xref: /openbmc/linux/kernel/resource.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <asm/io.h>
26 
27 
28 struct resource ioport_resource = {
29 	.name	= "PCI IO",
30 	.start	= 0,
31 	.end	= IO_SPACE_LIMIT,
32 	.flags	= IORESOURCE_IO,
33 };
34 EXPORT_SYMBOL(ioport_resource);
35 
36 struct resource iomem_resource = {
37 	.name	= "PCI mem",
38 	.start	= 0,
39 	.end	= -1,
40 	.flags	= IORESOURCE_MEM,
41 };
42 EXPORT_SYMBOL(iomem_resource);
43 
44 /* constraints to be met while allocating resources */
45 struct resource_constraint {
46 	resource_size_t min, max, align;
47 	resource_size_t (*alignf)(void *, const struct resource *,
48 			resource_size_t, resource_size_t);
49 	void *alignf_data;
50 };
51 
52 static DEFINE_RWLOCK(resource_lock);
53 
54 /*
55  * For memory hotplug, there is no way to free resource entries allocated
56  * by boot mem after the system is up. So for reusing the resource entry
57  * we need to remember the resource.
58  */
59 static struct resource *bootmem_resource_free;
60 static DEFINE_SPINLOCK(bootmem_resource_lock);
61 
62 static struct resource *next_resource(struct resource *p, bool sibling_only)
63 {
64 	/* Caller wants to traverse through siblings only */
65 	if (sibling_only)
66 		return p->sibling;
67 
68 	if (p->child)
69 		return p->child;
70 	while (!p->sibling && p->parent)
71 		p = p->parent;
72 	return p->sibling;
73 }
74 
75 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
76 {
77 	struct resource *p = v;
78 	(*pos)++;
79 	return (void *)next_resource(p, false);
80 }
81 
82 #ifdef CONFIG_PROC_FS
83 
84 enum { MAX_IORES_LEVEL = 5 };
85 
86 static void *r_start(struct seq_file *m, loff_t *pos)
87 	__acquires(resource_lock)
88 {
89 	struct resource *p = m->private;
90 	loff_t l = 0;
91 	read_lock(&resource_lock);
92 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
93 		;
94 	return p;
95 }
96 
97 static void r_stop(struct seq_file *m, void *v)
98 	__releases(resource_lock)
99 {
100 	read_unlock(&resource_lock);
101 }
102 
103 static int r_show(struct seq_file *m, void *v)
104 {
105 	struct resource *root = m->private;
106 	struct resource *r = v, *p;
107 	int width = root->end < 0x10000 ? 4 : 8;
108 	int depth;
109 
110 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
111 		if (p->parent == root)
112 			break;
113 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
114 			depth * 2, "",
115 			width, (unsigned long long) r->start,
116 			width, (unsigned long long) r->end,
117 			r->name ? r->name : "<BAD>");
118 	return 0;
119 }
120 
121 static const struct seq_operations resource_op = {
122 	.start	= r_start,
123 	.next	= r_next,
124 	.stop	= r_stop,
125 	.show	= r_show,
126 };
127 
128 static int ioports_open(struct inode *inode, struct file *file)
129 {
130 	int res = seq_open(file, &resource_op);
131 	if (!res) {
132 		struct seq_file *m = file->private_data;
133 		m->private = &ioport_resource;
134 	}
135 	return res;
136 }
137 
138 static int iomem_open(struct inode *inode, struct file *file)
139 {
140 	int res = seq_open(file, &resource_op);
141 	if (!res) {
142 		struct seq_file *m = file->private_data;
143 		m->private = &iomem_resource;
144 	}
145 	return res;
146 }
147 
148 static const struct file_operations proc_ioports_operations = {
149 	.open		= ioports_open,
150 	.read		= seq_read,
151 	.llseek		= seq_lseek,
152 	.release	= seq_release,
153 };
154 
155 static const struct file_operations proc_iomem_operations = {
156 	.open		= iomem_open,
157 	.read		= seq_read,
158 	.llseek		= seq_lseek,
159 	.release	= seq_release,
160 };
161 
162 static int __init ioresources_init(void)
163 {
164 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
165 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
166 	return 0;
167 }
168 __initcall(ioresources_init);
169 
170 #endif /* CONFIG_PROC_FS */
171 
172 static void free_resource(struct resource *res)
173 {
174 	if (!res)
175 		return;
176 
177 	if (!PageSlab(virt_to_head_page(res))) {
178 		spin_lock(&bootmem_resource_lock);
179 		res->sibling = bootmem_resource_free;
180 		bootmem_resource_free = res;
181 		spin_unlock(&bootmem_resource_lock);
182 	} else {
183 		kfree(res);
184 	}
185 }
186 
187 static struct resource *alloc_resource(gfp_t flags)
188 {
189 	struct resource *res = NULL;
190 
191 	spin_lock(&bootmem_resource_lock);
192 	if (bootmem_resource_free) {
193 		res = bootmem_resource_free;
194 		bootmem_resource_free = res->sibling;
195 	}
196 	spin_unlock(&bootmem_resource_lock);
197 
198 	if (res)
199 		memset(res, 0, sizeof(struct resource));
200 	else
201 		res = kzalloc(sizeof(struct resource), flags);
202 
203 	return res;
204 }
205 
206 /* Return the conflict entry if you can't request it */
207 static struct resource * __request_resource(struct resource *root, struct resource *new)
208 {
209 	resource_size_t start = new->start;
210 	resource_size_t end = new->end;
211 	struct resource *tmp, **p;
212 
213 	if (end < start)
214 		return root;
215 	if (start < root->start)
216 		return root;
217 	if (end > root->end)
218 		return root;
219 	p = &root->child;
220 	for (;;) {
221 		tmp = *p;
222 		if (!tmp || tmp->start > end) {
223 			new->sibling = tmp;
224 			*p = new;
225 			new->parent = root;
226 			return NULL;
227 		}
228 		p = &tmp->sibling;
229 		if (tmp->end < start)
230 			continue;
231 		return tmp;
232 	}
233 }
234 
235 static int __release_resource(struct resource *old)
236 {
237 	struct resource *tmp, **p;
238 
239 	p = &old->parent->child;
240 	for (;;) {
241 		tmp = *p;
242 		if (!tmp)
243 			break;
244 		if (tmp == old) {
245 			*p = tmp->sibling;
246 			old->parent = NULL;
247 			return 0;
248 		}
249 		p = &tmp->sibling;
250 	}
251 	return -EINVAL;
252 }
253 
254 static void __release_child_resources(struct resource *r)
255 {
256 	struct resource *tmp, *p;
257 	resource_size_t size;
258 
259 	p = r->child;
260 	r->child = NULL;
261 	while (p) {
262 		tmp = p;
263 		p = p->sibling;
264 
265 		tmp->parent = NULL;
266 		tmp->sibling = NULL;
267 		__release_child_resources(tmp);
268 
269 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
270 		/* need to restore size, and keep flags */
271 		size = resource_size(tmp);
272 		tmp->start = 0;
273 		tmp->end = size - 1;
274 	}
275 }
276 
277 void release_child_resources(struct resource *r)
278 {
279 	write_lock(&resource_lock);
280 	__release_child_resources(r);
281 	write_unlock(&resource_lock);
282 }
283 
284 /**
285  * request_resource_conflict - request and reserve an I/O or memory resource
286  * @root: root resource descriptor
287  * @new: resource descriptor desired by caller
288  *
289  * Returns 0 for success, conflict resource on error.
290  */
291 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
292 {
293 	struct resource *conflict;
294 
295 	write_lock(&resource_lock);
296 	conflict = __request_resource(root, new);
297 	write_unlock(&resource_lock);
298 	return conflict;
299 }
300 
301 /**
302  * request_resource - request and reserve an I/O or memory resource
303  * @root: root resource descriptor
304  * @new: resource descriptor desired by caller
305  *
306  * Returns 0 for success, negative error code on error.
307  */
308 int request_resource(struct resource *root, struct resource *new)
309 {
310 	struct resource *conflict;
311 
312 	conflict = request_resource_conflict(root, new);
313 	return conflict ? -EBUSY : 0;
314 }
315 
316 EXPORT_SYMBOL(request_resource);
317 
318 /**
319  * release_resource - release a previously reserved resource
320  * @old: resource pointer
321  */
322 int release_resource(struct resource *old)
323 {
324 	int retval;
325 
326 	write_lock(&resource_lock);
327 	retval = __release_resource(old);
328 	write_unlock(&resource_lock);
329 	return retval;
330 }
331 
332 EXPORT_SYMBOL(release_resource);
333 
334 /*
335  * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
336  * the caller must specify res->start, res->end, res->flags and "name".
337  * If found, returns 0, res is overwritten, if not found, returns -1.
338  * This walks through whole tree and not just first level children
339  * until and unless first_level_children_only is true.
340  */
341 static int find_next_iomem_res(struct resource *res, char *name,
342 			       bool first_level_children_only)
343 {
344 	resource_size_t start, end;
345 	struct resource *p;
346 	bool sibling_only = false;
347 
348 	BUG_ON(!res);
349 
350 	start = res->start;
351 	end = res->end;
352 	BUG_ON(start >= end);
353 
354 	if (first_level_children_only)
355 		sibling_only = true;
356 
357 	read_lock(&resource_lock);
358 
359 	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
360 		if (p->flags != res->flags)
361 			continue;
362 		if (name && strcmp(p->name, name))
363 			continue;
364 		if (p->start > end) {
365 			p = NULL;
366 			break;
367 		}
368 		if ((p->end >= start) && (p->start < end))
369 			break;
370 	}
371 
372 	read_unlock(&resource_lock);
373 	if (!p)
374 		return -1;
375 	/* copy data */
376 	if (res->start < p->start)
377 		res->start = p->start;
378 	if (res->end > p->end)
379 		res->end = p->end;
380 	return 0;
381 }
382 
383 /*
384  * Walks through iomem resources and calls func() with matching resource
385  * ranges. This walks through whole tree and not just first level children.
386  * All the memory ranges which overlap start,end and also match flags and
387  * name are valid candidates.
388  *
389  * @name: name of resource
390  * @flags: resource flags
391  * @start: start addr
392  * @end: end addr
393  */
394 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
395 		void *arg, int (*func)(u64, u64, void *))
396 {
397 	struct resource res;
398 	u64 orig_end;
399 	int ret = -1;
400 
401 	res.start = start;
402 	res.end = end;
403 	res.flags = flags;
404 	orig_end = res.end;
405 	while ((res.start < res.end) &&
406 		(!find_next_iomem_res(&res, name, false))) {
407 		ret = (*func)(res.start, res.end, arg);
408 		if (ret)
409 			break;
410 		res.start = res.end + 1;
411 		res.end = orig_end;
412 	}
413 	return ret;
414 }
415 
416 /*
417  * This function calls callback against all memory range of "System RAM"
418  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
419  * Now, this function is only for "System RAM". This function deals with
420  * full ranges and not pfn. If resources are not pfn aligned, dealing
421  * with pfn can truncate ranges.
422  */
423 int walk_system_ram_res(u64 start, u64 end, void *arg,
424 				int (*func)(u64, u64, void *))
425 {
426 	struct resource res;
427 	u64 orig_end;
428 	int ret = -1;
429 
430 	res.start = start;
431 	res.end = end;
432 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
433 	orig_end = res.end;
434 	while ((res.start < res.end) &&
435 		(!find_next_iomem_res(&res, "System RAM", true))) {
436 		ret = (*func)(res.start, res.end, arg);
437 		if (ret)
438 			break;
439 		res.start = res.end + 1;
440 		res.end = orig_end;
441 	}
442 	return ret;
443 }
444 
445 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
446 
447 /*
448  * This function calls callback against all memory range of "System RAM"
449  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
450  * Now, this function is only for "System RAM".
451  */
452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
453 		void *arg, int (*func)(unsigned long, unsigned long, void *))
454 {
455 	struct resource res;
456 	unsigned long pfn, end_pfn;
457 	u64 orig_end;
458 	int ret = -1;
459 
460 	res.start = (u64) start_pfn << PAGE_SHIFT;
461 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
462 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
463 	orig_end = res.end;
464 	while ((res.start < res.end) &&
465 		(find_next_iomem_res(&res, "System RAM", true) >= 0)) {
466 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
467 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
468 		if (end_pfn > pfn)
469 			ret = (*func)(pfn, end_pfn - pfn, arg);
470 		if (ret)
471 			break;
472 		res.start = res.end + 1;
473 		res.end = orig_end;
474 	}
475 	return ret;
476 }
477 
478 #endif
479 
480 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
481 {
482 	return 1;
483 }
484 /*
485  * This generic page_is_ram() returns true if specified address is
486  * registered as "System RAM" in iomem_resource list.
487  */
488 int __weak page_is_ram(unsigned long pfn)
489 {
490 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
491 }
492 EXPORT_SYMBOL_GPL(page_is_ram);
493 
494 /*
495  * Search for a resouce entry that fully contains the specified region.
496  * If found, return 1 if it is RAM, 0 if not.
497  * If not found, or region is not fully contained, return -1
498  *
499  * Used by the ioremap functions to ensure the user is not remapping RAM and is
500  * a vast speed up over walking through the resource table page by page.
501  */
502 int region_is_ram(resource_size_t start, unsigned long size)
503 {
504 	struct resource *p;
505 	resource_size_t end = start + size - 1;
506 	int flags = IORESOURCE_MEM | IORESOURCE_BUSY;
507 	const char *name = "System RAM";
508 	int ret = -1;
509 
510 	read_lock(&resource_lock);
511 	for (p = iomem_resource.child; p ; p = p->sibling) {
512 		if (end < p->start)
513 			continue;
514 
515 		if (p->start <= start && end <= p->end) {
516 			/* resource fully contains region */
517 			if ((p->flags != flags) || strcmp(p->name, name))
518 				ret = 0;
519 			else
520 				ret = 1;
521 			break;
522 		}
523 		if (p->end < start)
524 			break;	/* not found */
525 	}
526 	read_unlock(&resource_lock);
527 	return ret;
528 }
529 
530 void __weak arch_remove_reservations(struct resource *avail)
531 {
532 }
533 
534 static resource_size_t simple_align_resource(void *data,
535 					     const struct resource *avail,
536 					     resource_size_t size,
537 					     resource_size_t align)
538 {
539 	return avail->start;
540 }
541 
542 static void resource_clip(struct resource *res, resource_size_t min,
543 			  resource_size_t max)
544 {
545 	if (res->start < min)
546 		res->start = min;
547 	if (res->end > max)
548 		res->end = max;
549 }
550 
551 /*
552  * Find empty slot in the resource tree with the given range and
553  * alignment constraints
554  */
555 static int __find_resource(struct resource *root, struct resource *old,
556 			 struct resource *new,
557 			 resource_size_t  size,
558 			 struct resource_constraint *constraint)
559 {
560 	struct resource *this = root->child;
561 	struct resource tmp = *new, avail, alloc;
562 
563 	tmp.start = root->start;
564 	/*
565 	 * Skip past an allocated resource that starts at 0, since the assignment
566 	 * of this->start - 1 to tmp->end below would cause an underflow.
567 	 */
568 	if (this && this->start == root->start) {
569 		tmp.start = (this == old) ? old->start : this->end + 1;
570 		this = this->sibling;
571 	}
572 	for(;;) {
573 		if (this)
574 			tmp.end = (this == old) ?  this->end : this->start - 1;
575 		else
576 			tmp.end = root->end;
577 
578 		if (tmp.end < tmp.start)
579 			goto next;
580 
581 		resource_clip(&tmp, constraint->min, constraint->max);
582 		arch_remove_reservations(&tmp);
583 
584 		/* Check for overflow after ALIGN() */
585 		avail.start = ALIGN(tmp.start, constraint->align);
586 		avail.end = tmp.end;
587 		avail.flags = new->flags & ~IORESOURCE_UNSET;
588 		if (avail.start >= tmp.start) {
589 			alloc.flags = avail.flags;
590 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
591 					size, constraint->align);
592 			alloc.end = alloc.start + size - 1;
593 			if (resource_contains(&avail, &alloc)) {
594 				new->start = alloc.start;
595 				new->end = alloc.end;
596 				return 0;
597 			}
598 		}
599 
600 next:		if (!this || this->end == root->end)
601 			break;
602 
603 		if (this != old)
604 			tmp.start = this->end + 1;
605 		this = this->sibling;
606 	}
607 	return -EBUSY;
608 }
609 
610 /*
611  * Find empty slot in the resource tree given range and alignment.
612  */
613 static int find_resource(struct resource *root, struct resource *new,
614 			resource_size_t size,
615 			struct resource_constraint  *constraint)
616 {
617 	return  __find_resource(root, NULL, new, size, constraint);
618 }
619 
620 /**
621  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
622  *	The resource will be relocated if the new size cannot be reallocated in the
623  *	current location.
624  *
625  * @root: root resource descriptor
626  * @old:  resource descriptor desired by caller
627  * @newsize: new size of the resource descriptor
628  * @constraint: the size and alignment constraints to be met.
629  */
630 static int reallocate_resource(struct resource *root, struct resource *old,
631 			resource_size_t newsize,
632 			struct resource_constraint  *constraint)
633 {
634 	int err=0;
635 	struct resource new = *old;
636 	struct resource *conflict;
637 
638 	write_lock(&resource_lock);
639 
640 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
641 		goto out;
642 
643 	if (resource_contains(&new, old)) {
644 		old->start = new.start;
645 		old->end = new.end;
646 		goto out;
647 	}
648 
649 	if (old->child) {
650 		err = -EBUSY;
651 		goto out;
652 	}
653 
654 	if (resource_contains(old, &new)) {
655 		old->start = new.start;
656 		old->end = new.end;
657 	} else {
658 		__release_resource(old);
659 		*old = new;
660 		conflict = __request_resource(root, old);
661 		BUG_ON(conflict);
662 	}
663 out:
664 	write_unlock(&resource_lock);
665 	return err;
666 }
667 
668 
669 /**
670  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
671  * 	The resource will be reallocated with a new size if it was already allocated
672  * @root: root resource descriptor
673  * @new: resource descriptor desired by caller
674  * @size: requested resource region size
675  * @min: minimum boundary to allocate
676  * @max: maximum boundary to allocate
677  * @align: alignment requested, in bytes
678  * @alignf: alignment function, optional, called if not NULL
679  * @alignf_data: arbitrary data to pass to the @alignf function
680  */
681 int allocate_resource(struct resource *root, struct resource *new,
682 		      resource_size_t size, resource_size_t min,
683 		      resource_size_t max, resource_size_t align,
684 		      resource_size_t (*alignf)(void *,
685 						const struct resource *,
686 						resource_size_t,
687 						resource_size_t),
688 		      void *alignf_data)
689 {
690 	int err;
691 	struct resource_constraint constraint;
692 
693 	if (!alignf)
694 		alignf = simple_align_resource;
695 
696 	constraint.min = min;
697 	constraint.max = max;
698 	constraint.align = align;
699 	constraint.alignf = alignf;
700 	constraint.alignf_data = alignf_data;
701 
702 	if ( new->parent ) {
703 		/* resource is already allocated, try reallocating with
704 		   the new constraints */
705 		return reallocate_resource(root, new, size, &constraint);
706 	}
707 
708 	write_lock(&resource_lock);
709 	err = find_resource(root, new, size, &constraint);
710 	if (err >= 0 && __request_resource(root, new))
711 		err = -EBUSY;
712 	write_unlock(&resource_lock);
713 	return err;
714 }
715 
716 EXPORT_SYMBOL(allocate_resource);
717 
718 /**
719  * lookup_resource - find an existing resource by a resource start address
720  * @root: root resource descriptor
721  * @start: resource start address
722  *
723  * Returns a pointer to the resource if found, NULL otherwise
724  */
725 struct resource *lookup_resource(struct resource *root, resource_size_t start)
726 {
727 	struct resource *res;
728 
729 	read_lock(&resource_lock);
730 	for (res = root->child; res; res = res->sibling) {
731 		if (res->start == start)
732 			break;
733 	}
734 	read_unlock(&resource_lock);
735 
736 	return res;
737 }
738 
739 /*
740  * Insert a resource into the resource tree. If successful, return NULL,
741  * otherwise return the conflicting resource (compare to __request_resource())
742  */
743 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
744 {
745 	struct resource *first, *next;
746 
747 	for (;; parent = first) {
748 		first = __request_resource(parent, new);
749 		if (!first)
750 			return first;
751 
752 		if (first == parent)
753 			return first;
754 		if (WARN_ON(first == new))	/* duplicated insertion */
755 			return first;
756 
757 		if ((first->start > new->start) || (first->end < new->end))
758 			break;
759 		if ((first->start == new->start) && (first->end == new->end))
760 			break;
761 	}
762 
763 	for (next = first; ; next = next->sibling) {
764 		/* Partial overlap? Bad, and unfixable */
765 		if (next->start < new->start || next->end > new->end)
766 			return next;
767 		if (!next->sibling)
768 			break;
769 		if (next->sibling->start > new->end)
770 			break;
771 	}
772 
773 	new->parent = parent;
774 	new->sibling = next->sibling;
775 	new->child = first;
776 
777 	next->sibling = NULL;
778 	for (next = first; next; next = next->sibling)
779 		next->parent = new;
780 
781 	if (parent->child == first) {
782 		parent->child = new;
783 	} else {
784 		next = parent->child;
785 		while (next->sibling != first)
786 			next = next->sibling;
787 		next->sibling = new;
788 	}
789 	return NULL;
790 }
791 
792 /**
793  * insert_resource_conflict - Inserts resource in the resource tree
794  * @parent: parent of the new resource
795  * @new: new resource to insert
796  *
797  * Returns 0 on success, conflict resource if the resource can't be inserted.
798  *
799  * This function is equivalent to request_resource_conflict when no conflict
800  * happens. If a conflict happens, and the conflicting resources
801  * entirely fit within the range of the new resource, then the new
802  * resource is inserted and the conflicting resources become children of
803  * the new resource.
804  */
805 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
806 {
807 	struct resource *conflict;
808 
809 	write_lock(&resource_lock);
810 	conflict = __insert_resource(parent, new);
811 	write_unlock(&resource_lock);
812 	return conflict;
813 }
814 
815 /**
816  * insert_resource - Inserts a resource in the resource tree
817  * @parent: parent of the new resource
818  * @new: new resource to insert
819  *
820  * Returns 0 on success, -EBUSY if the resource can't be inserted.
821  */
822 int insert_resource(struct resource *parent, struct resource *new)
823 {
824 	struct resource *conflict;
825 
826 	conflict = insert_resource_conflict(parent, new);
827 	return conflict ? -EBUSY : 0;
828 }
829 
830 /**
831  * insert_resource_expand_to_fit - Insert a resource into the resource tree
832  * @root: root resource descriptor
833  * @new: new resource to insert
834  *
835  * Insert a resource into the resource tree, possibly expanding it in order
836  * to make it encompass any conflicting resources.
837  */
838 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
839 {
840 	if (new->parent)
841 		return;
842 
843 	write_lock(&resource_lock);
844 	for (;;) {
845 		struct resource *conflict;
846 
847 		conflict = __insert_resource(root, new);
848 		if (!conflict)
849 			break;
850 		if (conflict == root)
851 			break;
852 
853 		/* Ok, expand resource to cover the conflict, then try again .. */
854 		if (conflict->start < new->start)
855 			new->start = conflict->start;
856 		if (conflict->end > new->end)
857 			new->end = conflict->end;
858 
859 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
860 	}
861 	write_unlock(&resource_lock);
862 }
863 
864 static int __adjust_resource(struct resource *res, resource_size_t start,
865 				resource_size_t size)
866 {
867 	struct resource *tmp, *parent = res->parent;
868 	resource_size_t end = start + size - 1;
869 	int result = -EBUSY;
870 
871 	if (!parent)
872 		goto skip;
873 
874 	if ((start < parent->start) || (end > parent->end))
875 		goto out;
876 
877 	if (res->sibling && (res->sibling->start <= end))
878 		goto out;
879 
880 	tmp = parent->child;
881 	if (tmp != res) {
882 		while (tmp->sibling != res)
883 			tmp = tmp->sibling;
884 		if (start <= tmp->end)
885 			goto out;
886 	}
887 
888 skip:
889 	for (tmp = res->child; tmp; tmp = tmp->sibling)
890 		if ((tmp->start < start) || (tmp->end > end))
891 			goto out;
892 
893 	res->start = start;
894 	res->end = end;
895 	result = 0;
896 
897  out:
898 	return result;
899 }
900 
901 /**
902  * adjust_resource - modify a resource's start and size
903  * @res: resource to modify
904  * @start: new start value
905  * @size: new size
906  *
907  * Given an existing resource, change its start and size to match the
908  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
909  * Existing children of the resource are assumed to be immutable.
910  */
911 int adjust_resource(struct resource *res, resource_size_t start,
912 			resource_size_t size)
913 {
914 	int result;
915 
916 	write_lock(&resource_lock);
917 	result = __adjust_resource(res, start, size);
918 	write_unlock(&resource_lock);
919 	return result;
920 }
921 EXPORT_SYMBOL(adjust_resource);
922 
923 static void __init __reserve_region_with_split(struct resource *root,
924 		resource_size_t start, resource_size_t end,
925 		const char *name)
926 {
927 	struct resource *parent = root;
928 	struct resource *conflict;
929 	struct resource *res = alloc_resource(GFP_ATOMIC);
930 	struct resource *next_res = NULL;
931 
932 	if (!res)
933 		return;
934 
935 	res->name = name;
936 	res->start = start;
937 	res->end = end;
938 	res->flags = IORESOURCE_BUSY;
939 
940 	while (1) {
941 
942 		conflict = __request_resource(parent, res);
943 		if (!conflict) {
944 			if (!next_res)
945 				break;
946 			res = next_res;
947 			next_res = NULL;
948 			continue;
949 		}
950 
951 		/* conflict covered whole area */
952 		if (conflict->start <= res->start &&
953 				conflict->end >= res->end) {
954 			free_resource(res);
955 			WARN_ON(next_res);
956 			break;
957 		}
958 
959 		/* failed, split and try again */
960 		if (conflict->start > res->start) {
961 			end = res->end;
962 			res->end = conflict->start - 1;
963 			if (conflict->end < end) {
964 				next_res = alloc_resource(GFP_ATOMIC);
965 				if (!next_res) {
966 					free_resource(res);
967 					break;
968 				}
969 				next_res->name = name;
970 				next_res->start = conflict->end + 1;
971 				next_res->end = end;
972 				next_res->flags = IORESOURCE_BUSY;
973 			}
974 		} else {
975 			res->start = conflict->end + 1;
976 		}
977 	}
978 
979 }
980 
981 void __init reserve_region_with_split(struct resource *root,
982 		resource_size_t start, resource_size_t end,
983 		const char *name)
984 {
985 	int abort = 0;
986 
987 	write_lock(&resource_lock);
988 	if (root->start > start || root->end < end) {
989 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
990 		       (unsigned long long)start, (unsigned long long)end,
991 		       root);
992 		if (start > root->end || end < root->start)
993 			abort = 1;
994 		else {
995 			if (end > root->end)
996 				end = root->end;
997 			if (start < root->start)
998 				start = root->start;
999 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1000 			       (unsigned long long)start,
1001 			       (unsigned long long)end);
1002 		}
1003 		dump_stack();
1004 	}
1005 	if (!abort)
1006 		__reserve_region_with_split(root, start, end, name);
1007 	write_unlock(&resource_lock);
1008 }
1009 
1010 /**
1011  * resource_alignment - calculate resource's alignment
1012  * @res: resource pointer
1013  *
1014  * Returns alignment on success, 0 (invalid alignment) on failure.
1015  */
1016 resource_size_t resource_alignment(struct resource *res)
1017 {
1018 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1019 	case IORESOURCE_SIZEALIGN:
1020 		return resource_size(res);
1021 	case IORESOURCE_STARTALIGN:
1022 		return res->start;
1023 	default:
1024 		return 0;
1025 	}
1026 }
1027 
1028 /*
1029  * This is compatibility stuff for IO resources.
1030  *
1031  * Note how this, unlike the above, knows about
1032  * the IO flag meanings (busy etc).
1033  *
1034  * request_region creates a new busy region.
1035  *
1036  * check_region returns non-zero if the area is already busy.
1037  *
1038  * release_region releases a matching busy region.
1039  */
1040 
1041 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1042 
1043 /**
1044  * __request_region - create a new busy resource region
1045  * @parent: parent resource descriptor
1046  * @start: resource start address
1047  * @n: resource region size
1048  * @name: reserving caller's ID string
1049  * @flags: IO resource flags
1050  */
1051 struct resource * __request_region(struct resource *parent,
1052 				   resource_size_t start, resource_size_t n,
1053 				   const char *name, int flags)
1054 {
1055 	DECLARE_WAITQUEUE(wait, current);
1056 	struct resource *res = alloc_resource(GFP_KERNEL);
1057 
1058 	if (!res)
1059 		return NULL;
1060 
1061 	res->name = name;
1062 	res->start = start;
1063 	res->end = start + n - 1;
1064 	res->flags = resource_type(parent);
1065 	res->flags |= IORESOURCE_BUSY | flags;
1066 
1067 	write_lock(&resource_lock);
1068 
1069 	for (;;) {
1070 		struct resource *conflict;
1071 
1072 		conflict = __request_resource(parent, res);
1073 		if (!conflict)
1074 			break;
1075 		if (conflict != parent) {
1076 			parent = conflict;
1077 			if (!(conflict->flags & IORESOURCE_BUSY))
1078 				continue;
1079 		}
1080 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1081 			add_wait_queue(&muxed_resource_wait, &wait);
1082 			write_unlock(&resource_lock);
1083 			set_current_state(TASK_UNINTERRUPTIBLE);
1084 			schedule();
1085 			remove_wait_queue(&muxed_resource_wait, &wait);
1086 			write_lock(&resource_lock);
1087 			continue;
1088 		}
1089 		/* Uhhuh, that didn't work out.. */
1090 		free_resource(res);
1091 		res = NULL;
1092 		break;
1093 	}
1094 	write_unlock(&resource_lock);
1095 	return res;
1096 }
1097 EXPORT_SYMBOL(__request_region);
1098 
1099 /**
1100  * __check_region - check if a resource region is busy or free
1101  * @parent: parent resource descriptor
1102  * @start: resource start address
1103  * @n: resource region size
1104  *
1105  * Returns 0 if the region is free at the moment it is checked,
1106  * returns %-EBUSY if the region is busy.
1107  *
1108  * NOTE:
1109  * This function is deprecated because its use is racy.
1110  * Even if it returns 0, a subsequent call to request_region()
1111  * may fail because another driver etc. just allocated the region.
1112  * Do NOT use it.  It will be removed from the kernel.
1113  */
1114 int __check_region(struct resource *parent, resource_size_t start,
1115 			resource_size_t n)
1116 {
1117 	struct resource * res;
1118 
1119 	res = __request_region(parent, start, n, "check-region", 0);
1120 	if (!res)
1121 		return -EBUSY;
1122 
1123 	release_resource(res);
1124 	free_resource(res);
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL(__check_region);
1128 
1129 /**
1130  * __release_region - release a previously reserved resource region
1131  * @parent: parent resource descriptor
1132  * @start: resource start address
1133  * @n: resource region size
1134  *
1135  * The described resource region must match a currently busy region.
1136  */
1137 void __release_region(struct resource *parent, resource_size_t start,
1138 			resource_size_t n)
1139 {
1140 	struct resource **p;
1141 	resource_size_t end;
1142 
1143 	p = &parent->child;
1144 	end = start + n - 1;
1145 
1146 	write_lock(&resource_lock);
1147 
1148 	for (;;) {
1149 		struct resource *res = *p;
1150 
1151 		if (!res)
1152 			break;
1153 		if (res->start <= start && res->end >= end) {
1154 			if (!(res->flags & IORESOURCE_BUSY)) {
1155 				p = &res->child;
1156 				continue;
1157 			}
1158 			if (res->start != start || res->end != end)
1159 				break;
1160 			*p = res->sibling;
1161 			write_unlock(&resource_lock);
1162 			if (res->flags & IORESOURCE_MUXED)
1163 				wake_up(&muxed_resource_wait);
1164 			free_resource(res);
1165 			return;
1166 		}
1167 		p = &res->sibling;
1168 	}
1169 
1170 	write_unlock(&resource_lock);
1171 
1172 	printk(KERN_WARNING "Trying to free nonexistent resource "
1173 		"<%016llx-%016llx>\n", (unsigned long long)start,
1174 		(unsigned long long)end);
1175 }
1176 EXPORT_SYMBOL(__release_region);
1177 
1178 #ifdef CONFIG_MEMORY_HOTREMOVE
1179 /**
1180  * release_mem_region_adjustable - release a previously reserved memory region
1181  * @parent: parent resource descriptor
1182  * @start: resource start address
1183  * @size: resource region size
1184  *
1185  * This interface is intended for memory hot-delete.  The requested region
1186  * is released from a currently busy memory resource.  The requested region
1187  * must either match exactly or fit into a single busy resource entry.  In
1188  * the latter case, the remaining resource is adjusted accordingly.
1189  * Existing children of the busy memory resource must be immutable in the
1190  * request.
1191  *
1192  * Note:
1193  * - Additional release conditions, such as overlapping region, can be
1194  *   supported after they are confirmed as valid cases.
1195  * - When a busy memory resource gets split into two entries, the code
1196  *   assumes that all children remain in the lower address entry for
1197  *   simplicity.  Enhance this logic when necessary.
1198  */
1199 int release_mem_region_adjustable(struct resource *parent,
1200 			resource_size_t start, resource_size_t size)
1201 {
1202 	struct resource **p;
1203 	struct resource *res;
1204 	struct resource *new_res;
1205 	resource_size_t end;
1206 	int ret = -EINVAL;
1207 
1208 	end = start + size - 1;
1209 	if ((start < parent->start) || (end > parent->end))
1210 		return ret;
1211 
1212 	/* The alloc_resource() result gets checked later */
1213 	new_res = alloc_resource(GFP_KERNEL);
1214 
1215 	p = &parent->child;
1216 	write_lock(&resource_lock);
1217 
1218 	while ((res = *p)) {
1219 		if (res->start >= end)
1220 			break;
1221 
1222 		/* look for the next resource if it does not fit into */
1223 		if (res->start > start || res->end < end) {
1224 			p = &res->sibling;
1225 			continue;
1226 		}
1227 
1228 		if (!(res->flags & IORESOURCE_MEM))
1229 			break;
1230 
1231 		if (!(res->flags & IORESOURCE_BUSY)) {
1232 			p = &res->child;
1233 			continue;
1234 		}
1235 
1236 		/* found the target resource; let's adjust accordingly */
1237 		if (res->start == start && res->end == end) {
1238 			/* free the whole entry */
1239 			*p = res->sibling;
1240 			free_resource(res);
1241 			ret = 0;
1242 		} else if (res->start == start && res->end != end) {
1243 			/* adjust the start */
1244 			ret = __adjust_resource(res, end + 1,
1245 						res->end - end);
1246 		} else if (res->start != start && res->end == end) {
1247 			/* adjust the end */
1248 			ret = __adjust_resource(res, res->start,
1249 						start - res->start);
1250 		} else {
1251 			/* split into two entries */
1252 			if (!new_res) {
1253 				ret = -ENOMEM;
1254 				break;
1255 			}
1256 			new_res->name = res->name;
1257 			new_res->start = end + 1;
1258 			new_res->end = res->end;
1259 			new_res->flags = res->flags;
1260 			new_res->parent = res->parent;
1261 			new_res->sibling = res->sibling;
1262 			new_res->child = NULL;
1263 
1264 			ret = __adjust_resource(res, res->start,
1265 						start - res->start);
1266 			if (ret)
1267 				break;
1268 			res->sibling = new_res;
1269 			new_res = NULL;
1270 		}
1271 
1272 		break;
1273 	}
1274 
1275 	write_unlock(&resource_lock);
1276 	free_resource(new_res);
1277 	return ret;
1278 }
1279 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1280 
1281 /*
1282  * Managed region resource
1283  */
1284 static void devm_resource_release(struct device *dev, void *ptr)
1285 {
1286 	struct resource **r = ptr;
1287 
1288 	release_resource(*r);
1289 }
1290 
1291 /**
1292  * devm_request_resource() - request and reserve an I/O or memory resource
1293  * @dev: device for which to request the resource
1294  * @root: root of the resource tree from which to request the resource
1295  * @new: descriptor of the resource to request
1296  *
1297  * This is a device-managed version of request_resource(). There is usually
1298  * no need to release resources requested by this function explicitly since
1299  * that will be taken care of when the device is unbound from its driver.
1300  * If for some reason the resource needs to be released explicitly, because
1301  * of ordering issues for example, drivers must call devm_release_resource()
1302  * rather than the regular release_resource().
1303  *
1304  * When a conflict is detected between any existing resources and the newly
1305  * requested resource, an error message will be printed.
1306  *
1307  * Returns 0 on success or a negative error code on failure.
1308  */
1309 int devm_request_resource(struct device *dev, struct resource *root,
1310 			  struct resource *new)
1311 {
1312 	struct resource *conflict, **ptr;
1313 
1314 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1315 	if (!ptr)
1316 		return -ENOMEM;
1317 
1318 	*ptr = new;
1319 
1320 	conflict = request_resource_conflict(root, new);
1321 	if (conflict) {
1322 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1323 			new, conflict->name, conflict);
1324 		devres_free(ptr);
1325 		return -EBUSY;
1326 	}
1327 
1328 	devres_add(dev, ptr);
1329 	return 0;
1330 }
1331 EXPORT_SYMBOL(devm_request_resource);
1332 
1333 static int devm_resource_match(struct device *dev, void *res, void *data)
1334 {
1335 	struct resource **ptr = res;
1336 
1337 	return *ptr == data;
1338 }
1339 
1340 /**
1341  * devm_release_resource() - release a previously requested resource
1342  * @dev: device for which to release the resource
1343  * @new: descriptor of the resource to release
1344  *
1345  * Releases a resource previously requested using devm_request_resource().
1346  */
1347 void devm_release_resource(struct device *dev, struct resource *new)
1348 {
1349 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1350 			       new));
1351 }
1352 EXPORT_SYMBOL(devm_release_resource);
1353 
1354 struct region_devres {
1355 	struct resource *parent;
1356 	resource_size_t start;
1357 	resource_size_t n;
1358 };
1359 
1360 static void devm_region_release(struct device *dev, void *res)
1361 {
1362 	struct region_devres *this = res;
1363 
1364 	__release_region(this->parent, this->start, this->n);
1365 }
1366 
1367 static int devm_region_match(struct device *dev, void *res, void *match_data)
1368 {
1369 	struct region_devres *this = res, *match = match_data;
1370 
1371 	return this->parent == match->parent &&
1372 		this->start == match->start && this->n == match->n;
1373 }
1374 
1375 struct resource * __devm_request_region(struct device *dev,
1376 				struct resource *parent, resource_size_t start,
1377 				resource_size_t n, const char *name)
1378 {
1379 	struct region_devres *dr = NULL;
1380 	struct resource *res;
1381 
1382 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1383 			  GFP_KERNEL);
1384 	if (!dr)
1385 		return NULL;
1386 
1387 	dr->parent = parent;
1388 	dr->start = start;
1389 	dr->n = n;
1390 
1391 	res = __request_region(parent, start, n, name, 0);
1392 	if (res)
1393 		devres_add(dev, dr);
1394 	else
1395 		devres_free(dr);
1396 
1397 	return res;
1398 }
1399 EXPORT_SYMBOL(__devm_request_region);
1400 
1401 void __devm_release_region(struct device *dev, struct resource *parent,
1402 			   resource_size_t start, resource_size_t n)
1403 {
1404 	struct region_devres match_data = { parent, start, n };
1405 
1406 	__release_region(parent, start, n);
1407 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1408 			       &match_data));
1409 }
1410 EXPORT_SYMBOL(__devm_release_region);
1411 
1412 /*
1413  * Called from init/main.c to reserve IO ports.
1414  */
1415 #define MAXRESERVE 4
1416 static int __init reserve_setup(char *str)
1417 {
1418 	static int reserved;
1419 	static struct resource reserve[MAXRESERVE];
1420 
1421 	for (;;) {
1422 		unsigned int io_start, io_num;
1423 		int x = reserved;
1424 
1425 		if (get_option (&str, &io_start) != 2)
1426 			break;
1427 		if (get_option (&str, &io_num)   == 0)
1428 			break;
1429 		if (x < MAXRESERVE) {
1430 			struct resource *res = reserve + x;
1431 			res->name = "reserved";
1432 			res->start = io_start;
1433 			res->end = io_start + io_num - 1;
1434 			res->flags = IORESOURCE_BUSY;
1435 			res->child = NULL;
1436 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1437 				reserved = x+1;
1438 		}
1439 	}
1440 	return 1;
1441 }
1442 
1443 __setup("reserve=", reserve_setup);
1444 
1445 /*
1446  * Check if the requested addr and size spans more than any slot in the
1447  * iomem resource tree.
1448  */
1449 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1450 {
1451 	struct resource *p = &iomem_resource;
1452 	int err = 0;
1453 	loff_t l;
1454 
1455 	read_lock(&resource_lock);
1456 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1457 		/*
1458 		 * We can probably skip the resources without
1459 		 * IORESOURCE_IO attribute?
1460 		 */
1461 		if (p->start >= addr + size)
1462 			continue;
1463 		if (p->end < addr)
1464 			continue;
1465 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1466 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1467 			continue;
1468 		/*
1469 		 * if a resource is "BUSY", it's not a hardware resource
1470 		 * but a driver mapping of such a resource; we don't want
1471 		 * to warn for those; some drivers legitimately map only
1472 		 * partial hardware resources. (example: vesafb)
1473 		 */
1474 		if (p->flags & IORESOURCE_BUSY)
1475 			continue;
1476 
1477 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1478 		       (unsigned long long)addr,
1479 		       (unsigned long long)(addr + size - 1),
1480 		       p->name, p);
1481 		err = -1;
1482 		break;
1483 	}
1484 	read_unlock(&resource_lock);
1485 
1486 	return err;
1487 }
1488 
1489 #ifdef CONFIG_STRICT_DEVMEM
1490 static int strict_iomem_checks = 1;
1491 #else
1492 static int strict_iomem_checks;
1493 #endif
1494 
1495 /*
1496  * check if an address is reserved in the iomem resource tree
1497  * returns 1 if reserved, 0 if not reserved.
1498  */
1499 int iomem_is_exclusive(u64 addr)
1500 {
1501 	struct resource *p = &iomem_resource;
1502 	int err = 0;
1503 	loff_t l;
1504 	int size = PAGE_SIZE;
1505 
1506 	if (!strict_iomem_checks)
1507 		return 0;
1508 
1509 	addr = addr & PAGE_MASK;
1510 
1511 	read_lock(&resource_lock);
1512 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1513 		/*
1514 		 * We can probably skip the resources without
1515 		 * IORESOURCE_IO attribute?
1516 		 */
1517 		if (p->start >= addr + size)
1518 			break;
1519 		if (p->end < addr)
1520 			continue;
1521 		if (p->flags & IORESOURCE_BUSY &&
1522 		     p->flags & IORESOURCE_EXCLUSIVE) {
1523 			err = 1;
1524 			break;
1525 		}
1526 	}
1527 	read_unlock(&resource_lock);
1528 
1529 	return err;
1530 }
1531 
1532 static int __init strict_iomem(char *str)
1533 {
1534 	if (strstr(str, "relaxed"))
1535 		strict_iomem_checks = 0;
1536 	if (strstr(str, "strict"))
1537 		strict_iomem_checks = 1;
1538 	return 1;
1539 }
1540 
1541 __setup("iomem=", strict_iomem);
1542