1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 31 #define pr_fmt(fmt) "rcu: " fmt 32 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/rcupdate_wait.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/sched/debug.h> 42 #include <linux/nmi.h> 43 #include <linux/atomic.h> 44 #include <linux/bitops.h> 45 #include <linux/export.h> 46 #include <linux/completion.h> 47 #include <linux/moduleparam.h> 48 #include <linux/percpu.h> 49 #include <linux/notifier.h> 50 #include <linux/cpu.h> 51 #include <linux/mutex.h> 52 #include <linux/time.h> 53 #include <linux/kernel_stat.h> 54 #include <linux/wait.h> 55 #include <linux/kthread.h> 56 #include <uapi/linux/sched/types.h> 57 #include <linux/prefetch.h> 58 #include <linux/delay.h> 59 #include <linux/stop_machine.h> 60 #include <linux/random.h> 61 #include <linux/trace_events.h> 62 #include <linux/suspend.h> 63 #include <linux/ftrace.h> 64 #include <linux/tick.h> 65 #include <linux/sysrq.h> 66 67 #include "tree.h" 68 #include "rcu.h" 69 70 #ifdef MODULE_PARAM_PREFIX 71 #undef MODULE_PARAM_PREFIX 72 #endif 73 #define MODULE_PARAM_PREFIX "rcutree." 74 75 /* Data structures. */ 76 77 /* 78 * Steal a bit from the bottom of ->dynticks for idle entry/exit 79 * control. Initially this is for TLB flushing. 80 */ 81 #define RCU_DYNTICK_CTRL_MASK 0x1 82 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 83 #ifndef rcu_eqs_special_exit 84 #define rcu_eqs_special_exit() do { } while (0) 85 #endif 86 87 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 88 .dynticks_nesting = 1, 89 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 90 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 91 }; 92 struct rcu_state rcu_state = { 93 .level = { &rcu_state.node[0] }, 94 .gp_state = RCU_GP_IDLE, 95 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 96 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 97 .name = RCU_NAME, 98 .abbr = RCU_ABBR, 99 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 100 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 101 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 102 }; 103 104 /* Dump rcu_node combining tree at boot to verify correct setup. */ 105 static bool dump_tree; 106 module_param(dump_tree, bool, 0444); 107 /* Control rcu_node-tree auto-balancing at boot time. */ 108 static bool rcu_fanout_exact; 109 module_param(rcu_fanout_exact, bool, 0444); 110 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 111 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 112 module_param(rcu_fanout_leaf, int, 0444); 113 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 114 /* Number of rcu_nodes at specified level. */ 115 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 116 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 117 /* panic() on RCU Stall sysctl. */ 118 int sysctl_panic_on_rcu_stall __read_mostly; 119 /* Commandeer a sysrq key to dump RCU's tree. */ 120 static bool sysrq_rcu; 121 module_param(sysrq_rcu, bool, 0444); 122 123 /* 124 * The rcu_scheduler_active variable is initialized to the value 125 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 126 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 127 * RCU can assume that there is but one task, allowing RCU to (for example) 128 * optimize synchronize_rcu() to a simple barrier(). When this variable 129 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 130 * to detect real grace periods. This variable is also used to suppress 131 * boot-time false positives from lockdep-RCU error checking. Finally, it 132 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 133 * is fully initialized, including all of its kthreads having been spawned. 134 */ 135 int rcu_scheduler_active __read_mostly; 136 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 137 138 /* 139 * The rcu_scheduler_fully_active variable transitions from zero to one 140 * during the early_initcall() processing, which is after the scheduler 141 * is capable of creating new tasks. So RCU processing (for example, 142 * creating tasks for RCU priority boosting) must be delayed until after 143 * rcu_scheduler_fully_active transitions from zero to one. We also 144 * currently delay invocation of any RCU callbacks until after this point. 145 * 146 * It might later prove better for people registering RCU callbacks during 147 * early boot to take responsibility for these callbacks, but one step at 148 * a time. 149 */ 150 static int rcu_scheduler_fully_active __read_mostly; 151 152 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 153 unsigned long gps, unsigned long flags); 154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 157 static void invoke_rcu_core(void); 158 static void invoke_rcu_callbacks(struct rcu_data *rdp); 159 static void rcu_report_exp_rdp(struct rcu_data *rdp); 160 static void sync_sched_exp_online_cleanup(int cpu); 161 162 /* rcuc/rcub kthread realtime priority */ 163 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 164 module_param(kthread_prio, int, 0644); 165 166 /* Delay in jiffies for grace-period initialization delays, debug only. */ 167 168 static int gp_preinit_delay; 169 module_param(gp_preinit_delay, int, 0444); 170 static int gp_init_delay; 171 module_param(gp_init_delay, int, 0444); 172 static int gp_cleanup_delay; 173 module_param(gp_cleanup_delay, int, 0444); 174 175 /* Retrieve RCU kthreads priority for rcutorture */ 176 int rcu_get_gp_kthreads_prio(void) 177 { 178 return kthread_prio; 179 } 180 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 181 182 /* 183 * Number of grace periods between delays, normalized by the duration of 184 * the delay. The longer the delay, the more the grace periods between 185 * each delay. The reason for this normalization is that it means that, 186 * for non-zero delays, the overall slowdown of grace periods is constant 187 * regardless of the duration of the delay. This arrangement balances 188 * the need for long delays to increase some race probabilities with the 189 * need for fast grace periods to increase other race probabilities. 190 */ 191 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 192 193 /* 194 * Compute the mask of online CPUs for the specified rcu_node structure. 195 * This will not be stable unless the rcu_node structure's ->lock is 196 * held, but the bit corresponding to the current CPU will be stable 197 * in most contexts. 198 */ 199 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 200 { 201 return READ_ONCE(rnp->qsmaskinitnext); 202 } 203 204 /* 205 * Return true if an RCU grace period is in progress. The READ_ONCE()s 206 * permit this function to be invoked without holding the root rcu_node 207 * structure's ->lock, but of course results can be subject to change. 208 */ 209 static int rcu_gp_in_progress(void) 210 { 211 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 212 } 213 214 /* 215 * Return the number of callbacks queued on the specified CPU. 216 * Handles both the nocbs and normal cases. 217 */ 218 static long rcu_get_n_cbs_cpu(int cpu) 219 { 220 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 221 222 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */ 223 return rcu_segcblist_n_cbs(&rdp->cblist); 224 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */ 225 } 226 227 void rcu_softirq_qs(void) 228 { 229 rcu_qs(); 230 rcu_preempt_deferred_qs(current); 231 } 232 233 /* 234 * Record entry into an extended quiescent state. This is only to be 235 * called when not already in an extended quiescent state. 236 */ 237 static void rcu_dynticks_eqs_enter(void) 238 { 239 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 240 int seq; 241 242 /* 243 * CPUs seeing atomic_add_return() must see prior RCU read-side 244 * critical sections, and we also must force ordering with the 245 * next idle sojourn. 246 */ 247 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 248 /* Better be in an extended quiescent state! */ 249 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 250 (seq & RCU_DYNTICK_CTRL_CTR)); 251 /* Better not have special action (TLB flush) pending! */ 252 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 253 (seq & RCU_DYNTICK_CTRL_MASK)); 254 } 255 256 /* 257 * Record exit from an extended quiescent state. This is only to be 258 * called from an extended quiescent state. 259 */ 260 static void rcu_dynticks_eqs_exit(void) 261 { 262 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 263 int seq; 264 265 /* 266 * CPUs seeing atomic_add_return() must see prior idle sojourns, 267 * and we also must force ordering with the next RCU read-side 268 * critical section. 269 */ 270 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 271 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 272 !(seq & RCU_DYNTICK_CTRL_CTR)); 273 if (seq & RCU_DYNTICK_CTRL_MASK) { 274 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 275 smp_mb__after_atomic(); /* _exit after clearing mask. */ 276 /* Prefer duplicate flushes to losing a flush. */ 277 rcu_eqs_special_exit(); 278 } 279 } 280 281 /* 282 * Reset the current CPU's ->dynticks counter to indicate that the 283 * newly onlined CPU is no longer in an extended quiescent state. 284 * This will either leave the counter unchanged, or increment it 285 * to the next non-quiescent value. 286 * 287 * The non-atomic test/increment sequence works because the upper bits 288 * of the ->dynticks counter are manipulated only by the corresponding CPU, 289 * or when the corresponding CPU is offline. 290 */ 291 static void rcu_dynticks_eqs_online(void) 292 { 293 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 294 295 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 296 return; 297 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 298 } 299 300 /* 301 * Is the current CPU in an extended quiescent state? 302 * 303 * No ordering, as we are sampling CPU-local information. 304 */ 305 bool rcu_dynticks_curr_cpu_in_eqs(void) 306 { 307 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 308 309 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 310 } 311 312 /* 313 * Snapshot the ->dynticks counter with full ordering so as to allow 314 * stable comparison of this counter with past and future snapshots. 315 */ 316 int rcu_dynticks_snap(struct rcu_data *rdp) 317 { 318 int snap = atomic_add_return(0, &rdp->dynticks); 319 320 return snap & ~RCU_DYNTICK_CTRL_MASK; 321 } 322 323 /* 324 * Return true if the snapshot returned from rcu_dynticks_snap() 325 * indicates that RCU is in an extended quiescent state. 326 */ 327 static bool rcu_dynticks_in_eqs(int snap) 328 { 329 return !(snap & RCU_DYNTICK_CTRL_CTR); 330 } 331 332 /* 333 * Return true if the CPU corresponding to the specified rcu_data 334 * structure has spent some time in an extended quiescent state since 335 * rcu_dynticks_snap() returned the specified snapshot. 336 */ 337 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 338 { 339 return snap != rcu_dynticks_snap(rdp); 340 } 341 342 /* 343 * Set the special (bottom) bit of the specified CPU so that it 344 * will take special action (such as flushing its TLB) on the 345 * next exit from an extended quiescent state. Returns true if 346 * the bit was successfully set, or false if the CPU was not in 347 * an extended quiescent state. 348 */ 349 bool rcu_eqs_special_set(int cpu) 350 { 351 int old; 352 int new; 353 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 354 355 do { 356 old = atomic_read(&rdp->dynticks); 357 if (old & RCU_DYNTICK_CTRL_CTR) 358 return false; 359 new = old | RCU_DYNTICK_CTRL_MASK; 360 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 361 return true; 362 } 363 364 /* 365 * Let the RCU core know that this CPU has gone through the scheduler, 366 * which is a quiescent state. This is called when the need for a 367 * quiescent state is urgent, so we burn an atomic operation and full 368 * memory barriers to let the RCU core know about it, regardless of what 369 * this CPU might (or might not) do in the near future. 370 * 371 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 372 * 373 * The caller must have disabled interrupts and must not be idle. 374 */ 375 static void __maybe_unused rcu_momentary_dyntick_idle(void) 376 { 377 int special; 378 379 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 380 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 381 &this_cpu_ptr(&rcu_data)->dynticks); 382 /* It is illegal to call this from idle state. */ 383 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 384 rcu_preempt_deferred_qs(current); 385 } 386 387 /** 388 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 389 * 390 * If the current CPU is idle or running at a first-level (not nested) 391 * interrupt from idle, return true. The caller must have at least 392 * disabled preemption. 393 */ 394 static int rcu_is_cpu_rrupt_from_idle(void) 395 { 396 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 && 397 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1; 398 } 399 400 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 401 static long blimit = DEFAULT_RCU_BLIMIT; 402 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 403 static long qhimark = DEFAULT_RCU_QHIMARK; 404 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 405 static long qlowmark = DEFAULT_RCU_QLOMARK; 406 407 module_param(blimit, long, 0444); 408 module_param(qhimark, long, 0444); 409 module_param(qlowmark, long, 0444); 410 411 static ulong jiffies_till_first_fqs = ULONG_MAX; 412 static ulong jiffies_till_next_fqs = ULONG_MAX; 413 static bool rcu_kick_kthreads; 414 415 /* 416 * How long the grace period must be before we start recruiting 417 * quiescent-state help from rcu_note_context_switch(). 418 */ 419 static ulong jiffies_till_sched_qs = ULONG_MAX; 420 module_param(jiffies_till_sched_qs, ulong, 0444); 421 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */ 422 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 423 424 /* 425 * Make sure that we give the grace-period kthread time to detect any 426 * idle CPUs before taking active measures to force quiescent states. 427 * However, don't go below 100 milliseconds, adjusted upwards for really 428 * large systems. 429 */ 430 static void adjust_jiffies_till_sched_qs(void) 431 { 432 unsigned long j; 433 434 /* If jiffies_till_sched_qs was specified, respect the request. */ 435 if (jiffies_till_sched_qs != ULONG_MAX) { 436 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 437 return; 438 } 439 j = READ_ONCE(jiffies_till_first_fqs) + 440 2 * READ_ONCE(jiffies_till_next_fqs); 441 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 442 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 443 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 444 WRITE_ONCE(jiffies_to_sched_qs, j); 445 } 446 447 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 448 { 449 ulong j; 450 int ret = kstrtoul(val, 0, &j); 451 452 if (!ret) { 453 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 454 adjust_jiffies_till_sched_qs(); 455 } 456 return ret; 457 } 458 459 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 460 { 461 ulong j; 462 int ret = kstrtoul(val, 0, &j); 463 464 if (!ret) { 465 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 466 adjust_jiffies_till_sched_qs(); 467 } 468 return ret; 469 } 470 471 static struct kernel_param_ops first_fqs_jiffies_ops = { 472 .set = param_set_first_fqs_jiffies, 473 .get = param_get_ulong, 474 }; 475 476 static struct kernel_param_ops next_fqs_jiffies_ops = { 477 .set = param_set_next_fqs_jiffies, 478 .get = param_get_ulong, 479 }; 480 481 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 482 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 483 module_param(rcu_kick_kthreads, bool, 0644); 484 485 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 486 static int rcu_pending(void); 487 488 /* 489 * Return the number of RCU GPs completed thus far for debug & stats. 490 */ 491 unsigned long rcu_get_gp_seq(void) 492 { 493 return READ_ONCE(rcu_state.gp_seq); 494 } 495 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 496 497 /* 498 * Return the number of RCU expedited batches completed thus far for 499 * debug & stats. Odd numbers mean that a batch is in progress, even 500 * numbers mean idle. The value returned will thus be roughly double 501 * the cumulative batches since boot. 502 */ 503 unsigned long rcu_exp_batches_completed(void) 504 { 505 return rcu_state.expedited_sequence; 506 } 507 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 508 509 /* 510 * Return the root node of the rcu_state structure. 511 */ 512 static struct rcu_node *rcu_get_root(void) 513 { 514 return &rcu_state.node[0]; 515 } 516 517 /* 518 * Convert a ->gp_state value to a character string. 519 */ 520 static const char *gp_state_getname(short gs) 521 { 522 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 523 return "???"; 524 return gp_state_names[gs]; 525 } 526 527 /* 528 * Show the state of the grace-period kthreads. 529 */ 530 void show_rcu_gp_kthreads(void) 531 { 532 int cpu; 533 unsigned long j; 534 unsigned long ja; 535 unsigned long jr; 536 unsigned long jw; 537 struct rcu_data *rdp; 538 struct rcu_node *rnp; 539 540 j = jiffies; 541 ja = j - READ_ONCE(rcu_state.gp_activity); 542 jr = j - READ_ONCE(rcu_state.gp_req_activity); 543 jw = j - READ_ONCE(rcu_state.gp_wake_time); 544 pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %lu ->gp_req_activity %lu ->gp_wake_time %lu ->gp_wake_seq %ld ->gp_seq %ld ->gp_seq_needed %ld ->gp_flags %#x\n", 545 rcu_state.name, gp_state_getname(rcu_state.gp_state), 546 rcu_state.gp_state, 547 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL, 548 ja, jr, jw, (long)READ_ONCE(rcu_state.gp_wake_seq), 549 (long)READ_ONCE(rcu_state.gp_seq), 550 (long)READ_ONCE(rcu_get_root()->gp_seq_needed), 551 READ_ONCE(rcu_state.gp_flags)); 552 rcu_for_each_node_breadth_first(rnp) { 553 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed)) 554 continue; 555 pr_info("\trcu_node %d:%d ->gp_seq %ld ->gp_seq_needed %ld\n", 556 rnp->grplo, rnp->grphi, (long)rnp->gp_seq, 557 (long)rnp->gp_seq_needed); 558 if (!rcu_is_leaf_node(rnp)) 559 continue; 560 for_each_leaf_node_possible_cpu(rnp, cpu) { 561 rdp = per_cpu_ptr(&rcu_data, cpu); 562 if (rdp->gpwrap || 563 ULONG_CMP_GE(rcu_state.gp_seq, 564 rdp->gp_seq_needed)) 565 continue; 566 pr_info("\tcpu %d ->gp_seq_needed %ld\n", 567 cpu, (long)rdp->gp_seq_needed); 568 } 569 } 570 /* sched_show_task(rcu_state.gp_kthread); */ 571 } 572 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 573 574 /* Dump grace-period-request information due to commandeered sysrq. */ 575 static void sysrq_show_rcu(int key) 576 { 577 show_rcu_gp_kthreads(); 578 } 579 580 static struct sysrq_key_op sysrq_rcudump_op = { 581 .handler = sysrq_show_rcu, 582 .help_msg = "show-rcu(y)", 583 .action_msg = "Show RCU tree", 584 .enable_mask = SYSRQ_ENABLE_DUMP, 585 }; 586 587 static int __init rcu_sysrq_init(void) 588 { 589 if (sysrq_rcu) 590 return register_sysrq_key('y', &sysrq_rcudump_op); 591 return 0; 592 } 593 early_initcall(rcu_sysrq_init); 594 595 /* 596 * Send along grace-period-related data for rcutorture diagnostics. 597 */ 598 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 599 unsigned long *gp_seq) 600 { 601 switch (test_type) { 602 case RCU_FLAVOR: 603 *flags = READ_ONCE(rcu_state.gp_flags); 604 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 605 break; 606 default: 607 break; 608 } 609 } 610 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 611 612 /* 613 * Enter an RCU extended quiescent state, which can be either the 614 * idle loop or adaptive-tickless usermode execution. 615 * 616 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 617 * the possibility of usermode upcalls having messed up our count 618 * of interrupt nesting level during the prior busy period. 619 */ 620 static void rcu_eqs_enter(bool user) 621 { 622 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 623 624 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 625 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 626 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 627 rdp->dynticks_nesting == 0); 628 if (rdp->dynticks_nesting != 1) { 629 rdp->dynticks_nesting--; 630 return; 631 } 632 633 lockdep_assert_irqs_disabled(); 634 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks); 635 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 636 rdp = this_cpu_ptr(&rcu_data); 637 do_nocb_deferred_wakeup(rdp); 638 rcu_prepare_for_idle(); 639 rcu_preempt_deferred_qs(current); 640 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 641 rcu_dynticks_eqs_enter(); 642 rcu_dynticks_task_enter(); 643 } 644 645 /** 646 * rcu_idle_enter - inform RCU that current CPU is entering idle 647 * 648 * Enter idle mode, in other words, -leave- the mode in which RCU 649 * read-side critical sections can occur. (Though RCU read-side 650 * critical sections can occur in irq handlers in idle, a possibility 651 * handled by irq_enter() and irq_exit().) 652 * 653 * If you add or remove a call to rcu_idle_enter(), be sure to test with 654 * CONFIG_RCU_EQS_DEBUG=y. 655 */ 656 void rcu_idle_enter(void) 657 { 658 lockdep_assert_irqs_disabled(); 659 rcu_eqs_enter(false); 660 } 661 662 #ifdef CONFIG_NO_HZ_FULL 663 /** 664 * rcu_user_enter - inform RCU that we are resuming userspace. 665 * 666 * Enter RCU idle mode right before resuming userspace. No use of RCU 667 * is permitted between this call and rcu_user_exit(). This way the 668 * CPU doesn't need to maintain the tick for RCU maintenance purposes 669 * when the CPU runs in userspace. 670 * 671 * If you add or remove a call to rcu_user_enter(), be sure to test with 672 * CONFIG_RCU_EQS_DEBUG=y. 673 */ 674 void rcu_user_enter(void) 675 { 676 lockdep_assert_irqs_disabled(); 677 rcu_eqs_enter(true); 678 } 679 #endif /* CONFIG_NO_HZ_FULL */ 680 681 /* 682 * If we are returning from the outermost NMI handler that interrupted an 683 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 684 * to let the RCU grace-period handling know that the CPU is back to 685 * being RCU-idle. 686 * 687 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 688 * with CONFIG_RCU_EQS_DEBUG=y. 689 */ 690 static __always_inline void rcu_nmi_exit_common(bool irq) 691 { 692 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 693 694 /* 695 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 696 * (We are exiting an NMI handler, so RCU better be paying attention 697 * to us!) 698 */ 699 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 700 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 701 702 /* 703 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 704 * leave it in non-RCU-idle state. 705 */ 706 if (rdp->dynticks_nmi_nesting != 1) { 707 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks); 708 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 709 rdp->dynticks_nmi_nesting - 2); 710 return; 711 } 712 713 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 714 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks); 715 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 716 717 if (irq) 718 rcu_prepare_for_idle(); 719 720 rcu_dynticks_eqs_enter(); 721 722 if (irq) 723 rcu_dynticks_task_enter(); 724 } 725 726 /** 727 * rcu_nmi_exit - inform RCU of exit from NMI context 728 * @irq: Is this call from rcu_irq_exit? 729 * 730 * If you add or remove a call to rcu_nmi_exit(), be sure to test 731 * with CONFIG_RCU_EQS_DEBUG=y. 732 */ 733 void rcu_nmi_exit(void) 734 { 735 rcu_nmi_exit_common(false); 736 } 737 738 /** 739 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 740 * 741 * Exit from an interrupt handler, which might possibly result in entering 742 * idle mode, in other words, leaving the mode in which read-side critical 743 * sections can occur. The caller must have disabled interrupts. 744 * 745 * This code assumes that the idle loop never does anything that might 746 * result in unbalanced calls to irq_enter() and irq_exit(). If your 747 * architecture's idle loop violates this assumption, RCU will give you what 748 * you deserve, good and hard. But very infrequently and irreproducibly. 749 * 750 * Use things like work queues to work around this limitation. 751 * 752 * You have been warned. 753 * 754 * If you add or remove a call to rcu_irq_exit(), be sure to test with 755 * CONFIG_RCU_EQS_DEBUG=y. 756 */ 757 void rcu_irq_exit(void) 758 { 759 lockdep_assert_irqs_disabled(); 760 rcu_nmi_exit_common(true); 761 } 762 763 /* 764 * Wrapper for rcu_irq_exit() where interrupts are enabled. 765 * 766 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 767 * with CONFIG_RCU_EQS_DEBUG=y. 768 */ 769 void rcu_irq_exit_irqson(void) 770 { 771 unsigned long flags; 772 773 local_irq_save(flags); 774 rcu_irq_exit(); 775 local_irq_restore(flags); 776 } 777 778 /* 779 * Exit an RCU extended quiescent state, which can be either the 780 * idle loop or adaptive-tickless usermode execution. 781 * 782 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 783 * allow for the possibility of usermode upcalls messing up our count of 784 * interrupt nesting level during the busy period that is just now starting. 785 */ 786 static void rcu_eqs_exit(bool user) 787 { 788 struct rcu_data *rdp; 789 long oldval; 790 791 lockdep_assert_irqs_disabled(); 792 rdp = this_cpu_ptr(&rcu_data); 793 oldval = rdp->dynticks_nesting; 794 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 795 if (oldval) { 796 rdp->dynticks_nesting++; 797 return; 798 } 799 rcu_dynticks_task_exit(); 800 rcu_dynticks_eqs_exit(); 801 rcu_cleanup_after_idle(); 802 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks); 803 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 804 WRITE_ONCE(rdp->dynticks_nesting, 1); 805 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 806 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 807 } 808 809 /** 810 * rcu_idle_exit - inform RCU that current CPU is leaving idle 811 * 812 * Exit idle mode, in other words, -enter- the mode in which RCU 813 * read-side critical sections can occur. 814 * 815 * If you add or remove a call to rcu_idle_exit(), be sure to test with 816 * CONFIG_RCU_EQS_DEBUG=y. 817 */ 818 void rcu_idle_exit(void) 819 { 820 unsigned long flags; 821 822 local_irq_save(flags); 823 rcu_eqs_exit(false); 824 local_irq_restore(flags); 825 } 826 827 #ifdef CONFIG_NO_HZ_FULL 828 /** 829 * rcu_user_exit - inform RCU that we are exiting userspace. 830 * 831 * Exit RCU idle mode while entering the kernel because it can 832 * run a RCU read side critical section anytime. 833 * 834 * If you add or remove a call to rcu_user_exit(), be sure to test with 835 * CONFIG_RCU_EQS_DEBUG=y. 836 */ 837 void rcu_user_exit(void) 838 { 839 rcu_eqs_exit(1); 840 } 841 #endif /* CONFIG_NO_HZ_FULL */ 842 843 /** 844 * rcu_nmi_enter_common - inform RCU of entry to NMI context 845 * @irq: Is this call from rcu_irq_enter? 846 * 847 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 848 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 849 * that the CPU is active. This implementation permits nested NMIs, as 850 * long as the nesting level does not overflow an int. (You will probably 851 * run out of stack space first.) 852 * 853 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 854 * with CONFIG_RCU_EQS_DEBUG=y. 855 */ 856 static __always_inline void rcu_nmi_enter_common(bool irq) 857 { 858 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 859 long incby = 2; 860 861 /* Complain about underflow. */ 862 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 863 864 /* 865 * If idle from RCU viewpoint, atomically increment ->dynticks 866 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 867 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 868 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 869 * to be in the outermost NMI handler that interrupted an RCU-idle 870 * period (observation due to Andy Lutomirski). 871 */ 872 if (rcu_dynticks_curr_cpu_in_eqs()) { 873 874 if (irq) 875 rcu_dynticks_task_exit(); 876 877 rcu_dynticks_eqs_exit(); 878 879 if (irq) 880 rcu_cleanup_after_idle(); 881 882 incby = 1; 883 } 884 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 885 rdp->dynticks_nmi_nesting, 886 rdp->dynticks_nmi_nesting + incby, rdp->dynticks); 887 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 888 rdp->dynticks_nmi_nesting + incby); 889 barrier(); 890 } 891 892 /** 893 * rcu_nmi_enter - inform RCU of entry to NMI context 894 */ 895 void rcu_nmi_enter(void) 896 { 897 rcu_nmi_enter_common(false); 898 } 899 900 /** 901 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 902 * 903 * Enter an interrupt handler, which might possibly result in exiting 904 * idle mode, in other words, entering the mode in which read-side critical 905 * sections can occur. The caller must have disabled interrupts. 906 * 907 * Note that the Linux kernel is fully capable of entering an interrupt 908 * handler that it never exits, for example when doing upcalls to user mode! 909 * This code assumes that the idle loop never does upcalls to user mode. 910 * If your architecture's idle loop does do upcalls to user mode (or does 911 * anything else that results in unbalanced calls to the irq_enter() and 912 * irq_exit() functions), RCU will give you what you deserve, good and hard. 913 * But very infrequently and irreproducibly. 914 * 915 * Use things like work queues to work around this limitation. 916 * 917 * You have been warned. 918 * 919 * If you add or remove a call to rcu_irq_enter(), be sure to test with 920 * CONFIG_RCU_EQS_DEBUG=y. 921 */ 922 void rcu_irq_enter(void) 923 { 924 lockdep_assert_irqs_disabled(); 925 rcu_nmi_enter_common(true); 926 } 927 928 /* 929 * Wrapper for rcu_irq_enter() where interrupts are enabled. 930 * 931 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 932 * with CONFIG_RCU_EQS_DEBUG=y. 933 */ 934 void rcu_irq_enter_irqson(void) 935 { 936 unsigned long flags; 937 938 local_irq_save(flags); 939 rcu_irq_enter(); 940 local_irq_restore(flags); 941 } 942 943 /** 944 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 945 * 946 * Return true if RCU is watching the running CPU, which means that this 947 * CPU can safely enter RCU read-side critical sections. In other words, 948 * if the current CPU is not in its idle loop or is in an interrupt or 949 * NMI handler, return true. 950 */ 951 bool notrace rcu_is_watching(void) 952 { 953 bool ret; 954 955 preempt_disable_notrace(); 956 ret = !rcu_dynticks_curr_cpu_in_eqs(); 957 preempt_enable_notrace(); 958 return ret; 959 } 960 EXPORT_SYMBOL_GPL(rcu_is_watching); 961 962 /* 963 * If a holdout task is actually running, request an urgent quiescent 964 * state from its CPU. This is unsynchronized, so migrations can cause 965 * the request to go to the wrong CPU. Which is OK, all that will happen 966 * is that the CPU's next context switch will be a bit slower and next 967 * time around this task will generate another request. 968 */ 969 void rcu_request_urgent_qs_task(struct task_struct *t) 970 { 971 int cpu; 972 973 barrier(); 974 cpu = task_cpu(t); 975 if (!task_curr(t)) 976 return; /* This task is not running on that CPU. */ 977 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 978 } 979 980 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 981 982 /* 983 * Is the current CPU online as far as RCU is concerned? 984 * 985 * Disable preemption to avoid false positives that could otherwise 986 * happen due to the current CPU number being sampled, this task being 987 * preempted, its old CPU being taken offline, resuming on some other CPU, 988 * then determining that its old CPU is now offline. 989 * 990 * Disable checking if in an NMI handler because we cannot safely 991 * report errors from NMI handlers anyway. In addition, it is OK to use 992 * RCU on an offline processor during initial boot, hence the check for 993 * rcu_scheduler_fully_active. 994 */ 995 bool rcu_lockdep_current_cpu_online(void) 996 { 997 struct rcu_data *rdp; 998 struct rcu_node *rnp; 999 bool ret = false; 1000 1001 if (in_nmi() || !rcu_scheduler_fully_active) 1002 return true; 1003 preempt_disable(); 1004 rdp = this_cpu_ptr(&rcu_data); 1005 rnp = rdp->mynode; 1006 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 1007 ret = true; 1008 preempt_enable(); 1009 return ret; 1010 } 1011 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1012 1013 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1014 1015 /* 1016 * We are reporting a quiescent state on behalf of some other CPU, so 1017 * it is our responsibility to check for and handle potential overflow 1018 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1019 * After all, the CPU might be in deep idle state, and thus executing no 1020 * code whatsoever. 1021 */ 1022 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1023 { 1024 raw_lockdep_assert_held_rcu_node(rnp); 1025 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1026 rnp->gp_seq)) 1027 WRITE_ONCE(rdp->gpwrap, true); 1028 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1029 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1030 } 1031 1032 /* 1033 * Snapshot the specified CPU's dynticks counter so that we can later 1034 * credit them with an implicit quiescent state. Return 1 if this CPU 1035 * is in dynticks idle mode, which is an extended quiescent state. 1036 */ 1037 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1038 { 1039 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1040 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1041 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1042 rcu_gpnum_ovf(rdp->mynode, rdp); 1043 return 1; 1044 } 1045 return 0; 1046 } 1047 1048 /* 1049 * Handler for the irq_work request posted when a grace period has 1050 * gone on for too long, but not yet long enough for an RCU CPU 1051 * stall warning. Set state appropriately, but just complain if 1052 * there is unexpected state on entry. 1053 */ 1054 static void rcu_iw_handler(struct irq_work *iwp) 1055 { 1056 struct rcu_data *rdp; 1057 struct rcu_node *rnp; 1058 1059 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1060 rnp = rdp->mynode; 1061 raw_spin_lock_rcu_node(rnp); 1062 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1063 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1064 rdp->rcu_iw_pending = false; 1065 } 1066 raw_spin_unlock_rcu_node(rnp); 1067 } 1068 1069 /* 1070 * Return true if the specified CPU has passed through a quiescent 1071 * state by virtue of being in or having passed through an dynticks 1072 * idle state since the last call to dyntick_save_progress_counter() 1073 * for this same CPU, or by virtue of having been offline. 1074 */ 1075 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1076 { 1077 unsigned long jtsq; 1078 bool *rnhqp; 1079 bool *ruqp; 1080 struct rcu_node *rnp = rdp->mynode; 1081 1082 /* 1083 * If the CPU passed through or entered a dynticks idle phase with 1084 * no active irq/NMI handlers, then we can safely pretend that the CPU 1085 * already acknowledged the request to pass through a quiescent 1086 * state. Either way, that CPU cannot possibly be in an RCU 1087 * read-side critical section that started before the beginning 1088 * of the current RCU grace period. 1089 */ 1090 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1091 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1092 rcu_gpnum_ovf(rnp, rdp); 1093 return 1; 1094 } 1095 1096 /* If waiting too long on an offline CPU, complain. */ 1097 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1098 time_after(jiffies, rcu_state.gp_start + HZ)) { 1099 bool onl; 1100 struct rcu_node *rnp1; 1101 1102 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1103 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1104 __func__, rnp->grplo, rnp->grphi, rnp->level, 1105 (long)rnp->gp_seq, (long)rnp->completedqs); 1106 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1107 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1108 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1109 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1110 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1111 __func__, rdp->cpu, ".o"[onl], 1112 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1113 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1114 return 1; /* Break things loose after complaining. */ 1115 } 1116 1117 /* 1118 * A CPU running for an extended time within the kernel can 1119 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1120 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1121 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1122 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1123 * variable are safe because the assignments are repeated if this 1124 * CPU failed to pass through a quiescent state. This code 1125 * also checks .jiffies_resched in case jiffies_to_sched_qs 1126 * is set way high. 1127 */ 1128 jtsq = READ_ONCE(jiffies_to_sched_qs); 1129 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1130 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1131 if (!READ_ONCE(*rnhqp) && 1132 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1133 time_after(jiffies, rcu_state.jiffies_resched))) { 1134 WRITE_ONCE(*rnhqp, true); 1135 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1136 smp_store_release(ruqp, true); 1137 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1138 WRITE_ONCE(*ruqp, true); 1139 } 1140 1141 /* 1142 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1143 * The above code handles this, but only for straight cond_resched(). 1144 * And some in-kernel loops check need_resched() before calling 1145 * cond_resched(), which defeats the above code for CPUs that are 1146 * running in-kernel with scheduling-clock interrupts disabled. 1147 * So hit them over the head with the resched_cpu() hammer! 1148 */ 1149 if (tick_nohz_full_cpu(rdp->cpu) && 1150 time_after(jiffies, 1151 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1152 resched_cpu(rdp->cpu); 1153 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1154 } 1155 1156 /* 1157 * If more than halfway to RCU CPU stall-warning time, invoke 1158 * resched_cpu() more frequently to try to loosen things up a bit. 1159 * Also check to see if the CPU is getting hammered with interrupts, 1160 * but only once per grace period, just to keep the IPIs down to 1161 * a dull roar. 1162 */ 1163 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1164 if (time_after(jiffies, 1165 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1166 resched_cpu(rdp->cpu); 1167 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1168 } 1169 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1170 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1171 (rnp->ffmask & rdp->grpmask)) { 1172 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1173 rdp->rcu_iw_pending = true; 1174 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1175 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1176 } 1177 } 1178 1179 return 0; 1180 } 1181 1182 static void record_gp_stall_check_time(void) 1183 { 1184 unsigned long j = jiffies; 1185 unsigned long j1; 1186 1187 rcu_state.gp_start = j; 1188 j1 = rcu_jiffies_till_stall_check(); 1189 /* Record ->gp_start before ->jiffies_stall. */ 1190 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */ 1191 rcu_state.jiffies_resched = j + j1 / 2; 1192 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs); 1193 } 1194 1195 /* 1196 * Complain about starvation of grace-period kthread. 1197 */ 1198 static void rcu_check_gp_kthread_starvation(void) 1199 { 1200 struct task_struct *gpk = rcu_state.gp_kthread; 1201 unsigned long j; 1202 1203 j = jiffies - READ_ONCE(rcu_state.gp_activity); 1204 if (j > 2 * HZ) { 1205 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1206 rcu_state.name, j, 1207 (long)rcu_seq_current(&rcu_state.gp_seq), 1208 READ_ONCE(rcu_state.gp_flags), 1209 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state, 1210 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1); 1211 if (gpk) { 1212 pr_err("RCU grace-period kthread stack dump:\n"); 1213 sched_show_task(gpk); 1214 wake_up_process(gpk); 1215 } 1216 } 1217 } 1218 1219 /* 1220 * Dump stacks of all tasks running on stalled CPUs. First try using 1221 * NMIs, but fall back to manual remote stack tracing on architectures 1222 * that don't support NMI-based stack dumps. The NMI-triggered stack 1223 * traces are more accurate because they are printed by the target CPU. 1224 */ 1225 static void rcu_dump_cpu_stacks(void) 1226 { 1227 int cpu; 1228 unsigned long flags; 1229 struct rcu_node *rnp; 1230 1231 rcu_for_each_leaf_node(rnp) { 1232 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1233 for_each_leaf_node_possible_cpu(rnp, cpu) 1234 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1235 if (!trigger_single_cpu_backtrace(cpu)) 1236 dump_cpu_task(cpu); 1237 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1238 } 1239 } 1240 1241 /* 1242 * If too much time has passed in the current grace period, and if 1243 * so configured, go kick the relevant kthreads. 1244 */ 1245 static void rcu_stall_kick_kthreads(void) 1246 { 1247 unsigned long j; 1248 1249 if (!rcu_kick_kthreads) 1250 return; 1251 j = READ_ONCE(rcu_state.jiffies_kick_kthreads); 1252 if (time_after(jiffies, j) && rcu_state.gp_kthread && 1253 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) { 1254 WARN_ONCE(1, "Kicking %s grace-period kthread\n", 1255 rcu_state.name); 1256 rcu_ftrace_dump(DUMP_ALL); 1257 wake_up_process(rcu_state.gp_kthread); 1258 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ); 1259 } 1260 } 1261 1262 static void panic_on_rcu_stall(void) 1263 { 1264 if (sysctl_panic_on_rcu_stall) 1265 panic("RCU Stall\n"); 1266 } 1267 1268 static void print_other_cpu_stall(unsigned long gp_seq) 1269 { 1270 int cpu; 1271 unsigned long flags; 1272 unsigned long gpa; 1273 unsigned long j; 1274 int ndetected = 0; 1275 struct rcu_node *rnp = rcu_get_root(); 1276 long totqlen = 0; 1277 1278 /* Kick and suppress, if so configured. */ 1279 rcu_stall_kick_kthreads(); 1280 if (rcu_cpu_stall_suppress) 1281 return; 1282 1283 /* 1284 * OK, time to rat on our buddy... 1285 * See Documentation/RCU/stallwarn.txt for info on how to debug 1286 * RCU CPU stall warnings. 1287 */ 1288 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name); 1289 print_cpu_stall_info_begin(); 1290 rcu_for_each_leaf_node(rnp) { 1291 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1292 ndetected += rcu_print_task_stall(rnp); 1293 if (rnp->qsmask != 0) { 1294 for_each_leaf_node_possible_cpu(rnp, cpu) 1295 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1296 print_cpu_stall_info(cpu); 1297 ndetected++; 1298 } 1299 } 1300 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1301 } 1302 1303 print_cpu_stall_info_end(); 1304 for_each_possible_cpu(cpu) 1305 totqlen += rcu_get_n_cbs_cpu(cpu); 1306 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", 1307 smp_processor_id(), (long)(jiffies - rcu_state.gp_start), 1308 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1309 if (ndetected) { 1310 rcu_dump_cpu_stacks(); 1311 1312 /* Complain about tasks blocking the grace period. */ 1313 rcu_print_detail_task_stall(); 1314 } else { 1315 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) { 1316 pr_err("INFO: Stall ended before state dump start\n"); 1317 } else { 1318 j = jiffies; 1319 gpa = READ_ONCE(rcu_state.gp_activity); 1320 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1321 rcu_state.name, j - gpa, j, gpa, 1322 READ_ONCE(jiffies_till_next_fqs), 1323 rcu_get_root()->qsmask); 1324 /* In this case, the current CPU might be at fault. */ 1325 sched_show_task(current); 1326 } 1327 } 1328 /* Rewrite if needed in case of slow consoles. */ 1329 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1330 WRITE_ONCE(rcu_state.jiffies_stall, 1331 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1332 1333 rcu_check_gp_kthread_starvation(); 1334 1335 panic_on_rcu_stall(); 1336 1337 rcu_force_quiescent_state(); /* Kick them all. */ 1338 } 1339 1340 static void print_cpu_stall(void) 1341 { 1342 int cpu; 1343 unsigned long flags; 1344 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1345 struct rcu_node *rnp = rcu_get_root(); 1346 long totqlen = 0; 1347 1348 /* Kick and suppress, if so configured. */ 1349 rcu_stall_kick_kthreads(); 1350 if (rcu_cpu_stall_suppress) 1351 return; 1352 1353 /* 1354 * OK, time to rat on ourselves... 1355 * See Documentation/RCU/stallwarn.txt for info on how to debug 1356 * RCU CPU stall warnings. 1357 */ 1358 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name); 1359 print_cpu_stall_info_begin(); 1360 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1361 print_cpu_stall_info(smp_processor_id()); 1362 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1363 print_cpu_stall_info_end(); 1364 for_each_possible_cpu(cpu) 1365 totqlen += rcu_get_n_cbs_cpu(cpu); 1366 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", 1367 jiffies - rcu_state.gp_start, 1368 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1369 1370 rcu_check_gp_kthread_starvation(); 1371 1372 rcu_dump_cpu_stacks(); 1373 1374 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1375 /* Rewrite if needed in case of slow consoles. */ 1376 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1377 WRITE_ONCE(rcu_state.jiffies_stall, 1378 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1379 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1380 1381 panic_on_rcu_stall(); 1382 1383 /* 1384 * Attempt to revive the RCU machinery by forcing a context switch. 1385 * 1386 * A context switch would normally allow the RCU state machine to make 1387 * progress and it could be we're stuck in kernel space without context 1388 * switches for an entirely unreasonable amount of time. 1389 */ 1390 set_tsk_need_resched(current); 1391 set_preempt_need_resched(); 1392 } 1393 1394 static void check_cpu_stall(struct rcu_data *rdp) 1395 { 1396 unsigned long gs1; 1397 unsigned long gs2; 1398 unsigned long gps; 1399 unsigned long j; 1400 unsigned long jn; 1401 unsigned long js; 1402 struct rcu_node *rnp; 1403 1404 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1405 !rcu_gp_in_progress()) 1406 return; 1407 rcu_stall_kick_kthreads(); 1408 j = jiffies; 1409 1410 /* 1411 * Lots of memory barriers to reject false positives. 1412 * 1413 * The idea is to pick up rcu_state.gp_seq, then 1414 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally 1415 * another copy of rcu_state.gp_seq. These values are updated in 1416 * the opposite order with memory barriers (or equivalent) during 1417 * grace-period initialization and cleanup. Now, a false positive 1418 * can occur if we get an new value of rcu_state.gp_start and a old 1419 * value of rcu_state.jiffies_stall. But given the memory barriers, 1420 * the only way that this can happen is if one grace period ends 1421 * and another starts between these two fetches. This is detected 1422 * by comparing the second fetch of rcu_state.gp_seq with the 1423 * previous fetch from rcu_state.gp_seq. 1424 * 1425 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall, 1426 * and rcu_state.gp_start suffice to forestall false positives. 1427 */ 1428 gs1 = READ_ONCE(rcu_state.gp_seq); 1429 smp_rmb(); /* Pick up ->gp_seq first... */ 1430 js = READ_ONCE(rcu_state.jiffies_stall); 1431 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1432 gps = READ_ONCE(rcu_state.gp_start); 1433 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ 1434 gs2 = READ_ONCE(rcu_state.gp_seq); 1435 if (gs1 != gs2 || 1436 ULONG_CMP_LT(j, js) || 1437 ULONG_CMP_GE(gps, js)) 1438 return; /* No stall or GP completed since entering function. */ 1439 rnp = rdp->mynode; 1440 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1441 if (rcu_gp_in_progress() && 1442 (READ_ONCE(rnp->qsmask) & rdp->grpmask) && 1443 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1444 1445 /* We haven't checked in, so go dump stack. */ 1446 print_cpu_stall(); 1447 1448 } else if (rcu_gp_in_progress() && 1449 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && 1450 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1451 1452 /* They had a few time units to dump stack, so complain. */ 1453 print_other_cpu_stall(gs2); 1454 } 1455 } 1456 1457 /** 1458 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1459 * 1460 * Set the stall-warning timeout way off into the future, thus preventing 1461 * any RCU CPU stall-warning messages from appearing in the current set of 1462 * RCU grace periods. 1463 * 1464 * The caller must disable hard irqs. 1465 */ 1466 void rcu_cpu_stall_reset(void) 1467 { 1468 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2); 1469 } 1470 1471 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1472 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1473 unsigned long gp_seq_req, const char *s) 1474 { 1475 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1476 rnp->level, rnp->grplo, rnp->grphi, s); 1477 } 1478 1479 /* 1480 * rcu_start_this_gp - Request the start of a particular grace period 1481 * @rnp_start: The leaf node of the CPU from which to start. 1482 * @rdp: The rcu_data corresponding to the CPU from which to start. 1483 * @gp_seq_req: The gp_seq of the grace period to start. 1484 * 1485 * Start the specified grace period, as needed to handle newly arrived 1486 * callbacks. The required future grace periods are recorded in each 1487 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1488 * is reason to awaken the grace-period kthread. 1489 * 1490 * The caller must hold the specified rcu_node structure's ->lock, which 1491 * is why the caller is responsible for waking the grace-period kthread. 1492 * 1493 * Returns true if the GP thread needs to be awakened else false. 1494 */ 1495 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1496 unsigned long gp_seq_req) 1497 { 1498 bool ret = false; 1499 struct rcu_node *rnp; 1500 1501 /* 1502 * Use funnel locking to either acquire the root rcu_node 1503 * structure's lock or bail out if the need for this grace period 1504 * has already been recorded -- or if that grace period has in 1505 * fact already started. If there is already a grace period in 1506 * progress in a non-leaf node, no recording is needed because the 1507 * end of the grace period will scan the leaf rcu_node structures. 1508 * Note that rnp_start->lock must not be released. 1509 */ 1510 raw_lockdep_assert_held_rcu_node(rnp_start); 1511 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1512 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1513 if (rnp != rnp_start) 1514 raw_spin_lock_rcu_node(rnp); 1515 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1516 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1517 (rnp != rnp_start && 1518 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1519 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1520 TPS("Prestarted")); 1521 goto unlock_out; 1522 } 1523 rnp->gp_seq_needed = gp_seq_req; 1524 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1525 /* 1526 * We just marked the leaf or internal node, and a 1527 * grace period is in progress, which means that 1528 * rcu_gp_cleanup() will see the marking. Bail to 1529 * reduce contention. 1530 */ 1531 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1532 TPS("Startedleaf")); 1533 goto unlock_out; 1534 } 1535 if (rnp != rnp_start && rnp->parent != NULL) 1536 raw_spin_unlock_rcu_node(rnp); 1537 if (!rnp->parent) 1538 break; /* At root, and perhaps also leaf. */ 1539 } 1540 1541 /* If GP already in progress, just leave, otherwise start one. */ 1542 if (rcu_gp_in_progress()) { 1543 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1544 goto unlock_out; 1545 } 1546 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1547 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1548 rcu_state.gp_req_activity = jiffies; 1549 if (!rcu_state.gp_kthread) { 1550 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1551 goto unlock_out; 1552 } 1553 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1554 ret = true; /* Caller must wake GP kthread. */ 1555 unlock_out: 1556 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1557 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1558 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1559 rdp->gp_seq_needed = rnp->gp_seq_needed; 1560 } 1561 if (rnp != rnp_start) 1562 raw_spin_unlock_rcu_node(rnp); 1563 return ret; 1564 } 1565 1566 /* 1567 * Clean up any old requests for the just-ended grace period. Also return 1568 * whether any additional grace periods have been requested. 1569 */ 1570 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1571 { 1572 bool needmore; 1573 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1574 1575 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1576 if (!needmore) 1577 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1578 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1579 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1580 return needmore; 1581 } 1582 1583 /* 1584 * Awaken the grace-period kthread. Don't do a self-awaken (unless in 1585 * an interrupt or softirq handler), and don't bother awakening when there 1586 * is nothing for the grace-period kthread to do (as in several CPUs raced 1587 * to awaken, and we lost), and finally don't try to awaken a kthread that 1588 * has not yet been created. If all those checks are passed, track some 1589 * debug information and awaken. 1590 * 1591 * So why do the self-wakeup when in an interrupt or softirq handler 1592 * in the grace-period kthread's context? Because the kthread might have 1593 * been interrupted just as it was going to sleep, and just after the final 1594 * pre-sleep check of the awaken condition. In this case, a wakeup really 1595 * is required, and is therefore supplied. 1596 */ 1597 static void rcu_gp_kthread_wake(void) 1598 { 1599 if ((current == rcu_state.gp_kthread && 1600 !in_interrupt() && !in_serving_softirq()) || 1601 !READ_ONCE(rcu_state.gp_flags) || 1602 !rcu_state.gp_kthread) 1603 return; 1604 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1605 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1606 swake_up_one(&rcu_state.gp_wq); 1607 } 1608 1609 /* 1610 * If there is room, assign a ->gp_seq number to any callbacks on this 1611 * CPU that have not already been assigned. Also accelerate any callbacks 1612 * that were previously assigned a ->gp_seq number that has since proven 1613 * to be too conservative, which can happen if callbacks get assigned a 1614 * ->gp_seq number while RCU is idle, but with reference to a non-root 1615 * rcu_node structure. This function is idempotent, so it does not hurt 1616 * to call it repeatedly. Returns an flag saying that we should awaken 1617 * the RCU grace-period kthread. 1618 * 1619 * The caller must hold rnp->lock with interrupts disabled. 1620 */ 1621 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1622 { 1623 unsigned long gp_seq_req; 1624 bool ret = false; 1625 1626 raw_lockdep_assert_held_rcu_node(rnp); 1627 1628 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1629 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1630 return false; 1631 1632 /* 1633 * Callbacks are often registered with incomplete grace-period 1634 * information. Something about the fact that getting exact 1635 * information requires acquiring a global lock... RCU therefore 1636 * makes a conservative estimate of the grace period number at which 1637 * a given callback will become ready to invoke. The following 1638 * code checks this estimate and improves it when possible, thus 1639 * accelerating callback invocation to an earlier grace-period 1640 * number. 1641 */ 1642 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1643 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1644 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1645 1646 /* Trace depending on how much we were able to accelerate. */ 1647 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1648 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1649 else 1650 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1651 return ret; 1652 } 1653 1654 /* 1655 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1656 * rcu_node structure's ->lock be held. It consults the cached value 1657 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1658 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1659 * while holding the leaf rcu_node structure's ->lock. 1660 */ 1661 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1662 struct rcu_data *rdp) 1663 { 1664 unsigned long c; 1665 bool needwake; 1666 1667 lockdep_assert_irqs_disabled(); 1668 c = rcu_seq_snap(&rcu_state.gp_seq); 1669 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1670 /* Old request still live, so mark recent callbacks. */ 1671 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1672 return; 1673 } 1674 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1675 needwake = rcu_accelerate_cbs(rnp, rdp); 1676 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1677 if (needwake) 1678 rcu_gp_kthread_wake(); 1679 } 1680 1681 /* 1682 * Move any callbacks whose grace period has completed to the 1683 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1684 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1685 * sublist. This function is idempotent, so it does not hurt to 1686 * invoke it repeatedly. As long as it is not invoked -too- often... 1687 * Returns true if the RCU grace-period kthread needs to be awakened. 1688 * 1689 * The caller must hold rnp->lock with interrupts disabled. 1690 */ 1691 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1692 { 1693 raw_lockdep_assert_held_rcu_node(rnp); 1694 1695 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1696 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1697 return false; 1698 1699 /* 1700 * Find all callbacks whose ->gp_seq numbers indicate that they 1701 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1702 */ 1703 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1704 1705 /* Classify any remaining callbacks. */ 1706 return rcu_accelerate_cbs(rnp, rdp); 1707 } 1708 1709 /* 1710 * Update CPU-local rcu_data state to record the beginnings and ends of 1711 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1712 * structure corresponding to the current CPU, and must have irqs disabled. 1713 * Returns true if the grace-period kthread needs to be awakened. 1714 */ 1715 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1716 { 1717 bool ret; 1718 bool need_gp; 1719 1720 raw_lockdep_assert_held_rcu_node(rnp); 1721 1722 if (rdp->gp_seq == rnp->gp_seq) 1723 return false; /* Nothing to do. */ 1724 1725 /* Handle the ends of any preceding grace periods first. */ 1726 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1727 unlikely(READ_ONCE(rdp->gpwrap))) { 1728 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */ 1729 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1730 } else { 1731 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */ 1732 } 1733 1734 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1735 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1736 unlikely(READ_ONCE(rdp->gpwrap))) { 1737 /* 1738 * If the current grace period is waiting for this CPU, 1739 * set up to detect a quiescent state, otherwise don't 1740 * go looking for one. 1741 */ 1742 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1743 need_gp = !!(rnp->qsmask & rdp->grpmask); 1744 rdp->cpu_no_qs.b.norm = need_gp; 1745 rdp->core_needs_qs = need_gp; 1746 zero_cpu_stall_ticks(rdp); 1747 } 1748 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1749 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1750 rdp->gp_seq_needed = rnp->gp_seq_needed; 1751 WRITE_ONCE(rdp->gpwrap, false); 1752 rcu_gpnum_ovf(rnp, rdp); 1753 return ret; 1754 } 1755 1756 static void note_gp_changes(struct rcu_data *rdp) 1757 { 1758 unsigned long flags; 1759 bool needwake; 1760 struct rcu_node *rnp; 1761 1762 local_irq_save(flags); 1763 rnp = rdp->mynode; 1764 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1765 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1766 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1767 local_irq_restore(flags); 1768 return; 1769 } 1770 needwake = __note_gp_changes(rnp, rdp); 1771 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1772 if (needwake) 1773 rcu_gp_kthread_wake(); 1774 } 1775 1776 static void rcu_gp_slow(int delay) 1777 { 1778 if (delay > 0 && 1779 !(rcu_seq_ctr(rcu_state.gp_seq) % 1780 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1781 schedule_timeout_uninterruptible(delay); 1782 } 1783 1784 /* 1785 * Initialize a new grace period. Return false if no grace period required. 1786 */ 1787 static bool rcu_gp_init(void) 1788 { 1789 unsigned long flags; 1790 unsigned long oldmask; 1791 unsigned long mask; 1792 struct rcu_data *rdp; 1793 struct rcu_node *rnp = rcu_get_root(); 1794 1795 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1796 raw_spin_lock_irq_rcu_node(rnp); 1797 if (!READ_ONCE(rcu_state.gp_flags)) { 1798 /* Spurious wakeup, tell caller to go back to sleep. */ 1799 raw_spin_unlock_irq_rcu_node(rnp); 1800 return false; 1801 } 1802 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1803 1804 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1805 /* 1806 * Grace period already in progress, don't start another. 1807 * Not supposed to be able to happen. 1808 */ 1809 raw_spin_unlock_irq_rcu_node(rnp); 1810 return false; 1811 } 1812 1813 /* Advance to a new grace period and initialize state. */ 1814 record_gp_stall_check_time(); 1815 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1816 rcu_seq_start(&rcu_state.gp_seq); 1817 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1818 raw_spin_unlock_irq_rcu_node(rnp); 1819 1820 /* 1821 * Apply per-leaf buffered online and offline operations to the 1822 * rcu_node tree. Note that this new grace period need not wait 1823 * for subsequent online CPUs, and that quiescent-state forcing 1824 * will handle subsequent offline CPUs. 1825 */ 1826 rcu_state.gp_state = RCU_GP_ONOFF; 1827 rcu_for_each_leaf_node(rnp) { 1828 raw_spin_lock(&rcu_state.ofl_lock); 1829 raw_spin_lock_irq_rcu_node(rnp); 1830 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1831 !rnp->wait_blkd_tasks) { 1832 /* Nothing to do on this leaf rcu_node structure. */ 1833 raw_spin_unlock_irq_rcu_node(rnp); 1834 raw_spin_unlock(&rcu_state.ofl_lock); 1835 continue; 1836 } 1837 1838 /* Record old state, apply changes to ->qsmaskinit field. */ 1839 oldmask = rnp->qsmaskinit; 1840 rnp->qsmaskinit = rnp->qsmaskinitnext; 1841 1842 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1843 if (!oldmask != !rnp->qsmaskinit) { 1844 if (!oldmask) { /* First online CPU for rcu_node. */ 1845 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1846 rcu_init_new_rnp(rnp); 1847 } else if (rcu_preempt_has_tasks(rnp)) { 1848 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1849 } else { /* Last offline CPU and can propagate. */ 1850 rcu_cleanup_dead_rnp(rnp); 1851 } 1852 } 1853 1854 /* 1855 * If all waited-on tasks from prior grace period are 1856 * done, and if all this rcu_node structure's CPUs are 1857 * still offline, propagate up the rcu_node tree and 1858 * clear ->wait_blkd_tasks. Otherwise, if one of this 1859 * rcu_node structure's CPUs has since come back online, 1860 * simply clear ->wait_blkd_tasks. 1861 */ 1862 if (rnp->wait_blkd_tasks && 1863 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1864 rnp->wait_blkd_tasks = false; 1865 if (!rnp->qsmaskinit) 1866 rcu_cleanup_dead_rnp(rnp); 1867 } 1868 1869 raw_spin_unlock_irq_rcu_node(rnp); 1870 raw_spin_unlock(&rcu_state.ofl_lock); 1871 } 1872 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1873 1874 /* 1875 * Set the quiescent-state-needed bits in all the rcu_node 1876 * structures for all currently online CPUs in breadth-first 1877 * order, starting from the root rcu_node structure, relying on the 1878 * layout of the tree within the rcu_state.node[] array. Note that 1879 * other CPUs will access only the leaves of the hierarchy, thus 1880 * seeing that no grace period is in progress, at least until the 1881 * corresponding leaf node has been initialized. 1882 * 1883 * The grace period cannot complete until the initialization 1884 * process finishes, because this kthread handles both. 1885 */ 1886 rcu_state.gp_state = RCU_GP_INIT; 1887 rcu_for_each_node_breadth_first(rnp) { 1888 rcu_gp_slow(gp_init_delay); 1889 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1890 rdp = this_cpu_ptr(&rcu_data); 1891 rcu_preempt_check_blocked_tasks(rnp); 1892 rnp->qsmask = rnp->qsmaskinit; 1893 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1894 if (rnp == rdp->mynode) 1895 (void)__note_gp_changes(rnp, rdp); 1896 rcu_preempt_boost_start_gp(rnp); 1897 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1898 rnp->level, rnp->grplo, 1899 rnp->grphi, rnp->qsmask); 1900 /* Quiescent states for tasks on any now-offline CPUs. */ 1901 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1902 rnp->rcu_gp_init_mask = mask; 1903 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1904 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1905 else 1906 raw_spin_unlock_irq_rcu_node(rnp); 1907 cond_resched_tasks_rcu_qs(); 1908 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1909 } 1910 1911 return true; 1912 } 1913 1914 /* 1915 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1916 * time. 1917 */ 1918 static bool rcu_gp_fqs_check_wake(int *gfp) 1919 { 1920 struct rcu_node *rnp = rcu_get_root(); 1921 1922 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1923 *gfp = READ_ONCE(rcu_state.gp_flags); 1924 if (*gfp & RCU_GP_FLAG_FQS) 1925 return true; 1926 1927 /* The current grace period has completed. */ 1928 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1929 return true; 1930 1931 return false; 1932 } 1933 1934 /* 1935 * Do one round of quiescent-state forcing. 1936 */ 1937 static void rcu_gp_fqs(bool first_time) 1938 { 1939 struct rcu_node *rnp = rcu_get_root(); 1940 1941 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1942 rcu_state.n_force_qs++; 1943 if (first_time) { 1944 /* Collect dyntick-idle snapshots. */ 1945 force_qs_rnp(dyntick_save_progress_counter); 1946 } else { 1947 /* Handle dyntick-idle and offline CPUs. */ 1948 force_qs_rnp(rcu_implicit_dynticks_qs); 1949 } 1950 /* Clear flag to prevent immediate re-entry. */ 1951 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1952 raw_spin_lock_irq_rcu_node(rnp); 1953 WRITE_ONCE(rcu_state.gp_flags, 1954 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1955 raw_spin_unlock_irq_rcu_node(rnp); 1956 } 1957 } 1958 1959 /* 1960 * Loop doing repeated quiescent-state forcing until the grace period ends. 1961 */ 1962 static void rcu_gp_fqs_loop(void) 1963 { 1964 bool first_gp_fqs; 1965 int gf; 1966 unsigned long j; 1967 int ret; 1968 struct rcu_node *rnp = rcu_get_root(); 1969 1970 first_gp_fqs = true; 1971 j = READ_ONCE(jiffies_till_first_fqs); 1972 ret = 0; 1973 for (;;) { 1974 if (!ret) { 1975 rcu_state.jiffies_force_qs = jiffies + j; 1976 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1977 jiffies + (j ? 3 * j : 2)); 1978 } 1979 trace_rcu_grace_period(rcu_state.name, 1980 READ_ONCE(rcu_state.gp_seq), 1981 TPS("fqswait")); 1982 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1983 ret = swait_event_idle_timeout_exclusive( 1984 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1985 rcu_state.gp_state = RCU_GP_DOING_FQS; 1986 /* Locking provides needed memory barriers. */ 1987 /* If grace period done, leave loop. */ 1988 if (!READ_ONCE(rnp->qsmask) && 1989 !rcu_preempt_blocked_readers_cgp(rnp)) 1990 break; 1991 /* If time for quiescent-state forcing, do it. */ 1992 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1993 (gf & RCU_GP_FLAG_FQS)) { 1994 trace_rcu_grace_period(rcu_state.name, 1995 READ_ONCE(rcu_state.gp_seq), 1996 TPS("fqsstart")); 1997 rcu_gp_fqs(first_gp_fqs); 1998 first_gp_fqs = false; 1999 trace_rcu_grace_period(rcu_state.name, 2000 READ_ONCE(rcu_state.gp_seq), 2001 TPS("fqsend")); 2002 cond_resched_tasks_rcu_qs(); 2003 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2004 ret = 0; /* Force full wait till next FQS. */ 2005 j = READ_ONCE(jiffies_till_next_fqs); 2006 } else { 2007 /* Deal with stray signal. */ 2008 cond_resched_tasks_rcu_qs(); 2009 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2010 WARN_ON(signal_pending(current)); 2011 trace_rcu_grace_period(rcu_state.name, 2012 READ_ONCE(rcu_state.gp_seq), 2013 TPS("fqswaitsig")); 2014 ret = 1; /* Keep old FQS timing. */ 2015 j = jiffies; 2016 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2017 j = 1; 2018 else 2019 j = rcu_state.jiffies_force_qs - j; 2020 } 2021 } 2022 } 2023 2024 /* 2025 * Clean up after the old grace period. 2026 */ 2027 static void rcu_gp_cleanup(void) 2028 { 2029 unsigned long gp_duration; 2030 bool needgp = false; 2031 unsigned long new_gp_seq; 2032 struct rcu_data *rdp; 2033 struct rcu_node *rnp = rcu_get_root(); 2034 struct swait_queue_head *sq; 2035 2036 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2037 raw_spin_lock_irq_rcu_node(rnp); 2038 rcu_state.gp_end = jiffies; 2039 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2040 if (gp_duration > rcu_state.gp_max) 2041 rcu_state.gp_max = gp_duration; 2042 2043 /* 2044 * We know the grace period is complete, but to everyone else 2045 * it appears to still be ongoing. But it is also the case 2046 * that to everyone else it looks like there is nothing that 2047 * they can do to advance the grace period. It is therefore 2048 * safe for us to drop the lock in order to mark the grace 2049 * period as completed in all of the rcu_node structures. 2050 */ 2051 raw_spin_unlock_irq_rcu_node(rnp); 2052 2053 /* 2054 * Propagate new ->gp_seq value to rcu_node structures so that 2055 * other CPUs don't have to wait until the start of the next grace 2056 * period to process their callbacks. This also avoids some nasty 2057 * RCU grace-period initialization races by forcing the end of 2058 * the current grace period to be completely recorded in all of 2059 * the rcu_node structures before the beginning of the next grace 2060 * period is recorded in any of the rcu_node structures. 2061 */ 2062 new_gp_seq = rcu_state.gp_seq; 2063 rcu_seq_end(&new_gp_seq); 2064 rcu_for_each_node_breadth_first(rnp) { 2065 raw_spin_lock_irq_rcu_node(rnp); 2066 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2067 dump_blkd_tasks(rnp, 10); 2068 WARN_ON_ONCE(rnp->qsmask); 2069 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2070 rdp = this_cpu_ptr(&rcu_data); 2071 if (rnp == rdp->mynode) 2072 needgp = __note_gp_changes(rnp, rdp) || needgp; 2073 /* smp_mb() provided by prior unlock-lock pair. */ 2074 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2075 sq = rcu_nocb_gp_get(rnp); 2076 raw_spin_unlock_irq_rcu_node(rnp); 2077 rcu_nocb_gp_cleanup(sq); 2078 cond_resched_tasks_rcu_qs(); 2079 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2080 rcu_gp_slow(gp_cleanup_delay); 2081 } 2082 rnp = rcu_get_root(); 2083 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2084 2085 /* Declare grace period done, trace first to use old GP number. */ 2086 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2087 rcu_seq_end(&rcu_state.gp_seq); 2088 rcu_state.gp_state = RCU_GP_IDLE; 2089 /* Check for GP requests since above loop. */ 2090 rdp = this_cpu_ptr(&rcu_data); 2091 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2092 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2093 TPS("CleanupMore")); 2094 needgp = true; 2095 } 2096 /* Advance CBs to reduce false positives below. */ 2097 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) { 2098 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2099 rcu_state.gp_req_activity = jiffies; 2100 trace_rcu_grace_period(rcu_state.name, 2101 READ_ONCE(rcu_state.gp_seq), 2102 TPS("newreq")); 2103 } else { 2104 WRITE_ONCE(rcu_state.gp_flags, 2105 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2106 } 2107 raw_spin_unlock_irq_rcu_node(rnp); 2108 } 2109 2110 /* 2111 * Body of kthread that handles grace periods. 2112 */ 2113 static int __noreturn rcu_gp_kthread(void *unused) 2114 { 2115 rcu_bind_gp_kthread(); 2116 for (;;) { 2117 2118 /* Handle grace-period start. */ 2119 for (;;) { 2120 trace_rcu_grace_period(rcu_state.name, 2121 READ_ONCE(rcu_state.gp_seq), 2122 TPS("reqwait")); 2123 rcu_state.gp_state = RCU_GP_WAIT_GPS; 2124 swait_event_idle_exclusive(rcu_state.gp_wq, 2125 READ_ONCE(rcu_state.gp_flags) & 2126 RCU_GP_FLAG_INIT); 2127 rcu_state.gp_state = RCU_GP_DONE_GPS; 2128 /* Locking provides needed memory barrier. */ 2129 if (rcu_gp_init()) 2130 break; 2131 cond_resched_tasks_rcu_qs(); 2132 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2133 WARN_ON(signal_pending(current)); 2134 trace_rcu_grace_period(rcu_state.name, 2135 READ_ONCE(rcu_state.gp_seq), 2136 TPS("reqwaitsig")); 2137 } 2138 2139 /* Handle quiescent-state forcing. */ 2140 rcu_gp_fqs_loop(); 2141 2142 /* Handle grace-period end. */ 2143 rcu_state.gp_state = RCU_GP_CLEANUP; 2144 rcu_gp_cleanup(); 2145 rcu_state.gp_state = RCU_GP_CLEANED; 2146 } 2147 } 2148 2149 /* 2150 * Report a full set of quiescent states to the rcu_state data structure. 2151 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2152 * another grace period is required. Whether we wake the grace-period 2153 * kthread or it awakens itself for the next round of quiescent-state 2154 * forcing, that kthread will clean up after the just-completed grace 2155 * period. Note that the caller must hold rnp->lock, which is released 2156 * before return. 2157 */ 2158 static void rcu_report_qs_rsp(unsigned long flags) 2159 __releases(rcu_get_root()->lock) 2160 { 2161 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2162 WARN_ON_ONCE(!rcu_gp_in_progress()); 2163 WRITE_ONCE(rcu_state.gp_flags, 2164 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2165 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2166 rcu_gp_kthread_wake(); 2167 } 2168 2169 /* 2170 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2171 * Allows quiescent states for a group of CPUs to be reported at one go 2172 * to the specified rcu_node structure, though all the CPUs in the group 2173 * must be represented by the same rcu_node structure (which need not be a 2174 * leaf rcu_node structure, though it often will be). The gps parameter 2175 * is the grace-period snapshot, which means that the quiescent states 2176 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2177 * must be held upon entry, and it is released before return. 2178 * 2179 * As a special case, if mask is zero, the bit-already-cleared check is 2180 * disabled. This allows propagating quiescent state due to resumed tasks 2181 * during grace-period initialization. 2182 */ 2183 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2184 unsigned long gps, unsigned long flags) 2185 __releases(rnp->lock) 2186 { 2187 unsigned long oldmask = 0; 2188 struct rcu_node *rnp_c; 2189 2190 raw_lockdep_assert_held_rcu_node(rnp); 2191 2192 /* Walk up the rcu_node hierarchy. */ 2193 for (;;) { 2194 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2195 2196 /* 2197 * Our bit has already been cleared, or the 2198 * relevant grace period is already over, so done. 2199 */ 2200 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2201 return; 2202 } 2203 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2204 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2205 rcu_preempt_blocked_readers_cgp(rnp)); 2206 rnp->qsmask &= ~mask; 2207 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2208 mask, rnp->qsmask, rnp->level, 2209 rnp->grplo, rnp->grphi, 2210 !!rnp->gp_tasks); 2211 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2212 2213 /* Other bits still set at this level, so done. */ 2214 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2215 return; 2216 } 2217 rnp->completedqs = rnp->gp_seq; 2218 mask = rnp->grpmask; 2219 if (rnp->parent == NULL) { 2220 2221 /* No more levels. Exit loop holding root lock. */ 2222 2223 break; 2224 } 2225 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2226 rnp_c = rnp; 2227 rnp = rnp->parent; 2228 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2229 oldmask = rnp_c->qsmask; 2230 } 2231 2232 /* 2233 * Get here if we are the last CPU to pass through a quiescent 2234 * state for this grace period. Invoke rcu_report_qs_rsp() 2235 * to clean up and start the next grace period if one is needed. 2236 */ 2237 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2238 } 2239 2240 /* 2241 * Record a quiescent state for all tasks that were previously queued 2242 * on the specified rcu_node structure and that were blocking the current 2243 * RCU grace period. The caller must hold the corresponding rnp->lock with 2244 * irqs disabled, and this lock is released upon return, but irqs remain 2245 * disabled. 2246 */ 2247 static void __maybe_unused 2248 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2249 __releases(rnp->lock) 2250 { 2251 unsigned long gps; 2252 unsigned long mask; 2253 struct rcu_node *rnp_p; 2254 2255 raw_lockdep_assert_held_rcu_node(rnp); 2256 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) || 2257 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2258 rnp->qsmask != 0) { 2259 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2260 return; /* Still need more quiescent states! */ 2261 } 2262 2263 rnp->completedqs = rnp->gp_seq; 2264 rnp_p = rnp->parent; 2265 if (rnp_p == NULL) { 2266 /* 2267 * Only one rcu_node structure in the tree, so don't 2268 * try to report up to its nonexistent parent! 2269 */ 2270 rcu_report_qs_rsp(flags); 2271 return; 2272 } 2273 2274 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2275 gps = rnp->gp_seq; 2276 mask = rnp->grpmask; 2277 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2278 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2279 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2280 } 2281 2282 /* 2283 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2284 * structure. This must be called from the specified CPU. 2285 */ 2286 static void 2287 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 2288 { 2289 unsigned long flags; 2290 unsigned long mask; 2291 bool needwake; 2292 struct rcu_node *rnp; 2293 2294 rnp = rdp->mynode; 2295 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2296 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2297 rdp->gpwrap) { 2298 2299 /* 2300 * The grace period in which this quiescent state was 2301 * recorded has ended, so don't report it upwards. 2302 * We will instead need a new quiescent state that lies 2303 * within the current grace period. 2304 */ 2305 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2306 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2307 return; 2308 } 2309 mask = rdp->grpmask; 2310 if ((rnp->qsmask & mask) == 0) { 2311 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2312 } else { 2313 rdp->core_needs_qs = false; 2314 2315 /* 2316 * This GP can't end until cpu checks in, so all of our 2317 * callbacks can be processed during the next GP. 2318 */ 2319 needwake = rcu_accelerate_cbs(rnp, rdp); 2320 2321 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2322 /* ^^^ Released rnp->lock */ 2323 if (needwake) 2324 rcu_gp_kthread_wake(); 2325 } 2326 } 2327 2328 /* 2329 * Check to see if there is a new grace period of which this CPU 2330 * is not yet aware, and if so, set up local rcu_data state for it. 2331 * Otherwise, see if this CPU has just passed through its first 2332 * quiescent state for this grace period, and record that fact if so. 2333 */ 2334 static void 2335 rcu_check_quiescent_state(struct rcu_data *rdp) 2336 { 2337 /* Check for grace-period ends and beginnings. */ 2338 note_gp_changes(rdp); 2339 2340 /* 2341 * Does this CPU still need to do its part for current grace period? 2342 * If no, return and let the other CPUs do their part as well. 2343 */ 2344 if (!rdp->core_needs_qs) 2345 return; 2346 2347 /* 2348 * Was there a quiescent state since the beginning of the grace 2349 * period? If no, then exit and wait for the next call. 2350 */ 2351 if (rdp->cpu_no_qs.b.norm) 2352 return; 2353 2354 /* 2355 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2356 * judge of that). 2357 */ 2358 rcu_report_qs_rdp(rdp->cpu, rdp); 2359 } 2360 2361 /* 2362 * Near the end of the offline process. Trace the fact that this CPU 2363 * is going offline. 2364 */ 2365 int rcutree_dying_cpu(unsigned int cpu) 2366 { 2367 RCU_TRACE(bool blkd;) 2368 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);) 2369 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2370 2371 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2372 return 0; 2373 2374 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) 2375 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2376 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2377 return 0; 2378 } 2379 2380 /* 2381 * All CPUs for the specified rcu_node structure have gone offline, 2382 * and all tasks that were preempted within an RCU read-side critical 2383 * section while running on one of those CPUs have since exited their RCU 2384 * read-side critical section. Some other CPU is reporting this fact with 2385 * the specified rcu_node structure's ->lock held and interrupts disabled. 2386 * This function therefore goes up the tree of rcu_node structures, 2387 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2388 * the leaf rcu_node structure's ->qsmaskinit field has already been 2389 * updated. 2390 * 2391 * This function does check that the specified rcu_node structure has 2392 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2393 * prematurely. That said, invoking it after the fact will cost you 2394 * a needless lock acquisition. So once it has done its work, don't 2395 * invoke it again. 2396 */ 2397 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2398 { 2399 long mask; 2400 struct rcu_node *rnp = rnp_leaf; 2401 2402 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2403 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2404 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2405 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2406 return; 2407 for (;;) { 2408 mask = rnp->grpmask; 2409 rnp = rnp->parent; 2410 if (!rnp) 2411 break; 2412 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2413 rnp->qsmaskinit &= ~mask; 2414 /* Between grace periods, so better already be zero! */ 2415 WARN_ON_ONCE(rnp->qsmask); 2416 if (rnp->qsmaskinit) { 2417 raw_spin_unlock_rcu_node(rnp); 2418 /* irqs remain disabled. */ 2419 return; 2420 } 2421 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2422 } 2423 } 2424 2425 /* 2426 * The CPU has been completely removed, and some other CPU is reporting 2427 * this fact from process context. Do the remainder of the cleanup. 2428 * There can only be one CPU hotplug operation at a time, so no need for 2429 * explicit locking. 2430 */ 2431 int rcutree_dead_cpu(unsigned int cpu) 2432 { 2433 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2434 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2435 2436 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2437 return 0; 2438 2439 /* Adjust any no-longer-needed kthreads. */ 2440 rcu_boost_kthread_setaffinity(rnp, -1); 2441 /* Do any needed no-CB deferred wakeups from this CPU. */ 2442 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2443 return 0; 2444 } 2445 2446 /* 2447 * Invoke any RCU callbacks that have made it to the end of their grace 2448 * period. Thottle as specified by rdp->blimit. 2449 */ 2450 static void rcu_do_batch(struct rcu_data *rdp) 2451 { 2452 unsigned long flags; 2453 struct rcu_head *rhp; 2454 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2455 long bl, count; 2456 2457 /* If no callbacks are ready, just return. */ 2458 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2459 trace_rcu_batch_start(rcu_state.name, 2460 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2461 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2462 trace_rcu_batch_end(rcu_state.name, 0, 2463 !rcu_segcblist_empty(&rdp->cblist), 2464 need_resched(), is_idle_task(current), 2465 rcu_is_callbacks_kthread()); 2466 return; 2467 } 2468 2469 /* 2470 * Extract the list of ready callbacks, disabling to prevent 2471 * races with call_rcu() from interrupt handlers. Leave the 2472 * callback counts, as rcu_barrier() needs to be conservative. 2473 */ 2474 local_irq_save(flags); 2475 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2476 bl = rdp->blimit; 2477 trace_rcu_batch_start(rcu_state.name, 2478 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2479 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2480 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2481 local_irq_restore(flags); 2482 2483 /* Invoke callbacks. */ 2484 rhp = rcu_cblist_dequeue(&rcl); 2485 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2486 debug_rcu_head_unqueue(rhp); 2487 if (__rcu_reclaim(rcu_state.name, rhp)) 2488 rcu_cblist_dequeued_lazy(&rcl); 2489 /* 2490 * Stop only if limit reached and CPU has something to do. 2491 * Note: The rcl structure counts down from zero. 2492 */ 2493 if (-rcl.len >= bl && 2494 (need_resched() || 2495 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2496 break; 2497 } 2498 2499 local_irq_save(flags); 2500 count = -rcl.len; 2501 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2502 is_idle_task(current), rcu_is_callbacks_kthread()); 2503 2504 /* Update counts and requeue any remaining callbacks. */ 2505 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2506 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2507 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2508 2509 /* Reinstate batch limit if we have worked down the excess. */ 2510 count = rcu_segcblist_n_cbs(&rdp->cblist); 2511 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2512 rdp->blimit = blimit; 2513 2514 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2515 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2516 rdp->qlen_last_fqs_check = 0; 2517 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2518 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2519 rdp->qlen_last_fqs_check = count; 2520 2521 /* 2522 * The following usually indicates a double call_rcu(). To track 2523 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2524 */ 2525 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2526 2527 local_irq_restore(flags); 2528 2529 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2530 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2531 invoke_rcu_core(); 2532 } 2533 2534 /* 2535 * This function is invoked from each scheduling-clock interrupt, 2536 * and checks to see if this CPU is in a non-context-switch quiescent 2537 * state, for example, user mode or idle loop. It also schedules RCU 2538 * core processing. If the current grace period has gone on too long, 2539 * it will ask the scheduler to manufacture a context switch for the sole 2540 * purpose of providing a providing the needed quiescent state. 2541 */ 2542 void rcu_sched_clock_irq(int user) 2543 { 2544 trace_rcu_utilization(TPS("Start scheduler-tick")); 2545 raw_cpu_inc(rcu_data.ticks_this_gp); 2546 /* The load-acquire pairs with the store-release setting to true. */ 2547 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2548 /* Idle and userspace execution already are quiescent states. */ 2549 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2550 set_tsk_need_resched(current); 2551 set_preempt_need_resched(); 2552 } 2553 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2554 } 2555 rcu_flavor_sched_clock_irq(user); 2556 if (rcu_pending()) 2557 invoke_rcu_core(); 2558 2559 trace_rcu_utilization(TPS("End scheduler-tick")); 2560 } 2561 2562 /* 2563 * Scan the leaf rcu_node structures, processing dyntick state for any that 2564 * have not yet encountered a quiescent state, using the function specified. 2565 * Also initiate boosting for any threads blocked on the root rcu_node. 2566 * 2567 * The caller must have suppressed start of new grace periods. 2568 */ 2569 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2570 { 2571 int cpu; 2572 unsigned long flags; 2573 unsigned long mask; 2574 struct rcu_node *rnp; 2575 2576 rcu_for_each_leaf_node(rnp) { 2577 cond_resched_tasks_rcu_qs(); 2578 mask = 0; 2579 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2580 if (rnp->qsmask == 0) { 2581 if (!IS_ENABLED(CONFIG_PREEMPT) || 2582 rcu_preempt_blocked_readers_cgp(rnp)) { 2583 /* 2584 * No point in scanning bits because they 2585 * are all zero. But we might need to 2586 * priority-boost blocked readers. 2587 */ 2588 rcu_initiate_boost(rnp, flags); 2589 /* rcu_initiate_boost() releases rnp->lock */ 2590 continue; 2591 } 2592 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2593 continue; 2594 } 2595 for_each_leaf_node_possible_cpu(rnp, cpu) { 2596 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2597 if ((rnp->qsmask & bit) != 0) { 2598 if (f(per_cpu_ptr(&rcu_data, cpu))) 2599 mask |= bit; 2600 } 2601 } 2602 if (mask != 0) { 2603 /* Idle/offline CPUs, report (releases rnp->lock). */ 2604 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2605 } else { 2606 /* Nothing to do here, so just drop the lock. */ 2607 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2608 } 2609 } 2610 } 2611 2612 /* 2613 * Force quiescent states on reluctant CPUs, and also detect which 2614 * CPUs are in dyntick-idle mode. 2615 */ 2616 void rcu_force_quiescent_state(void) 2617 { 2618 unsigned long flags; 2619 bool ret; 2620 struct rcu_node *rnp; 2621 struct rcu_node *rnp_old = NULL; 2622 2623 /* Funnel through hierarchy to reduce memory contention. */ 2624 rnp = __this_cpu_read(rcu_data.mynode); 2625 for (; rnp != NULL; rnp = rnp->parent) { 2626 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2627 !raw_spin_trylock(&rnp->fqslock); 2628 if (rnp_old != NULL) 2629 raw_spin_unlock(&rnp_old->fqslock); 2630 if (ret) 2631 return; 2632 rnp_old = rnp; 2633 } 2634 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2635 2636 /* Reached the root of the rcu_node tree, acquire lock. */ 2637 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2638 raw_spin_unlock(&rnp_old->fqslock); 2639 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2640 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2641 return; /* Someone beat us to it. */ 2642 } 2643 WRITE_ONCE(rcu_state.gp_flags, 2644 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2645 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2646 rcu_gp_kthread_wake(); 2647 } 2648 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2649 2650 /* 2651 * This function checks for grace-period requests that fail to motivate 2652 * RCU to come out of its idle mode. 2653 */ 2654 void 2655 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp, 2656 const unsigned long gpssdelay) 2657 { 2658 unsigned long flags; 2659 unsigned long j; 2660 struct rcu_node *rnp_root = rcu_get_root(); 2661 static atomic_t warned = ATOMIC_INIT(0); 2662 2663 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() || 2664 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) 2665 return; 2666 j = jiffies; /* Expensive access, and in common case don't get here. */ 2667 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2668 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2669 atomic_read(&warned)) 2670 return; 2671 2672 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2673 j = jiffies; 2674 if (rcu_gp_in_progress() || 2675 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2676 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2677 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2678 atomic_read(&warned)) { 2679 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2680 return; 2681 } 2682 /* Hold onto the leaf lock to make others see warned==1. */ 2683 2684 if (rnp_root != rnp) 2685 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 2686 j = jiffies; 2687 if (rcu_gp_in_progress() || 2688 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2689 time_before(j, rcu_state.gp_req_activity + gpssdelay) || 2690 time_before(j, rcu_state.gp_activity + gpssdelay) || 2691 atomic_xchg(&warned, 1)) { 2692 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ 2693 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2694 return; 2695 } 2696 WARN_ON(1); 2697 if (rnp_root != rnp) 2698 raw_spin_unlock_rcu_node(rnp_root); 2699 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2700 show_rcu_gp_kthreads(); 2701 } 2702 2703 /* 2704 * Do a forward-progress check for rcutorture. This is normally invoked 2705 * due to an OOM event. The argument "j" gives the time period during 2706 * which rcutorture would like progress to have been made. 2707 */ 2708 void rcu_fwd_progress_check(unsigned long j) 2709 { 2710 unsigned long cbs; 2711 int cpu; 2712 unsigned long max_cbs = 0; 2713 int max_cpu = -1; 2714 struct rcu_data *rdp; 2715 2716 if (rcu_gp_in_progress()) { 2717 pr_info("%s: GP age %lu jiffies\n", 2718 __func__, jiffies - rcu_state.gp_start); 2719 show_rcu_gp_kthreads(); 2720 } else { 2721 pr_info("%s: Last GP end %lu jiffies ago\n", 2722 __func__, jiffies - rcu_state.gp_end); 2723 preempt_disable(); 2724 rdp = this_cpu_ptr(&rcu_data); 2725 rcu_check_gp_start_stall(rdp->mynode, rdp, j); 2726 preempt_enable(); 2727 } 2728 for_each_possible_cpu(cpu) { 2729 cbs = rcu_get_n_cbs_cpu(cpu); 2730 if (!cbs) 2731 continue; 2732 if (max_cpu < 0) 2733 pr_info("%s: callbacks", __func__); 2734 pr_cont(" %d: %lu", cpu, cbs); 2735 if (cbs <= max_cbs) 2736 continue; 2737 max_cbs = cbs; 2738 max_cpu = cpu; 2739 } 2740 if (max_cpu >= 0) 2741 pr_cont("\n"); 2742 } 2743 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check); 2744 2745 /* 2746 * This does the RCU core processing work for the specified rcu_data 2747 * structures. This may be called only from the CPU to whom the rdp 2748 * belongs. 2749 */ 2750 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2751 { 2752 unsigned long flags; 2753 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2754 struct rcu_node *rnp = rdp->mynode; 2755 2756 if (cpu_is_offline(smp_processor_id())) 2757 return; 2758 trace_rcu_utilization(TPS("Start RCU core")); 2759 WARN_ON_ONCE(!rdp->beenonline); 2760 2761 /* Report any deferred quiescent states if preemption enabled. */ 2762 if (!(preempt_count() & PREEMPT_MASK)) { 2763 rcu_preempt_deferred_qs(current); 2764 } else if (rcu_preempt_need_deferred_qs(current)) { 2765 set_tsk_need_resched(current); 2766 set_preempt_need_resched(); 2767 } 2768 2769 /* Update RCU state based on any recent quiescent states. */ 2770 rcu_check_quiescent_state(rdp); 2771 2772 /* No grace period and unregistered callbacks? */ 2773 if (!rcu_gp_in_progress() && 2774 rcu_segcblist_is_enabled(&rdp->cblist)) { 2775 local_irq_save(flags); 2776 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2777 rcu_accelerate_cbs_unlocked(rnp, rdp); 2778 local_irq_restore(flags); 2779 } 2780 2781 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2782 2783 /* If there are callbacks ready, invoke them. */ 2784 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2785 invoke_rcu_callbacks(rdp); 2786 2787 /* Do any needed deferred wakeups of rcuo kthreads. */ 2788 do_nocb_deferred_wakeup(rdp); 2789 trace_rcu_utilization(TPS("End RCU core")); 2790 } 2791 2792 /* 2793 * Schedule RCU callback invocation. If the running implementation of RCU 2794 * does not support RCU priority boosting, just do a direct call, otherwise 2795 * wake up the per-CPU kernel kthread. Note that because we are running 2796 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task 2797 * cannot disappear out from under us. 2798 */ 2799 static void invoke_rcu_callbacks(struct rcu_data *rdp) 2800 { 2801 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2802 return; 2803 if (likely(!rcu_state.boost)) { 2804 rcu_do_batch(rdp); 2805 return; 2806 } 2807 invoke_rcu_callbacks_kthread(); 2808 } 2809 2810 static void invoke_rcu_core(void) 2811 { 2812 if (cpu_online(smp_processor_id())) 2813 raise_softirq(RCU_SOFTIRQ); 2814 } 2815 2816 /* 2817 * Handle any core-RCU processing required by a call_rcu() invocation. 2818 */ 2819 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2820 unsigned long flags) 2821 { 2822 /* 2823 * If called from an extended quiescent state, invoke the RCU 2824 * core in order to force a re-evaluation of RCU's idleness. 2825 */ 2826 if (!rcu_is_watching()) 2827 invoke_rcu_core(); 2828 2829 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2830 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2831 return; 2832 2833 /* 2834 * Force the grace period if too many callbacks or too long waiting. 2835 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2836 * if some other CPU has recently done so. Also, don't bother 2837 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2838 * is the only one waiting for a grace period to complete. 2839 */ 2840 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2841 rdp->qlen_last_fqs_check + qhimark)) { 2842 2843 /* Are we ignoring a completed grace period? */ 2844 note_gp_changes(rdp); 2845 2846 /* Start a new grace period if one not already started. */ 2847 if (!rcu_gp_in_progress()) { 2848 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2849 } else { 2850 /* Give the grace period a kick. */ 2851 rdp->blimit = LONG_MAX; 2852 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2853 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2854 rcu_force_quiescent_state(); 2855 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2856 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2857 } 2858 } 2859 } 2860 2861 /* 2862 * RCU callback function to leak a callback. 2863 */ 2864 static void rcu_leak_callback(struct rcu_head *rhp) 2865 { 2866 } 2867 2868 /* 2869 * Helper function for call_rcu() and friends. The cpu argument will 2870 * normally be -1, indicating "currently running CPU". It may specify 2871 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2872 * is expected to specify a CPU. 2873 */ 2874 static void 2875 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy) 2876 { 2877 unsigned long flags; 2878 struct rcu_data *rdp; 2879 2880 /* Misaligned rcu_head! */ 2881 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2882 2883 if (debug_rcu_head_queue(head)) { 2884 /* 2885 * Probable double call_rcu(), so leak the callback. 2886 * Use rcu:rcu_callback trace event to find the previous 2887 * time callback was passed to __call_rcu(). 2888 */ 2889 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2890 head, head->func); 2891 WRITE_ONCE(head->func, rcu_leak_callback); 2892 return; 2893 } 2894 head->func = func; 2895 head->next = NULL; 2896 local_irq_save(flags); 2897 rdp = this_cpu_ptr(&rcu_data); 2898 2899 /* Add the callback to our list. */ 2900 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2901 int offline; 2902 2903 if (cpu != -1) 2904 rdp = per_cpu_ptr(&rcu_data, cpu); 2905 if (likely(rdp->mynode)) { 2906 /* Post-boot, so this should be for a no-CBs CPU. */ 2907 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2908 WARN_ON_ONCE(offline); 2909 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2910 local_irq_restore(flags); 2911 return; 2912 } 2913 /* 2914 * Very early boot, before rcu_init(). Initialize if needed 2915 * and then drop through to queue the callback. 2916 */ 2917 WARN_ON_ONCE(cpu != -1); 2918 WARN_ON_ONCE(!rcu_is_watching()); 2919 if (rcu_segcblist_empty(&rdp->cblist)) 2920 rcu_segcblist_init(&rdp->cblist); 2921 } 2922 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2923 if (__is_kfree_rcu_offset((unsigned long)func)) 2924 trace_rcu_kfree_callback(rcu_state.name, head, 2925 (unsigned long)func, 2926 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2927 rcu_segcblist_n_cbs(&rdp->cblist)); 2928 else 2929 trace_rcu_callback(rcu_state.name, head, 2930 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2931 rcu_segcblist_n_cbs(&rdp->cblist)); 2932 2933 /* Go handle any RCU core processing required. */ 2934 __call_rcu_core(rdp, head, flags); 2935 local_irq_restore(flags); 2936 } 2937 2938 /** 2939 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2940 * @head: structure to be used for queueing the RCU updates. 2941 * @func: actual callback function to be invoked after the grace period 2942 * 2943 * The callback function will be invoked some time after a full grace 2944 * period elapses, in other words after all pre-existing RCU read-side 2945 * critical sections have completed. However, the callback function 2946 * might well execute concurrently with RCU read-side critical sections 2947 * that started after call_rcu() was invoked. RCU read-side critical 2948 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2949 * may be nested. In addition, regions of code across which interrupts, 2950 * preemption, or softirqs have been disabled also serve as RCU read-side 2951 * critical sections. This includes hardware interrupt handlers, softirq 2952 * handlers, and NMI handlers. 2953 * 2954 * Note that all CPUs must agree that the grace period extended beyond 2955 * all pre-existing RCU read-side critical section. On systems with more 2956 * than one CPU, this means that when "func()" is invoked, each CPU is 2957 * guaranteed to have executed a full memory barrier since the end of its 2958 * last RCU read-side critical section whose beginning preceded the call 2959 * to call_rcu(). It also means that each CPU executing an RCU read-side 2960 * critical section that continues beyond the start of "func()" must have 2961 * executed a memory barrier after the call_rcu() but before the beginning 2962 * of that RCU read-side critical section. Note that these guarantees 2963 * include CPUs that are offline, idle, or executing in user mode, as 2964 * well as CPUs that are executing in the kernel. 2965 * 2966 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2967 * resulting RCU callback function "func()", then both CPU A and CPU B are 2968 * guaranteed to execute a full memory barrier during the time interval 2969 * between the call to call_rcu() and the invocation of "func()" -- even 2970 * if CPU A and CPU B are the same CPU (but again only if the system has 2971 * more than one CPU). 2972 */ 2973 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2974 { 2975 __call_rcu(head, func, -1, 0); 2976 } 2977 EXPORT_SYMBOL_GPL(call_rcu); 2978 2979 /* 2980 * Queue an RCU callback for lazy invocation after a grace period. 2981 * This will likely be later named something like "call_rcu_lazy()", 2982 * but this change will require some way of tagging the lazy RCU 2983 * callbacks in the list of pending callbacks. Until then, this 2984 * function may only be called from __kfree_rcu(). 2985 */ 2986 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2987 { 2988 __call_rcu(head, func, -1, 1); 2989 } 2990 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2991 2992 /* 2993 * During early boot, any blocking grace-period wait automatically 2994 * implies a grace period. Later on, this is never the case for PREEMPT. 2995 * 2996 * Howevr, because a context switch is a grace period for !PREEMPT, any 2997 * blocking grace-period wait automatically implies a grace period if 2998 * there is only one CPU online at any point time during execution of 2999 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3000 * occasionally incorrectly indicate that there are multiple CPUs online 3001 * when there was in fact only one the whole time, as this just adds some 3002 * overhead: RCU still operates correctly. 3003 */ 3004 static int rcu_blocking_is_gp(void) 3005 { 3006 int ret; 3007 3008 if (IS_ENABLED(CONFIG_PREEMPT)) 3009 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3010 might_sleep(); /* Check for RCU read-side critical section. */ 3011 preempt_disable(); 3012 ret = num_online_cpus() <= 1; 3013 preempt_enable(); 3014 return ret; 3015 } 3016 3017 /** 3018 * synchronize_rcu - wait until a grace period has elapsed. 3019 * 3020 * Control will return to the caller some time after a full grace 3021 * period has elapsed, in other words after all currently executing RCU 3022 * read-side critical sections have completed. Note, however, that 3023 * upon return from synchronize_rcu(), the caller might well be executing 3024 * concurrently with new RCU read-side critical sections that began while 3025 * synchronize_rcu() was waiting. RCU read-side critical sections are 3026 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 3027 * In addition, regions of code across which interrupts, preemption, or 3028 * softirqs have been disabled also serve as RCU read-side critical 3029 * sections. This includes hardware interrupt handlers, softirq handlers, 3030 * and NMI handlers. 3031 * 3032 * Note that this guarantee implies further memory-ordering guarantees. 3033 * On systems with more than one CPU, when synchronize_rcu() returns, 3034 * each CPU is guaranteed to have executed a full memory barrier since 3035 * the end of its last RCU read-side critical section whose beginning 3036 * preceded the call to synchronize_rcu(). In addition, each CPU having 3037 * an RCU read-side critical section that extends beyond the return from 3038 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3039 * after the beginning of synchronize_rcu() and before the beginning of 3040 * that RCU read-side critical section. Note that these guarantees include 3041 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3042 * that are executing in the kernel. 3043 * 3044 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3045 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3046 * to have executed a full memory barrier during the execution of 3047 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3048 * again only if the system has more than one CPU). 3049 */ 3050 void synchronize_rcu(void) 3051 { 3052 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3053 lock_is_held(&rcu_lock_map) || 3054 lock_is_held(&rcu_sched_lock_map), 3055 "Illegal synchronize_rcu() in RCU read-side critical section"); 3056 if (rcu_blocking_is_gp()) 3057 return; 3058 if (rcu_gp_is_expedited()) 3059 synchronize_rcu_expedited(); 3060 else 3061 wait_rcu_gp(call_rcu); 3062 } 3063 EXPORT_SYMBOL_GPL(synchronize_rcu); 3064 3065 /** 3066 * get_state_synchronize_rcu - Snapshot current RCU state 3067 * 3068 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3069 * to determine whether or not a full grace period has elapsed in the 3070 * meantime. 3071 */ 3072 unsigned long get_state_synchronize_rcu(void) 3073 { 3074 /* 3075 * Any prior manipulation of RCU-protected data must happen 3076 * before the load from ->gp_seq. 3077 */ 3078 smp_mb(); /* ^^^ */ 3079 return rcu_seq_snap(&rcu_state.gp_seq); 3080 } 3081 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3082 3083 /** 3084 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3085 * 3086 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3087 * 3088 * If a full RCU grace period has elapsed since the earlier call to 3089 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3090 * synchronize_rcu() to wait for a full grace period. 3091 * 3092 * Yes, this function does not take counter wrap into account. But 3093 * counter wrap is harmless. If the counter wraps, we have waited for 3094 * more than 2 billion grace periods (and way more on a 64-bit system!), 3095 * so waiting for one additional grace period should be just fine. 3096 */ 3097 void cond_synchronize_rcu(unsigned long oldstate) 3098 { 3099 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 3100 synchronize_rcu(); 3101 else 3102 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3103 } 3104 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3105 3106 /* 3107 * Check to see if there is any immediate RCU-related work to be done by 3108 * the current CPU, returning 1 if so and zero otherwise. The checks are 3109 * in order of increasing expense: checks that can be carried out against 3110 * CPU-local state are performed first. However, we must check for CPU 3111 * stalls first, else we might not get a chance. 3112 */ 3113 static int rcu_pending(void) 3114 { 3115 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3116 struct rcu_node *rnp = rdp->mynode; 3117 3118 /* Check for CPU stalls, if enabled. */ 3119 check_cpu_stall(rdp); 3120 3121 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3122 if (rcu_nohz_full_cpu()) 3123 return 0; 3124 3125 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3126 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 3127 return 1; 3128 3129 /* Does this CPU have callbacks ready to invoke? */ 3130 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3131 return 1; 3132 3133 /* Has RCU gone idle with this CPU needing another grace period? */ 3134 if (!rcu_gp_in_progress() && 3135 rcu_segcblist_is_enabled(&rdp->cblist) && 3136 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3137 return 1; 3138 3139 /* Have RCU grace period completed or started? */ 3140 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3141 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3142 return 1; 3143 3144 /* Does this CPU need a deferred NOCB wakeup? */ 3145 if (rcu_nocb_need_deferred_wakeup(rdp)) 3146 return 1; 3147 3148 /* nothing to do */ 3149 return 0; 3150 } 3151 3152 /* 3153 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3154 * the compiler is expected to optimize this away. 3155 */ 3156 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3157 { 3158 trace_rcu_barrier(rcu_state.name, s, cpu, 3159 atomic_read(&rcu_state.barrier_cpu_count), done); 3160 } 3161 3162 /* 3163 * RCU callback function for rcu_barrier(). If we are last, wake 3164 * up the task executing rcu_barrier(). 3165 */ 3166 static void rcu_barrier_callback(struct rcu_head *rhp) 3167 { 3168 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3169 rcu_barrier_trace(TPS("LastCB"), -1, 3170 rcu_state.barrier_sequence); 3171 complete(&rcu_state.barrier_completion); 3172 } else { 3173 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 3174 } 3175 } 3176 3177 /* 3178 * Called with preemption disabled, and from cross-cpu IRQ context. 3179 */ 3180 static void rcu_barrier_func(void *unused) 3181 { 3182 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 3183 3184 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3185 rdp->barrier_head.func = rcu_barrier_callback; 3186 debug_rcu_head_queue(&rdp->barrier_head); 3187 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3188 atomic_inc(&rcu_state.barrier_cpu_count); 3189 } else { 3190 debug_rcu_head_unqueue(&rdp->barrier_head); 3191 rcu_barrier_trace(TPS("IRQNQ"), -1, 3192 rcu_state.barrier_sequence); 3193 } 3194 } 3195 3196 /** 3197 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3198 * 3199 * Note that this primitive does not necessarily wait for an RCU grace period 3200 * to complete. For example, if there are no RCU callbacks queued anywhere 3201 * in the system, then rcu_barrier() is within its rights to return 3202 * immediately, without waiting for anything, much less an RCU grace period. 3203 */ 3204 void rcu_barrier(void) 3205 { 3206 int cpu; 3207 struct rcu_data *rdp; 3208 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3209 3210 rcu_barrier_trace(TPS("Begin"), -1, s); 3211 3212 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3213 mutex_lock(&rcu_state.barrier_mutex); 3214 3215 /* Did someone else do our work for us? */ 3216 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3217 rcu_barrier_trace(TPS("EarlyExit"), -1, 3218 rcu_state.barrier_sequence); 3219 smp_mb(); /* caller's subsequent code after above check. */ 3220 mutex_unlock(&rcu_state.barrier_mutex); 3221 return; 3222 } 3223 3224 /* Mark the start of the barrier operation. */ 3225 rcu_seq_start(&rcu_state.barrier_sequence); 3226 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3227 3228 /* 3229 * Initialize the count to one rather than to zero in order to 3230 * avoid a too-soon return to zero in case of a short grace period 3231 * (or preemption of this task). Exclude CPU-hotplug operations 3232 * to ensure that no offline CPU has callbacks queued. 3233 */ 3234 init_completion(&rcu_state.barrier_completion); 3235 atomic_set(&rcu_state.barrier_cpu_count, 1); 3236 get_online_cpus(); 3237 3238 /* 3239 * Force each CPU with callbacks to register a new callback. 3240 * When that callback is invoked, we will know that all of the 3241 * corresponding CPU's preceding callbacks have been invoked. 3242 */ 3243 for_each_possible_cpu(cpu) { 3244 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3245 continue; 3246 rdp = per_cpu_ptr(&rcu_data, cpu); 3247 if (rcu_is_nocb_cpu(cpu)) { 3248 if (!rcu_nocb_cpu_needs_barrier(cpu)) { 3249 rcu_barrier_trace(TPS("OfflineNoCB"), cpu, 3250 rcu_state.barrier_sequence); 3251 } else { 3252 rcu_barrier_trace(TPS("OnlineNoCB"), cpu, 3253 rcu_state.barrier_sequence); 3254 smp_mb__before_atomic(); 3255 atomic_inc(&rcu_state.barrier_cpu_count); 3256 __call_rcu(&rdp->barrier_head, 3257 rcu_barrier_callback, cpu, 0); 3258 } 3259 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3260 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3261 rcu_state.barrier_sequence); 3262 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 3263 } else { 3264 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3265 rcu_state.barrier_sequence); 3266 } 3267 } 3268 put_online_cpus(); 3269 3270 /* 3271 * Now that we have an rcu_barrier_callback() callback on each 3272 * CPU, and thus each counted, remove the initial count. 3273 */ 3274 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 3275 complete(&rcu_state.barrier_completion); 3276 3277 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3278 wait_for_completion(&rcu_state.barrier_completion); 3279 3280 /* Mark the end of the barrier operation. */ 3281 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3282 rcu_seq_end(&rcu_state.barrier_sequence); 3283 3284 /* Other rcu_barrier() invocations can now safely proceed. */ 3285 mutex_unlock(&rcu_state.barrier_mutex); 3286 } 3287 EXPORT_SYMBOL_GPL(rcu_barrier); 3288 3289 /* 3290 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3291 * first CPU in a given leaf rcu_node structure coming online. The caller 3292 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3293 * disabled. 3294 */ 3295 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3296 { 3297 long mask; 3298 long oldmask; 3299 struct rcu_node *rnp = rnp_leaf; 3300 3301 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3302 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3303 for (;;) { 3304 mask = rnp->grpmask; 3305 rnp = rnp->parent; 3306 if (rnp == NULL) 3307 return; 3308 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3309 oldmask = rnp->qsmaskinit; 3310 rnp->qsmaskinit |= mask; 3311 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3312 if (oldmask) 3313 return; 3314 } 3315 } 3316 3317 /* 3318 * Do boot-time initialization of a CPU's per-CPU RCU data. 3319 */ 3320 static void __init 3321 rcu_boot_init_percpu_data(int cpu) 3322 { 3323 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3324 3325 /* Set up local state, ensuring consistent view of global state. */ 3326 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3327 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3328 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3329 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3330 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3331 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3332 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3333 rdp->cpu = cpu; 3334 rcu_boot_init_nocb_percpu_data(rdp); 3335 } 3336 3337 /* 3338 * Invoked early in the CPU-online process, when pretty much all services 3339 * are available. The incoming CPU is not present. 3340 * 3341 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3342 * offline event can be happening at a given time. Note also that we can 3343 * accept some slop in the rsp->gp_seq access due to the fact that this 3344 * CPU cannot possibly have any RCU callbacks in flight yet. 3345 */ 3346 int rcutree_prepare_cpu(unsigned int cpu) 3347 { 3348 unsigned long flags; 3349 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3350 struct rcu_node *rnp = rcu_get_root(); 3351 3352 /* Set up local state, ensuring consistent view of global state. */ 3353 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3354 rdp->qlen_last_fqs_check = 0; 3355 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3356 rdp->blimit = blimit; 3357 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3358 !init_nocb_callback_list(rdp)) 3359 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3360 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3361 rcu_dynticks_eqs_online(); 3362 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3363 3364 /* 3365 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3366 * propagation up the rcu_node tree will happen at the beginning 3367 * of the next grace period. 3368 */ 3369 rnp = rdp->mynode; 3370 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3371 rdp->beenonline = true; /* We have now been online. */ 3372 rdp->gp_seq = rnp->gp_seq; 3373 rdp->gp_seq_needed = rnp->gp_seq; 3374 rdp->cpu_no_qs.b.norm = true; 3375 rdp->core_needs_qs = false; 3376 rdp->rcu_iw_pending = false; 3377 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3378 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3379 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3380 rcu_prepare_kthreads(cpu); 3381 rcu_spawn_cpu_nocb_kthread(cpu); 3382 3383 return 0; 3384 } 3385 3386 /* 3387 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3388 */ 3389 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3390 { 3391 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3392 3393 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3394 } 3395 3396 /* 3397 * Near the end of the CPU-online process. Pretty much all services 3398 * enabled, and the CPU is now very much alive. 3399 */ 3400 int rcutree_online_cpu(unsigned int cpu) 3401 { 3402 unsigned long flags; 3403 struct rcu_data *rdp; 3404 struct rcu_node *rnp; 3405 3406 rdp = per_cpu_ptr(&rcu_data, cpu); 3407 rnp = rdp->mynode; 3408 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3409 rnp->ffmask |= rdp->grpmask; 3410 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3411 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3412 srcu_online_cpu(cpu); 3413 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3414 return 0; /* Too early in boot for scheduler work. */ 3415 sync_sched_exp_online_cleanup(cpu); 3416 rcutree_affinity_setting(cpu, -1); 3417 return 0; 3418 } 3419 3420 /* 3421 * Near the beginning of the process. The CPU is still very much alive 3422 * with pretty much all services enabled. 3423 */ 3424 int rcutree_offline_cpu(unsigned int cpu) 3425 { 3426 unsigned long flags; 3427 struct rcu_data *rdp; 3428 struct rcu_node *rnp; 3429 3430 rdp = per_cpu_ptr(&rcu_data, cpu); 3431 rnp = rdp->mynode; 3432 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3433 rnp->ffmask &= ~rdp->grpmask; 3434 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3435 3436 rcutree_affinity_setting(cpu, cpu); 3437 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3438 srcu_offline_cpu(cpu); 3439 return 0; 3440 } 3441 3442 static DEFINE_PER_CPU(int, rcu_cpu_started); 3443 3444 /* 3445 * Mark the specified CPU as being online so that subsequent grace periods 3446 * (both expedited and normal) will wait on it. Note that this means that 3447 * incoming CPUs are not allowed to use RCU read-side critical sections 3448 * until this function is called. Failing to observe this restriction 3449 * will result in lockdep splats. 3450 * 3451 * Note that this function is special in that it is invoked directly 3452 * from the incoming CPU rather than from the cpuhp_step mechanism. 3453 * This is because this function must be invoked at a precise location. 3454 */ 3455 void rcu_cpu_starting(unsigned int cpu) 3456 { 3457 unsigned long flags; 3458 unsigned long mask; 3459 int nbits; 3460 unsigned long oldmask; 3461 struct rcu_data *rdp; 3462 struct rcu_node *rnp; 3463 3464 if (per_cpu(rcu_cpu_started, cpu)) 3465 return; 3466 3467 per_cpu(rcu_cpu_started, cpu) = 1; 3468 3469 rdp = per_cpu_ptr(&rcu_data, cpu); 3470 rnp = rdp->mynode; 3471 mask = rdp->grpmask; 3472 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3473 rnp->qsmaskinitnext |= mask; 3474 oldmask = rnp->expmaskinitnext; 3475 rnp->expmaskinitnext |= mask; 3476 oldmask ^= rnp->expmaskinitnext; 3477 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3478 /* Allow lockless access for expedited grace periods. */ 3479 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3480 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3481 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3482 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3483 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3484 /* Report QS -after- changing ->qsmaskinitnext! */ 3485 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3486 } else { 3487 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3488 } 3489 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3490 } 3491 3492 #ifdef CONFIG_HOTPLUG_CPU 3493 /* 3494 * The outgoing function has no further need of RCU, so remove it from 3495 * the rcu_node tree's ->qsmaskinitnext bit masks. 3496 * 3497 * Note that this function is special in that it is invoked directly 3498 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3499 * This is because this function must be invoked at a precise location. 3500 */ 3501 void rcu_report_dead(unsigned int cpu) 3502 { 3503 unsigned long flags; 3504 unsigned long mask; 3505 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3506 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3507 3508 /* QS for any half-done expedited grace period. */ 3509 preempt_disable(); 3510 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3511 preempt_enable(); 3512 rcu_preempt_deferred_qs(current); 3513 3514 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3515 mask = rdp->grpmask; 3516 raw_spin_lock(&rcu_state.ofl_lock); 3517 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3518 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3519 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3520 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3521 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3522 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3523 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3524 } 3525 rnp->qsmaskinitnext &= ~mask; 3526 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3527 raw_spin_unlock(&rcu_state.ofl_lock); 3528 3529 per_cpu(rcu_cpu_started, cpu) = 0; 3530 } 3531 3532 /* 3533 * The outgoing CPU has just passed through the dying-idle state, and we 3534 * are being invoked from the CPU that was IPIed to continue the offline 3535 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3536 */ 3537 void rcutree_migrate_callbacks(int cpu) 3538 { 3539 unsigned long flags; 3540 struct rcu_data *my_rdp; 3541 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3542 struct rcu_node *rnp_root = rcu_get_root(); 3543 bool needwake; 3544 3545 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3546 return; /* No callbacks to migrate. */ 3547 3548 local_irq_save(flags); 3549 my_rdp = this_cpu_ptr(&rcu_data); 3550 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3551 local_irq_restore(flags); 3552 return; 3553 } 3554 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3555 /* Leverage recent GPs and set GP for new callbacks. */ 3556 needwake = rcu_advance_cbs(rnp_root, rdp) || 3557 rcu_advance_cbs(rnp_root, my_rdp); 3558 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3559 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3560 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3561 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3562 if (needwake) 3563 rcu_gp_kthread_wake(); 3564 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3565 !rcu_segcblist_empty(&rdp->cblist), 3566 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3567 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3568 rcu_segcblist_first_cb(&rdp->cblist)); 3569 } 3570 #endif 3571 3572 /* 3573 * On non-huge systems, use expedited RCU grace periods to make suspend 3574 * and hibernation run faster. 3575 */ 3576 static int rcu_pm_notify(struct notifier_block *self, 3577 unsigned long action, void *hcpu) 3578 { 3579 switch (action) { 3580 case PM_HIBERNATION_PREPARE: 3581 case PM_SUSPEND_PREPARE: 3582 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3583 rcu_expedite_gp(); 3584 break; 3585 case PM_POST_HIBERNATION: 3586 case PM_POST_SUSPEND: 3587 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3588 rcu_unexpedite_gp(); 3589 break; 3590 default: 3591 break; 3592 } 3593 return NOTIFY_OK; 3594 } 3595 3596 /* 3597 * Spawn the kthreads that handle RCU's grace periods. 3598 */ 3599 static int __init rcu_spawn_gp_kthread(void) 3600 { 3601 unsigned long flags; 3602 int kthread_prio_in = kthread_prio; 3603 struct rcu_node *rnp; 3604 struct sched_param sp; 3605 struct task_struct *t; 3606 3607 /* Force priority into range. */ 3608 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3609 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3610 kthread_prio = 2; 3611 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3612 kthread_prio = 1; 3613 else if (kthread_prio < 0) 3614 kthread_prio = 0; 3615 else if (kthread_prio > 99) 3616 kthread_prio = 99; 3617 3618 if (kthread_prio != kthread_prio_in) 3619 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3620 kthread_prio, kthread_prio_in); 3621 3622 rcu_scheduler_fully_active = 1; 3623 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3624 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3625 return 0; 3626 rnp = rcu_get_root(); 3627 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3628 rcu_state.gp_kthread = t; 3629 if (kthread_prio) { 3630 sp.sched_priority = kthread_prio; 3631 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3632 } 3633 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3634 wake_up_process(t); 3635 rcu_spawn_nocb_kthreads(); 3636 rcu_spawn_boost_kthreads(); 3637 return 0; 3638 } 3639 early_initcall(rcu_spawn_gp_kthread); 3640 3641 /* 3642 * This function is invoked towards the end of the scheduler's 3643 * initialization process. Before this is called, the idle task might 3644 * contain synchronous grace-period primitives (during which time, this idle 3645 * task is booting the system, and such primitives are no-ops). After this 3646 * function is called, any synchronous grace-period primitives are run as 3647 * expedited, with the requesting task driving the grace period forward. 3648 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3649 * runtime RCU functionality. 3650 */ 3651 void rcu_scheduler_starting(void) 3652 { 3653 WARN_ON(num_online_cpus() != 1); 3654 WARN_ON(nr_context_switches() > 0); 3655 rcu_test_sync_prims(); 3656 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3657 rcu_test_sync_prims(); 3658 } 3659 3660 /* 3661 * Helper function for rcu_init() that initializes the rcu_state structure. 3662 */ 3663 static void __init rcu_init_one(void) 3664 { 3665 static const char * const buf[] = RCU_NODE_NAME_INIT; 3666 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3667 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3668 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3669 3670 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3671 int cpustride = 1; 3672 int i; 3673 int j; 3674 struct rcu_node *rnp; 3675 3676 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3677 3678 /* Silence gcc 4.8 false positive about array index out of range. */ 3679 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3680 panic("rcu_init_one: rcu_num_lvls out of range"); 3681 3682 /* Initialize the level-tracking arrays. */ 3683 3684 for (i = 1; i < rcu_num_lvls; i++) 3685 rcu_state.level[i] = 3686 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3687 rcu_init_levelspread(levelspread, num_rcu_lvl); 3688 3689 /* Initialize the elements themselves, starting from the leaves. */ 3690 3691 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3692 cpustride *= levelspread[i]; 3693 rnp = rcu_state.level[i]; 3694 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3695 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3696 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3697 &rcu_node_class[i], buf[i]); 3698 raw_spin_lock_init(&rnp->fqslock); 3699 lockdep_set_class_and_name(&rnp->fqslock, 3700 &rcu_fqs_class[i], fqs[i]); 3701 rnp->gp_seq = rcu_state.gp_seq; 3702 rnp->gp_seq_needed = rcu_state.gp_seq; 3703 rnp->completedqs = rcu_state.gp_seq; 3704 rnp->qsmask = 0; 3705 rnp->qsmaskinit = 0; 3706 rnp->grplo = j * cpustride; 3707 rnp->grphi = (j + 1) * cpustride - 1; 3708 if (rnp->grphi >= nr_cpu_ids) 3709 rnp->grphi = nr_cpu_ids - 1; 3710 if (i == 0) { 3711 rnp->grpnum = 0; 3712 rnp->grpmask = 0; 3713 rnp->parent = NULL; 3714 } else { 3715 rnp->grpnum = j % levelspread[i - 1]; 3716 rnp->grpmask = BIT(rnp->grpnum); 3717 rnp->parent = rcu_state.level[i - 1] + 3718 j / levelspread[i - 1]; 3719 } 3720 rnp->level = i; 3721 INIT_LIST_HEAD(&rnp->blkd_tasks); 3722 rcu_init_one_nocb(rnp); 3723 init_waitqueue_head(&rnp->exp_wq[0]); 3724 init_waitqueue_head(&rnp->exp_wq[1]); 3725 init_waitqueue_head(&rnp->exp_wq[2]); 3726 init_waitqueue_head(&rnp->exp_wq[3]); 3727 spin_lock_init(&rnp->exp_lock); 3728 } 3729 } 3730 3731 init_swait_queue_head(&rcu_state.gp_wq); 3732 init_swait_queue_head(&rcu_state.expedited_wq); 3733 rnp = rcu_first_leaf_node(); 3734 for_each_possible_cpu(i) { 3735 while (i > rnp->grphi) 3736 rnp++; 3737 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3738 rcu_boot_init_percpu_data(i); 3739 } 3740 } 3741 3742 /* 3743 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3744 * replace the definitions in tree.h because those are needed to size 3745 * the ->node array in the rcu_state structure. 3746 */ 3747 static void __init rcu_init_geometry(void) 3748 { 3749 ulong d; 3750 int i; 3751 int rcu_capacity[RCU_NUM_LVLS]; 3752 3753 /* 3754 * Initialize any unspecified boot parameters. 3755 * The default values of jiffies_till_first_fqs and 3756 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3757 * value, which is a function of HZ, then adding one for each 3758 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3759 */ 3760 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3761 if (jiffies_till_first_fqs == ULONG_MAX) 3762 jiffies_till_first_fqs = d; 3763 if (jiffies_till_next_fqs == ULONG_MAX) 3764 jiffies_till_next_fqs = d; 3765 if (jiffies_till_sched_qs == ULONG_MAX) 3766 adjust_jiffies_till_sched_qs(); 3767 3768 /* If the compile-time values are accurate, just leave. */ 3769 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3770 nr_cpu_ids == NR_CPUS) 3771 return; 3772 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3773 rcu_fanout_leaf, nr_cpu_ids); 3774 3775 /* 3776 * The boot-time rcu_fanout_leaf parameter must be at least two 3777 * and cannot exceed the number of bits in the rcu_node masks. 3778 * Complain and fall back to the compile-time values if this 3779 * limit is exceeded. 3780 */ 3781 if (rcu_fanout_leaf < 2 || 3782 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3783 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3784 WARN_ON(1); 3785 return; 3786 } 3787 3788 /* 3789 * Compute number of nodes that can be handled an rcu_node tree 3790 * with the given number of levels. 3791 */ 3792 rcu_capacity[0] = rcu_fanout_leaf; 3793 for (i = 1; i < RCU_NUM_LVLS; i++) 3794 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3795 3796 /* 3797 * The tree must be able to accommodate the configured number of CPUs. 3798 * If this limit is exceeded, fall back to the compile-time values. 3799 */ 3800 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3801 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3802 WARN_ON(1); 3803 return; 3804 } 3805 3806 /* Calculate the number of levels in the tree. */ 3807 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3808 } 3809 rcu_num_lvls = i + 1; 3810 3811 /* Calculate the number of rcu_nodes at each level of the tree. */ 3812 for (i = 0; i < rcu_num_lvls; i++) { 3813 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3814 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3815 } 3816 3817 /* Calculate the total number of rcu_node structures. */ 3818 rcu_num_nodes = 0; 3819 for (i = 0; i < rcu_num_lvls; i++) 3820 rcu_num_nodes += num_rcu_lvl[i]; 3821 } 3822 3823 /* 3824 * Dump out the structure of the rcu_node combining tree associated 3825 * with the rcu_state structure. 3826 */ 3827 static void __init rcu_dump_rcu_node_tree(void) 3828 { 3829 int level = 0; 3830 struct rcu_node *rnp; 3831 3832 pr_info("rcu_node tree layout dump\n"); 3833 pr_info(" "); 3834 rcu_for_each_node_breadth_first(rnp) { 3835 if (rnp->level != level) { 3836 pr_cont("\n"); 3837 pr_info(" "); 3838 level = rnp->level; 3839 } 3840 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3841 } 3842 pr_cont("\n"); 3843 } 3844 3845 struct workqueue_struct *rcu_gp_wq; 3846 struct workqueue_struct *rcu_par_gp_wq; 3847 3848 void __init rcu_init(void) 3849 { 3850 int cpu; 3851 3852 rcu_early_boot_tests(); 3853 3854 rcu_bootup_announce(); 3855 rcu_init_geometry(); 3856 rcu_init_one(); 3857 if (dump_tree) 3858 rcu_dump_rcu_node_tree(); 3859 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3860 3861 /* 3862 * We don't need protection against CPU-hotplug here because 3863 * this is called early in boot, before either interrupts 3864 * or the scheduler are operational. 3865 */ 3866 pm_notifier(rcu_pm_notify, 0); 3867 for_each_online_cpu(cpu) { 3868 rcutree_prepare_cpu(cpu); 3869 rcu_cpu_starting(cpu); 3870 rcutree_online_cpu(cpu); 3871 } 3872 3873 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3874 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3875 WARN_ON(!rcu_gp_wq); 3876 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3877 WARN_ON(!rcu_par_gp_wq); 3878 srcu_init(); 3879 } 3880 3881 #include "tree_exp.h" 3882 #include "tree_plugin.h" 3883