1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/sched/debug.h> 39 #include <linux/nmi.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/export.h> 43 #include <linux/completion.h> 44 #include <linux/moduleparam.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <uapi/linux/sched/types.h> 54 #include <linux/prefetch.h> 55 #include <linux/delay.h> 56 #include <linux/stop_machine.h> 57 #include <linux/random.h> 58 #include <linux/trace_events.h> 59 #include <linux/suspend.h> 60 #include <linux/ftrace.h> 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * In order to export the rcu_state name to the tracing tools, it 74 * needs to be added in the __tracepoint_string section. 75 * This requires defining a separate variable tp_<sname>_varname 76 * that points to the string being used, and this will allow 77 * the tracing userspace tools to be able to decipher the string 78 * address to the matching string. 79 */ 80 #ifdef CONFIG_TRACING 81 # define DEFINE_RCU_TPS(sname) \ 82 static char sname##_varname[] = #sname; \ 83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 84 # define RCU_STATE_NAME(sname) sname##_varname 85 #else 86 # define DEFINE_RCU_TPS(sname) 87 # define RCU_STATE_NAME(sname) __stringify(sname) 88 #endif 89 90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 91 DEFINE_RCU_TPS(sname) \ 92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 93 struct rcu_state sname##_state = { \ 94 .level = { &sname##_state.node[0] }, \ 95 .rda = &sname##_data, \ 96 .call = cr, \ 97 .gp_state = RCU_GP_IDLE, \ 98 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \ 99 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 100 .name = RCU_STATE_NAME(sname), \ 101 .abbr = sabbr, \ 102 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 103 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 104 .ofl_lock = __SPIN_LOCK_UNLOCKED(sname##_state.ofl_lock), \ 105 } 106 107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 109 110 static struct rcu_state *const rcu_state_p; 111 LIST_HEAD(rcu_struct_flavors); 112 113 /* Dump rcu_node combining tree at boot to verify correct setup. */ 114 static bool dump_tree; 115 module_param(dump_tree, bool, 0444); 116 /* Control rcu_node-tree auto-balancing at boot time. */ 117 static bool rcu_fanout_exact; 118 module_param(rcu_fanout_exact, bool, 0444); 119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 121 module_param(rcu_fanout_leaf, int, 0444); 122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 123 /* Number of rcu_nodes at specified level. */ 124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 126 /* panic() on RCU Stall sysctl. */ 127 int sysctl_panic_on_rcu_stall __read_mostly; 128 129 /* 130 * The rcu_scheduler_active variable is initialized to the value 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 133 * RCU can assume that there is but one task, allowing RCU to (for example) 134 * optimize synchronize_rcu() to a simple barrier(). When this variable 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 136 * to detect real grace periods. This variable is also used to suppress 137 * boot-time false positives from lockdep-RCU error checking. Finally, it 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 139 * is fully initialized, including all of its kthreads having been spawned. 140 */ 141 int rcu_scheduler_active __read_mostly; 142 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 143 144 /* 145 * The rcu_scheduler_fully_active variable transitions from zero to one 146 * during the early_initcall() processing, which is after the scheduler 147 * is capable of creating new tasks. So RCU processing (for example, 148 * creating tasks for RCU priority boosting) must be delayed until after 149 * rcu_scheduler_fully_active transitions from zero to one. We also 150 * currently delay invocation of any RCU callbacks until after this point. 151 * 152 * It might later prove better for people registering RCU callbacks during 153 * early boot to take responsibility for these callbacks, but one step at 154 * a time. 155 */ 156 static int rcu_scheduler_fully_active __read_mostly; 157 158 static void 159 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 160 struct rcu_node *rnp, unsigned long gps, unsigned long flags); 161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 162 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 163 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 164 static void invoke_rcu_core(void); 165 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 166 static void rcu_report_exp_rdp(struct rcu_state *rsp, 167 struct rcu_data *rdp, bool wake); 168 static void sync_sched_exp_online_cleanup(int cpu); 169 170 /* rcuc/rcub kthread realtime priority */ 171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 172 module_param(kthread_prio, int, 0644); 173 174 /* Delay in jiffies for grace-period initialization delays, debug only. */ 175 176 static int gp_preinit_delay; 177 module_param(gp_preinit_delay, int, 0444); 178 static int gp_init_delay; 179 module_param(gp_init_delay, int, 0444); 180 static int gp_cleanup_delay; 181 module_param(gp_cleanup_delay, int, 0444); 182 183 /* Retreive RCU kthreads priority for rcutorture */ 184 int rcu_get_gp_kthreads_prio(void) 185 { 186 return kthread_prio; 187 } 188 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 189 190 /* 191 * Number of grace periods between delays, normalized by the duration of 192 * the delay. The longer the delay, the more the grace periods between 193 * each delay. The reason for this normalization is that it means that, 194 * for non-zero delays, the overall slowdown of grace periods is constant 195 * regardless of the duration of the delay. This arrangement balances 196 * the need for long delays to increase some race probabilities with the 197 * need for fast grace periods to increase other race probabilities. 198 */ 199 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 200 201 /* 202 * Compute the mask of online CPUs for the specified rcu_node structure. 203 * This will not be stable unless the rcu_node structure's ->lock is 204 * held, but the bit corresponding to the current CPU will be stable 205 * in most contexts. 206 */ 207 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 208 { 209 return READ_ONCE(rnp->qsmaskinitnext); 210 } 211 212 /* 213 * Return true if an RCU grace period is in progress. The READ_ONCE()s 214 * permit this function to be invoked without holding the root rcu_node 215 * structure's ->lock, but of course results can be subject to change. 216 */ 217 static int rcu_gp_in_progress(struct rcu_state *rsp) 218 { 219 return rcu_seq_state(rcu_seq_current(&rsp->gp_seq)); 220 } 221 222 /* 223 * Note a quiescent state. Because we do not need to know 224 * how many quiescent states passed, just if there was at least 225 * one since the start of the grace period, this just sets a flag. 226 * The caller must have disabled preemption. 227 */ 228 void rcu_sched_qs(void) 229 { 230 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!"); 231 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 232 return; 233 trace_rcu_grace_period(TPS("rcu_sched"), 234 __this_cpu_read(rcu_sched_data.gp_seq), 235 TPS("cpuqs")); 236 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 237 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 238 return; 239 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 240 rcu_report_exp_rdp(&rcu_sched_state, 241 this_cpu_ptr(&rcu_sched_data), true); 242 } 243 244 void rcu_bh_qs(void) 245 { 246 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!"); 247 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 248 trace_rcu_grace_period(TPS("rcu_bh"), 249 __this_cpu_read(rcu_bh_data.gp_seq), 250 TPS("cpuqs")); 251 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 252 } 253 } 254 255 /* 256 * Steal a bit from the bottom of ->dynticks for idle entry/exit 257 * control. Initially this is for TLB flushing. 258 */ 259 #define RCU_DYNTICK_CTRL_MASK 0x1 260 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 261 #ifndef rcu_eqs_special_exit 262 #define rcu_eqs_special_exit() do { } while (0) 263 #endif 264 265 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 266 .dynticks_nesting = 1, 267 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 268 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 269 }; 270 271 /* 272 * Record entry into an extended quiescent state. This is only to be 273 * called when not already in an extended quiescent state. 274 */ 275 static void rcu_dynticks_eqs_enter(void) 276 { 277 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 278 int seq; 279 280 /* 281 * CPUs seeing atomic_add_return() must see prior RCU read-side 282 * critical sections, and we also must force ordering with the 283 * next idle sojourn. 284 */ 285 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 286 /* Better be in an extended quiescent state! */ 287 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 288 (seq & RCU_DYNTICK_CTRL_CTR)); 289 /* Better not have special action (TLB flush) pending! */ 290 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 291 (seq & RCU_DYNTICK_CTRL_MASK)); 292 } 293 294 /* 295 * Record exit from an extended quiescent state. This is only to be 296 * called from an extended quiescent state. 297 */ 298 static void rcu_dynticks_eqs_exit(void) 299 { 300 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 301 int seq; 302 303 /* 304 * CPUs seeing atomic_add_return() must see prior idle sojourns, 305 * and we also must force ordering with the next RCU read-side 306 * critical section. 307 */ 308 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 309 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 310 !(seq & RCU_DYNTICK_CTRL_CTR)); 311 if (seq & RCU_DYNTICK_CTRL_MASK) { 312 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); 313 smp_mb__after_atomic(); /* _exit after clearing mask. */ 314 /* Prefer duplicate flushes to losing a flush. */ 315 rcu_eqs_special_exit(); 316 } 317 } 318 319 /* 320 * Reset the current CPU's ->dynticks counter to indicate that the 321 * newly onlined CPU is no longer in an extended quiescent state. 322 * This will either leave the counter unchanged, or increment it 323 * to the next non-quiescent value. 324 * 325 * The non-atomic test/increment sequence works because the upper bits 326 * of the ->dynticks counter are manipulated only by the corresponding CPU, 327 * or when the corresponding CPU is offline. 328 */ 329 static void rcu_dynticks_eqs_online(void) 330 { 331 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 332 333 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) 334 return; 335 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 336 } 337 338 /* 339 * Is the current CPU in an extended quiescent state? 340 * 341 * No ordering, as we are sampling CPU-local information. 342 */ 343 bool rcu_dynticks_curr_cpu_in_eqs(void) 344 { 345 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 346 347 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); 348 } 349 350 /* 351 * Snapshot the ->dynticks counter with full ordering so as to allow 352 * stable comparison of this counter with past and future snapshots. 353 */ 354 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 355 { 356 int snap = atomic_add_return(0, &rdtp->dynticks); 357 358 return snap & ~RCU_DYNTICK_CTRL_MASK; 359 } 360 361 /* 362 * Return true if the snapshot returned from rcu_dynticks_snap() 363 * indicates that RCU is in an extended quiescent state. 364 */ 365 static bool rcu_dynticks_in_eqs(int snap) 366 { 367 return !(snap & RCU_DYNTICK_CTRL_CTR); 368 } 369 370 /* 371 * Return true if the CPU corresponding to the specified rcu_dynticks 372 * structure has spent some time in an extended quiescent state since 373 * rcu_dynticks_snap() returned the specified snapshot. 374 */ 375 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 376 { 377 return snap != rcu_dynticks_snap(rdtp); 378 } 379 380 /* 381 * Do a double-increment of the ->dynticks counter to emulate a 382 * momentary idle-CPU quiescent state. 383 */ 384 static void rcu_dynticks_momentary_idle(void) 385 { 386 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 387 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 388 &rdtp->dynticks); 389 390 /* It is illegal to call this from idle state. */ 391 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 392 } 393 394 /* 395 * Set the special (bottom) bit of the specified CPU so that it 396 * will take special action (such as flushing its TLB) on the 397 * next exit from an extended quiescent state. Returns true if 398 * the bit was successfully set, or false if the CPU was not in 399 * an extended quiescent state. 400 */ 401 bool rcu_eqs_special_set(int cpu) 402 { 403 int old; 404 int new; 405 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 406 407 do { 408 old = atomic_read(&rdtp->dynticks); 409 if (old & RCU_DYNTICK_CTRL_CTR) 410 return false; 411 new = old | RCU_DYNTICK_CTRL_MASK; 412 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); 413 return true; 414 } 415 416 /* 417 * Let the RCU core know that this CPU has gone through the scheduler, 418 * which is a quiescent state. This is called when the need for a 419 * quiescent state is urgent, so we burn an atomic operation and full 420 * memory barriers to let the RCU core know about it, regardless of what 421 * this CPU might (or might not) do in the near future. 422 * 423 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 424 * 425 * The caller must have disabled interrupts. 426 */ 427 static void rcu_momentary_dyntick_idle(void) 428 { 429 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); 430 rcu_dynticks_momentary_idle(); 431 } 432 433 /* 434 * Note a context switch. This is a quiescent state for RCU-sched, 435 * and requires special handling for preemptible RCU. 436 * The caller must have disabled interrupts. 437 */ 438 void rcu_note_context_switch(bool preempt) 439 { 440 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 441 trace_rcu_utilization(TPS("Start context switch")); 442 rcu_sched_qs(); 443 rcu_preempt_note_context_switch(preempt); 444 /* Load rcu_urgent_qs before other flags. */ 445 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) 446 goto out; 447 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 448 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) 449 rcu_momentary_dyntick_idle(); 450 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 451 if (!preempt) 452 rcu_note_voluntary_context_switch_lite(current); 453 out: 454 trace_rcu_utilization(TPS("End context switch")); 455 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 456 } 457 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 458 459 /* 460 * Register a quiescent state for all RCU flavors. If there is an 461 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 462 * dyntick-idle quiescent state visible to other CPUs (but only for those 463 * RCU flavors in desperate need of a quiescent state, which will normally 464 * be none of them). Either way, do a lightweight quiescent state for 465 * all RCU flavors. 466 * 467 * The barrier() calls are redundant in the common case when this is 468 * called externally, but just in case this is called from within this 469 * file. 470 * 471 */ 472 void rcu_all_qs(void) 473 { 474 unsigned long flags; 475 476 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) 477 return; 478 preempt_disable(); 479 /* Load rcu_urgent_qs before other flags. */ 480 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { 481 preempt_enable(); 482 return; 483 } 484 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 485 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 486 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { 487 local_irq_save(flags); 488 rcu_momentary_dyntick_idle(); 489 local_irq_restore(flags); 490 } 491 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) 492 rcu_sched_qs(); 493 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 494 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 495 preempt_enable(); 496 } 497 EXPORT_SYMBOL_GPL(rcu_all_qs); 498 499 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 500 static long blimit = DEFAULT_RCU_BLIMIT; 501 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 502 static long qhimark = DEFAULT_RCU_QHIMARK; 503 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 504 static long qlowmark = DEFAULT_RCU_QLOMARK; 505 506 module_param(blimit, long, 0444); 507 module_param(qhimark, long, 0444); 508 module_param(qlowmark, long, 0444); 509 510 static ulong jiffies_till_first_fqs = ULONG_MAX; 511 static ulong jiffies_till_next_fqs = ULONG_MAX; 512 static bool rcu_kick_kthreads; 513 514 module_param(jiffies_till_first_fqs, ulong, 0644); 515 module_param(jiffies_till_next_fqs, ulong, 0644); 516 module_param(rcu_kick_kthreads, bool, 0644); 517 518 /* 519 * How long the grace period must be before we start recruiting 520 * quiescent-state help from rcu_note_context_switch(). 521 */ 522 static ulong jiffies_till_sched_qs = HZ / 10; 523 module_param(jiffies_till_sched_qs, ulong, 0444); 524 525 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)); 526 static void force_quiescent_state(struct rcu_state *rsp); 527 static int rcu_pending(void); 528 529 /* 530 * Return the number of RCU GPs completed thus far for debug & stats. 531 */ 532 unsigned long rcu_get_gp_seq(void) 533 { 534 return READ_ONCE(rcu_state_p->gp_seq); 535 } 536 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 537 538 /* 539 * Return the number of RCU-sched GPs completed thus far for debug & stats. 540 */ 541 unsigned long rcu_sched_get_gp_seq(void) 542 { 543 return READ_ONCE(rcu_sched_state.gp_seq); 544 } 545 EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq); 546 547 /* 548 * Return the number of RCU-bh GPs completed thus far for debug & stats. 549 */ 550 unsigned long rcu_bh_get_gp_seq(void) 551 { 552 return READ_ONCE(rcu_bh_state.gp_seq); 553 } 554 EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq); 555 556 /* 557 * Return the number of RCU expedited batches completed thus far for 558 * debug & stats. Odd numbers mean that a batch is in progress, even 559 * numbers mean idle. The value returned will thus be roughly double 560 * the cumulative batches since boot. 561 */ 562 unsigned long rcu_exp_batches_completed(void) 563 { 564 return rcu_state_p->expedited_sequence; 565 } 566 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 567 568 /* 569 * Return the number of RCU-sched expedited batches completed thus far 570 * for debug & stats. Similar to rcu_exp_batches_completed(). 571 */ 572 unsigned long rcu_exp_batches_completed_sched(void) 573 { 574 return rcu_sched_state.expedited_sequence; 575 } 576 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 577 578 /* 579 * Force a quiescent state. 580 */ 581 void rcu_force_quiescent_state(void) 582 { 583 force_quiescent_state(rcu_state_p); 584 } 585 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 586 587 /* 588 * Force a quiescent state for RCU BH. 589 */ 590 void rcu_bh_force_quiescent_state(void) 591 { 592 force_quiescent_state(&rcu_bh_state); 593 } 594 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 595 596 /* 597 * Force a quiescent state for RCU-sched. 598 */ 599 void rcu_sched_force_quiescent_state(void) 600 { 601 force_quiescent_state(&rcu_sched_state); 602 } 603 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 604 605 /* 606 * Show the state of the grace-period kthreads. 607 */ 608 void show_rcu_gp_kthreads(void) 609 { 610 struct rcu_state *rsp; 611 612 for_each_rcu_flavor(rsp) { 613 pr_info("%s: wait state: %d ->state: %#lx\n", 614 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 615 /* sched_show_task(rsp->gp_kthread); */ 616 } 617 } 618 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 619 620 /* 621 * Send along grace-period-related data for rcutorture diagnostics. 622 */ 623 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 624 unsigned long *gp_seq) 625 { 626 struct rcu_state *rsp = NULL; 627 628 switch (test_type) { 629 case RCU_FLAVOR: 630 rsp = rcu_state_p; 631 break; 632 case RCU_BH_FLAVOR: 633 rsp = &rcu_bh_state; 634 break; 635 case RCU_SCHED_FLAVOR: 636 rsp = &rcu_sched_state; 637 break; 638 default: 639 break; 640 } 641 if (rsp == NULL) 642 return; 643 *flags = READ_ONCE(rsp->gp_flags); 644 *gp_seq = rcu_seq_current(&rsp->gp_seq); 645 } 646 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 647 648 /* 649 * Return the root node of the specified rcu_state structure. 650 */ 651 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 652 { 653 return &rsp->node[0]; 654 } 655 656 /* 657 * Enter an RCU extended quiescent state, which can be either the 658 * idle loop or adaptive-tickless usermode execution. 659 * 660 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 661 * the possibility of usermode upcalls having messed up our count 662 * of interrupt nesting level during the prior busy period. 663 */ 664 static void rcu_eqs_enter(bool user) 665 { 666 struct rcu_state *rsp; 667 struct rcu_data *rdp; 668 struct rcu_dynticks *rdtp; 669 670 rdtp = this_cpu_ptr(&rcu_dynticks); 671 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); 672 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 673 rdtp->dynticks_nesting == 0); 674 if (rdtp->dynticks_nesting != 1) { 675 rdtp->dynticks_nesting--; 676 return; 677 } 678 679 lockdep_assert_irqs_disabled(); 680 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks); 681 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 682 for_each_rcu_flavor(rsp) { 683 rdp = this_cpu_ptr(rsp->rda); 684 do_nocb_deferred_wakeup(rdp); 685 } 686 rcu_prepare_for_idle(); 687 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 688 rcu_dynticks_eqs_enter(); 689 rcu_dynticks_task_enter(); 690 } 691 692 /** 693 * rcu_idle_enter - inform RCU that current CPU is entering idle 694 * 695 * Enter idle mode, in other words, -leave- the mode in which RCU 696 * read-side critical sections can occur. (Though RCU read-side 697 * critical sections can occur in irq handlers in idle, a possibility 698 * handled by irq_enter() and irq_exit().) 699 * 700 * If you add or remove a call to rcu_idle_enter(), be sure to test with 701 * CONFIG_RCU_EQS_DEBUG=y. 702 */ 703 void rcu_idle_enter(void) 704 { 705 lockdep_assert_irqs_disabled(); 706 rcu_eqs_enter(false); 707 } 708 709 #ifdef CONFIG_NO_HZ_FULL 710 /** 711 * rcu_user_enter - inform RCU that we are resuming userspace. 712 * 713 * Enter RCU idle mode right before resuming userspace. No use of RCU 714 * is permitted between this call and rcu_user_exit(). This way the 715 * CPU doesn't need to maintain the tick for RCU maintenance purposes 716 * when the CPU runs in userspace. 717 * 718 * If you add or remove a call to rcu_user_enter(), be sure to test with 719 * CONFIG_RCU_EQS_DEBUG=y. 720 */ 721 void rcu_user_enter(void) 722 { 723 lockdep_assert_irqs_disabled(); 724 rcu_eqs_enter(true); 725 } 726 #endif /* CONFIG_NO_HZ_FULL */ 727 728 /** 729 * rcu_nmi_exit - inform RCU of exit from NMI context 730 * 731 * If we are returning from the outermost NMI handler that interrupted an 732 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 733 * to let the RCU grace-period handling know that the CPU is back to 734 * being RCU-idle. 735 * 736 * If you add or remove a call to rcu_nmi_exit(), be sure to test 737 * with CONFIG_RCU_EQS_DEBUG=y. 738 */ 739 void rcu_nmi_exit(void) 740 { 741 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 742 743 /* 744 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 745 * (We are exiting an NMI handler, so RCU better be paying attention 746 * to us!) 747 */ 748 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 749 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 750 751 /* 752 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 753 * leave it in non-RCU-idle state. 754 */ 755 if (rdtp->dynticks_nmi_nesting != 1) { 756 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks); 757 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */ 758 rdtp->dynticks_nmi_nesting - 2); 759 return; 760 } 761 762 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 763 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks); 764 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 765 rcu_dynticks_eqs_enter(); 766 } 767 768 /** 769 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 770 * 771 * Exit from an interrupt handler, which might possibly result in entering 772 * idle mode, in other words, leaving the mode in which read-side critical 773 * sections can occur. The caller must have disabled interrupts. 774 * 775 * This code assumes that the idle loop never does anything that might 776 * result in unbalanced calls to irq_enter() and irq_exit(). If your 777 * architecture's idle loop violates this assumption, RCU will give you what 778 * you deserve, good and hard. But very infrequently and irreproducibly. 779 * 780 * Use things like work queues to work around this limitation. 781 * 782 * You have been warned. 783 * 784 * If you add or remove a call to rcu_irq_exit(), be sure to test with 785 * CONFIG_RCU_EQS_DEBUG=y. 786 */ 787 void rcu_irq_exit(void) 788 { 789 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 790 791 lockdep_assert_irqs_disabled(); 792 if (rdtp->dynticks_nmi_nesting == 1) 793 rcu_prepare_for_idle(); 794 rcu_nmi_exit(); 795 if (rdtp->dynticks_nmi_nesting == 0) 796 rcu_dynticks_task_enter(); 797 } 798 799 /* 800 * Wrapper for rcu_irq_exit() where interrupts are enabled. 801 * 802 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 803 * with CONFIG_RCU_EQS_DEBUG=y. 804 */ 805 void rcu_irq_exit_irqson(void) 806 { 807 unsigned long flags; 808 809 local_irq_save(flags); 810 rcu_irq_exit(); 811 local_irq_restore(flags); 812 } 813 814 /* 815 * Exit an RCU extended quiescent state, which can be either the 816 * idle loop or adaptive-tickless usermode execution. 817 * 818 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 819 * allow for the possibility of usermode upcalls messing up our count of 820 * interrupt nesting level during the busy period that is just now starting. 821 */ 822 static void rcu_eqs_exit(bool user) 823 { 824 struct rcu_dynticks *rdtp; 825 long oldval; 826 827 lockdep_assert_irqs_disabled(); 828 rdtp = this_cpu_ptr(&rcu_dynticks); 829 oldval = rdtp->dynticks_nesting; 830 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 831 if (oldval) { 832 rdtp->dynticks_nesting++; 833 return; 834 } 835 rcu_dynticks_task_exit(); 836 rcu_dynticks_eqs_exit(); 837 rcu_cleanup_after_idle(); 838 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks); 839 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 840 WRITE_ONCE(rdtp->dynticks_nesting, 1); 841 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 842 } 843 844 /** 845 * rcu_idle_exit - inform RCU that current CPU is leaving idle 846 * 847 * Exit idle mode, in other words, -enter- the mode in which RCU 848 * read-side critical sections can occur. 849 * 850 * If you add or remove a call to rcu_idle_exit(), be sure to test with 851 * CONFIG_RCU_EQS_DEBUG=y. 852 */ 853 void rcu_idle_exit(void) 854 { 855 unsigned long flags; 856 857 local_irq_save(flags); 858 rcu_eqs_exit(false); 859 local_irq_restore(flags); 860 } 861 862 #ifdef CONFIG_NO_HZ_FULL 863 /** 864 * rcu_user_exit - inform RCU that we are exiting userspace. 865 * 866 * Exit RCU idle mode while entering the kernel because it can 867 * run a RCU read side critical section anytime. 868 * 869 * If you add or remove a call to rcu_user_exit(), be sure to test with 870 * CONFIG_RCU_EQS_DEBUG=y. 871 */ 872 void rcu_user_exit(void) 873 { 874 rcu_eqs_exit(1); 875 } 876 #endif /* CONFIG_NO_HZ_FULL */ 877 878 /** 879 * rcu_nmi_enter - inform RCU of entry to NMI context 880 * 881 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 882 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 883 * that the CPU is active. This implementation permits nested NMIs, as 884 * long as the nesting level does not overflow an int. (You will probably 885 * run out of stack space first.) 886 * 887 * If you add or remove a call to rcu_nmi_enter(), be sure to test 888 * with CONFIG_RCU_EQS_DEBUG=y. 889 */ 890 void rcu_nmi_enter(void) 891 { 892 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 893 long incby = 2; 894 895 /* Complain about underflow. */ 896 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 897 898 /* 899 * If idle from RCU viewpoint, atomically increment ->dynticks 900 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 901 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 902 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 903 * to be in the outermost NMI handler that interrupted an RCU-idle 904 * period (observation due to Andy Lutomirski). 905 */ 906 if (rcu_dynticks_curr_cpu_in_eqs()) { 907 rcu_dynticks_eqs_exit(); 908 incby = 1; 909 } 910 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 911 rdtp->dynticks_nmi_nesting, 912 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks); 913 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */ 914 rdtp->dynticks_nmi_nesting + incby); 915 barrier(); 916 } 917 918 /** 919 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 920 * 921 * Enter an interrupt handler, which might possibly result in exiting 922 * idle mode, in other words, entering the mode in which read-side critical 923 * sections can occur. The caller must have disabled interrupts. 924 * 925 * Note that the Linux kernel is fully capable of entering an interrupt 926 * handler that it never exits, for example when doing upcalls to user mode! 927 * This code assumes that the idle loop never does upcalls to user mode. 928 * If your architecture's idle loop does do upcalls to user mode (or does 929 * anything else that results in unbalanced calls to the irq_enter() and 930 * irq_exit() functions), RCU will give you what you deserve, good and hard. 931 * But very infrequently and irreproducibly. 932 * 933 * Use things like work queues to work around this limitation. 934 * 935 * You have been warned. 936 * 937 * If you add or remove a call to rcu_irq_enter(), be sure to test with 938 * CONFIG_RCU_EQS_DEBUG=y. 939 */ 940 void rcu_irq_enter(void) 941 { 942 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 943 944 lockdep_assert_irqs_disabled(); 945 if (rdtp->dynticks_nmi_nesting == 0) 946 rcu_dynticks_task_exit(); 947 rcu_nmi_enter(); 948 if (rdtp->dynticks_nmi_nesting == 1) 949 rcu_cleanup_after_idle(); 950 } 951 952 /* 953 * Wrapper for rcu_irq_enter() where interrupts are enabled. 954 * 955 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 956 * with CONFIG_RCU_EQS_DEBUG=y. 957 */ 958 void rcu_irq_enter_irqson(void) 959 { 960 unsigned long flags; 961 962 local_irq_save(flags); 963 rcu_irq_enter(); 964 local_irq_restore(flags); 965 } 966 967 /** 968 * rcu_is_watching - see if RCU thinks that the current CPU is idle 969 * 970 * Return true if RCU is watching the running CPU, which means that this 971 * CPU can safely enter RCU read-side critical sections. In other words, 972 * if the current CPU is in its idle loop and is neither in an interrupt 973 * or NMI handler, return true. 974 */ 975 bool notrace rcu_is_watching(void) 976 { 977 bool ret; 978 979 preempt_disable_notrace(); 980 ret = !rcu_dynticks_curr_cpu_in_eqs(); 981 preempt_enable_notrace(); 982 return ret; 983 } 984 EXPORT_SYMBOL_GPL(rcu_is_watching); 985 986 /* 987 * If a holdout task is actually running, request an urgent quiescent 988 * state from its CPU. This is unsynchronized, so migrations can cause 989 * the request to go to the wrong CPU. Which is OK, all that will happen 990 * is that the CPU's next context switch will be a bit slower and next 991 * time around this task will generate another request. 992 */ 993 void rcu_request_urgent_qs_task(struct task_struct *t) 994 { 995 int cpu; 996 997 barrier(); 998 cpu = task_cpu(t); 999 if (!task_curr(t)) 1000 return; /* This task is not running on that CPU. */ 1001 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); 1002 } 1003 1004 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1005 1006 /* 1007 * Is the current CPU online as far as RCU is concerned? 1008 * 1009 * Disable preemption to avoid false positives that could otherwise 1010 * happen due to the current CPU number being sampled, this task being 1011 * preempted, its old CPU being taken offline, resuming on some other CPU, 1012 * then determining that its old CPU is now offline. Because there are 1013 * multiple flavors of RCU, and because this function can be called in the 1014 * midst of updating the flavors while a given CPU coming online or going 1015 * offline, it is necessary to check all flavors. If any of the flavors 1016 * believe that given CPU is online, it is considered to be online. 1017 * 1018 * Disable checking if in an NMI handler because we cannot safely 1019 * report errors from NMI handlers anyway. In addition, it is OK to use 1020 * RCU on an offline processor during initial boot, hence the check for 1021 * rcu_scheduler_fully_active. 1022 */ 1023 bool rcu_lockdep_current_cpu_online(void) 1024 { 1025 struct rcu_data *rdp; 1026 struct rcu_node *rnp; 1027 struct rcu_state *rsp; 1028 1029 if (in_nmi() || !rcu_scheduler_fully_active) 1030 return true; 1031 preempt_disable(); 1032 for_each_rcu_flavor(rsp) { 1033 rdp = this_cpu_ptr(rsp->rda); 1034 rnp = rdp->mynode; 1035 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) { 1036 preempt_enable(); 1037 return true; 1038 } 1039 } 1040 preempt_enable(); 1041 return false; 1042 } 1043 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1044 1045 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1046 1047 /** 1048 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1049 * 1050 * If the current CPU is idle or running at a first-level (not nested) 1051 * interrupt from idle, return true. The caller must have at least 1052 * disabled preemption. 1053 */ 1054 static int rcu_is_cpu_rrupt_from_idle(void) 1055 { 1056 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 && 1057 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1; 1058 } 1059 1060 /* 1061 * We are reporting a quiescent state on behalf of some other CPU, so 1062 * it is our responsibility to check for and handle potential overflow 1063 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1064 * After all, the CPU might be in deep idle state, and thus executing no 1065 * code whatsoever. 1066 */ 1067 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1068 { 1069 raw_lockdep_assert_held_rcu_node(rnp); 1070 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1071 rnp->gp_seq)) 1072 WRITE_ONCE(rdp->gpwrap, true); 1073 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1074 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1075 } 1076 1077 /* 1078 * Snapshot the specified CPU's dynticks counter so that we can later 1079 * credit them with an implicit quiescent state. Return 1 if this CPU 1080 * is in dynticks idle mode, which is an extended quiescent state. 1081 */ 1082 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1083 { 1084 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1085 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1086 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1087 rcu_gpnum_ovf(rdp->mynode, rdp); 1088 return 1; 1089 } 1090 return 0; 1091 } 1092 1093 /* 1094 * Handler for the irq_work request posted when a grace period has 1095 * gone on for too long, but not yet long enough for an RCU CPU 1096 * stall warning. Set state appropriately, but just complain if 1097 * there is unexpected state on entry. 1098 */ 1099 static void rcu_iw_handler(struct irq_work *iwp) 1100 { 1101 struct rcu_data *rdp; 1102 struct rcu_node *rnp; 1103 1104 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1105 rnp = rdp->mynode; 1106 raw_spin_lock_rcu_node(rnp); 1107 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1108 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1109 rdp->rcu_iw_pending = false; 1110 } 1111 raw_spin_unlock_rcu_node(rnp); 1112 } 1113 1114 /* 1115 * Return true if the specified CPU has passed through a quiescent 1116 * state by virtue of being in or having passed through an dynticks 1117 * idle state since the last call to dyntick_save_progress_counter() 1118 * for this same CPU, or by virtue of having been offline. 1119 */ 1120 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1121 { 1122 unsigned long jtsq; 1123 bool *rnhqp; 1124 bool *ruqp; 1125 struct rcu_node *rnp = rdp->mynode; 1126 1127 /* 1128 * If the CPU passed through or entered a dynticks idle phase with 1129 * no active irq/NMI handlers, then we can safely pretend that the CPU 1130 * already acknowledged the request to pass through a quiescent 1131 * state. Either way, that CPU cannot possibly be in an RCU 1132 * read-side critical section that started before the beginning 1133 * of the current RCU grace period. 1134 */ 1135 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1136 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1137 rdp->dynticks_fqs++; 1138 rcu_gpnum_ovf(rnp, rdp); 1139 return 1; 1140 } 1141 1142 /* 1143 * Has this CPU encountered a cond_resched() since the beginning 1144 * of the grace period? For this to be the case, the CPU has to 1145 * have noticed the current grace period. This might not be the 1146 * case for nohz_full CPUs looping in the kernel. 1147 */ 1148 jtsq = jiffies_till_sched_qs; 1149 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); 1150 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1151 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && 1152 rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) { 1153 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("rqc")); 1154 rcu_gpnum_ovf(rnp, rdp); 1155 return 1; 1156 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) { 1157 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ 1158 smp_store_release(ruqp, true); 1159 } 1160 1161 /* If waiting too long on an offline CPU, complain. */ 1162 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1163 time_after(jiffies, rdp->rsp->gp_start + HZ)) { 1164 bool onl; 1165 struct rcu_node *rnp1; 1166 1167 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1168 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1169 __func__, rnp->grplo, rnp->grphi, rnp->level, 1170 (long)rnp->gp_seq, (long)rnp->completedqs); 1171 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1172 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1173 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1174 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1175 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1176 __func__, rdp->cpu, ".o"[onl], 1177 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1178 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1179 return 1; /* Break things loose after complaining. */ 1180 } 1181 1182 /* 1183 * A CPU running for an extended time within the kernel can 1184 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1185 * even context-switching back and forth between a pair of 1186 * in-kernel CPU-bound tasks cannot advance grace periods. 1187 * So if the grace period is old enough, make the CPU pay attention. 1188 * Note that the unsynchronized assignments to the per-CPU 1189 * rcu_need_heavy_qs variable are safe. Yes, setting of 1190 * bits can be lost, but they will be set again on the next 1191 * force-quiescent-state pass. So lost bit sets do not result 1192 * in incorrect behavior, merely in a grace period lasting 1193 * a few jiffies longer than it might otherwise. Because 1194 * there are at most four threads involved, and because the 1195 * updates are only once every few jiffies, the probability of 1196 * lossage (and thus of slight grace-period extension) is 1197 * quite low. 1198 */ 1199 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); 1200 if (!READ_ONCE(*rnhqp) && 1201 (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1202 time_after(jiffies, rdp->rsp->jiffies_resched))) { 1203 WRITE_ONCE(*rnhqp, true); 1204 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1205 smp_store_release(ruqp, true); 1206 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */ 1207 } 1208 1209 /* 1210 * If more than halfway to RCU CPU stall-warning time, do a 1211 * resched_cpu() to try to loosen things up a bit. Also check to 1212 * see if the CPU is getting hammered with interrupts, but only 1213 * once per grace period, just to keep the IPIs down to a dull roar. 1214 */ 1215 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) { 1216 resched_cpu(rdp->cpu); 1217 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1218 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1219 (rnp->ffmask & rdp->grpmask)) { 1220 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1221 rdp->rcu_iw_pending = true; 1222 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1223 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1224 } 1225 } 1226 1227 return 0; 1228 } 1229 1230 static void record_gp_stall_check_time(struct rcu_state *rsp) 1231 { 1232 unsigned long j = jiffies; 1233 unsigned long j1; 1234 1235 rsp->gp_start = j; 1236 j1 = rcu_jiffies_till_stall_check(); 1237 /* Record ->gp_start before ->jiffies_stall. */ 1238 smp_store_release(&rsp->jiffies_stall, j + j1); /* ^^^ */ 1239 rsp->jiffies_resched = j + j1 / 2; 1240 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1241 } 1242 1243 /* 1244 * Convert a ->gp_state value to a character string. 1245 */ 1246 static const char *gp_state_getname(short gs) 1247 { 1248 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1249 return "???"; 1250 return gp_state_names[gs]; 1251 } 1252 1253 /* 1254 * Complain about starvation of grace-period kthread. 1255 */ 1256 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1257 { 1258 unsigned long gpa; 1259 unsigned long j; 1260 1261 j = jiffies; 1262 gpa = READ_ONCE(rsp->gp_activity); 1263 if (j - gpa > 2 * HZ) { 1264 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1265 rsp->name, j - gpa, 1266 (long)rcu_seq_current(&rsp->gp_seq), 1267 rsp->gp_flags, 1268 gp_state_getname(rsp->gp_state), rsp->gp_state, 1269 rsp->gp_kthread ? rsp->gp_kthread->state : ~0, 1270 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1); 1271 if (rsp->gp_kthread) { 1272 pr_err("RCU grace-period kthread stack dump:\n"); 1273 sched_show_task(rsp->gp_kthread); 1274 wake_up_process(rsp->gp_kthread); 1275 } 1276 } 1277 } 1278 1279 /* 1280 * Dump stacks of all tasks running on stalled CPUs. First try using 1281 * NMIs, but fall back to manual remote stack tracing on architectures 1282 * that don't support NMI-based stack dumps. The NMI-triggered stack 1283 * traces are more accurate because they are printed by the target CPU. 1284 */ 1285 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1286 { 1287 int cpu; 1288 unsigned long flags; 1289 struct rcu_node *rnp; 1290 1291 rcu_for_each_leaf_node(rsp, rnp) { 1292 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1293 for_each_leaf_node_possible_cpu(rnp, cpu) 1294 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1295 if (!trigger_single_cpu_backtrace(cpu)) 1296 dump_cpu_task(cpu); 1297 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1298 } 1299 } 1300 1301 /* 1302 * If too much time has passed in the current grace period, and if 1303 * so configured, go kick the relevant kthreads. 1304 */ 1305 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1306 { 1307 unsigned long j; 1308 1309 if (!rcu_kick_kthreads) 1310 return; 1311 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1312 if (time_after(jiffies, j) && rsp->gp_kthread && 1313 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1314 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1315 rcu_ftrace_dump(DUMP_ALL); 1316 wake_up_process(rsp->gp_kthread); 1317 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1318 } 1319 } 1320 1321 static inline void panic_on_rcu_stall(void) 1322 { 1323 if (sysctl_panic_on_rcu_stall) 1324 panic("RCU Stall\n"); 1325 } 1326 1327 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq) 1328 { 1329 int cpu; 1330 unsigned long flags; 1331 unsigned long gpa; 1332 unsigned long j; 1333 int ndetected = 0; 1334 struct rcu_node *rnp = rcu_get_root(rsp); 1335 long totqlen = 0; 1336 1337 /* Kick and suppress, if so configured. */ 1338 rcu_stall_kick_kthreads(rsp); 1339 if (rcu_cpu_stall_suppress) 1340 return; 1341 1342 /* 1343 * OK, time to rat on our buddy... 1344 * See Documentation/RCU/stallwarn.txt for info on how to debug 1345 * RCU CPU stall warnings. 1346 */ 1347 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1348 rsp->name); 1349 print_cpu_stall_info_begin(); 1350 rcu_for_each_leaf_node(rsp, rnp) { 1351 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1352 ndetected += rcu_print_task_stall(rnp); 1353 if (rnp->qsmask != 0) { 1354 for_each_leaf_node_possible_cpu(rnp, cpu) 1355 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1356 print_cpu_stall_info(rsp, cpu); 1357 ndetected++; 1358 } 1359 } 1360 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1361 } 1362 1363 print_cpu_stall_info_end(); 1364 for_each_possible_cpu(cpu) 1365 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1366 cpu)->cblist); 1367 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", 1368 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1369 (long)rcu_seq_current(&rsp->gp_seq), totqlen); 1370 if (ndetected) { 1371 rcu_dump_cpu_stacks(rsp); 1372 1373 /* Complain about tasks blocking the grace period. */ 1374 rcu_print_detail_task_stall(rsp); 1375 } else { 1376 if (rcu_seq_current(&rsp->gp_seq) != gp_seq) { 1377 pr_err("INFO: Stall ended before state dump start\n"); 1378 } else { 1379 j = jiffies; 1380 gpa = READ_ONCE(rsp->gp_activity); 1381 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1382 rsp->name, j - gpa, j, gpa, 1383 jiffies_till_next_fqs, 1384 rcu_get_root(rsp)->qsmask); 1385 /* In this case, the current CPU might be at fault. */ 1386 sched_show_task(current); 1387 } 1388 } 1389 /* Rewrite if needed in case of slow consoles. */ 1390 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1391 WRITE_ONCE(rsp->jiffies_stall, 1392 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1393 1394 rcu_check_gp_kthread_starvation(rsp); 1395 1396 panic_on_rcu_stall(); 1397 1398 force_quiescent_state(rsp); /* Kick them all. */ 1399 } 1400 1401 static void print_cpu_stall(struct rcu_state *rsp) 1402 { 1403 int cpu; 1404 unsigned long flags; 1405 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1406 struct rcu_node *rnp = rcu_get_root(rsp); 1407 long totqlen = 0; 1408 1409 /* Kick and suppress, if so configured. */ 1410 rcu_stall_kick_kthreads(rsp); 1411 if (rcu_cpu_stall_suppress) 1412 return; 1413 1414 /* 1415 * OK, time to rat on ourselves... 1416 * See Documentation/RCU/stallwarn.txt for info on how to debug 1417 * RCU CPU stall warnings. 1418 */ 1419 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1420 print_cpu_stall_info_begin(); 1421 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1422 print_cpu_stall_info(rsp, smp_processor_id()); 1423 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1424 print_cpu_stall_info_end(); 1425 for_each_possible_cpu(cpu) 1426 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1427 cpu)->cblist); 1428 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", 1429 jiffies - rsp->gp_start, 1430 (long)rcu_seq_current(&rsp->gp_seq), totqlen); 1431 1432 rcu_check_gp_kthread_starvation(rsp); 1433 1434 rcu_dump_cpu_stacks(rsp); 1435 1436 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1437 /* Rewrite if needed in case of slow consoles. */ 1438 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1439 WRITE_ONCE(rsp->jiffies_stall, 1440 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1441 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1442 1443 panic_on_rcu_stall(); 1444 1445 /* 1446 * Attempt to revive the RCU machinery by forcing a context switch. 1447 * 1448 * A context switch would normally allow the RCU state machine to make 1449 * progress and it could be we're stuck in kernel space without context 1450 * switches for an entirely unreasonable amount of time. 1451 */ 1452 resched_cpu(smp_processor_id()); 1453 } 1454 1455 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1456 { 1457 unsigned long gs1; 1458 unsigned long gs2; 1459 unsigned long gps; 1460 unsigned long j; 1461 unsigned long jn; 1462 unsigned long js; 1463 struct rcu_node *rnp; 1464 1465 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1466 !rcu_gp_in_progress(rsp)) 1467 return; 1468 rcu_stall_kick_kthreads(rsp); 1469 j = jiffies; 1470 1471 /* 1472 * Lots of memory barriers to reject false positives. 1473 * 1474 * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall, 1475 * then rsp->gp_start, and finally another copy of rsp->gp_seq. 1476 * These values are updated in the opposite order with memory 1477 * barriers (or equivalent) during grace-period initialization 1478 * and cleanup. Now, a false positive can occur if we get an new 1479 * value of rsp->gp_start and a old value of rsp->jiffies_stall. 1480 * But given the memory barriers, the only way that this can happen 1481 * is if one grace period ends and another starts between these 1482 * two fetches. This is detected by comparing the second fetch 1483 * of rsp->gp_seq with the previous fetch from rsp->gp_seq. 1484 * 1485 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1486 * and rsp->gp_start suffice to forestall false positives. 1487 */ 1488 gs1 = READ_ONCE(rsp->gp_seq); 1489 smp_rmb(); /* Pick up ->gp_seq first... */ 1490 js = READ_ONCE(rsp->jiffies_stall); 1491 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1492 gps = READ_ONCE(rsp->gp_start); 1493 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ 1494 gs2 = READ_ONCE(rsp->gp_seq); 1495 if (gs1 != gs2 || 1496 ULONG_CMP_LT(j, js) || 1497 ULONG_CMP_GE(gps, js)) 1498 return; /* No stall or GP completed since entering function. */ 1499 rnp = rdp->mynode; 1500 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1501 if (rcu_gp_in_progress(rsp) && 1502 (READ_ONCE(rnp->qsmask) & rdp->grpmask) && 1503 cmpxchg(&rsp->jiffies_stall, js, jn) == js) { 1504 1505 /* We haven't checked in, so go dump stack. */ 1506 print_cpu_stall(rsp); 1507 1508 } else if (rcu_gp_in_progress(rsp) && 1509 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && 1510 cmpxchg(&rsp->jiffies_stall, js, jn) == js) { 1511 1512 /* They had a few time units to dump stack, so complain. */ 1513 print_other_cpu_stall(rsp, gs2); 1514 } 1515 } 1516 1517 /** 1518 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1519 * 1520 * Set the stall-warning timeout way off into the future, thus preventing 1521 * any RCU CPU stall-warning messages from appearing in the current set of 1522 * RCU grace periods. 1523 * 1524 * The caller must disable hard irqs. 1525 */ 1526 void rcu_cpu_stall_reset(void) 1527 { 1528 struct rcu_state *rsp; 1529 1530 for_each_rcu_flavor(rsp) 1531 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1532 } 1533 1534 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1535 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1536 unsigned long gp_seq_req, const char *s) 1537 { 1538 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gp_seq, gp_seq_req, 1539 rnp->level, rnp->grplo, rnp->grphi, s); 1540 } 1541 1542 /* 1543 * rcu_start_this_gp - Request the start of a particular grace period 1544 * @rnp_start: The leaf node of the CPU from which to start. 1545 * @rdp: The rcu_data corresponding to the CPU from which to start. 1546 * @gp_seq_req: The gp_seq of the grace period to start. 1547 * 1548 * Start the specified grace period, as needed to handle newly arrived 1549 * callbacks. The required future grace periods are recorded in each 1550 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1551 * is reason to awaken the grace-period kthread. 1552 * 1553 * The caller must hold the specified rcu_node structure's ->lock, which 1554 * is why the caller is responsible for waking the grace-period kthread. 1555 * 1556 * Returns true if the GP thread needs to be awakened else false. 1557 */ 1558 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1559 unsigned long gp_seq_req) 1560 { 1561 bool ret = false; 1562 struct rcu_state *rsp = rdp->rsp; 1563 struct rcu_node *rnp; 1564 1565 /* 1566 * Use funnel locking to either acquire the root rcu_node 1567 * structure's lock or bail out if the need for this grace period 1568 * has already been recorded -- or if that grace period has in 1569 * fact already started. If there is already a grace period in 1570 * progress in a non-leaf node, no recording is needed because the 1571 * end of the grace period will scan the leaf rcu_node structures. 1572 * Note that rnp_start->lock must not be released. 1573 */ 1574 raw_lockdep_assert_held_rcu_node(rnp_start); 1575 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1576 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1577 if (rnp != rnp_start) 1578 raw_spin_lock_rcu_node(rnp); 1579 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1580 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1581 (rnp != rnp_start && 1582 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1583 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1584 TPS("Prestarted")); 1585 goto unlock_out; 1586 } 1587 rnp->gp_seq_needed = gp_seq_req; 1588 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1589 /* 1590 * We just marked the leaf or internal node, and a 1591 * grace period is in progress, which means that 1592 * rcu_gp_cleanup() will see the marking. Bail to 1593 * reduce contention. 1594 */ 1595 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1596 TPS("Startedleaf")); 1597 goto unlock_out; 1598 } 1599 if (rnp != rnp_start && rnp->parent != NULL) 1600 raw_spin_unlock_rcu_node(rnp); 1601 if (!rnp->parent) 1602 break; /* At root, and perhaps also leaf. */ 1603 } 1604 1605 /* If GP already in progress, just leave, otherwise start one. */ 1606 if (rcu_gp_in_progress(rsp)) { 1607 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1608 goto unlock_out; 1609 } 1610 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1611 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT); 1612 rsp->gp_req_activity = jiffies; 1613 if (!rsp->gp_kthread) { 1614 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1615 goto unlock_out; 1616 } 1617 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), TPS("newreq")); 1618 ret = true; /* Caller must wake GP kthread. */ 1619 unlock_out: 1620 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1621 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1622 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1623 rdp->gp_seq_needed = rnp->gp_seq_needed; 1624 } 1625 if (rnp != rnp_start) 1626 raw_spin_unlock_rcu_node(rnp); 1627 return ret; 1628 } 1629 1630 /* 1631 * Clean up any old requests for the just-ended grace period. Also return 1632 * whether any additional grace periods have been requested. 1633 */ 1634 static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1635 { 1636 bool needmore; 1637 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1638 1639 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1640 if (!needmore) 1641 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1642 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1643 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1644 return needmore; 1645 } 1646 1647 /* 1648 * Awaken the grace-period kthread for the specified flavor of RCU. 1649 * Don't do a self-awaken, and don't bother awakening when there is 1650 * nothing for the grace-period kthread to do (as in several CPUs 1651 * raced to awaken, and we lost), and finally don't try to awaken 1652 * a kthread that has not yet been created. 1653 */ 1654 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1655 { 1656 if (current == rsp->gp_kthread || 1657 !READ_ONCE(rsp->gp_flags) || 1658 !rsp->gp_kthread) 1659 return; 1660 swake_up(&rsp->gp_wq); 1661 } 1662 1663 /* 1664 * If there is room, assign a ->gp_seq number to any callbacks on this 1665 * CPU that have not already been assigned. Also accelerate any callbacks 1666 * that were previously assigned a ->gp_seq number that has since proven 1667 * to be too conservative, which can happen if callbacks get assigned a 1668 * ->gp_seq number while RCU is idle, but with reference to a non-root 1669 * rcu_node structure. This function is idempotent, so it does not hurt 1670 * to call it repeatedly. Returns an flag saying that we should awaken 1671 * the RCU grace-period kthread. 1672 * 1673 * The caller must hold rnp->lock with interrupts disabled. 1674 */ 1675 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1676 struct rcu_data *rdp) 1677 { 1678 unsigned long gp_seq_req; 1679 bool ret = false; 1680 1681 raw_lockdep_assert_held_rcu_node(rnp); 1682 1683 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1684 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1685 return false; 1686 1687 /* 1688 * Callbacks are often registered with incomplete grace-period 1689 * information. Something about the fact that getting exact 1690 * information requires acquiring a global lock... RCU therefore 1691 * makes a conservative estimate of the grace period number at which 1692 * a given callback will become ready to invoke. The following 1693 * code checks this estimate and improves it when possible, thus 1694 * accelerating callback invocation to an earlier grace-period 1695 * number. 1696 */ 1697 gp_seq_req = rcu_seq_snap(&rsp->gp_seq); 1698 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1699 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1700 1701 /* Trace depending on how much we were able to accelerate. */ 1702 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1703 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccWaitCB")); 1704 else 1705 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccReadyCB")); 1706 return ret; 1707 } 1708 1709 /* 1710 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1711 * rcu_node structure's ->lock be held. It consults the cached value 1712 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1713 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1714 * while holding the leaf rcu_node structure's ->lock. 1715 */ 1716 static void rcu_accelerate_cbs_unlocked(struct rcu_state *rsp, 1717 struct rcu_node *rnp, 1718 struct rcu_data *rdp) 1719 { 1720 unsigned long c; 1721 bool needwake; 1722 1723 lockdep_assert_irqs_disabled(); 1724 c = rcu_seq_snap(&rsp->gp_seq); 1725 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1726 /* Old request still live, so mark recent callbacks. */ 1727 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1728 return; 1729 } 1730 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1731 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1732 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1733 if (needwake) 1734 rcu_gp_kthread_wake(rsp); 1735 } 1736 1737 /* 1738 * Move any callbacks whose grace period has completed to the 1739 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1740 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1741 * sublist. This function is idempotent, so it does not hurt to 1742 * invoke it repeatedly. As long as it is not invoked -too- often... 1743 * Returns true if the RCU grace-period kthread needs to be awakened. 1744 * 1745 * The caller must hold rnp->lock with interrupts disabled. 1746 */ 1747 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1748 struct rcu_data *rdp) 1749 { 1750 raw_lockdep_assert_held_rcu_node(rnp); 1751 1752 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1753 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1754 return false; 1755 1756 /* 1757 * Find all callbacks whose ->gp_seq numbers indicate that they 1758 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1759 */ 1760 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1761 1762 /* Classify any remaining callbacks. */ 1763 return rcu_accelerate_cbs(rsp, rnp, rdp); 1764 } 1765 1766 /* 1767 * Update CPU-local rcu_data state to record the beginnings and ends of 1768 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1769 * structure corresponding to the current CPU, and must have irqs disabled. 1770 * Returns true if the grace-period kthread needs to be awakened. 1771 */ 1772 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1773 struct rcu_data *rdp) 1774 { 1775 bool ret; 1776 bool need_gp; 1777 1778 raw_lockdep_assert_held_rcu_node(rnp); 1779 1780 if (rdp->gp_seq == rnp->gp_seq) 1781 return false; /* Nothing to do. */ 1782 1783 /* Handle the ends of any preceding grace periods first. */ 1784 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1785 unlikely(READ_ONCE(rdp->gpwrap))) { 1786 ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */ 1787 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend")); 1788 } else { 1789 ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */ 1790 } 1791 1792 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1793 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1794 unlikely(READ_ONCE(rdp->gpwrap))) { 1795 /* 1796 * If the current grace period is waiting for this CPU, 1797 * set up to detect a quiescent state, otherwise don't 1798 * go looking for one. 1799 */ 1800 trace_rcu_grace_period(rsp->name, rnp->gp_seq, TPS("cpustart")); 1801 need_gp = !!(rnp->qsmask & rdp->grpmask); 1802 rdp->cpu_no_qs.b.norm = need_gp; 1803 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 1804 rdp->core_needs_qs = need_gp; 1805 zero_cpu_stall_ticks(rdp); 1806 } 1807 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1808 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap) 1809 rdp->gp_seq_needed = rnp->gp_seq_needed; 1810 WRITE_ONCE(rdp->gpwrap, false); 1811 rcu_gpnum_ovf(rnp, rdp); 1812 return ret; 1813 } 1814 1815 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1816 { 1817 unsigned long flags; 1818 bool needwake; 1819 struct rcu_node *rnp; 1820 1821 local_irq_save(flags); 1822 rnp = rdp->mynode; 1823 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1824 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1825 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1826 local_irq_restore(flags); 1827 return; 1828 } 1829 needwake = __note_gp_changes(rsp, rnp, rdp); 1830 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1831 if (needwake) 1832 rcu_gp_kthread_wake(rsp); 1833 } 1834 1835 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1836 { 1837 if (delay > 0 && 1838 !(rcu_seq_ctr(rsp->gp_seq) % 1839 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1840 schedule_timeout_uninterruptible(delay); 1841 } 1842 1843 /* 1844 * Initialize a new grace period. Return false if no grace period required. 1845 */ 1846 static bool rcu_gp_init(struct rcu_state *rsp) 1847 { 1848 unsigned long flags; 1849 unsigned long oldmask; 1850 unsigned long mask; 1851 struct rcu_data *rdp; 1852 struct rcu_node *rnp = rcu_get_root(rsp); 1853 1854 WRITE_ONCE(rsp->gp_activity, jiffies); 1855 raw_spin_lock_irq_rcu_node(rnp); 1856 if (!READ_ONCE(rsp->gp_flags)) { 1857 /* Spurious wakeup, tell caller to go back to sleep. */ 1858 raw_spin_unlock_irq_rcu_node(rnp); 1859 return false; 1860 } 1861 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1862 1863 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1864 /* 1865 * Grace period already in progress, don't start another. 1866 * Not supposed to be able to happen. 1867 */ 1868 raw_spin_unlock_irq_rcu_node(rnp); 1869 return false; 1870 } 1871 1872 /* Advance to a new grace period and initialize state. */ 1873 record_gp_stall_check_time(rsp); 1874 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1875 rcu_seq_start(&rsp->gp_seq); 1876 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("start")); 1877 raw_spin_unlock_irq_rcu_node(rnp); 1878 1879 /* 1880 * Apply per-leaf buffered online and offline operations to the 1881 * rcu_node tree. Note that this new grace period need not wait 1882 * for subsequent online CPUs, and that quiescent-state forcing 1883 * will handle subsequent offline CPUs. 1884 */ 1885 rsp->gp_state = RCU_GP_ONOFF; 1886 rcu_for_each_leaf_node(rsp, rnp) { 1887 spin_lock(&rsp->ofl_lock); 1888 raw_spin_lock_irq_rcu_node(rnp); 1889 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1890 !rnp->wait_blkd_tasks) { 1891 /* Nothing to do on this leaf rcu_node structure. */ 1892 raw_spin_unlock_irq_rcu_node(rnp); 1893 spin_unlock(&rsp->ofl_lock); 1894 continue; 1895 } 1896 1897 /* Record old state, apply changes to ->qsmaskinit field. */ 1898 oldmask = rnp->qsmaskinit; 1899 rnp->qsmaskinit = rnp->qsmaskinitnext; 1900 1901 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1902 if (!oldmask != !rnp->qsmaskinit) { 1903 if (!oldmask) { /* First online CPU for rcu_node. */ 1904 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1905 rcu_init_new_rnp(rnp); 1906 } else if (rcu_preempt_has_tasks(rnp)) { 1907 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1908 } else { /* Last offline CPU and can propagate. */ 1909 rcu_cleanup_dead_rnp(rnp); 1910 } 1911 } 1912 1913 /* 1914 * If all waited-on tasks from prior grace period are 1915 * done, and if all this rcu_node structure's CPUs are 1916 * still offline, propagate up the rcu_node tree and 1917 * clear ->wait_blkd_tasks. Otherwise, if one of this 1918 * rcu_node structure's CPUs has since come back online, 1919 * simply clear ->wait_blkd_tasks. 1920 */ 1921 if (rnp->wait_blkd_tasks && 1922 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1923 rnp->wait_blkd_tasks = false; 1924 if (!rnp->qsmaskinit) 1925 rcu_cleanup_dead_rnp(rnp); 1926 } 1927 1928 raw_spin_unlock_irq_rcu_node(rnp); 1929 spin_unlock(&rsp->ofl_lock); 1930 } 1931 rcu_gp_slow(rsp, gp_preinit_delay); /* Races with CPU hotplug. */ 1932 1933 /* 1934 * Set the quiescent-state-needed bits in all the rcu_node 1935 * structures for all currently online CPUs in breadth-first order, 1936 * starting from the root rcu_node structure, relying on the layout 1937 * of the tree within the rsp->node[] array. Note that other CPUs 1938 * will access only the leaves of the hierarchy, thus seeing that no 1939 * grace period is in progress, at least until the corresponding 1940 * leaf node has been initialized. 1941 * 1942 * The grace period cannot complete until the initialization 1943 * process finishes, because this kthread handles both. 1944 */ 1945 rsp->gp_state = RCU_GP_INIT; 1946 rcu_for_each_node_breadth_first(rsp, rnp) { 1947 rcu_gp_slow(rsp, gp_init_delay); 1948 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1949 rdp = this_cpu_ptr(rsp->rda); 1950 rcu_preempt_check_blocked_tasks(rsp, rnp); 1951 rnp->qsmask = rnp->qsmaskinit; 1952 WRITE_ONCE(rnp->gp_seq, rsp->gp_seq); 1953 if (rnp == rdp->mynode) 1954 (void)__note_gp_changes(rsp, rnp, rdp); 1955 rcu_preempt_boost_start_gp(rnp); 1956 trace_rcu_grace_period_init(rsp->name, rnp->gp_seq, 1957 rnp->level, rnp->grplo, 1958 rnp->grphi, rnp->qsmask); 1959 /* Quiescent states for tasks on any now-offline CPUs. */ 1960 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1961 rnp->rcu_gp_init_mask = mask; 1962 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1963 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 1964 else 1965 raw_spin_unlock_irq_rcu_node(rnp); 1966 cond_resched_tasks_rcu_qs(); 1967 WRITE_ONCE(rsp->gp_activity, jiffies); 1968 } 1969 1970 return true; 1971 } 1972 1973 /* 1974 * Helper function for swait_event_idle() wakeup at force-quiescent-state 1975 * time. 1976 */ 1977 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 1978 { 1979 struct rcu_node *rnp = rcu_get_root(rsp); 1980 1981 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1982 *gfp = READ_ONCE(rsp->gp_flags); 1983 if (*gfp & RCU_GP_FLAG_FQS) 1984 return true; 1985 1986 /* The current grace period has completed. */ 1987 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1988 return true; 1989 1990 return false; 1991 } 1992 1993 /* 1994 * Do one round of quiescent-state forcing. 1995 */ 1996 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 1997 { 1998 struct rcu_node *rnp = rcu_get_root(rsp); 1999 2000 WRITE_ONCE(rsp->gp_activity, jiffies); 2001 rsp->n_force_qs++; 2002 if (first_time) { 2003 /* Collect dyntick-idle snapshots. */ 2004 force_qs_rnp(rsp, dyntick_save_progress_counter); 2005 } else { 2006 /* Handle dyntick-idle and offline CPUs. */ 2007 force_qs_rnp(rsp, rcu_implicit_dynticks_qs); 2008 } 2009 /* Clear flag to prevent immediate re-entry. */ 2010 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2011 raw_spin_lock_irq_rcu_node(rnp); 2012 WRITE_ONCE(rsp->gp_flags, 2013 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2014 raw_spin_unlock_irq_rcu_node(rnp); 2015 } 2016 } 2017 2018 /* 2019 * Clean up after the old grace period. 2020 */ 2021 static void rcu_gp_cleanup(struct rcu_state *rsp) 2022 { 2023 unsigned long gp_duration; 2024 bool needgp = false; 2025 unsigned long new_gp_seq; 2026 struct rcu_data *rdp; 2027 struct rcu_node *rnp = rcu_get_root(rsp); 2028 struct swait_queue_head *sq; 2029 2030 WRITE_ONCE(rsp->gp_activity, jiffies); 2031 raw_spin_lock_irq_rcu_node(rnp); 2032 gp_duration = jiffies - rsp->gp_start; 2033 if (gp_duration > rsp->gp_max) 2034 rsp->gp_max = gp_duration; 2035 2036 /* 2037 * We know the grace period is complete, but to everyone else 2038 * it appears to still be ongoing. But it is also the case 2039 * that to everyone else it looks like there is nothing that 2040 * they can do to advance the grace period. It is therefore 2041 * safe for us to drop the lock in order to mark the grace 2042 * period as completed in all of the rcu_node structures. 2043 */ 2044 raw_spin_unlock_irq_rcu_node(rnp); 2045 2046 /* 2047 * Propagate new ->gp_seq value to rcu_node structures so that 2048 * other CPUs don't have to wait until the start of the next grace 2049 * period to process their callbacks. This also avoids some nasty 2050 * RCU grace-period initialization races by forcing the end of 2051 * the current grace period to be completely recorded in all of 2052 * the rcu_node structures before the beginning of the next grace 2053 * period is recorded in any of the rcu_node structures. 2054 */ 2055 new_gp_seq = rsp->gp_seq; 2056 rcu_seq_end(&new_gp_seq); 2057 rcu_for_each_node_breadth_first(rsp, rnp) { 2058 raw_spin_lock_irq_rcu_node(rnp); 2059 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2060 dump_blkd_tasks(rsp, rnp, 10); 2061 WARN_ON_ONCE(rnp->qsmask); 2062 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2063 rdp = this_cpu_ptr(rsp->rda); 2064 if (rnp == rdp->mynode) 2065 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2066 /* smp_mb() provided by prior unlock-lock pair. */ 2067 needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp; 2068 sq = rcu_nocb_gp_get(rnp); 2069 raw_spin_unlock_irq_rcu_node(rnp); 2070 rcu_nocb_gp_cleanup(sq); 2071 cond_resched_tasks_rcu_qs(); 2072 WRITE_ONCE(rsp->gp_activity, jiffies); 2073 rcu_gp_slow(rsp, gp_cleanup_delay); 2074 } 2075 rnp = rcu_get_root(rsp); 2076 raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */ 2077 2078 /* Declare grace period done. */ 2079 rcu_seq_end(&rsp->gp_seq); 2080 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("end")); 2081 rsp->gp_state = RCU_GP_IDLE; 2082 /* Check for GP requests since above loop. */ 2083 rdp = this_cpu_ptr(rsp->rda); 2084 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2085 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2086 TPS("CleanupMore")); 2087 needgp = true; 2088 } 2089 /* Advance CBs to reduce false positives below. */ 2090 if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) { 2091 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2092 rsp->gp_req_activity = jiffies; 2093 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), 2094 TPS("newreq")); 2095 } else { 2096 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT); 2097 } 2098 raw_spin_unlock_irq_rcu_node(rnp); 2099 } 2100 2101 /* 2102 * Body of kthread that handles grace periods. 2103 */ 2104 static int __noreturn rcu_gp_kthread(void *arg) 2105 { 2106 bool first_gp_fqs; 2107 int gf; 2108 unsigned long j; 2109 int ret; 2110 struct rcu_state *rsp = arg; 2111 struct rcu_node *rnp = rcu_get_root(rsp); 2112 2113 rcu_bind_gp_kthread(); 2114 for (;;) { 2115 2116 /* Handle grace-period start. */ 2117 for (;;) { 2118 trace_rcu_grace_period(rsp->name, 2119 READ_ONCE(rsp->gp_seq), 2120 TPS("reqwait")); 2121 rsp->gp_state = RCU_GP_WAIT_GPS; 2122 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) & 2123 RCU_GP_FLAG_INIT); 2124 rsp->gp_state = RCU_GP_DONE_GPS; 2125 /* Locking provides needed memory barrier. */ 2126 if (rcu_gp_init(rsp)) 2127 break; 2128 cond_resched_tasks_rcu_qs(); 2129 WRITE_ONCE(rsp->gp_activity, jiffies); 2130 WARN_ON(signal_pending(current)); 2131 trace_rcu_grace_period(rsp->name, 2132 READ_ONCE(rsp->gp_seq), 2133 TPS("reqwaitsig")); 2134 } 2135 2136 /* Handle quiescent-state forcing. */ 2137 first_gp_fqs = true; 2138 j = jiffies_till_first_fqs; 2139 if (j > HZ) { 2140 j = HZ; 2141 jiffies_till_first_fqs = HZ; 2142 } 2143 ret = 0; 2144 for (;;) { 2145 if (!ret) { 2146 rsp->jiffies_force_qs = jiffies + j; 2147 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2148 jiffies + 3 * j); 2149 } 2150 trace_rcu_grace_period(rsp->name, 2151 READ_ONCE(rsp->gp_seq), 2152 TPS("fqswait")); 2153 rsp->gp_state = RCU_GP_WAIT_FQS; 2154 ret = swait_event_idle_timeout(rsp->gp_wq, 2155 rcu_gp_fqs_check_wake(rsp, &gf), j); 2156 rsp->gp_state = RCU_GP_DOING_FQS; 2157 /* Locking provides needed memory barriers. */ 2158 /* If grace period done, leave loop. */ 2159 if (!READ_ONCE(rnp->qsmask) && 2160 !rcu_preempt_blocked_readers_cgp(rnp)) 2161 break; 2162 /* If time for quiescent-state forcing, do it. */ 2163 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2164 (gf & RCU_GP_FLAG_FQS)) { 2165 trace_rcu_grace_period(rsp->name, 2166 READ_ONCE(rsp->gp_seq), 2167 TPS("fqsstart")); 2168 rcu_gp_fqs(rsp, first_gp_fqs); 2169 first_gp_fqs = false; 2170 trace_rcu_grace_period(rsp->name, 2171 READ_ONCE(rsp->gp_seq), 2172 TPS("fqsend")); 2173 cond_resched_tasks_rcu_qs(); 2174 WRITE_ONCE(rsp->gp_activity, jiffies); 2175 ret = 0; /* Force full wait till next FQS. */ 2176 j = jiffies_till_next_fqs; 2177 if (j > HZ) { 2178 j = HZ; 2179 jiffies_till_next_fqs = HZ; 2180 } else if (j < 1) { 2181 j = 1; 2182 jiffies_till_next_fqs = 1; 2183 } 2184 } else { 2185 /* Deal with stray signal. */ 2186 cond_resched_tasks_rcu_qs(); 2187 WRITE_ONCE(rsp->gp_activity, jiffies); 2188 WARN_ON(signal_pending(current)); 2189 trace_rcu_grace_period(rsp->name, 2190 READ_ONCE(rsp->gp_seq), 2191 TPS("fqswaitsig")); 2192 ret = 1; /* Keep old FQS timing. */ 2193 j = jiffies; 2194 if (time_after(jiffies, rsp->jiffies_force_qs)) 2195 j = 1; 2196 else 2197 j = rsp->jiffies_force_qs - j; 2198 } 2199 } 2200 2201 /* Handle grace-period end. */ 2202 rsp->gp_state = RCU_GP_CLEANUP; 2203 rcu_gp_cleanup(rsp); 2204 rsp->gp_state = RCU_GP_CLEANED; 2205 } 2206 } 2207 2208 /* 2209 * Report a full set of quiescent states to the specified rcu_state data 2210 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2211 * kthread if another grace period is required. Whether we wake 2212 * the grace-period kthread or it awakens itself for the next round 2213 * of quiescent-state forcing, that kthread will clean up after the 2214 * just-completed grace period. Note that the caller must hold rnp->lock, 2215 * which is released before return. 2216 */ 2217 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2218 __releases(rcu_get_root(rsp)->lock) 2219 { 2220 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp)); 2221 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2222 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2223 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2224 rcu_gp_kthread_wake(rsp); 2225 } 2226 2227 /* 2228 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2229 * Allows quiescent states for a group of CPUs to be reported at one go 2230 * to the specified rcu_node structure, though all the CPUs in the group 2231 * must be represented by the same rcu_node structure (which need not be a 2232 * leaf rcu_node structure, though it often will be). The gps parameter 2233 * is the grace-period snapshot, which means that the quiescent states 2234 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2235 * must be held upon entry, and it is released before return. 2236 * 2237 * As a special case, if mask is zero, the bit-already-cleared check is 2238 * disabled. This allows propagating quiescent state due to resumed tasks 2239 * during grace-period initialization. 2240 */ 2241 static void 2242 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2243 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2244 __releases(rnp->lock) 2245 { 2246 unsigned long oldmask = 0; 2247 struct rcu_node *rnp_c; 2248 2249 raw_lockdep_assert_held_rcu_node(rnp); 2250 2251 /* Walk up the rcu_node hierarchy. */ 2252 for (;;) { 2253 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2254 2255 /* 2256 * Our bit has already been cleared, or the 2257 * relevant grace period is already over, so done. 2258 */ 2259 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2260 return; 2261 } 2262 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2263 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2264 rcu_preempt_blocked_readers_cgp(rnp)); 2265 rnp->qsmask &= ~mask; 2266 trace_rcu_quiescent_state_report(rsp->name, rnp->gp_seq, 2267 mask, rnp->qsmask, rnp->level, 2268 rnp->grplo, rnp->grphi, 2269 !!rnp->gp_tasks); 2270 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2271 2272 /* Other bits still set at this level, so done. */ 2273 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2274 return; 2275 } 2276 rnp->completedqs = rnp->gp_seq; 2277 mask = rnp->grpmask; 2278 if (rnp->parent == NULL) { 2279 2280 /* No more levels. Exit loop holding root lock. */ 2281 2282 break; 2283 } 2284 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2285 rnp_c = rnp; 2286 rnp = rnp->parent; 2287 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2288 oldmask = rnp_c->qsmask; 2289 } 2290 2291 /* 2292 * Get here if we are the last CPU to pass through a quiescent 2293 * state for this grace period. Invoke rcu_report_qs_rsp() 2294 * to clean up and start the next grace period if one is needed. 2295 */ 2296 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2297 } 2298 2299 /* 2300 * Record a quiescent state for all tasks that were previously queued 2301 * on the specified rcu_node structure and that were blocking the current 2302 * RCU grace period. The caller must hold the specified rnp->lock with 2303 * irqs disabled, and this lock is released upon return, but irqs remain 2304 * disabled. 2305 */ 2306 static void __maybe_unused 2307 rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2308 struct rcu_node *rnp, unsigned long flags) 2309 __releases(rnp->lock) 2310 { 2311 unsigned long gps; 2312 unsigned long mask; 2313 struct rcu_node *rnp_p; 2314 2315 raw_lockdep_assert_held_rcu_node(rnp); 2316 if (WARN_ON_ONCE(rcu_state_p == &rcu_sched_state) || 2317 WARN_ON_ONCE(rsp != rcu_state_p) || 2318 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2319 rnp->qsmask != 0) { 2320 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2321 return; /* Still need more quiescent states! */ 2322 } 2323 2324 rnp->completedqs = rnp->gp_seq; 2325 rnp_p = rnp->parent; 2326 if (rnp_p == NULL) { 2327 /* 2328 * Only one rcu_node structure in the tree, so don't 2329 * try to report up to its nonexistent parent! 2330 */ 2331 rcu_report_qs_rsp(rsp, flags); 2332 return; 2333 } 2334 2335 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2336 gps = rnp->gp_seq; 2337 mask = rnp->grpmask; 2338 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2339 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2340 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2341 } 2342 2343 /* 2344 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2345 * structure. This must be called from the specified CPU. 2346 */ 2347 static void 2348 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2349 { 2350 unsigned long flags; 2351 unsigned long mask; 2352 bool needwake; 2353 struct rcu_node *rnp; 2354 2355 rnp = rdp->mynode; 2356 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2357 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2358 rdp->gpwrap) { 2359 2360 /* 2361 * The grace period in which this quiescent state was 2362 * recorded has ended, so don't report it upwards. 2363 * We will instead need a new quiescent state that lies 2364 * within the current grace period. 2365 */ 2366 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2367 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 2368 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2369 return; 2370 } 2371 mask = rdp->grpmask; 2372 if ((rnp->qsmask & mask) == 0) { 2373 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2374 } else { 2375 rdp->core_needs_qs = false; 2376 2377 /* 2378 * This GP can't end until cpu checks in, so all of our 2379 * callbacks can be processed during the next GP. 2380 */ 2381 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2382 2383 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 2384 /* ^^^ Released rnp->lock */ 2385 if (needwake) 2386 rcu_gp_kthread_wake(rsp); 2387 } 2388 } 2389 2390 /* 2391 * Check to see if there is a new grace period of which this CPU 2392 * is not yet aware, and if so, set up local rcu_data state for it. 2393 * Otherwise, see if this CPU has just passed through its first 2394 * quiescent state for this grace period, and record that fact if so. 2395 */ 2396 static void 2397 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2398 { 2399 /* Check for grace-period ends and beginnings. */ 2400 note_gp_changes(rsp, rdp); 2401 2402 /* 2403 * Does this CPU still need to do its part for current grace period? 2404 * If no, return and let the other CPUs do their part as well. 2405 */ 2406 if (!rdp->core_needs_qs) 2407 return; 2408 2409 /* 2410 * Was there a quiescent state since the beginning of the grace 2411 * period? If no, then exit and wait for the next call. 2412 */ 2413 if (rdp->cpu_no_qs.b.norm) 2414 return; 2415 2416 /* 2417 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2418 * judge of that). 2419 */ 2420 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2421 } 2422 2423 /* 2424 * Trace the fact that this CPU is going offline. 2425 */ 2426 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2427 { 2428 RCU_TRACE(bool blkd;) 2429 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) 2430 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2431 2432 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2433 return; 2434 2435 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) 2436 trace_rcu_grace_period(rsp->name, rnp->gp_seq, 2437 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2438 } 2439 2440 /* 2441 * All CPUs for the specified rcu_node structure have gone offline, 2442 * and all tasks that were preempted within an RCU read-side critical 2443 * section while running on one of those CPUs have since exited their RCU 2444 * read-side critical section. Some other CPU is reporting this fact with 2445 * the specified rcu_node structure's ->lock held and interrupts disabled. 2446 * This function therefore goes up the tree of rcu_node structures, 2447 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2448 * the leaf rcu_node structure's ->qsmaskinit field has already been 2449 * updated. 2450 * 2451 * This function does check that the specified rcu_node structure has 2452 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2453 * prematurely. That said, invoking it after the fact will cost you 2454 * a needless lock acquisition. So once it has done its work, don't 2455 * invoke it again. 2456 */ 2457 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2458 { 2459 long mask; 2460 struct rcu_node *rnp = rnp_leaf; 2461 2462 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2463 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2464 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2465 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2466 return; 2467 for (;;) { 2468 mask = rnp->grpmask; 2469 rnp = rnp->parent; 2470 if (!rnp) 2471 break; 2472 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2473 rnp->qsmaskinit &= ~mask; 2474 /* Between grace periods, so better already be zero! */ 2475 WARN_ON_ONCE(rnp->qsmask); 2476 if (rnp->qsmaskinit) { 2477 raw_spin_unlock_rcu_node(rnp); 2478 /* irqs remain disabled. */ 2479 return; 2480 } 2481 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2482 } 2483 } 2484 2485 /* 2486 * The CPU has been completely removed, and some other CPU is reporting 2487 * this fact from process context. Do the remainder of the cleanup. 2488 * There can only be one CPU hotplug operation at a time, so no need for 2489 * explicit locking. 2490 */ 2491 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2492 { 2493 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2494 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2495 2496 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2497 return; 2498 2499 /* Adjust any no-longer-needed kthreads. */ 2500 rcu_boost_kthread_setaffinity(rnp, -1); 2501 } 2502 2503 /* 2504 * Invoke any RCU callbacks that have made it to the end of their grace 2505 * period. Thottle as specified by rdp->blimit. 2506 */ 2507 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2508 { 2509 unsigned long flags; 2510 struct rcu_head *rhp; 2511 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2512 long bl, count; 2513 2514 /* If no callbacks are ready, just return. */ 2515 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2516 trace_rcu_batch_start(rsp->name, 2517 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2518 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2519 trace_rcu_batch_end(rsp->name, 0, 2520 !rcu_segcblist_empty(&rdp->cblist), 2521 need_resched(), is_idle_task(current), 2522 rcu_is_callbacks_kthread()); 2523 return; 2524 } 2525 2526 /* 2527 * Extract the list of ready callbacks, disabling to prevent 2528 * races with call_rcu() from interrupt handlers. Leave the 2529 * callback counts, as rcu_barrier() needs to be conservative. 2530 */ 2531 local_irq_save(flags); 2532 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2533 bl = rdp->blimit; 2534 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2535 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2536 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2537 local_irq_restore(flags); 2538 2539 /* Invoke callbacks. */ 2540 rhp = rcu_cblist_dequeue(&rcl); 2541 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2542 debug_rcu_head_unqueue(rhp); 2543 if (__rcu_reclaim(rsp->name, rhp)) 2544 rcu_cblist_dequeued_lazy(&rcl); 2545 /* 2546 * Stop only if limit reached and CPU has something to do. 2547 * Note: The rcl structure counts down from zero. 2548 */ 2549 if (-rcl.len >= bl && 2550 (need_resched() || 2551 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2552 break; 2553 } 2554 2555 local_irq_save(flags); 2556 count = -rcl.len; 2557 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), 2558 is_idle_task(current), rcu_is_callbacks_kthread()); 2559 2560 /* Update counts and requeue any remaining callbacks. */ 2561 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2562 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2563 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2564 2565 /* Reinstate batch limit if we have worked down the excess. */ 2566 count = rcu_segcblist_n_cbs(&rdp->cblist); 2567 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2568 rdp->blimit = blimit; 2569 2570 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2571 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2572 rdp->qlen_last_fqs_check = 0; 2573 rdp->n_force_qs_snap = rsp->n_force_qs; 2574 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2575 rdp->qlen_last_fqs_check = count; 2576 2577 /* 2578 * The following usually indicates a double call_rcu(). To track 2579 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2580 */ 2581 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2582 2583 local_irq_restore(flags); 2584 2585 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2586 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2587 invoke_rcu_core(); 2588 } 2589 2590 /* 2591 * Check to see if this CPU is in a non-context-switch quiescent state 2592 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2593 * Also schedule RCU core processing. 2594 * 2595 * This function must be called from hardirq context. It is normally 2596 * invoked from the scheduling-clock interrupt. 2597 */ 2598 void rcu_check_callbacks(int user) 2599 { 2600 trace_rcu_utilization(TPS("Start scheduler-tick")); 2601 increment_cpu_stall_ticks(); 2602 if (user || rcu_is_cpu_rrupt_from_idle()) { 2603 2604 /* 2605 * Get here if this CPU took its interrupt from user 2606 * mode or from the idle loop, and if this is not a 2607 * nested interrupt. In this case, the CPU is in 2608 * a quiescent state, so note it. 2609 * 2610 * No memory barrier is required here because both 2611 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2612 * variables that other CPUs neither access nor modify, 2613 * at least not while the corresponding CPU is online. 2614 */ 2615 2616 rcu_sched_qs(); 2617 rcu_bh_qs(); 2618 2619 } else if (!in_softirq()) { 2620 2621 /* 2622 * Get here if this CPU did not take its interrupt from 2623 * softirq, in other words, if it is not interrupting 2624 * a rcu_bh read-side critical section. This is an _bh 2625 * critical section, so note it. 2626 */ 2627 2628 rcu_bh_qs(); 2629 } 2630 rcu_preempt_check_callbacks(); 2631 if (rcu_pending()) 2632 invoke_rcu_core(); 2633 if (user) 2634 rcu_note_voluntary_context_switch(current); 2635 trace_rcu_utilization(TPS("End scheduler-tick")); 2636 } 2637 2638 /* 2639 * Scan the leaf rcu_node structures, processing dyntick state for any that 2640 * have not yet encountered a quiescent state, using the function specified. 2641 * Also initiate boosting for any threads blocked on the root rcu_node. 2642 * 2643 * The caller must have suppressed start of new grace periods. 2644 */ 2645 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)) 2646 { 2647 int cpu; 2648 unsigned long flags; 2649 unsigned long mask; 2650 struct rcu_node *rnp; 2651 2652 rcu_for_each_leaf_node(rsp, rnp) { 2653 cond_resched_tasks_rcu_qs(); 2654 mask = 0; 2655 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2656 if (rnp->qsmask == 0) { 2657 if (rcu_state_p == &rcu_sched_state || 2658 rsp != rcu_state_p || 2659 rcu_preempt_blocked_readers_cgp(rnp)) { 2660 /* 2661 * No point in scanning bits because they 2662 * are all zero. But we might need to 2663 * priority-boost blocked readers. 2664 */ 2665 rcu_initiate_boost(rnp, flags); 2666 /* rcu_initiate_boost() releases rnp->lock */ 2667 continue; 2668 } 2669 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2670 continue; 2671 } 2672 for_each_leaf_node_possible_cpu(rnp, cpu) { 2673 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2674 if ((rnp->qsmask & bit) != 0) { 2675 if (f(per_cpu_ptr(rsp->rda, cpu))) 2676 mask |= bit; 2677 } 2678 } 2679 if (mask != 0) { 2680 /* Idle/offline CPUs, report (releases rnp->lock). */ 2681 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 2682 } else { 2683 /* Nothing to do here, so just drop the lock. */ 2684 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2685 } 2686 } 2687 } 2688 2689 /* 2690 * Force quiescent states on reluctant CPUs, and also detect which 2691 * CPUs are in dyntick-idle mode. 2692 */ 2693 static void force_quiescent_state(struct rcu_state *rsp) 2694 { 2695 unsigned long flags; 2696 bool ret; 2697 struct rcu_node *rnp; 2698 struct rcu_node *rnp_old = NULL; 2699 2700 /* Funnel through hierarchy to reduce memory contention. */ 2701 rnp = __this_cpu_read(rsp->rda->mynode); 2702 for (; rnp != NULL; rnp = rnp->parent) { 2703 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2704 !raw_spin_trylock(&rnp->fqslock); 2705 if (rnp_old != NULL) 2706 raw_spin_unlock(&rnp_old->fqslock); 2707 if (ret) 2708 return; 2709 rnp_old = rnp; 2710 } 2711 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2712 2713 /* Reached the root of the rcu_node tree, acquire lock. */ 2714 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2715 raw_spin_unlock(&rnp_old->fqslock); 2716 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2717 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2718 return; /* Someone beat us to it. */ 2719 } 2720 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2721 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2722 rcu_gp_kthread_wake(rsp); 2723 } 2724 2725 /* 2726 * This function checks for grace-period requests that fail to motivate 2727 * RCU to come out of its idle mode. 2728 */ 2729 static void 2730 rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp, 2731 struct rcu_data *rdp) 2732 { 2733 unsigned long flags; 2734 unsigned long j; 2735 struct rcu_node *rnp_root = rcu_get_root(rsp); 2736 static atomic_t warned = ATOMIC_INIT(0); 2737 2738 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) || 2739 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) 2740 return; 2741 j = jiffies; /* Expensive access, and in common case don't get here. */ 2742 if (time_before(j, READ_ONCE(rsp->gp_req_activity) + HZ) || 2743 time_before(j, READ_ONCE(rsp->gp_activity) + HZ) || 2744 atomic_read(&warned)) 2745 return; 2746 2747 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2748 j = jiffies; 2749 if (rcu_gp_in_progress(rsp) || 2750 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2751 time_before(j, READ_ONCE(rsp->gp_req_activity) + HZ) || 2752 time_before(j, READ_ONCE(rsp->gp_activity) + HZ) || 2753 atomic_read(&warned)) { 2754 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2755 return; 2756 } 2757 /* Hold onto the leaf lock to make others see warned==1. */ 2758 2759 if (rnp_root != rnp) 2760 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 2761 j = jiffies; 2762 if (rcu_gp_in_progress(rsp) || 2763 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2764 time_before(j, rsp->gp_req_activity + HZ) || 2765 time_before(j, rsp->gp_activity + HZ) || 2766 atomic_xchg(&warned, 1)) { 2767 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ 2768 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2769 return; 2770 } 2771 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x %s->state:%#lx\n", 2772 __func__, (long)READ_ONCE(rsp->gp_seq), 2773 (long)READ_ONCE(rnp_root->gp_seq_needed), 2774 j - rsp->gp_req_activity, j - rsp->gp_activity, 2775 rsp->gp_flags, rsp->name, 2776 rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL); 2777 WARN_ON(1); 2778 if (rnp_root != rnp) 2779 raw_spin_unlock_rcu_node(rnp_root); 2780 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2781 } 2782 2783 /* 2784 * This does the RCU core processing work for the specified rcu_state 2785 * and rcu_data structures. This may be called only from the CPU to 2786 * whom the rdp belongs. 2787 */ 2788 static void 2789 __rcu_process_callbacks(struct rcu_state *rsp) 2790 { 2791 unsigned long flags; 2792 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2793 struct rcu_node *rnp = rdp->mynode; 2794 2795 WARN_ON_ONCE(!rdp->beenonline); 2796 2797 /* Update RCU state based on any recent quiescent states. */ 2798 rcu_check_quiescent_state(rsp, rdp); 2799 2800 /* No grace period and unregistered callbacks? */ 2801 if (!rcu_gp_in_progress(rsp) && 2802 rcu_segcblist_is_enabled(&rdp->cblist)) { 2803 local_irq_save(flags); 2804 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2805 rcu_accelerate_cbs_unlocked(rsp, rnp, rdp); 2806 local_irq_restore(flags); 2807 } 2808 2809 rcu_check_gp_start_stall(rsp, rnp, rdp); 2810 2811 /* If there are callbacks ready, invoke them. */ 2812 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2813 invoke_rcu_callbacks(rsp, rdp); 2814 2815 /* Do any needed deferred wakeups of rcuo kthreads. */ 2816 do_nocb_deferred_wakeup(rdp); 2817 } 2818 2819 /* 2820 * Do RCU core processing for the current CPU. 2821 */ 2822 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2823 { 2824 struct rcu_state *rsp; 2825 2826 if (cpu_is_offline(smp_processor_id())) 2827 return; 2828 trace_rcu_utilization(TPS("Start RCU core")); 2829 for_each_rcu_flavor(rsp) 2830 __rcu_process_callbacks(rsp); 2831 trace_rcu_utilization(TPS("End RCU core")); 2832 } 2833 2834 /* 2835 * Schedule RCU callback invocation. If the specified type of RCU 2836 * does not support RCU priority boosting, just do a direct call, 2837 * otherwise wake up the per-CPU kernel kthread. Note that because we 2838 * are running on the current CPU with softirqs disabled, the 2839 * rcu_cpu_kthread_task cannot disappear out from under us. 2840 */ 2841 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2842 { 2843 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2844 return; 2845 if (likely(!rsp->boost)) { 2846 rcu_do_batch(rsp, rdp); 2847 return; 2848 } 2849 invoke_rcu_callbacks_kthread(); 2850 } 2851 2852 static void invoke_rcu_core(void) 2853 { 2854 if (cpu_online(smp_processor_id())) 2855 raise_softirq(RCU_SOFTIRQ); 2856 } 2857 2858 /* 2859 * Handle any core-RCU processing required by a call_rcu() invocation. 2860 */ 2861 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2862 struct rcu_head *head, unsigned long flags) 2863 { 2864 /* 2865 * If called from an extended quiescent state, invoke the RCU 2866 * core in order to force a re-evaluation of RCU's idleness. 2867 */ 2868 if (!rcu_is_watching()) 2869 invoke_rcu_core(); 2870 2871 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2872 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2873 return; 2874 2875 /* 2876 * Force the grace period if too many callbacks or too long waiting. 2877 * Enforce hysteresis, and don't invoke force_quiescent_state() 2878 * if some other CPU has recently done so. Also, don't bother 2879 * invoking force_quiescent_state() if the newly enqueued callback 2880 * is the only one waiting for a grace period to complete. 2881 */ 2882 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2883 rdp->qlen_last_fqs_check + qhimark)) { 2884 2885 /* Are we ignoring a completed grace period? */ 2886 note_gp_changes(rsp, rdp); 2887 2888 /* Start a new grace period if one not already started. */ 2889 if (!rcu_gp_in_progress(rsp)) { 2890 rcu_accelerate_cbs_unlocked(rsp, rdp->mynode, rdp); 2891 } else { 2892 /* Give the grace period a kick. */ 2893 rdp->blimit = LONG_MAX; 2894 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2895 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2896 force_quiescent_state(rsp); 2897 rdp->n_force_qs_snap = rsp->n_force_qs; 2898 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2899 } 2900 } 2901 } 2902 2903 /* 2904 * RCU callback function to leak a callback. 2905 */ 2906 static void rcu_leak_callback(struct rcu_head *rhp) 2907 { 2908 } 2909 2910 /* 2911 * Helper function for call_rcu() and friends. The cpu argument will 2912 * normally be -1, indicating "currently running CPU". It may specify 2913 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2914 * is expected to specify a CPU. 2915 */ 2916 static void 2917 __call_rcu(struct rcu_head *head, rcu_callback_t func, 2918 struct rcu_state *rsp, int cpu, bool lazy) 2919 { 2920 unsigned long flags; 2921 struct rcu_data *rdp; 2922 2923 /* Misaligned rcu_head! */ 2924 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2925 2926 if (debug_rcu_head_queue(head)) { 2927 /* 2928 * Probable double call_rcu(), so leak the callback. 2929 * Use rcu:rcu_callback trace event to find the previous 2930 * time callback was passed to __call_rcu(). 2931 */ 2932 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2933 head, head->func); 2934 WRITE_ONCE(head->func, rcu_leak_callback); 2935 return; 2936 } 2937 head->func = func; 2938 head->next = NULL; 2939 local_irq_save(flags); 2940 rdp = this_cpu_ptr(rsp->rda); 2941 2942 /* Add the callback to our list. */ 2943 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2944 int offline; 2945 2946 if (cpu != -1) 2947 rdp = per_cpu_ptr(rsp->rda, cpu); 2948 if (likely(rdp->mynode)) { 2949 /* Post-boot, so this should be for a no-CBs CPU. */ 2950 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2951 WARN_ON_ONCE(offline); 2952 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2953 local_irq_restore(flags); 2954 return; 2955 } 2956 /* 2957 * Very early boot, before rcu_init(). Initialize if needed 2958 * and then drop through to queue the callback. 2959 */ 2960 BUG_ON(cpu != -1); 2961 WARN_ON_ONCE(!rcu_is_watching()); 2962 if (rcu_segcblist_empty(&rdp->cblist)) 2963 rcu_segcblist_init(&rdp->cblist); 2964 } 2965 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2966 if (!lazy) 2967 rcu_idle_count_callbacks_posted(); 2968 2969 if (__is_kfree_rcu_offset((unsigned long)func)) 2970 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 2971 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2972 rcu_segcblist_n_cbs(&rdp->cblist)); 2973 else 2974 trace_rcu_callback(rsp->name, head, 2975 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2976 rcu_segcblist_n_cbs(&rdp->cblist)); 2977 2978 /* Go handle any RCU core processing required. */ 2979 __call_rcu_core(rsp, rdp, head, flags); 2980 local_irq_restore(flags); 2981 } 2982 2983 /** 2984 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 2985 * @head: structure to be used for queueing the RCU updates. 2986 * @func: actual callback function to be invoked after the grace period 2987 * 2988 * The callback function will be invoked some time after a full grace 2989 * period elapses, in other words after all currently executing RCU 2990 * read-side critical sections have completed. call_rcu_sched() assumes 2991 * that the read-side critical sections end on enabling of preemption 2992 * or on voluntary preemption. 2993 * RCU read-side critical sections are delimited by: 2994 * 2995 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR 2996 * - anything that disables preemption. 2997 * 2998 * These may be nested. 2999 * 3000 * See the description of call_rcu() for more detailed information on 3001 * memory ordering guarantees. 3002 */ 3003 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3004 { 3005 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3006 } 3007 EXPORT_SYMBOL_GPL(call_rcu_sched); 3008 3009 /** 3010 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 3011 * @head: structure to be used for queueing the RCU updates. 3012 * @func: actual callback function to be invoked after the grace period 3013 * 3014 * The callback function will be invoked some time after a full grace 3015 * period elapses, in other words after all currently executing RCU 3016 * read-side critical sections have completed. call_rcu_bh() assumes 3017 * that the read-side critical sections end on completion of a softirq 3018 * handler. This means that read-side critical sections in process 3019 * context must not be interrupted by softirqs. This interface is to be 3020 * used when most of the read-side critical sections are in softirq context. 3021 * RCU read-side critical sections are delimited by: 3022 * 3023 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR 3024 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 3025 * 3026 * These may be nested. 3027 * 3028 * See the description of call_rcu() for more detailed information on 3029 * memory ordering guarantees. 3030 */ 3031 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3032 { 3033 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3034 } 3035 EXPORT_SYMBOL_GPL(call_rcu_bh); 3036 3037 /* 3038 * Queue an RCU callback for lazy invocation after a grace period. 3039 * This will likely be later named something like "call_rcu_lazy()", 3040 * but this change will require some way of tagging the lazy RCU 3041 * callbacks in the list of pending callbacks. Until then, this 3042 * function may only be called from __kfree_rcu(). 3043 */ 3044 void kfree_call_rcu(struct rcu_head *head, 3045 rcu_callback_t func) 3046 { 3047 __call_rcu(head, func, rcu_state_p, -1, 1); 3048 } 3049 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3050 3051 /* 3052 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3053 * any blocking grace-period wait automatically implies a grace period 3054 * if there is only one CPU online at any point time during execution 3055 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3056 * occasionally incorrectly indicate that there are multiple CPUs online 3057 * when there was in fact only one the whole time, as this just adds 3058 * some overhead: RCU still operates correctly. 3059 */ 3060 static inline int rcu_blocking_is_gp(void) 3061 { 3062 int ret; 3063 3064 might_sleep(); /* Check for RCU read-side critical section. */ 3065 preempt_disable(); 3066 ret = num_online_cpus() <= 1; 3067 preempt_enable(); 3068 return ret; 3069 } 3070 3071 /** 3072 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3073 * 3074 * Control will return to the caller some time after a full rcu-sched 3075 * grace period has elapsed, in other words after all currently executing 3076 * rcu-sched read-side critical sections have completed. These read-side 3077 * critical sections are delimited by rcu_read_lock_sched() and 3078 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3079 * local_irq_disable(), and so on may be used in place of 3080 * rcu_read_lock_sched(). 3081 * 3082 * This means that all preempt_disable code sequences, including NMI and 3083 * non-threaded hardware-interrupt handlers, in progress on entry will 3084 * have completed before this primitive returns. However, this does not 3085 * guarantee that softirq handlers will have completed, since in some 3086 * kernels, these handlers can run in process context, and can block. 3087 * 3088 * Note that this guarantee implies further memory-ordering guarantees. 3089 * On systems with more than one CPU, when synchronize_sched() returns, 3090 * each CPU is guaranteed to have executed a full memory barrier since the 3091 * end of its last RCU-sched read-side critical section whose beginning 3092 * preceded the call to synchronize_sched(). In addition, each CPU having 3093 * an RCU read-side critical section that extends beyond the return from 3094 * synchronize_sched() is guaranteed to have executed a full memory barrier 3095 * after the beginning of synchronize_sched() and before the beginning of 3096 * that RCU read-side critical section. Note that these guarantees include 3097 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3098 * that are executing in the kernel. 3099 * 3100 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3101 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3102 * to have executed a full memory barrier during the execution of 3103 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3104 * again only if the system has more than one CPU). 3105 */ 3106 void synchronize_sched(void) 3107 { 3108 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3109 lock_is_held(&rcu_lock_map) || 3110 lock_is_held(&rcu_sched_lock_map), 3111 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3112 if (rcu_blocking_is_gp()) 3113 return; 3114 if (rcu_gp_is_expedited()) 3115 synchronize_sched_expedited(); 3116 else 3117 wait_rcu_gp(call_rcu_sched); 3118 } 3119 EXPORT_SYMBOL_GPL(synchronize_sched); 3120 3121 /** 3122 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3123 * 3124 * Control will return to the caller some time after a full rcu_bh grace 3125 * period has elapsed, in other words after all currently executing rcu_bh 3126 * read-side critical sections have completed. RCU read-side critical 3127 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3128 * and may be nested. 3129 * 3130 * See the description of synchronize_sched() for more detailed information 3131 * on memory ordering guarantees. 3132 */ 3133 void synchronize_rcu_bh(void) 3134 { 3135 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3136 lock_is_held(&rcu_lock_map) || 3137 lock_is_held(&rcu_sched_lock_map), 3138 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3139 if (rcu_blocking_is_gp()) 3140 return; 3141 if (rcu_gp_is_expedited()) 3142 synchronize_rcu_bh_expedited(); 3143 else 3144 wait_rcu_gp(call_rcu_bh); 3145 } 3146 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3147 3148 /** 3149 * get_state_synchronize_rcu - Snapshot current RCU state 3150 * 3151 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3152 * to determine whether or not a full grace period has elapsed in the 3153 * meantime. 3154 */ 3155 unsigned long get_state_synchronize_rcu(void) 3156 { 3157 /* 3158 * Any prior manipulation of RCU-protected data must happen 3159 * before the load from ->gp_seq. 3160 */ 3161 smp_mb(); /* ^^^ */ 3162 return rcu_seq_snap(&rcu_state_p->gp_seq); 3163 } 3164 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3165 3166 /** 3167 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3168 * 3169 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3170 * 3171 * If a full RCU grace period has elapsed since the earlier call to 3172 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3173 * synchronize_rcu() to wait for a full grace period. 3174 * 3175 * Yes, this function does not take counter wrap into account. But 3176 * counter wrap is harmless. If the counter wraps, we have waited for 3177 * more than 2 billion grace periods (and way more on a 64-bit system!), 3178 * so waiting for one additional grace period should be just fine. 3179 */ 3180 void cond_synchronize_rcu(unsigned long oldstate) 3181 { 3182 if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate)) 3183 synchronize_rcu(); 3184 else 3185 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3186 } 3187 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3188 3189 /** 3190 * get_state_synchronize_sched - Snapshot current RCU-sched state 3191 * 3192 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3193 * to determine whether or not a full grace period has elapsed in the 3194 * meantime. 3195 */ 3196 unsigned long get_state_synchronize_sched(void) 3197 { 3198 /* 3199 * Any prior manipulation of RCU-protected data must happen 3200 * before the load from ->gp_seq. 3201 */ 3202 smp_mb(); /* ^^^ */ 3203 return rcu_seq_snap(&rcu_sched_state.gp_seq); 3204 } 3205 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3206 3207 /** 3208 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3209 * 3210 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3211 * 3212 * If a full RCU-sched grace period has elapsed since the earlier call to 3213 * get_state_synchronize_sched(), just return. Otherwise, invoke 3214 * synchronize_sched() to wait for a full grace period. 3215 * 3216 * Yes, this function does not take counter wrap into account. But 3217 * counter wrap is harmless. If the counter wraps, we have waited for 3218 * more than 2 billion grace periods (and way more on a 64-bit system!), 3219 * so waiting for one additional grace period should be just fine. 3220 */ 3221 void cond_synchronize_sched(unsigned long oldstate) 3222 { 3223 if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate)) 3224 synchronize_sched(); 3225 else 3226 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3227 } 3228 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3229 3230 /* 3231 * Check to see if there is any immediate RCU-related work to be done 3232 * by the current CPU, for the specified type of RCU, returning 1 if so. 3233 * The checks are in order of increasing expense: checks that can be 3234 * carried out against CPU-local state are performed first. However, 3235 * we must check for CPU stalls first, else we might not get a chance. 3236 */ 3237 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3238 { 3239 struct rcu_node *rnp = rdp->mynode; 3240 3241 /* Check for CPU stalls, if enabled. */ 3242 check_cpu_stall(rsp, rdp); 3243 3244 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3245 if (rcu_nohz_full_cpu(rsp)) 3246 return 0; 3247 3248 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3249 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 3250 return 1; 3251 3252 /* Does this CPU have callbacks ready to invoke? */ 3253 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3254 return 1; 3255 3256 /* Has RCU gone idle with this CPU needing another grace period? */ 3257 if (!rcu_gp_in_progress(rsp) && 3258 rcu_segcblist_is_enabled(&rdp->cblist) && 3259 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3260 return 1; 3261 3262 /* Have RCU grace period completed or started? */ 3263 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3264 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3265 return 1; 3266 3267 /* Does this CPU need a deferred NOCB wakeup? */ 3268 if (rcu_nocb_need_deferred_wakeup(rdp)) 3269 return 1; 3270 3271 /* nothing to do */ 3272 return 0; 3273 } 3274 3275 /* 3276 * Check to see if there is any immediate RCU-related work to be done 3277 * by the current CPU, returning 1 if so. This function is part of the 3278 * RCU implementation; it is -not- an exported member of the RCU API. 3279 */ 3280 static int rcu_pending(void) 3281 { 3282 struct rcu_state *rsp; 3283 3284 for_each_rcu_flavor(rsp) 3285 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3286 return 1; 3287 return 0; 3288 } 3289 3290 /* 3291 * Return true if the specified CPU has any callback. If all_lazy is 3292 * non-NULL, store an indication of whether all callbacks are lazy. 3293 * (If there are no callbacks, all of them are deemed to be lazy.) 3294 */ 3295 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3296 { 3297 bool al = true; 3298 bool hc = false; 3299 struct rcu_data *rdp; 3300 struct rcu_state *rsp; 3301 3302 for_each_rcu_flavor(rsp) { 3303 rdp = this_cpu_ptr(rsp->rda); 3304 if (rcu_segcblist_empty(&rdp->cblist)) 3305 continue; 3306 hc = true; 3307 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { 3308 al = false; 3309 break; 3310 } 3311 } 3312 if (all_lazy) 3313 *all_lazy = al; 3314 return hc; 3315 } 3316 3317 /* 3318 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3319 * the compiler is expected to optimize this away. 3320 */ 3321 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3322 int cpu, unsigned long done) 3323 { 3324 trace_rcu_barrier(rsp->name, s, cpu, 3325 atomic_read(&rsp->barrier_cpu_count), done); 3326 } 3327 3328 /* 3329 * RCU callback function for _rcu_barrier(). If we are last, wake 3330 * up the task executing _rcu_barrier(). 3331 */ 3332 static void rcu_barrier_callback(struct rcu_head *rhp) 3333 { 3334 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3335 struct rcu_state *rsp = rdp->rsp; 3336 3337 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3338 _rcu_barrier_trace(rsp, TPS("LastCB"), -1, 3339 rsp->barrier_sequence); 3340 complete(&rsp->barrier_completion); 3341 } else { 3342 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence); 3343 } 3344 } 3345 3346 /* 3347 * Called with preemption disabled, and from cross-cpu IRQ context. 3348 */ 3349 static void rcu_barrier_func(void *type) 3350 { 3351 struct rcu_state *rsp = type; 3352 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3353 3354 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence); 3355 rdp->barrier_head.func = rcu_barrier_callback; 3356 debug_rcu_head_queue(&rdp->barrier_head); 3357 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3358 atomic_inc(&rsp->barrier_cpu_count); 3359 } else { 3360 debug_rcu_head_unqueue(&rdp->barrier_head); 3361 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1, 3362 rsp->barrier_sequence); 3363 } 3364 } 3365 3366 /* 3367 * Orchestrate the specified type of RCU barrier, waiting for all 3368 * RCU callbacks of the specified type to complete. 3369 */ 3370 static void _rcu_barrier(struct rcu_state *rsp) 3371 { 3372 int cpu; 3373 struct rcu_data *rdp; 3374 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3375 3376 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s); 3377 3378 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3379 mutex_lock(&rsp->barrier_mutex); 3380 3381 /* Did someone else do our work for us? */ 3382 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3383 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1, 3384 rsp->barrier_sequence); 3385 smp_mb(); /* caller's subsequent code after above check. */ 3386 mutex_unlock(&rsp->barrier_mutex); 3387 return; 3388 } 3389 3390 /* Mark the start of the barrier operation. */ 3391 rcu_seq_start(&rsp->barrier_sequence); 3392 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence); 3393 3394 /* 3395 * Initialize the count to one rather than to zero in order to 3396 * avoid a too-soon return to zero in case of a short grace period 3397 * (or preemption of this task). Exclude CPU-hotplug operations 3398 * to ensure that no offline CPU has callbacks queued. 3399 */ 3400 init_completion(&rsp->barrier_completion); 3401 atomic_set(&rsp->barrier_cpu_count, 1); 3402 get_online_cpus(); 3403 3404 /* 3405 * Force each CPU with callbacks to register a new callback. 3406 * When that callback is invoked, we will know that all of the 3407 * corresponding CPU's preceding callbacks have been invoked. 3408 */ 3409 for_each_possible_cpu(cpu) { 3410 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3411 continue; 3412 rdp = per_cpu_ptr(rsp->rda, cpu); 3413 if (rcu_is_nocb_cpu(cpu)) { 3414 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3415 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu, 3416 rsp->barrier_sequence); 3417 } else { 3418 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu, 3419 rsp->barrier_sequence); 3420 smp_mb__before_atomic(); 3421 atomic_inc(&rsp->barrier_cpu_count); 3422 __call_rcu(&rdp->barrier_head, 3423 rcu_barrier_callback, rsp, cpu, 0); 3424 } 3425 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3426 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu, 3427 rsp->barrier_sequence); 3428 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3429 } else { 3430 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu, 3431 rsp->barrier_sequence); 3432 } 3433 } 3434 put_online_cpus(); 3435 3436 /* 3437 * Now that we have an rcu_barrier_callback() callback on each 3438 * CPU, and thus each counted, remove the initial count. 3439 */ 3440 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3441 complete(&rsp->barrier_completion); 3442 3443 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3444 wait_for_completion(&rsp->barrier_completion); 3445 3446 /* Mark the end of the barrier operation. */ 3447 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence); 3448 rcu_seq_end(&rsp->barrier_sequence); 3449 3450 /* Other rcu_barrier() invocations can now safely proceed. */ 3451 mutex_unlock(&rsp->barrier_mutex); 3452 } 3453 3454 /** 3455 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3456 */ 3457 void rcu_barrier_bh(void) 3458 { 3459 _rcu_barrier(&rcu_bh_state); 3460 } 3461 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3462 3463 /** 3464 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3465 */ 3466 void rcu_barrier_sched(void) 3467 { 3468 _rcu_barrier(&rcu_sched_state); 3469 } 3470 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3471 3472 /* 3473 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3474 * first CPU in a given leaf rcu_node structure coming online. The caller 3475 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3476 * disabled. 3477 */ 3478 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3479 { 3480 long mask; 3481 long oldmask; 3482 struct rcu_node *rnp = rnp_leaf; 3483 3484 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3485 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3486 for (;;) { 3487 mask = rnp->grpmask; 3488 rnp = rnp->parent; 3489 if (rnp == NULL) 3490 return; 3491 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3492 oldmask = rnp->qsmaskinit; 3493 rnp->qsmaskinit |= mask; 3494 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3495 if (oldmask) 3496 return; 3497 } 3498 } 3499 3500 /* 3501 * Do boot-time initialization of a CPU's per-CPU RCU data. 3502 */ 3503 static void __init 3504 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3505 { 3506 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3507 3508 /* Set up local state, ensuring consistent view of global state. */ 3509 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3510 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3511 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1); 3512 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3513 rdp->rcu_ofl_gp_seq = rsp->gp_seq; 3514 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3515 rdp->rcu_onl_gp_seq = rsp->gp_seq; 3516 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3517 rdp->cpu = cpu; 3518 rdp->rsp = rsp; 3519 rcu_boot_init_nocb_percpu_data(rdp); 3520 } 3521 3522 /* 3523 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3524 * offline event can be happening at a given time. Note also that we can 3525 * accept some slop in the rsp->gp_seq access due to the fact that this 3526 * CPU cannot possibly have any RCU callbacks in flight yet. 3527 */ 3528 static void 3529 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3530 { 3531 unsigned long flags; 3532 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3533 struct rcu_node *rnp = rcu_get_root(rsp); 3534 3535 /* Set up local state, ensuring consistent view of global state. */ 3536 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3537 rdp->qlen_last_fqs_check = 0; 3538 rdp->n_force_qs_snap = rsp->n_force_qs; 3539 rdp->blimit = blimit; 3540 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3541 !init_nocb_callback_list(rdp)) 3542 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3543 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3544 rcu_dynticks_eqs_online(); 3545 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3546 3547 /* 3548 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3549 * propagation up the rcu_node tree will happen at the beginning 3550 * of the next grace period. 3551 */ 3552 rnp = rdp->mynode; 3553 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3554 rdp->beenonline = true; /* We have now been online. */ 3555 rdp->gp_seq = rnp->gp_seq; 3556 rdp->gp_seq_needed = rnp->gp_seq; 3557 rdp->cpu_no_qs.b.norm = true; 3558 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); 3559 rdp->core_needs_qs = false; 3560 rdp->rcu_iw_pending = false; 3561 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3562 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuonl")); 3563 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3564 } 3565 3566 /* 3567 * Invoked early in the CPU-online process, when pretty much all 3568 * services are available. The incoming CPU is not present. 3569 */ 3570 int rcutree_prepare_cpu(unsigned int cpu) 3571 { 3572 struct rcu_state *rsp; 3573 3574 for_each_rcu_flavor(rsp) 3575 rcu_init_percpu_data(cpu, rsp); 3576 3577 rcu_prepare_kthreads(cpu); 3578 rcu_spawn_all_nocb_kthreads(cpu); 3579 3580 return 0; 3581 } 3582 3583 /* 3584 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3585 */ 3586 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3587 { 3588 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3589 3590 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3591 } 3592 3593 /* 3594 * Near the end of the CPU-online process. Pretty much all services 3595 * enabled, and the CPU is now very much alive. 3596 */ 3597 int rcutree_online_cpu(unsigned int cpu) 3598 { 3599 unsigned long flags; 3600 struct rcu_data *rdp; 3601 struct rcu_node *rnp; 3602 struct rcu_state *rsp; 3603 3604 for_each_rcu_flavor(rsp) { 3605 rdp = per_cpu_ptr(rsp->rda, cpu); 3606 rnp = rdp->mynode; 3607 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3608 rnp->ffmask |= rdp->grpmask; 3609 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3610 } 3611 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3612 srcu_online_cpu(cpu); 3613 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3614 return 0; /* Too early in boot for scheduler work. */ 3615 sync_sched_exp_online_cleanup(cpu); 3616 rcutree_affinity_setting(cpu, -1); 3617 return 0; 3618 } 3619 3620 /* 3621 * Near the beginning of the process. The CPU is still very much alive 3622 * with pretty much all services enabled. 3623 */ 3624 int rcutree_offline_cpu(unsigned int cpu) 3625 { 3626 unsigned long flags; 3627 struct rcu_data *rdp; 3628 struct rcu_node *rnp; 3629 struct rcu_state *rsp; 3630 3631 for_each_rcu_flavor(rsp) { 3632 rdp = per_cpu_ptr(rsp->rda, cpu); 3633 rnp = rdp->mynode; 3634 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3635 rnp->ffmask &= ~rdp->grpmask; 3636 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3637 } 3638 3639 rcutree_affinity_setting(cpu, cpu); 3640 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3641 srcu_offline_cpu(cpu); 3642 return 0; 3643 } 3644 3645 /* 3646 * Near the end of the offline process. We do only tracing here. 3647 */ 3648 int rcutree_dying_cpu(unsigned int cpu) 3649 { 3650 struct rcu_state *rsp; 3651 3652 for_each_rcu_flavor(rsp) 3653 rcu_cleanup_dying_cpu(rsp); 3654 return 0; 3655 } 3656 3657 /* 3658 * The outgoing CPU is gone and we are running elsewhere. 3659 */ 3660 int rcutree_dead_cpu(unsigned int cpu) 3661 { 3662 struct rcu_state *rsp; 3663 3664 for_each_rcu_flavor(rsp) { 3665 rcu_cleanup_dead_cpu(cpu, rsp); 3666 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3667 } 3668 return 0; 3669 } 3670 3671 static DEFINE_PER_CPU(int, rcu_cpu_started); 3672 3673 /* 3674 * Mark the specified CPU as being online so that subsequent grace periods 3675 * (both expedited and normal) will wait on it. Note that this means that 3676 * incoming CPUs are not allowed to use RCU read-side critical sections 3677 * until this function is called. Failing to observe this restriction 3678 * will result in lockdep splats. 3679 * 3680 * Note that this function is special in that it is invoked directly 3681 * from the incoming CPU rather than from the cpuhp_step mechanism. 3682 * This is because this function must be invoked at a precise location. 3683 */ 3684 void rcu_cpu_starting(unsigned int cpu) 3685 { 3686 unsigned long flags; 3687 unsigned long mask; 3688 int nbits; 3689 unsigned long oldmask; 3690 struct rcu_data *rdp; 3691 struct rcu_node *rnp; 3692 struct rcu_state *rsp; 3693 3694 if (per_cpu(rcu_cpu_started, cpu)) 3695 return; 3696 3697 per_cpu(rcu_cpu_started, cpu) = 1; 3698 3699 for_each_rcu_flavor(rsp) { 3700 rdp = per_cpu_ptr(rsp->rda, cpu); 3701 rnp = rdp->mynode; 3702 mask = rdp->grpmask; 3703 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3704 rnp->qsmaskinitnext |= mask; 3705 oldmask = rnp->expmaskinitnext; 3706 rnp->expmaskinitnext |= mask; 3707 oldmask ^= rnp->expmaskinitnext; 3708 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3709 /* Allow lockless access for expedited grace periods. */ 3710 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */ 3711 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3712 rdp->rcu_onl_gp_seq = READ_ONCE(rsp->gp_seq); 3713 rdp->rcu_onl_gp_flags = READ_ONCE(rsp->gp_flags); 3714 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3715 /* Report QS -after- changing ->qsmaskinitnext! */ 3716 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 3717 } else { 3718 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3719 } 3720 } 3721 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3722 } 3723 3724 #ifdef CONFIG_HOTPLUG_CPU 3725 /* 3726 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3727 * function. We now remove it from the rcu_node tree's ->qsmaskinitnext 3728 * bit masks. 3729 */ 3730 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3731 { 3732 unsigned long flags; 3733 unsigned long mask; 3734 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3735 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3736 3737 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3738 mask = rdp->grpmask; 3739 spin_lock(&rsp->ofl_lock); 3740 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3741 rdp->rcu_ofl_gp_seq = READ_ONCE(rsp->gp_seq); 3742 rdp->rcu_ofl_gp_flags = READ_ONCE(rsp->gp_flags); 3743 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3744 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3745 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 3746 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3747 } 3748 rnp->qsmaskinitnext &= ~mask; 3749 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3750 spin_unlock(&rsp->ofl_lock); 3751 } 3752 3753 /* 3754 * The outgoing function has no further need of RCU, so remove it from 3755 * the list of CPUs that RCU must track. 3756 * 3757 * Note that this function is special in that it is invoked directly 3758 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3759 * This is because this function must be invoked at a precise location. 3760 */ 3761 void rcu_report_dead(unsigned int cpu) 3762 { 3763 struct rcu_state *rsp; 3764 3765 /* QS for any half-done expedited RCU-sched GP. */ 3766 preempt_disable(); 3767 rcu_report_exp_rdp(&rcu_sched_state, 3768 this_cpu_ptr(rcu_sched_state.rda), true); 3769 preempt_enable(); 3770 for_each_rcu_flavor(rsp) 3771 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3772 3773 per_cpu(rcu_cpu_started, cpu) = 0; 3774 } 3775 3776 /* Migrate the dead CPU's callbacks to the current CPU. */ 3777 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp) 3778 { 3779 unsigned long flags; 3780 struct rcu_data *my_rdp; 3781 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3782 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 3783 bool needwake; 3784 3785 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3786 return; /* No callbacks to migrate. */ 3787 3788 local_irq_save(flags); 3789 my_rdp = this_cpu_ptr(rsp->rda); 3790 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3791 local_irq_restore(flags); 3792 return; 3793 } 3794 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3795 /* Leverage recent GPs and set GP for new callbacks. */ 3796 needwake = rcu_advance_cbs(rsp, rnp_root, rdp) || 3797 rcu_advance_cbs(rsp, rnp_root, my_rdp); 3798 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3799 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3800 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3801 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3802 if (needwake) 3803 rcu_gp_kthread_wake(rsp); 3804 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3805 !rcu_segcblist_empty(&rdp->cblist), 3806 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3807 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3808 rcu_segcblist_first_cb(&rdp->cblist)); 3809 } 3810 3811 /* 3812 * The outgoing CPU has just passed through the dying-idle state, 3813 * and we are being invoked from the CPU that was IPIed to continue the 3814 * offline operation. We need to migrate the outgoing CPU's callbacks. 3815 */ 3816 void rcutree_migrate_callbacks(int cpu) 3817 { 3818 struct rcu_state *rsp; 3819 3820 for_each_rcu_flavor(rsp) 3821 rcu_migrate_callbacks(cpu, rsp); 3822 } 3823 #endif 3824 3825 /* 3826 * On non-huge systems, use expedited RCU grace periods to make suspend 3827 * and hibernation run faster. 3828 */ 3829 static int rcu_pm_notify(struct notifier_block *self, 3830 unsigned long action, void *hcpu) 3831 { 3832 switch (action) { 3833 case PM_HIBERNATION_PREPARE: 3834 case PM_SUSPEND_PREPARE: 3835 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3836 rcu_expedite_gp(); 3837 break; 3838 case PM_POST_HIBERNATION: 3839 case PM_POST_SUSPEND: 3840 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3841 rcu_unexpedite_gp(); 3842 break; 3843 default: 3844 break; 3845 } 3846 return NOTIFY_OK; 3847 } 3848 3849 /* 3850 * Spawn the kthreads that handle each RCU flavor's grace periods. 3851 */ 3852 static int __init rcu_spawn_gp_kthread(void) 3853 { 3854 unsigned long flags; 3855 int kthread_prio_in = kthread_prio; 3856 struct rcu_node *rnp; 3857 struct rcu_state *rsp; 3858 struct sched_param sp; 3859 struct task_struct *t; 3860 3861 /* Force priority into range. */ 3862 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3863 kthread_prio = 1; 3864 else if (kthread_prio < 0) 3865 kthread_prio = 0; 3866 else if (kthread_prio > 99) 3867 kthread_prio = 99; 3868 if (kthread_prio != kthread_prio_in) 3869 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3870 kthread_prio, kthread_prio_in); 3871 3872 rcu_scheduler_fully_active = 1; 3873 for_each_rcu_flavor(rsp) { 3874 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3875 BUG_ON(IS_ERR(t)); 3876 rnp = rcu_get_root(rsp); 3877 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3878 rsp->gp_kthread = t; 3879 if (kthread_prio) { 3880 sp.sched_priority = kthread_prio; 3881 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3882 } 3883 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3884 wake_up_process(t); 3885 } 3886 rcu_spawn_nocb_kthreads(); 3887 rcu_spawn_boost_kthreads(); 3888 return 0; 3889 } 3890 early_initcall(rcu_spawn_gp_kthread); 3891 3892 /* 3893 * This function is invoked towards the end of the scheduler's 3894 * initialization process. Before this is called, the idle task might 3895 * contain synchronous grace-period primitives (during which time, this idle 3896 * task is booting the system, and such primitives are no-ops). After this 3897 * function is called, any synchronous grace-period primitives are run as 3898 * expedited, with the requesting task driving the grace period forward. 3899 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3900 * runtime RCU functionality. 3901 */ 3902 void rcu_scheduler_starting(void) 3903 { 3904 WARN_ON(num_online_cpus() != 1); 3905 WARN_ON(nr_context_switches() > 0); 3906 rcu_test_sync_prims(); 3907 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3908 rcu_test_sync_prims(); 3909 } 3910 3911 /* 3912 * Helper function for rcu_init() that initializes one rcu_state structure. 3913 */ 3914 static void __init rcu_init_one(struct rcu_state *rsp) 3915 { 3916 static const char * const buf[] = RCU_NODE_NAME_INIT; 3917 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3918 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3919 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3920 3921 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3922 int cpustride = 1; 3923 int i; 3924 int j; 3925 struct rcu_node *rnp; 3926 3927 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3928 3929 /* Silence gcc 4.8 false positive about array index out of range. */ 3930 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3931 panic("rcu_init_one: rcu_num_lvls out of range"); 3932 3933 /* Initialize the level-tracking arrays. */ 3934 3935 for (i = 1; i < rcu_num_lvls; i++) 3936 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; 3937 rcu_init_levelspread(levelspread, num_rcu_lvl); 3938 3939 /* Initialize the elements themselves, starting from the leaves. */ 3940 3941 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3942 cpustride *= levelspread[i]; 3943 rnp = rsp->level[i]; 3944 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3945 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3946 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3947 &rcu_node_class[i], buf[i]); 3948 raw_spin_lock_init(&rnp->fqslock); 3949 lockdep_set_class_and_name(&rnp->fqslock, 3950 &rcu_fqs_class[i], fqs[i]); 3951 rnp->gp_seq = rsp->gp_seq; 3952 rnp->gp_seq_needed = rsp->gp_seq; 3953 rnp->completedqs = rsp->gp_seq; 3954 rnp->qsmask = 0; 3955 rnp->qsmaskinit = 0; 3956 rnp->grplo = j * cpustride; 3957 rnp->grphi = (j + 1) * cpustride - 1; 3958 if (rnp->grphi >= nr_cpu_ids) 3959 rnp->grphi = nr_cpu_ids - 1; 3960 if (i == 0) { 3961 rnp->grpnum = 0; 3962 rnp->grpmask = 0; 3963 rnp->parent = NULL; 3964 } else { 3965 rnp->grpnum = j % levelspread[i - 1]; 3966 rnp->grpmask = 1UL << rnp->grpnum; 3967 rnp->parent = rsp->level[i - 1] + 3968 j / levelspread[i - 1]; 3969 } 3970 rnp->level = i; 3971 INIT_LIST_HEAD(&rnp->blkd_tasks); 3972 rcu_init_one_nocb(rnp); 3973 init_waitqueue_head(&rnp->exp_wq[0]); 3974 init_waitqueue_head(&rnp->exp_wq[1]); 3975 init_waitqueue_head(&rnp->exp_wq[2]); 3976 init_waitqueue_head(&rnp->exp_wq[3]); 3977 spin_lock_init(&rnp->exp_lock); 3978 } 3979 } 3980 3981 init_swait_queue_head(&rsp->gp_wq); 3982 init_swait_queue_head(&rsp->expedited_wq); 3983 rnp = rcu_first_leaf_node(rsp); 3984 for_each_possible_cpu(i) { 3985 while (i > rnp->grphi) 3986 rnp++; 3987 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 3988 rcu_boot_init_percpu_data(i, rsp); 3989 } 3990 list_add(&rsp->flavors, &rcu_struct_flavors); 3991 } 3992 3993 /* 3994 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3995 * replace the definitions in tree.h because those are needed to size 3996 * the ->node array in the rcu_state structure. 3997 */ 3998 static void __init rcu_init_geometry(void) 3999 { 4000 ulong d; 4001 int i; 4002 int rcu_capacity[RCU_NUM_LVLS]; 4003 4004 /* 4005 * Initialize any unspecified boot parameters. 4006 * The default values of jiffies_till_first_fqs and 4007 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4008 * value, which is a function of HZ, then adding one for each 4009 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4010 */ 4011 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4012 if (jiffies_till_first_fqs == ULONG_MAX) 4013 jiffies_till_first_fqs = d; 4014 if (jiffies_till_next_fqs == ULONG_MAX) 4015 jiffies_till_next_fqs = d; 4016 4017 /* If the compile-time values are accurate, just leave. */ 4018 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4019 nr_cpu_ids == NR_CPUS) 4020 return; 4021 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4022 rcu_fanout_leaf, nr_cpu_ids); 4023 4024 /* 4025 * The boot-time rcu_fanout_leaf parameter must be at least two 4026 * and cannot exceed the number of bits in the rcu_node masks. 4027 * Complain and fall back to the compile-time values if this 4028 * limit is exceeded. 4029 */ 4030 if (rcu_fanout_leaf < 2 || 4031 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4032 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4033 WARN_ON(1); 4034 return; 4035 } 4036 4037 /* 4038 * Compute number of nodes that can be handled an rcu_node tree 4039 * with the given number of levels. 4040 */ 4041 rcu_capacity[0] = rcu_fanout_leaf; 4042 for (i = 1; i < RCU_NUM_LVLS; i++) 4043 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4044 4045 /* 4046 * The tree must be able to accommodate the configured number of CPUs. 4047 * If this limit is exceeded, fall back to the compile-time values. 4048 */ 4049 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4050 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4051 WARN_ON(1); 4052 return; 4053 } 4054 4055 /* Calculate the number of levels in the tree. */ 4056 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4057 } 4058 rcu_num_lvls = i + 1; 4059 4060 /* Calculate the number of rcu_nodes at each level of the tree. */ 4061 for (i = 0; i < rcu_num_lvls; i++) { 4062 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4063 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4064 } 4065 4066 /* Calculate the total number of rcu_node structures. */ 4067 rcu_num_nodes = 0; 4068 for (i = 0; i < rcu_num_lvls; i++) 4069 rcu_num_nodes += num_rcu_lvl[i]; 4070 } 4071 4072 /* 4073 * Dump out the structure of the rcu_node combining tree associated 4074 * with the rcu_state structure referenced by rsp. 4075 */ 4076 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4077 { 4078 int level = 0; 4079 struct rcu_node *rnp; 4080 4081 pr_info("rcu_node tree layout dump\n"); 4082 pr_info(" "); 4083 rcu_for_each_node_breadth_first(rsp, rnp) { 4084 if (rnp->level != level) { 4085 pr_cont("\n"); 4086 pr_info(" "); 4087 level = rnp->level; 4088 } 4089 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4090 } 4091 pr_cont("\n"); 4092 } 4093 4094 struct workqueue_struct *rcu_gp_wq; 4095 struct workqueue_struct *rcu_par_gp_wq; 4096 4097 void __init rcu_init(void) 4098 { 4099 int cpu; 4100 4101 rcu_early_boot_tests(); 4102 4103 rcu_bootup_announce(); 4104 rcu_init_geometry(); 4105 rcu_init_one(&rcu_bh_state); 4106 rcu_init_one(&rcu_sched_state); 4107 if (dump_tree) 4108 rcu_dump_rcu_node_tree(&rcu_sched_state); 4109 __rcu_init_preempt(); 4110 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4111 4112 /* 4113 * We don't need protection against CPU-hotplug here because 4114 * this is called early in boot, before either interrupts 4115 * or the scheduler are operational. 4116 */ 4117 pm_notifier(rcu_pm_notify, 0); 4118 for_each_online_cpu(cpu) { 4119 rcutree_prepare_cpu(cpu); 4120 rcu_cpu_starting(cpu); 4121 rcutree_online_cpu(cpu); 4122 } 4123 4124 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4125 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4126 WARN_ON(!rcu_gp_wq); 4127 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4128 WARN_ON(!rcu_par_gp_wq); 4129 } 4130 4131 #include "tree_exp.h" 4132 #include "tree_plugin.h" 4133