(cpu, true);
9140 		return ret;
9141 	}
9142 	sched_domains_numa_masks_clear(cpu);
9143 	return 0;
9144 }
9145 
9146 static void sched_rq_cpu_starting(unsigned int cpu)
9147 {
9148 	struct rq *rq = cpu_rq(cpu);
9149 
9150 	rq->calc_load_update = calc_load_update;
9151 	update_max_interval();
9152 }
9153 
9154 int sched_cpu_starting(unsigned int cpu)
9155 {
9156 	sched_core_cpu_starting(cpu);
9157 	sched_rq_cpu_starting(cpu);
9158 	sched_tick_start(cpu);
9159 	return 0;
9160 }
9161 
9162 #ifdef CONFIG_HOTPLUG_CPU
9163 
9164 /*
9165  * Invoked immediately before the stopper thread is invoked to bring the
9166  * CPU down completely. At this point all per CPU kthreads except the
9167  * hotplug thread (current) and the stopper thread (inactive) have been
9168  * either parked or have been unbound from the outgoing CPU. Ensure that
9169  * any of those which might be on the way out are gone.
9170  *
9171  * If after this point a bound task is being woken on this CPU then the
9172  * responsible hotplug callback has failed to do it's job.
9173  * sched_cpu_dying() will catch it with the appropriate fireworks.
9174  */
9175 int sched_cpu_wait_empty(unsigned int cpu)
9176 {
9177 	balance_hotplug_wait();
9178 	return 0;
9179 }
9180 
9181 /*
9182  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9183  * might have. Called from the CPU stopper task after ensuring that the
9184  * stopper is the last running task on the CPU, so nr_active count is
9185  * stable. We need to take the teardown thread which is calling this into
9186  * account, so we hand in adjust = 1 to the load calculation.
9187  *
9188  * Also see the comment "Global load-average calculations".
9189  */
9190 static void calc_load_migrate(struct rq *rq)
9191 {
9192 	long delta = calc_load_fold_active(rq, 1);
9193 
9194 	if (delta)
9195 		atomic_long_add(delta, &calc_load_tasks);
9196 }
9197 
9198 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9199 {
9200 	struct task_struct *g, *p;
9201 	int cpu = cpu_of(rq);
9202 
9203 	lockdep_assert_rq_held(rq);
9204 
9205 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9206 	for_each_process_thread(g, p) {
9207 		if (task_cpu(p) != cpu)
9208 			continue;
9209 
9210 		if (!task_on_rq_queued(p))
9211 			continue;
9212 
9213 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9214 	}
9215 }
9216 
9217 int sched_cpu_dying(unsigned int cpu)
9218 {
9219 	struct rq *rq = cpu_rq(cpu);
9220 	struct rq_flags rf;
9221 
9222 	/* Handle pending wakeups and then migrate everything off */
9223 	sched_tick_stop(cpu);
9224 
9225 	rq_lock_irqsave(rq, &rf);
9226 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9227 		WARN(true, "Dying CPU not properly vacated!");
9228 		dump_rq_tasks(rq, KERN_WARNING);
9229 	}
9230 	rq_unlock_irqrestore(rq, &rf);
9231 
9232 	calc_load_migrate(rq);
9233 	update_max_interval();
9234 	hrtick_clear(rq);
9235 	sched_core_cpu_dying(cpu);
9236 	return 0;
9237 }
9238 #endif
9239 
9240 void __init sched_init_smp(void)
9241 {
9242 	sched_init_numa(NUMA_NO_NODE);
9243 
9244 	/*
9245 	 * There's no userspace yet to cause hotplug operations; hence all the
9246 	 * CPU masks are stable and all blatant races in the below code cannot
9247 	 * happen.
9248 	 */
9249 	mutex_lock(&sched_domains_mutex);
9250 	sched_init_domains(cpu_active_mask);
9251 	mutex_unlock(&sched_domains_mutex);
9252 
9253 	/* Move init over to a non-isolated CPU */
9254 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
9255 		BUG();
9256 	current->flags &= ~PF_NO_SETAFFINITY;
9257 	sched_init_granularity();
9258 
9259 	init_sched_rt_class();
9260 	init_sched_dl_class();
9261 
9262 	sched_smp_initialized = true;
9263 }
9264 
9265 static int __init migration_init(void)
9266 {
9267 	sched_cpu_starting(smp_processor_id());
9268 	return 0;
9269 }
9270 early_initcall(migration_init);
9271 
9272 #else
9273 void __init sched_init_smp(void)
9274 {
9275 	sched_init_granularity();
9276 }
9277 #endif /* CONFIG_SMP */
9278 
9279 int in_sched_functions(unsigned long addr)
9280 {
9281 	return in_lock_functions(addr) ||
9282 		(addr >= (unsigned long)__sched_text_start
9283 		&& addr < (unsigned long)__sched_text_end);
9284 }
9285 
9286 #ifdef CONFIG_CGROUP_SCHED
9287 /*
9288  * Default task group.
9289  * Every task in system belongs to this group at bootup.
9290  */
9291 struct task_group root_task_group;
9292 LIST_HEAD(task_groups);
9293 
9294 /* Cacheline aligned slab cache for task_group */
9295 static struct kmem_cache *task_group_cache __read_mostly;
9296 #endif
9297 
9298 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9299 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9300 
9301 void __init sched_init(void)
9302 {
9303 	unsigned long ptr = 0;
9304 	int i;
9305 
9306 	/* Make sure the linker didn't screw up */
9307 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9308 	       &fair_sched_class + 1 != &rt_sched_class ||
9309 	       &rt_sched_class + 1   != &dl_sched_class);
9310 #ifdef CONFIG_SMP
9311 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9312 #endif
9313 
9314 	wait_bit_init();
9315 
9316 #ifdef CONFIG_FAIR_GROUP_SCHED
9317 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9318 #endif
9319 #ifdef CONFIG_RT_GROUP_SCHED
9320 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9321 #endif
9322 	if (ptr) {
9323 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9324 
9325 #ifdef CONFIG_FAIR_GROUP_SCHED
9326 		root_task_group.se = (struct sched_entity **)ptr;
9327 		ptr += nr_cpu_ids * sizeof(void **);
9328 
9329 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9330 		ptr += nr_cpu_ids * sizeof(void **);
9331 
9332 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9333 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9334 #endif /* CONFIG_FAIR_GROUP_SCHED */
9335 #ifdef CONFIG_RT_GROUP_SCHED
9336 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9337 		ptr += nr_cpu_ids * sizeof(void **);
9338 
9339 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9340 		ptr += nr_cpu_ids * sizeof(void **);
9341 
9342 #endif /* CONFIG_RT_GROUP_SCHED */
9343 	}
9344 #ifdef CONFIG_CPUMASK_OFFSTACK
9345 	for_each_possible_cpu(i) {
9346 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9347 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9348 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9349 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9350 	}
9351 #endif /* CONFIG_CPUMASK_OFFSTACK */
9352 
9353 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9354 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9355 
9356 #ifdef CONFIG_SMP
9357 	init_defrootdomain();
9358 #endif
9359 
9360 #ifdef CONFIG_RT_GROUP_SCHED
9361 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9362 			global_rt_period(), global_rt_runtime());
9363 #endif /* CONFIG_RT_GROUP_SCHED */
9364 
9365 #ifdef CONFIG_CGROUP_SCHED
9366 	task_group_cache = KMEM_CACHE(task_group, 0);
9367 
9368 	list_add(&root_task_group.list, &task_groups);
9369 	INIT_LIST_HEAD(&root_task_group.children);
9370 	INIT_LIST_HEAD(&root_task_group.siblings);
9371 	autogroup_init(&init_task);
9372 #endif /* CONFIG_CGROUP_SCHED */
9373 
9374 	for_each_possible_cpu(i) {
9375 		struct rq *rq;
9376 
9377 		rq = cpu_rq(i);
9378 		raw_spin_lock_init(&rq->__lock);
9379 		rq->nr_running = 0;
9380 		rq->calc_load_active = 0;
9381 		rq->calc_load_update = jiffies + LOAD_FREQ;
9382 		init_cfs_rq(&rq->cfs);
9383 		init_rt_rq(&rq->rt);
9384 		init_dl_rq(&rq->dl);
9385 #ifdef CONFIG_FAIR_GROUP_SCHED
9386 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9387 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9388 		/*
9389 		 * How much CPU bandwidth does root_task_group get?
9390 		 *
9391 		 * In case of task-groups formed thr' the cgroup filesystem, it
9392 		 * gets 100% of the CPU resources in the system. This overall
9393 		 * system CPU resource is divided among the tasks of
9394 		 * root_task_group and its child task-groups in a fair manner,
9395 		 * based on each entity's (task or task-group's) weight
9396 		 * (se->load.weight).
9397 		 *
9398 		 * In other words, if root_task_group has 10 tasks of weight
9399 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9400 		 * then A0's share of the CPU resource is:
9401 		 *
9402 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9403 		 *
9404 		 * We achieve this by letting root_task_group's tasks sit
9405 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9406 		 */
9407 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9408 #endif /* CONFIG_FAIR_GROUP_SCHED */
9409 
9410 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9411 #ifdef CONFIG_RT_GROUP_SCHED
9412 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9413 #endif
9414 #ifdef CONFIG_SMP
9415 		rq->sd = NULL;
9416 		rq->rd = NULL;
9417 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9418 		rq->balance_callback = &balance_push_callback;
9419 		rq->active_balance = 0;
9420 		rq->next_balance = jiffies;
9421 		rq->push_cpu = 0;
9422 		rq->cpu = i;
9423 		rq->online = 0;
9424 		rq->idle_stamp = 0;
9425 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9426 		rq->wake_stamp = jiffies;
9427 		rq->wake_avg_idle = rq->avg_idle;
9428 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9429 
9430 		INIT_LIST_HEAD(&rq->cfs_tasks);
9431 
9432 		rq_attach_root(rq, &def_root_domain);
9433 #ifdef CONFIG_NO_HZ_COMMON
9434 		rq->last_blocked_load_update_tick = jiffies;
9435 		atomic_set(&rq->nohz_flags, 0);
9436 
9437 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9438 #endif
9439 #ifdef CONFIG_HOTPLUG_CPU
9440 		rcuwait_init(&rq->hotplug_wait);
9441 #endif
9442 #endif /* CONFIG_SMP */
9443 		hrtick_rq_init(rq);
9444 		atomic_set(&rq->nr_iowait, 0);
9445 
9446 #ifdef CONFIG_SCHED_CORE
9447 		rq->core = rq;
9448 		rq->core_pick = NULL;
9449 		rq->core_enabled = 0;
9450 		rq->core_tree = RB_ROOT;
9451 		rq->core_forceidle_count = 0;
9452 		rq->core_forceidle_occupation = 0;
9453 		rq->core_forceidle_start = 0;
9454 
9455 		rq->core_cookie = 0UL;
9456 #endif
9457 	}
9458 
9459 	set_load_weight(&init_task, false);
9460 
9461 	/*
9462 	 * The boot idle thread does lazy MMU switching as well:
9463 	 */
9464 	mmgrab(&init_mm);
9465 	enter_lazy_tlb(&init_mm, current);
9466 
9467 	/*
9468 	 * The idle task doesn't need the kthread struct to function, but it
9469 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9470 	 * if we want to avoid special-casing it in code that deals with per-CPU
9471 	 * kthreads.
9472 	 */
9473 	WARN_ON(!set_kthread_struct(current));
9474 
9475 	/*
9476 	 * Make us the idle thread. Technically, schedule() should not be
9477 	 * called from this thread, however somewhere below it might be,
9478 	 * but because we are the idle thread, we just pick up running again
9479 	 * when this runqueue becomes "idle".
9480 	 */
9481 	init_idle(current, smp_processor_id());
9482 
9483 	calc_load_update = jiffies + LOAD_FREQ;
9484 
9485 #ifdef CONFIG_SMP
9486 	idle_thread_set_boot_cpu();
9487 	balance_push_set(smp_processor_id(), false);
9488 #endif
9489 	init_sched_fair_class();
9490 
9491 	psi_init();
9492 
9493 	init_uclamp();
9494 
9495 	preempt_dynamic_init();
9496 
9497 	scheduler_running = 1;
9498 }
9499 
9500 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9501 
9502 void __might_sleep(const char *file, int line)
9503 {
9504 	unsigned int state = get_current_state();
9505 	/*
9506 	 * Blocking primitives will set (and therefore destroy) current->state,
9507 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9508 	 * otherwise we will destroy state.
9509 	 */
9510 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9511 			"do not call blocking ops when !TASK_RUNNING; "
9512 			"state=%x set at [<%p>] %pS\n", state,
9513 			(void *)current->task_state_change,
9514 			(void *)current->task_state_change);
9515 
9516 	__might_resched(file, line, 0);
9517 }
9518 EXPORT_SYMBOL(__might_sleep);
9519 
9520 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9521 {
9522 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9523 		return;
9524 
9525 	if (preempt_count() == preempt_offset)
9526 		return;
9527 
9528 	pr_err("Preemption disabled at:");
9529 	print_ip_sym(KERN_ERR, ip);
9530 }
9531 
9532 static inline bool resched_offsets_ok(unsigned int offsets)
9533 {
9534 	unsigned int nested = preempt_count();
9535 
9536 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9537 
9538 	return nested == offsets;
9539 }
9540 
9541 void __might_resched(const char *file, int line, unsigned int offsets)
9542 {
9543 	/* Ratelimiting timestamp: */
9544 	static unsigned long prev_jiffy;
9545 
9546 	unsigned long preempt_disable_ip;
9547 
9548 	/* WARN_ON_ONCE() by default, no rate limit required: */
9549 	rcu_sleep_check();
9550 
9551 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9552 	     !is_idle_task(current) && !current->non_block_count) ||
9553 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9554 	    oops_in_progress)
9555 		return;
9556 
9557 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9558 		return;
9559 	prev_jiffy = jiffies;
9560 
9561 	/* Save this before calling printk(), since that will clobber it: */
9562 	preempt_disable_ip = get_preempt_disable_ip(current);
9563 
9564 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9565 	       file, line);
9566 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9567 	       in_atomic(), irqs_disabled(), current->non_block_count,
9568 	       current->pid, current->comm);
9569 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9570 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9571 
9572 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9573 		pr_err("RCU nest depth: %d, expected: %u\n",
9574 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9575 	}
9576 
9577 	if (task_stack_end_corrupted(current))
9578 		pr_emerg("Thread overran stack, or stack corrupted\n");
9579 
9580 	debug_show_held_locks(current);
9581 	if (irqs_disabled())
9582 		print_irqtrace_events(current);
9583 
9584 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9585 				 preempt_disable_ip);
9586 
9587 	dump_stack();
9588 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9589 }
9590 EXPORT_SYMBOL(__might_resched);
9591 
9592 void __cant_sleep(const char *file, int line, int preempt_offset)
9593 {
9594 	static unsigned long prev_jiffy;
9595 
9596 	if (irqs_disabled())
9597 		return;
9598 
9599 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9600 		return;
9601 
9602 	if (preempt_count() > preempt_offset)
9603 		return;
9604 
9605 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9606 		return;
9607 	prev_jiffy = jiffies;
9608 
9609 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9610 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9611 			in_atomic(), irqs_disabled(),
9612 			current->pid, current->comm);
9613 
9614 	debug_show_held_locks(current);
9615 	dump_stack();
9616 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9617 }
9618 EXPORT_SYMBOL_GPL(__cant_sleep);
9619 
9620 #ifdef CONFIG_SMP
9621 void __cant_migrate(const char *file, int line)
9622 {
9623 	static unsigned long prev_jiffy;
9624 
9625 	if (irqs_disabled())
9626 		return;
9627 
9628 	if (is_migration_disabled(current))
9629 		return;
9630 
9631 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9632 		return;
9633 
9634 	if (preempt_count() > 0)
9635 		return;
9636 
9637 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9638 		return;
9639 	prev_jiffy = jiffies;
9640 
9641 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9642 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9643 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9644 	       current->pid, current->comm);
9645 
9646 	debug_show_held_locks(current);
9647 	dump_stack();
9648 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9649 }
9650 EXPORT_SYMBOL_GPL(__cant_migrate);
9651 #endif
9652 #endif
9653 
9654 #ifdef CONFIG_MAGIC_SYSRQ
9655 void normalize_rt_tasks(void)
9656 {
9657 	struct task_struct *g, *p;
9658 	struct sched_attr attr = {
9659 		.sched_policy = SCHED_NORMAL,
9660 	};
9661 
9662 	read_lock(&tasklist_lock);
9663 	for_each_process_thread(g, p) {
9664 		/*
9665 		 * Only normalize user tasks:
9666 		 */
9667 		if (p->flags & PF_KTHREAD)
9668 			continue;
9669 
9670 		p->se.exec_start = 0;
9671 		schedstat_set(p->stats.wait_start,  0);
9672 		schedstat_set(p->stats.sleep_start, 0);
9673 		schedstat_set(p->stats.block_start, 0);
9674 
9675 		if (!dl_task(p) && !rt_task(p)) {
9676 			/*
9677 			 * Renice negative nice level userspace
9678 			 * tasks back to 0:
9679 			 */
9680 			if (task_nice(p) < 0)
9681 				set_user_nice(p, 0);
9682 			continue;
9683 		}
9684 
9685 		__sched_setscheduler(p, &attr, false, false);
9686 	}
9687 	read_unlock(&tasklist_lock);
9688 }
9689 
9690 #endif /* CONFIG_MAGIC_SYSRQ */
9691 
9692 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9693 /*
9694  * These functions are only useful for the IA64 MCA handling, or kdb.
9695  *
9696  * They can only be called when the whole system has been
9697  * stopped - every CPU needs to be quiescent, and no scheduling
9698  * activity can take place. Using them for anything else would
9699  * be a serious bug, and as a result, they aren't even visible
9700  * under any other configuration.
9701  */
9702 
9703 /**
9704  * curr_task - return the current task for a given CPU.
9705  * @cpu: the processor in question.
9706  *
9707  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9708  *
9709  * Return: The current task for @cpu.
9710  */
9711 struct task_struct *curr_task(int cpu)
9712 {
9713 	return cpu_curr(cpu);
9714 }
9715 
9716 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9717 
9718 #ifdef CONFIG_IA64
9719 /**
9720  * ia64_set_curr_task - set the current task for a given CPU.
9721  * @cpu: the processor in question.
9722  * @p: the task pointer to set.
9723  *
9724  * Description: This function must only be used when non-maskable interrupts
9725  * are serviced on a separate stack. It allows the architecture to switch the
9726  * notion of the current task on a CPU in a non-blocking manner. This function
9727  * must be called with all CPU's synchronized, and interrupts disabled, the
9728  * and caller must save the original value of the current task (see
9729  * curr_task() above) and restore that value before reenabling interrupts and
9730  * re-starting the system.
9731  *
9732  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9733  */
9734 void ia64_set_curr_task(int cpu, struct task_struct *p)
9735 {
9736 	cpu_curr(cpu) = p;
9737 }
9738 
9739 #endif
9740 
9741 #ifdef CONFIG_CGROUP_SCHED
9742 /* task_group_lock serializes the addition/removal of task groups */
9743 static DEFINE_SPINLOCK(task_group_lock);
9744 
9745 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9746 					    struct task_group *parent)
9747 {
9748 #ifdef CONFIG_UCLAMP_TASK_GROUP
9749 	enum uclamp_id clamp_id;
9750 
9751 	for_each_clamp_id(clamp_id) {
9752 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9753 			      uclamp_none(clamp_id), false);
9754 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9755 	}
9756 #endif
9757 }
9758 
9759 static void sched_free_group(struct task_group *tg)
9760 {
9761 	free_fair_sched_group(tg);
9762 	free_rt_sched_group(tg);
9763 	autogroup_free(tg);
9764 	kmem_cache_free(task_group_cache, tg);
9765 }
9766 
9767 static void sched_free_group_rcu(struct rcu_head *rcu)
9768 {
9769 	sched_free_group(container_of(rcu, struct task_group, rcu));
9770 }
9771 
9772 static void sched_unregister_group(struct task_group *tg)
9773 {
9774 	unregister_fair_sched_group(tg);
9775 	unregister_rt_sched_group(tg);
9776 	/*
9777 	 * We have to wait for yet another RCU grace period to expire, as
9778 	 * print_cfs_stats() might run concurrently.
9779 	 */
9780 	call_rcu(&tg->rcu, sched_free_group_rcu);
9781 }
9782 
9783 /* allocate runqueue etc for a new task group */
9784 struct task_group *sched_create_group(struct task_group *parent)
9785 {
9786 	struct task_group *tg;
9787 
9788 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9789 	if (!tg)
9790 		return ERR_PTR(-ENOMEM);
9791 
9792 	if (!alloc_fair_sched_group(tg, parent))
9793 		goto err;
9794 
9795 	if (!alloc_rt_sched_group(tg, parent))
9796 		goto err;
9797 
9798 	alloc_uclamp_sched_group(tg, parent);
9799 
9800 	return tg;
9801 
9802 err:
9803 	sched_free_group(tg);
9804 	return ERR_PTR(-ENOMEM);
9805 }
9806 
9807 void sched_online_group(struct task_group *tg, struct task_group *parent)
9808 {
9809 	unsigned long flags;
9810 
9811 	spin_lock_irqsave(&task_group_lock, flags);
9812 	list_add_rcu(&tg->list, &task_groups);
9813 
9814 	/* Root should already exist: */
9815 	WARN_ON(!parent);
9816 
9817 	tg->parent = parent;
9818 	INIT_LIST_HEAD(&tg->children);
9819 	list_add_rcu(&tg->siblings, &parent->children);
9820 	spin_unlock_irqrestore(&task_group_lock, flags);
9821 
9822 	online_fair_sched_group(tg);
9823 }
9824 
9825 /* rcu callback to free various structures associated with a task group */
9826 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9827 {
9828 	/* Now it should be safe to free those cfs_rqs: */
9829 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9830 }
9831 
9832 void sched_destroy_group(struct task_group *tg)
9833 {
9834 	/* Wait for possible concurrent references to cfs_rqs complete: */
9835 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9836 }
9837 
9838 void sched_release_group(struct task_group *tg)
9839 {
9840 	unsigned long flags;
9841 
9842 	/*
9843 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9844 	 * sched_cfs_period_timer()).
9845 	 *
9846 	 * For this to be effective, we have to wait for all pending users of
9847 	 * this task group to leave their RCU critical section to ensure no new
9848 	 * user will see our dying task group any more. Specifically ensure
9849 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9850 	 *
9851 	 * We therefore defer calling unregister_fair_sched_group() to
9852 	 * sched_unregister_group() which is guarantied to get called only after the
9853 	 * current RCU grace period has expired.
9854 	 */
9855 	spin_lock_irqsave(&task_group_lock, flags);
9856 	list_del_rcu(&tg->list);
9857 	list_del_rcu(&tg->siblings);
9858 	spin_unlock_irqrestore(&task_group_lock, flags);
9859 }
9860 
9861 static void sched_change_group(struct task_struct *tsk, int type)
9862 {
9863 	struct task_group *tg;
9864 
9865 	/*
9866 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9867 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9868 	 * to prevent lockdep warnings.
9869 	 */
9870 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9871 			  struct task_group, css);
9872 	tg = autogroup_task_group(tsk, tg);
9873 	tsk->sched_task_group = tg;
9874 
9875 #ifdef CONFIG_FAIR_GROUP_SCHED
9876 	if (tsk->sched_class->task_change_group)
9877 		tsk->sched_class->task_change_group(tsk, type);
9878 	else
9879 #endif
9880 		set_task_rq(tsk, task_cpu(tsk));
9881 }
9882 
9883 /*
9884  * Change task's runqueue when it moves between groups.
9885  *
9886  * The caller of this function should have put the task in its new group by
9887  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9888  * its new group.
9889  */
9890 void sched_move_task(struct task_struct *tsk)
9891 {
9892 	int queued, running, queue_flags =
9893 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9894 	struct rq_flags rf;
9895 	struct rq *rq;
9896 
9897 	rq = task_rq_lock(tsk, &rf);
9898 	update_rq_clock(rq);
9899 
9900 	running = task_current(rq, tsk);
9901 	queued = task_on_rq_queued(tsk);
9902 
9903 	if (queued)
9904 		dequeue_task(rq, tsk, queue_flags);
9905 	if (running)
9906 		put_prev_task(rq, tsk);
9907 
9908 	sched_change_group(tsk, TASK_MOVE_GROUP);
9909 
9910 	if (queued)
9911 		enqueue_task(rq, tsk, queue_flags);
9912 	if (running) {
9913 		set_next_task(rq, tsk);
9914 		/*
9915 		 * After changing group, the running task may have joined a
9916 		 * throttled one but it's still the running task. Trigger a
9917 		 * resched to make sure that task can still run.
9918 		 */
9919 		resched_curr(rq);
9920 	}
9921 
9922 	task_rq_unlock(rq, tsk, &rf);
9923 }
9924 
9925 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9926 {
9927 	return css ? container_of(css, struct task_group, css) : NULL;
9928 }
9929 
9930 static struct cgroup_subsys_state *
9931 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9932 {
9933 	struct task_group *parent = css_tg(parent_css);
9934 	struct task_group *tg;
9935 
9936 	if (!parent) {
9937 		/* This is early initialization for the top cgroup */
9938 		return &root_task_group.css;
9939 	}
9940 
9941 	tg = sched_create_group(parent);
9942 	if (IS_ERR(tg))
9943 		return ERR_PTR(-ENOMEM);
9944 
9945 	return &tg->css;
9946 }
9947 
9948 /* Expose task group only after completing cgroup initialization */
9949 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9950 {
9951 	struct task_group *tg = css_tg(css);
9952 	struct task_group *parent = css_tg(css->parent);
9953 
9954 	if (parent)
9955 		sched_online_group(tg, parent);
9956 
9957 #ifdef CONFIG_UCLAMP_TASK_GROUP
9958 	/* Propagate the effective uclamp value for the new group */
9959 	mutex_lock(&uclamp_mutex);
9960 	rcu_read_lock();
9961 	cpu_util_update_eff(css);
9962 	rcu_read_unlock();
9963 	mutex_unlock(&uclamp_mutex);
9964 #endif
9965 
9966 	return 0;
9967 }
9968 
9969 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9970 {
9971 	struct task_group *tg = css_tg(css);
9972 
9973 	sched_release_group(tg);
9974 }
9975 
9976 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9977 {
9978 	struct task_group *tg = css_tg(css);
9979 
9980 	/*
9981 	 * Relies on the RCU grace period between css_released() and this.
9982 	 */
9983 	sched_unregister_group(tg);
9984 }
9985 
9986 /*
9987  * This is called before wake_up_new_task(), therefore we really only
9988  * have to set its group bits, all the other stuff does not apply.
9989  */
9990 static void cpu_cgroup_fork(struct task_struct *task)
9991 {
9992 	struct rq_flags rf;
9993 	struct rq *rq;
9994 
9995 	rq = task_rq_lock(task, &rf);
9996 
9997 	update_rq_clock(rq);
9998 	sched_change_group(task, TASK_SET_GROUP);
9999 
10000 	task_rq_unlock(rq, task, &rf);
10001 }
10002 
10003 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10004 {
10005 	struct task_struct *task;
10006 	struct cgroup_subsys_state *css;
10007 	int ret = 0;
10008 
10009 	cgroup_taskset_for_each(task, css, tset) {
10010 #ifdef CONFIG_RT_GROUP_SCHED
10011 		if (!sched_rt_can_attach(css_tg(css), task))
10012 			return -EINVAL;
10013 #endif
10014 		/*
10015 		 * Serialize against wake_up_new_task() such that if it's
10016 		 * running, we're sure to observe its full state.
10017 		 */
10018 		raw_spin_lock_irq(&task->pi_lock);
10019 		/*
10020 		 * Avoid calling sched_move_task() before wake_up_new_task()
10021 		 * has happened. This would lead to problems with PELT, due to
10022 		 * move wanting to detach+attach while we're not attached yet.
10023 		 */
10024 		if (READ_ONCE(task->__state) == TASK_NEW)
10025 			ret = -EINVAL;
10026 		raw_spin_unlock_irq(&task->pi_lock);
10027 
10028 		if (ret)
10029 			break;
10030 	}
10031 	return ret;
10032 }
10033 
10034 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10035 {
10036 	struct task_struct *task;
10037 	struct cgroup_subsys_state *css;
10038 
10039 	cgroup_taskset_for_each(task, css, tset)
10040 		sched_move_task(task);
10041 }
10042 
10043 #ifdef CONFIG_UCLAMP_TASK_GROUP
10044 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10045 {
10046 	struct cgroup_subsys_state *top_css = css;
10047 	struct uclamp_se *uc_parent = NULL;
10048 	struct uclamp_se *uc_se = NULL;
10049 	unsigned int eff[UCLAMP_CNT];
10050 	enum uclamp_id clamp_id;
10051 	unsigned int clamps;
10052 
10053 	lockdep_assert_held(&uclamp_mutex);
10054 	SCHED_WARN_ON(!rcu_read_lock_held());
10055 
10056 	css_for_each_descendant_pre(css, top_css) {
10057 		uc_parent = css_tg(css)->parent
10058 			? css_tg(css)->parent->uclamp : NULL;
10059 
10060 		for_each_clamp_id(clamp_id) {
10061 			/* Assume effective clamps matches requested clamps */
10062 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10063 			/* Cap effective clamps with parent's effective clamps */
10064 			if (uc_parent &&
10065 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10066 				eff[clamp_id] = uc_parent[clamp_id].value;
10067 			}
10068 		}
10069 		/* Ensure protection is always capped by limit */
10070 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10071 
10072 		/* Propagate most restrictive effective clamps */
10073 		clamps = 0x0;
10074 		uc_se = css_tg(css)->uclamp;
10075 		for_each_clamp_id(clamp_id) {
10076 			if (eff[clamp_id] == uc_se[clamp_id].value)
10077 				continue;
10078 			uc_se[clamp_id].value = eff[clamp_id];
10079 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10080 			clamps |= (0x1 << clamp_id);
10081 		}
10082 		if (!clamps) {
10083 			css = css_rightmost_descendant(css);
10084 			continue;
10085 		}
10086 
10087 		/* Immediately update descendants RUNNABLE tasks */
10088 		uclamp_update_active_tasks(css);
10089 	}
10090 }
10091 
10092 /*
10093  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10094  * C expression. Since there is no way to convert a macro argument (N) into a
10095  * character constant, use two levels of macros.
10096  */
10097 #define _POW10(exp) ((unsigned int)1e##exp)
10098 #define POW10(exp) _POW10(exp)
10099 
10100 struct uclamp_request {
10101 #define UCLAMP_PERCENT_SHIFT	2
10102 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10103 	s64 percent;
10104 	u64 util;
10105 	int ret;
10106 };
10107 
10108 static inline struct uclamp_request
10109 capacity_from_percent(char *buf)
10110 {
10111 	struct uclamp_request req = {
10112 		.percent = UCLAMP_PERCENT_SCALE,
10113 		.util = SCHED_CAPACITY_SCALE,
10114 		.ret = 0,
10115 	};
10116 
10117 	buf = strim(buf);
10118 	if (strcmp(buf, "max")) {
10119 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10120 					     &req.percent);
10121 		if (req.ret)
10122 			return req;
10123 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10124 			req.ret = -ERANGE;
10125 			return req;
10126 		}
10127 
10128 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10129 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10130 	}
10131 
10132 	return req;
10133 }
10134 
10135 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10136 				size_t nbytes, loff_t off,
10137 				enum uclamp_id clamp_id)
10138 {
10139 	struct uclamp_request req;
10140 	struct task_group *tg;
10141 
10142 	req = capacity_from_percent(buf);
10143 	if (req.ret)
10144 		return req.ret;
10145 
10146 	static_branch_enable(&sched_uclamp_used);
10147 
10148 	mutex_lock(&uclamp_mutex);
10149 	rcu_read_lock();
10150 
10151 	tg = css_tg(of_css(of));
10152 	if (tg->uclamp_req[clamp_id].value != req.util)
10153 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10154 
10155 	/*
10156 	 * Because of not recoverable conversion rounding we keep track of the
10157 	 * exact requested value
10158 	 */
10159 	tg->uclamp_pct[clamp_id] = req.percent;
10160 
10161 	/* Update effective clamps to track the most restrictive value */
10162 	cpu_util_update_eff(of_css(of));
10163 
10164 	rcu_read_unlock();
10165 	mutex_unlock(&uclamp_mutex);
10166 
10167 	return nbytes;
10168 }
10169 
10170 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10171 				    char *buf, size_t nbytes,
10172 				    loff_t off)
10173 {
10174 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10175 }
10176 
10177 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10178 				    char *buf, size_t nbytes,
10179 				    loff_t off)
10180 {
10181 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10182 }
10183 
10184 static inline void cpu_uclamp_print(struct seq_file *sf,
10185 				    enum uclamp_id clamp_id)
10186 {
10187 	struct task_group *tg;
10188 	u64 util_clamp;
10189 	u64 percent;
10190 	u32 rem;
10191 
10192 	rcu_read_lock();
10193 	tg = css_tg(seq_css(sf));
10194 	util_clamp = tg->uclamp_req[clamp_id].value;
10195 	rcu_read_unlock();
10196 
10197 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10198 		seq_puts(sf, "max\n");
10199 		return;
10200 	}
10201 
10202 	percent = tg->uclamp_pct[clamp_id];
10203 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10204 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10205 }
10206 
10207 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10208 {
10209 	cpu_uclamp_print(sf, UCLAMP_MIN);
10210 	return 0;
10211 }
10212 
10213 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10214 {
10215 	cpu_uclamp_print(sf, UCLAMP_MAX);
10216 	return 0;
10217 }
10218 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10219 
10220 #ifdef CONFIG_FAIR_GROUP_SCHED
10221 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10222 				struct cftype *cftype, u64 shareval)
10223 {
10224 	if (shareval > scale_load_down(ULONG_MAX))
10225 		shareval = MAX_SHARES;
10226 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10227 }
10228 
10229 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10230 			       struct cftype *cft)
10231 {
10232 	struct task_group *tg = css_tg(css);
10233 
10234 	return (u64) scale_load_down(tg->shares);
10235 }
10236 
10237 #ifdef CONFIG_CFS_BANDWIDTH
10238 static DEFINE_MUTEX(cfs_constraints_mutex);
10239 
10240 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10241 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10242 /* More than 203 days if BW_SHIFT equals 20. */
10243 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10244 
10245 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10246 
10247 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10248 				u64 burst)
10249 {
10250 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10251 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10252 
10253 	if (tg == &root_task_group)
10254 		return -EINVAL;
10255 
10256 	/*
10257 	 * Ensure we have at some amount of bandwidth every period.  This is
10258 	 * to prevent reaching a state of large arrears when throttled via
10259 	 * entity_tick() resulting in prolonged exit starvation.
10260 	 */
10261 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10262 		return -EINVAL;
10263 
10264 	/*
10265 	 * Likewise, bound things on the other side by preventing insane quota
10266 	 * periods.  This also allows us to normalize in computing quota
10267 	 * feasibility.
10268 	 */
10269 	if (period > max_cfs_quota_period)
10270 		return -EINVAL;
10271 
10272 	/*
10273 	 * Bound quota to defend quota against overflow during bandwidth shift.
10274 	 */
10275 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10276 		return -EINVAL;
10277 
10278 	if (quota != RUNTIME_INF && (burst > quota ||
10279 				     burst + quota > max_cfs_runtime))
10280 		return -EINVAL;
10281 
10282 	/*
10283 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10284 	 * unthrottle_offline_cfs_rqs().
10285 	 */
10286 	cpus_read_lock();
10287 	mutex_lock(&cfs_constraints_mutex);
10288 	ret = __cfs_schedulable(tg, period, quota);
10289 	if (ret)
10290 		goto out_unlock;
10291 
10292 	runtime_enabled = quota != RUNTIME_INF;
10293 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10294 	/*
10295 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10296 	 * before making related changes, and on->off must occur afterwards
10297 	 */
10298 	if (runtime_enabled && !runtime_was_enabled)
10299 		cfs_bandwidth_usage_inc();
10300 	raw_spin_lock_irq(&cfs_b->lock);
10301 	cfs_b->period = ns_to_ktime(period);
10302 	cfs_b->quota = quota;
10303 	cfs_b->burst = burst;
10304 
10305 	__refill_cfs_bandwidth_runtime(cfs_b);
10306 
10307 	/* Restart the period timer (if active) to handle new period expiry: */
10308 	if (runtime_enabled)
10309 		start_cfs_bandwidth(cfs_b);
10310 
10311 	raw_spin_unlock_irq(&cfs_b->lock);
10312 
10313 	for_each_online_cpu(i) {
10314 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10315 		struct rq *rq = cfs_rq->rq;
10316 		struct rq_flags rf;
10317 
10318 		rq_lock_irq(rq, &rf);
10319 		cfs_rq->runtime_enabled = runtime_enabled;
10320 		cfs_rq->runtime_remaining = 0;
10321 
10322 		if (cfs_rq->throttled)
10323 			unthrottle_cfs_rq(cfs_rq);
10324 		rq_unlock_irq(rq, &rf);
10325 	}
10326 	if (runtime_was_enabled && !runtime_enabled)
10327 		cfs_bandwidth_usage_dec();
10328 out_unlock:
10329 	mutex_unlock(&cfs_constraints_mutex);
10330 	cpus_read_unlock();
10331 
10332 	return ret;
10333 }
10334 
10335 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10336 {
10337 	u64 quota, period, burst;
10338 
10339 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10340 	burst = tg->cfs_bandwidth.burst;
10341 	if (cfs_quota_us < 0)
10342 		quota = RUNTIME_INF;
10343 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10344 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10345 	else
10346 		return -EINVAL;
10347 
10348 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10349 }
10350 
10351 static long tg_get_cfs_quota(struct task_group *tg)
10352 {
10353 	u64 quota_us;
10354 
10355 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10356 		return -1;
10357 
10358 	quota_us = tg->cfs_bandwidth.quota;
10359 	do_div(quota_us, NSEC_PER_USEC);
10360 
10361 	return quota_us;
10362 }
10363 
10364 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10365 {
10366 	u64 quota, period, burst;
10367 
10368 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10369 		return -EINVAL;
10370 
10371 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10372 	quota = tg->cfs_bandwidth.quota;
10373 	burst = tg->cfs_bandwidth.burst;
10374 
10375 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10376 }
10377 
10378 static long tg_get_cfs_period(struct task_group *tg)
10379 {
10380 	u64 cfs_period_us;
10381 
10382 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10383 	do_div(cfs_period_us, NSEC_PER_USEC);
10384 
10385 	return cfs_period_us;
10386 }
10387 
10388 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10389 {
10390 	u64 quota, period, burst;
10391 
10392 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10393 		return -EINVAL;
10394 
10395 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10396 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10397 	quota = tg->cfs_bandwidth.quota;
10398 
10399 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10400 }
10401 
10402 static long tg_get_cfs_burst(struct task_group *tg)
10403 {
10404 	u64 burst_us;
10405 
10406 	burst_us = tg->cfs_bandwidth.burst;
10407 	do_div(burst_us, NSEC_PER_USEC);
10408 
10409 	return burst_us;
10410 }
10411 
10412 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10413 				  struct cftype *cft)
10414 {
10415 	return tg_get_cfs_quota(css_tg(css));
10416 }
10417 
10418 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10419 				   struct cftype *cftype, s64 cfs_quota_us)
10420 {
10421 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10422 }
10423 
10424 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10425 				   struct cftype *cft)
10426 {
10427 	return tg_get_cfs_period(css_tg(css));
10428 }
10429 
10430 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10431 				    struct cftype *cftype, u64 cfs_period_us)
10432 {
10433 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10434 }
10435 
10436 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10437 				  struct cftype *cft)
10438 {
10439 	return tg_get_cfs_burst(css_tg(css));
10440 }
10441 
10442 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10443 				   struct cftype *cftype, u64 cfs_burst_us)
10444 {
10445 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10446 }
10447 
10448 struct cfs_schedulable_data {
10449 	struct task_group *tg;
10450 	u64 period, quota;
10451 };
10452 
10453 /*
10454  * normalize group quota/period to be quota/max_period
10455  * note: units are usecs
10456  */
10457 static u64 normalize_cfs_quota(struct task_group *tg,
10458 			       struct cfs_schedulable_data *d)
10459 {
10460 	u64 quota, period;
10461 
10462 	if (tg == d->tg) {
10463 		period = d->period;
10464 		quota = d->quota;
10465 	} else {
10466 		period = tg_get_cfs_period(tg);
10467 		quota = tg_get_cfs_quota(tg);
10468 	}
10469 
10470 	/* note: these should typically be equivalent */
10471 	if (quota == RUNTIME_INF || quota == -1)
10472 		return RUNTIME_INF;
10473 
10474 	return to_ratio(period, quota);
10475 }
10476 
10477 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10478 {
10479 	struct cfs_schedulable_data *d = data;
10480 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10481 	s64 quota = 0, parent_quota = -1;
10482 
10483 	if (!tg->parent) {
10484 		quota = RUNTIME_INF;
10485 	} else {
10486 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10487 
10488 		quota = normalize_cfs_quota(tg, d);
10489 		parent_quota = parent_b->hierarchical_quota;
10490 
10491 		/*
10492 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10493 		 * always take the min.  On cgroup1, only inherit when no
10494 		 * limit is set:
10495 		 */
10496 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10497 			quota = min(quota, parent_quota);
10498 		} else {
10499 			if (quota == RUNTIME_INF)
10500 				quota = parent_quota;
10501 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10502 				return -EINVAL;
10503 		}
10504 	}
10505 	cfs_b->hierarchical_quota = quota;
10506 
10507 	return 0;
10508 }
10509 
10510 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10511 {
10512 	int ret;
10513 	struct cfs_schedulable_data data = {
10514 		.tg = tg,
10515 		.period = period,
10516 		.quota = quota,
10517 	};
10518 
10519 	if (quota != RUNTIME_INF) {
10520 		do_div(data.period, NSEC_PER_USEC);
10521 		do_div(data.quota, NSEC_PER_USEC);
10522 	}
10523 
10524 	rcu_read_lock();
10525 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10526 	rcu_read_unlock();
10527 
10528 	return ret;
10529 }
10530 
10531 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10532 {
10533 	struct task_group *tg = css_tg(seq_css(sf));
10534 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10535 
10536 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10537 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10538 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10539 
10540 	if (schedstat_enabled() && tg != &root_task_group) {
10541 		struct sched_statistics *stats;
10542 		u64 ws = 0;
10543 		int i;
10544 
10545 		for_each_possible_cpu(i) {
10546 			stats = __schedstats_from_se(tg->se[i]);
10547 			ws += schedstat_val(stats->wait_sum);
10548 		}
10549 
10550 		seq_printf(sf, "wait_sum %llu\n", ws);
10551 	}
10552 
10553 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10554 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10555 
10556 	return 0;
10557 }
10558 #endif /* CONFIG_CFS_BANDWIDTH */
10559 #endif /* CONFIG_FAIR_GROUP_SCHED */
10560 
10561 #ifdef CONFIG_RT_GROUP_SCHED
10562 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10563 				struct cftype *cft, s64 val)
10564 {
10565 	return sched_group_set_rt_runtime(css_tg(css), val);
10566 }
10567 
10568 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10569 			       struct cftype *cft)
10570 {
10571 	return sched_group_rt_runtime(css_tg(css));
10572 }
10573 
10574 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10575 				    struct cftype *cftype, u64 rt_period_us)
10576 {
10577 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10578 }
10579 
10580 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10581 				   struct cftype *cft)
10582 {
10583 	return sched_group_rt_period(css_tg(css));
10584 }
10585 #endif /* CONFIG_RT_GROUP_SCHED */
10586 
10587 #ifdef CONFIG_FAIR_GROUP_SCHED
10588 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10589 			       struct cftype *cft)
10590 {
10591 	return css_tg(css)->idle;
10592 }
10593 
10594 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10595 				struct cftype *cft, s64 idle)
10596 {
10597 	return sched_group_set_idle(css_tg(css), idle);
10598 }
10599 #endif
10600 
10601 static struct cftype cpu_legacy_files[] = {
10602 #ifdef CONFIG_FAIR_GROUP_SCHED
10603 	{
10604 		.name = "shares",
10605 		.read_u64 = cpu_shares_read_u64,
10606 		.write_u64 = cpu_shares_write_u64,
10607 	},
10608 	{
10609 		.name = "idle",
10610 		.read_s64 = cpu_idle_read_s64,
10611 		.write_s64 = cpu_idle_write_s64,
10612 	},
10613 #endif
10614 #ifdef CONFIG_CFS_BANDWIDTH
10615 	{
10616 		.name = "cfs_quota_us",
10617 		.read_s64 = cpu_cfs_quota_read_s64,
10618 		.write_s64 = cpu_cfs_quota_write_s64,
10619 	},
10620 	{
10621 		.name = "cfs_period_us",
10622 		.read_u64 = cpu_cfs_period_read_u64,
10623 		.write_u64 = cpu_cfs_period_write_u64,
10624 	},
10625 	{
10626 		.name = "cfs_burst_us",
10627 		.read_u64 = cpu_cfs_burst_read_u64,
10628 		.write_u64 = cpu_cfs_burst_write_u64,
10629 	},
10630 	{
10631 		.name = "stat",
10632 		.seq_show = cpu_cfs_stat_show,
10633 	},
10634 #endif
10635 #ifdef CONFIG_RT_GROUP_SCHED
10636 	{
10637 		.name = "rt_runtime_us",
10638 		.read_s64 = cpu_rt_runtime_read,
10639 		.write_s64 = cpu_rt_runtime_write,
10640 	},
10641 	{
10642 		.name = "rt_period_us",
10643 		.read_u64 = cpu_rt_period_read_uint,
10644 		.write_u64 = cpu_rt_period_write_uint,
10645 	},
10646 #endif
10647 #ifdef CONFIG_UCLAMP_TASK_GROUP
10648 	{
10649 		.name = "uclamp.min",
10650 		.flags = CFTYPE_NOT_ON_ROOT,
10651 		.seq_show = cpu_uclamp_min_show,
10652 		.write = cpu_uclamp_min_write,
10653 	},
10654 	{
10655 		.name = "uclamp.max",
10656 		.flags = CFTYPE_NOT_ON_ROOT,
10657 		.seq_show = cpu_uclamp_max_show,
10658 		.write = cpu_uclamp_max_write,
10659 	},
10660 #endif
10661 	{ }	/* Terminate */
10662 };
10663 
10664 static int cpu_extra_stat_show(struct seq_file *sf,
10665 			       struct cgroup_subsys_state *css)
10666 {
10667 #ifdef CONFIG_CFS_BANDWIDTH
10668 	{
10669 		struct task_group *tg = css_tg(css);
10670 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10671 		u64 throttled_usec, burst_usec;
10672 
10673 		throttled_usec = cfs_b->throttled_time;
10674 		do_div(throttled_usec, NSEC_PER_USEC);
10675 		burst_usec = cfs_b->burst_time;
10676 		do_div(burst_usec, NSEC_PER_USEC);
10677 
10678 		seq_printf(sf, "nr_periods %d\n"
10679 			   "nr_throttled %d\n"
10680 			   "throttled_usec %llu\n"
10681 			   "nr_bursts %d\n"
10682 			   "burst_usec %llu\n",
10683 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10684 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10685 	}
10686 #endif
10687 	return 0;
10688 }
10689 
10690 #ifdef CONFIG_FAIR_GROUP_SCHED
10691 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10692 			       struct cftype *cft)
10693 {
10694 	struct task_group *tg = css_tg(css);
10695 	u64 weight = scale_load_down(tg->shares);
10696 
10697 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10698 }
10699 
10700 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10701 				struct cftype *cft, u64 weight)
10702 {
10703 	/*
10704 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10705 	 * values which are 1, 100 and 10000 respectively.  While it loses
10706 	 * a bit of range on both ends, it maps pretty well onto the shares
10707 	 * value used by scheduler and the round-trip conversions preserve
10708 	 * the original value over the entire range.
10709 	 */
10710 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10711 		return -ERANGE;
10712 
10713 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10714 
10715 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10716 }
10717 
10718 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10719 				    struct cftype *cft)
10720 {
10721 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10722 	int last_delta = INT_MAX;
10723 	int prio, delta;
10724 
10725 	/* find the closest nice value to the current weight */
10726 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10727 		delta = abs(sched_prio_to_weight[prio] - weight);
10728 		if (delta >= last_delta)
10729 			break;
10730 		last_delta = delta;
10731 	}
10732 
10733 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10734 }
10735 
10736 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10737 				     struct cftype *cft, s64 nice)
10738 {
10739 	unsigned long weight;
10740 	int idx;
10741 
10742 	if (nice < MIN_NICE || nice > MAX_NICE)
10743 		return -ERANGE;
10744 
10745 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10746 	idx = array_index_nospec(idx, 40);
10747 	weight = sched_prio_to_weight[idx];
10748 
10749 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10750 }
10751 #endif
10752 
10753 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10754 						  long period, long quota)
10755 {
10756 	if (quota < 0)
10757 		seq_puts(sf, "max");
10758 	else
10759 		seq_printf(sf, "%ld", quota);
10760 
10761 	seq_printf(sf, " %ld\n", period);
10762 }
10763 
10764 /* caller should put the current value in *@periodp before calling */
10765 static int __maybe_unused cpu_period_quota_parse(char *buf,
10766 						 u64 *periodp, u64 *quotap)
10767 {
10768 	char tok[21];	/* U64_MAX */
10769 
10770 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10771 		return -EINVAL;
10772 
10773 	*periodp *= NSEC_PER_USEC;
10774 
10775 	if (sscanf(tok, "%llu", quotap))
10776 		*quotap *= NSEC_PER_USEC;
10777 	else if (!strcmp(tok, "max"))
10778 		*quotap = RUNTIME_INF;
10779 	else
10780 		return -EINVAL;
10781 
10782 	return 0;
10783 }
10784 
10785 #ifdef CONFIG_CFS_BANDWIDTH
10786 static int cpu_max_show(struct seq_file *sf, void *v)
10787 {
10788 	struct task_group *tg = css_tg(seq_css(sf));
10789 
10790 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10791 	return 0;
10792 }
10793 
10794 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10795 			     char *buf, size_t nbytes, loff_t off)
10796 {
10797 	struct task_group *tg = css_tg(of_css(of));
10798 	u64 period = tg_get_cfs_period(tg);
10799 	u64 burst = tg_get_cfs_burst(tg);
10800 	u64 quota;
10801 	int ret;
10802 
10803 	ret = cpu_period_quota_parse(buf, &period, &quota);
10804 	if (!ret)
10805 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10806 	return ret ?: nbytes;
10807 }
10808 #endif
10809 
10810 static struct cftype cpu_files[] = {
10811 #ifdef CONFIG_FAIR_GROUP_SCHED
10812 	{
10813 		.name = "weight",
10814 		.flags = CFTYPE_NOT_ON_ROOT,
10815 		.read_u64 = cpu_weight_read_u64,
10816 		.write_u64 = cpu_weight_write_u64,
10817 	},
10818 	{
10819 		.name = "weight.nice",
10820 		.flags = CFTYPE_NOT_ON_ROOT,
10821 		.read_s64 = cpu_weight_nice_read_s64,
10822 		.write_s64 = cpu_weight_nice_write_s64,
10823 	},
10824 	{
10825 		.name = "idle",
10826 		.flags = CFTYPE_NOT_ON_ROOT,
10827 		.read_s64 = cpu_idle_read_s64,
10828 		.write_s64 = cpu_idle_write_s64,
10829 	},
10830 #endif
10831 #ifdef CONFIG_CFS_BANDWIDTH
10832 	{
10833 		.name = "max",
10834 		.flags = CFTYPE_NOT_ON_ROOT,
10835 		.seq_show = cpu_max_show,
10836 		.write = cpu_max_write,
10837 	},
10838 	{
10839 		.name = "max.burst",
10840 		.flags = CFTYPE_NOT_ON_ROOT,
10841 		.read_u64 = cpu_cfs_burst_read_u64,
10842 		.write_u64 = cpu_cfs_burst_write_u64,
10843 	},
10844 #endif
10845 #ifdef CONFIG_UCLAMP_TASK_GROUP
10846 	{
10847 		.name = "uclamp.min",
10848 		.flags = CFTYPE_NOT_ON_ROOT,
10849 		.seq_show = cpu_uclamp_min_show,
10850 		.write = cpu_uclamp_min_write,
10851 	},
10852 	{
10853 		.name = "uclamp.max",
10854 		.flags = CFTYPE_NOT_ON_ROOT,
10855 		.seq_show = cpu_uclamp_max_show,
10856 		.write = cpu_uclamp_max_write,
10857 	},
10858 #endif
10859 	{ }	/* terminate */
10860 };
10861 
10862 struct cgroup_subsys cpu_cgrp_subsys = {
10863 	.css_alloc	= cpu_cgroup_css_alloc,
10864 	.css_online	= cpu_cgroup_css_online,
10865 	.css_released	= cpu_cgroup_css_released,
10866 	.css_free	= cpu_cgroup_css_free,
10867 	.css_extra_stat_show = cpu_extra_stat_show,
10868 	.fork		= cpu_cgroup_fork,
10869 	.can_attach	= cpu_cgroup_can_attach,
10870 	.attach		= cpu_cgroup_attach,
10871 	.legacy_cftypes	= cpu_legacy_files,
10872 	.dfl_cftypes	= cpu_files,
10873 	.early_init	= true,
10874 	.threaded	= true,
10875 };
10876 
10877 #endif	/* CONFIG_CGROUP_SCHED */
10878 
10879 void dump_cpu_task(int cpu)
10880 {
10881 	pr_info("Task dump for CPU %d:\n", cpu);
10882 	sched_show_task(cpu_curr(cpu));
10883 }
10884 
10885 /*
10886  * Nice levels are multiplicative, with a gentle 10% change for every
10887  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10888  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10889  * that remained on nice 0.
10890  *
10891  * The "10% effect" is relative and cumulative: from _any_ nice level,
10892  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10893  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10894  * If a task goes up by ~10% and another task goes down by ~10% then
10895  * the relative distance between them is ~25%.)
10896  */
10897 const int sched_prio_to_weight[40] = {
10898  /* -20 */     88761,     71755,     56483,     46273,     36291,
10899  /* -15 */     29154,     23254,     18705,     14949,     11916,
10900  /* -10 */      9548,      7620,      6100,      4904,      3906,
10901  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10902  /*   0 */      1024,       820,       655,       526,       423,
10903  /*   5 */       335,       272,       215,       172,       137,
10904  /*  10 */       110,        87,        70,        56,        45,
10905  /*  15 */        36,        29,        23,        18,        15,
10906 };
10907 
10908 /*
10909  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10910  *
10911  * In cases where the weight does not change often, we can use the
10912  * precalculated inverse to speed up arithmetics by turning divisions
10913  * into multiplications:
10914  */
10915 const u32 sched_prio_to_wmult[40] = {
10916  /* -20 */     48388,     59856,     76040,     92818,    118348,
10917  /* -15 */    147320,    184698,    229616,    287308,    360437,
10918  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10919  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10920  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10921  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10922  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10923  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10924 };
10925 
10926 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10927 {
10928         trace_sched_update_nr_running_tp(rq, count);
10929 }
10930