1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 31 #define pr_fmt(fmt) "rcu: " fmt 32 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/rcupdate_wait.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/sched/debug.h> 42 #include <linux/nmi.h> 43 #include <linux/atomic.h> 44 #include <linux/bitops.h> 45 #include <linux/export.h> 46 #include <linux/completion.h> 47 #include <linux/moduleparam.h> 48 #include <linux/percpu.h> 49 #include <linux/notifier.h> 50 #include <linux/cpu.h> 51 #include <linux/mutex.h> 52 #include <linux/time.h> 53 #include <linux/kernel_stat.h> 54 #include <linux/wait.h> 55 #include <linux/kthread.h> 56 #include <uapi/linux/sched/types.h> 57 #include <linux/prefetch.h> 58 #include <linux/delay.h> 59 #include <linux/stop_machine.h> 60 #include <linux/random.h> 61 #include <linux/trace_events.h> 62 #include <linux/suspend.h> 63 #include <linux/ftrace.h> 64 #include <linux/tick.h> 65 66 #include "tree.h" 67 #include "rcu.h" 68 69 #ifdef MODULE_PARAM_PREFIX 70 #undef MODULE_PARAM_PREFIX 71 #endif 72 #define MODULE_PARAM_PREFIX "rcutree." 73 74 /* Data structures. */ 75 76 /* 77 * Steal a bit from the bottom of ->dynticks for idle entry/exit 78 * control. Initially this is for TLB flushing. 79 */ 80 #define RCU_DYNTICK_CTRL_MASK 0x1 81 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 82 #ifndef rcu_eqs_special_exit 83 #define rcu_eqs_special_exit() do { } while (0) 84 #endif 85 86 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 87 .dynticks_nesting = 1, 88 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 89 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 90 }; 91 struct rcu_state rcu_state = { 92 .level = { &rcu_state.node[0] }, 93 .gp_state = RCU_GP_IDLE, 94 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 95 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 96 .name = RCU_NAME, 97 .abbr = RCU_ABBR, 98 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 99 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 100 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 101 }; 102 103 /* Dump rcu_node combining tree at boot to verify correct setup. */ 104 static bool dump_tree; 105 module_param(dump_tree, bool, 0444); 106 /* Control rcu_node-tree auto-balancing at boot time. */ 107 static bool rcu_fanout_exact; 108 module_param(rcu_fanout_exact, bool, 0444); 109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 /* Number of rcu_nodes at specified level. */ 114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 /* panic() on RCU Stall sysctl. */ 117 int sysctl_panic_on_rcu_stall __read_mostly; 118 119 /* 120 * The rcu_scheduler_active variable is initialized to the value 121 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 122 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 123 * RCU can assume that there is but one task, allowing RCU to (for example) 124 * optimize synchronize_rcu() to a simple barrier(). When this variable 125 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 126 * to detect real grace periods. This variable is also used to suppress 127 * boot-time false positives from lockdep-RCU error checking. Finally, it 128 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 129 * is fully initialized, including all of its kthreads having been spawned. 130 */ 131 int rcu_scheduler_active __read_mostly; 132 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 133 134 /* 135 * The rcu_scheduler_fully_active variable transitions from zero to one 136 * during the early_initcall() processing, which is after the scheduler 137 * is capable of creating new tasks. So RCU processing (for example, 138 * creating tasks for RCU priority boosting) must be delayed until after 139 * rcu_scheduler_fully_active transitions from zero to one. We also 140 * currently delay invocation of any RCU callbacks until after this point. 141 * 142 * It might later prove better for people registering RCU callbacks during 143 * early boot to take responsibility for these callbacks, but one step at 144 * a time. 145 */ 146 static int rcu_scheduler_fully_active __read_mostly; 147 148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 149 unsigned long gps, unsigned long flags); 150 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 151 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 152 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 153 static void invoke_rcu_core(void); 154 static void invoke_rcu_callbacks(struct rcu_data *rdp); 155 static void rcu_report_exp_rdp(struct rcu_data *rdp); 156 static void sync_sched_exp_online_cleanup(int cpu); 157 158 /* rcuc/rcub kthread realtime priority */ 159 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 160 module_param(kthread_prio, int, 0644); 161 162 /* Delay in jiffies for grace-period initialization delays, debug only. */ 163 164 static int gp_preinit_delay; 165 module_param(gp_preinit_delay, int, 0444); 166 static int gp_init_delay; 167 module_param(gp_init_delay, int, 0444); 168 static int gp_cleanup_delay; 169 module_param(gp_cleanup_delay, int, 0444); 170 171 /* Retrieve RCU kthreads priority for rcutorture */ 172 int rcu_get_gp_kthreads_prio(void) 173 { 174 return kthread_prio; 175 } 176 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 177 178 /* 179 * Number of grace periods between delays, normalized by the duration of 180 * the delay. The longer the delay, the more the grace periods between 181 * each delay. The reason for this normalization is that it means that, 182 * for non-zero delays, the overall slowdown of grace periods is constant 183 * regardless of the duration of the delay. This arrangement balances 184 * the need for long delays to increase some race probabilities with the 185 * need for fast grace periods to increase other race probabilities. 186 */ 187 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 188 189 /* 190 * Compute the mask of online CPUs for the specified rcu_node structure. 191 * This will not be stable unless the rcu_node structure's ->lock is 192 * held, but the bit corresponding to the current CPU will be stable 193 * in most contexts. 194 */ 195 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 196 { 197 return READ_ONCE(rnp->qsmaskinitnext); 198 } 199 200 /* 201 * Return true if an RCU grace period is in progress. The READ_ONCE()s 202 * permit this function to be invoked without holding the root rcu_node 203 * structure's ->lock, but of course results can be subject to change. 204 */ 205 static int rcu_gp_in_progress(void) 206 { 207 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 208 } 209 210 void rcu_softirq_qs(void) 211 { 212 rcu_qs(); 213 rcu_preempt_deferred_qs(current); 214 } 215 216 /* 217 * Record entry into an extended quiescent state. This is only to be 218 * called when not already in an extended quiescent state. 219 */ 220 static void rcu_dynticks_eqs_enter(void) 221 { 222 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 223 int seq; 224 225 /* 226 * CPUs seeing atomic_add_return() must see prior RCU read-side 227 * critical sections, and we also must force ordering with the 228 * next idle sojourn. 229 */ 230 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 231 /* Better be in an extended quiescent state! */ 232 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 233 (seq & RCU_DYNTICK_CTRL_CTR)); 234 /* Better not have special action (TLB flush) pending! */ 235 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 236 (seq & RCU_DYNTICK_CTRL_MASK)); 237 } 238 239 /* 240 * Record exit from an extended quiescent state. This is only to be 241 * called from an extended quiescent state. 242 */ 243 static void rcu_dynticks_eqs_exit(void) 244 { 245 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 246 int seq; 247 248 /* 249 * CPUs seeing atomic_add_return() must see prior idle sojourns, 250 * and we also must force ordering with the next RCU read-side 251 * critical section. 252 */ 253 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 254 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 255 !(seq & RCU_DYNTICK_CTRL_CTR)); 256 if (seq & RCU_DYNTICK_CTRL_MASK) { 257 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 258 smp_mb__after_atomic(); /* _exit after clearing mask. */ 259 /* Prefer duplicate flushes to losing a flush. */ 260 rcu_eqs_special_exit(); 261 } 262 } 263 264 /* 265 * Reset the current CPU's ->dynticks counter to indicate that the 266 * newly onlined CPU is no longer in an extended quiescent state. 267 * This will either leave the counter unchanged, or increment it 268 * to the next non-quiescent value. 269 * 270 * The non-atomic test/increment sequence works because the upper bits 271 * of the ->dynticks counter are manipulated only by the corresponding CPU, 272 * or when the corresponding CPU is offline. 273 */ 274 static void rcu_dynticks_eqs_online(void) 275 { 276 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 277 278 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 279 return; 280 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 281 } 282 283 /* 284 * Is the current CPU in an extended quiescent state? 285 * 286 * No ordering, as we are sampling CPU-local information. 287 */ 288 bool rcu_dynticks_curr_cpu_in_eqs(void) 289 { 290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 291 292 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 293 } 294 295 /* 296 * Snapshot the ->dynticks counter with full ordering so as to allow 297 * stable comparison of this counter with past and future snapshots. 298 */ 299 int rcu_dynticks_snap(struct rcu_data *rdp) 300 { 301 int snap = atomic_add_return(0, &rdp->dynticks); 302 303 return snap & ~RCU_DYNTICK_CTRL_MASK; 304 } 305 306 /* 307 * Return true if the snapshot returned from rcu_dynticks_snap() 308 * indicates that RCU is in an extended quiescent state. 309 */ 310 static bool rcu_dynticks_in_eqs(int snap) 311 { 312 return !(snap & RCU_DYNTICK_CTRL_CTR); 313 } 314 315 /* 316 * Return true if the CPU corresponding to the specified rcu_data 317 * structure has spent some time in an extended quiescent state since 318 * rcu_dynticks_snap() returned the specified snapshot. 319 */ 320 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 321 { 322 return snap != rcu_dynticks_snap(rdp); 323 } 324 325 /* 326 * Set the special (bottom) bit of the specified CPU so that it 327 * will take special action (such as flushing its TLB) on the 328 * next exit from an extended quiescent state. Returns true if 329 * the bit was successfully set, or false if the CPU was not in 330 * an extended quiescent state. 331 */ 332 bool rcu_eqs_special_set(int cpu) 333 { 334 int old; 335 int new; 336 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 337 338 do { 339 old = atomic_read(&rdp->dynticks); 340 if (old & RCU_DYNTICK_CTRL_CTR) 341 return false; 342 new = old | RCU_DYNTICK_CTRL_MASK; 343 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 344 return true; 345 } 346 347 /* 348 * Let the RCU core know that this CPU has gone through the scheduler, 349 * which is a quiescent state. This is called when the need for a 350 * quiescent state is urgent, so we burn an atomic operation and full 351 * memory barriers to let the RCU core know about it, regardless of what 352 * this CPU might (or might not) do in the near future. 353 * 354 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 355 * 356 * The caller must have disabled interrupts and must not be idle. 357 */ 358 static void __maybe_unused rcu_momentary_dyntick_idle(void) 359 { 360 int special; 361 362 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 363 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 364 &this_cpu_ptr(&rcu_data)->dynticks); 365 /* It is illegal to call this from idle state. */ 366 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 367 rcu_preempt_deferred_qs(current); 368 } 369 370 /** 371 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 372 * 373 * If the current CPU is idle or running at a first-level (not nested) 374 * interrupt from idle, return true. The caller must have at least 375 * disabled preemption. 376 */ 377 static int rcu_is_cpu_rrupt_from_idle(void) 378 { 379 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 && 380 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1; 381 } 382 383 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 384 static long blimit = DEFAULT_RCU_BLIMIT; 385 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 386 static long qhimark = DEFAULT_RCU_QHIMARK; 387 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 388 static long qlowmark = DEFAULT_RCU_QLOMARK; 389 390 module_param(blimit, long, 0444); 391 module_param(qhimark, long, 0444); 392 module_param(qlowmark, long, 0444); 393 394 static ulong jiffies_till_first_fqs = ULONG_MAX; 395 static ulong jiffies_till_next_fqs = ULONG_MAX; 396 static bool rcu_kick_kthreads; 397 398 /* 399 * How long the grace period must be before we start recruiting 400 * quiescent-state help from rcu_note_context_switch(). 401 */ 402 static ulong jiffies_till_sched_qs = ULONG_MAX; 403 module_param(jiffies_till_sched_qs, ulong, 0444); 404 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */ 405 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 406 407 /* 408 * Make sure that we give the grace-period kthread time to detect any 409 * idle CPUs before taking active measures to force quiescent states. 410 * However, don't go below 100 milliseconds, adjusted upwards for really 411 * large systems. 412 */ 413 static void adjust_jiffies_till_sched_qs(void) 414 { 415 unsigned long j; 416 417 /* If jiffies_till_sched_qs was specified, respect the request. */ 418 if (jiffies_till_sched_qs != ULONG_MAX) { 419 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 420 return; 421 } 422 j = READ_ONCE(jiffies_till_first_fqs) + 423 2 * READ_ONCE(jiffies_till_next_fqs); 424 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 425 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 426 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 427 WRITE_ONCE(jiffies_to_sched_qs, j); 428 } 429 430 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 431 { 432 ulong j; 433 int ret = kstrtoul(val, 0, &j); 434 435 if (!ret) { 436 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 437 adjust_jiffies_till_sched_qs(); 438 } 439 return ret; 440 } 441 442 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 443 { 444 ulong j; 445 int ret = kstrtoul(val, 0, &j); 446 447 if (!ret) { 448 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 449 adjust_jiffies_till_sched_qs(); 450 } 451 return ret; 452 } 453 454 static struct kernel_param_ops first_fqs_jiffies_ops = { 455 .set = param_set_first_fqs_jiffies, 456 .get = param_get_ulong, 457 }; 458 459 static struct kernel_param_ops next_fqs_jiffies_ops = { 460 .set = param_set_next_fqs_jiffies, 461 .get = param_get_ulong, 462 }; 463 464 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 465 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 466 module_param(rcu_kick_kthreads, bool, 0644); 467 468 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 469 static void force_quiescent_state(void); 470 static int rcu_pending(void); 471 472 /* 473 * Return the number of RCU GPs completed thus far for debug & stats. 474 */ 475 unsigned long rcu_get_gp_seq(void) 476 { 477 return READ_ONCE(rcu_state.gp_seq); 478 } 479 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 480 481 /* 482 * Return the number of RCU expedited batches completed thus far for 483 * debug & stats. Odd numbers mean that a batch is in progress, even 484 * numbers mean idle. The value returned will thus be roughly double 485 * the cumulative batches since boot. 486 */ 487 unsigned long rcu_exp_batches_completed(void) 488 { 489 return rcu_state.expedited_sequence; 490 } 491 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 492 493 /* 494 * Force a quiescent state. 495 */ 496 void rcu_force_quiescent_state(void) 497 { 498 force_quiescent_state(); 499 } 500 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 501 502 /* 503 * Convert a ->gp_state value to a character string. 504 */ 505 static const char *gp_state_getname(short gs) 506 { 507 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 508 return "???"; 509 return gp_state_names[gs]; 510 } 511 512 /* 513 * Show the state of the grace-period kthreads. 514 */ 515 void show_rcu_gp_kthreads(void) 516 { 517 int cpu; 518 unsigned long j; 519 struct rcu_data *rdp; 520 struct rcu_node *rnp; 521 522 j = jiffies - READ_ONCE(rcu_state.gp_activity); 523 pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %ld\n", 524 rcu_state.name, gp_state_getname(rcu_state.gp_state), 525 rcu_state.gp_state, rcu_state.gp_kthread->state, j); 526 rcu_for_each_node_breadth_first(rnp) { 527 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed)) 528 continue; 529 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n", 530 rnp->grplo, rnp->grphi, rnp->gp_seq, 531 rnp->gp_seq_needed); 532 if (!rcu_is_leaf_node(rnp)) 533 continue; 534 for_each_leaf_node_possible_cpu(rnp, cpu) { 535 rdp = per_cpu_ptr(&rcu_data, cpu); 536 if (rdp->gpwrap || 537 ULONG_CMP_GE(rcu_state.gp_seq, 538 rdp->gp_seq_needed)) 539 continue; 540 pr_info("\tcpu %d ->gp_seq_needed %lu\n", 541 cpu, rdp->gp_seq_needed); 542 } 543 } 544 /* sched_show_task(rcu_state.gp_kthread); */ 545 } 546 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 547 548 /* 549 * Send along grace-period-related data for rcutorture diagnostics. 550 */ 551 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 552 unsigned long *gp_seq) 553 { 554 switch (test_type) { 555 case RCU_FLAVOR: 556 case RCU_BH_FLAVOR: 557 case RCU_SCHED_FLAVOR: 558 *flags = READ_ONCE(rcu_state.gp_flags); 559 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 560 break; 561 default: 562 break; 563 } 564 } 565 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 566 567 /* 568 * Return the root node of the rcu_state structure. 569 */ 570 static struct rcu_node *rcu_get_root(void) 571 { 572 return &rcu_state.node[0]; 573 } 574 575 /* 576 * Enter an RCU extended quiescent state, which can be either the 577 * idle loop or adaptive-tickless usermode execution. 578 * 579 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 580 * the possibility of usermode upcalls having messed up our count 581 * of interrupt nesting level during the prior busy period. 582 */ 583 static void rcu_eqs_enter(bool user) 584 { 585 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 586 587 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 588 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 589 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 590 rdp->dynticks_nesting == 0); 591 if (rdp->dynticks_nesting != 1) { 592 rdp->dynticks_nesting--; 593 return; 594 } 595 596 lockdep_assert_irqs_disabled(); 597 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks); 598 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 599 rdp = this_cpu_ptr(&rcu_data); 600 do_nocb_deferred_wakeup(rdp); 601 rcu_prepare_for_idle(); 602 rcu_preempt_deferred_qs(current); 603 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 604 rcu_dynticks_eqs_enter(); 605 rcu_dynticks_task_enter(); 606 } 607 608 /** 609 * rcu_idle_enter - inform RCU that current CPU is entering idle 610 * 611 * Enter idle mode, in other words, -leave- the mode in which RCU 612 * read-side critical sections can occur. (Though RCU read-side 613 * critical sections can occur in irq handlers in idle, a possibility 614 * handled by irq_enter() and irq_exit().) 615 * 616 * If you add or remove a call to rcu_idle_enter(), be sure to test with 617 * CONFIG_RCU_EQS_DEBUG=y. 618 */ 619 void rcu_idle_enter(void) 620 { 621 lockdep_assert_irqs_disabled(); 622 rcu_eqs_enter(false); 623 } 624 625 #ifdef CONFIG_NO_HZ_FULL 626 /** 627 * rcu_user_enter - inform RCU that we are resuming userspace. 628 * 629 * Enter RCU idle mode right before resuming userspace. No use of RCU 630 * is permitted between this call and rcu_user_exit(). This way the 631 * CPU doesn't need to maintain the tick for RCU maintenance purposes 632 * when the CPU runs in userspace. 633 * 634 * If you add or remove a call to rcu_user_enter(), be sure to test with 635 * CONFIG_RCU_EQS_DEBUG=y. 636 */ 637 void rcu_user_enter(void) 638 { 639 lockdep_assert_irqs_disabled(); 640 rcu_eqs_enter(true); 641 } 642 #endif /* CONFIG_NO_HZ_FULL */ 643 644 /* 645 * If we are returning from the outermost NMI handler that interrupted an 646 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 647 * to let the RCU grace-period handling know that the CPU is back to 648 * being RCU-idle. 649 * 650 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 651 * with CONFIG_RCU_EQS_DEBUG=y. 652 */ 653 static __always_inline void rcu_nmi_exit_common(bool irq) 654 { 655 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 656 657 /* 658 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 659 * (We are exiting an NMI handler, so RCU better be paying attention 660 * to us!) 661 */ 662 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 663 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 664 665 /* 666 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 667 * leave it in non-RCU-idle state. 668 */ 669 if (rdp->dynticks_nmi_nesting != 1) { 670 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks); 671 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 672 rdp->dynticks_nmi_nesting - 2); 673 return; 674 } 675 676 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 677 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks); 678 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 679 680 if (irq) 681 rcu_prepare_for_idle(); 682 683 rcu_dynticks_eqs_enter(); 684 685 if (irq) 686 rcu_dynticks_task_enter(); 687 } 688 689 /** 690 * rcu_nmi_exit - inform RCU of exit from NMI context 691 * @irq: Is this call from rcu_irq_exit? 692 * 693 * If you add or remove a call to rcu_nmi_exit(), be sure to test 694 * with CONFIG_RCU_EQS_DEBUG=y. 695 */ 696 void rcu_nmi_exit(void) 697 { 698 rcu_nmi_exit_common(false); 699 } 700 701 /** 702 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 703 * 704 * Exit from an interrupt handler, which might possibly result in entering 705 * idle mode, in other words, leaving the mode in which read-side critical 706 * sections can occur. The caller must have disabled interrupts. 707 * 708 * This code assumes that the idle loop never does anything that might 709 * result in unbalanced calls to irq_enter() and irq_exit(). If your 710 * architecture's idle loop violates this assumption, RCU will give you what 711 * you deserve, good and hard. But very infrequently and irreproducibly. 712 * 713 * Use things like work queues to work around this limitation. 714 * 715 * You have been warned. 716 * 717 * If you add or remove a call to rcu_irq_exit(), be sure to test with 718 * CONFIG_RCU_EQS_DEBUG=y. 719 */ 720 void rcu_irq_exit(void) 721 { 722 lockdep_assert_irqs_disabled(); 723 rcu_nmi_exit_common(true); 724 } 725 726 /* 727 * Wrapper for rcu_irq_exit() where interrupts are enabled. 728 * 729 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 730 * with CONFIG_RCU_EQS_DEBUG=y. 731 */ 732 void rcu_irq_exit_irqson(void) 733 { 734 unsigned long flags; 735 736 local_irq_save(flags); 737 rcu_irq_exit(); 738 local_irq_restore(flags); 739 } 740 741 /* 742 * Exit an RCU extended quiescent state, which can be either the 743 * idle loop or adaptive-tickless usermode execution. 744 * 745 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 746 * allow for the possibility of usermode upcalls messing up our count of 747 * interrupt nesting level during the busy period that is just now starting. 748 */ 749 static void rcu_eqs_exit(bool user) 750 { 751 struct rcu_data *rdp; 752 long oldval; 753 754 lockdep_assert_irqs_disabled(); 755 rdp = this_cpu_ptr(&rcu_data); 756 oldval = rdp->dynticks_nesting; 757 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 758 if (oldval) { 759 rdp->dynticks_nesting++; 760 return; 761 } 762 rcu_dynticks_task_exit(); 763 rcu_dynticks_eqs_exit(); 764 rcu_cleanup_after_idle(); 765 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks); 766 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 767 WRITE_ONCE(rdp->dynticks_nesting, 1); 768 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 769 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 770 } 771 772 /** 773 * rcu_idle_exit - inform RCU that current CPU is leaving idle 774 * 775 * Exit idle mode, in other words, -enter- the mode in which RCU 776 * read-side critical sections can occur. 777 * 778 * If you add or remove a call to rcu_idle_exit(), be sure to test with 779 * CONFIG_RCU_EQS_DEBUG=y. 780 */ 781 void rcu_idle_exit(void) 782 { 783 unsigned long flags; 784 785 local_irq_save(flags); 786 rcu_eqs_exit(false); 787 local_irq_restore(flags); 788 } 789 790 #ifdef CONFIG_NO_HZ_FULL 791 /** 792 * rcu_user_exit - inform RCU that we are exiting userspace. 793 * 794 * Exit RCU idle mode while entering the kernel because it can 795 * run a RCU read side critical section anytime. 796 * 797 * If you add or remove a call to rcu_user_exit(), be sure to test with 798 * CONFIG_RCU_EQS_DEBUG=y. 799 */ 800 void rcu_user_exit(void) 801 { 802 rcu_eqs_exit(1); 803 } 804 #endif /* CONFIG_NO_HZ_FULL */ 805 806 /** 807 * rcu_nmi_enter_common - inform RCU of entry to NMI context 808 * @irq: Is this call from rcu_irq_enter? 809 * 810 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 811 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 812 * that the CPU is active. This implementation permits nested NMIs, as 813 * long as the nesting level does not overflow an int. (You will probably 814 * run out of stack space first.) 815 * 816 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 817 * with CONFIG_RCU_EQS_DEBUG=y. 818 */ 819 static __always_inline void rcu_nmi_enter_common(bool irq) 820 { 821 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 822 long incby = 2; 823 824 /* Complain about underflow. */ 825 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 826 827 /* 828 * If idle from RCU viewpoint, atomically increment ->dynticks 829 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 830 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 831 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 832 * to be in the outermost NMI handler that interrupted an RCU-idle 833 * period (observation due to Andy Lutomirski). 834 */ 835 if (rcu_dynticks_curr_cpu_in_eqs()) { 836 837 if (irq) 838 rcu_dynticks_task_exit(); 839 840 rcu_dynticks_eqs_exit(); 841 842 if (irq) 843 rcu_cleanup_after_idle(); 844 845 incby = 1; 846 } 847 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 848 rdp->dynticks_nmi_nesting, 849 rdp->dynticks_nmi_nesting + incby, rdp->dynticks); 850 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 851 rdp->dynticks_nmi_nesting + incby); 852 barrier(); 853 } 854 855 /** 856 * rcu_nmi_enter - inform RCU of entry to NMI context 857 */ 858 void rcu_nmi_enter(void) 859 { 860 rcu_nmi_enter_common(false); 861 } 862 863 /** 864 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 865 * 866 * Enter an interrupt handler, which might possibly result in exiting 867 * idle mode, in other words, entering the mode in which read-side critical 868 * sections can occur. The caller must have disabled interrupts. 869 * 870 * Note that the Linux kernel is fully capable of entering an interrupt 871 * handler that it never exits, for example when doing upcalls to user mode! 872 * This code assumes that the idle loop never does upcalls to user mode. 873 * If your architecture's idle loop does do upcalls to user mode (or does 874 * anything else that results in unbalanced calls to the irq_enter() and 875 * irq_exit() functions), RCU will give you what you deserve, good and hard. 876 * But very infrequently and irreproducibly. 877 * 878 * Use things like work queues to work around this limitation. 879 * 880 * You have been warned. 881 * 882 * If you add or remove a call to rcu_irq_enter(), be sure to test with 883 * CONFIG_RCU_EQS_DEBUG=y. 884 */ 885 void rcu_irq_enter(void) 886 { 887 lockdep_assert_irqs_disabled(); 888 rcu_nmi_enter_common(true); 889 } 890 891 /* 892 * Wrapper for rcu_irq_enter() where interrupts are enabled. 893 * 894 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 895 * with CONFIG_RCU_EQS_DEBUG=y. 896 */ 897 void rcu_irq_enter_irqson(void) 898 { 899 unsigned long flags; 900 901 local_irq_save(flags); 902 rcu_irq_enter(); 903 local_irq_restore(flags); 904 } 905 906 /** 907 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 908 * 909 * Return true if RCU is watching the running CPU, which means that this 910 * CPU can safely enter RCU read-side critical sections. In other words, 911 * if the current CPU is not in its idle loop or is in an interrupt or 912 * NMI handler, return true. 913 */ 914 bool notrace rcu_is_watching(void) 915 { 916 bool ret; 917 918 preempt_disable_notrace(); 919 ret = !rcu_dynticks_curr_cpu_in_eqs(); 920 preempt_enable_notrace(); 921 return ret; 922 } 923 EXPORT_SYMBOL_GPL(rcu_is_watching); 924 925 /* 926 * If a holdout task is actually running, request an urgent quiescent 927 * state from its CPU. This is unsynchronized, so migrations can cause 928 * the request to go to the wrong CPU. Which is OK, all that will happen 929 * is that the CPU's next context switch will be a bit slower and next 930 * time around this task will generate another request. 931 */ 932 void rcu_request_urgent_qs_task(struct task_struct *t) 933 { 934 int cpu; 935 936 barrier(); 937 cpu = task_cpu(t); 938 if (!task_curr(t)) 939 return; /* This task is not running on that CPU. */ 940 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 941 } 942 943 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 944 945 /* 946 * Is the current CPU online as far as RCU is concerned? 947 * 948 * Disable preemption to avoid false positives that could otherwise 949 * happen due to the current CPU number being sampled, this task being 950 * preempted, its old CPU being taken offline, resuming on some other CPU, 951 * then determining that its old CPU is now offline. 952 * 953 * Disable checking if in an NMI handler because we cannot safely 954 * report errors from NMI handlers anyway. In addition, it is OK to use 955 * RCU on an offline processor during initial boot, hence the check for 956 * rcu_scheduler_fully_active. 957 */ 958 bool rcu_lockdep_current_cpu_online(void) 959 { 960 struct rcu_data *rdp; 961 struct rcu_node *rnp; 962 bool ret = false; 963 964 if (in_nmi() || !rcu_scheduler_fully_active) 965 return true; 966 preempt_disable(); 967 rdp = this_cpu_ptr(&rcu_data); 968 rnp = rdp->mynode; 969 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 970 ret = true; 971 preempt_enable(); 972 return ret; 973 } 974 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 975 976 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 977 978 /* 979 * We are reporting a quiescent state on behalf of some other CPU, so 980 * it is our responsibility to check for and handle potential overflow 981 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 982 * After all, the CPU might be in deep idle state, and thus executing no 983 * code whatsoever. 984 */ 985 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 986 { 987 raw_lockdep_assert_held_rcu_node(rnp); 988 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 989 rnp->gp_seq)) 990 WRITE_ONCE(rdp->gpwrap, true); 991 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 992 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 993 } 994 995 /* 996 * Snapshot the specified CPU's dynticks counter so that we can later 997 * credit them with an implicit quiescent state. Return 1 if this CPU 998 * is in dynticks idle mode, which is an extended quiescent state. 999 */ 1000 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1001 { 1002 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1003 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1004 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1005 rcu_gpnum_ovf(rdp->mynode, rdp); 1006 return 1; 1007 } 1008 return 0; 1009 } 1010 1011 /* 1012 * Handler for the irq_work request posted when a grace period has 1013 * gone on for too long, but not yet long enough for an RCU CPU 1014 * stall warning. Set state appropriately, but just complain if 1015 * there is unexpected state on entry. 1016 */ 1017 static void rcu_iw_handler(struct irq_work *iwp) 1018 { 1019 struct rcu_data *rdp; 1020 struct rcu_node *rnp; 1021 1022 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1023 rnp = rdp->mynode; 1024 raw_spin_lock_rcu_node(rnp); 1025 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1026 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1027 rdp->rcu_iw_pending = false; 1028 } 1029 raw_spin_unlock_rcu_node(rnp); 1030 } 1031 1032 /* 1033 * Return true if the specified CPU has passed through a quiescent 1034 * state by virtue of being in or having passed through an dynticks 1035 * idle state since the last call to dyntick_save_progress_counter() 1036 * for this same CPU, or by virtue of having been offline. 1037 */ 1038 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1039 { 1040 unsigned long jtsq; 1041 bool *rnhqp; 1042 bool *ruqp; 1043 struct rcu_node *rnp = rdp->mynode; 1044 1045 /* 1046 * If the CPU passed through or entered a dynticks idle phase with 1047 * no active irq/NMI handlers, then we can safely pretend that the CPU 1048 * already acknowledged the request to pass through a quiescent 1049 * state. Either way, that CPU cannot possibly be in an RCU 1050 * read-side critical section that started before the beginning 1051 * of the current RCU grace period. 1052 */ 1053 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1054 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1055 rcu_gpnum_ovf(rnp, rdp); 1056 return 1; 1057 } 1058 1059 /* If waiting too long on an offline CPU, complain. */ 1060 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1061 time_after(jiffies, rcu_state.gp_start + HZ)) { 1062 bool onl; 1063 struct rcu_node *rnp1; 1064 1065 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1066 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1067 __func__, rnp->grplo, rnp->grphi, rnp->level, 1068 (long)rnp->gp_seq, (long)rnp->completedqs); 1069 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1070 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1071 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1072 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1073 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1074 __func__, rdp->cpu, ".o"[onl], 1075 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1076 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1077 return 1; /* Break things loose after complaining. */ 1078 } 1079 1080 /* 1081 * A CPU running for an extended time within the kernel can 1082 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1083 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1084 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1085 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1086 * variable are safe because the assignments are repeated if this 1087 * CPU failed to pass through a quiescent state. This code 1088 * also checks .jiffies_resched in case jiffies_to_sched_qs 1089 * is set way high. 1090 */ 1091 jtsq = READ_ONCE(jiffies_to_sched_qs); 1092 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1093 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1094 if (!READ_ONCE(*rnhqp) && 1095 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1096 time_after(jiffies, rcu_state.jiffies_resched))) { 1097 WRITE_ONCE(*rnhqp, true); 1098 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1099 smp_store_release(ruqp, true); 1100 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1101 WRITE_ONCE(*ruqp, true); 1102 } 1103 1104 /* 1105 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks! 1106 * The above code handles this, but only for straight cond_resched(). 1107 * And some in-kernel loops check need_resched() before calling 1108 * cond_resched(), which defeats the above code for CPUs that are 1109 * running in-kernel with scheduling-clock interrupts disabled. 1110 * So hit them over the head with the resched_cpu() hammer! 1111 */ 1112 if (tick_nohz_full_cpu(rdp->cpu) && 1113 time_after(jiffies, 1114 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1115 resched_cpu(rdp->cpu); 1116 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1117 } 1118 1119 /* 1120 * If more than halfway to RCU CPU stall-warning time, invoke 1121 * resched_cpu() more frequently to try to loosen things up a bit. 1122 * Also check to see if the CPU is getting hammered with interrupts, 1123 * but only once per grace period, just to keep the IPIs down to 1124 * a dull roar. 1125 */ 1126 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1127 if (time_after(jiffies, 1128 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1129 resched_cpu(rdp->cpu); 1130 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1131 } 1132 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1133 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1134 (rnp->ffmask & rdp->grpmask)) { 1135 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1136 rdp->rcu_iw_pending = true; 1137 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1138 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1139 } 1140 } 1141 1142 return 0; 1143 } 1144 1145 static void record_gp_stall_check_time(void) 1146 { 1147 unsigned long j = jiffies; 1148 unsigned long j1; 1149 1150 rcu_state.gp_start = j; 1151 j1 = rcu_jiffies_till_stall_check(); 1152 /* Record ->gp_start before ->jiffies_stall. */ 1153 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */ 1154 rcu_state.jiffies_resched = j + j1 / 2; 1155 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs); 1156 } 1157 1158 /* 1159 * Complain about starvation of grace-period kthread. 1160 */ 1161 static void rcu_check_gp_kthread_starvation(void) 1162 { 1163 struct task_struct *gpk = rcu_state.gp_kthread; 1164 unsigned long j; 1165 1166 j = jiffies - READ_ONCE(rcu_state.gp_activity); 1167 if (j > 2 * HZ) { 1168 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1169 rcu_state.name, j, 1170 (long)rcu_seq_current(&rcu_state.gp_seq), 1171 rcu_state.gp_flags, 1172 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state, 1173 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1); 1174 if (gpk) { 1175 pr_err("RCU grace-period kthread stack dump:\n"); 1176 sched_show_task(gpk); 1177 wake_up_process(gpk); 1178 } 1179 } 1180 } 1181 1182 /* 1183 * Dump stacks of all tasks running on stalled CPUs. First try using 1184 * NMIs, but fall back to manual remote stack tracing on architectures 1185 * that don't support NMI-based stack dumps. The NMI-triggered stack 1186 * traces are more accurate because they are printed by the target CPU. 1187 */ 1188 static void rcu_dump_cpu_stacks(void) 1189 { 1190 int cpu; 1191 unsigned long flags; 1192 struct rcu_node *rnp; 1193 1194 rcu_for_each_leaf_node(rnp) { 1195 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1196 for_each_leaf_node_possible_cpu(rnp, cpu) 1197 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1198 if (!trigger_single_cpu_backtrace(cpu)) 1199 dump_cpu_task(cpu); 1200 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1201 } 1202 } 1203 1204 /* 1205 * If too much time has passed in the current grace period, and if 1206 * so configured, go kick the relevant kthreads. 1207 */ 1208 static void rcu_stall_kick_kthreads(void) 1209 { 1210 unsigned long j; 1211 1212 if (!rcu_kick_kthreads) 1213 return; 1214 j = READ_ONCE(rcu_state.jiffies_kick_kthreads); 1215 if (time_after(jiffies, j) && rcu_state.gp_kthread && 1216 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) { 1217 WARN_ONCE(1, "Kicking %s grace-period kthread\n", 1218 rcu_state.name); 1219 rcu_ftrace_dump(DUMP_ALL); 1220 wake_up_process(rcu_state.gp_kthread); 1221 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ); 1222 } 1223 } 1224 1225 static void panic_on_rcu_stall(void) 1226 { 1227 if (sysctl_panic_on_rcu_stall) 1228 panic("RCU Stall\n"); 1229 } 1230 1231 static void print_other_cpu_stall(unsigned long gp_seq) 1232 { 1233 int cpu; 1234 unsigned long flags; 1235 unsigned long gpa; 1236 unsigned long j; 1237 int ndetected = 0; 1238 struct rcu_node *rnp = rcu_get_root(); 1239 long totqlen = 0; 1240 1241 /* Kick and suppress, if so configured. */ 1242 rcu_stall_kick_kthreads(); 1243 if (rcu_cpu_stall_suppress) 1244 return; 1245 1246 /* 1247 * OK, time to rat on our buddy... 1248 * See Documentation/RCU/stallwarn.txt for info on how to debug 1249 * RCU CPU stall warnings. 1250 */ 1251 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name); 1252 print_cpu_stall_info_begin(); 1253 rcu_for_each_leaf_node(rnp) { 1254 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1255 ndetected += rcu_print_task_stall(rnp); 1256 if (rnp->qsmask != 0) { 1257 for_each_leaf_node_possible_cpu(rnp, cpu) 1258 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1259 print_cpu_stall_info(cpu); 1260 ndetected++; 1261 } 1262 } 1263 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1264 } 1265 1266 print_cpu_stall_info_end(); 1267 for_each_possible_cpu(cpu) 1268 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data, 1269 cpu)->cblist); 1270 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", 1271 smp_processor_id(), (long)(jiffies - rcu_state.gp_start), 1272 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1273 if (ndetected) { 1274 rcu_dump_cpu_stacks(); 1275 1276 /* Complain about tasks blocking the grace period. */ 1277 rcu_print_detail_task_stall(); 1278 } else { 1279 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) { 1280 pr_err("INFO: Stall ended before state dump start\n"); 1281 } else { 1282 j = jiffies; 1283 gpa = READ_ONCE(rcu_state.gp_activity); 1284 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1285 rcu_state.name, j - gpa, j, gpa, 1286 READ_ONCE(jiffies_till_next_fqs), 1287 rcu_get_root()->qsmask); 1288 /* In this case, the current CPU might be at fault. */ 1289 sched_show_task(current); 1290 } 1291 } 1292 /* Rewrite if needed in case of slow consoles. */ 1293 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1294 WRITE_ONCE(rcu_state.jiffies_stall, 1295 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1296 1297 rcu_check_gp_kthread_starvation(); 1298 1299 panic_on_rcu_stall(); 1300 1301 force_quiescent_state(); /* Kick them all. */ 1302 } 1303 1304 static void print_cpu_stall(void) 1305 { 1306 int cpu; 1307 unsigned long flags; 1308 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1309 struct rcu_node *rnp = rcu_get_root(); 1310 long totqlen = 0; 1311 1312 /* Kick and suppress, if so configured. */ 1313 rcu_stall_kick_kthreads(); 1314 if (rcu_cpu_stall_suppress) 1315 return; 1316 1317 /* 1318 * OK, time to rat on ourselves... 1319 * See Documentation/RCU/stallwarn.txt for info on how to debug 1320 * RCU CPU stall warnings. 1321 */ 1322 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name); 1323 print_cpu_stall_info_begin(); 1324 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1325 print_cpu_stall_info(smp_processor_id()); 1326 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1327 print_cpu_stall_info_end(); 1328 for_each_possible_cpu(cpu) 1329 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data, 1330 cpu)->cblist); 1331 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", 1332 jiffies - rcu_state.gp_start, 1333 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1334 1335 rcu_check_gp_kthread_starvation(); 1336 1337 rcu_dump_cpu_stacks(); 1338 1339 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1340 /* Rewrite if needed in case of slow consoles. */ 1341 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1342 WRITE_ONCE(rcu_state.jiffies_stall, 1343 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1344 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1345 1346 panic_on_rcu_stall(); 1347 1348 /* 1349 * Attempt to revive the RCU machinery by forcing a context switch. 1350 * 1351 * A context switch would normally allow the RCU state machine to make 1352 * progress and it could be we're stuck in kernel space without context 1353 * switches for an entirely unreasonable amount of time. 1354 */ 1355 set_tsk_need_resched(current); 1356 set_preempt_need_resched(); 1357 } 1358 1359 static void check_cpu_stall(struct rcu_data *rdp) 1360 { 1361 unsigned long gs1; 1362 unsigned long gs2; 1363 unsigned long gps; 1364 unsigned long j; 1365 unsigned long jn; 1366 unsigned long js; 1367 struct rcu_node *rnp; 1368 1369 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1370 !rcu_gp_in_progress()) 1371 return; 1372 rcu_stall_kick_kthreads(); 1373 j = jiffies; 1374 1375 /* 1376 * Lots of memory barriers to reject false positives. 1377 * 1378 * The idea is to pick up rcu_state.gp_seq, then 1379 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally 1380 * another copy of rcu_state.gp_seq. These values are updated in 1381 * the opposite order with memory barriers (or equivalent) during 1382 * grace-period initialization and cleanup. Now, a false positive 1383 * can occur if we get an new value of rcu_state.gp_start and a old 1384 * value of rcu_state.jiffies_stall. But given the memory barriers, 1385 * the only way that this can happen is if one grace period ends 1386 * and another starts between these two fetches. This is detected 1387 * by comparing the second fetch of rcu_state.gp_seq with the 1388 * previous fetch from rcu_state.gp_seq. 1389 * 1390 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall, 1391 * and rcu_state.gp_start suffice to forestall false positives. 1392 */ 1393 gs1 = READ_ONCE(rcu_state.gp_seq); 1394 smp_rmb(); /* Pick up ->gp_seq first... */ 1395 js = READ_ONCE(rcu_state.jiffies_stall); 1396 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1397 gps = READ_ONCE(rcu_state.gp_start); 1398 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ 1399 gs2 = READ_ONCE(rcu_state.gp_seq); 1400 if (gs1 != gs2 || 1401 ULONG_CMP_LT(j, js) || 1402 ULONG_CMP_GE(gps, js)) 1403 return; /* No stall or GP completed since entering function. */ 1404 rnp = rdp->mynode; 1405 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1406 if (rcu_gp_in_progress() && 1407 (READ_ONCE(rnp->qsmask) & rdp->grpmask) && 1408 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1409 1410 /* We haven't checked in, so go dump stack. */ 1411 print_cpu_stall(); 1412 1413 } else if (rcu_gp_in_progress() && 1414 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && 1415 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1416 1417 /* They had a few time units to dump stack, so complain. */ 1418 print_other_cpu_stall(gs2); 1419 } 1420 } 1421 1422 /** 1423 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1424 * 1425 * Set the stall-warning timeout way off into the future, thus preventing 1426 * any RCU CPU stall-warning messages from appearing in the current set of 1427 * RCU grace periods. 1428 * 1429 * The caller must disable hard irqs. 1430 */ 1431 void rcu_cpu_stall_reset(void) 1432 { 1433 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2); 1434 } 1435 1436 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1437 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1438 unsigned long gp_seq_req, const char *s) 1439 { 1440 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1441 rnp->level, rnp->grplo, rnp->grphi, s); 1442 } 1443 1444 /* 1445 * rcu_start_this_gp - Request the start of a particular grace period 1446 * @rnp_start: The leaf node of the CPU from which to start. 1447 * @rdp: The rcu_data corresponding to the CPU from which to start. 1448 * @gp_seq_req: The gp_seq of the grace period to start. 1449 * 1450 * Start the specified grace period, as needed to handle newly arrived 1451 * callbacks. The required future grace periods are recorded in each 1452 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1453 * is reason to awaken the grace-period kthread. 1454 * 1455 * The caller must hold the specified rcu_node structure's ->lock, which 1456 * is why the caller is responsible for waking the grace-period kthread. 1457 * 1458 * Returns true if the GP thread needs to be awakened else false. 1459 */ 1460 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1461 unsigned long gp_seq_req) 1462 { 1463 bool ret = false; 1464 struct rcu_node *rnp; 1465 1466 /* 1467 * Use funnel locking to either acquire the root rcu_node 1468 * structure's lock or bail out if the need for this grace period 1469 * has already been recorded -- or if that grace period has in 1470 * fact already started. If there is already a grace period in 1471 * progress in a non-leaf node, no recording is needed because the 1472 * end of the grace period will scan the leaf rcu_node structures. 1473 * Note that rnp_start->lock must not be released. 1474 */ 1475 raw_lockdep_assert_held_rcu_node(rnp_start); 1476 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1477 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1478 if (rnp != rnp_start) 1479 raw_spin_lock_rcu_node(rnp); 1480 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1481 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1482 (rnp != rnp_start && 1483 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1484 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1485 TPS("Prestarted")); 1486 goto unlock_out; 1487 } 1488 rnp->gp_seq_needed = gp_seq_req; 1489 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1490 /* 1491 * We just marked the leaf or internal node, and a 1492 * grace period is in progress, which means that 1493 * rcu_gp_cleanup() will see the marking. Bail to 1494 * reduce contention. 1495 */ 1496 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1497 TPS("Startedleaf")); 1498 goto unlock_out; 1499 } 1500 if (rnp != rnp_start && rnp->parent != NULL) 1501 raw_spin_unlock_rcu_node(rnp); 1502 if (!rnp->parent) 1503 break; /* At root, and perhaps also leaf. */ 1504 } 1505 1506 /* If GP already in progress, just leave, otherwise start one. */ 1507 if (rcu_gp_in_progress()) { 1508 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1509 goto unlock_out; 1510 } 1511 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1512 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1513 rcu_state.gp_req_activity = jiffies; 1514 if (!rcu_state.gp_kthread) { 1515 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1516 goto unlock_out; 1517 } 1518 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1519 ret = true; /* Caller must wake GP kthread. */ 1520 unlock_out: 1521 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1522 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1523 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1524 rdp->gp_seq_needed = rnp->gp_seq_needed; 1525 } 1526 if (rnp != rnp_start) 1527 raw_spin_unlock_rcu_node(rnp); 1528 return ret; 1529 } 1530 1531 /* 1532 * Clean up any old requests for the just-ended grace period. Also return 1533 * whether any additional grace periods have been requested. 1534 */ 1535 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1536 { 1537 bool needmore; 1538 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1539 1540 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1541 if (!needmore) 1542 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1543 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1544 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1545 return needmore; 1546 } 1547 1548 /* 1549 * Awaken the grace-period kthread. Don't do a self-awaken, and don't 1550 * bother awakening when there is nothing for the grace-period kthread 1551 * to do (as in several CPUs raced to awaken, and we lost), and finally 1552 * don't try to awaken a kthread that has not yet been created. 1553 */ 1554 static void rcu_gp_kthread_wake(void) 1555 { 1556 if (current == rcu_state.gp_kthread || 1557 !READ_ONCE(rcu_state.gp_flags) || 1558 !rcu_state.gp_kthread) 1559 return; 1560 swake_up_one(&rcu_state.gp_wq); 1561 } 1562 1563 /* 1564 * If there is room, assign a ->gp_seq number to any callbacks on this 1565 * CPU that have not already been assigned. Also accelerate any callbacks 1566 * that were previously assigned a ->gp_seq number that has since proven 1567 * to be too conservative, which can happen if callbacks get assigned a 1568 * ->gp_seq number while RCU is idle, but with reference to a non-root 1569 * rcu_node structure. This function is idempotent, so it does not hurt 1570 * to call it repeatedly. Returns an flag saying that we should awaken 1571 * the RCU grace-period kthread. 1572 * 1573 * The caller must hold rnp->lock with interrupts disabled. 1574 */ 1575 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1576 { 1577 unsigned long gp_seq_req; 1578 bool ret = false; 1579 1580 raw_lockdep_assert_held_rcu_node(rnp); 1581 1582 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1583 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1584 return false; 1585 1586 /* 1587 * Callbacks are often registered with incomplete grace-period 1588 * information. Something about the fact that getting exact 1589 * information requires acquiring a global lock... RCU therefore 1590 * makes a conservative estimate of the grace period number at which 1591 * a given callback will become ready to invoke. The following 1592 * code checks this estimate and improves it when possible, thus 1593 * accelerating callback invocation to an earlier grace-period 1594 * number. 1595 */ 1596 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1597 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1598 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1599 1600 /* Trace depending on how much we were able to accelerate. */ 1601 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1602 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1603 else 1604 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1605 return ret; 1606 } 1607 1608 /* 1609 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1610 * rcu_node structure's ->lock be held. It consults the cached value 1611 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1612 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1613 * while holding the leaf rcu_node structure's ->lock. 1614 */ 1615 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1616 struct rcu_data *rdp) 1617 { 1618 unsigned long c; 1619 bool needwake; 1620 1621 lockdep_assert_irqs_disabled(); 1622 c = rcu_seq_snap(&rcu_state.gp_seq); 1623 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1624 /* Old request still live, so mark recent callbacks. */ 1625 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1626 return; 1627 } 1628 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1629 needwake = rcu_accelerate_cbs(rnp, rdp); 1630 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1631 if (needwake) 1632 rcu_gp_kthread_wake(); 1633 } 1634 1635 /* 1636 * Move any callbacks whose grace period has completed to the 1637 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1638 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1639 * sublist. This function is idempotent, so it does not hurt to 1640 * invoke it repeatedly. As long as it is not invoked -too- often... 1641 * Returns true if the RCU grace-period kthread needs to be awakened. 1642 * 1643 * The caller must hold rnp->lock with interrupts disabled. 1644 */ 1645 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1646 { 1647 raw_lockdep_assert_held_rcu_node(rnp); 1648 1649 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1650 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1651 return false; 1652 1653 /* 1654 * Find all callbacks whose ->gp_seq numbers indicate that they 1655 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1656 */ 1657 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1658 1659 /* Classify any remaining callbacks. */ 1660 return rcu_accelerate_cbs(rnp, rdp); 1661 } 1662 1663 /* 1664 * Update CPU-local rcu_data state to record the beginnings and ends of 1665 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1666 * structure corresponding to the current CPU, and must have irqs disabled. 1667 * Returns true if the grace-period kthread needs to be awakened. 1668 */ 1669 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1670 { 1671 bool ret; 1672 bool need_gp; 1673 1674 raw_lockdep_assert_held_rcu_node(rnp); 1675 1676 if (rdp->gp_seq == rnp->gp_seq) 1677 return false; /* Nothing to do. */ 1678 1679 /* Handle the ends of any preceding grace periods first. */ 1680 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1681 unlikely(READ_ONCE(rdp->gpwrap))) { 1682 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */ 1683 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1684 } else { 1685 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */ 1686 } 1687 1688 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1689 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1690 unlikely(READ_ONCE(rdp->gpwrap))) { 1691 /* 1692 * If the current grace period is waiting for this CPU, 1693 * set up to detect a quiescent state, otherwise don't 1694 * go looking for one. 1695 */ 1696 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1697 need_gp = !!(rnp->qsmask & rdp->grpmask); 1698 rdp->cpu_no_qs.b.norm = need_gp; 1699 rdp->core_needs_qs = need_gp; 1700 zero_cpu_stall_ticks(rdp); 1701 } 1702 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1703 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap) 1704 rdp->gp_seq_needed = rnp->gp_seq_needed; 1705 WRITE_ONCE(rdp->gpwrap, false); 1706 rcu_gpnum_ovf(rnp, rdp); 1707 return ret; 1708 } 1709 1710 static void note_gp_changes(struct rcu_data *rdp) 1711 { 1712 unsigned long flags; 1713 bool needwake; 1714 struct rcu_node *rnp; 1715 1716 local_irq_save(flags); 1717 rnp = rdp->mynode; 1718 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1719 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1720 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1721 local_irq_restore(flags); 1722 return; 1723 } 1724 needwake = __note_gp_changes(rnp, rdp); 1725 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1726 if (needwake) 1727 rcu_gp_kthread_wake(); 1728 } 1729 1730 static void rcu_gp_slow(int delay) 1731 { 1732 if (delay > 0 && 1733 !(rcu_seq_ctr(rcu_state.gp_seq) % 1734 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1735 schedule_timeout_uninterruptible(delay); 1736 } 1737 1738 /* 1739 * Initialize a new grace period. Return false if no grace period required. 1740 */ 1741 static bool rcu_gp_init(void) 1742 { 1743 unsigned long flags; 1744 unsigned long oldmask; 1745 unsigned long mask; 1746 struct rcu_data *rdp; 1747 struct rcu_node *rnp = rcu_get_root(); 1748 1749 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1750 raw_spin_lock_irq_rcu_node(rnp); 1751 if (!READ_ONCE(rcu_state.gp_flags)) { 1752 /* Spurious wakeup, tell caller to go back to sleep. */ 1753 raw_spin_unlock_irq_rcu_node(rnp); 1754 return false; 1755 } 1756 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1757 1758 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1759 /* 1760 * Grace period already in progress, don't start another. 1761 * Not supposed to be able to happen. 1762 */ 1763 raw_spin_unlock_irq_rcu_node(rnp); 1764 return false; 1765 } 1766 1767 /* Advance to a new grace period and initialize state. */ 1768 record_gp_stall_check_time(); 1769 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1770 rcu_seq_start(&rcu_state.gp_seq); 1771 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1772 raw_spin_unlock_irq_rcu_node(rnp); 1773 1774 /* 1775 * Apply per-leaf buffered online and offline operations to the 1776 * rcu_node tree. Note that this new grace period need not wait 1777 * for subsequent online CPUs, and that quiescent-state forcing 1778 * will handle subsequent offline CPUs. 1779 */ 1780 rcu_state.gp_state = RCU_GP_ONOFF; 1781 rcu_for_each_leaf_node(rnp) { 1782 raw_spin_lock(&rcu_state.ofl_lock); 1783 raw_spin_lock_irq_rcu_node(rnp); 1784 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1785 !rnp->wait_blkd_tasks) { 1786 /* Nothing to do on this leaf rcu_node structure. */ 1787 raw_spin_unlock_irq_rcu_node(rnp); 1788 raw_spin_unlock(&rcu_state.ofl_lock); 1789 continue; 1790 } 1791 1792 /* Record old state, apply changes to ->qsmaskinit field. */ 1793 oldmask = rnp->qsmaskinit; 1794 rnp->qsmaskinit = rnp->qsmaskinitnext; 1795 1796 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1797 if (!oldmask != !rnp->qsmaskinit) { 1798 if (!oldmask) { /* First online CPU for rcu_node. */ 1799 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1800 rcu_init_new_rnp(rnp); 1801 } else if (rcu_preempt_has_tasks(rnp)) { 1802 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1803 } else { /* Last offline CPU and can propagate. */ 1804 rcu_cleanup_dead_rnp(rnp); 1805 } 1806 } 1807 1808 /* 1809 * If all waited-on tasks from prior grace period are 1810 * done, and if all this rcu_node structure's CPUs are 1811 * still offline, propagate up the rcu_node tree and 1812 * clear ->wait_blkd_tasks. Otherwise, if one of this 1813 * rcu_node structure's CPUs has since come back online, 1814 * simply clear ->wait_blkd_tasks. 1815 */ 1816 if (rnp->wait_blkd_tasks && 1817 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1818 rnp->wait_blkd_tasks = false; 1819 if (!rnp->qsmaskinit) 1820 rcu_cleanup_dead_rnp(rnp); 1821 } 1822 1823 raw_spin_unlock_irq_rcu_node(rnp); 1824 raw_spin_unlock(&rcu_state.ofl_lock); 1825 } 1826 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1827 1828 /* 1829 * Set the quiescent-state-needed bits in all the rcu_node 1830 * structures for all currently online CPUs in breadth-first 1831 * order, starting from the root rcu_node structure, relying on the 1832 * layout of the tree within the rcu_state.node[] array. Note that 1833 * other CPUs will access only the leaves of the hierarchy, thus 1834 * seeing that no grace period is in progress, at least until the 1835 * corresponding leaf node has been initialized. 1836 * 1837 * The grace period cannot complete until the initialization 1838 * process finishes, because this kthread handles both. 1839 */ 1840 rcu_state.gp_state = RCU_GP_INIT; 1841 rcu_for_each_node_breadth_first(rnp) { 1842 rcu_gp_slow(gp_init_delay); 1843 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1844 rdp = this_cpu_ptr(&rcu_data); 1845 rcu_preempt_check_blocked_tasks(rnp); 1846 rnp->qsmask = rnp->qsmaskinit; 1847 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1848 if (rnp == rdp->mynode) 1849 (void)__note_gp_changes(rnp, rdp); 1850 rcu_preempt_boost_start_gp(rnp); 1851 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1852 rnp->level, rnp->grplo, 1853 rnp->grphi, rnp->qsmask); 1854 /* Quiescent states for tasks on any now-offline CPUs. */ 1855 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1856 rnp->rcu_gp_init_mask = mask; 1857 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1858 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1859 else 1860 raw_spin_unlock_irq_rcu_node(rnp); 1861 cond_resched_tasks_rcu_qs(); 1862 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1863 } 1864 1865 return true; 1866 } 1867 1868 /* 1869 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1870 * time. 1871 */ 1872 static bool rcu_gp_fqs_check_wake(int *gfp) 1873 { 1874 struct rcu_node *rnp = rcu_get_root(); 1875 1876 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1877 *gfp = READ_ONCE(rcu_state.gp_flags); 1878 if (*gfp & RCU_GP_FLAG_FQS) 1879 return true; 1880 1881 /* The current grace period has completed. */ 1882 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1883 return true; 1884 1885 return false; 1886 } 1887 1888 /* 1889 * Do one round of quiescent-state forcing. 1890 */ 1891 static void rcu_gp_fqs(bool first_time) 1892 { 1893 struct rcu_node *rnp = rcu_get_root(); 1894 1895 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1896 rcu_state.n_force_qs++; 1897 if (first_time) { 1898 /* Collect dyntick-idle snapshots. */ 1899 force_qs_rnp(dyntick_save_progress_counter); 1900 } else { 1901 /* Handle dyntick-idle and offline CPUs. */ 1902 force_qs_rnp(rcu_implicit_dynticks_qs); 1903 } 1904 /* Clear flag to prevent immediate re-entry. */ 1905 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1906 raw_spin_lock_irq_rcu_node(rnp); 1907 WRITE_ONCE(rcu_state.gp_flags, 1908 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1909 raw_spin_unlock_irq_rcu_node(rnp); 1910 } 1911 } 1912 1913 /* 1914 * Loop doing repeated quiescent-state forcing until the grace period ends. 1915 */ 1916 static void rcu_gp_fqs_loop(void) 1917 { 1918 bool first_gp_fqs; 1919 int gf; 1920 unsigned long j; 1921 int ret; 1922 struct rcu_node *rnp = rcu_get_root(); 1923 1924 first_gp_fqs = true; 1925 j = READ_ONCE(jiffies_till_first_fqs); 1926 ret = 0; 1927 for (;;) { 1928 if (!ret) { 1929 rcu_state.jiffies_force_qs = jiffies + j; 1930 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1931 jiffies + 3 * j); 1932 } 1933 trace_rcu_grace_period(rcu_state.name, 1934 READ_ONCE(rcu_state.gp_seq), 1935 TPS("fqswait")); 1936 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1937 ret = swait_event_idle_timeout_exclusive( 1938 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1939 rcu_state.gp_state = RCU_GP_DOING_FQS; 1940 /* Locking provides needed memory barriers. */ 1941 /* If grace period done, leave loop. */ 1942 if (!READ_ONCE(rnp->qsmask) && 1943 !rcu_preempt_blocked_readers_cgp(rnp)) 1944 break; 1945 /* If time for quiescent-state forcing, do it. */ 1946 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1947 (gf & RCU_GP_FLAG_FQS)) { 1948 trace_rcu_grace_period(rcu_state.name, 1949 READ_ONCE(rcu_state.gp_seq), 1950 TPS("fqsstart")); 1951 rcu_gp_fqs(first_gp_fqs); 1952 first_gp_fqs = false; 1953 trace_rcu_grace_period(rcu_state.name, 1954 READ_ONCE(rcu_state.gp_seq), 1955 TPS("fqsend")); 1956 cond_resched_tasks_rcu_qs(); 1957 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1958 ret = 0; /* Force full wait till next FQS. */ 1959 j = READ_ONCE(jiffies_till_next_fqs); 1960 } else { 1961 /* Deal with stray signal. */ 1962 cond_resched_tasks_rcu_qs(); 1963 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1964 WARN_ON(signal_pending(current)); 1965 trace_rcu_grace_period(rcu_state.name, 1966 READ_ONCE(rcu_state.gp_seq), 1967 TPS("fqswaitsig")); 1968 ret = 1; /* Keep old FQS timing. */ 1969 j = jiffies; 1970 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1971 j = 1; 1972 else 1973 j = rcu_state.jiffies_force_qs - j; 1974 } 1975 } 1976 } 1977 1978 /* 1979 * Clean up after the old grace period. 1980 */ 1981 static void rcu_gp_cleanup(void) 1982 { 1983 unsigned long gp_duration; 1984 bool needgp = false; 1985 unsigned long new_gp_seq; 1986 struct rcu_data *rdp; 1987 struct rcu_node *rnp = rcu_get_root(); 1988 struct swait_queue_head *sq; 1989 1990 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1991 raw_spin_lock_irq_rcu_node(rnp); 1992 gp_duration = jiffies - rcu_state.gp_start; 1993 if (gp_duration > rcu_state.gp_max) 1994 rcu_state.gp_max = gp_duration; 1995 1996 /* 1997 * We know the grace period is complete, but to everyone else 1998 * it appears to still be ongoing. But it is also the case 1999 * that to everyone else it looks like there is nothing that 2000 * they can do to advance the grace period. It is therefore 2001 * safe for us to drop the lock in order to mark the grace 2002 * period as completed in all of the rcu_node structures. 2003 */ 2004 raw_spin_unlock_irq_rcu_node(rnp); 2005 2006 /* 2007 * Propagate new ->gp_seq value to rcu_node structures so that 2008 * other CPUs don't have to wait until the start of the next grace 2009 * period to process their callbacks. This also avoids some nasty 2010 * RCU grace-period initialization races by forcing the end of 2011 * the current grace period to be completely recorded in all of 2012 * the rcu_node structures before the beginning of the next grace 2013 * period is recorded in any of the rcu_node structures. 2014 */ 2015 new_gp_seq = rcu_state.gp_seq; 2016 rcu_seq_end(&new_gp_seq); 2017 rcu_for_each_node_breadth_first(rnp) { 2018 raw_spin_lock_irq_rcu_node(rnp); 2019 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2020 dump_blkd_tasks(rnp, 10); 2021 WARN_ON_ONCE(rnp->qsmask); 2022 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2023 rdp = this_cpu_ptr(&rcu_data); 2024 if (rnp == rdp->mynode) 2025 needgp = __note_gp_changes(rnp, rdp) || needgp; 2026 /* smp_mb() provided by prior unlock-lock pair. */ 2027 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2028 sq = rcu_nocb_gp_get(rnp); 2029 raw_spin_unlock_irq_rcu_node(rnp); 2030 rcu_nocb_gp_cleanup(sq); 2031 cond_resched_tasks_rcu_qs(); 2032 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2033 rcu_gp_slow(gp_cleanup_delay); 2034 } 2035 rnp = rcu_get_root(); 2036 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2037 2038 /* Declare grace period done, trace first to use old GP number. */ 2039 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2040 rcu_seq_end(&rcu_state.gp_seq); 2041 rcu_state.gp_state = RCU_GP_IDLE; 2042 /* Check for GP requests since above loop. */ 2043 rdp = this_cpu_ptr(&rcu_data); 2044 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2045 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2046 TPS("CleanupMore")); 2047 needgp = true; 2048 } 2049 /* Advance CBs to reduce false positives below. */ 2050 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) { 2051 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2052 rcu_state.gp_req_activity = jiffies; 2053 trace_rcu_grace_period(rcu_state.name, 2054 READ_ONCE(rcu_state.gp_seq), 2055 TPS("newreq")); 2056 } else { 2057 WRITE_ONCE(rcu_state.gp_flags, 2058 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2059 } 2060 raw_spin_unlock_irq_rcu_node(rnp); 2061 } 2062 2063 /* 2064 * Body of kthread that handles grace periods. 2065 */ 2066 static int __noreturn rcu_gp_kthread(void *unused) 2067 { 2068 rcu_bind_gp_kthread(); 2069 for (;;) { 2070 2071 /* Handle grace-period start. */ 2072 for (;;) { 2073 trace_rcu_grace_period(rcu_state.name, 2074 READ_ONCE(rcu_state.gp_seq), 2075 TPS("reqwait")); 2076 rcu_state.gp_state = RCU_GP_WAIT_GPS; 2077 swait_event_idle_exclusive(rcu_state.gp_wq, 2078 READ_ONCE(rcu_state.gp_flags) & 2079 RCU_GP_FLAG_INIT); 2080 rcu_state.gp_state = RCU_GP_DONE_GPS; 2081 /* Locking provides needed memory barrier. */ 2082 if (rcu_gp_init()) 2083 break; 2084 cond_resched_tasks_rcu_qs(); 2085 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2086 WARN_ON(signal_pending(current)); 2087 trace_rcu_grace_period(rcu_state.name, 2088 READ_ONCE(rcu_state.gp_seq), 2089 TPS("reqwaitsig")); 2090 } 2091 2092 /* Handle quiescent-state forcing. */ 2093 rcu_gp_fqs_loop(); 2094 2095 /* Handle grace-period end. */ 2096 rcu_state.gp_state = RCU_GP_CLEANUP; 2097 rcu_gp_cleanup(); 2098 rcu_state.gp_state = RCU_GP_CLEANED; 2099 } 2100 } 2101 2102 /* 2103 * Report a full set of quiescent states to the rcu_state data structure. 2104 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2105 * another grace period is required. Whether we wake the grace-period 2106 * kthread or it awakens itself for the next round of quiescent-state 2107 * forcing, that kthread will clean up after the just-completed grace 2108 * period. Note that the caller must hold rnp->lock, which is released 2109 * before return. 2110 */ 2111 static void rcu_report_qs_rsp(unsigned long flags) 2112 __releases(rcu_get_root()->lock) 2113 { 2114 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2115 WARN_ON_ONCE(!rcu_gp_in_progress()); 2116 WRITE_ONCE(rcu_state.gp_flags, 2117 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2118 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2119 rcu_gp_kthread_wake(); 2120 } 2121 2122 /* 2123 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2124 * Allows quiescent states for a group of CPUs to be reported at one go 2125 * to the specified rcu_node structure, though all the CPUs in the group 2126 * must be represented by the same rcu_node structure (which need not be a 2127 * leaf rcu_node structure, though it often will be). The gps parameter 2128 * is the grace-period snapshot, which means that the quiescent states 2129 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2130 * must be held upon entry, and it is released before return. 2131 * 2132 * As a special case, if mask is zero, the bit-already-cleared check is 2133 * disabled. This allows propagating quiescent state due to resumed tasks 2134 * during grace-period initialization. 2135 */ 2136 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2137 unsigned long gps, unsigned long flags) 2138 __releases(rnp->lock) 2139 { 2140 unsigned long oldmask = 0; 2141 struct rcu_node *rnp_c; 2142 2143 raw_lockdep_assert_held_rcu_node(rnp); 2144 2145 /* Walk up the rcu_node hierarchy. */ 2146 for (;;) { 2147 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2148 2149 /* 2150 * Our bit has already been cleared, or the 2151 * relevant grace period is already over, so done. 2152 */ 2153 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2154 return; 2155 } 2156 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2157 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2158 rcu_preempt_blocked_readers_cgp(rnp)); 2159 rnp->qsmask &= ~mask; 2160 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2161 mask, rnp->qsmask, rnp->level, 2162 rnp->grplo, rnp->grphi, 2163 !!rnp->gp_tasks); 2164 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2165 2166 /* Other bits still set at this level, so done. */ 2167 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2168 return; 2169 } 2170 rnp->completedqs = rnp->gp_seq; 2171 mask = rnp->grpmask; 2172 if (rnp->parent == NULL) { 2173 2174 /* No more levels. Exit loop holding root lock. */ 2175 2176 break; 2177 } 2178 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2179 rnp_c = rnp; 2180 rnp = rnp->parent; 2181 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2182 oldmask = rnp_c->qsmask; 2183 } 2184 2185 /* 2186 * Get here if we are the last CPU to pass through a quiescent 2187 * state for this grace period. Invoke rcu_report_qs_rsp() 2188 * to clean up and start the next grace period if one is needed. 2189 */ 2190 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2191 } 2192 2193 /* 2194 * Record a quiescent state for all tasks that were previously queued 2195 * on the specified rcu_node structure and that were blocking the current 2196 * RCU grace period. The caller must hold the corresponding rnp->lock with 2197 * irqs disabled, and this lock is released upon return, but irqs remain 2198 * disabled. 2199 */ 2200 static void __maybe_unused 2201 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2202 __releases(rnp->lock) 2203 { 2204 unsigned long gps; 2205 unsigned long mask; 2206 struct rcu_node *rnp_p; 2207 2208 raw_lockdep_assert_held_rcu_node(rnp); 2209 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) || 2210 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2211 rnp->qsmask != 0) { 2212 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2213 return; /* Still need more quiescent states! */ 2214 } 2215 2216 rnp->completedqs = rnp->gp_seq; 2217 rnp_p = rnp->parent; 2218 if (rnp_p == NULL) { 2219 /* 2220 * Only one rcu_node structure in the tree, so don't 2221 * try to report up to its nonexistent parent! 2222 */ 2223 rcu_report_qs_rsp(flags); 2224 return; 2225 } 2226 2227 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2228 gps = rnp->gp_seq; 2229 mask = rnp->grpmask; 2230 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2231 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2232 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2233 } 2234 2235 /* 2236 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2237 * structure. This must be called from the specified CPU. 2238 */ 2239 static void 2240 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 2241 { 2242 unsigned long flags; 2243 unsigned long mask; 2244 bool needwake; 2245 struct rcu_node *rnp; 2246 2247 rnp = rdp->mynode; 2248 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2249 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2250 rdp->gpwrap) { 2251 2252 /* 2253 * The grace period in which this quiescent state was 2254 * recorded has ended, so don't report it upwards. 2255 * We will instead need a new quiescent state that lies 2256 * within the current grace period. 2257 */ 2258 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2259 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2260 return; 2261 } 2262 mask = rdp->grpmask; 2263 if ((rnp->qsmask & mask) == 0) { 2264 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2265 } else { 2266 rdp->core_needs_qs = false; 2267 2268 /* 2269 * This GP can't end until cpu checks in, so all of our 2270 * callbacks can be processed during the next GP. 2271 */ 2272 needwake = rcu_accelerate_cbs(rnp, rdp); 2273 2274 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2275 /* ^^^ Released rnp->lock */ 2276 if (needwake) 2277 rcu_gp_kthread_wake(); 2278 } 2279 } 2280 2281 /* 2282 * Check to see if there is a new grace period of which this CPU 2283 * is not yet aware, and if so, set up local rcu_data state for it. 2284 * Otherwise, see if this CPU has just passed through its first 2285 * quiescent state for this grace period, and record that fact if so. 2286 */ 2287 static void 2288 rcu_check_quiescent_state(struct rcu_data *rdp) 2289 { 2290 /* Check for grace-period ends and beginnings. */ 2291 note_gp_changes(rdp); 2292 2293 /* 2294 * Does this CPU still need to do its part for current grace period? 2295 * If no, return and let the other CPUs do their part as well. 2296 */ 2297 if (!rdp->core_needs_qs) 2298 return; 2299 2300 /* 2301 * Was there a quiescent state since the beginning of the grace 2302 * period? If no, then exit and wait for the next call. 2303 */ 2304 if (rdp->cpu_no_qs.b.norm) 2305 return; 2306 2307 /* 2308 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2309 * judge of that). 2310 */ 2311 rcu_report_qs_rdp(rdp->cpu, rdp); 2312 } 2313 2314 /* 2315 * Near the end of the offline process. Trace the fact that this CPU 2316 * is going offline. 2317 */ 2318 int rcutree_dying_cpu(unsigned int cpu) 2319 { 2320 RCU_TRACE(bool blkd;) 2321 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);) 2322 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2323 2324 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2325 return 0; 2326 2327 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) 2328 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2329 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2330 return 0; 2331 } 2332 2333 /* 2334 * All CPUs for the specified rcu_node structure have gone offline, 2335 * and all tasks that were preempted within an RCU read-side critical 2336 * section while running on one of those CPUs have since exited their RCU 2337 * read-side critical section. Some other CPU is reporting this fact with 2338 * the specified rcu_node structure's ->lock held and interrupts disabled. 2339 * This function therefore goes up the tree of rcu_node structures, 2340 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2341 * the leaf rcu_node structure's ->qsmaskinit field has already been 2342 * updated. 2343 * 2344 * This function does check that the specified rcu_node structure has 2345 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2346 * prematurely. That said, invoking it after the fact will cost you 2347 * a needless lock acquisition. So once it has done its work, don't 2348 * invoke it again. 2349 */ 2350 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2351 { 2352 long mask; 2353 struct rcu_node *rnp = rnp_leaf; 2354 2355 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2356 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2357 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2358 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2359 return; 2360 for (;;) { 2361 mask = rnp->grpmask; 2362 rnp = rnp->parent; 2363 if (!rnp) 2364 break; 2365 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2366 rnp->qsmaskinit &= ~mask; 2367 /* Between grace periods, so better already be zero! */ 2368 WARN_ON_ONCE(rnp->qsmask); 2369 if (rnp->qsmaskinit) { 2370 raw_spin_unlock_rcu_node(rnp); 2371 /* irqs remain disabled. */ 2372 return; 2373 } 2374 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2375 } 2376 } 2377 2378 /* 2379 * The CPU has been completely removed, and some other CPU is reporting 2380 * this fact from process context. Do the remainder of the cleanup. 2381 * There can only be one CPU hotplug operation at a time, so no need for 2382 * explicit locking. 2383 */ 2384 int rcutree_dead_cpu(unsigned int cpu) 2385 { 2386 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2387 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2388 2389 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2390 return 0; 2391 2392 /* Adjust any no-longer-needed kthreads. */ 2393 rcu_boost_kthread_setaffinity(rnp, -1); 2394 /* Do any needed no-CB deferred wakeups from this CPU. */ 2395 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2396 return 0; 2397 } 2398 2399 /* 2400 * Invoke any RCU callbacks that have made it to the end of their grace 2401 * period. Thottle as specified by rdp->blimit. 2402 */ 2403 static void rcu_do_batch(struct rcu_data *rdp) 2404 { 2405 unsigned long flags; 2406 struct rcu_head *rhp; 2407 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2408 long bl, count; 2409 2410 /* If no callbacks are ready, just return. */ 2411 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2412 trace_rcu_batch_start(rcu_state.name, 2413 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2414 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2415 trace_rcu_batch_end(rcu_state.name, 0, 2416 !rcu_segcblist_empty(&rdp->cblist), 2417 need_resched(), is_idle_task(current), 2418 rcu_is_callbacks_kthread()); 2419 return; 2420 } 2421 2422 /* 2423 * Extract the list of ready callbacks, disabling to prevent 2424 * races with call_rcu() from interrupt handlers. Leave the 2425 * callback counts, as rcu_barrier() needs to be conservative. 2426 */ 2427 local_irq_save(flags); 2428 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2429 bl = rdp->blimit; 2430 trace_rcu_batch_start(rcu_state.name, 2431 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2432 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2433 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2434 local_irq_restore(flags); 2435 2436 /* Invoke callbacks. */ 2437 rhp = rcu_cblist_dequeue(&rcl); 2438 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2439 debug_rcu_head_unqueue(rhp); 2440 if (__rcu_reclaim(rcu_state.name, rhp)) 2441 rcu_cblist_dequeued_lazy(&rcl); 2442 /* 2443 * Stop only if limit reached and CPU has something to do. 2444 * Note: The rcl structure counts down from zero. 2445 */ 2446 if (-rcl.len >= bl && 2447 (need_resched() || 2448 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2449 break; 2450 } 2451 2452 local_irq_save(flags); 2453 count = -rcl.len; 2454 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2455 is_idle_task(current), rcu_is_callbacks_kthread()); 2456 2457 /* Update counts and requeue any remaining callbacks. */ 2458 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2459 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2460 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2461 2462 /* Reinstate batch limit if we have worked down the excess. */ 2463 count = rcu_segcblist_n_cbs(&rdp->cblist); 2464 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2465 rdp->blimit = blimit; 2466 2467 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2468 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2469 rdp->qlen_last_fqs_check = 0; 2470 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2471 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2472 rdp->qlen_last_fqs_check = count; 2473 2474 /* 2475 * The following usually indicates a double call_rcu(). To track 2476 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2477 */ 2478 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2479 2480 local_irq_restore(flags); 2481 2482 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2483 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2484 invoke_rcu_core(); 2485 } 2486 2487 /* 2488 * Check to see if this CPU is in a non-context-switch quiescent state 2489 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2490 * Also schedule RCU core processing. 2491 * 2492 * This function must be called from hardirq context. It is normally 2493 * invoked from the scheduling-clock interrupt. 2494 */ 2495 void rcu_check_callbacks(int user) 2496 { 2497 trace_rcu_utilization(TPS("Start scheduler-tick")); 2498 raw_cpu_inc(rcu_data.ticks_this_gp); 2499 /* The load-acquire pairs with the store-release setting to true. */ 2500 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2501 /* Idle and userspace execution already are quiescent states. */ 2502 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2503 set_tsk_need_resched(current); 2504 set_preempt_need_resched(); 2505 } 2506 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2507 } 2508 rcu_flavor_check_callbacks(user); 2509 if (rcu_pending()) 2510 invoke_rcu_core(); 2511 2512 trace_rcu_utilization(TPS("End scheduler-tick")); 2513 } 2514 2515 /* 2516 * Scan the leaf rcu_node structures, processing dyntick state for any that 2517 * have not yet encountered a quiescent state, using the function specified. 2518 * Also initiate boosting for any threads blocked on the root rcu_node. 2519 * 2520 * The caller must have suppressed start of new grace periods. 2521 */ 2522 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2523 { 2524 int cpu; 2525 unsigned long flags; 2526 unsigned long mask; 2527 struct rcu_node *rnp; 2528 2529 rcu_for_each_leaf_node(rnp) { 2530 cond_resched_tasks_rcu_qs(); 2531 mask = 0; 2532 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2533 if (rnp->qsmask == 0) { 2534 if (!IS_ENABLED(CONFIG_PREEMPT) || 2535 rcu_preempt_blocked_readers_cgp(rnp)) { 2536 /* 2537 * No point in scanning bits because they 2538 * are all zero. But we might need to 2539 * priority-boost blocked readers. 2540 */ 2541 rcu_initiate_boost(rnp, flags); 2542 /* rcu_initiate_boost() releases rnp->lock */ 2543 continue; 2544 } 2545 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2546 continue; 2547 } 2548 for_each_leaf_node_possible_cpu(rnp, cpu) { 2549 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2550 if ((rnp->qsmask & bit) != 0) { 2551 if (f(per_cpu_ptr(&rcu_data, cpu))) 2552 mask |= bit; 2553 } 2554 } 2555 if (mask != 0) { 2556 /* Idle/offline CPUs, report (releases rnp->lock). */ 2557 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2558 } else { 2559 /* Nothing to do here, so just drop the lock. */ 2560 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2561 } 2562 } 2563 } 2564 2565 /* 2566 * Force quiescent states on reluctant CPUs, and also detect which 2567 * CPUs are in dyntick-idle mode. 2568 */ 2569 static void force_quiescent_state(void) 2570 { 2571 unsigned long flags; 2572 bool ret; 2573 struct rcu_node *rnp; 2574 struct rcu_node *rnp_old = NULL; 2575 2576 /* Funnel through hierarchy to reduce memory contention. */ 2577 rnp = __this_cpu_read(rcu_data.mynode); 2578 for (; rnp != NULL; rnp = rnp->parent) { 2579 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2580 !raw_spin_trylock(&rnp->fqslock); 2581 if (rnp_old != NULL) 2582 raw_spin_unlock(&rnp_old->fqslock); 2583 if (ret) 2584 return; 2585 rnp_old = rnp; 2586 } 2587 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2588 2589 /* Reached the root of the rcu_node tree, acquire lock. */ 2590 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2591 raw_spin_unlock(&rnp_old->fqslock); 2592 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2593 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2594 return; /* Someone beat us to it. */ 2595 } 2596 WRITE_ONCE(rcu_state.gp_flags, 2597 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2598 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2599 rcu_gp_kthread_wake(); 2600 } 2601 2602 /* 2603 * This function checks for grace-period requests that fail to motivate 2604 * RCU to come out of its idle mode. 2605 */ 2606 void 2607 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp, 2608 const unsigned long gpssdelay) 2609 { 2610 unsigned long flags; 2611 unsigned long j; 2612 struct rcu_node *rnp_root = rcu_get_root(); 2613 static atomic_t warned = ATOMIC_INIT(0); 2614 2615 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() || 2616 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) 2617 return; 2618 j = jiffies; /* Expensive access, and in common case don't get here. */ 2619 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2620 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2621 atomic_read(&warned)) 2622 return; 2623 2624 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2625 j = jiffies; 2626 if (rcu_gp_in_progress() || 2627 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2628 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2629 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2630 atomic_read(&warned)) { 2631 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2632 return; 2633 } 2634 /* Hold onto the leaf lock to make others see warned==1. */ 2635 2636 if (rnp_root != rnp) 2637 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 2638 j = jiffies; 2639 if (rcu_gp_in_progress() || 2640 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2641 time_before(j, rcu_state.gp_req_activity + gpssdelay) || 2642 time_before(j, rcu_state.gp_activity + gpssdelay) || 2643 atomic_xchg(&warned, 1)) { 2644 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ 2645 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2646 return; 2647 } 2648 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n", 2649 __func__, (long)READ_ONCE(rcu_state.gp_seq), 2650 (long)READ_ONCE(rnp_root->gp_seq_needed), 2651 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity, 2652 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name, 2653 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL); 2654 WARN_ON(1); 2655 if (rnp_root != rnp) 2656 raw_spin_unlock_rcu_node(rnp_root); 2657 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2658 } 2659 2660 /* 2661 * Do a forward-progress check for rcutorture. This is normally invoked 2662 * due to an OOM event. The argument "j" gives the time period during 2663 * which rcutorture would like progress to have been made. 2664 */ 2665 void rcu_fwd_progress_check(unsigned long j) 2666 { 2667 struct rcu_data *rdp; 2668 2669 if (rcu_gp_in_progress()) { 2670 show_rcu_gp_kthreads(); 2671 } else { 2672 preempt_disable(); 2673 rdp = this_cpu_ptr(&rcu_data); 2674 rcu_check_gp_start_stall(rdp->mynode, rdp, j); 2675 preempt_enable(); 2676 } 2677 } 2678 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check); 2679 2680 /* 2681 * This does the RCU core processing work for the specified rcu_data 2682 * structures. This may be called only from the CPU to whom the rdp 2683 * belongs. 2684 */ 2685 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2686 { 2687 unsigned long flags; 2688 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2689 struct rcu_node *rnp = rdp->mynode; 2690 2691 if (cpu_is_offline(smp_processor_id())) 2692 return; 2693 trace_rcu_utilization(TPS("Start RCU core")); 2694 WARN_ON_ONCE(!rdp->beenonline); 2695 2696 /* Report any deferred quiescent states if preemption enabled. */ 2697 if (!(preempt_count() & PREEMPT_MASK)) { 2698 rcu_preempt_deferred_qs(current); 2699 } else if (rcu_preempt_need_deferred_qs(current)) { 2700 set_tsk_need_resched(current); 2701 set_preempt_need_resched(); 2702 } 2703 2704 /* Update RCU state based on any recent quiescent states. */ 2705 rcu_check_quiescent_state(rdp); 2706 2707 /* No grace period and unregistered callbacks? */ 2708 if (!rcu_gp_in_progress() && 2709 rcu_segcblist_is_enabled(&rdp->cblist)) { 2710 local_irq_save(flags); 2711 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2712 rcu_accelerate_cbs_unlocked(rnp, rdp); 2713 local_irq_restore(flags); 2714 } 2715 2716 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2717 2718 /* If there are callbacks ready, invoke them. */ 2719 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2720 invoke_rcu_callbacks(rdp); 2721 2722 /* Do any needed deferred wakeups of rcuo kthreads. */ 2723 do_nocb_deferred_wakeup(rdp); 2724 trace_rcu_utilization(TPS("End RCU core")); 2725 } 2726 2727 /* 2728 * Schedule RCU callback invocation. If the running implementation of RCU 2729 * does not support RCU priority boosting, just do a direct call, otherwise 2730 * wake up the per-CPU kernel kthread. Note that because we are running 2731 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task 2732 * cannot disappear out from under us. 2733 */ 2734 static void invoke_rcu_callbacks(struct rcu_data *rdp) 2735 { 2736 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2737 return; 2738 if (likely(!rcu_state.boost)) { 2739 rcu_do_batch(rdp); 2740 return; 2741 } 2742 invoke_rcu_callbacks_kthread(); 2743 } 2744 2745 static void invoke_rcu_core(void) 2746 { 2747 if (cpu_online(smp_processor_id())) 2748 raise_softirq(RCU_SOFTIRQ); 2749 } 2750 2751 /* 2752 * Handle any core-RCU processing required by a call_rcu() invocation. 2753 */ 2754 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2755 unsigned long flags) 2756 { 2757 /* 2758 * If called from an extended quiescent state, invoke the RCU 2759 * core in order to force a re-evaluation of RCU's idleness. 2760 */ 2761 if (!rcu_is_watching()) 2762 invoke_rcu_core(); 2763 2764 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2765 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2766 return; 2767 2768 /* 2769 * Force the grace period if too many callbacks or too long waiting. 2770 * Enforce hysteresis, and don't invoke force_quiescent_state() 2771 * if some other CPU has recently done so. Also, don't bother 2772 * invoking force_quiescent_state() if the newly enqueued callback 2773 * is the only one waiting for a grace period to complete. 2774 */ 2775 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2776 rdp->qlen_last_fqs_check + qhimark)) { 2777 2778 /* Are we ignoring a completed grace period? */ 2779 note_gp_changes(rdp); 2780 2781 /* Start a new grace period if one not already started. */ 2782 if (!rcu_gp_in_progress()) { 2783 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2784 } else { 2785 /* Give the grace period a kick. */ 2786 rdp->blimit = LONG_MAX; 2787 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2788 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2789 force_quiescent_state(); 2790 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2791 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2792 } 2793 } 2794 } 2795 2796 /* 2797 * RCU callback function to leak a callback. 2798 */ 2799 static void rcu_leak_callback(struct rcu_head *rhp) 2800 { 2801 } 2802 2803 /* 2804 * Helper function for call_rcu() and friends. The cpu argument will 2805 * normally be -1, indicating "currently running CPU". It may specify 2806 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2807 * is expected to specify a CPU. 2808 */ 2809 static void 2810 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy) 2811 { 2812 unsigned long flags; 2813 struct rcu_data *rdp; 2814 2815 /* Misaligned rcu_head! */ 2816 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2817 2818 if (debug_rcu_head_queue(head)) { 2819 /* 2820 * Probable double call_rcu(), so leak the callback. 2821 * Use rcu:rcu_callback trace event to find the previous 2822 * time callback was passed to __call_rcu(). 2823 */ 2824 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2825 head, head->func); 2826 WRITE_ONCE(head->func, rcu_leak_callback); 2827 return; 2828 } 2829 head->func = func; 2830 head->next = NULL; 2831 local_irq_save(flags); 2832 rdp = this_cpu_ptr(&rcu_data); 2833 2834 /* Add the callback to our list. */ 2835 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2836 int offline; 2837 2838 if (cpu != -1) 2839 rdp = per_cpu_ptr(&rcu_data, cpu); 2840 if (likely(rdp->mynode)) { 2841 /* Post-boot, so this should be for a no-CBs CPU. */ 2842 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2843 WARN_ON_ONCE(offline); 2844 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2845 local_irq_restore(flags); 2846 return; 2847 } 2848 /* 2849 * Very early boot, before rcu_init(). Initialize if needed 2850 * and then drop through to queue the callback. 2851 */ 2852 WARN_ON_ONCE(cpu != -1); 2853 WARN_ON_ONCE(!rcu_is_watching()); 2854 if (rcu_segcblist_empty(&rdp->cblist)) 2855 rcu_segcblist_init(&rdp->cblist); 2856 } 2857 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2858 if (!lazy) 2859 rcu_idle_count_callbacks_posted(); 2860 2861 if (__is_kfree_rcu_offset((unsigned long)func)) 2862 trace_rcu_kfree_callback(rcu_state.name, head, 2863 (unsigned long)func, 2864 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2865 rcu_segcblist_n_cbs(&rdp->cblist)); 2866 else 2867 trace_rcu_callback(rcu_state.name, head, 2868 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2869 rcu_segcblist_n_cbs(&rdp->cblist)); 2870 2871 /* Go handle any RCU core processing required. */ 2872 __call_rcu_core(rdp, head, flags); 2873 local_irq_restore(flags); 2874 } 2875 2876 /** 2877 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2878 * @head: structure to be used for queueing the RCU updates. 2879 * @func: actual callback function to be invoked after the grace period 2880 * 2881 * The callback function will be invoked some time after a full grace 2882 * period elapses, in other words after all pre-existing RCU read-side 2883 * critical sections have completed. However, the callback function 2884 * might well execute concurrently with RCU read-side critical sections 2885 * that started after call_rcu() was invoked. RCU read-side critical 2886 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2887 * may be nested. In addition, regions of code across which interrupts, 2888 * preemption, or softirqs have been disabled also serve as RCU read-side 2889 * critical sections. This includes hardware interrupt handlers, softirq 2890 * handlers, and NMI handlers. 2891 * 2892 * Note that all CPUs must agree that the grace period extended beyond 2893 * all pre-existing RCU read-side critical section. On systems with more 2894 * than one CPU, this means that when "func()" is invoked, each CPU is 2895 * guaranteed to have executed a full memory barrier since the end of its 2896 * last RCU read-side critical section whose beginning preceded the call 2897 * to call_rcu(). It also means that each CPU executing an RCU read-side 2898 * critical section that continues beyond the start of "func()" must have 2899 * executed a memory barrier after the call_rcu() but before the beginning 2900 * of that RCU read-side critical section. Note that these guarantees 2901 * include CPUs that are offline, idle, or executing in user mode, as 2902 * well as CPUs that are executing in the kernel. 2903 * 2904 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2905 * resulting RCU callback function "func()", then both CPU A and CPU B are 2906 * guaranteed to execute a full memory barrier during the time interval 2907 * between the call to call_rcu() and the invocation of "func()" -- even 2908 * if CPU A and CPU B are the same CPU (but again only if the system has 2909 * more than one CPU). 2910 */ 2911 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2912 { 2913 __call_rcu(head, func, -1, 0); 2914 } 2915 EXPORT_SYMBOL_GPL(call_rcu); 2916 2917 /* 2918 * Queue an RCU callback for lazy invocation after a grace period. 2919 * This will likely be later named something like "call_rcu_lazy()", 2920 * but this change will require some way of tagging the lazy RCU 2921 * callbacks in the list of pending callbacks. Until then, this 2922 * function may only be called from __kfree_rcu(). 2923 */ 2924 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2925 { 2926 __call_rcu(head, func, -1, 1); 2927 } 2928 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2929 2930 /** 2931 * get_state_synchronize_rcu - Snapshot current RCU state 2932 * 2933 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2934 * to determine whether or not a full grace period has elapsed in the 2935 * meantime. 2936 */ 2937 unsigned long get_state_synchronize_rcu(void) 2938 { 2939 /* 2940 * Any prior manipulation of RCU-protected data must happen 2941 * before the load from ->gp_seq. 2942 */ 2943 smp_mb(); /* ^^^ */ 2944 return rcu_seq_snap(&rcu_state.gp_seq); 2945 } 2946 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2947 2948 /** 2949 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2950 * 2951 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2952 * 2953 * If a full RCU grace period has elapsed since the earlier call to 2954 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2955 * synchronize_rcu() to wait for a full grace period. 2956 * 2957 * Yes, this function does not take counter wrap into account. But 2958 * counter wrap is harmless. If the counter wraps, we have waited for 2959 * more than 2 billion grace periods (and way more on a 64-bit system!), 2960 * so waiting for one additional grace period should be just fine. 2961 */ 2962 void cond_synchronize_rcu(unsigned long oldstate) 2963 { 2964 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 2965 synchronize_rcu(); 2966 else 2967 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 2968 } 2969 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 2970 2971 /* 2972 * Check to see if there is any immediate RCU-related work to be done by 2973 * the current CPU, returning 1 if so and zero otherwise. The checks are 2974 * in order of increasing expense: checks that can be carried out against 2975 * CPU-local state are performed first. However, we must check for CPU 2976 * stalls first, else we might not get a chance. 2977 */ 2978 static int rcu_pending(void) 2979 { 2980 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2981 struct rcu_node *rnp = rdp->mynode; 2982 2983 /* Check for CPU stalls, if enabled. */ 2984 check_cpu_stall(rdp); 2985 2986 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 2987 if (rcu_nohz_full_cpu()) 2988 return 0; 2989 2990 /* Is the RCU core waiting for a quiescent state from this CPU? */ 2991 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 2992 return 1; 2993 2994 /* Does this CPU have callbacks ready to invoke? */ 2995 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2996 return 1; 2997 2998 /* Has RCU gone idle with this CPU needing another grace period? */ 2999 if (!rcu_gp_in_progress() && 3000 rcu_segcblist_is_enabled(&rdp->cblist) && 3001 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3002 return 1; 3003 3004 /* Have RCU grace period completed or started? */ 3005 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3006 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3007 return 1; 3008 3009 /* Does this CPU need a deferred NOCB wakeup? */ 3010 if (rcu_nocb_need_deferred_wakeup(rdp)) 3011 return 1; 3012 3013 /* nothing to do */ 3014 return 0; 3015 } 3016 3017 /* 3018 * Return true if the specified CPU has any callback. If all_lazy is 3019 * non-NULL, store an indication of whether all callbacks are lazy. 3020 * (If there are no callbacks, all of them are deemed to be lazy.) 3021 */ 3022 static bool rcu_cpu_has_callbacks(bool *all_lazy) 3023 { 3024 bool al = true; 3025 bool hc = false; 3026 struct rcu_data *rdp; 3027 3028 rdp = this_cpu_ptr(&rcu_data); 3029 if (!rcu_segcblist_empty(&rdp->cblist)) { 3030 hc = true; 3031 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) 3032 al = false; 3033 } 3034 if (all_lazy) 3035 *all_lazy = al; 3036 return hc; 3037 } 3038 3039 /* 3040 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3041 * the compiler is expected to optimize this away. 3042 */ 3043 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3044 { 3045 trace_rcu_barrier(rcu_state.name, s, cpu, 3046 atomic_read(&rcu_state.barrier_cpu_count), done); 3047 } 3048 3049 /* 3050 * RCU callback function for rcu_barrier(). If we are last, wake 3051 * up the task executing rcu_barrier(). 3052 */ 3053 static void rcu_barrier_callback(struct rcu_head *rhp) 3054 { 3055 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3056 rcu_barrier_trace(TPS("LastCB"), -1, 3057 rcu_state.barrier_sequence); 3058 complete(&rcu_state.barrier_completion); 3059 } else { 3060 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 3061 } 3062 } 3063 3064 /* 3065 * Called with preemption disabled, and from cross-cpu IRQ context. 3066 */ 3067 static void rcu_barrier_func(void *unused) 3068 { 3069 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 3070 3071 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3072 rdp->barrier_head.func = rcu_barrier_callback; 3073 debug_rcu_head_queue(&rdp->barrier_head); 3074 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3075 atomic_inc(&rcu_state.barrier_cpu_count); 3076 } else { 3077 debug_rcu_head_unqueue(&rdp->barrier_head); 3078 rcu_barrier_trace(TPS("IRQNQ"), -1, 3079 rcu_state.barrier_sequence); 3080 } 3081 } 3082 3083 /** 3084 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3085 * 3086 * Note that this primitive does not necessarily wait for an RCU grace period 3087 * to complete. For example, if there are no RCU callbacks queued anywhere 3088 * in the system, then rcu_barrier() is within its rights to return 3089 * immediately, without waiting for anything, much less an RCU grace period. 3090 */ 3091 void rcu_barrier(void) 3092 { 3093 int cpu; 3094 struct rcu_data *rdp; 3095 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3096 3097 rcu_barrier_trace(TPS("Begin"), -1, s); 3098 3099 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3100 mutex_lock(&rcu_state.barrier_mutex); 3101 3102 /* Did someone else do our work for us? */ 3103 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3104 rcu_barrier_trace(TPS("EarlyExit"), -1, 3105 rcu_state.barrier_sequence); 3106 smp_mb(); /* caller's subsequent code after above check. */ 3107 mutex_unlock(&rcu_state.barrier_mutex); 3108 return; 3109 } 3110 3111 /* Mark the start of the barrier operation. */ 3112 rcu_seq_start(&rcu_state.barrier_sequence); 3113 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3114 3115 /* 3116 * Initialize the count to one rather than to zero in order to 3117 * avoid a too-soon return to zero in case of a short grace period 3118 * (or preemption of this task). Exclude CPU-hotplug operations 3119 * to ensure that no offline CPU has callbacks queued. 3120 */ 3121 init_completion(&rcu_state.barrier_completion); 3122 atomic_set(&rcu_state.barrier_cpu_count, 1); 3123 get_online_cpus(); 3124 3125 /* 3126 * Force each CPU with callbacks to register a new callback. 3127 * When that callback is invoked, we will know that all of the 3128 * corresponding CPU's preceding callbacks have been invoked. 3129 */ 3130 for_each_possible_cpu(cpu) { 3131 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3132 continue; 3133 rdp = per_cpu_ptr(&rcu_data, cpu); 3134 if (rcu_is_nocb_cpu(cpu)) { 3135 if (!rcu_nocb_cpu_needs_barrier(cpu)) { 3136 rcu_barrier_trace(TPS("OfflineNoCB"), cpu, 3137 rcu_state.barrier_sequence); 3138 } else { 3139 rcu_barrier_trace(TPS("OnlineNoCB"), cpu, 3140 rcu_state.barrier_sequence); 3141 smp_mb__before_atomic(); 3142 atomic_inc(&rcu_state.barrier_cpu_count); 3143 __call_rcu(&rdp->barrier_head, 3144 rcu_barrier_callback, cpu, 0); 3145 } 3146 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3147 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3148 rcu_state.barrier_sequence); 3149 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 3150 } else { 3151 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3152 rcu_state.barrier_sequence); 3153 } 3154 } 3155 put_online_cpus(); 3156 3157 /* 3158 * Now that we have an rcu_barrier_callback() callback on each 3159 * CPU, and thus each counted, remove the initial count. 3160 */ 3161 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 3162 complete(&rcu_state.barrier_completion); 3163 3164 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3165 wait_for_completion(&rcu_state.barrier_completion); 3166 3167 /* Mark the end of the barrier operation. */ 3168 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3169 rcu_seq_end(&rcu_state.barrier_sequence); 3170 3171 /* Other rcu_barrier() invocations can now safely proceed. */ 3172 mutex_unlock(&rcu_state.barrier_mutex); 3173 } 3174 EXPORT_SYMBOL_GPL(rcu_barrier); 3175 3176 /* 3177 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3178 * first CPU in a given leaf rcu_node structure coming online. The caller 3179 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3180 * disabled. 3181 */ 3182 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3183 { 3184 long mask; 3185 long oldmask; 3186 struct rcu_node *rnp = rnp_leaf; 3187 3188 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3189 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3190 for (;;) { 3191 mask = rnp->grpmask; 3192 rnp = rnp->parent; 3193 if (rnp == NULL) 3194 return; 3195 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3196 oldmask = rnp->qsmaskinit; 3197 rnp->qsmaskinit |= mask; 3198 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3199 if (oldmask) 3200 return; 3201 } 3202 } 3203 3204 /* 3205 * Do boot-time initialization of a CPU's per-CPU RCU data. 3206 */ 3207 static void __init 3208 rcu_boot_init_percpu_data(int cpu) 3209 { 3210 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3211 3212 /* Set up local state, ensuring consistent view of global state. */ 3213 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3214 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3215 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3216 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3217 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3218 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3219 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3220 rdp->cpu = cpu; 3221 rcu_boot_init_nocb_percpu_data(rdp); 3222 } 3223 3224 /* 3225 * Invoked early in the CPU-online process, when pretty much all services 3226 * are available. The incoming CPU is not present. 3227 * 3228 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3229 * offline event can be happening at a given time. Note also that we can 3230 * accept some slop in the rsp->gp_seq access due to the fact that this 3231 * CPU cannot possibly have any RCU callbacks in flight yet. 3232 */ 3233 int rcutree_prepare_cpu(unsigned int cpu) 3234 { 3235 unsigned long flags; 3236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3237 struct rcu_node *rnp = rcu_get_root(); 3238 3239 /* Set up local state, ensuring consistent view of global state. */ 3240 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3241 rdp->qlen_last_fqs_check = 0; 3242 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3243 rdp->blimit = blimit; 3244 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3245 !init_nocb_callback_list(rdp)) 3246 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3247 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3248 rcu_dynticks_eqs_online(); 3249 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3250 3251 /* 3252 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3253 * propagation up the rcu_node tree will happen at the beginning 3254 * of the next grace period. 3255 */ 3256 rnp = rdp->mynode; 3257 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3258 rdp->beenonline = true; /* We have now been online. */ 3259 rdp->gp_seq = rnp->gp_seq; 3260 rdp->gp_seq_needed = rnp->gp_seq; 3261 rdp->cpu_no_qs.b.norm = true; 3262 rdp->core_needs_qs = false; 3263 rdp->rcu_iw_pending = false; 3264 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3265 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3266 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3267 rcu_prepare_kthreads(cpu); 3268 rcu_spawn_all_nocb_kthreads(cpu); 3269 3270 return 0; 3271 } 3272 3273 /* 3274 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3275 */ 3276 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3277 { 3278 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3279 3280 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3281 } 3282 3283 /* 3284 * Near the end of the CPU-online process. Pretty much all services 3285 * enabled, and the CPU is now very much alive. 3286 */ 3287 int rcutree_online_cpu(unsigned int cpu) 3288 { 3289 unsigned long flags; 3290 struct rcu_data *rdp; 3291 struct rcu_node *rnp; 3292 3293 rdp = per_cpu_ptr(&rcu_data, cpu); 3294 rnp = rdp->mynode; 3295 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3296 rnp->ffmask |= rdp->grpmask; 3297 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3298 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3299 srcu_online_cpu(cpu); 3300 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3301 return 0; /* Too early in boot for scheduler work. */ 3302 sync_sched_exp_online_cleanup(cpu); 3303 rcutree_affinity_setting(cpu, -1); 3304 return 0; 3305 } 3306 3307 /* 3308 * Near the beginning of the process. The CPU is still very much alive 3309 * with pretty much all services enabled. 3310 */ 3311 int rcutree_offline_cpu(unsigned int cpu) 3312 { 3313 unsigned long flags; 3314 struct rcu_data *rdp; 3315 struct rcu_node *rnp; 3316 3317 rdp = per_cpu_ptr(&rcu_data, cpu); 3318 rnp = rdp->mynode; 3319 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3320 rnp->ffmask &= ~rdp->grpmask; 3321 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3322 3323 rcutree_affinity_setting(cpu, cpu); 3324 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3325 srcu_offline_cpu(cpu); 3326 return 0; 3327 } 3328 3329 static DEFINE_PER_CPU(int, rcu_cpu_started); 3330 3331 /* 3332 * Mark the specified CPU as being online so that subsequent grace periods 3333 * (both expedited and normal) will wait on it. Note that this means that 3334 * incoming CPUs are not allowed to use RCU read-side critical sections 3335 * until this function is called. Failing to observe this restriction 3336 * will result in lockdep splats. 3337 * 3338 * Note that this function is special in that it is invoked directly 3339 * from the incoming CPU rather than from the cpuhp_step mechanism. 3340 * This is because this function must be invoked at a precise location. 3341 */ 3342 void rcu_cpu_starting(unsigned int cpu) 3343 { 3344 unsigned long flags; 3345 unsigned long mask; 3346 int nbits; 3347 unsigned long oldmask; 3348 struct rcu_data *rdp; 3349 struct rcu_node *rnp; 3350 3351 if (per_cpu(rcu_cpu_started, cpu)) 3352 return; 3353 3354 per_cpu(rcu_cpu_started, cpu) = 1; 3355 3356 rdp = per_cpu_ptr(&rcu_data, cpu); 3357 rnp = rdp->mynode; 3358 mask = rdp->grpmask; 3359 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3360 rnp->qsmaskinitnext |= mask; 3361 oldmask = rnp->expmaskinitnext; 3362 rnp->expmaskinitnext |= mask; 3363 oldmask ^= rnp->expmaskinitnext; 3364 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3365 /* Allow lockless access for expedited grace periods. */ 3366 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3367 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3368 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3369 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3370 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3371 /* Report QS -after- changing ->qsmaskinitnext! */ 3372 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3373 } else { 3374 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3375 } 3376 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3377 } 3378 3379 #ifdef CONFIG_HOTPLUG_CPU 3380 /* 3381 * The outgoing function has no further need of RCU, so remove it from 3382 * the rcu_node tree's ->qsmaskinitnext bit masks. 3383 * 3384 * Note that this function is special in that it is invoked directly 3385 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3386 * This is because this function must be invoked at a precise location. 3387 */ 3388 void rcu_report_dead(unsigned int cpu) 3389 { 3390 unsigned long flags; 3391 unsigned long mask; 3392 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3393 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3394 3395 /* QS for any half-done expedited grace period. */ 3396 preempt_disable(); 3397 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3398 preempt_enable(); 3399 rcu_preempt_deferred_qs(current); 3400 3401 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3402 mask = rdp->grpmask; 3403 raw_spin_lock(&rcu_state.ofl_lock); 3404 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3405 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3406 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3407 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3408 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3409 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3410 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3411 } 3412 rnp->qsmaskinitnext &= ~mask; 3413 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3414 raw_spin_unlock(&rcu_state.ofl_lock); 3415 3416 per_cpu(rcu_cpu_started, cpu) = 0; 3417 } 3418 3419 /* 3420 * The outgoing CPU has just passed through the dying-idle state, and we 3421 * are being invoked from the CPU that was IPIed to continue the offline 3422 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3423 */ 3424 void rcutree_migrate_callbacks(int cpu) 3425 { 3426 unsigned long flags; 3427 struct rcu_data *my_rdp; 3428 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3429 struct rcu_node *rnp_root = rcu_get_root(); 3430 bool needwake; 3431 3432 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3433 return; /* No callbacks to migrate. */ 3434 3435 local_irq_save(flags); 3436 my_rdp = this_cpu_ptr(&rcu_data); 3437 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3438 local_irq_restore(flags); 3439 return; 3440 } 3441 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3442 /* Leverage recent GPs and set GP for new callbacks. */ 3443 needwake = rcu_advance_cbs(rnp_root, rdp) || 3444 rcu_advance_cbs(rnp_root, my_rdp); 3445 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3446 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3447 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3448 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3449 if (needwake) 3450 rcu_gp_kthread_wake(); 3451 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3452 !rcu_segcblist_empty(&rdp->cblist), 3453 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3454 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3455 rcu_segcblist_first_cb(&rdp->cblist)); 3456 } 3457 #endif 3458 3459 /* 3460 * On non-huge systems, use expedited RCU grace periods to make suspend 3461 * and hibernation run faster. 3462 */ 3463 static int rcu_pm_notify(struct notifier_block *self, 3464 unsigned long action, void *hcpu) 3465 { 3466 switch (action) { 3467 case PM_HIBERNATION_PREPARE: 3468 case PM_SUSPEND_PREPARE: 3469 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3470 rcu_expedite_gp(); 3471 break; 3472 case PM_POST_HIBERNATION: 3473 case PM_POST_SUSPEND: 3474 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3475 rcu_unexpedite_gp(); 3476 break; 3477 default: 3478 break; 3479 } 3480 return NOTIFY_OK; 3481 } 3482 3483 /* 3484 * Spawn the kthreads that handle RCU's grace periods. 3485 */ 3486 static int __init rcu_spawn_gp_kthread(void) 3487 { 3488 unsigned long flags; 3489 int kthread_prio_in = kthread_prio; 3490 struct rcu_node *rnp; 3491 struct sched_param sp; 3492 struct task_struct *t; 3493 3494 /* Force priority into range. */ 3495 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3496 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3497 kthread_prio = 2; 3498 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3499 kthread_prio = 1; 3500 else if (kthread_prio < 0) 3501 kthread_prio = 0; 3502 else if (kthread_prio > 99) 3503 kthread_prio = 99; 3504 3505 if (kthread_prio != kthread_prio_in) 3506 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3507 kthread_prio, kthread_prio_in); 3508 3509 rcu_scheduler_fully_active = 1; 3510 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3511 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3512 return 0; 3513 rnp = rcu_get_root(); 3514 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3515 rcu_state.gp_kthread = t; 3516 if (kthread_prio) { 3517 sp.sched_priority = kthread_prio; 3518 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3519 } 3520 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3521 wake_up_process(t); 3522 rcu_spawn_nocb_kthreads(); 3523 rcu_spawn_boost_kthreads(); 3524 return 0; 3525 } 3526 early_initcall(rcu_spawn_gp_kthread); 3527 3528 /* 3529 * This function is invoked towards the end of the scheduler's 3530 * initialization process. Before this is called, the idle task might 3531 * contain synchronous grace-period primitives (during which time, this idle 3532 * task is booting the system, and such primitives are no-ops). After this 3533 * function is called, any synchronous grace-period primitives are run as 3534 * expedited, with the requesting task driving the grace period forward. 3535 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3536 * runtime RCU functionality. 3537 */ 3538 void rcu_scheduler_starting(void) 3539 { 3540 WARN_ON(num_online_cpus() != 1); 3541 WARN_ON(nr_context_switches() > 0); 3542 rcu_test_sync_prims(); 3543 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3544 rcu_test_sync_prims(); 3545 } 3546 3547 /* 3548 * Helper function for rcu_init() that initializes the rcu_state structure. 3549 */ 3550 static void __init rcu_init_one(void) 3551 { 3552 static const char * const buf[] = RCU_NODE_NAME_INIT; 3553 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3554 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3555 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3556 3557 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3558 int cpustride = 1; 3559 int i; 3560 int j; 3561 struct rcu_node *rnp; 3562 3563 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3564 3565 /* Silence gcc 4.8 false positive about array index out of range. */ 3566 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3567 panic("rcu_init_one: rcu_num_lvls out of range"); 3568 3569 /* Initialize the level-tracking arrays. */ 3570 3571 for (i = 1; i < rcu_num_lvls; i++) 3572 rcu_state.level[i] = 3573 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3574 rcu_init_levelspread(levelspread, num_rcu_lvl); 3575 3576 /* Initialize the elements themselves, starting from the leaves. */ 3577 3578 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3579 cpustride *= levelspread[i]; 3580 rnp = rcu_state.level[i]; 3581 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3582 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3583 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3584 &rcu_node_class[i], buf[i]); 3585 raw_spin_lock_init(&rnp->fqslock); 3586 lockdep_set_class_and_name(&rnp->fqslock, 3587 &rcu_fqs_class[i], fqs[i]); 3588 rnp->gp_seq = rcu_state.gp_seq; 3589 rnp->gp_seq_needed = rcu_state.gp_seq; 3590 rnp->completedqs = rcu_state.gp_seq; 3591 rnp->qsmask = 0; 3592 rnp->qsmaskinit = 0; 3593 rnp->grplo = j * cpustride; 3594 rnp->grphi = (j + 1) * cpustride - 1; 3595 if (rnp->grphi >= nr_cpu_ids) 3596 rnp->grphi = nr_cpu_ids - 1; 3597 if (i == 0) { 3598 rnp->grpnum = 0; 3599 rnp->grpmask = 0; 3600 rnp->parent = NULL; 3601 } else { 3602 rnp->grpnum = j % levelspread[i - 1]; 3603 rnp->grpmask = BIT(rnp->grpnum); 3604 rnp->parent = rcu_state.level[i - 1] + 3605 j / levelspread[i - 1]; 3606 } 3607 rnp->level = i; 3608 INIT_LIST_HEAD(&rnp->blkd_tasks); 3609 rcu_init_one_nocb(rnp); 3610 init_waitqueue_head(&rnp->exp_wq[0]); 3611 init_waitqueue_head(&rnp->exp_wq[1]); 3612 init_waitqueue_head(&rnp->exp_wq[2]); 3613 init_waitqueue_head(&rnp->exp_wq[3]); 3614 spin_lock_init(&rnp->exp_lock); 3615 } 3616 } 3617 3618 init_swait_queue_head(&rcu_state.gp_wq); 3619 init_swait_queue_head(&rcu_state.expedited_wq); 3620 rnp = rcu_first_leaf_node(); 3621 for_each_possible_cpu(i) { 3622 while (i > rnp->grphi) 3623 rnp++; 3624 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3625 rcu_boot_init_percpu_data(i); 3626 } 3627 } 3628 3629 /* 3630 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3631 * replace the definitions in tree.h because those are needed to size 3632 * the ->node array in the rcu_state structure. 3633 */ 3634 static void __init rcu_init_geometry(void) 3635 { 3636 ulong d; 3637 int i; 3638 int rcu_capacity[RCU_NUM_LVLS]; 3639 3640 /* 3641 * Initialize any unspecified boot parameters. 3642 * The default values of jiffies_till_first_fqs and 3643 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3644 * value, which is a function of HZ, then adding one for each 3645 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3646 */ 3647 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3648 if (jiffies_till_first_fqs == ULONG_MAX) 3649 jiffies_till_first_fqs = d; 3650 if (jiffies_till_next_fqs == ULONG_MAX) 3651 jiffies_till_next_fqs = d; 3652 if (jiffies_till_sched_qs == ULONG_MAX) 3653 adjust_jiffies_till_sched_qs(); 3654 3655 /* If the compile-time values are accurate, just leave. */ 3656 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3657 nr_cpu_ids == NR_CPUS) 3658 return; 3659 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3660 rcu_fanout_leaf, nr_cpu_ids); 3661 3662 /* 3663 * The boot-time rcu_fanout_leaf parameter must be at least two 3664 * and cannot exceed the number of bits in the rcu_node masks. 3665 * Complain and fall back to the compile-time values if this 3666 * limit is exceeded. 3667 */ 3668 if (rcu_fanout_leaf < 2 || 3669 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3670 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3671 WARN_ON(1); 3672 return; 3673 } 3674 3675 /* 3676 * Compute number of nodes that can be handled an rcu_node tree 3677 * with the given number of levels. 3678 */ 3679 rcu_capacity[0] = rcu_fanout_leaf; 3680 for (i = 1; i < RCU_NUM_LVLS; i++) 3681 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3682 3683 /* 3684 * The tree must be able to accommodate the configured number of CPUs. 3685 * If this limit is exceeded, fall back to the compile-time values. 3686 */ 3687 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3688 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3689 WARN_ON(1); 3690 return; 3691 } 3692 3693 /* Calculate the number of levels in the tree. */ 3694 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3695 } 3696 rcu_num_lvls = i + 1; 3697 3698 /* Calculate the number of rcu_nodes at each level of the tree. */ 3699 for (i = 0; i < rcu_num_lvls; i++) { 3700 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3701 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3702 } 3703 3704 /* Calculate the total number of rcu_node structures. */ 3705 rcu_num_nodes = 0; 3706 for (i = 0; i < rcu_num_lvls; i++) 3707 rcu_num_nodes += num_rcu_lvl[i]; 3708 } 3709 3710 /* 3711 * Dump out the structure of the rcu_node combining tree associated 3712 * with the rcu_state structure. 3713 */ 3714 static void __init rcu_dump_rcu_node_tree(void) 3715 { 3716 int level = 0; 3717 struct rcu_node *rnp; 3718 3719 pr_info("rcu_node tree layout dump\n"); 3720 pr_info(" "); 3721 rcu_for_each_node_breadth_first(rnp) { 3722 if (rnp->level != level) { 3723 pr_cont("\n"); 3724 pr_info(" "); 3725 level = rnp->level; 3726 } 3727 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3728 } 3729 pr_cont("\n"); 3730 } 3731 3732 struct workqueue_struct *rcu_gp_wq; 3733 struct workqueue_struct *rcu_par_gp_wq; 3734 3735 void __init rcu_init(void) 3736 { 3737 int cpu; 3738 3739 rcu_early_boot_tests(); 3740 3741 rcu_bootup_announce(); 3742 rcu_init_geometry(); 3743 rcu_init_one(); 3744 if (dump_tree) 3745 rcu_dump_rcu_node_tree(); 3746 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3747 3748 /* 3749 * We don't need protection against CPU-hotplug here because 3750 * this is called early in boot, before either interrupts 3751 * or the scheduler are operational. 3752 */ 3753 pm_notifier(rcu_pm_notify, 0); 3754 for_each_online_cpu(cpu) { 3755 rcutree_prepare_cpu(cpu); 3756 rcu_cpu_starting(cpu); 3757 rcutree_online_cpu(cpu); 3758 } 3759 3760 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3761 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3762 WARN_ON(!rcu_gp_wq); 3763 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3764 WARN_ON(!rcu_par_gp_wq); 3765 srcu_init(); 3766 } 3767 3768 #include "tree_exp.h" 3769 #include "tree_plugin.h" 3770