1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/device.h> 24 #include <linux/pfn.h> 25 #include <linux/mm.h> 26 #include <linux/resource_ext.h> 27 #include <asm/io.h> 28 29 30 struct resource ioport_resource = { 31 .name = "PCI IO", 32 .start = 0, 33 .end = IO_SPACE_LIMIT, 34 .flags = IORESOURCE_IO, 35 }; 36 EXPORT_SYMBOL(ioport_resource); 37 38 struct resource iomem_resource = { 39 .name = "PCI mem", 40 .start = 0, 41 .end = -1, 42 .flags = IORESOURCE_MEM, 43 }; 44 EXPORT_SYMBOL(iomem_resource); 45 46 /* constraints to be met while allocating resources */ 47 struct resource_constraint { 48 resource_size_t min, max, align; 49 resource_size_t (*alignf)(void *, const struct resource *, 50 resource_size_t, resource_size_t); 51 void *alignf_data; 52 }; 53 54 static DEFINE_RWLOCK(resource_lock); 55 56 /* 57 * For memory hotplug, there is no way to free resource entries allocated 58 * by boot mem after the system is up. So for reusing the resource entry 59 * we need to remember the resource. 60 */ 61 static struct resource *bootmem_resource_free; 62 static DEFINE_SPINLOCK(bootmem_resource_lock); 63 64 static struct resource *next_resource(struct resource *p, bool sibling_only) 65 { 66 /* Caller wants to traverse through siblings only */ 67 if (sibling_only) 68 return p->sibling; 69 70 if (p->child) 71 return p->child; 72 while (!p->sibling && p->parent) 73 p = p->parent; 74 return p->sibling; 75 } 76 77 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 78 { 79 struct resource *p = v; 80 (*pos)++; 81 return (void *)next_resource(p, false); 82 } 83 84 #ifdef CONFIG_PROC_FS 85 86 enum { MAX_IORES_LEVEL = 5 }; 87 88 static void *r_start(struct seq_file *m, loff_t *pos) 89 __acquires(resource_lock) 90 { 91 struct resource *p = PDE_DATA(file_inode(m->file)); 92 loff_t l = 0; 93 read_lock(&resource_lock); 94 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 95 ; 96 return p; 97 } 98 99 static void r_stop(struct seq_file *m, void *v) 100 __releases(resource_lock) 101 { 102 read_unlock(&resource_lock); 103 } 104 105 static int r_show(struct seq_file *m, void *v) 106 { 107 struct resource *root = PDE_DATA(file_inode(m->file)); 108 struct resource *r = v, *p; 109 unsigned long long start, end; 110 int width = root->end < 0x10000 ? 4 : 8; 111 int depth; 112 113 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 114 if (p->parent == root) 115 break; 116 117 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 118 start = r->start; 119 end = r->end; 120 } else { 121 start = end = 0; 122 } 123 124 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 125 depth * 2, "", 126 width, start, 127 width, end, 128 r->name ? r->name : "<BAD>"); 129 return 0; 130 } 131 132 static const struct seq_operations resource_op = { 133 .start = r_start, 134 .next = r_next, 135 .stop = r_stop, 136 .show = r_show, 137 }; 138 139 static int __init ioresources_init(void) 140 { 141 proc_create_seq_data("ioports", 0, NULL, &resource_op, 142 &ioport_resource); 143 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 144 return 0; 145 } 146 __initcall(ioresources_init); 147 148 #endif /* CONFIG_PROC_FS */ 149 150 static void free_resource(struct resource *res) 151 { 152 if (!res) 153 return; 154 155 if (!PageSlab(virt_to_head_page(res))) { 156 spin_lock(&bootmem_resource_lock); 157 res->sibling = bootmem_resource_free; 158 bootmem_resource_free = res; 159 spin_unlock(&bootmem_resource_lock); 160 } else { 161 kfree(res); 162 } 163 } 164 165 static struct resource *alloc_resource(gfp_t flags) 166 { 167 struct resource *res = NULL; 168 169 spin_lock(&bootmem_resource_lock); 170 if (bootmem_resource_free) { 171 res = bootmem_resource_free; 172 bootmem_resource_free = res->sibling; 173 } 174 spin_unlock(&bootmem_resource_lock); 175 176 if (res) 177 memset(res, 0, sizeof(struct resource)); 178 else 179 res = kzalloc(sizeof(struct resource), flags); 180 181 return res; 182 } 183 184 /* Return the conflict entry if you can't request it */ 185 static struct resource * __request_resource(struct resource *root, struct resource *new) 186 { 187 resource_size_t start = new->start; 188 resource_size_t end = new->end; 189 struct resource *tmp, **p; 190 191 if (end < start) 192 return root; 193 if (start < root->start) 194 return root; 195 if (end > root->end) 196 return root; 197 p = &root->child; 198 for (;;) { 199 tmp = *p; 200 if (!tmp || tmp->start > end) { 201 new->sibling = tmp; 202 *p = new; 203 new->parent = root; 204 return NULL; 205 } 206 p = &tmp->sibling; 207 if (tmp->end < start) 208 continue; 209 return tmp; 210 } 211 } 212 213 static int __release_resource(struct resource *old, bool release_child) 214 { 215 struct resource *tmp, **p, *chd; 216 217 p = &old->parent->child; 218 for (;;) { 219 tmp = *p; 220 if (!tmp) 221 break; 222 if (tmp == old) { 223 if (release_child || !(tmp->child)) { 224 *p = tmp->sibling; 225 } else { 226 for (chd = tmp->child;; chd = chd->sibling) { 227 chd->parent = tmp->parent; 228 if (!(chd->sibling)) 229 break; 230 } 231 *p = tmp->child; 232 chd->sibling = tmp->sibling; 233 } 234 old->parent = NULL; 235 return 0; 236 } 237 p = &tmp->sibling; 238 } 239 return -EINVAL; 240 } 241 242 static void __release_child_resources(struct resource *r) 243 { 244 struct resource *tmp, *p; 245 resource_size_t size; 246 247 p = r->child; 248 r->child = NULL; 249 while (p) { 250 tmp = p; 251 p = p->sibling; 252 253 tmp->parent = NULL; 254 tmp->sibling = NULL; 255 __release_child_resources(tmp); 256 257 printk(KERN_DEBUG "release child resource %pR\n", tmp); 258 /* need to restore size, and keep flags */ 259 size = resource_size(tmp); 260 tmp->start = 0; 261 tmp->end = size - 1; 262 } 263 } 264 265 void release_child_resources(struct resource *r) 266 { 267 write_lock(&resource_lock); 268 __release_child_resources(r); 269 write_unlock(&resource_lock); 270 } 271 272 /** 273 * request_resource_conflict - request and reserve an I/O or memory resource 274 * @root: root resource descriptor 275 * @new: resource descriptor desired by caller 276 * 277 * Returns 0 for success, conflict resource on error. 278 */ 279 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 280 { 281 struct resource *conflict; 282 283 write_lock(&resource_lock); 284 conflict = __request_resource(root, new); 285 write_unlock(&resource_lock); 286 return conflict; 287 } 288 289 /** 290 * request_resource - request and reserve an I/O or memory resource 291 * @root: root resource descriptor 292 * @new: resource descriptor desired by caller 293 * 294 * Returns 0 for success, negative error code on error. 295 */ 296 int request_resource(struct resource *root, struct resource *new) 297 { 298 struct resource *conflict; 299 300 conflict = request_resource_conflict(root, new); 301 return conflict ? -EBUSY : 0; 302 } 303 304 EXPORT_SYMBOL(request_resource); 305 306 /** 307 * release_resource - release a previously reserved resource 308 * @old: resource pointer 309 */ 310 int release_resource(struct resource *old) 311 { 312 int retval; 313 314 write_lock(&resource_lock); 315 retval = __release_resource(old, true); 316 write_unlock(&resource_lock); 317 return retval; 318 } 319 320 EXPORT_SYMBOL(release_resource); 321 322 /** 323 * Finds the lowest iomem resource that covers part of [@start..@end]. The 324 * caller must specify @start, @end, @flags, and @desc (which may be 325 * IORES_DESC_NONE). 326 * 327 * If a resource is found, returns 0 and @*res is overwritten with the part 328 * of the resource that's within [@start..@end]; if none is found, returns 329 * -ENODEV. Returns -EINVAL for invalid parameters. 330 * 331 * This function walks the whole tree and not just first level children 332 * unless @first_lvl is true. 333 * 334 * @start: start address of the resource searched for 335 * @end: end address of same resource 336 * @flags: flags which the resource must have 337 * @desc: descriptor the resource must have 338 * @first_lvl: walk only the first level children, if set 339 * @res: return ptr, if resource found 340 */ 341 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 342 unsigned long flags, unsigned long desc, 343 bool first_lvl, struct resource *res) 344 { 345 bool siblings_only = true; 346 struct resource *p; 347 348 if (!res) 349 return -EINVAL; 350 351 if (start >= end) 352 return -EINVAL; 353 354 read_lock(&resource_lock); 355 356 for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) { 357 /* If we passed the resource we are looking for, stop */ 358 if (p->start > end) { 359 p = NULL; 360 break; 361 } 362 363 /* Skip until we find a range that matches what we look for */ 364 if (p->end < start) 365 continue; 366 367 /* 368 * Now that we found a range that matches what we look for, 369 * check the flags and the descriptor. If we were not asked to 370 * use only the first level, start looking at children as well. 371 */ 372 siblings_only = first_lvl; 373 374 if ((p->flags & flags) != flags) 375 continue; 376 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 377 continue; 378 379 /* Found a match, break */ 380 break; 381 } 382 383 if (p) { 384 /* copy data */ 385 *res = (struct resource) { 386 .start = max(start, p->start), 387 .end = min(end, p->end), 388 .flags = p->flags, 389 .desc = p->desc, 390 .parent = p->parent, 391 }; 392 } 393 394 read_unlock(&resource_lock); 395 return p ? 0 : -ENODEV; 396 } 397 398 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 399 unsigned long flags, unsigned long desc, 400 bool first_lvl, void *arg, 401 int (*func)(struct resource *, void *)) 402 { 403 struct resource res; 404 int ret = -EINVAL; 405 406 while (start < end && 407 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) { 408 ret = (*func)(&res, arg); 409 if (ret) 410 break; 411 412 start = res.end + 1; 413 } 414 415 return ret; 416 } 417 418 /** 419 * Walks through iomem resources and calls func() with matching resource 420 * ranges. This walks through whole tree and not just first level children. 421 * All the memory ranges which overlap start,end and also match flags and 422 * desc are valid candidates. 423 * 424 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 425 * @flags: I/O resource flags 426 * @start: start addr 427 * @end: end addr 428 * @arg: function argument for the callback @func 429 * @func: callback function that is called for each qualifying resource area 430 * 431 * NOTE: For a new descriptor search, define a new IORES_DESC in 432 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 433 */ 434 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 435 u64 end, void *arg, int (*func)(struct resource *, void *)) 436 { 437 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func); 438 } 439 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 440 441 /* 442 * This function calls the @func callback against all memory ranges of type 443 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 444 * Now, this function is only for System RAM, it deals with full ranges and 445 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 446 * ranges. 447 */ 448 int walk_system_ram_res(u64 start, u64 end, void *arg, 449 int (*func)(struct resource *, void *)) 450 { 451 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 452 453 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 454 arg, func); 455 } 456 457 /* 458 * This function calls the @func callback against all memory ranges, which 459 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 460 */ 461 int walk_mem_res(u64 start, u64 end, void *arg, 462 int (*func)(struct resource *, void *)) 463 { 464 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 465 466 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 467 arg, func); 468 } 469 470 /* 471 * This function calls the @func callback against all memory ranges of type 472 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 473 * It is to be used only for System RAM. 474 * 475 * This will find System RAM ranges that are children of top-level resources 476 * in addition to top-level System RAM resources. 477 */ 478 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 479 void *arg, int (*func)(unsigned long, unsigned long, void *)) 480 { 481 resource_size_t start, end; 482 unsigned long flags; 483 struct resource res; 484 unsigned long pfn, end_pfn; 485 int ret = -EINVAL; 486 487 start = (u64) start_pfn << PAGE_SHIFT; 488 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 489 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 490 while (start < end && 491 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, 492 false, &res)) { 493 pfn = PFN_UP(res.start); 494 end_pfn = PFN_DOWN(res.end + 1); 495 if (end_pfn > pfn) 496 ret = (*func)(pfn, end_pfn - pfn, arg); 497 if (ret) 498 break; 499 start = res.end + 1; 500 } 501 return ret; 502 } 503 504 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 505 { 506 return 1; 507 } 508 509 /* 510 * This generic page_is_ram() returns true if specified address is 511 * registered as System RAM in iomem_resource list. 512 */ 513 int __weak page_is_ram(unsigned long pfn) 514 { 515 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 516 } 517 EXPORT_SYMBOL_GPL(page_is_ram); 518 519 /** 520 * region_intersects() - determine intersection of region with known resources 521 * @start: region start address 522 * @size: size of region 523 * @flags: flags of resource (in iomem_resource) 524 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 525 * 526 * Check if the specified region partially overlaps or fully eclipses a 527 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 528 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 529 * return REGION_MIXED if the region overlaps @flags/@desc and another 530 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 531 * and no other defined resource. Note that REGION_INTERSECTS is also 532 * returned in the case when the specified region overlaps RAM and undefined 533 * memory holes. 534 * 535 * region_intersect() is used by memory remapping functions to ensure 536 * the user is not remapping RAM and is a vast speed up over walking 537 * through the resource table page by page. 538 */ 539 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 540 unsigned long desc) 541 { 542 struct resource res; 543 int type = 0; int other = 0; 544 struct resource *p; 545 546 res.start = start; 547 res.end = start + size - 1; 548 549 read_lock(&resource_lock); 550 for (p = iomem_resource.child; p ; p = p->sibling) { 551 bool is_type = (((p->flags & flags) == flags) && 552 ((desc == IORES_DESC_NONE) || 553 (desc == p->desc))); 554 555 if (resource_overlaps(p, &res)) 556 is_type ? type++ : other++; 557 } 558 read_unlock(&resource_lock); 559 560 if (other == 0) 561 return type ? REGION_INTERSECTS : REGION_DISJOINT; 562 563 if (type) 564 return REGION_MIXED; 565 566 return REGION_DISJOINT; 567 } 568 EXPORT_SYMBOL_GPL(region_intersects); 569 570 void __weak arch_remove_reservations(struct resource *avail) 571 { 572 } 573 574 static resource_size_t simple_align_resource(void *data, 575 const struct resource *avail, 576 resource_size_t size, 577 resource_size_t align) 578 { 579 return avail->start; 580 } 581 582 static void resource_clip(struct resource *res, resource_size_t min, 583 resource_size_t max) 584 { 585 if (res->start < min) 586 res->start = min; 587 if (res->end > max) 588 res->end = max; 589 } 590 591 /* 592 * Find empty slot in the resource tree with the given range and 593 * alignment constraints 594 */ 595 static int __find_resource(struct resource *root, struct resource *old, 596 struct resource *new, 597 resource_size_t size, 598 struct resource_constraint *constraint) 599 { 600 struct resource *this = root->child; 601 struct resource tmp = *new, avail, alloc; 602 603 tmp.start = root->start; 604 /* 605 * Skip past an allocated resource that starts at 0, since the assignment 606 * of this->start - 1 to tmp->end below would cause an underflow. 607 */ 608 if (this && this->start == root->start) { 609 tmp.start = (this == old) ? old->start : this->end + 1; 610 this = this->sibling; 611 } 612 for(;;) { 613 if (this) 614 tmp.end = (this == old) ? this->end : this->start - 1; 615 else 616 tmp.end = root->end; 617 618 if (tmp.end < tmp.start) 619 goto next; 620 621 resource_clip(&tmp, constraint->min, constraint->max); 622 arch_remove_reservations(&tmp); 623 624 /* Check for overflow after ALIGN() */ 625 avail.start = ALIGN(tmp.start, constraint->align); 626 avail.end = tmp.end; 627 avail.flags = new->flags & ~IORESOURCE_UNSET; 628 if (avail.start >= tmp.start) { 629 alloc.flags = avail.flags; 630 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 631 size, constraint->align); 632 alloc.end = alloc.start + size - 1; 633 if (alloc.start <= alloc.end && 634 resource_contains(&avail, &alloc)) { 635 new->start = alloc.start; 636 new->end = alloc.end; 637 return 0; 638 } 639 } 640 641 next: if (!this || this->end == root->end) 642 break; 643 644 if (this != old) 645 tmp.start = this->end + 1; 646 this = this->sibling; 647 } 648 return -EBUSY; 649 } 650 651 /* 652 * Find empty slot in the resource tree given range and alignment. 653 */ 654 static int find_resource(struct resource *root, struct resource *new, 655 resource_size_t size, 656 struct resource_constraint *constraint) 657 { 658 return __find_resource(root, NULL, new, size, constraint); 659 } 660 661 /** 662 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 663 * The resource will be relocated if the new size cannot be reallocated in the 664 * current location. 665 * 666 * @root: root resource descriptor 667 * @old: resource descriptor desired by caller 668 * @newsize: new size of the resource descriptor 669 * @constraint: the size and alignment constraints to be met. 670 */ 671 static int reallocate_resource(struct resource *root, struct resource *old, 672 resource_size_t newsize, 673 struct resource_constraint *constraint) 674 { 675 int err=0; 676 struct resource new = *old; 677 struct resource *conflict; 678 679 write_lock(&resource_lock); 680 681 if ((err = __find_resource(root, old, &new, newsize, constraint))) 682 goto out; 683 684 if (resource_contains(&new, old)) { 685 old->start = new.start; 686 old->end = new.end; 687 goto out; 688 } 689 690 if (old->child) { 691 err = -EBUSY; 692 goto out; 693 } 694 695 if (resource_contains(old, &new)) { 696 old->start = new.start; 697 old->end = new.end; 698 } else { 699 __release_resource(old, true); 700 *old = new; 701 conflict = __request_resource(root, old); 702 BUG_ON(conflict); 703 } 704 out: 705 write_unlock(&resource_lock); 706 return err; 707 } 708 709 710 /** 711 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 712 * The resource will be reallocated with a new size if it was already allocated 713 * @root: root resource descriptor 714 * @new: resource descriptor desired by caller 715 * @size: requested resource region size 716 * @min: minimum boundary to allocate 717 * @max: maximum boundary to allocate 718 * @align: alignment requested, in bytes 719 * @alignf: alignment function, optional, called if not NULL 720 * @alignf_data: arbitrary data to pass to the @alignf function 721 */ 722 int allocate_resource(struct resource *root, struct resource *new, 723 resource_size_t size, resource_size_t min, 724 resource_size_t max, resource_size_t align, 725 resource_size_t (*alignf)(void *, 726 const struct resource *, 727 resource_size_t, 728 resource_size_t), 729 void *alignf_data) 730 { 731 int err; 732 struct resource_constraint constraint; 733 734 if (!alignf) 735 alignf = simple_align_resource; 736 737 constraint.min = min; 738 constraint.max = max; 739 constraint.align = align; 740 constraint.alignf = alignf; 741 constraint.alignf_data = alignf_data; 742 743 if ( new->parent ) { 744 /* resource is already allocated, try reallocating with 745 the new constraints */ 746 return reallocate_resource(root, new, size, &constraint); 747 } 748 749 write_lock(&resource_lock); 750 err = find_resource(root, new, size, &constraint); 751 if (err >= 0 && __request_resource(root, new)) 752 err = -EBUSY; 753 write_unlock(&resource_lock); 754 return err; 755 } 756 757 EXPORT_SYMBOL(allocate_resource); 758 759 /** 760 * lookup_resource - find an existing resource by a resource start address 761 * @root: root resource descriptor 762 * @start: resource start address 763 * 764 * Returns a pointer to the resource if found, NULL otherwise 765 */ 766 struct resource *lookup_resource(struct resource *root, resource_size_t start) 767 { 768 struct resource *res; 769 770 read_lock(&resource_lock); 771 for (res = root->child; res; res = res->sibling) { 772 if (res->start == start) 773 break; 774 } 775 read_unlock(&resource_lock); 776 777 return res; 778 } 779 780 /* 781 * Insert a resource into the resource tree. If successful, return NULL, 782 * otherwise return the conflicting resource (compare to __request_resource()) 783 */ 784 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 785 { 786 struct resource *first, *next; 787 788 for (;; parent = first) { 789 first = __request_resource(parent, new); 790 if (!first) 791 return first; 792 793 if (first == parent) 794 return first; 795 if (WARN_ON(first == new)) /* duplicated insertion */ 796 return first; 797 798 if ((first->start > new->start) || (first->end < new->end)) 799 break; 800 if ((first->start == new->start) && (first->end == new->end)) 801 break; 802 } 803 804 for (next = first; ; next = next->sibling) { 805 /* Partial overlap? Bad, and unfixable */ 806 if (next->start < new->start || next->end > new->end) 807 return next; 808 if (!next->sibling) 809 break; 810 if (next->sibling->start > new->end) 811 break; 812 } 813 814 new->parent = parent; 815 new->sibling = next->sibling; 816 new->child = first; 817 818 next->sibling = NULL; 819 for (next = first; next; next = next->sibling) 820 next->parent = new; 821 822 if (parent->child == first) { 823 parent->child = new; 824 } else { 825 next = parent->child; 826 while (next->sibling != first) 827 next = next->sibling; 828 next->sibling = new; 829 } 830 return NULL; 831 } 832 833 /** 834 * insert_resource_conflict - Inserts resource in the resource tree 835 * @parent: parent of the new resource 836 * @new: new resource to insert 837 * 838 * Returns 0 on success, conflict resource if the resource can't be inserted. 839 * 840 * This function is equivalent to request_resource_conflict when no conflict 841 * happens. If a conflict happens, and the conflicting resources 842 * entirely fit within the range of the new resource, then the new 843 * resource is inserted and the conflicting resources become children of 844 * the new resource. 845 * 846 * This function is intended for producers of resources, such as FW modules 847 * and bus drivers. 848 */ 849 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 850 { 851 struct resource *conflict; 852 853 write_lock(&resource_lock); 854 conflict = __insert_resource(parent, new); 855 write_unlock(&resource_lock); 856 return conflict; 857 } 858 859 /** 860 * insert_resource - Inserts a resource in the resource tree 861 * @parent: parent of the new resource 862 * @new: new resource to insert 863 * 864 * Returns 0 on success, -EBUSY if the resource can't be inserted. 865 * 866 * This function is intended for producers of resources, such as FW modules 867 * and bus drivers. 868 */ 869 int insert_resource(struct resource *parent, struct resource *new) 870 { 871 struct resource *conflict; 872 873 conflict = insert_resource_conflict(parent, new); 874 return conflict ? -EBUSY : 0; 875 } 876 EXPORT_SYMBOL_GPL(insert_resource); 877 878 /** 879 * insert_resource_expand_to_fit - Insert a resource into the resource tree 880 * @root: root resource descriptor 881 * @new: new resource to insert 882 * 883 * Insert a resource into the resource tree, possibly expanding it in order 884 * to make it encompass any conflicting resources. 885 */ 886 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 887 { 888 if (new->parent) 889 return; 890 891 write_lock(&resource_lock); 892 for (;;) { 893 struct resource *conflict; 894 895 conflict = __insert_resource(root, new); 896 if (!conflict) 897 break; 898 if (conflict == root) 899 break; 900 901 /* Ok, expand resource to cover the conflict, then try again .. */ 902 if (conflict->start < new->start) 903 new->start = conflict->start; 904 if (conflict->end > new->end) 905 new->end = conflict->end; 906 907 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 908 } 909 write_unlock(&resource_lock); 910 } 911 912 /** 913 * remove_resource - Remove a resource in the resource tree 914 * @old: resource to remove 915 * 916 * Returns 0 on success, -EINVAL if the resource is not valid. 917 * 918 * This function removes a resource previously inserted by insert_resource() 919 * or insert_resource_conflict(), and moves the children (if any) up to 920 * where they were before. insert_resource() and insert_resource_conflict() 921 * insert a new resource, and move any conflicting resources down to the 922 * children of the new resource. 923 * 924 * insert_resource(), insert_resource_conflict() and remove_resource() are 925 * intended for producers of resources, such as FW modules and bus drivers. 926 */ 927 int remove_resource(struct resource *old) 928 { 929 int retval; 930 931 write_lock(&resource_lock); 932 retval = __release_resource(old, false); 933 write_unlock(&resource_lock); 934 return retval; 935 } 936 EXPORT_SYMBOL_GPL(remove_resource); 937 938 static int __adjust_resource(struct resource *res, resource_size_t start, 939 resource_size_t size) 940 { 941 struct resource *tmp, *parent = res->parent; 942 resource_size_t end = start + size - 1; 943 int result = -EBUSY; 944 945 if (!parent) 946 goto skip; 947 948 if ((start < parent->start) || (end > parent->end)) 949 goto out; 950 951 if (res->sibling && (res->sibling->start <= end)) 952 goto out; 953 954 tmp = parent->child; 955 if (tmp != res) { 956 while (tmp->sibling != res) 957 tmp = tmp->sibling; 958 if (start <= tmp->end) 959 goto out; 960 } 961 962 skip: 963 for (tmp = res->child; tmp; tmp = tmp->sibling) 964 if ((tmp->start < start) || (tmp->end > end)) 965 goto out; 966 967 res->start = start; 968 res->end = end; 969 result = 0; 970 971 out: 972 return result; 973 } 974 975 /** 976 * adjust_resource - modify a resource's start and size 977 * @res: resource to modify 978 * @start: new start value 979 * @size: new size 980 * 981 * Given an existing resource, change its start and size to match the 982 * arguments. Returns 0 on success, -EBUSY if it can't fit. 983 * Existing children of the resource are assumed to be immutable. 984 */ 985 int adjust_resource(struct resource *res, resource_size_t start, 986 resource_size_t size) 987 { 988 int result; 989 990 write_lock(&resource_lock); 991 result = __adjust_resource(res, start, size); 992 write_unlock(&resource_lock); 993 return result; 994 } 995 EXPORT_SYMBOL(adjust_resource); 996 997 static void __init 998 __reserve_region_with_split(struct resource *root, resource_size_t start, 999 resource_size_t end, const char *name) 1000 { 1001 struct resource *parent = root; 1002 struct resource *conflict; 1003 struct resource *res = alloc_resource(GFP_ATOMIC); 1004 struct resource *next_res = NULL; 1005 int type = resource_type(root); 1006 1007 if (!res) 1008 return; 1009 1010 res->name = name; 1011 res->start = start; 1012 res->end = end; 1013 res->flags = type | IORESOURCE_BUSY; 1014 res->desc = IORES_DESC_NONE; 1015 1016 while (1) { 1017 1018 conflict = __request_resource(parent, res); 1019 if (!conflict) { 1020 if (!next_res) 1021 break; 1022 res = next_res; 1023 next_res = NULL; 1024 continue; 1025 } 1026 1027 /* conflict covered whole area */ 1028 if (conflict->start <= res->start && 1029 conflict->end >= res->end) { 1030 free_resource(res); 1031 WARN_ON(next_res); 1032 break; 1033 } 1034 1035 /* failed, split and try again */ 1036 if (conflict->start > res->start) { 1037 end = res->end; 1038 res->end = conflict->start - 1; 1039 if (conflict->end < end) { 1040 next_res = alloc_resource(GFP_ATOMIC); 1041 if (!next_res) { 1042 free_resource(res); 1043 break; 1044 } 1045 next_res->name = name; 1046 next_res->start = conflict->end + 1; 1047 next_res->end = end; 1048 next_res->flags = type | IORESOURCE_BUSY; 1049 next_res->desc = IORES_DESC_NONE; 1050 } 1051 } else { 1052 res->start = conflict->end + 1; 1053 } 1054 } 1055 1056 } 1057 1058 void __init 1059 reserve_region_with_split(struct resource *root, resource_size_t start, 1060 resource_size_t end, const char *name) 1061 { 1062 int abort = 0; 1063 1064 write_lock(&resource_lock); 1065 if (root->start > start || root->end < end) { 1066 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1067 (unsigned long long)start, (unsigned long long)end, 1068 root); 1069 if (start > root->end || end < root->start) 1070 abort = 1; 1071 else { 1072 if (end > root->end) 1073 end = root->end; 1074 if (start < root->start) 1075 start = root->start; 1076 pr_err("fixing request to [0x%llx-0x%llx]\n", 1077 (unsigned long long)start, 1078 (unsigned long long)end); 1079 } 1080 dump_stack(); 1081 } 1082 if (!abort) 1083 __reserve_region_with_split(root, start, end, name); 1084 write_unlock(&resource_lock); 1085 } 1086 1087 /** 1088 * resource_alignment - calculate resource's alignment 1089 * @res: resource pointer 1090 * 1091 * Returns alignment on success, 0 (invalid alignment) on failure. 1092 */ 1093 resource_size_t resource_alignment(struct resource *res) 1094 { 1095 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1096 case IORESOURCE_SIZEALIGN: 1097 return resource_size(res); 1098 case IORESOURCE_STARTALIGN: 1099 return res->start; 1100 default: 1101 return 0; 1102 } 1103 } 1104 1105 /* 1106 * This is compatibility stuff for IO resources. 1107 * 1108 * Note how this, unlike the above, knows about 1109 * the IO flag meanings (busy etc). 1110 * 1111 * request_region creates a new busy region. 1112 * 1113 * release_region releases a matching busy region. 1114 */ 1115 1116 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1117 1118 /** 1119 * __request_region - create a new busy resource region 1120 * @parent: parent resource descriptor 1121 * @start: resource start address 1122 * @n: resource region size 1123 * @name: reserving caller's ID string 1124 * @flags: IO resource flags 1125 */ 1126 struct resource * __request_region(struct resource *parent, 1127 resource_size_t start, resource_size_t n, 1128 const char *name, int flags) 1129 { 1130 DECLARE_WAITQUEUE(wait, current); 1131 struct resource *res = alloc_resource(GFP_KERNEL); 1132 struct resource *orig_parent = parent; 1133 1134 if (!res) 1135 return NULL; 1136 1137 res->name = name; 1138 res->start = start; 1139 res->end = start + n - 1; 1140 1141 write_lock(&resource_lock); 1142 1143 for (;;) { 1144 struct resource *conflict; 1145 1146 res->flags = resource_type(parent) | resource_ext_type(parent); 1147 res->flags |= IORESOURCE_BUSY | flags; 1148 res->desc = parent->desc; 1149 1150 conflict = __request_resource(parent, res); 1151 if (!conflict) 1152 break; 1153 /* 1154 * mm/hmm.c reserves physical addresses which then 1155 * become unavailable to other users. Conflicts are 1156 * not expected. Warn to aid debugging if encountered. 1157 */ 1158 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1159 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1160 conflict->name, conflict, res); 1161 } 1162 if (conflict != parent) { 1163 if (!(conflict->flags & IORESOURCE_BUSY)) { 1164 parent = conflict; 1165 continue; 1166 } 1167 } 1168 if (conflict->flags & flags & IORESOURCE_MUXED) { 1169 add_wait_queue(&muxed_resource_wait, &wait); 1170 write_unlock(&resource_lock); 1171 set_current_state(TASK_UNINTERRUPTIBLE); 1172 schedule(); 1173 remove_wait_queue(&muxed_resource_wait, &wait); 1174 write_lock(&resource_lock); 1175 continue; 1176 } 1177 /* Uhhuh, that didn't work out.. */ 1178 free_resource(res); 1179 res = NULL; 1180 break; 1181 } 1182 write_unlock(&resource_lock); 1183 1184 if (res && orig_parent == &iomem_resource) 1185 revoke_devmem(res); 1186 1187 return res; 1188 } 1189 EXPORT_SYMBOL(__request_region); 1190 1191 /** 1192 * __release_region - release a previously reserved resource region 1193 * @parent: parent resource descriptor 1194 * @start: resource start address 1195 * @n: resource region size 1196 * 1197 * The described resource region must match a currently busy region. 1198 */ 1199 void __release_region(struct resource *parent, resource_size_t start, 1200 resource_size_t n) 1201 { 1202 struct resource **p; 1203 resource_size_t end; 1204 1205 p = &parent->child; 1206 end = start + n - 1; 1207 1208 write_lock(&resource_lock); 1209 1210 for (;;) { 1211 struct resource *res = *p; 1212 1213 if (!res) 1214 break; 1215 if (res->start <= start && res->end >= end) { 1216 if (!(res->flags & IORESOURCE_BUSY)) { 1217 p = &res->child; 1218 continue; 1219 } 1220 if (res->start != start || res->end != end) 1221 break; 1222 *p = res->sibling; 1223 write_unlock(&resource_lock); 1224 if (res->flags & IORESOURCE_MUXED) 1225 wake_up(&muxed_resource_wait); 1226 free_resource(res); 1227 return; 1228 } 1229 p = &res->sibling; 1230 } 1231 1232 write_unlock(&resource_lock); 1233 1234 printk(KERN_WARNING "Trying to free nonexistent resource " 1235 "<%016llx-%016llx>\n", (unsigned long long)start, 1236 (unsigned long long)end); 1237 } 1238 EXPORT_SYMBOL(__release_region); 1239 1240 #ifdef CONFIG_MEMORY_HOTREMOVE 1241 /** 1242 * release_mem_region_adjustable - release a previously reserved memory region 1243 * @parent: parent resource descriptor 1244 * @start: resource start address 1245 * @size: resource region size 1246 * 1247 * This interface is intended for memory hot-delete. The requested region 1248 * is released from a currently busy memory resource. The requested region 1249 * must either match exactly or fit into a single busy resource entry. In 1250 * the latter case, the remaining resource is adjusted accordingly. 1251 * Existing children of the busy memory resource must be immutable in the 1252 * request. 1253 * 1254 * Note: 1255 * - Additional release conditions, such as overlapping region, can be 1256 * supported after they are confirmed as valid cases. 1257 * - When a busy memory resource gets split into two entries, the code 1258 * assumes that all children remain in the lower address entry for 1259 * simplicity. Enhance this logic when necessary. 1260 */ 1261 void release_mem_region_adjustable(struct resource *parent, 1262 resource_size_t start, resource_size_t size) 1263 { 1264 struct resource *new_res = NULL; 1265 bool alloc_nofail = false; 1266 struct resource **p; 1267 struct resource *res; 1268 resource_size_t end; 1269 1270 end = start + size - 1; 1271 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1272 return; 1273 1274 /* 1275 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1276 * just before releasing the region. This is highly unlikely to 1277 * fail - let's play save and make it never fail as the caller cannot 1278 * perform any error handling (e.g., trying to re-add memory will fail 1279 * similarly). 1280 */ 1281 retry: 1282 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1283 1284 p = &parent->child; 1285 write_lock(&resource_lock); 1286 1287 while ((res = *p)) { 1288 if (res->start >= end) 1289 break; 1290 1291 /* look for the next resource if it does not fit into */ 1292 if (res->start > start || res->end < end) { 1293 p = &res->sibling; 1294 continue; 1295 } 1296 1297 /* 1298 * All memory regions added from memory-hotplug path have the 1299 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have 1300 * this flag, we know that we are dealing with a resource coming 1301 * from HMM/devm. HMM/devm use another mechanism to add/release 1302 * a resource. This goes via devm_request_mem_region and 1303 * devm_release_mem_region. 1304 * HMM/devm take care to release their resources when they want, 1305 * so if we are dealing with them, let us just back off here. 1306 */ 1307 if (!(res->flags & IORESOURCE_SYSRAM)) { 1308 break; 1309 } 1310 1311 if (!(res->flags & IORESOURCE_MEM)) 1312 break; 1313 1314 if (!(res->flags & IORESOURCE_BUSY)) { 1315 p = &res->child; 1316 continue; 1317 } 1318 1319 /* found the target resource; let's adjust accordingly */ 1320 if (res->start == start && res->end == end) { 1321 /* free the whole entry */ 1322 *p = res->sibling; 1323 free_resource(res); 1324 } else if (res->start == start && res->end != end) { 1325 /* adjust the start */ 1326 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1327 res->end - end)); 1328 } else if (res->start != start && res->end == end) { 1329 /* adjust the end */ 1330 WARN_ON_ONCE(__adjust_resource(res, res->start, 1331 start - res->start)); 1332 } else { 1333 /* split into two entries - we need a new resource */ 1334 if (!new_res) { 1335 new_res = alloc_resource(GFP_ATOMIC); 1336 if (!new_res) { 1337 alloc_nofail = true; 1338 write_unlock(&resource_lock); 1339 goto retry; 1340 } 1341 } 1342 new_res->name = res->name; 1343 new_res->start = end + 1; 1344 new_res->end = res->end; 1345 new_res->flags = res->flags; 1346 new_res->desc = res->desc; 1347 new_res->parent = res->parent; 1348 new_res->sibling = res->sibling; 1349 new_res->child = NULL; 1350 1351 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1352 start - res->start))) 1353 break; 1354 res->sibling = new_res; 1355 new_res = NULL; 1356 } 1357 1358 break; 1359 } 1360 1361 write_unlock(&resource_lock); 1362 free_resource(new_res); 1363 } 1364 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1365 1366 #ifdef CONFIG_MEMORY_HOTPLUG 1367 static bool system_ram_resources_mergeable(struct resource *r1, 1368 struct resource *r2) 1369 { 1370 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1371 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1372 r1->name == r2->name && r1->desc == r2->desc && 1373 !r1->child && !r2->child; 1374 } 1375 1376 /* 1377 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1378 * merge it with adjacent, mergeable resources 1379 * @res: resource descriptor 1380 * 1381 * This interface is intended for memory hotplug, whereby lots of contiguous 1382 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1383 * the actual resource boundaries are not of interest (e.g., it might be 1384 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1385 * same parent, and that don't have any children are considered. All mergeable 1386 * resources must be immutable during the request. 1387 * 1388 * Note: 1389 * - The caller has to make sure that no pointers to resources that are 1390 * marked mergeable are used anymore after this call - the resource might 1391 * be freed and the pointer might be stale! 1392 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1393 */ 1394 void merge_system_ram_resource(struct resource *res) 1395 { 1396 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1397 struct resource *cur; 1398 1399 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1400 return; 1401 1402 write_lock(&resource_lock); 1403 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1404 1405 /* Try to merge with next item in the list. */ 1406 cur = res->sibling; 1407 if (cur && system_ram_resources_mergeable(res, cur)) { 1408 res->end = cur->end; 1409 res->sibling = cur->sibling; 1410 free_resource(cur); 1411 } 1412 1413 /* Try to merge with previous item in the list. */ 1414 cur = res->parent->child; 1415 while (cur && cur->sibling != res) 1416 cur = cur->sibling; 1417 if (cur && system_ram_resources_mergeable(cur, res)) { 1418 cur->end = res->end; 1419 cur->sibling = res->sibling; 1420 free_resource(res); 1421 } 1422 write_unlock(&resource_lock); 1423 } 1424 #endif /* CONFIG_MEMORY_HOTPLUG */ 1425 1426 /* 1427 * Managed region resource 1428 */ 1429 static void devm_resource_release(struct device *dev, void *ptr) 1430 { 1431 struct resource **r = ptr; 1432 1433 release_resource(*r); 1434 } 1435 1436 /** 1437 * devm_request_resource() - request and reserve an I/O or memory resource 1438 * @dev: device for which to request the resource 1439 * @root: root of the resource tree from which to request the resource 1440 * @new: descriptor of the resource to request 1441 * 1442 * This is a device-managed version of request_resource(). There is usually 1443 * no need to release resources requested by this function explicitly since 1444 * that will be taken care of when the device is unbound from its driver. 1445 * If for some reason the resource needs to be released explicitly, because 1446 * of ordering issues for example, drivers must call devm_release_resource() 1447 * rather than the regular release_resource(). 1448 * 1449 * When a conflict is detected between any existing resources and the newly 1450 * requested resource, an error message will be printed. 1451 * 1452 * Returns 0 on success or a negative error code on failure. 1453 */ 1454 int devm_request_resource(struct device *dev, struct resource *root, 1455 struct resource *new) 1456 { 1457 struct resource *conflict, **ptr; 1458 1459 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1460 if (!ptr) 1461 return -ENOMEM; 1462 1463 *ptr = new; 1464 1465 conflict = request_resource_conflict(root, new); 1466 if (conflict) { 1467 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1468 new, conflict->name, conflict); 1469 devres_free(ptr); 1470 return -EBUSY; 1471 } 1472 1473 devres_add(dev, ptr); 1474 return 0; 1475 } 1476 EXPORT_SYMBOL(devm_request_resource); 1477 1478 static int devm_resource_match(struct device *dev, void *res, void *data) 1479 { 1480 struct resource **ptr = res; 1481 1482 return *ptr == data; 1483 } 1484 1485 /** 1486 * devm_release_resource() - release a previously requested resource 1487 * @dev: device for which to release the resource 1488 * @new: descriptor of the resource to release 1489 * 1490 * Releases a resource previously requested using devm_request_resource(). 1491 */ 1492 void devm_release_resource(struct device *dev, struct resource *new) 1493 { 1494 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1495 new)); 1496 } 1497 EXPORT_SYMBOL(devm_release_resource); 1498 1499 struct region_devres { 1500 struct resource *parent; 1501 resource_size_t start; 1502 resource_size_t n; 1503 }; 1504 1505 static void devm_region_release(struct device *dev, void *res) 1506 { 1507 struct region_devres *this = res; 1508 1509 __release_region(this->parent, this->start, this->n); 1510 } 1511 1512 static int devm_region_match(struct device *dev, void *res, void *match_data) 1513 { 1514 struct region_devres *this = res, *match = match_data; 1515 1516 return this->parent == match->parent && 1517 this->start == match->start && this->n == match->n; 1518 } 1519 1520 struct resource * 1521 __devm_request_region(struct device *dev, struct resource *parent, 1522 resource_size_t start, resource_size_t n, const char *name) 1523 { 1524 struct region_devres *dr = NULL; 1525 struct resource *res; 1526 1527 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1528 GFP_KERNEL); 1529 if (!dr) 1530 return NULL; 1531 1532 dr->parent = parent; 1533 dr->start = start; 1534 dr->n = n; 1535 1536 res = __request_region(parent, start, n, name, 0); 1537 if (res) 1538 devres_add(dev, dr); 1539 else 1540 devres_free(dr); 1541 1542 return res; 1543 } 1544 EXPORT_SYMBOL(__devm_request_region); 1545 1546 void __devm_release_region(struct device *dev, struct resource *parent, 1547 resource_size_t start, resource_size_t n) 1548 { 1549 struct region_devres match_data = { parent, start, n }; 1550 1551 __release_region(parent, start, n); 1552 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1553 &match_data)); 1554 } 1555 EXPORT_SYMBOL(__devm_release_region); 1556 1557 /* 1558 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1559 */ 1560 #define MAXRESERVE 4 1561 static int __init reserve_setup(char *str) 1562 { 1563 static int reserved; 1564 static struct resource reserve[MAXRESERVE]; 1565 1566 for (;;) { 1567 unsigned int io_start, io_num; 1568 int x = reserved; 1569 struct resource *parent; 1570 1571 if (get_option(&str, &io_start) != 2) 1572 break; 1573 if (get_option(&str, &io_num) == 0) 1574 break; 1575 if (x < MAXRESERVE) { 1576 struct resource *res = reserve + x; 1577 1578 /* 1579 * If the region starts below 0x10000, we assume it's 1580 * I/O port space; otherwise assume it's memory. 1581 */ 1582 if (io_start < 0x10000) { 1583 res->flags = IORESOURCE_IO; 1584 parent = &ioport_resource; 1585 } else { 1586 res->flags = IORESOURCE_MEM; 1587 parent = &iomem_resource; 1588 } 1589 res->name = "reserved"; 1590 res->start = io_start; 1591 res->end = io_start + io_num - 1; 1592 res->flags |= IORESOURCE_BUSY; 1593 res->desc = IORES_DESC_NONE; 1594 res->child = NULL; 1595 if (request_resource(parent, res) == 0) 1596 reserved = x+1; 1597 } 1598 } 1599 return 1; 1600 } 1601 __setup("reserve=", reserve_setup); 1602 1603 /* 1604 * Check if the requested addr and size spans more than any slot in the 1605 * iomem resource tree. 1606 */ 1607 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1608 { 1609 struct resource *p = &iomem_resource; 1610 int err = 0; 1611 loff_t l; 1612 1613 read_lock(&resource_lock); 1614 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1615 /* 1616 * We can probably skip the resources without 1617 * IORESOURCE_IO attribute? 1618 */ 1619 if (p->start >= addr + size) 1620 continue; 1621 if (p->end < addr) 1622 continue; 1623 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1624 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1625 continue; 1626 /* 1627 * if a resource is "BUSY", it's not a hardware resource 1628 * but a driver mapping of such a resource; we don't want 1629 * to warn for those; some drivers legitimately map only 1630 * partial hardware resources. (example: vesafb) 1631 */ 1632 if (p->flags & IORESOURCE_BUSY) 1633 continue; 1634 1635 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1636 (unsigned long long)addr, 1637 (unsigned long long)(addr + size - 1), 1638 p->name, p); 1639 err = -1; 1640 break; 1641 } 1642 read_unlock(&resource_lock); 1643 1644 return err; 1645 } 1646 1647 #ifdef CONFIG_STRICT_DEVMEM 1648 static int strict_iomem_checks = 1; 1649 #else 1650 static int strict_iomem_checks; 1651 #endif 1652 1653 /* 1654 * check if an address is reserved in the iomem resource tree 1655 * returns true if reserved, false if not reserved. 1656 */ 1657 bool iomem_is_exclusive(u64 addr) 1658 { 1659 struct resource *p = &iomem_resource; 1660 bool err = false; 1661 loff_t l; 1662 int size = PAGE_SIZE; 1663 1664 if (!strict_iomem_checks) 1665 return false; 1666 1667 addr = addr & PAGE_MASK; 1668 1669 read_lock(&resource_lock); 1670 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1671 /* 1672 * We can probably skip the resources without 1673 * IORESOURCE_IO attribute? 1674 */ 1675 if (p->start >= addr + size) 1676 break; 1677 if (p->end < addr) 1678 continue; 1679 /* 1680 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1681 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1682 * resource is busy. 1683 */ 1684 if ((p->flags & IORESOURCE_BUSY) == 0) 1685 continue; 1686 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1687 || p->flags & IORESOURCE_EXCLUSIVE) { 1688 err = true; 1689 break; 1690 } 1691 } 1692 read_unlock(&resource_lock); 1693 1694 return err; 1695 } 1696 1697 struct resource_entry *resource_list_create_entry(struct resource *res, 1698 size_t extra_size) 1699 { 1700 struct resource_entry *entry; 1701 1702 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1703 if (entry) { 1704 INIT_LIST_HEAD(&entry->node); 1705 entry->res = res ? res : &entry->__res; 1706 } 1707 1708 return entry; 1709 } 1710 EXPORT_SYMBOL(resource_list_create_entry); 1711 1712 void resource_list_free(struct list_head *head) 1713 { 1714 struct resource_entry *entry, *tmp; 1715 1716 list_for_each_entry_safe(entry, tmp, head, node) 1717 resource_list_destroy_entry(entry); 1718 } 1719 EXPORT_SYMBOL(resource_list_free); 1720 1721 #ifdef CONFIG_DEVICE_PRIVATE 1722 static struct resource *__request_free_mem_region(struct device *dev, 1723 struct resource *base, unsigned long size, const char *name) 1724 { 1725 resource_size_t end, addr; 1726 struct resource *res; 1727 1728 size = ALIGN(size, 1UL << PA_SECTION_SHIFT); 1729 end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1); 1730 addr = end - size + 1UL; 1731 1732 for (; addr > size && addr >= base->start; addr -= size) { 1733 if (region_intersects(addr, size, 0, IORES_DESC_NONE) != 1734 REGION_DISJOINT) 1735 continue; 1736 1737 if (dev) 1738 res = devm_request_mem_region(dev, addr, size, name); 1739 else 1740 res = request_mem_region(addr, size, name); 1741 if (!res) 1742 return ERR_PTR(-ENOMEM); 1743 res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; 1744 return res; 1745 } 1746 1747 return ERR_PTR(-ERANGE); 1748 } 1749 1750 /** 1751 * devm_request_free_mem_region - find free region for device private memory 1752 * 1753 * @dev: device struct to bind the resource to 1754 * @size: size in bytes of the device memory to add 1755 * @base: resource tree to look in 1756 * 1757 * This function tries to find an empty range of physical address big enough to 1758 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 1759 * memory, which in turn allocates struct pages. 1760 */ 1761 struct resource *devm_request_free_mem_region(struct device *dev, 1762 struct resource *base, unsigned long size) 1763 { 1764 return __request_free_mem_region(dev, base, size, dev_name(dev)); 1765 } 1766 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 1767 1768 struct resource *request_free_mem_region(struct resource *base, 1769 unsigned long size, const char *name) 1770 { 1771 return __request_free_mem_region(NULL, base, size, name); 1772 } 1773 EXPORT_SYMBOL_GPL(request_free_mem_region); 1774 1775 #endif /* CONFIG_DEVICE_PRIVATE */ 1776 1777 static int __init strict_iomem(char *str) 1778 { 1779 if (strstr(str, "relaxed")) 1780 strict_iomem_checks = 0; 1781 if (strstr(str, "strict")) 1782 strict_iomem_checks = 1; 1783 return 1; 1784 } 1785 1786 __setup("iomem=", strict_iomem); 1787