xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision ae91aa0adb14dc33114d566feca2f7cb7a96b8b7)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <uapi/linux/sched/types.h>
33 #include "../time/tick-internal.h"
34 
35 #ifdef CONFIG_RCU_BOOST
36 
37 #include "../locking/rtmutex_common.h"
38 
39 /*
40  * Control variables for per-CPU and per-rcu_node kthreads.  These
41  * handle all flavors of RCU.
42  */
43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work);
47 
48 #else /* #ifdef CONFIG_RCU_BOOST */
49 
50 /*
51  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52  * all uses are in dead code.  Provide a definition to keep the compiler
53  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54  * This probably needs to be excluded from -rt builds.
55  */
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57 
58 #endif /* #else #ifdef CONFIG_RCU_BOOST */
59 
60 #ifdef CONFIG_RCU_NOCB_CPU
61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
62 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
63 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65 
66 /*
67  * Check the RCU kernel configuration parameters and print informative
68  * messages about anything out of the ordinary.
69  */
70 static void __init rcu_bootup_announce_oddness(void)
71 {
72 	if (IS_ENABLED(CONFIG_RCU_TRACE))
73 		pr_info("\tRCU event tracing is enabled.\n");
74 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
75 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
76 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
77 		       RCU_FANOUT);
78 	if (rcu_fanout_exact)
79 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
81 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 	if (IS_ENABLED(CONFIG_PROVE_RCU))
83 		pr_info("\tRCU lockdep checking is enabled.\n");
84 	if (RCU_NUM_LVLS >= 4)
85 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 	if (RCU_FANOUT_LEAF != 16)
87 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 			RCU_FANOUT_LEAF);
89 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 	if (nr_cpu_ids != NR_CPUS)
92 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 #ifdef CONFIG_RCU_BOOST
94 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
95 #endif
96 	if (blimit != DEFAULT_RCU_BLIMIT)
97 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
98 	if (qhimark != DEFAULT_RCU_QHIMARK)
99 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
100 	if (qlowmark != DEFAULT_RCU_QLOMARK)
101 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
102 	if (jiffies_till_first_fqs != ULONG_MAX)
103 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
104 	if (jiffies_till_next_fqs != ULONG_MAX)
105 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
106 	if (rcu_kick_kthreads)
107 		pr_info("\tKick kthreads if too-long grace period.\n");
108 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
109 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
110 	if (gp_preinit_delay)
111 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
112 	if (gp_init_delay)
113 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
114 	if (gp_cleanup_delay)
115 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
116 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
117 		pr_info("\tRCU debug extended QS entry/exit.\n");
118 	rcupdate_announce_bootup_oddness();
119 }
120 
121 #ifdef CONFIG_PREEMPT_RCU
122 
123 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
124 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
125 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
126 
127 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
128 			       bool wake);
129 
130 /*
131  * Tell them what RCU they are running.
132  */
133 static void __init rcu_bootup_announce(void)
134 {
135 	pr_info("Preemptible hierarchical RCU implementation.\n");
136 	rcu_bootup_announce_oddness();
137 }
138 
139 /* Flags for rcu_preempt_ctxt_queue() decision table. */
140 #define RCU_GP_TASKS	0x8
141 #define RCU_EXP_TASKS	0x4
142 #define RCU_GP_BLKD	0x2
143 #define RCU_EXP_BLKD	0x1
144 
145 /*
146  * Queues a task preempted within an RCU-preempt read-side critical
147  * section into the appropriate location within the ->blkd_tasks list,
148  * depending on the states of any ongoing normal and expedited grace
149  * periods.  The ->gp_tasks pointer indicates which element the normal
150  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
151  * indicates which element the expedited grace period is waiting on (again,
152  * NULL if none).  If a grace period is waiting on a given element in the
153  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
154  * adding a task to the tail of the list blocks any grace period that is
155  * already waiting on one of the elements.  In contrast, adding a task
156  * to the head of the list won't block any grace period that is already
157  * waiting on one of the elements.
158  *
159  * This queuing is imprecise, and can sometimes make an ongoing grace
160  * period wait for a task that is not strictly speaking blocking it.
161  * Given the choice, we needlessly block a normal grace period rather than
162  * blocking an expedited grace period.
163  *
164  * Note that an endless sequence of expedited grace periods still cannot
165  * indefinitely postpone a normal grace period.  Eventually, all of the
166  * fixed number of preempted tasks blocking the normal grace period that are
167  * not also blocking the expedited grace period will resume and complete
168  * their RCU read-side critical sections.  At that point, the ->gp_tasks
169  * pointer will equal the ->exp_tasks pointer, at which point the end of
170  * the corresponding expedited grace period will also be the end of the
171  * normal grace period.
172  */
173 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
174 	__releases(rnp->lock) /* But leaves rrupts disabled. */
175 {
176 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
177 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
178 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
179 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
180 	struct task_struct *t = current;
181 
182 	lockdep_assert_held(&rnp->lock);
183 
184 	/*
185 	 * Decide where to queue the newly blocked task.  In theory,
186 	 * this could be an if-statement.  In practice, when I tried
187 	 * that, it was quite messy.
188 	 */
189 	switch (blkd_state) {
190 	case 0:
191 	case                RCU_EXP_TASKS:
192 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
193 	case RCU_GP_TASKS:
194 	case RCU_GP_TASKS + RCU_EXP_TASKS:
195 
196 		/*
197 		 * Blocking neither GP, or first task blocking the normal
198 		 * GP but not blocking the already-waiting expedited GP.
199 		 * Queue at the head of the list to avoid unnecessarily
200 		 * blocking the already-waiting GPs.
201 		 */
202 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
203 		break;
204 
205 	case                                              RCU_EXP_BLKD:
206 	case                                RCU_GP_BLKD:
207 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
208 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
209 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
210 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
211 
212 		/*
213 		 * First task arriving that blocks either GP, or first task
214 		 * arriving that blocks the expedited GP (with the normal
215 		 * GP already waiting), or a task arriving that blocks
216 		 * both GPs with both GPs already waiting.  Queue at the
217 		 * tail of the list to avoid any GP waiting on any of the
218 		 * already queued tasks that are not blocking it.
219 		 */
220 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
221 		break;
222 
223 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
224 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
225 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
226 
227 		/*
228 		 * Second or subsequent task blocking the expedited GP.
229 		 * The task either does not block the normal GP, or is the
230 		 * first task blocking the normal GP.  Queue just after
231 		 * the first task blocking the expedited GP.
232 		 */
233 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
234 		break;
235 
236 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
237 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
238 
239 		/*
240 		 * Second or subsequent task blocking the normal GP.
241 		 * The task does not block the expedited GP. Queue just
242 		 * after the first task blocking the normal GP.
243 		 */
244 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
245 		break;
246 
247 	default:
248 
249 		/* Yet another exercise in excessive paranoia. */
250 		WARN_ON_ONCE(1);
251 		break;
252 	}
253 
254 	/*
255 	 * We have now queued the task.  If it was the first one to
256 	 * block either grace period, update the ->gp_tasks and/or
257 	 * ->exp_tasks pointers, respectively, to reference the newly
258 	 * blocked tasks.
259 	 */
260 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
261 		rnp->gp_tasks = &t->rcu_node_entry;
262 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
263 		rnp->exp_tasks = &t->rcu_node_entry;
264 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
265 
266 	/*
267 	 * Report the quiescent state for the expedited GP.  This expedited
268 	 * GP should not be able to end until we report, so there should be
269 	 * no need to check for a subsequent expedited GP.  (Though we are
270 	 * still in a quiescent state in any case.)
271 	 */
272 	if (blkd_state & RCU_EXP_BLKD &&
273 	    t->rcu_read_unlock_special.b.exp_need_qs) {
274 		t->rcu_read_unlock_special.b.exp_need_qs = false;
275 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
276 	} else {
277 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
278 	}
279 }
280 
281 /*
282  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
283  * that this just means that the task currently running on the CPU is
284  * not in a quiescent state.  There might be any number of tasks blocked
285  * while in an RCU read-side critical section.
286  *
287  * As with the other rcu_*_qs() functions, callers to this function
288  * must disable preemption.
289  */
290 static void rcu_preempt_qs(void)
291 {
292 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
293 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
294 		trace_rcu_grace_period(TPS("rcu_preempt"),
295 				       __this_cpu_read(rcu_data_p->gpnum),
296 				       TPS("cpuqs"));
297 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
298 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
299 		current->rcu_read_unlock_special.b.need_qs = false;
300 	}
301 }
302 
303 /*
304  * We have entered the scheduler, and the current task might soon be
305  * context-switched away from.  If this task is in an RCU read-side
306  * critical section, we will no longer be able to rely on the CPU to
307  * record that fact, so we enqueue the task on the blkd_tasks list.
308  * The task will dequeue itself when it exits the outermost enclosing
309  * RCU read-side critical section.  Therefore, the current grace period
310  * cannot be permitted to complete until the blkd_tasks list entries
311  * predating the current grace period drain, in other words, until
312  * rnp->gp_tasks becomes NULL.
313  *
314  * Caller must disable interrupts.
315  */
316 static void rcu_preempt_note_context_switch(bool preempt)
317 {
318 	struct task_struct *t = current;
319 	struct rcu_data *rdp;
320 	struct rcu_node *rnp;
321 
322 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n");
323 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
324 	if (t->rcu_read_lock_nesting > 0 &&
325 	    !t->rcu_read_unlock_special.b.blocked) {
326 
327 		/* Possibly blocking in an RCU read-side critical section. */
328 		rdp = this_cpu_ptr(rcu_state_p->rda);
329 		rnp = rdp->mynode;
330 		raw_spin_lock_rcu_node(rnp);
331 		t->rcu_read_unlock_special.b.blocked = true;
332 		t->rcu_blocked_node = rnp;
333 
334 		/*
335 		 * Verify the CPU's sanity, trace the preemption, and
336 		 * then queue the task as required based on the states
337 		 * of any ongoing and expedited grace periods.
338 		 */
339 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
340 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
341 		trace_rcu_preempt_task(rdp->rsp->name,
342 				       t->pid,
343 				       (rnp->qsmask & rdp->grpmask)
344 				       ? rnp->gpnum
345 				       : rnp->gpnum + 1);
346 		rcu_preempt_ctxt_queue(rnp, rdp);
347 	} else if (t->rcu_read_lock_nesting < 0 &&
348 		   t->rcu_read_unlock_special.s) {
349 
350 		/*
351 		 * Complete exit from RCU read-side critical section on
352 		 * behalf of preempted instance of __rcu_read_unlock().
353 		 */
354 		rcu_read_unlock_special(t);
355 	}
356 
357 	/*
358 	 * Either we were not in an RCU read-side critical section to
359 	 * begin with, or we have now recorded that critical section
360 	 * globally.  Either way, we can now note a quiescent state
361 	 * for this CPU.  Again, if we were in an RCU read-side critical
362 	 * section, and if that critical section was blocking the current
363 	 * grace period, then the fact that the task has been enqueued
364 	 * means that we continue to block the current grace period.
365 	 */
366 	rcu_preempt_qs();
367 }
368 
369 /*
370  * Check for preempted RCU readers blocking the current grace period
371  * for the specified rcu_node structure.  If the caller needs a reliable
372  * answer, it must hold the rcu_node's ->lock.
373  */
374 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
375 {
376 	return rnp->gp_tasks != NULL;
377 }
378 
379 /*
380  * Advance a ->blkd_tasks-list pointer to the next entry, instead
381  * returning NULL if at the end of the list.
382  */
383 static struct list_head *rcu_next_node_entry(struct task_struct *t,
384 					     struct rcu_node *rnp)
385 {
386 	struct list_head *np;
387 
388 	np = t->rcu_node_entry.next;
389 	if (np == &rnp->blkd_tasks)
390 		np = NULL;
391 	return np;
392 }
393 
394 /*
395  * Return true if the specified rcu_node structure has tasks that were
396  * preempted within an RCU read-side critical section.
397  */
398 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
399 {
400 	return !list_empty(&rnp->blkd_tasks);
401 }
402 
403 /*
404  * Handle special cases during rcu_read_unlock(), such as needing to
405  * notify RCU core processing or task having blocked during the RCU
406  * read-side critical section.
407  */
408 void rcu_read_unlock_special(struct task_struct *t)
409 {
410 	bool empty_exp;
411 	bool empty_norm;
412 	bool empty_exp_now;
413 	unsigned long flags;
414 	struct list_head *np;
415 	bool drop_boost_mutex = false;
416 	struct rcu_data *rdp;
417 	struct rcu_node *rnp;
418 	union rcu_special special;
419 
420 	/* NMI handlers cannot block and cannot safely manipulate state. */
421 	if (in_nmi())
422 		return;
423 
424 	local_irq_save(flags);
425 
426 	/*
427 	 * If RCU core is waiting for this CPU to exit its critical section,
428 	 * report the fact that it has exited.  Because irqs are disabled,
429 	 * t->rcu_read_unlock_special cannot change.
430 	 */
431 	special = t->rcu_read_unlock_special;
432 	if (special.b.need_qs) {
433 		rcu_preempt_qs();
434 		t->rcu_read_unlock_special.b.need_qs = false;
435 		if (!t->rcu_read_unlock_special.s) {
436 			local_irq_restore(flags);
437 			return;
438 		}
439 	}
440 
441 	/*
442 	 * Respond to a request for an expedited grace period, but only if
443 	 * we were not preempted, meaning that we were running on the same
444 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
445 	 * would have been cleared at the time of the first preemption,
446 	 * and the quiescent state would be reported when we were dequeued.
447 	 */
448 	if (special.b.exp_need_qs) {
449 		WARN_ON_ONCE(special.b.blocked);
450 		t->rcu_read_unlock_special.b.exp_need_qs = false;
451 		rdp = this_cpu_ptr(rcu_state_p->rda);
452 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
453 		if (!t->rcu_read_unlock_special.s) {
454 			local_irq_restore(flags);
455 			return;
456 		}
457 	}
458 
459 	/* Hardware IRQ handlers cannot block, complain if they get here. */
460 	if (in_irq() || in_serving_softirq()) {
461 		lockdep_rcu_suspicious(__FILE__, __LINE__,
462 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
463 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
464 			 t->rcu_read_unlock_special.s,
465 			 t->rcu_read_unlock_special.b.blocked,
466 			 t->rcu_read_unlock_special.b.exp_need_qs,
467 			 t->rcu_read_unlock_special.b.need_qs);
468 		local_irq_restore(flags);
469 		return;
470 	}
471 
472 	/* Clean up if blocked during RCU read-side critical section. */
473 	if (special.b.blocked) {
474 		t->rcu_read_unlock_special.b.blocked = false;
475 
476 		/*
477 		 * Remove this task from the list it blocked on.  The task
478 		 * now remains queued on the rcu_node corresponding to the
479 		 * CPU it first blocked on, so there is no longer any need
480 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
481 		 */
482 		rnp = t->rcu_blocked_node;
483 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
484 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
485 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
486 		empty_exp = sync_rcu_preempt_exp_done(rnp);
487 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
488 		np = rcu_next_node_entry(t, rnp);
489 		list_del_init(&t->rcu_node_entry);
490 		t->rcu_blocked_node = NULL;
491 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
492 						rnp->gpnum, t->pid);
493 		if (&t->rcu_node_entry == rnp->gp_tasks)
494 			rnp->gp_tasks = np;
495 		if (&t->rcu_node_entry == rnp->exp_tasks)
496 			rnp->exp_tasks = np;
497 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
498 			if (&t->rcu_node_entry == rnp->boost_tasks)
499 				rnp->boost_tasks = np;
500 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
502 		}
503 
504 		/*
505 		 * If this was the last task on the current list, and if
506 		 * we aren't waiting on any CPUs, report the quiescent state.
507 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
508 		 * so we must take a snapshot of the expedited state.
509 		 */
510 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
511 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
512 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
513 							 rnp->gpnum,
514 							 0, rnp->qsmask,
515 							 rnp->level,
516 							 rnp->grplo,
517 							 rnp->grphi,
518 							 !!rnp->gp_tasks);
519 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
520 		} else {
521 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522 		}
523 
524 		/* Unboost if we were boosted. */
525 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
526 			rt_mutex_unlock(&rnp->boost_mtx);
527 
528 		/*
529 		 * If this was the last task on the expedited lists,
530 		 * then we need to report up the rcu_node hierarchy.
531 		 */
532 		if (!empty_exp && empty_exp_now)
533 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
534 	} else {
535 		local_irq_restore(flags);
536 	}
537 }
538 
539 /*
540  * Dump detailed information for all tasks blocking the current RCU
541  * grace period on the specified rcu_node structure.
542  */
543 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
544 {
545 	unsigned long flags;
546 	struct task_struct *t;
547 
548 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
549 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
550 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
551 		return;
552 	}
553 	t = list_entry(rnp->gp_tasks->prev,
554 		       struct task_struct, rcu_node_entry);
555 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
556 		sched_show_task(t);
557 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
558 }
559 
560 /*
561  * Dump detailed information for all tasks blocking the current RCU
562  * grace period.
563  */
564 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
565 {
566 	struct rcu_node *rnp = rcu_get_root(rsp);
567 
568 	rcu_print_detail_task_stall_rnp(rnp);
569 	rcu_for_each_leaf_node(rsp, rnp)
570 		rcu_print_detail_task_stall_rnp(rnp);
571 }
572 
573 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
574 {
575 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
576 	       rnp->level, rnp->grplo, rnp->grphi);
577 }
578 
579 static void rcu_print_task_stall_end(void)
580 {
581 	pr_cont("\n");
582 }
583 
584 /*
585  * Scan the current list of tasks blocked within RCU read-side critical
586  * sections, printing out the tid of each.
587  */
588 static int rcu_print_task_stall(struct rcu_node *rnp)
589 {
590 	struct task_struct *t;
591 	int ndetected = 0;
592 
593 	if (!rcu_preempt_blocked_readers_cgp(rnp))
594 		return 0;
595 	rcu_print_task_stall_begin(rnp);
596 	t = list_entry(rnp->gp_tasks->prev,
597 		       struct task_struct, rcu_node_entry);
598 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
599 		pr_cont(" P%d", t->pid);
600 		ndetected++;
601 	}
602 	rcu_print_task_stall_end();
603 	return ndetected;
604 }
605 
606 /*
607  * Scan the current list of tasks blocked within RCU read-side critical
608  * sections, printing out the tid of each that is blocking the current
609  * expedited grace period.
610  */
611 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
612 {
613 	struct task_struct *t;
614 	int ndetected = 0;
615 
616 	if (!rnp->exp_tasks)
617 		return 0;
618 	t = list_entry(rnp->exp_tasks->prev,
619 		       struct task_struct, rcu_node_entry);
620 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
621 		pr_cont(" P%d", t->pid);
622 		ndetected++;
623 	}
624 	return ndetected;
625 }
626 
627 /*
628  * Check that the list of blocked tasks for the newly completed grace
629  * period is in fact empty.  It is a serious bug to complete a grace
630  * period that still has RCU readers blocked!  This function must be
631  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
632  * must be held by the caller.
633  *
634  * Also, if there are blocked tasks on the list, they automatically
635  * block the newly created grace period, so set up ->gp_tasks accordingly.
636  */
637 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
638 {
639 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
640 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
641 	if (rcu_preempt_has_tasks(rnp))
642 		rnp->gp_tasks = rnp->blkd_tasks.next;
643 	WARN_ON_ONCE(rnp->qsmask);
644 }
645 
646 /*
647  * Check for a quiescent state from the current CPU.  When a task blocks,
648  * the task is recorded in the corresponding CPU's rcu_node structure,
649  * which is checked elsewhere.
650  *
651  * Caller must disable hard irqs.
652  */
653 static void rcu_preempt_check_callbacks(void)
654 {
655 	struct task_struct *t = current;
656 
657 	if (t->rcu_read_lock_nesting == 0) {
658 		rcu_preempt_qs();
659 		return;
660 	}
661 	if (t->rcu_read_lock_nesting > 0 &&
662 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
663 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
664 		t->rcu_read_unlock_special.b.need_qs = true;
665 }
666 
667 #ifdef CONFIG_RCU_BOOST
668 
669 static void rcu_preempt_do_callbacks(void)
670 {
671 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
672 }
673 
674 #endif /* #ifdef CONFIG_RCU_BOOST */
675 
676 /**
677  * call_rcu() - Queue an RCU callback for invocation after a grace period.
678  * @head: structure to be used for queueing the RCU updates.
679  * @func: actual callback function to be invoked after the grace period
680  *
681  * The callback function will be invoked some time after a full grace
682  * period elapses, in other words after all pre-existing RCU read-side
683  * critical sections have completed.  However, the callback function
684  * might well execute concurrently with RCU read-side critical sections
685  * that started after call_rcu() was invoked.  RCU read-side critical
686  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
687  * and may be nested.
688  *
689  * Note that all CPUs must agree that the grace period extended beyond
690  * all pre-existing RCU read-side critical section.  On systems with more
691  * than one CPU, this means that when "func()" is invoked, each CPU is
692  * guaranteed to have executed a full memory barrier since the end of its
693  * last RCU read-side critical section whose beginning preceded the call
694  * to call_rcu().  It also means that each CPU executing an RCU read-side
695  * critical section that continues beyond the start of "func()" must have
696  * executed a memory barrier after the call_rcu() but before the beginning
697  * of that RCU read-side critical section.  Note that these guarantees
698  * include CPUs that are offline, idle, or executing in user mode, as
699  * well as CPUs that are executing in the kernel.
700  *
701  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
702  * resulting RCU callback function "func()", then both CPU A and CPU B are
703  * guaranteed to execute a full memory barrier during the time interval
704  * between the call to call_rcu() and the invocation of "func()" -- even
705  * if CPU A and CPU B are the same CPU (but again only if the system has
706  * more than one CPU).
707  */
708 void call_rcu(struct rcu_head *head, rcu_callback_t func)
709 {
710 	__call_rcu(head, func, rcu_state_p, -1, 0);
711 }
712 EXPORT_SYMBOL_GPL(call_rcu);
713 
714 /**
715  * synchronize_rcu - wait until a grace period has elapsed.
716  *
717  * Control will return to the caller some time after a full grace
718  * period has elapsed, in other words after all currently executing RCU
719  * read-side critical sections have completed.  Note, however, that
720  * upon return from synchronize_rcu(), the caller might well be executing
721  * concurrently with new RCU read-side critical sections that began while
722  * synchronize_rcu() was waiting.  RCU read-side critical sections are
723  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
724  *
725  * See the description of synchronize_sched() for more detailed
726  * information on memory-ordering guarantees.  However, please note
727  * that -only- the memory-ordering guarantees apply.  For example,
728  * synchronize_rcu() is -not- guaranteed to wait on things like code
729  * protected by preempt_disable(), instead, synchronize_rcu() is -only-
730  * guaranteed to wait on RCU read-side critical sections, that is, sections
731  * of code protected by rcu_read_lock().
732  */
733 void synchronize_rcu(void)
734 {
735 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
736 			 lock_is_held(&rcu_lock_map) ||
737 			 lock_is_held(&rcu_sched_lock_map),
738 			 "Illegal synchronize_rcu() in RCU read-side critical section");
739 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
740 		return;
741 	if (rcu_gp_is_expedited())
742 		synchronize_rcu_expedited();
743 	else
744 		wait_rcu_gp(call_rcu);
745 }
746 EXPORT_SYMBOL_GPL(synchronize_rcu);
747 
748 /**
749  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
750  *
751  * Note that this primitive does not necessarily wait for an RCU grace period
752  * to complete.  For example, if there are no RCU callbacks queued anywhere
753  * in the system, then rcu_barrier() is within its rights to return
754  * immediately, without waiting for anything, much less an RCU grace period.
755  */
756 void rcu_barrier(void)
757 {
758 	_rcu_barrier(rcu_state_p);
759 }
760 EXPORT_SYMBOL_GPL(rcu_barrier);
761 
762 /*
763  * Initialize preemptible RCU's state structures.
764  */
765 static void __init __rcu_init_preempt(void)
766 {
767 	rcu_init_one(rcu_state_p);
768 }
769 
770 /*
771  * Check for a task exiting while in a preemptible-RCU read-side
772  * critical section, clean up if so.  No need to issue warnings,
773  * as debug_check_no_locks_held() already does this if lockdep
774  * is enabled.
775  */
776 void exit_rcu(void)
777 {
778 	struct task_struct *t = current;
779 
780 	if (likely(list_empty(&current->rcu_node_entry)))
781 		return;
782 	t->rcu_read_lock_nesting = 1;
783 	barrier();
784 	t->rcu_read_unlock_special.b.blocked = true;
785 	__rcu_read_unlock();
786 }
787 
788 #else /* #ifdef CONFIG_PREEMPT_RCU */
789 
790 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
791 
792 /*
793  * Tell them what RCU they are running.
794  */
795 static void __init rcu_bootup_announce(void)
796 {
797 	pr_info("Hierarchical RCU implementation.\n");
798 	rcu_bootup_announce_oddness();
799 }
800 
801 /*
802  * Because preemptible RCU does not exist, we never have to check for
803  * CPUs being in quiescent states.
804  */
805 static void rcu_preempt_note_context_switch(bool preempt)
806 {
807 }
808 
809 /*
810  * Because preemptible RCU does not exist, there are never any preempted
811  * RCU readers.
812  */
813 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
814 {
815 	return 0;
816 }
817 
818 /*
819  * Because there is no preemptible RCU, there can be no readers blocked.
820  */
821 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
822 {
823 	return false;
824 }
825 
826 /*
827  * Because preemptible RCU does not exist, we never have to check for
828  * tasks blocked within RCU read-side critical sections.
829  */
830 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
831 {
832 }
833 
834 /*
835  * Because preemptible RCU does not exist, we never have to check for
836  * tasks blocked within RCU read-side critical sections.
837  */
838 static int rcu_print_task_stall(struct rcu_node *rnp)
839 {
840 	return 0;
841 }
842 
843 /*
844  * Because preemptible RCU does not exist, we never have to check for
845  * tasks blocked within RCU read-side critical sections that are
846  * blocking the current expedited grace period.
847  */
848 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
849 {
850 	return 0;
851 }
852 
853 /*
854  * Because there is no preemptible RCU, there can be no readers blocked,
855  * so there is no need to check for blocked tasks.  So check only for
856  * bogus qsmask values.
857  */
858 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
859 {
860 	WARN_ON_ONCE(rnp->qsmask);
861 }
862 
863 /*
864  * Because preemptible RCU does not exist, it never has any callbacks
865  * to check.
866  */
867 static void rcu_preempt_check_callbacks(void)
868 {
869 }
870 
871 /*
872  * Because preemptible RCU does not exist, rcu_barrier() is just
873  * another name for rcu_barrier_sched().
874  */
875 void rcu_barrier(void)
876 {
877 	rcu_barrier_sched();
878 }
879 EXPORT_SYMBOL_GPL(rcu_barrier);
880 
881 /*
882  * Because preemptible RCU does not exist, it need not be initialized.
883  */
884 static void __init __rcu_init_preempt(void)
885 {
886 }
887 
888 /*
889  * Because preemptible RCU does not exist, tasks cannot possibly exit
890  * while in preemptible RCU read-side critical sections.
891  */
892 void exit_rcu(void)
893 {
894 }
895 
896 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
897 
898 #ifdef CONFIG_RCU_BOOST
899 
900 #include "../locking/rtmutex_common.h"
901 
902 static void rcu_wake_cond(struct task_struct *t, int status)
903 {
904 	/*
905 	 * If the thread is yielding, only wake it when this
906 	 * is invoked from idle
907 	 */
908 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
909 		wake_up_process(t);
910 }
911 
912 /*
913  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
914  * or ->boost_tasks, advancing the pointer to the next task in the
915  * ->blkd_tasks list.
916  *
917  * Note that irqs must be enabled: boosting the task can block.
918  * Returns 1 if there are more tasks needing to be boosted.
919  */
920 static int rcu_boost(struct rcu_node *rnp)
921 {
922 	unsigned long flags;
923 	struct task_struct *t;
924 	struct list_head *tb;
925 
926 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
927 	    READ_ONCE(rnp->boost_tasks) == NULL)
928 		return 0;  /* Nothing left to boost. */
929 
930 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
931 
932 	/*
933 	 * Recheck under the lock: all tasks in need of boosting
934 	 * might exit their RCU read-side critical sections on their own.
935 	 */
936 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
937 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
938 		return 0;
939 	}
940 
941 	/*
942 	 * Preferentially boost tasks blocking expedited grace periods.
943 	 * This cannot starve the normal grace periods because a second
944 	 * expedited grace period must boost all blocked tasks, including
945 	 * those blocking the pre-existing normal grace period.
946 	 */
947 	if (rnp->exp_tasks != NULL) {
948 		tb = rnp->exp_tasks;
949 		rnp->n_exp_boosts++;
950 	} else {
951 		tb = rnp->boost_tasks;
952 		rnp->n_normal_boosts++;
953 	}
954 	rnp->n_tasks_boosted++;
955 
956 	/*
957 	 * We boost task t by manufacturing an rt_mutex that appears to
958 	 * be held by task t.  We leave a pointer to that rt_mutex where
959 	 * task t can find it, and task t will release the mutex when it
960 	 * exits its outermost RCU read-side critical section.  Then
961 	 * simply acquiring this artificial rt_mutex will boost task
962 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
963 	 *
964 	 * Note that task t must acquire rnp->lock to remove itself from
965 	 * the ->blkd_tasks list, which it will do from exit() if from
966 	 * nowhere else.  We therefore are guaranteed that task t will
967 	 * stay around at least until we drop rnp->lock.  Note that
968 	 * rnp->lock also resolves races between our priority boosting
969 	 * and task t's exiting its outermost RCU read-side critical
970 	 * section.
971 	 */
972 	t = container_of(tb, struct task_struct, rcu_node_entry);
973 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
974 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
975 	/* Lock only for side effect: boosts task t's priority. */
976 	rt_mutex_lock(&rnp->boost_mtx);
977 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
978 
979 	return READ_ONCE(rnp->exp_tasks) != NULL ||
980 	       READ_ONCE(rnp->boost_tasks) != NULL;
981 }
982 
983 /*
984  * Priority-boosting kthread, one per leaf rcu_node.
985  */
986 static int rcu_boost_kthread(void *arg)
987 {
988 	struct rcu_node *rnp = (struct rcu_node *)arg;
989 	int spincnt = 0;
990 	int more2boost;
991 
992 	trace_rcu_utilization(TPS("Start boost kthread@init"));
993 	for (;;) {
994 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
995 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
996 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
997 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
998 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
999 		more2boost = rcu_boost(rnp);
1000 		if (more2boost)
1001 			spincnt++;
1002 		else
1003 			spincnt = 0;
1004 		if (spincnt > 10) {
1005 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1006 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1007 			schedule_timeout_interruptible(2);
1008 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1009 			spincnt = 0;
1010 		}
1011 	}
1012 	/* NOTREACHED */
1013 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1014 	return 0;
1015 }
1016 
1017 /*
1018  * Check to see if it is time to start boosting RCU readers that are
1019  * blocking the current grace period, and, if so, tell the per-rcu_node
1020  * kthread to start boosting them.  If there is an expedited grace
1021  * period in progress, it is always time to boost.
1022  *
1023  * The caller must hold rnp->lock, which this function releases.
1024  * The ->boost_kthread_task is immortal, so we don't need to worry
1025  * about it going away.
1026  */
1027 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1028 	__releases(rnp->lock)
1029 {
1030 	struct task_struct *t;
1031 
1032 	lockdep_assert_held(&rnp->lock);
1033 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1034 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1035 		return;
1036 	}
1037 	if (rnp->exp_tasks != NULL ||
1038 	    (rnp->gp_tasks != NULL &&
1039 	     rnp->boost_tasks == NULL &&
1040 	     rnp->qsmask == 0 &&
1041 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1042 		if (rnp->exp_tasks == NULL)
1043 			rnp->boost_tasks = rnp->gp_tasks;
1044 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1045 		t = rnp->boost_kthread_task;
1046 		if (t)
1047 			rcu_wake_cond(t, rnp->boost_kthread_status);
1048 	} else {
1049 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1050 	}
1051 }
1052 
1053 /*
1054  * Wake up the per-CPU kthread to invoke RCU callbacks.
1055  */
1056 static void invoke_rcu_callbacks_kthread(void)
1057 {
1058 	unsigned long flags;
1059 
1060 	local_irq_save(flags);
1061 	__this_cpu_write(rcu_cpu_has_work, 1);
1062 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1063 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1064 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1065 			      __this_cpu_read(rcu_cpu_kthread_status));
1066 	}
1067 	local_irq_restore(flags);
1068 }
1069 
1070 /*
1071  * Is the current CPU running the RCU-callbacks kthread?
1072  * Caller must have preemption disabled.
1073  */
1074 static bool rcu_is_callbacks_kthread(void)
1075 {
1076 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1077 }
1078 
1079 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1080 
1081 /*
1082  * Do priority-boost accounting for the start of a new grace period.
1083  */
1084 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1085 {
1086 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1087 }
1088 
1089 /*
1090  * Create an RCU-boost kthread for the specified node if one does not
1091  * already exist.  We only create this kthread for preemptible RCU.
1092  * Returns zero if all is well, a negated errno otherwise.
1093  */
1094 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1095 				       struct rcu_node *rnp)
1096 {
1097 	int rnp_index = rnp - &rsp->node[0];
1098 	unsigned long flags;
1099 	struct sched_param sp;
1100 	struct task_struct *t;
1101 
1102 	if (rcu_state_p != rsp)
1103 		return 0;
1104 
1105 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1106 		return 0;
1107 
1108 	rsp->boost = 1;
1109 	if (rnp->boost_kthread_task != NULL)
1110 		return 0;
1111 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1112 			   "rcub/%d", rnp_index);
1113 	if (IS_ERR(t))
1114 		return PTR_ERR(t);
1115 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1116 	rnp->boost_kthread_task = t;
1117 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1118 	sp.sched_priority = kthread_prio;
1119 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1120 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1121 	return 0;
1122 }
1123 
1124 static void rcu_kthread_do_work(void)
1125 {
1126 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1127 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1128 	rcu_preempt_do_callbacks();
1129 }
1130 
1131 static void rcu_cpu_kthread_setup(unsigned int cpu)
1132 {
1133 	struct sched_param sp;
1134 
1135 	sp.sched_priority = kthread_prio;
1136 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1137 }
1138 
1139 static void rcu_cpu_kthread_park(unsigned int cpu)
1140 {
1141 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1142 }
1143 
1144 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1145 {
1146 	return __this_cpu_read(rcu_cpu_has_work);
1147 }
1148 
1149 /*
1150  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1151  * RCU softirq used in flavors and configurations of RCU that do not
1152  * support RCU priority boosting.
1153  */
1154 static void rcu_cpu_kthread(unsigned int cpu)
1155 {
1156 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1157 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1158 	int spincnt;
1159 
1160 	for (spincnt = 0; spincnt < 10; spincnt++) {
1161 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1162 		local_bh_disable();
1163 		*statusp = RCU_KTHREAD_RUNNING;
1164 		this_cpu_inc(rcu_cpu_kthread_loops);
1165 		local_irq_disable();
1166 		work = *workp;
1167 		*workp = 0;
1168 		local_irq_enable();
1169 		if (work)
1170 			rcu_kthread_do_work();
1171 		local_bh_enable();
1172 		if (*workp == 0) {
1173 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1174 			*statusp = RCU_KTHREAD_WAITING;
1175 			return;
1176 		}
1177 	}
1178 	*statusp = RCU_KTHREAD_YIELDING;
1179 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1180 	schedule_timeout_interruptible(2);
1181 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1182 	*statusp = RCU_KTHREAD_WAITING;
1183 }
1184 
1185 /*
1186  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1187  * served by the rcu_node in question.  The CPU hotplug lock is still
1188  * held, so the value of rnp->qsmaskinit will be stable.
1189  *
1190  * We don't include outgoingcpu in the affinity set, use -1 if there is
1191  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1192  * this function allows the kthread to execute on any CPU.
1193  */
1194 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1195 {
1196 	struct task_struct *t = rnp->boost_kthread_task;
1197 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1198 	cpumask_var_t cm;
1199 	int cpu;
1200 
1201 	if (!t)
1202 		return;
1203 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1204 		return;
1205 	for_each_leaf_node_possible_cpu(rnp, cpu)
1206 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1207 		    cpu != outgoingcpu)
1208 			cpumask_set_cpu(cpu, cm);
1209 	if (cpumask_weight(cm) == 0)
1210 		cpumask_setall(cm);
1211 	set_cpus_allowed_ptr(t, cm);
1212 	free_cpumask_var(cm);
1213 }
1214 
1215 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1216 	.store			= &rcu_cpu_kthread_task,
1217 	.thread_should_run	= rcu_cpu_kthread_should_run,
1218 	.thread_fn		= rcu_cpu_kthread,
1219 	.thread_comm		= "rcuc/%u",
1220 	.setup			= rcu_cpu_kthread_setup,
1221 	.park			= rcu_cpu_kthread_park,
1222 };
1223 
1224 /*
1225  * Spawn boost kthreads -- called as soon as the scheduler is running.
1226  */
1227 static void __init rcu_spawn_boost_kthreads(void)
1228 {
1229 	struct rcu_node *rnp;
1230 	int cpu;
1231 
1232 	for_each_possible_cpu(cpu)
1233 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1234 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1235 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1236 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1237 }
1238 
1239 static void rcu_prepare_kthreads(int cpu)
1240 {
1241 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1242 	struct rcu_node *rnp = rdp->mynode;
1243 
1244 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1245 	if (rcu_scheduler_fully_active)
1246 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1247 }
1248 
1249 #else /* #ifdef CONFIG_RCU_BOOST */
1250 
1251 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1252 	__releases(rnp->lock)
1253 {
1254 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1255 }
1256 
1257 static void invoke_rcu_callbacks_kthread(void)
1258 {
1259 	WARN_ON_ONCE(1);
1260 }
1261 
1262 static bool rcu_is_callbacks_kthread(void)
1263 {
1264 	return false;
1265 }
1266 
1267 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1268 {
1269 }
1270 
1271 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1272 {
1273 }
1274 
1275 static void __init rcu_spawn_boost_kthreads(void)
1276 {
1277 }
1278 
1279 static void rcu_prepare_kthreads(int cpu)
1280 {
1281 }
1282 
1283 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1284 
1285 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1286 
1287 /*
1288  * Check to see if any future RCU-related work will need to be done
1289  * by the current CPU, even if none need be done immediately, returning
1290  * 1 if so.  This function is part of the RCU implementation; it is -not-
1291  * an exported member of the RCU API.
1292  *
1293  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1294  * any flavor of RCU.
1295  */
1296 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1297 {
1298 	*nextevt = KTIME_MAX;
1299 	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1300 	       ? 0 : rcu_cpu_has_callbacks(NULL);
1301 }
1302 
1303 /*
1304  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1305  * after it.
1306  */
1307 static void rcu_cleanup_after_idle(void)
1308 {
1309 }
1310 
1311 /*
1312  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1313  * is nothing.
1314  */
1315 static void rcu_prepare_for_idle(void)
1316 {
1317 }
1318 
1319 /*
1320  * Don't bother keeping a running count of the number of RCU callbacks
1321  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1322  */
1323 static void rcu_idle_count_callbacks_posted(void)
1324 {
1325 }
1326 
1327 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1328 
1329 /*
1330  * This code is invoked when a CPU goes idle, at which point we want
1331  * to have the CPU do everything required for RCU so that it can enter
1332  * the energy-efficient dyntick-idle mode.  This is handled by a
1333  * state machine implemented by rcu_prepare_for_idle() below.
1334  *
1335  * The following three proprocessor symbols control this state machine:
1336  *
1337  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1338  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1339  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1340  *	benchmarkers who might otherwise be tempted to set this to a large
1341  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1342  *	system.  And if you are -that- concerned about energy efficiency,
1343  *	just power the system down and be done with it!
1344  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1345  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1346  *	callbacks pending.  Setting this too high can OOM your system.
1347  *
1348  * The values below work well in practice.  If future workloads require
1349  * adjustment, they can be converted into kernel config parameters, though
1350  * making the state machine smarter might be a better option.
1351  */
1352 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1353 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1354 
1355 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1356 module_param(rcu_idle_gp_delay, int, 0644);
1357 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1358 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1359 
1360 /*
1361  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1362  * only if it has been awhile since the last time we did so.  Afterwards,
1363  * if there are any callbacks ready for immediate invocation, return true.
1364  */
1365 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1366 {
1367 	bool cbs_ready = false;
1368 	struct rcu_data *rdp;
1369 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1370 	struct rcu_node *rnp;
1371 	struct rcu_state *rsp;
1372 
1373 	/* Exit early if we advanced recently. */
1374 	if (jiffies == rdtp->last_advance_all)
1375 		return false;
1376 	rdtp->last_advance_all = jiffies;
1377 
1378 	for_each_rcu_flavor(rsp) {
1379 		rdp = this_cpu_ptr(rsp->rda);
1380 		rnp = rdp->mynode;
1381 
1382 		/*
1383 		 * Don't bother checking unless a grace period has
1384 		 * completed since we last checked and there are
1385 		 * callbacks not yet ready to invoke.
1386 		 */
1387 		if ((rdp->completed != rnp->completed ||
1388 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1389 		    rcu_segcblist_pend_cbs(&rdp->cblist))
1390 			note_gp_changes(rsp, rdp);
1391 
1392 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1393 			cbs_ready = true;
1394 	}
1395 	return cbs_ready;
1396 }
1397 
1398 /*
1399  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1400  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1401  * caller to set the timeout based on whether or not there are non-lazy
1402  * callbacks.
1403  *
1404  * The caller must have disabled interrupts.
1405  */
1406 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1407 {
1408 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1409 	unsigned long dj;
1410 
1411 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!");
1412 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1413 		*nextevt = KTIME_MAX;
1414 		return 0;
1415 	}
1416 
1417 	/* Snapshot to detect later posting of non-lazy callback. */
1418 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1419 
1420 	/* If no callbacks, RCU doesn't need the CPU. */
1421 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1422 		*nextevt = KTIME_MAX;
1423 		return 0;
1424 	}
1425 
1426 	/* Attempt to advance callbacks. */
1427 	if (rcu_try_advance_all_cbs()) {
1428 		/* Some ready to invoke, so initiate later invocation. */
1429 		invoke_rcu_core();
1430 		return 1;
1431 	}
1432 	rdtp->last_accelerate = jiffies;
1433 
1434 	/* Request timer delay depending on laziness, and round. */
1435 	if (!rdtp->all_lazy) {
1436 		dj = round_up(rcu_idle_gp_delay + jiffies,
1437 			       rcu_idle_gp_delay) - jiffies;
1438 	} else {
1439 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1440 	}
1441 	*nextevt = basemono + dj * TICK_NSEC;
1442 	return 0;
1443 }
1444 
1445 /*
1446  * Prepare a CPU for idle from an RCU perspective.  The first major task
1447  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1448  * The second major task is to check to see if a non-lazy callback has
1449  * arrived at a CPU that previously had only lazy callbacks.  The third
1450  * major task is to accelerate (that is, assign grace-period numbers to)
1451  * any recently arrived callbacks.
1452  *
1453  * The caller must have disabled interrupts.
1454  */
1455 static void rcu_prepare_for_idle(void)
1456 {
1457 	bool needwake;
1458 	struct rcu_data *rdp;
1459 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1460 	struct rcu_node *rnp;
1461 	struct rcu_state *rsp;
1462 	int tne;
1463 
1464 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!");
1465 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1466 	    rcu_is_nocb_cpu(smp_processor_id()))
1467 		return;
1468 
1469 	/* Handle nohz enablement switches conservatively. */
1470 	tne = READ_ONCE(tick_nohz_active);
1471 	if (tne != rdtp->tick_nohz_enabled_snap) {
1472 		if (rcu_cpu_has_callbacks(NULL))
1473 			invoke_rcu_core(); /* force nohz to see update. */
1474 		rdtp->tick_nohz_enabled_snap = tne;
1475 		return;
1476 	}
1477 	if (!tne)
1478 		return;
1479 
1480 	/*
1481 	 * If a non-lazy callback arrived at a CPU having only lazy
1482 	 * callbacks, invoke RCU core for the side-effect of recalculating
1483 	 * idle duration on re-entry to idle.
1484 	 */
1485 	if (rdtp->all_lazy &&
1486 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1487 		rdtp->all_lazy = false;
1488 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1489 		invoke_rcu_core();
1490 		return;
1491 	}
1492 
1493 	/*
1494 	 * If we have not yet accelerated this jiffy, accelerate all
1495 	 * callbacks on this CPU.
1496 	 */
1497 	if (rdtp->last_accelerate == jiffies)
1498 		return;
1499 	rdtp->last_accelerate = jiffies;
1500 	for_each_rcu_flavor(rsp) {
1501 		rdp = this_cpu_ptr(rsp->rda);
1502 		if (rcu_segcblist_pend_cbs(&rdp->cblist))
1503 			continue;
1504 		rnp = rdp->mynode;
1505 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1506 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1507 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1508 		if (needwake)
1509 			rcu_gp_kthread_wake(rsp);
1510 	}
1511 }
1512 
1513 /*
1514  * Clean up for exit from idle.  Attempt to advance callbacks based on
1515  * any grace periods that elapsed while the CPU was idle, and if any
1516  * callbacks are now ready to invoke, initiate invocation.
1517  */
1518 static void rcu_cleanup_after_idle(void)
1519 {
1520 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!");
1521 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1522 	    rcu_is_nocb_cpu(smp_processor_id()))
1523 		return;
1524 	if (rcu_try_advance_all_cbs())
1525 		invoke_rcu_core();
1526 }
1527 
1528 /*
1529  * Keep a running count of the number of non-lazy callbacks posted
1530  * on this CPU.  This running counter (which is never decremented) allows
1531  * rcu_prepare_for_idle() to detect when something out of the idle loop
1532  * posts a callback, even if an equal number of callbacks are invoked.
1533  * Of course, callbacks should only be posted from within a trace event
1534  * designed to be called from idle or from within RCU_NONIDLE().
1535  */
1536 static void rcu_idle_count_callbacks_posted(void)
1537 {
1538 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1539 }
1540 
1541 /*
1542  * Data for flushing lazy RCU callbacks at OOM time.
1543  */
1544 static atomic_t oom_callback_count;
1545 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1546 
1547 /*
1548  * RCU OOM callback -- decrement the outstanding count and deliver the
1549  * wake-up if we are the last one.
1550  */
1551 static void rcu_oom_callback(struct rcu_head *rhp)
1552 {
1553 	if (atomic_dec_and_test(&oom_callback_count))
1554 		wake_up(&oom_callback_wq);
1555 }
1556 
1557 /*
1558  * Post an rcu_oom_notify callback on the current CPU if it has at
1559  * least one lazy callback.  This will unnecessarily post callbacks
1560  * to CPUs that already have a non-lazy callback at the end of their
1561  * callback list, but this is an infrequent operation, so accept some
1562  * extra overhead to keep things simple.
1563  */
1564 static void rcu_oom_notify_cpu(void *unused)
1565 {
1566 	struct rcu_state *rsp;
1567 	struct rcu_data *rdp;
1568 
1569 	for_each_rcu_flavor(rsp) {
1570 		rdp = raw_cpu_ptr(rsp->rda);
1571 		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1572 			atomic_inc(&oom_callback_count);
1573 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1574 		}
1575 	}
1576 }
1577 
1578 /*
1579  * If low on memory, ensure that each CPU has a non-lazy callback.
1580  * This will wake up CPUs that have only lazy callbacks, in turn
1581  * ensuring that they free up the corresponding memory in a timely manner.
1582  * Because an uncertain amount of memory will be freed in some uncertain
1583  * timeframe, we do not claim to have freed anything.
1584  */
1585 static int rcu_oom_notify(struct notifier_block *self,
1586 			  unsigned long notused, void *nfreed)
1587 {
1588 	int cpu;
1589 
1590 	/* Wait for callbacks from earlier instance to complete. */
1591 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1592 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1593 
1594 	/*
1595 	 * Prevent premature wakeup: ensure that all increments happen
1596 	 * before there is a chance of the counter reaching zero.
1597 	 */
1598 	atomic_set(&oom_callback_count, 1);
1599 
1600 	for_each_online_cpu(cpu) {
1601 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1602 		cond_resched_rcu_qs();
1603 	}
1604 
1605 	/* Unconditionally decrement: no need to wake ourselves up. */
1606 	atomic_dec(&oom_callback_count);
1607 
1608 	return NOTIFY_OK;
1609 }
1610 
1611 static struct notifier_block rcu_oom_nb = {
1612 	.notifier_call = rcu_oom_notify
1613 };
1614 
1615 static int __init rcu_register_oom_notifier(void)
1616 {
1617 	register_oom_notifier(&rcu_oom_nb);
1618 	return 0;
1619 }
1620 early_initcall(rcu_register_oom_notifier);
1621 
1622 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1623 
1624 #ifdef CONFIG_RCU_FAST_NO_HZ
1625 
1626 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1627 {
1628 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1629 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1630 
1631 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1632 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1633 		ulong2long(nlpd),
1634 		rdtp->all_lazy ? 'L' : '.',
1635 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1636 }
1637 
1638 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1639 
1640 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1641 {
1642 	*cp = '\0';
1643 }
1644 
1645 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1646 
1647 /* Initiate the stall-info list. */
1648 static void print_cpu_stall_info_begin(void)
1649 {
1650 	pr_cont("\n");
1651 }
1652 
1653 /*
1654  * Print out diagnostic information for the specified stalled CPU.
1655  *
1656  * If the specified CPU is aware of the current RCU grace period
1657  * (flavor specified by rsp), then print the number of scheduling
1658  * clock interrupts the CPU has taken during the time that it has
1659  * been aware.  Otherwise, print the number of RCU grace periods
1660  * that this CPU is ignorant of, for example, "1" if the CPU was
1661  * aware of the previous grace period.
1662  *
1663  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1664  */
1665 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1666 {
1667 	char fast_no_hz[72];
1668 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1669 	struct rcu_dynticks *rdtp = rdp->dynticks;
1670 	char *ticks_title;
1671 	unsigned long ticks_value;
1672 
1673 	if (rsp->gpnum == rdp->gpnum) {
1674 		ticks_title = "ticks this GP";
1675 		ticks_value = rdp->ticks_this_gp;
1676 	} else {
1677 		ticks_title = "GPs behind";
1678 		ticks_value = rsp->gpnum - rdp->gpnum;
1679 	}
1680 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1681 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1682 	       cpu,
1683 	       "O."[!!cpu_online(cpu)],
1684 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1685 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1686 	       ticks_value, ticks_title,
1687 	       rcu_dynticks_snap(rdtp) & 0xfff,
1688 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1689 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1690 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1691 	       fast_no_hz);
1692 }
1693 
1694 /* Terminate the stall-info list. */
1695 static void print_cpu_stall_info_end(void)
1696 {
1697 	pr_err("\t");
1698 }
1699 
1700 /* Zero ->ticks_this_gp for all flavors of RCU. */
1701 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1702 {
1703 	rdp->ticks_this_gp = 0;
1704 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1705 }
1706 
1707 /* Increment ->ticks_this_gp for all flavors of RCU. */
1708 static void increment_cpu_stall_ticks(void)
1709 {
1710 	struct rcu_state *rsp;
1711 
1712 	for_each_rcu_flavor(rsp)
1713 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1714 }
1715 
1716 #ifdef CONFIG_RCU_NOCB_CPU
1717 
1718 /*
1719  * Offload callback processing from the boot-time-specified set of CPUs
1720  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1721  * kthread created that pulls the callbacks from the corresponding CPU,
1722  * waits for a grace period to elapse, and invokes the callbacks.
1723  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1724  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1725  * has been specified, in which case each kthread actively polls its
1726  * CPU.  (Which isn't so great for energy efficiency, but which does
1727  * reduce RCU's overhead on that CPU.)
1728  *
1729  * This is intended to be used in conjunction with Frederic Weisbecker's
1730  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1731  * running CPU-bound user-mode computations.
1732  *
1733  * Offloading of callback processing could also in theory be used as
1734  * an energy-efficiency measure because CPUs with no RCU callbacks
1735  * queued are more aggressive about entering dyntick-idle mode.
1736  */
1737 
1738 
1739 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1740 static int __init rcu_nocb_setup(char *str)
1741 {
1742 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1743 	have_rcu_nocb_mask = true;
1744 	cpulist_parse(str, rcu_nocb_mask);
1745 	return 1;
1746 }
1747 __setup("rcu_nocbs=", rcu_nocb_setup);
1748 
1749 static int __init parse_rcu_nocb_poll(char *arg)
1750 {
1751 	rcu_nocb_poll = true;
1752 	return 0;
1753 }
1754 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1755 
1756 /*
1757  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1758  * grace period.
1759  */
1760 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1761 {
1762 	swake_up_all(sq);
1763 }
1764 
1765 /*
1766  * Set the root rcu_node structure's ->need_future_gp field
1767  * based on the sum of those of all rcu_node structures.  This does
1768  * double-count the root rcu_node structure's requests, but this
1769  * is necessary to handle the possibility of a rcu_nocb_kthread()
1770  * having awakened during the time that the rcu_node structures
1771  * were being updated for the end of the previous grace period.
1772  */
1773 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1774 {
1775 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1776 }
1777 
1778 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1779 {
1780 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1781 }
1782 
1783 static void rcu_init_one_nocb(struct rcu_node *rnp)
1784 {
1785 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1786 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1787 }
1788 
1789 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1790 /* Is the specified CPU a no-CBs CPU? */
1791 bool rcu_is_nocb_cpu(int cpu)
1792 {
1793 	if (have_rcu_nocb_mask)
1794 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1795 	return false;
1796 }
1797 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1798 
1799 /*
1800  * Kick the leader kthread for this NOCB group.
1801  */
1802 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1803 {
1804 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1805 
1806 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1807 		return;
1808 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1809 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1810 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1811 		smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1812 		swake_up(&rdp_leader->nocb_wq);
1813 	}
1814 }
1815 
1816 /*
1817  * Does the specified CPU need an RCU callback for the specified flavor
1818  * of rcu_barrier()?
1819  */
1820 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1821 {
1822 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1823 	unsigned long ret;
1824 #ifdef CONFIG_PROVE_RCU
1825 	struct rcu_head *rhp;
1826 #endif /* #ifdef CONFIG_PROVE_RCU */
1827 
1828 	/*
1829 	 * Check count of all no-CBs callbacks awaiting invocation.
1830 	 * There needs to be a barrier before this function is called,
1831 	 * but associated with a prior determination that no more
1832 	 * callbacks would be posted.  In the worst case, the first
1833 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1834 	 * necessarily rely on this, not a substitute for the caller
1835 	 * getting the concurrency design right!).  There must also be
1836 	 * a barrier between the following load an posting of a callback
1837 	 * (if a callback is in fact needed).  This is associated with an
1838 	 * atomic_inc() in the caller.
1839 	 */
1840 	ret = atomic_long_read(&rdp->nocb_q_count);
1841 
1842 #ifdef CONFIG_PROVE_RCU
1843 	rhp = READ_ONCE(rdp->nocb_head);
1844 	if (!rhp)
1845 		rhp = READ_ONCE(rdp->nocb_gp_head);
1846 	if (!rhp)
1847 		rhp = READ_ONCE(rdp->nocb_follower_head);
1848 
1849 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1850 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1851 	    rcu_scheduler_fully_active) {
1852 		/* RCU callback enqueued before CPU first came online??? */
1853 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1854 		       cpu, rhp->func);
1855 		WARN_ON_ONCE(1);
1856 	}
1857 #endif /* #ifdef CONFIG_PROVE_RCU */
1858 
1859 	return !!ret;
1860 }
1861 
1862 /*
1863  * Enqueue the specified string of rcu_head structures onto the specified
1864  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1865  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1866  * counts are supplied by rhcount and rhcount_lazy.
1867  *
1868  * If warranted, also wake up the kthread servicing this CPUs queues.
1869  */
1870 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1871 				    struct rcu_head *rhp,
1872 				    struct rcu_head **rhtp,
1873 				    int rhcount, int rhcount_lazy,
1874 				    unsigned long flags)
1875 {
1876 	int len;
1877 	struct rcu_head **old_rhpp;
1878 	struct task_struct *t;
1879 
1880 	/* Enqueue the callback on the nocb list and update counts. */
1881 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1882 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1883 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1884 	WRITE_ONCE(*old_rhpp, rhp);
1885 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1886 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1887 
1888 	/* If we are not being polled and there is a kthread, awaken it ... */
1889 	t = READ_ONCE(rdp->nocb_kthread);
1890 	if (rcu_nocb_poll || !t) {
1891 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1892 				    TPS("WakeNotPoll"));
1893 		return;
1894 	}
1895 	len = atomic_long_read(&rdp->nocb_q_count);
1896 	if (old_rhpp == &rdp->nocb_head) {
1897 		if (!irqs_disabled_flags(flags)) {
1898 			/* ... if queue was empty ... */
1899 			wake_nocb_leader(rdp, false);
1900 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1901 					    TPS("WakeEmpty"));
1902 		} else {
1903 			WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE);
1904 			/* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1905 			smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1906 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1907 					    TPS("WakeEmptyIsDeferred"));
1908 		}
1909 		rdp->qlen_last_fqs_check = 0;
1910 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1911 		/* ... or if many callbacks queued. */
1912 		if (!irqs_disabled_flags(flags)) {
1913 			wake_nocb_leader(rdp, true);
1914 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1915 					    TPS("WakeOvf"));
1916 		} else {
1917 			WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_FORCE);
1918 			/* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1919 			smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1920 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1921 					    TPS("WakeOvfIsDeferred"));
1922 		}
1923 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1924 	} else {
1925 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1926 	}
1927 	return;
1928 }
1929 
1930 /*
1931  * This is a helper for __call_rcu(), which invokes this when the normal
1932  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1933  * function returns failure back to __call_rcu(), which can complain
1934  * appropriately.
1935  *
1936  * Otherwise, this function queues the callback where the corresponding
1937  * "rcuo" kthread can find it.
1938  */
1939 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1940 			    bool lazy, unsigned long flags)
1941 {
1942 
1943 	if (!rcu_is_nocb_cpu(rdp->cpu))
1944 		return false;
1945 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1946 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1947 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1948 					 (unsigned long)rhp->func,
1949 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1950 					 -atomic_long_read(&rdp->nocb_q_count));
1951 	else
1952 		trace_rcu_callback(rdp->rsp->name, rhp,
1953 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1954 				   -atomic_long_read(&rdp->nocb_q_count));
1955 
1956 	/*
1957 	 * If called from an extended quiescent state with interrupts
1958 	 * disabled, invoke the RCU core in order to allow the idle-entry
1959 	 * deferred-wakeup check to function.
1960 	 */
1961 	if (irqs_disabled_flags(flags) &&
1962 	    !rcu_is_watching() &&
1963 	    cpu_online(smp_processor_id()))
1964 		invoke_rcu_core();
1965 
1966 	return true;
1967 }
1968 
1969 /*
1970  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1971  * not a no-CBs CPU.
1972  */
1973 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1974 						     struct rcu_data *rdp,
1975 						     unsigned long flags)
1976 {
1977 	long ql = rsp->orphan_done.len;
1978 	long qll = rsp->orphan_done.len_lazy;
1979 
1980 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1981 	if (!rcu_is_nocb_cpu(smp_processor_id()))
1982 		return false;
1983 
1984 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
1985 	if (rsp->orphan_done.head) {
1986 		__call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_done),
1987 					rcu_cblist_tail(&rsp->orphan_done),
1988 					ql, qll, flags);
1989 	}
1990 	if (rsp->orphan_pend.head) {
1991 		__call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_pend),
1992 					rcu_cblist_tail(&rsp->orphan_pend),
1993 					ql, qll, flags);
1994 	}
1995 	rcu_cblist_init(&rsp->orphan_done);
1996 	rcu_cblist_init(&rsp->orphan_pend);
1997 	return true;
1998 }
1999 
2000 /*
2001  * If necessary, kick off a new grace period, and either way wait
2002  * for a subsequent grace period to complete.
2003  */
2004 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2005 {
2006 	unsigned long c;
2007 	bool d;
2008 	unsigned long flags;
2009 	bool needwake;
2010 	struct rcu_node *rnp = rdp->mynode;
2011 
2012 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2013 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2014 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2015 	if (needwake)
2016 		rcu_gp_kthread_wake(rdp->rsp);
2017 
2018 	/*
2019 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2020 	 * up the load average.
2021 	 */
2022 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2023 	for (;;) {
2024 		swait_event_interruptible(
2025 			rnp->nocb_gp_wq[c & 0x1],
2026 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2027 		if (likely(d))
2028 			break;
2029 		WARN_ON(signal_pending(current));
2030 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2031 	}
2032 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2033 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2034 }
2035 
2036 /*
2037  * Leaders come here to wait for additional callbacks to show up.
2038  * This function does not return until callbacks appear.
2039  */
2040 static void nocb_leader_wait(struct rcu_data *my_rdp)
2041 {
2042 	bool firsttime = true;
2043 	bool gotcbs;
2044 	struct rcu_data *rdp;
2045 	struct rcu_head **tail;
2046 
2047 wait_again:
2048 
2049 	/* Wait for callbacks to appear. */
2050 	if (!rcu_nocb_poll) {
2051 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2052 		swait_event_interruptible(my_rdp->nocb_wq,
2053 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2054 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2055 	} else if (firsttime) {
2056 		firsttime = false; /* Don't drown trace log with "Poll"! */
2057 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2058 	}
2059 
2060 	/*
2061 	 * Each pass through the following loop checks a follower for CBs.
2062 	 * We are our own first follower.  Any CBs found are moved to
2063 	 * nocb_gp_head, where they await a grace period.
2064 	 */
2065 	gotcbs = false;
2066 	smp_mb(); /* wakeup before ->nocb_head reads. */
2067 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2068 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2069 		if (!rdp->nocb_gp_head)
2070 			continue;  /* No CBs here, try next follower. */
2071 
2072 		/* Move callbacks to wait-for-GP list, which is empty. */
2073 		WRITE_ONCE(rdp->nocb_head, NULL);
2074 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2075 		gotcbs = true;
2076 	}
2077 
2078 	/*
2079 	 * If there were no callbacks, sleep a bit, rescan after a
2080 	 * memory barrier, and go retry.
2081 	 */
2082 	if (unlikely(!gotcbs)) {
2083 		if (!rcu_nocb_poll)
2084 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2085 					    "WokeEmpty");
2086 		WARN_ON(signal_pending(current));
2087 		schedule_timeout_interruptible(1);
2088 
2089 		/* Rescan in case we were a victim of memory ordering. */
2090 		my_rdp->nocb_leader_sleep = true;
2091 		smp_mb();  /* Ensure _sleep true before scan. */
2092 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2093 			if (READ_ONCE(rdp->nocb_head)) {
2094 				/* Found CB, so short-circuit next wait. */
2095 				my_rdp->nocb_leader_sleep = false;
2096 				break;
2097 			}
2098 		goto wait_again;
2099 	}
2100 
2101 	/* Wait for one grace period. */
2102 	rcu_nocb_wait_gp(my_rdp);
2103 
2104 	/*
2105 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2106 	 * We set it now, but recheck for new callbacks while
2107 	 * traversing our follower list.
2108 	 */
2109 	my_rdp->nocb_leader_sleep = true;
2110 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2111 
2112 	/* Each pass through the following loop wakes a follower, if needed. */
2113 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2114 		if (READ_ONCE(rdp->nocb_head))
2115 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2116 		if (!rdp->nocb_gp_head)
2117 			continue; /* No CBs, so no need to wake follower. */
2118 
2119 		/* Append callbacks to follower's "done" list. */
2120 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2121 		*tail = rdp->nocb_gp_head;
2122 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2123 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2124 			/*
2125 			 * List was empty, wake up the follower.
2126 			 * Memory barriers supplied by atomic_long_add().
2127 			 */
2128 			swake_up(&rdp->nocb_wq);
2129 		}
2130 	}
2131 
2132 	/* If we (the leader) don't have CBs, go wait some more. */
2133 	if (!my_rdp->nocb_follower_head)
2134 		goto wait_again;
2135 }
2136 
2137 /*
2138  * Followers come here to wait for additional callbacks to show up.
2139  * This function does not return until callbacks appear.
2140  */
2141 static void nocb_follower_wait(struct rcu_data *rdp)
2142 {
2143 	bool firsttime = true;
2144 
2145 	for (;;) {
2146 		if (!rcu_nocb_poll) {
2147 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2148 					    "FollowerSleep");
2149 			swait_event_interruptible(rdp->nocb_wq,
2150 						 READ_ONCE(rdp->nocb_follower_head));
2151 		} else if (firsttime) {
2152 			/* Don't drown trace log with "Poll"! */
2153 			firsttime = false;
2154 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2155 		}
2156 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2157 			/* ^^^ Ensure CB invocation follows _head test. */
2158 			return;
2159 		}
2160 		if (!rcu_nocb_poll)
2161 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2162 					    "WokeEmpty");
2163 		WARN_ON(signal_pending(current));
2164 		schedule_timeout_interruptible(1);
2165 	}
2166 }
2167 
2168 /*
2169  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2170  * callbacks queued by the corresponding no-CBs CPU, however, there is
2171  * an optional leader-follower relationship so that the grace-period
2172  * kthreads don't have to do quite so many wakeups.
2173  */
2174 static int rcu_nocb_kthread(void *arg)
2175 {
2176 	int c, cl;
2177 	struct rcu_head *list;
2178 	struct rcu_head *next;
2179 	struct rcu_head **tail;
2180 	struct rcu_data *rdp = arg;
2181 
2182 	/* Each pass through this loop invokes one batch of callbacks */
2183 	for (;;) {
2184 		/* Wait for callbacks. */
2185 		if (rdp->nocb_leader == rdp)
2186 			nocb_leader_wait(rdp);
2187 		else
2188 			nocb_follower_wait(rdp);
2189 
2190 		/* Pull the ready-to-invoke callbacks onto local list. */
2191 		list = READ_ONCE(rdp->nocb_follower_head);
2192 		BUG_ON(!list);
2193 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2194 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2195 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2196 
2197 		/* Each pass through the following loop invokes a callback. */
2198 		trace_rcu_batch_start(rdp->rsp->name,
2199 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2200 				      atomic_long_read(&rdp->nocb_q_count), -1);
2201 		c = cl = 0;
2202 		while (list) {
2203 			next = list->next;
2204 			/* Wait for enqueuing to complete, if needed. */
2205 			while (next == NULL && &list->next != tail) {
2206 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2207 						    TPS("WaitQueue"));
2208 				schedule_timeout_interruptible(1);
2209 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2210 						    TPS("WokeQueue"));
2211 				next = list->next;
2212 			}
2213 			debug_rcu_head_unqueue(list);
2214 			local_bh_disable();
2215 			if (__rcu_reclaim(rdp->rsp->name, list))
2216 				cl++;
2217 			c++;
2218 			local_bh_enable();
2219 			cond_resched_rcu_qs();
2220 			list = next;
2221 		}
2222 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2223 		smp_mb__before_atomic();  /* _add after CB invocation. */
2224 		atomic_long_add(-c, &rdp->nocb_q_count);
2225 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2226 		rdp->n_nocbs_invoked += c;
2227 	}
2228 	return 0;
2229 }
2230 
2231 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2232 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2233 {
2234 	return READ_ONCE(rdp->nocb_defer_wakeup);
2235 }
2236 
2237 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2238 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2239 {
2240 	int ndw;
2241 
2242 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2243 		return;
2244 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2245 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2246 	wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE);
2247 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2248 }
2249 
2250 void __init rcu_init_nohz(void)
2251 {
2252 	int cpu;
2253 	bool need_rcu_nocb_mask = true;
2254 	struct rcu_state *rsp;
2255 
2256 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2257 	need_rcu_nocb_mask = false;
2258 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2259 
2260 #if defined(CONFIG_NO_HZ_FULL)
2261 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2262 		need_rcu_nocb_mask = true;
2263 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2264 
2265 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2266 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2267 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2268 			return;
2269 		}
2270 		have_rcu_nocb_mask = true;
2271 	}
2272 	if (!have_rcu_nocb_mask)
2273 		return;
2274 
2275 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2276 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2277 	cpumask_set_cpu(0, rcu_nocb_mask);
2278 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2279 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2280 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2281 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2282 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2283 #if defined(CONFIG_NO_HZ_FULL)
2284 	if (tick_nohz_full_running)
2285 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2286 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2287 
2288 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2289 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2290 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2291 			    rcu_nocb_mask);
2292 	}
2293 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2294 		cpumask_pr_args(rcu_nocb_mask));
2295 	if (rcu_nocb_poll)
2296 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2297 
2298 	for_each_rcu_flavor(rsp) {
2299 		for_each_cpu(cpu, rcu_nocb_mask)
2300 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2301 		rcu_organize_nocb_kthreads(rsp);
2302 	}
2303 }
2304 
2305 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2306 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2307 {
2308 	rdp->nocb_tail = &rdp->nocb_head;
2309 	init_swait_queue_head(&rdp->nocb_wq);
2310 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2311 }
2312 
2313 /*
2314  * If the specified CPU is a no-CBs CPU that does not already have its
2315  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2316  * brought online out of order, this can require re-organizing the
2317  * leader-follower relationships.
2318  */
2319 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2320 {
2321 	struct rcu_data *rdp;
2322 	struct rcu_data *rdp_last;
2323 	struct rcu_data *rdp_old_leader;
2324 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2325 	struct task_struct *t;
2326 
2327 	/*
2328 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2329 	 * then nothing to do.
2330 	 */
2331 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2332 		return;
2333 
2334 	/* If we didn't spawn the leader first, reorganize! */
2335 	rdp_old_leader = rdp_spawn->nocb_leader;
2336 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2337 		rdp_last = NULL;
2338 		rdp = rdp_old_leader;
2339 		do {
2340 			rdp->nocb_leader = rdp_spawn;
2341 			if (rdp_last && rdp != rdp_spawn)
2342 				rdp_last->nocb_next_follower = rdp;
2343 			if (rdp == rdp_spawn) {
2344 				rdp = rdp->nocb_next_follower;
2345 			} else {
2346 				rdp_last = rdp;
2347 				rdp = rdp->nocb_next_follower;
2348 				rdp_last->nocb_next_follower = NULL;
2349 			}
2350 		} while (rdp);
2351 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2352 	}
2353 
2354 	/* Spawn the kthread for this CPU and RCU flavor. */
2355 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2356 			"rcuo%c/%d", rsp->abbr, cpu);
2357 	BUG_ON(IS_ERR(t));
2358 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2359 }
2360 
2361 /*
2362  * If the specified CPU is a no-CBs CPU that does not already have its
2363  * rcuo kthreads, spawn them.
2364  */
2365 static void rcu_spawn_all_nocb_kthreads(int cpu)
2366 {
2367 	struct rcu_state *rsp;
2368 
2369 	if (rcu_scheduler_fully_active)
2370 		for_each_rcu_flavor(rsp)
2371 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2372 }
2373 
2374 /*
2375  * Once the scheduler is running, spawn rcuo kthreads for all online
2376  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2377  * non-boot CPUs come online -- if this changes, we will need to add
2378  * some mutual exclusion.
2379  */
2380 static void __init rcu_spawn_nocb_kthreads(void)
2381 {
2382 	int cpu;
2383 
2384 	for_each_online_cpu(cpu)
2385 		rcu_spawn_all_nocb_kthreads(cpu);
2386 }
2387 
2388 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2389 static int rcu_nocb_leader_stride = -1;
2390 module_param(rcu_nocb_leader_stride, int, 0444);
2391 
2392 /*
2393  * Initialize leader-follower relationships for all no-CBs CPU.
2394  */
2395 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2396 {
2397 	int cpu;
2398 	int ls = rcu_nocb_leader_stride;
2399 	int nl = 0;  /* Next leader. */
2400 	struct rcu_data *rdp;
2401 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2402 	struct rcu_data *rdp_prev = NULL;
2403 
2404 	if (!have_rcu_nocb_mask)
2405 		return;
2406 	if (ls == -1) {
2407 		ls = int_sqrt(nr_cpu_ids);
2408 		rcu_nocb_leader_stride = ls;
2409 	}
2410 
2411 	/*
2412 	 * Each pass through this loop sets up one rcu_data structure.
2413 	 * Should the corresponding CPU come online in the future, then
2414 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2415 	 */
2416 	for_each_cpu(cpu, rcu_nocb_mask) {
2417 		rdp = per_cpu_ptr(rsp->rda, cpu);
2418 		if (rdp->cpu >= nl) {
2419 			/* New leader, set up for followers & next leader. */
2420 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2421 			rdp->nocb_leader = rdp;
2422 			rdp_leader = rdp;
2423 		} else {
2424 			/* Another follower, link to previous leader. */
2425 			rdp->nocb_leader = rdp_leader;
2426 			rdp_prev->nocb_next_follower = rdp;
2427 		}
2428 		rdp_prev = rdp;
2429 	}
2430 }
2431 
2432 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2433 static bool init_nocb_callback_list(struct rcu_data *rdp)
2434 {
2435 	if (!rcu_is_nocb_cpu(rdp->cpu))
2436 		return false;
2437 
2438 	/* If there are early-boot callbacks, move them to nocb lists. */
2439 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2440 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2441 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2442 		atomic_long_set(&rdp->nocb_q_count,
2443 				rcu_segcblist_n_cbs(&rdp->cblist));
2444 		atomic_long_set(&rdp->nocb_q_count_lazy,
2445 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2446 		rcu_segcblist_init(&rdp->cblist);
2447 	}
2448 	rcu_segcblist_disable(&rdp->cblist);
2449 	return true;
2450 }
2451 
2452 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2453 
2454 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2455 {
2456 	WARN_ON_ONCE(1); /* Should be dead code. */
2457 	return false;
2458 }
2459 
2460 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2461 {
2462 }
2463 
2464 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2465 {
2466 }
2467 
2468 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2469 {
2470 	return NULL;
2471 }
2472 
2473 static void rcu_init_one_nocb(struct rcu_node *rnp)
2474 {
2475 }
2476 
2477 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2478 			    bool lazy, unsigned long flags)
2479 {
2480 	return false;
2481 }
2482 
2483 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2484 						     struct rcu_data *rdp,
2485 						     unsigned long flags)
2486 {
2487 	return false;
2488 }
2489 
2490 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2491 {
2492 }
2493 
2494 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2495 {
2496 	return false;
2497 }
2498 
2499 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2500 {
2501 }
2502 
2503 static void rcu_spawn_all_nocb_kthreads(int cpu)
2504 {
2505 }
2506 
2507 static void __init rcu_spawn_nocb_kthreads(void)
2508 {
2509 }
2510 
2511 static bool init_nocb_callback_list(struct rcu_data *rdp)
2512 {
2513 	return false;
2514 }
2515 
2516 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2517 
2518 /*
2519  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2520  * arbitrarily long period of time with the scheduling-clock tick turned
2521  * off.  RCU will be paying attention to this CPU because it is in the
2522  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2523  * machine because the scheduling-clock tick has been disabled.  Therefore,
2524  * if an adaptive-ticks CPU is failing to respond to the current grace
2525  * period and has not be idle from an RCU perspective, kick it.
2526  */
2527 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2528 {
2529 #ifdef CONFIG_NO_HZ_FULL
2530 	if (tick_nohz_full_cpu(cpu))
2531 		smp_send_reschedule(cpu);
2532 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2533 }
2534 
2535 /*
2536  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2537  * grace-period kthread will do force_quiescent_state() processing?
2538  * The idea is to avoid waking up RCU core processing on such a
2539  * CPU unless the grace period has extended for too long.
2540  *
2541  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2542  * CONFIG_RCU_NOCB_CPU CPUs.
2543  */
2544 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2545 {
2546 #ifdef CONFIG_NO_HZ_FULL
2547 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2548 	    (!rcu_gp_in_progress(rsp) ||
2549 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2550 		return true;
2551 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2552 	return false;
2553 }
2554 
2555 /*
2556  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2557  * timekeeping CPU.
2558  */
2559 static void rcu_bind_gp_kthread(void)
2560 {
2561 	int __maybe_unused cpu;
2562 
2563 	if (!tick_nohz_full_enabled())
2564 		return;
2565 	housekeeping_affine(current);
2566 }
2567 
2568 /* Record the current task on dyntick-idle entry. */
2569 static void rcu_dynticks_task_enter(void)
2570 {
2571 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2572 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2573 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2574 }
2575 
2576 /* Record no current task on dyntick-idle exit. */
2577 static void rcu_dynticks_task_exit(void)
2578 {
2579 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2580 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2581 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2582 }
2583